1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T : {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 140 141 // We have custom shuffle lowering to expose the shuffle mask 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 if (Subtarget->hasUnimplementedSIMD128()) 145 for (auto T: {MVT::v2i64, MVT::v2f64}) 146 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 147 148 // Custom lowering since wasm shifts must have a scalar shift amount 149 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 151 setOperationAction(Op, T, Custom); 152 if (Subtarget->hasUnimplementedSIMD128()) 153 setOperationAction(Op, MVT::v2i64, Custom); 154 } 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 159 setOperationAction(Op, T, Custom); 160 if (Subtarget->hasUnimplementedSIMD128()) 161 for (auto T : {MVT::v2i64, MVT::v2f64}) 162 setOperationAction(Op, T, Custom); 163 } 164 165 // There is no i64x2.mul instruction 166 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 167 168 // There are no vector select instructions 169 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 171 setOperationAction(Op, T, Expand); 172 if (Subtarget->hasUnimplementedSIMD128()) 173 for (auto T : {MVT::v2i64, MVT::v2f64}) 174 setOperationAction(Op, T, Expand); 175 } 176 177 // Expand additional SIMD ops that V8 hasn't implemented yet 178 if (!Subtarget->hasUnimplementedSIMD128()) { 179 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 180 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 181 } 182 } 183 184 // As a special case, these operators use the type to mean the type to 185 // sign-extend from. 186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 187 if (!Subtarget->hasSignExt()) { 188 // Sign extends are legal only when extending a vector extract 189 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 190 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 191 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 192 } 193 for (auto T : MVT::integer_vector_valuetypes()) 194 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 195 196 // Dynamic stack allocation: use the default expansion. 197 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 198 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 199 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 200 201 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 202 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 203 204 // Expand these forms; we pattern-match the forms that we can handle in isel. 205 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 206 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 207 setOperationAction(Op, T, Expand); 208 209 // We have custom switch handling. 210 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 211 212 // WebAssembly doesn't have: 213 // - Floating-point extending loads. 214 // - Floating-point truncating stores. 215 // - i1 extending loads. 216 // - extending/truncating SIMD loads/stores 217 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 218 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 219 for (auto T : MVT::integer_valuetypes()) 220 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 221 setLoadExtAction(Ext, T, MVT::i1, Promote); 222 if (Subtarget->hasSIMD128()) { 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 224 MVT::v2f64}) { 225 for (auto MemT : MVT::vector_valuetypes()) { 226 if (MVT(T) != MemT) { 227 setTruncStoreAction(T, MemT, Expand); 228 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 229 setLoadExtAction(Ext, T, MemT, Expand); 230 } 231 } 232 } 233 } 234 235 // Don't do anything clever with build_pairs 236 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 237 238 // Trap lowers to wasm unreachable 239 setOperationAction(ISD::TRAP, MVT::Other, Legal); 240 241 // Exception handling intrinsics 242 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 243 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 244 245 setMaxAtomicSizeInBitsSupported(64); 246 247 if (Subtarget->hasBulkMemory()) { 248 // Use memory.copy and friends over multiple loads and stores 249 MaxStoresPerMemcpy = 1; 250 MaxStoresPerMemcpyOptSize = 1; 251 MaxStoresPerMemmove = 1; 252 MaxStoresPerMemmoveOptSize = 1; 253 MaxStoresPerMemset = 1; 254 MaxStoresPerMemsetOptSize = 1; 255 } 256 } 257 258 TargetLowering::AtomicExpansionKind 259 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 260 // We have wasm instructions for these 261 switch (AI->getOperation()) { 262 case AtomicRMWInst::Add: 263 case AtomicRMWInst::Sub: 264 case AtomicRMWInst::And: 265 case AtomicRMWInst::Or: 266 case AtomicRMWInst::Xor: 267 case AtomicRMWInst::Xchg: 268 return AtomicExpansionKind::None; 269 default: 270 break; 271 } 272 return AtomicExpansionKind::CmpXChg; 273 } 274 275 FastISel *WebAssemblyTargetLowering::createFastISel( 276 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 277 return WebAssembly::createFastISel(FuncInfo, LibInfo); 278 } 279 280 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 281 const GlobalAddressSDNode * /*GA*/) const { 282 // All offsets can be folded. 283 return true; 284 } 285 286 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 287 EVT VT) const { 288 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 289 if (BitWidth > 1 && BitWidth < 8) 290 BitWidth = 8; 291 292 if (BitWidth > 64) { 293 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 294 // the count to be an i32. 