1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Hoist bitcasts out of shuffles 124 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 125 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Support integer abs 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 133 setOperationAction(ISD::ABS, T, Legal); 134 135 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 136 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 137 MVT::v2f64}) 138 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 139 140 // We have custom shuffle lowering to expose the shuffle mask 141 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 142 MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 148 setOperationAction(Op, T, Custom); 149 150 // Custom lower lane accesses to expand out variable indices 151 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 152 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 153 MVT::v2f64}) 154 setOperationAction(Op, T, Custom); 155 156 // There is no i8x16.mul instruction 157 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 158 159 // There is no vector conditional select instruction 160 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 161 MVT::v2f64}) 162 setOperationAction(ISD::SELECT_CC, T, Expand); 163 164 // Expand integer operations supported for scalars but not SIMD 165 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 166 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 168 setOperationAction(Op, T, Expand); 169 170 // But we do have integer min and max operations 171 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 173 setOperationAction(Op, T, Legal); 174 175 // Expand float operations supported for scalars but not SIMD 176 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 177 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 178 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 179 for (auto T : {MVT::v4f32, MVT::v2f64}) 180 setOperationAction(Op, T, Expand); 181 182 // Expand operations not supported for i64x2 vectors 183 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 184 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 185 186 // 64x2 conversions are not in the spec 187 for (auto Op : 188 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 189 for (auto T : {MVT::v2i64, MVT::v2f64}) 190 setOperationAction(Op, T, Expand); 191 } 192 193 // As a special case, these operators use the type to mean the type to 194 // sign-extend from. 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 196 if (!Subtarget->hasSignExt()) { 197 // Sign extends are legal only when extending a vector extract 198 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 199 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 200 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 201 } 202 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 203 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 204 205 // Dynamic stack allocation: use the default expansion. 206 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 207 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 208 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 209 210 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 211 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 212 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 213 214 // Expand these forms; we pattern-match the forms that we can handle in isel. 215 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 216 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 217 setOperationAction(Op, T, Expand); 218 219 // We have custom switch handling. 220 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 221 222 // WebAssembly doesn't have: 223 // - Floating-point extending loads. 224 // - Floating-point truncating stores. 225 // - i1 extending loads. 226 // - truncating SIMD stores and most extending loads 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 228 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 229 for (auto T : MVT::integer_valuetypes()) 230 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 231 setLoadExtAction(Ext, T, MVT::i1, Promote); 232 if (Subtarget->hasSIMD128()) { 233 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 234 MVT::v2f64}) { 235 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 236 if (MVT(T) != MemT) { 237 setTruncStoreAction(T, MemT, Expand); 238 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 239 setLoadExtAction(Ext, T, MemT, Expand); 240 } 241 } 242 } 243 // But some vector extending loads are legal 244 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 245 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 246 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 247 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 248 } 249 } 250 251 // Don't do anything clever with build_pairs 252 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 253 254 // Trap lowers to wasm unreachable 255 setOperationAction(ISD::TRAP, MVT::Other, Legal); 256 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 257 258 // Exception handling intrinsics 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 261 262 setMaxAtomicSizeInBitsSupported(64); 263 264 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 265 // consistent with the f64 and f128 names. 266 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 267 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 268 269 // Define the emscripten name for return address helper. 270 // TODO: when implementing other WASM backends, make this generic or only do 271 // this on emscripten depending on what they end up doing. 272 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 273 274 // Always convert switches to br_tables unless there is only one case, which 275 // is equivalent to a simple branch. This reduces code size for wasm, and we 276 // defer possible jump table optimizations to the VM. 277 setMinimumJumpTableEntries(2); 278 } 279 280 TargetLowering::AtomicExpansionKind 281 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 282 // We have wasm instructions for these 283 switch (AI->getOperation()) { 284 case AtomicRMWInst::Add: 285 case AtomicRMWInst::Sub: 286 case AtomicRMWInst::And: 287 case AtomicRMWInst::Or: 288 case AtomicRMWInst::Xor: 289 case AtomicRMWInst::Xchg: 290 return AtomicExpansionKind::None; 291 default: 292 break; 293 } 294 return AtomicExpansionKind::CmpXChg; 295 } 296 297 FastISel *WebAssemblyTargetLowering::createFastISel( 298 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 299 return WebAssembly::createFastISel(FuncInfo, LibInfo); 300 } 301 302 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 303 EVT VT) const { 304 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 305 if (BitWidth > 1 && BitWidth < 8) 306 BitWidth = 8; 307 308 if (BitWidth > 64) { 309 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 310 // the count to be an i32. 311 BitWidth = 32; 312 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 313 "32-bit shift counts ought to be enough for anyone"); 314 } 315 316 MVT Result = MVT::getIntegerVT(BitWidth); 317 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 318 "Unable to represent scalar shift amount type"); 319 return Result; 320 } 321 322 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 323 // undefined result on invalid/overflow, to the WebAssembly opcode, which 324 // traps on invalid/overflow. 