1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "wasm-lower" 40 41 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 42 const TargetMachine &TM, const WebAssemblySubtarget &STI) 43 : TargetLowering(TM), Subtarget(&STI) { 44 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 45 46 // Booleans always contain 0 or 1. 47 setBooleanContents(ZeroOrOneBooleanContent); 48 // Except in SIMD vectors 49 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 50 // We don't know the microarchitecture here, so just reduce register pressure. 51 setSchedulingPreference(Sched::RegPressure); 52 // Tell ISel that we have a stack pointer. 53 setStackPointerRegisterToSaveRestore( 54 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 55 // Set up the register classes. 56 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 57 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 58 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 59 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 60 if (Subtarget->hasSIMD128()) { 61 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 119 setOperationAction(Op, T, Expand); 120 } 121 122 // SIMD-specific configuration 123 if (Subtarget->hasSIMD128()) { 124 // Hoist bitcasts out of shuffles 125 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 126 127 // Combine extends of extract_subvectors into widening ops 128 setTargetDAGCombine(ISD::SIGN_EXTEND); 129 setTargetDAGCombine(ISD::ZERO_EXTEND); 130 131 // Support saturating add for i8x16 and i16x8 132 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 133 for (auto T : {MVT::v16i8, MVT::v8i16}) 134 setOperationAction(Op, T, Legal); 135 136 // Support integer abs 137 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 138 setOperationAction(ISD::ABS, T, Legal); 139 140 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 141 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 142 MVT::v2f64}) 143 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 144 145 // We have custom shuffle lowering to expose the shuffle mask 146 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 147 MVT::v2f64}) 148 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 149 150 // Custom lowering since wasm shifts must have a scalar shift amount 151 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 152 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 153 setOperationAction(Op, T, Custom); 154 155 // Custom lower lane accesses to expand out variable indices 156 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 157 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 158 MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 161 // There is no i8x16.mul instruction 162 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 163 164 // There is no vector conditional select instruction 165 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 166 MVT::v2f64}) 167 setOperationAction(ISD::SELECT_CC, T, Expand); 168 169 // Expand integer operations supported for scalars but not SIMD 170 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 171 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 173 setOperationAction(Op, T, Expand); 174 175 // But we do have integer min and max operations 176 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Legal); 179 180 // Expand float operations supported for scalars but not SIMD 181 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 182 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 183 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 184 for (auto T : {MVT::v4f32, MVT::v2f64}) 185 setOperationAction(Op, T, Expand); 186 187 // Expand operations not supported for i64x2 vectors 188 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 189 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 190 191 // 64x2 conversions are not in the spec 192 for (auto Op : 193 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 194 for (auto T : {MVT::v2i64, MVT::v2f64}) 195 setOperationAction(Op, T, Expand); 196 } 197 198 // As a special case, these operators use the type to mean the type to 199 // sign-extend from. 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 if (!Subtarget->hasSignExt()) { 202 // Sign extends are legal only when extending a vector extract 203 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 204 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 205 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 206 } 207 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 208 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 209 210 // Dynamic stack allocation: use the default expansion. 211 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 212 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 213 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 214 215 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 216 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 217 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 218 219 // Expand these forms; we pattern-match the forms that we can handle in isel. 220 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 221 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 222 setOperationAction(Op, T, Expand); 223 224 // We have custom switch handling. 225 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 226 227 // WebAssembly doesn't have: 228 // - Floating-point extending loads. 229 // - Floating-point truncating stores. 230 // - i1 extending loads. 