295 BitWidth = 32; 296 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 297 "32-bit shift counts ought to be enough for anyone"); 298 } 299 300 MVT Result = MVT::getIntegerVT(BitWidth); 301 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 302 "Unable to represent scalar shift amount type"); 303 return Result; 304 } 305 306 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 307 // undefined result on invalid/overflow, to the WebAssembly opcode, which 308 // traps on invalid/overflow. 309 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 310 MachineBasicBlock *BB, 311 const TargetInstrInfo &TII, 312 bool IsUnsigned, bool Int64, 313 bool Float64, unsigned LoweredOpcode) { 314 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 315 316 unsigned OutReg = MI.getOperand(0).getReg(); 317 unsigned InReg = MI.getOperand(1).getReg(); 318 319 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 320 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 321 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 322 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 323 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 324 unsigned Eqz = WebAssembly::EQZ_I32; 325 unsigned And = WebAssembly::AND_I32; 326 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 327 int64_t Substitute = IsUnsigned ? 0 : Limit; 328 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 329 auto &Context = BB->getParent()->getFunction().getContext(); 330 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 331 332 const BasicBlock *LLVMBB = BB->getBasicBlock(); 333 MachineFunction *F = BB->getParent(); 334 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 335 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 336 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 337 338 MachineFunction::iterator It = ++BB->getIterator(); 339 F->insert(It, FalseMBB); 340 F->insert(It, TrueMBB); 341 F->insert(It, DoneMBB); 342 343 // Transfer the remainder of BB and its successor edges to DoneMBB. 344 DoneMBB->splice(DoneMBB->begin(), BB, 345 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 346 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 347 348 BB->addSuccessor(TrueMBB); 349 BB->addSuccessor(FalseMBB); 350 TrueMBB->addSuccessor(DoneMBB); 351 FalseMBB->addSuccessor(DoneMBB); 352 353 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 354 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 355 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 356 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 357 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 358 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 359 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 360 361 MI.eraseFromParent(); 362 // For signed numbers, we can do a single comparison to determine whether 363 // fabs(x) is within range. 364 if (IsUnsigned) { 365 Tmp0 = InReg; 366 } else { 367 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 368 } 369 BuildMI(BB, DL, TII.get(FConst), Tmp1) 370 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 371 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 372 373 // For unsigned numbers, we have to do a separate comparison with zero. 374 if (IsUnsigned) { 375 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 376 unsigned SecondCmpReg = 377 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 378 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 379 BuildMI(BB, DL, TII.get(FConst), Tmp1) 380 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 381 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 382 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 383 CmpReg = AndReg; 384 } 385 386 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 387 388 // Create the CFG diamond to select between doing the conversion or using 389 // the substitute value. 390 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 391 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 392 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 393 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 394 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 395 .addReg(FalseReg) 396 .addMBB(FalseMBB) 397 .addReg(TrueReg) 398 .addMBB(TrueMBB); 399 400 return DoneMBB; 401 } 402 403 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 404 MachineInstr &MI, MachineBasicBlock *BB) const { 405 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 406 DebugLoc DL = MI.getDebugLoc(); 407 408 switch (MI.getOpcode()) { 409 default: 410 llvm_unreachable("Unexpected instr type to insert"); 411 case WebAssembly::FP_TO_SINT_I32_F32: 412 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 413 WebAssembly::I32_TRUNC_S_F32); 414 case WebAssembly::FP_TO_UINT_I32_F32: 415 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 416 WebAssembly::I32_TRUNC_U_F32); 417 case WebAssembly::FP_TO_SINT_I64_F32: 418 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 419 WebAssembly::I64_TRUNC_S_F32); 420 case WebAssembly::FP_TO_UINT_I64_F32: 421 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 422 WebAssembly::I64_TRUNC_U_F32); 423 case WebAssembly::FP_TO_SINT_I32_F64: 424 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 425 WebAssembly::I32_TRUNC_S_F64); 426 case WebAssembly::FP_TO_UINT_I32_F64: 427 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 428 WebAssembly::I32_TRUNC_U_F64); 429 case WebAssembly::FP_TO_SINT_I64_F64: 430 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 431 WebAssembly::I64_TRUNC_S_F64); 432 case WebAssembly::FP_TO_UINT_I64_F64: 