325 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 326 MachineBasicBlock *BB, 327 const TargetInstrInfo &TII, 328 bool IsUnsigned, bool Int64, 329 bool Float64, unsigned LoweredOpcode) { 330 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 331 332 Register OutReg = MI.getOperand(0).getReg(); 333 Register InReg = MI.getOperand(1).getReg(); 334 335 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 336 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 337 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 338 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 339 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 340 unsigned Eqz = WebAssembly::EQZ_I32; 341 unsigned And = WebAssembly::AND_I32; 342 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 343 int64_t Substitute = IsUnsigned ? 0 : Limit; 344 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 345 auto &Context = BB->getParent()->getFunction().getContext(); 346 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 347 348 const BasicBlock *LLVMBB = BB->getBasicBlock(); 349 MachineFunction *F = BB->getParent(); 350 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 351 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 352 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 353 354 MachineFunction::iterator It = ++BB->getIterator(); 355 F->insert(It, FalseMBB); 356 F->insert(It, TrueMBB); 357 F->insert(It, DoneMBB); 358 359 // Transfer the remainder of BB and its successor edges to DoneMBB. 360 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 361 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 362 363 BB->addSuccessor(TrueMBB); 364 BB->addSuccessor(FalseMBB); 365 TrueMBB->addSuccessor(DoneMBB); 366 FalseMBB->addSuccessor(DoneMBB); 367 368 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 369 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 370 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 371 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 372 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 373 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 374 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 375 376 MI.eraseFromParent(); 377 // For signed numbers, we can do a single comparison to determine whether 378 // fabs(x) is within range. 379 if (IsUnsigned) { 380 Tmp0 = InReg; 381 } else { 382 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 383 } 384 BuildMI(BB, DL, TII.get(FConst), Tmp1) 385 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 386 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 387 388 // For unsigned numbers, we have to do a separate comparison with zero. 389 if (IsUnsigned) { 390 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 391 Register SecondCmpReg = 392 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 393 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 394 BuildMI(BB, DL, TII.get(FConst), Tmp1) 395 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 396 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 397 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 398 CmpReg = AndReg; 399 } 400 401 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 402 403 // Create the CFG diamond to select between doing the conversion or using 404 // the substitute value. 405 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 406 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 407 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 408 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 409 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 410 .addReg(FalseReg) 411 .addMBB(FalseMBB) 412 .addReg(TrueReg) 413 .addMBB(TrueMBB); 414 415 return DoneMBB; 416 } 417 418 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 419 DebugLoc DL, MachineBasicBlock *BB, 420 const TargetInstrInfo &TII) { 421 MachineInstr &CallParams = *CallResults.getPrevNode(); 422 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 423 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 424 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 425 426 bool IsIndirect = CallParams.getOperand(0).isReg(); 427 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 428 429 unsigned CallOp; 430 if (IsIndirect && IsRetCall) { 431 CallOp = WebAssembly::RET_CALL_INDIRECT; 432 } else if (IsIndirect) { 433 CallOp = WebAssembly::CALL_INDIRECT; 434 } else if (IsRetCall) { 435 CallOp = WebAssembly::RET_CALL; 436 } else { 437 CallOp = WebAssembly::CALL; 438 } 439 440 MachineFunction &MF = *BB->getParent(); 441 const MCInstrDesc &MCID = TII.get(CallOp); 442 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 443 444 // See if we must truncate the function pointer. 445 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 446 // as 64-bit for uniformity with other pointer types. 447 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 448 Register Reg32 = 449 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 450 auto &FnPtr = CallParams.getOperand(0); 451 BuildMI(*BB, CallResults.getIterator(), DL, 452 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 453 .addReg(FnPtr.getReg()); 454 FnPtr.setReg(Reg32); 455 } 456 457 // Move the function pointer to the end of the arguments for indirect calls 458 if (IsIndirect) { 459 auto FnPtr = CallParams.getOperand(0); 460 CallParams.RemoveOperand(0); 461 CallParams.addOperand(FnPtr); 462 } 463 464 for (auto Def : CallResults.defs()) 465 MIB.add(Def); 466 467 // Add placeholders for the type index and immediate flags 468 if (IsIndirect) { 469 MIB.addImm(0); 470 MIB.addImm(0); 471 } 472 473 for (auto Use : CallParams.uses()) 474 MIB.add(Use); 475 476 BB->insert(CallResults.getIterator(), MIB); 477 CallParams.eraseFromParent(); 478 CallResults.eraseFromParent(); 479 480 return BB; 481 } 482 483 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 484 MachineInstr &MI, MachineBasicBlock *BB) const { 485 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 486 DebugLoc DL = MI.getDebugLoc(); 487 488 switch (MI.getOpcode()) { 489 default: 490 llvm_unreachable("Unexpected instr type to insert"); 491 case WebAssembly::FP_TO_SINT_I32_F32: 492 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 493 WebAssembly::I32_TRUNC_S_F32); 494 case WebAssembly::FP_TO_UINT_I32_F32: 495 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 496 WebAssembly::I32_TRUNC_U_F32); 497 case WebAssembly::FP_TO_SINT_I64_F32: 498 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 499 WebAssembly::I64_TRUNC_S_F32); 500 case WebAssembly::FP_TO_UINT_I64_F32: 501 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 502 WebAssembly::I64_TRUNC_U_F32); 503 case WebAssembly::FP_TO_SINT_I32_F64: 504 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 505 WebAssembly::I32_TRUNC_S_F64); 506 case WebAssembly::FP_TO_UINT_I32_F64: 507 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 508 WebAssembly::I32_TRUNC_U_F64); 509 case WebAssembly::FP_TO_SINT_I64_F64: 510 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 511 WebAssembly::I64_TRUNC_S_F64); 512 case WebAssembly::FP_TO_UINT_I64_F64: 513 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 514 WebAssembly::I64_TRUNC_U_F64); 515 case WebAssembly::CALL_RESULTS: 516 case WebAssembly::RET_CALL_RESULTS: 517 return LowerCallResults(MI, DL, BB, TII); 518 } 519 } 520 521 const char * 522 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 523 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 524 case WebAssemblyISD::FIRST_NUMBER: 525 case WebAssemblyISD::FIRST_MEM_OPCODE: 526 break; 527 #define HANDLE_NODETYPE(NODE) \ 528 case WebAssemblyISD::NODE: \ 529 return "WebAssemblyISD::" #NODE; 530 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 531 #include "WebAssemblyISD.def" 532 #undef HANDLE_MEM_NODETYPE 533 #undef HANDLE_NODETYPE 534 } 535 return nullptr; 536 } 537 538 std::pair<unsigned, const TargetRegisterClass *> 539 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 540 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 541 // First, see if this is a constraint that directly corresponds to a 542 // WebAssembly register class. 543 if (Constraint.size() == 1) { 544 switch (Constraint[0]) { 545 case 'r': 546 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 547 if (Subtarget->hasSIMD128() && VT.isVector()) { 548 if (VT.getSizeInBits() == 128) 549 return std::make_pair(0U, &WebAssembly::V128RegClass); 550 } 551 if (VT.isInteger() && !VT.isVector()) { 552 if (VT.getSizeInBits() <= 32) 553 return std::make_pair(0U, &WebAssembly::I32RegClass); 554 if (VT.getSizeInBits() <= 64) 555 return std::make_pair(0U, &WebAssembly::I64RegClass); 556 } 557 break; 558 default: 559 break; 560 } 561 } 562 563 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 564 } 565 566 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 567 // Assume ctz is a relatively cheap operation. 568 return true; 569 } 570 571 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 572 // Assume clz is a relatively cheap operation. 573 return true; 574 } 575 576 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 577 const AddrMode &AM, 578 Type *Ty, unsigned AS, 579 Instruction *I) const { 580 // WebAssembly offsets are added as unsigned without wrapping. The 581 // isLegalAddressingMode gives us no way to determine if wrapping could be 582 // happening, so we approximate this by accepting only non-negative offsets. 583 if (AM.BaseOffs < 0) 584 return false; 585 586 // WebAssembly has no scale register operands. 587 if (AM.Scale != 0) 588 return false; 589 590 // Everything else is legal. 591 return true; 592 } 593 594 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 595 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 596 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 597 // WebAssembly supports unaligned accesses, though it should be declared 598 // with the p2align attribute on loads and stores which do so, and there 599 // may be a performance impact. We tell LLVM they're "fast" because 600 // for the kinds of things that LLVM uses this for (merging adjacent stores 601 // of constants, etc.), WebAssembly implementations will either want the 602 // unaligned access or they'll split anyway. 603 if (Fast) 604 *Fast = true; 605 return true; 606 } 607 608 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 609 AttributeList Attr) const { 610 // The current thinking is that wasm engines will perform this optimization, 611 // so we can save on code size. 612 return true; 613 } 614 615 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 616 MVT ExtT = ExtVal.getSimpleValueType(); 617 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 618 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 619 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 620 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 621 } 622 623 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 624 LLVMContext &C, 625 EVT VT) const { 626 if (VT.isVector()) 627 return VT.changeVectorElementTypeToInteger(); 628 629 // So far, all branch instructions in Wasm take an I32 condition. 630 // The default TargetLowering::getSetCCResultType returns the pointer size, 631 // which would be useful to reduce instruction counts when testing 632 // against 64-bit pointers/values if at some point Wasm supports that. 633 return EVT::getIntegerVT(C, 32); 634 } 635 636 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 637 const CallInst &I, 638 MachineFunction &MF, 639 unsigned Intrinsic) const { 640 switch (Intrinsic) { 641 case Intrinsic::wasm_atomic_notify: 642 Info.opc = ISD::INTRINSIC_W_CHAIN; 643 Info.memVT = MVT::i32; 644 Info.ptrVal = I.getArgOperand(0); 645 Info.offset = 0; 646 Info.align = Align(4); 647 // atomic.notify instruction does not really load the memory specified with 648 // this argument, but MachineMemOperand should either be load or store, so 649 // we set this to a load. 650 // FIXME Volatile isn't really correct, but currently all LLVM atomic 651 // instructions are treated as volatiles in the backend, so we should be 652 // consistent. The same applies for wasm_atomic_wait intrinsics too. 653 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 654 return true; 655 case Intrinsic::wasm_atomic_wait_i32: 656 Info.opc = ISD::INTRINSIC_W_CHAIN; 657 Info.memVT = MVT::i32; 658 Info.ptrVal = I.getArgOperand(0); 659 Info.offset = 0; 660 Info.align = Align(4); 661 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 662 return true; 663 case Intrinsic::wasm_atomic_wait_i64: 664 Info.opc = ISD::INTRINSIC_W_CHAIN; 665 Info.memVT = MVT::i64; 666 Info.ptrVal = I.getArgOperand(0); 667 Info.offset = 0; 668 Info.align = Align(8); 669 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 670 return true; 671 default: 672 return false; 673 } 674 } 675 676 //===----------------------------------------------------------------------===// 677 // WebAssembly Lowering private implementation. 678 //===----------------------------------------------------------------------===// 679 680 //===----------------------------------------------------------------------===// 681 // Lowering Code 682 //===----------------------------------------------------------------------===// 683 684 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 685 MachineFunction &MF = DAG.getMachineFunction(); 686 DAG.getContext()->diagnose( 687 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 688 } 689 690 // Test whether the given calling convention is supported. 691 static bool callingConvSupported(CallingConv::ID CallConv) { 692 // We currently support the language-independent target-independent 693 // conventions. We don't yet have a way to annotate calls with properties like 694 // "cold", and we don't have any call-clobbered registers, so these are mostly 695 // all handled the same. 696 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 697 CallConv == CallingConv::Cold || 698 CallConv == CallingConv::PreserveMost || 699 CallConv == CallingConv::PreserveAll || 700 CallConv == CallingConv::CXX_FAST_TLS || 701 CallConv == CallingConv::WASM_EmscriptenInvoke || 702 CallConv == CallingConv::Swift; 703 } 704 705 SDValue 706 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 707 SmallVectorImpl<SDValue> &InVals) const { 708 SelectionDAG &DAG = CLI.DAG; 709 SDLoc DL = CLI.DL; 710 SDValue Chain = CLI.Chain; 711 SDValue Callee = CLI.Callee; 712 MachineFunction &MF = DAG.getMachineFunction(); 713 auto Layout = MF.getDataLayout(); 714 715 CallingConv::ID CallConv = CLI.CallConv; 716 if (!callingConvSupported(CallConv)) 717 fail(DL, DAG, 718 "WebAssembly doesn't support language-specific or target-specific " 719 "calling conventions yet"); 720 if (CLI.IsPatchPoint) 721 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 722 723 if (CLI.IsTailCall) { 724 auto NoTail = [&](const char *Msg) { 725 if (CLI.CB && CLI.CB->isMustTailCall()) 726 fail(DL, DAG, Msg); 727 CLI.IsTailCall = false; 728 }; 729 730 if (!Subtarget->hasTailCall()) 731 NoTail("WebAssembly 'tail-call' feature not enabled"); 732 733 // Varargs calls cannot be tail calls because the buffer is on the stack 734 if (CLI.IsVarArg) 735 