433 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 434 WebAssembly::I64_TRUNC_U_F64); 435 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 436 } 437 } 438 439 const char * 440 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 441 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 442 case WebAssemblyISD::FIRST_NUMBER: 443 break; 444 #define HANDLE_NODETYPE(NODE) \ 445 case WebAssemblyISD::NODE: \ 446 return "WebAssemblyISD::" #NODE; 447 #include "WebAssemblyISD.def" 448 #undef HANDLE_NODETYPE 449 } 450 return nullptr; 451 } 452 453 std::pair<unsigned, const TargetRegisterClass *> 454 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 455 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 456 // First, see if this is a constraint that directly corresponds to a 457 // WebAssembly register class. 458 if (Constraint.size() == 1) { 459 switch (Constraint[0]) { 460 case 'r': 461 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 462 if (Subtarget->hasSIMD128() && VT.isVector()) { 463 if (VT.getSizeInBits() == 128) 464 return std::make_pair(0U, &WebAssembly::V128RegClass); 465 } 466 if (VT.isInteger() && !VT.isVector()) { 467 if (VT.getSizeInBits() <= 32) 468 return std::make_pair(0U, &WebAssembly::I32RegClass); 469 if (VT.getSizeInBits() <= 64) 470 return std::make_pair(0U, &WebAssembly::I64RegClass); 471 } 472 break; 473 default: 474 break; 475 } 476 } 477 478 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 479 } 480 481 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 482 // Assume ctz is a relatively cheap operation. 483 return true; 484 } 485 486 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 487 // Assume clz is a relatively cheap operation. 488 return true; 489 } 490 491 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 492 const AddrMode &AM, 493 Type *Ty, unsigned AS, 494 Instruction *I) const { 495 // WebAssembly offsets are added as unsigned without wrapping. The 496 // isLegalAddressingMode gives us no way to determine if wrapping could be 497 // happening, so we approximate this by accepting only non-negative offsets. 498 if (AM.BaseOffs < 0) 499 return false; 500 501 // WebAssembly has no scale register operands. 502 if (AM.Scale != 0) 503 return false; 504 505 // Everything else is legal. 506 return true; 507 } 508 509 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 510 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 511 // WebAssembly supports unaligned accesses, though it should be declared 512 // with the p2align attribute on loads and stores which do so, and there 513 // may be a performance impact. We tell LLVM they're "fast" because 514 // for the kinds of things that LLVM uses this for (merging adjacent stores 515 // of constants, etc.), WebAssembly implementations will either want the 516 // unaligned access or they'll split anyway. 517 if (Fast) 518 *Fast = true; 519 return true; 520 } 521 522 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 523 AttributeList Attr) const { 524 // The current thinking is that wasm engines will perform this optimization, 525 // so we can save on code size. 526 return true; 527 } 528 529 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 530 LLVMContext &C, 531 EVT VT) const { 532 if (VT.isVector()) 533 return VT.changeVectorElementTypeToInteger(); 534 535 return TargetLowering::getSetCCResultType(DL, C, VT); 536 } 537 538 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 539 const CallInst &I, 540 MachineFunction &MF, 541 unsigned Intrinsic) const { 542 switch (Intrinsic) { 543 case Intrinsic::wasm_atomic_notify: 544 Info.opc = ISD::INTRINSIC_W_CHAIN; 545 Info.memVT = MVT::i32; 546 Info.ptrVal = I.getArgOperand(0); 547 Info.offset = 0; 548 Info.align = 4; 549 // atomic.notify instruction does not really load the memory specified with 550 // this argument, but MachineMemOperand should either be load or store, so 551 // we set this to a load. 552 // FIXME Volatile isn't really correct, but currently all LLVM atomic 553 // instructions are treated as volatiles in the backend, so we should be 554 // consistent. The same applies for wasm_atomic_wait intrinsics too. 555 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 556 return true; 557 case Intrinsic::wasm_atomic_wait_i32: 558 Info.opc = ISD::INTRINSIC_W_CHAIN; 559 Info.memVT = MVT::i32; 560 Info.ptrVal = I.getArgOperand(0); 561 Info.offset = 0; 562 Info.align = 4; 563 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 564 return true; 565 case Intrinsic::wasm_atomic_wait_i64: 566 Info.opc = ISD::INTRINSIC_W_CHAIN; 567 Info.memVT = MVT::i64; 568 Info.ptrVal = I.getArgOperand(0); 569 Info.offset = 0; 570 Info.align = 8; 571 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 572 return true; 573 default: 574 return false; 575 } 576 } 577 578 //===----------------------------------------------------------------------===// 579 // WebAssembly Lowering private implementation. 580 //===----------------------------------------------------------------------===// 581 582 //===----------------------------------------------------------------------===// 583 // Lowering Code 584 //===----------------------------------------------------------------------===// 585 586 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 587 MachineFunction &MF = DAG.getMachineFunction(); 588 DAG.getContext()->diagnose( 589 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 590 } 591 592 // Test whether the given calling convention is supported. 