NoTail("WebAssembly does not support varargs tail calls"); 736 737 // Do not tail call unless caller and callee return types match 738 const Function &F = MF.getFunction(); 739 const TargetMachine &TM = getTargetMachine(); 740 Type *RetTy = F.getReturnType(); 741 SmallVector<MVT, 4> CallerRetTys; 742 SmallVector<MVT, 4> CalleeRetTys; 743 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 744 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 745 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 746 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 747 CalleeRetTys.begin()); 748 if (!TypesMatch) 749 NoTail("WebAssembly tail call requires caller and callee return types to " 750 "match"); 751 752 // If pointers to local stack values are passed, we cannot tail call 753 if (CLI.CB) { 754 for (auto &Arg : CLI.CB->args()) { 755 Value *Val = Arg.get(); 756 // Trace the value back through pointer operations 757 while (true) { 758 Value *Src = Val->stripPointerCastsAndAliases(); 759 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 760 Src = GEP->getPointerOperand(); 761 if (Val == Src) 762 break; 763 Val = Src; 764 } 765 if (isa<AllocaInst>(Val)) { 766 NoTail( 767 "WebAssembly does not support tail calling with stack arguments"); 768 break; 769 } 770 } 771 } 772 } 773 774 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 775 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 776 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 777 778 // The generic code may have added an sret argument. If we're lowering an 779 // invoke function, the ABI requires that the function pointer be the first 780 // argument, so we may have to swap the arguments. 781 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 782 Outs[0].Flags.isSRet()) { 783 std::swap(Outs[0], Outs[1]); 784 std::swap(OutVals[0], OutVals[1]); 785 } 786 787 bool HasSwiftSelfArg = false; 788 bool HasSwiftErrorArg = false; 789 unsigned NumFixedArgs = 0; 790 for (unsigned I = 0; I < Outs.size(); ++I) { 791 const ISD::OutputArg &Out = Outs[I]; 792 SDValue &OutVal = OutVals[I]; 793 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 794 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 795 if (Out.Flags.isNest()) 796 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 797 if (Out.Flags.isInAlloca()) 798 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 799 if (Out.Flags.isInConsecutiveRegs()) 800 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 801 if (Out.Flags.isInConsecutiveRegsLast()) 802 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 803 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 804 auto &MFI = MF.getFrameInfo(); 805 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 806 Out.Flags.getNonZeroByValAlign(), 807 /*isSS=*/false); 808 SDValue SizeNode = 809 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 810 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 811 Chain = DAG.getMemcpy( 812 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 813 /*isVolatile*/ false, /*AlwaysInline=*/false, 814 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 815 OutVal = FINode; 816 } 817 // Count the number of fixed args *after* legalization. 818 NumFixedArgs += Out.IsFixed; 819 } 820 821 bool IsVarArg = CLI.IsVarArg; 822 auto PtrVT = getPointerTy(Layout); 823 824 // For swiftcc, emit additional swiftself and swifterror arguments 825 // if there aren't. These additional arguments are also added for callee 826 // signature They are necessary to match callee and caller signature for 827 // indirect call. 828 if (CallConv == CallingConv::Swift) { 829 if (!HasSwiftSelfArg) { 830 NumFixedArgs++; 831 ISD::OutputArg Arg; 832 Arg.Flags.setSwiftSelf(); 833 CLI.Outs.push_back(Arg); 834 SDValue ArgVal = DAG.getUNDEF(PtrVT); 835 CLI.OutVals.push_back(ArgVal); 836 } 837 if (!HasSwiftErrorArg) { 838 NumFixedArgs++; 839 ISD::OutputArg Arg; 840 Arg.Flags.setSwiftError(); 841 CLI.Outs.push_back(Arg); 842 SDValue ArgVal = DAG.getUNDEF(PtrVT); 843 CLI.OutVals.push_back(ArgVal); 844 } 845 } 846 847 // Analyze operands of the call, assigning locations to each operand. 848 SmallVector<CCValAssign, 16> ArgLocs; 849 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 850 851 if (IsVarArg) { 852 // Outgoing non-fixed arguments are placed in a buffer. First 853 // compute their offsets and the total amount of buffer space needed. 854 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 855 const ISD::OutputArg &Out = Outs[I]; 856 SDValue &Arg = OutVals[I]; 857 EVT VT = Arg.getValueType(); 858 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 859 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 860 Align Alignment = 861 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 862 unsigned Offset = 863 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 864 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 865 Offset, VT.getSimpleVT(), 866 CCValAssign::Full)); 867 } 868 } 869 870 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 871 872 SDValue FINode; 873 if (IsVarArg && NumBytes) { 874 // For non-fixed arguments, next emit stores to store the argument values 875 // to the stack buffer at the offsets computed above. 876 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 877 Layout.getStackAlignment(), 878 /*isSS=*/false); 879 unsigned ValNo = 0; 880 SmallVector<SDValue, 8> Chains; 881 for (SDValue Arg : 882 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 883 assert(ArgLocs[ValNo].getValNo() == ValNo && 884 "ArgLocs should remain in order and only hold varargs args"); 885 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 886 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 887 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 888 DAG.getConstant(Offset, DL, PtrVT)); 889 Chains.push_back( 890 DAG.getStore(Chain, DL, Arg, Add, 891 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 892 } 893 if (!Chains.empty()) 894 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 895 } else if (IsVarArg) { 896 FINode = DAG.getIntPtrConstant(0, DL); 897 } 898 899 if (Callee->getOpcode() == ISD::GlobalAddress) { 900 // If the callee is a GlobalAddress node (quite common, every direct call 901 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 902 // doesn't at MO_GOT which is not needed for direct calls. 903 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 904 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 905 getPointerTy(DAG.getDataLayout()), 906 GA->getOffset()); 907 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 908 getPointerTy(DAG.getDataLayout()), Callee); 909 } 910 911 // Compute the operands for the CALLn node. 912 SmallVector<SDValue, 16> Ops; 913 Ops.push_back(Chain); 914 Ops.push_back(Callee); 915 916 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 917 // isn't reliable. 918 Ops.append(OutVals.begin(), 919 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 920 // Add a pointer to the vararg buffer. 921 if (IsVarArg) 922 Ops.push_back(FINode); 923 924 SmallVector<EVT, 8> InTys; 925 for (const auto &In : Ins) { 926 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 927 assert(!In.Flags.isNest() && "nest is not valid for return values"); 928 if (In.Flags.isInAlloca()) 929 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 930 if (In.Flags.isInConsecutiveRegs()) 931 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 932 if (In.Flags.isInConsecutiveRegsLast()) 933 fail(DL, DAG, 934 "WebAssembly hasn't implemented cons regs last return values"); 935 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 936 // registers. 