593 static bool callingConvSupported(CallingConv::ID CallConv) { 594 // We currently support the language-independent target-independent 595 // conventions. We don't yet have a way to annotate calls with properties like 596 // "cold", and we don't have any call-clobbered registers, so these are mostly 597 // all handled the same. 598 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 599 CallConv == CallingConv::Cold || 600 CallConv == CallingConv::PreserveMost || 601 CallConv == CallingConv::PreserveAll || 602 CallConv == CallingConv::CXX_FAST_TLS; 603 } 604 605 SDValue 606 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 607 SmallVectorImpl<SDValue> &InVals) const { 608 SelectionDAG &DAG = CLI.DAG; 609 SDLoc DL = CLI.DL; 610 SDValue Chain = CLI.Chain; 611 SDValue Callee = CLI.Callee; 612 MachineFunction &MF = DAG.getMachineFunction(); 613 auto Layout = MF.getDataLayout(); 614 615 CallingConv::ID CallConv = CLI.CallConv; 616 if (!callingConvSupported(CallConv)) 617 fail(DL, DAG, 618 "WebAssembly doesn't support language-specific or target-specific " 619 "calling conventions yet"); 620 if (CLI.IsPatchPoint) 621 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 622 623 // WebAssembly doesn't currently support explicit tail calls. If they are 624 // required, fail. Otherwise, just disable them. 625 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 626 MF.getTarget().Options.GuaranteedTailCallOpt) || 627 (CLI.CS && CLI.CS.isMustTailCall())) 628 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 629 CLI.IsTailCall = false; 630 631 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 632 if (Ins.size() > 1) 633 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 634 635 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 636 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 637 unsigned NumFixedArgs = 0; 638 for (unsigned I = 0; I < Outs.size(); ++I) { 639 const ISD::OutputArg &Out = Outs[I]; 640 SDValue &OutVal = OutVals[I]; 641 if (Out.Flags.isNest()) 642 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 643 if (Out.Flags.isInAlloca()) 644 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 645 if (Out.Flags.isInConsecutiveRegs()) 646 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 647 if (Out.Flags.isInConsecutiveRegsLast()) 648 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 649 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 650 auto &MFI = MF.getFrameInfo(); 651 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 652 Out.Flags.getByValAlign(), 653 /*isSS=*/false); 654 SDValue SizeNode = 655 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 656 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 657 Chain = DAG.getMemcpy( 658 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 659 /*isVolatile*/ false, /*AlwaysInline=*/false, 660 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 661 OutVal = FINode; 662 } 663 // Count the number of fixed args *after* legalization. 664 NumFixedArgs += Out.IsFixed; 665 } 666 667 bool IsVarArg = CLI.IsVarArg; 668 auto PtrVT = getPointerTy(Layout); 669 670 // Analyze operands of the call, assigning locations to each operand. 671 SmallVector<CCValAssign, 16> ArgLocs; 672 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 673 674 if (IsVarArg) { 675 // Outgoing non-fixed arguments are placed in a buffer. First 676 // compute their offsets and the total amount of buffer space needed. 677 for (SDValue Arg : 678 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 679 EVT VT = Arg.getValueType(); 680 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 681 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 682 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 683 Layout.getABITypeAlignment(Ty)); 684 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 685 Offset, VT.getSimpleVT(), 686 CCValAssign::Full)); 687 } 688 } 689 690 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 691 692 SDValue FINode; 693 if (IsVarArg && NumBytes) { 694 // For non-fixed arguments, next emit stores to store the argument values 695 // to the stack buffer at the offsets computed above. 696 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 697 Layout.getStackAlignment(), 698 /*isSS=*/false); 699 unsigned ValNo = 0; 700 SmallVector<SDValue, 8> Chains; 701 for (SDValue Arg : 702 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 703 assert(ArgLocs[ValNo].getValNo() == ValNo && 704 "ArgLocs should remain in order and only hold varargs args"); 705 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 706 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 707 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 708 DAG.getConstant(Offset, DL, PtrVT)); 709 Chains.push_back( 710 DAG.getStore(Chain, DL, Arg, Add, 711 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 712 } 713 if (!Chains.empty()) 714 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 715 } else if (IsVarArg) { 716 FINode = DAG.getIntPtrConstant(0, DL); 717 } 718 719 // Compute the operands for the CALLn node. 720 SmallVector<SDValue, 16> Ops; 721 Ops.push_back(Chain); 722 Ops.push_back(Callee); 723 724 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 725 // isn't reliable. 726 Ops.append(OutVals.begin(), 727 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 728 // Add a pointer to the vararg buffer. 