937 InTys.push_back(In.VT); 938 } 939 940 if (CLI.IsTailCall) { 941 // ret_calls do not return values to the current frame 942 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 943 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 944 } 945 946 InTys.push_back(MVT::Other); 947 SDVTList InTyList = DAG.getVTList(InTys); 948 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 949 950 for (size_t I = 0; I < Ins.size(); ++I) 951 InVals.push_back(Res.getValue(I)); 952 953 // Return the chain 954 return Res.getValue(Ins.size()); 955 } 956 957 bool WebAssemblyTargetLowering::CanLowerReturn( 958 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 959 const SmallVectorImpl<ISD::OutputArg> &Outs, 960 LLVMContext & /*Context*/) const { 961 // WebAssembly can only handle returning tuples with multivalue enabled 962 return Subtarget->hasMultivalue() || Outs.size() <= 1; 963 } 964 965 SDValue WebAssemblyTargetLowering::LowerReturn( 966 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 967 const SmallVectorImpl<ISD::OutputArg> &Outs, 968 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 969 SelectionDAG &DAG) const { 970 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 971 "MVP WebAssembly can only return up to one value"); 972 if (!callingConvSupported(CallConv)) 973 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 974 975 SmallVector<SDValue, 4> RetOps(1, Chain); 976 RetOps.append(OutVals.begin(), OutVals.end()); 977 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 978 979 // Record the number and types of the return values. 980 for (const ISD::OutputArg &Out : Outs) { 981 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 982 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 983 assert(Out.IsFixed && "non-fixed return value is not valid"); 984 if (Out.Flags.isInAlloca()) 985 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 986 if (Out.Flags.isInConsecutiveRegs()) 987 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 988 if (Out.Flags.isInConsecutiveRegsLast()) 989 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 990 } 991 992 return Chain; 993 } 994 995 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 996 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 997 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 998 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 999 if (!callingConvSupported(CallConv)) 1000 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1001 1002 MachineFunction &MF = DAG.getMachineFunction(); 1003 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1004 1005 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1006 // of the incoming values before they're represented by virtual registers. 1007 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1008 1009 bool HasSwiftErrorArg = false; 1010 bool HasSwiftSelfArg = false; 1011 for (const ISD::InputArg &In : Ins) { 1012 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1013 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1014 if (In.Flags.isInAlloca()) 1015 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1016 if (In.Flags.isNest()) 1017 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1018 if (In.Flags.isInConsecutiveRegs()) 1019 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1020 if (In.Flags.isInConsecutiveRegsLast()) 1021 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1022 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1023 // registers. 1024 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1025 DAG.getTargetConstant(InVals.size(), 1026 DL, MVT::i32)) 1027 : DAG.getUNDEF(In.VT)); 1028 1029 // Record the number and types of arguments. 1030 MFI->addParam(In.VT); 1031 } 1032 1033 // For swiftcc, emit additional swiftself and swifterror arguments 1034 // if there aren't. These additional arguments are also added for callee 1035 // signature They are necessary to match callee and caller signature for 1036 // indirect call. 1037 auto PtrVT = getPointerTy(MF.getDataLayout()); 1038 if (CallConv == CallingConv::Swift) { 1039 if (!HasSwiftSelfArg) { 1040 MFI->addParam(PtrVT); 1041 } 1042 if (!HasSwiftErrorArg) { 1043 MFI->addParam(PtrVT); 1044 } 1045 } 1046 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1047 // the buffer is passed as an argument. 1048 if (IsVarArg) { 1049 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1050 Register VarargVreg = 1051 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1052 MFI->setVarargBufferVreg(VarargVreg); 1053 Chain = DAG.getCopyToReg( 1054 Chain, DL, VarargVreg, 1055 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1056 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1057 MFI->addParam(PtrVT); 1058 } 1059 1060 // Record the number and types of arguments and results. 1061 SmallVector<MVT, 4> Params; 1062 SmallVector<MVT, 4> Results; 1063 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1064 MF.getFunction(), DAG.getTarget(), Params, Results); 1065 for (MVT VT : Results) 1066 MFI->addResult(VT); 1067 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1068 // the param logic here with ComputeSignatureVTs 1069 assert(MFI->getParams().size() == Params.size() && 1070 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1071 Params.begin())); 1072 1073 return Chain; 1074 } 1075 1076 void WebAssemblyTargetLowering::ReplaceNodeResults( 1077 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1078 switch (N->getOpcode()) { 1079 case ISD::SIGN_EXTEND_INREG: 1080 // Do not add any results, signifying that N should not be custom lowered 1081 // after all. This happens because simd128 turns on custom lowering for 1082 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1083 // illegal type. 1084 break; 1085 default: 1086 llvm_unreachable( 1087 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1088 } 1089 } 1090 1091 //===----------------------------------------------------------------------===// 1092 // Custom lowering hooks. 1093 //===----------------------------------------------------------------------===// 1094 1095 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1096 SelectionDAG &DAG) const { 1097 SDLoc DL(Op); 1098 switch (Op.getOpcode()) { 1099 default: 1100 llvm_unreachable("unimplemented operation lowering"); 1101 return SDValue(); 1102 case ISD::FrameIndex: 1103 return LowerFrameIndex(Op, DAG); 1104 case ISD::GlobalAddress: 1105 return LowerGlobalAddress(Op, DAG); 1106 case ISD::ExternalSymbol: 1107 return LowerExternalSymbol(Op, DAG); 1108 case ISD::JumpTable: 1109 return LowerJumpTable(Op, DAG); 1110 case ISD::BR_JT: 1111 return LowerBR_JT(Op, DAG); 1112 case ISD::VASTART: 1113 return LowerVASTART(Op, DAG); 1114 case ISD::BlockAddress: 1115 case ISD::BRIND: 1116 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1117 return SDValue(); 1118 case ISD::RETURNADDR: 1119 return LowerRETURNADDR(Op, DAG); 1120 case ISD::FRAMEADDR: 1121 return LowerFRAMEADDR(Op, DAG); 1122 case ISD::CopyToReg: 1123 return LowerCopyToReg(Op, DAG); 1124 case ISD::EXTRACT_VECTOR_ELT: 1125 case ISD::INSERT_VECTOR_ELT: 1126 return LowerAccessVectorElement(Op, DAG); 1127 case ISD::INTRINSIC_VOID: 1128 case ISD::INTRINSIC_WO_CHAIN: 1129 case ISD::INTRINSIC_W_CHAIN: 1130 return LowerIntrinsic(Op, DAG); 1131 case ISD::SIGN_EXTEND_INREG: 1132 return LowerSIGN_EXTEND_INREG(Op, DAG); 1133 case ISD::BUILD_VECTOR: 1134 return LowerBUILD_VECTOR(Op, DAG); 1135 case ISD::VECTOR_SHUFFLE: 1136 return LowerVECTOR_SHUFFLE(Op, DAG); 1137 case ISD::SETCC: 1138 return LowerSETCC(Op, DAG); 1139 case ISD::SHL: 1140 case ISD::SRA: 1141 case ISD::SRL: 1142 return LowerShift(Op, DAG); 1143 } 1144 } 1145 1146 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1147 SelectionDAG &DAG) const { 1148 SDValue Src = Op.getOperand(2); 1149 if (isa<FrameIndexSDNode>(Src.getNode())) { 1150 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1151 // the FI to some LEA-like instruction, but since we don't have that, we 1152 // need to insert some kind of instruction that can take an FI operand and 1153 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1154 // local.copy between Op and its FI operand. 