729 if (IsVarArg) 730 Ops.push_back(FINode); 731 732 SmallVector<EVT, 8> InTys; 733 for (const auto &In : Ins) { 734 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 735 assert(!In.Flags.isNest() && "nest is not valid for return values"); 736 if (In.Flags.isInAlloca()) 737 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 738 if (In.Flags.isInConsecutiveRegs()) 739 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 740 if (In.Flags.isInConsecutiveRegsLast()) 741 fail(DL, DAG, 742 "WebAssembly hasn't implemented cons regs last return values"); 743 // Ignore In.getOrigAlign() because all our arguments are passed in 744 // registers. 745 InTys.push_back(In.VT); 746 } 747 InTys.push_back(MVT::Other); 748 SDVTList InTyList = DAG.getVTList(InTys); 749 SDValue Res = 750 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 751 DL, InTyList, Ops); 752 if (Ins.empty()) { 753 Chain = Res; 754 } else { 755 InVals.push_back(Res); 756 Chain = Res.getValue(1); 757 } 758 759 return Chain; 760 } 761 762 bool WebAssemblyTargetLowering::CanLowerReturn( 763 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 764 const SmallVectorImpl<ISD::OutputArg> &Outs, 765 LLVMContext & /*Context*/) const { 766 // WebAssembly can't currently handle returning tuples. 767 return Outs.size() <= 1; 768 } 769 770 SDValue WebAssemblyTargetLowering::LowerReturn( 771 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 772 const SmallVectorImpl<ISD::OutputArg> &Outs, 773 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 774 SelectionDAG &DAG) const { 775 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 776 if (!callingConvSupported(CallConv)) 777 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 778 779 SmallVector<SDValue, 4> RetOps(1, Chain); 780 RetOps.append(OutVals.begin(), OutVals.end()); 781 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 782 783 // Record the number and types of the return values. 784 for (const ISD::OutputArg &Out : Outs) { 785 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 786 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 787 assert(Out.IsFixed && "non-fixed return value is not valid"); 788 if (Out.Flags.isInAlloca()) 789 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 790 if (Out.Flags.isInConsecutiveRegs()) 791 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 792 if (Out.Flags.isInConsecutiveRegsLast()) 793 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 794 } 795 796 return Chain; 797 } 798 799 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 800 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 801 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 802 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 803 if (!callingConvSupported(CallConv)) 804 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 805 806 MachineFunction &MF = DAG.getMachineFunction(); 807 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 808 809 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 810 // of the incoming values before they're represented by virtual registers. 811 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 812 813 for (const ISD::InputArg &In : Ins) { 814 if (In.Flags.isInAlloca()) 815 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 816 if (In.Flags.isNest()) 817 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 818 if (In.Flags.isInConsecutiveRegs()) 819 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 820 if (In.Flags.isInConsecutiveRegsLast()) 821 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 822 // Ignore In.getOrigAlign() because all our arguments are passed in 823 // registers. 824 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 825 DAG.getTargetConstant(InVals.size(), 826 DL, MVT::i32)) 827 : DAG.getUNDEF(In.VT)); 828 829 // Record the number and types of arguments. 830 MFI->addParam(In.VT); 831 } 832 833 // Varargs are copied into a buffer allocated by the caller, and a pointer to 834 // the buffer is passed as an argument. 835 if (IsVarArg) { 836 MVT PtrVT = getPointerTy(MF.getDataLayout()); 837 unsigned VarargVreg = 838 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 839 MFI->setVarargBufferVreg(VarargVreg); 840 Chain = DAG.getCopyToReg( 841 Chain, DL, VarargVreg, 842 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 843 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 844 MFI->addParam(PtrVT); 845 } 846 847 // Record the number and types of arguments and results. 848 SmallVector<MVT, 4> Params; 849 SmallVector<MVT, 4> Results; 850 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 851 DAG.getTarget(), Params, Results); 852 for (MVT VT : Results) 853 MFI->addResult(VT); 854 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 855 // the param logic here with ComputeSignatureVTs 856 assert(MFI->getParams().size() == Params.size() && 857 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 858 Params.begin())); 859 860 return Chain; 861 } 862 863 //===----------------------------------------------------------------------===// 864 // Custom lowering hooks. 865 //===----------------------------------------------------------------------===// 866 867 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 868 SelectionDAG &DAG) const { 869 SDLoc DL(Op); 870 switch (Op.getOpcode()) { 871 default: 872 llvm_unreachable("unimplemented operation lowering"); 873 return SDValue(); 874 case ISD::FrameIndex: 875 return LowerFrameIndex(Op, DAG); 876 case ISD::GlobalAddress: 877 return LowerGlobalAddress(Op, DAG); 878 case ISD::ExternalSymbol: 879 return LowerExternalSymbol(Op, DAG); 880 case ISD::JumpTable: 881 return LowerJumpTable(Op, DAG); 882 case ISD::BR_JT: 883 return LowerBR_JT(Op, DAG); 884 case ISD::VASTART: 885 return LowerVASTART(Op, DAG); 886 case ISD::BlockAddress: 887 case ISD::BRIND: 888 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 889 return SDValue(); 890 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 891 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 892 return SDValue(); 893 case ISD::FRAMEADDR: 894 return LowerFRAMEADDR(Op, DAG); 895 case ISD::CopyToReg: 896 return LowerCopyToReg(Op, DAG); 897 case ISD::EXTRACT_VECTOR_ELT: 898 case ISD::INSERT_VECTOR_ELT: 899 return LowerAccessVectorElement(Op, DAG); 900 case ISD::INTRINSIC_VOID: 901 case ISD::INTRINSIC_WO_CHAIN: 902 case ISD::INTRINSIC_W_CHAIN: 903 return LowerIntrinsic(Op, DAG); 904 case ISD::SIGN_EXTEND_INREG: 905 return LowerSIGN_EXTEND_INREG(Op, DAG); 906 case ISD::BUILD_VECTOR: 907 return LowerBUILD_VECTOR(Op, DAG); 908 case ISD::VECTOR_SHUFFLE: 909 return LowerVECTOR_SHUFFLE(Op, DAG); 910 case ISD::SHL: 911 case ISD::SRA: 912 case ISD::SRL: 913 return LowerShift(Op, DAG); 914 } 915 } 916 917 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 918 SelectionDAG &DAG) const { 919 SDValue Src = Op.getOperand(2); 920 if (isa<FrameIndexSDNode>(Src.getNode())) { 921 // CopyToReg nodes don't support FrameIndex operands. Other targets select 922 // the FI to some LEA-like instruction, but since we don't have that, we 923 // need to insert some kind of instruction that can take an FI operand and 924 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 925 // local.copy between Op and its FI operand. 926 SDValue Chain = Op.getOperand(0); 927 SDLoc DL(Op); 928 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 929 EVT VT = Src.getValueType(); 930 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 931 : WebAssembly::COPY_I64, 932 DL, VT, Src), 933 0); 934 return Op.getNode()->getNumValues() == 1 935 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 936 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 937 Op.getNumOperands() == 4 ? Op.getOperand(3) 938 : SDValue()); 939 } 940 return SDValue(); 941 } 942 943 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 944 SelectionDAG &DAG) const { 945 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 946 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 947 } 948 949 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 950 SelectionDAG &DAG) const { 951 // Non-zero depths are not supported by WebAssembly currently. Use the 952 // legalizer's default expansion, which is to return 0 (what this function is 953 // documented to do). 954 if (Op.getConstantOperandVal(0) > 0) 955 return SDValue(); 956 957 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 958 EVT VT = Op.getValueType(); 959 unsigned FP = 960 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 961 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 962 } 963 964 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 965 SelectionDAG &DAG) const { 966 SDLoc DL(Op); 967 const auto *GA = cast<GlobalAddressSDNode>(Op); 968 EVT VT = Op.getValueType(); 969 assert(GA->getTargetFlags() == 0 && 970 "Unexpected target flags on generic GlobalAddressSDNode"); 971 if (GA->getAddressSpace() != 0) 972 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 973 return DAG.getNode( 974 WebAssemblyISD::Wrapper, DL, VT, 975 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 976 } 977 978 SDValue 979 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 980 SelectionDAG &DAG) const { 981 SDLoc DL(Op); 982 const auto *ES = cast<ExternalSymbolSDNode>(Op); 983 EVT VT = Op.getValueType(); 984 assert(ES->getTargetFlags() == 0 && 985 "Unexpected target flags on generic ExternalSymbolSDNode"); 986 // Set the TargetFlags to 0x1 which indicates that this is a "function" 987 // symbol rather than a data symbol. We do this unconditionally even though 988 // we don't know anything about the symbol other than its name, because all 989 // external symbols used in target-independent SelectionDAG code are for 990 // functions. 991 return DAG.getNode( 992 WebAssemblyISD::Wrapper, DL, VT, 993 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 994 WebAssemblyII::MO_SYMBOL_FUNCTION)); 995 } 996 997 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 998 SelectionDAG &DAG) const { 999 // There's no need for a Wrapper node because we always incorporate a jump 1000 // table operand into a BR_TABLE instruction, rather than ever 1001 // materializing it in a register. 1002 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1003 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1004 JT->getTargetFlags()); 1005 } 1006 1007 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1008 SelectionDAG &DAG) const { 1009 SDLoc DL(Op); 1010 SDValue Chain = Op.getOperand(0); 1011 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1012 SDValue Index = Op.getOperand(2); 1013 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1014 1015 SmallVector<SDValue, 8> Ops; 1016 Ops.push_back(Chain); 1017 Ops.push_back(Index); 1018 1019 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1020 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1021 1022 // Add an operand for each case. 1023 for (auto MBB : MBBs) 1024 Ops.push_back(DAG.getBasicBlock(MBB)); 1025 1026 // TODO: For now, we just pick something arbitrary for a default case for now. 1027 // We really want to sniff out the guard and put in the real default case (and 1028 // delete the guard). 