1155 SDValue Chain = Op.getOperand(0); 1156 SDLoc DL(Op); 1157 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1158 EVT VT = Src.getValueType(); 1159 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1160 : WebAssembly::COPY_I64, 1161 DL, VT, Src), 1162 0); 1163 return Op.getNode()->getNumValues() == 1 1164 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1165 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1166 Op.getNumOperands() == 4 ? Op.getOperand(3) 1167 : SDValue()); 1168 } 1169 return SDValue(); 1170 } 1171 1172 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1173 SelectionDAG &DAG) const { 1174 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1175 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1176 } 1177 1178 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1179 SelectionDAG &DAG) const { 1180 SDLoc DL(Op); 1181 1182 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1183 fail(DL, DAG, 1184 "Non-Emscripten WebAssembly hasn't implemented " 1185 "__builtin_return_address"); 1186 return SDValue(); 1187 } 1188 1189 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1190 return SDValue(); 1191 1192 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1193 MakeLibCallOptions CallOptions; 1194 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1195 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1196 .first; 1197 } 1198 1199 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1200 SelectionDAG &DAG) const { 1201 // Non-zero depths are not supported by WebAssembly currently. Use the 1202 // legalizer's default expansion, which is to return 0 (what this function is 1203 // documented to do). 1204 if (Op.getConstantOperandVal(0) > 0) 1205 return SDValue(); 1206 1207 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1208 EVT VT = Op.getValueType(); 1209 Register FP = 1210 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1211 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1212 } 1213 1214 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1215 SelectionDAG &DAG) const { 1216 SDLoc DL(Op); 1217 const auto *GA = cast<GlobalAddressSDNode>(Op); 1218 EVT VT = Op.getValueType(); 1219 assert(GA->getTargetFlags() == 0 && 1220 "Unexpected target flags on generic GlobalAddressSDNode"); 1221 if (GA->getAddressSpace() != 0) 1222 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1223 1224 unsigned OperandFlags = 0; 1225 if (isPositionIndependent()) { 1226 const GlobalValue *GV = GA->getGlobal(); 1227 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1228 MachineFunction &MF = DAG.getMachineFunction(); 1229 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1230 const char *BaseName; 1231 if (GV->getValueType()->isFunctionTy()) { 1232 BaseName = MF.createExternalSymbolName("__table_base"); 1233 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1234 } 1235 else { 1236 BaseName = MF.createExternalSymbolName("__memory_base"); 1237 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1238 } 1239 SDValue BaseAddr = 1240 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1241 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1242 1243 SDValue SymAddr = DAG.getNode( 1244 WebAssemblyISD::WrapperPIC, DL, VT, 1245 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1246 OperandFlags)); 1247 1248 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1249 } else { 1250 OperandFlags = WebAssemblyII::MO_GOT; 1251 } 1252 } 1253 1254 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1255 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1256 GA->getOffset(), OperandFlags)); 1257 } 1258 1259 SDValue 1260 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1261 SelectionDAG &DAG) const { 1262 SDLoc DL(Op); 1263 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1264 EVT VT = Op.getValueType(); 1265 assert(ES->getTargetFlags() == 0 && 1266 "Unexpected target flags on generic ExternalSymbolSDNode"); 1267 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1268 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1269 } 1270 1271 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1272 SelectionDAG &DAG) const { 1273 // There's no need for a Wrapper node because we always incorporate a jump 1274 // table operand into a BR_TABLE instruction, rather than ever 1275 // materializing it in a register. 1276 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1277 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1278 JT->getTargetFlags()); 1279 } 1280 1281 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1282 SelectionDAG &DAG) const { 1283 SDLoc DL(Op); 1284 SDValue Chain = Op.getOperand(0); 1285 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1286 SDValue Index = Op.getOperand(2); 1287 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1288 1289 SmallVector<SDValue, 8> Ops; 1290 Ops.push_back(Chain); 1291 Ops.push_back(Index); 1292 1293 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1294 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1295 1296 // Add an operand for each case. 1297 for (auto MBB : MBBs) 1298 Ops.push_back(DAG.getBasicBlock(MBB)); 1299 1300 // Add the first MBB as a dummy default target for now. This will be replaced 1301 // with the proper default target (and the preceding range check eliminated) 1302 // if possible by WebAssemblyFixBrTableDefaults. 1303 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1304 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1305 } 1306 1307 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1308 SelectionDAG &DAG) const { 1309 SDLoc DL(Op); 1310 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1311 1312 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1313 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1314 1315 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1316 MFI->getVarargBufferVreg(), PtrVT); 1317 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1318 MachinePointerInfo(SV), 0); 1319 } 1320 1321 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1322 SelectionDAG &DAG) const { 1323 MachineFunction &MF = DAG.getMachineFunction(); 1324 unsigned IntNo; 1325 switch (Op.getOpcode()) { 1326 case ISD::INTRINSIC_VOID: 1327 case ISD::INTRINSIC_W_CHAIN: 1328 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1329 break; 1330 case ISD::INTRINSIC_WO_CHAIN: 1331 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1332 break; 1333 default: 1334 llvm_unreachable("Invalid intrinsic"); 1335 } 1336 SDLoc DL(Op); 1337 1338 switch (IntNo) { 1339 default: 1340 return SDValue(); // Don't custom lower most intrinsics. 