1029 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1030 1031 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1032 } 1033 1034 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1035 SelectionDAG &DAG) const { 1036 SDLoc DL(Op); 1037 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1038 1039 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1040 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1041 1042 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1043 MFI->getVarargBufferVreg(), PtrVT); 1044 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1045 MachinePointerInfo(SV), 0); 1046 } 1047 1048 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1049 SelectionDAG &DAG) const { 1050 MachineFunction &MF = DAG.getMachineFunction(); 1051 unsigned IntNo; 1052 switch (Op.getOpcode()) { 1053 case ISD::INTRINSIC_VOID: 1054 case ISD::INTRINSIC_W_CHAIN: 1055 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1056 break; 1057 case ISD::INTRINSIC_WO_CHAIN: 1058 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1059 break; 1060 default: 1061 llvm_unreachable("Invalid intrinsic"); 1062 } 1063 SDLoc DL(Op); 1064 1065 switch (IntNo) { 1066 default: 1067 return SDValue(); // Don't custom lower most intrinsics. 1068 1069 case Intrinsic::wasm_lsda: { 1070 EVT VT = Op.getValueType(); 1071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1072 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1073 auto &Context = MF.getMMI().getContext(); 1074 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1075 Twine(MF.getFunctionNumber())); 1076 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1077 DAG.getMCSymbol(S, PtrVT)); 1078 } 1079 1080 case Intrinsic::wasm_throw: { 1081 // We only support C++ exceptions for now 1082 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1083 if (Tag != CPP_EXCEPTION) 1084 llvm_unreachable("Invalid tag!"); 1085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1086 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1087 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1088 SDValue SymNode = 1089 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1090 DAG.getTargetExternalSymbol( 1091 SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); 1092 return DAG.getNode(WebAssemblyISD::THROW, DL, 1093 MVT::Other, // outchain type 1094 { 1095 Op.getOperand(0), // inchain 1096 SymNode, // exception symbol 1097 Op.getOperand(3) // thrown value 1098 }); 1099 } 1100 } 1101 } 1102 1103 SDValue 1104 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1105 SelectionDAG &DAG) const { 1106 // If sign extension operations are disabled, allow sext_inreg only if operand 1107 // is a vector extract. SIMD does not depend on sign extension operations, but 1108 // allowing sext_inreg in this context lets us have simple patterns to select 1109 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1110 // simpler in this file, but would necessitate large and brittle patterns to 1111 // undo the expansion and select extract_lane_s instructions. 1112 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1113 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1114 return Op; 1115 // Otherwise expand 1116 return SDValue(); 1117 } 1118 1119 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1120 SelectionDAG &DAG) const { 1121 SDLoc DL(Op); 1122 const EVT VecT = Op.getValueType(); 1123 const EVT LaneT = Op.getOperand(0).getValueType(); 1124 const size_t Lanes = Op.getNumOperands(); 1125 auto IsConstant = [](const SDValue &V) { 1126 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1127 }; 1128 1129 // Find the most common operand, which is approximately the best to splat 1130 using Entry = std::pair<SDValue, size_t>; 1131 SmallVector<Entry, 16> ValueCounts; 1132 size_t NumConst = 0, NumDynamic = 0; 1133 for (const SDValue &Lane : Op->op_values()) { 1134 if (Lane.isUndef()) { 1135 continue; 1136 } else if (IsConstant(Lane)) { 1137 NumConst++; 1138 } else { 1139 NumDynamic++; 1140 } 1141 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1142 [&Lane](Entry A) { return A.first == Lane; }); 1143 if (CountIt == ValueCounts.end()) { 1144 ValueCounts.emplace_back(Lane, 1); 1145 } else { 1146 CountIt->second++; 1147 } 1148 } 1149 auto CommonIt = 1150 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1151 [](Entry A, Entry B) { return A.second < B.second; }); 1152 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1153 SDValue SplatValue = CommonIt->first; 1154 size_t NumCommon = CommonIt->second; 1155 1156 // If v128.const is available, consider using it instead of a splat 1157 if (Subtarget->hasUnimplementedSIMD128()) { 1158 // {i32,i64,f32,f64}.const opcode, and value 1159 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1160 // SIMD prefix and opcode 1161 const size_t SplatBytes = 2; 1162 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1163 // SIMD prefix, opcode, and lane index 1164 const size_t ReplaceBytes = 3; 1165 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1166 // SIMD prefix, v128.const opcode, and 128-bit value 1167 const size_t VecConstBytes = 18; 1168 // Initial v128.const and a replace_lane for each non-const operand 1169 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1170 // Initial splat and all necessary replace_lanes 1171 const size_t SplatInitBytes = 1172 IsConstant(SplatValue) 1173 // Initial constant splat 1174 ? (SplatConstBytes + 1175 // Constant replace_lanes 1176 (NumConst - NumCommon) * ReplaceConstBytes + 1177 // Dynamic replace_lanes 1178 (NumDynamic * ReplaceBytes)) 1179 // Initial dynamic splat 1180 : (SplatBytes + 1181 // Constant replace_lanes 1182 (NumConst * ReplaceConstBytes) + 1183 // Dynamic replace_lanes 1184 (NumDynamic - NumCommon) * ReplaceBytes); 1185 if (ConstInitBytes < SplatInitBytes) { 1186 // Create build_vector that will lower to initial v128.const 1187 SmallVector<SDValue, 16> ConstLanes; 1188 for (const SDValue &Lane : Op->op_values()) { 1189 if (IsConstant(Lane)) { 1190 ConstLanes.push_back(Lane); 1191 } else if (LaneT.isFloatingPoint()) { 1192 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1193 } else { 1194 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1195 } 1196 } 1197 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1198 // Add replace_lane instructions for non-const lanes 1199 for (size_t I = 0; I < Lanes; ++I) { 1200 const SDValue &Lane = Op->getOperand(I); 1201 if (!Lane.isUndef() && !IsConstant(Lane)) 1202 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1203 DAG.getConstant(I, DL, MVT::i32)); 1204 } 1205 return Result; 1206 } 1207 } 1208 // Use a splat for the initial vector 1209 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1210 // Add replace_lane instructions for other values 1211 for (size_t I = 0; I < Lanes; ++I) { 1212 const SDValue &Lane = Op->getOperand(I); 1213 if (Lane != SplatValue) 1214 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1215 DAG.getConstant(I, DL, MVT::i32)); 1216 } 1217 return Result; 1218 } 1219 1220 SDValue 1221 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1222 SelectionDAG &DAG) const { 1223 SDLoc DL(Op); 1224 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1225 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1226 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1227 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1228 1229 // Space for two vector args and sixteen mask indices 1230 SDValue Ops[18]; 1231 size_t OpIdx = 0; 1232 Ops[OpIdx++] = Op.getOperand(0); 1233 Ops[OpIdx++] = Op.getOperand(1); 1234 1235 // Expand mask indices to byte indices and materialize them as operands 1236 for (int M : Mask) { 1237 for (size_t J = 0; J < LaneBytes; ++J) { 1238 // Lower undefs (represented by -1 in mask) to zero 1239 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1240 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1241 } 1242 } 1243 1244 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1245 } 1246 1247 SDValue 1248 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1249 SelectionDAG &DAG) const { 1250 // Allow constant lane indices, expand variable lane indices 1251 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1252 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1253 return Op; 1254 else 1255 // Perform default expansion 1256 return SDValue(); 1257 } 1258 1259 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1260 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1261 // 32-bit and 64-bit unrolled shifts will have proper semantics 1262 if (LaneT.bitsGE(MVT::i32)) 1263 return DAG.UnrollVectorOp(Op.getNode()); 1264 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1265 SDLoc DL(Op); 1266 SDValue ShiftVal = Op.getOperand(1); 1267 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1268 SDValue MaskedShiftVal = DAG.getNode( 1269 ISD::AND, // mask opcode 1270 DL, ShiftVal.getValueType(), // masked value type 1271 ShiftVal, // original shift value operand 1272 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1273 ); 1274 1275 return DAG.UnrollVectorOp( 1276 DAG.getNode(Op.getOpcode(), // original shift opcode 1277 DL, Op.getValueType(), // original return type 1278 Op.getOperand(0), // original vector operand, 1279 MaskedShiftVal // new masked shift value operand 1280 ) 1281 .getNode()); 1282 } 1283 1284 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1285 SelectionDAG &DAG) const { 1286 SDLoc DL(Op); 1287 1288 // Only manually lower vector shifts 1289 assert(Op.getSimpleValueType().isVector()); 1290 1291 // Expand all vector shifts until V8 fixes its implementation 1292 // TODO: remove this once V8 is fixed 1293 if (!Subtarget->hasUnimplementedSIMD128()) 1294 return unrollVectorShift(Op, DAG); 1295 1296 // Unroll non-splat vector shifts 1297 BuildVectorSDNode *ShiftVec; 1298 SDValue SplatVal; 1299 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1300 !(SplatVal = ShiftVec->getSplatValue())) 1301 return unrollVectorShift(Op, DAG); 1302 1303 // All splats except i64x2 const splats are handled by patterns 1304 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1305 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1306 return Op; 1307 1308 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1309 unsigned Opcode; 1310 switch (Op.getOpcode()) { 1311 case ISD::SHL: 1312 Opcode = WebAssemblyISD::VEC_SHL; 1313 break; 1314 case ISD::SRA: 1315 Opcode = WebAssemblyISD::VEC_SHR_S; 1316 break; 1317 case ISD::SRL: 1318 Opcode = WebAssemblyISD::VEC_SHR_U; 1319 break; 1320 default: 1321 llvm_unreachable("unexpected opcode"); 1322 } 1323 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1324 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1325 DAG.getConstant(Shift, DL, MVT::i32)); 1326 } 1327 1328 //===----------------------------------------------------------------------===// 1329 // WebAssembly Optimization Hooks 1330 //===----------------------------------------------------------------------===// 1331