1341 1342 case Intrinsic::wasm_lsda: { 1343 EVT VT = Op.getValueType(); 1344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1345 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1346 auto &Context = MF.getMMI().getContext(); 1347 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1348 Twine(MF.getFunctionNumber())); 1349 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1350 DAG.getMCSymbol(S, PtrVT)); 1351 } 1352 1353 case Intrinsic::wasm_throw: { 1354 // We only support C++ exceptions for now 1355 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1356 if (Tag != CPP_EXCEPTION) 1357 llvm_unreachable("Invalid tag!"); 1358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1359 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1360 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1361 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1362 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1363 return DAG.getNode(WebAssemblyISD::THROW, DL, 1364 MVT::Other, // outchain type 1365 { 1366 Op.getOperand(0), // inchain 1367 SymNode, // exception symbol 1368 Op.getOperand(3) // thrown value 1369 }); 1370 } 1371 1372 case Intrinsic::wasm_shuffle: { 1373 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1374 SDValue Ops[18]; 1375 size_t OpIdx = 0; 1376 Ops[OpIdx++] = Op.getOperand(1); 1377 Ops[OpIdx++] = Op.getOperand(2); 1378 while (OpIdx < 18) { 1379 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1380 if (MaskIdx.isUndef() || 1381 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1382 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1383 } else { 1384 Ops[OpIdx++] = MaskIdx; 1385 } 1386 } 1387 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1388 } 1389 } 1390 } 1391 1392 SDValue 1393 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1394 SelectionDAG &DAG) const { 1395 SDLoc DL(Op); 1396 // If sign extension operations are disabled, allow sext_inreg only if operand 1397 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1398 // extension operations, but allowing sext_inreg in this context lets us have 1399 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1400 // everywhere would be simpler in this file, but would necessitate large and 1401 // brittle patterns to undo the expansion and select extract_lane_s 1402 // instructions. 1403 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1404 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1405 return SDValue(); 1406 1407 const SDValue &Extract = Op.getOperand(0); 1408 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1409 if (VecT.getVectorElementType().getSizeInBits() > 32) 1410 return SDValue(); 1411 MVT ExtractedLaneT = 1412 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1413 MVT ExtractedVecT = 1414 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1415 if (ExtractedVecT == VecT) 1416 return Op; 1417 1418 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1419 const SDNode *Index = Extract.getOperand(1).getNode(); 1420 if (!isa<ConstantSDNode>(Index)) 1421 return SDValue(); 1422 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1423 unsigned Scale = 1424 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1425 assert(Scale > 1); 1426 SDValue NewIndex = 1427 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1428 SDValue NewExtract = DAG.getNode( 1429 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1430 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1431 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1432 Op.getOperand(1)); 1433 } 1434 1435 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1436 SelectionDAG &DAG) const { 1437 SDLoc DL(Op); 1438 const EVT VecT = Op.getValueType(); 1439 const EVT LaneT = Op.getOperand(0).getValueType(); 1440 const size_t Lanes = Op.getNumOperands(); 1441 bool CanSwizzle = VecT == MVT::v16i8; 1442 1443 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1444 // possible number of lanes at once followed by a sequence of replace_lane 1445 // instructions to individually initialize any remaining lanes. 1446 1447 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1448 // swizzled lanes should be given greater weight. 1449 1450 // TODO: Investigate building vectors by shuffling together vectors built by 1451 // separately specialized means. 1452 1453 auto IsConstant = [](const SDValue &V) { 1454 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1455 }; 1456 1457 // Returns the source vector and index vector pair if they exist. Checks for: 1458 // (extract_vector_elt 1459 // $src, 1460 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1461 // ) 1462 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1463 auto Bail = std::make_pair(SDValue(), SDValue()); 1464 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1465 return Bail; 1466 const SDValue &SwizzleSrc = Lane->getOperand(0); 1467 const SDValue &IndexExt = Lane->getOperand(1); 1468 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1469 return Bail; 1470 const SDValue &Index = IndexExt->getOperand(0); 1471 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1472 return Bail; 1473 const SDValue &SwizzleIndices = Index->getOperand(0); 1474 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1475 SwizzleIndices.getValueType() != MVT::v16i8 || 1476 Index->getOperand(1)->getOpcode() != ISD::Constant || 1477 Index->getConstantOperandVal(1) != I) 1478 return Bail; 1479 return std::make_pair(SwizzleSrc, SwizzleIndices); 1480 }; 1481 1482 using ValueEntry = std::pair<SDValue, size_t>; 1483 SmallVector<ValueEntry, 16> SplatValueCounts; 1484 1485 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1486 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1487 1488 auto AddCount = [](auto &Counts, const auto &Val) { 1489 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1490 [&Val](auto E) { return E.first == Val; }); 1491 if (CountIt == Counts.end()) { 1492 Counts.emplace_back(Val, 1); 1493 } else { 1494 CountIt->second++; 1495 } 1496 }; 1497 1498 auto GetMostCommon = [](auto &Counts) { 1499 auto CommonIt = 1500 std::max_element(Counts.begin(), Counts.end(), 1501 [](auto A, auto B) { return A.second < B.second; }); 1502 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1503 return *CommonIt; 1504 }; 1505 1506 size_t NumConstantLanes = 0; 1507 1508 // Count eligible lanes for each type of vector creation op 1509 for (size_t I = 0; I < Lanes; ++I) { 1510 const SDValue &Lane = Op->getOperand(I); 1511 if (Lane.isUndef()) 1512 continue; 1513 1514 AddCount(SplatValueCounts, Lane); 1515 1516 if (IsConstant(Lane)) { 1517 NumConstantLanes++; 1518 } else if (CanSwizzle) { 1519 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1520 if (SwizzleSrcs.first) 1521 AddCount(SwizzleCounts, SwizzleSrcs); 1522 } 1523 } 1524 1525 SDValue SplatValue; 1526 size_t NumSplatLanes; 1527 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1528 1529 SDValue SwizzleSrc; 1530 SDValue SwizzleIndices; 1531 size_t NumSwizzleLanes = 0; 1532 if (SwizzleCounts.size()) 1533 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1534 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1535 1536 // Predicate returning true if the lane is properly initialized by the 1537 // original instruction 1538 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1539 SDValue Result; 1540 // Prefer swizzles over vector consts over splats 1541 if (NumSwizzleLanes >= NumSplatLanes && 1542 (!Subtarget->hasUnimplementedSIMD128() || 1543 NumSwizzleLanes >= NumConstantLanes)) { 1544 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1545 SwizzleIndices); 1546 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1547 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1548 return Swizzled == GetSwizzleSrcs(I, Lane); 1549 }; 1550 } else if (NumConstantLanes >= NumSplatLanes && 1551 Subtarget->hasUnimplementedSIMD128()) { 1552 SmallVector<SDValue, 16> ConstLanes; 1553 for (const SDValue &Lane : Op->op_values()) { 1554 if (IsConstant(Lane)) { 1555 ConstLanes.push_back(Lane); 1556 } else if (LaneT.isFloatingPoint()) { 1557 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1558 } else { 1559 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1560 } 1561 } 1562 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1563 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1564 return IsConstant(Lane); 1565 }; 1566 } 1567 if (!Result) { 1568 // Use a splat, but possibly a load_splat 1569 LoadSDNode *SplattedLoad; 1570 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1571 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1572 Result = DAG.getMemIntrinsicNode( 1573 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1574 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1575 SplattedLoad->getOffset()}, 1576 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1577 } else { 1578 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1579 } 1580 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1581 return Lane == SplatValue; 1582 }; 1583 } 1584 1585 // Add replace_lane instructions for any unhandled values 1586 for (size_t I = 0; I < Lanes; ++I) { 1587 const SDValue &Lane = Op->getOperand(I); 1588 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1589 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1590 DAG.getConstant(I, DL, MVT::i32)); 1591 } 1592 1593 return Result; 1594 } 1595 1596 SDValue 1597 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1598 SelectionDAG &DAG) const { 1599 SDLoc DL(Op); 1600 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1601 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1602 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1603 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1604 1605 // Space for two vector args and sixteen mask indices 1606 SDValue Ops[18]; 1607 size_t OpIdx = 0; 1608 Ops[OpIdx++] = Op.getOperand(0); 1609 Ops[OpIdx++] = Op.getOperand(1); 1610 1611 // Expand mask indices to byte indices and materialize them as operands 1612 for (int M : Mask) { 1613 for (size_t J = 0; J < LaneBytes; ++J) { 1614 // Lower undefs (represented by -1 in mask) to zero 1615 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1616 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1617 } 1618 } 1619 1620 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1621 } 1622 1623 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1624 SelectionDAG &DAG) const { 1625 SDLoc DL(Op); 1626 // The legalizer does not know how to expand the comparison modes of i64x2 1627 // vectors because no comparison modes are supported. We could solve this by 1628 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1629 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1630 // comparisons here. 1631 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1632 SmallVector<SDValue, 2> LHS, RHS; 1633 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1634 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1635 const SDValue &CC = Op->getOperand(2); 1636 auto MakeLane = [&](unsigned I) { 1637 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1638 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1639 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1640 }; 1641 return DAG.getBuildVector(Op->getValueType(0), DL, 1642 {MakeLane(0), MakeLane(1)}); 1643 } 1644 1645 SDValue 1646 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1647 SelectionDAG &DAG) const { 1648 // Allow constant lane indices, expand variable lane indices 1649 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1650 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1651 return Op; 1652 else 1653 // Perform default expansion 1654 return SDValue(); 1655 } 1656 1657 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1658 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1659 // 32-bit and 64-bit unrolled shifts will have proper semantics 1660 if (LaneT.bitsGE(MVT::i32)) 1661 return DAG.UnrollVectorOp(Op.getNode()); 1662 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1663 SDLoc DL(Op); 1664 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1665 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1666 unsigned ShiftOpcode = Op.getOpcode(); 1667 SmallVector<SDValue, 16> ShiftedElements; 1668 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1669 SmallVector<SDValue, 16> ShiftElements; 1670 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1671 SmallVector<SDValue, 16> UnrolledOps; 1672 for (size_t i = 0; i < NumLanes; ++i) { 1673 SDValue MaskedShiftValue = 1674 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1675 SDValue ShiftedValue = ShiftedElements[i]; 1676 if (ShiftOpcode == ISD::SRA) 1677 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1678 ShiftedValue, DAG.getValueType(LaneT)); 1679 UnrolledOps.push_back( 1680 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1681 } 1682 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1683 } 1684 1685 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1686 SelectionDAG &DAG) const { 1687 SDLoc DL(Op); 1688 1689 // Only manually lower vector shifts 1690 assert(Op.getSimpleValueType().isVector()); 1691 1692 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1693 if (!ShiftVal) 1694 return unrollVectorShift(Op, DAG); 1695 1696 // Use anyext because none of the high bits can affect the shift 1697 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1698 1699 unsigned Opcode; 1700 switch (Op.getOpcode()) { 1701 case ISD::SHL: 1702 Opcode = WebAssemblyISD::VEC_SHL; 1703 break; 1704 case ISD::SRA: 1705 Opcode = WebAssemblyISD::VEC_SHR_S; 1706 break; 1707 case ISD::SRL: 1708 Opcode = WebAssemblyISD::VEC_SHR_U; 1709 break; 1710 default: 1711 llvm_unreachable("unexpected opcode"); 1712 } 1713 1714 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1715 } 1716 1717 //===----------------------------------------------------------------------===// 1718 // Custom DAG combine hooks 1719 //===----------------------------------------------------------------------===// 1720 static SDValue 1721 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1722 auto &DAG = DCI.DAG; 1723 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1724 1725 // Hoist vector bitcasts that don't change the number of lanes out of unary 1726 // shuffles, where they are less likely to get in the way of other combines. 1727 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1728 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1729 SDValue Bitcast = N->getOperand(0); 1730 if (Bitcast.getOpcode() != ISD::BITCAST) 1731 return SDValue(); 1732 if (!N->getOperand(1).isUndef()) 1733 return SDValue(); 1734 SDValue CastOp = Bitcast.getOperand(0); 1735 MVT SrcType = CastOp.getSimpleValueType(); 1736 MVT DstType = Bitcast.getSimpleValueType(); 1737 if (!SrcType.is128BitVector() || 1738 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1739 return SDValue(); 1740 SDValue NewShuffle = DAG.getVectorShuffle( 1741 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1742 return DAG.getBitcast(DstType, NewShuffle); 1743 } 1744 1745 SDValue 1746 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1747 DAGCombinerInfo &DCI) const { 1748 switch (N->getOpcode()) { 1749 default: 1750 return SDValue(); 1751 case ISD::VECTOR_SHUFFLE: 1752 return performVECTOR_SHUFFLECombine(N, DCI); 1753 } 1754 } 1755