231 // - truncating SIMD stores and most extending loads 232 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 233 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 234 for (auto T : MVT::integer_valuetypes()) 235 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 236 setLoadExtAction(Ext, T, MVT::i1, Promote); 237 if (Subtarget->hasSIMD128()) { 238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 239 MVT::v2f64}) { 240 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 241 if (MVT(T) != MemT) { 242 setTruncStoreAction(T, MemT, Expand); 243 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 244 setLoadExtAction(Ext, T, MemT, Expand); 245 } 246 } 247 } 248 // But some vector extending loads are legal 249 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 250 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 251 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 252 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 253 } 254 // And some truncating stores are legal as well 255 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 256 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 257 } 258 259 // Don't do anything clever with build_pairs 260 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 261 262 // Trap lowers to wasm unreachable 263 setOperationAction(ISD::TRAP, MVT::Other, Legal); 264 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 265 266 // Exception handling intrinsics 267 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 268 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 269 270 setMaxAtomicSizeInBitsSupported(64); 271 272 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 273 // consistent with the f64 and f128 names. 274 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 275 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 276 277 // Define the emscripten name for return address helper. 278 // TODO: when implementing other Wasm backends, make this generic or only do 279 // this on emscripten depending on what they end up doing. 280 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 281 282 // Always convert switches to br_tables unless there is only one case, which 283 // is equivalent to a simple branch. This reduces code size for wasm, and we 284 // defer possible jump table optimizations to the VM. 285 setMinimumJumpTableEntries(2); 286 } 287 288 TargetLowering::AtomicExpansionKind 289 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 290 // We have wasm instructions for these 291 switch (AI->getOperation()) { 292 case AtomicRMWInst::Add: 293 case AtomicRMWInst::Sub: 294 case AtomicRMWInst::And: 295 case AtomicRMWInst::Or: 296 case AtomicRMWInst::Xor: 297 case AtomicRMWInst::Xchg: 298 return AtomicExpansionKind::None; 299 default: 300 break; 301 } 302 return AtomicExpansionKind::CmpXChg; 303 } 304 305 FastISel *WebAssemblyTargetLowering::createFastISel( 306 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 307 return WebAssembly::createFastISel(FuncInfo, LibInfo); 308 } 309 310 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 311 EVT VT) const { 312 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 313 if (BitWidth > 1 && BitWidth < 8) 314 BitWidth = 8; 315 316 if (BitWidth > 64) { 317 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 318 // the count to be an i32. 319 BitWidth = 32; 320 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 321 "32-bit shift counts ought to be enough for anyone"); 322 } 323 324 MVT Result = MVT::getIntegerVT(BitWidth); 325 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 326 "Unable to represent scalar shift amount type"); 327 return Result; 328 } 329 330 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 331 // undefined result on invalid/overflow, to the WebAssembly opcode, which 332 // traps on invalid/overflow. 333 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 334 MachineBasicBlock *BB, 335 const TargetInstrInfo &TII, 336 bool IsUnsigned, bool Int64, 337 bool Float64, unsigned LoweredOpcode) { 338 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 339 340 Register OutReg = MI.getOperand(0).getReg(); 341 Register InReg = MI.getOperand(1).getReg(); 342 343 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 344 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 345 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 346 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 347 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 348 unsigned Eqz = WebAssembly::EQZ_I32; 349 unsigned And = WebAssembly::AND_I32; 350 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 351 int64_t Substitute = IsUnsigned ? 0 : Limit; 352 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 353 auto &Context = BB->getParent()->getFunction().getContext(); 354 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 355 356 const BasicBlock *LLVMBB = BB->getBasicBlock(); 357 MachineFunction *F = BB->getParent(); 358 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 359 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 360 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 361 362 MachineFunction::iterator It = ++BB->getIterator(); 363 F->insert(It, FalseMBB); 364 F->insert(It, TrueMBB); 365 F->insert(It, DoneMBB); 366 367 // Transfer the remainder of BB and its successor edges to DoneMBB. 368 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 369 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 370 371 BB->addSuccessor(TrueMBB); 372 BB->addSuccessor(FalseMBB); 373 TrueMBB->addSuccessor(DoneMBB); 374 FalseMBB->addSuccessor(DoneMBB); 375 376 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 377 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 378 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 379 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 380 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 381 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 382 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 383 384 MI.eraseFromParent(); 385 // For signed numbers, we can do a single comparison to determine whether 386 // fabs(x) is within range. 387 if (IsUnsigned) { 388 Tmp0 = InReg; 389 } else { 390 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 391 } 392 BuildMI(BB, DL, TII.get(FConst), Tmp1) 393 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 394 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 395 396 // For unsigned numbers, we have to do a separate comparison with zero. 397 if (IsUnsigned) { 398 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 399 Register SecondCmpReg = 400 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 401 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 402 BuildMI(BB, DL, TII.get(FConst), Tmp1) 403 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 404 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 405 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 406 CmpReg = AndReg; 407 } 408 409 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 410 411 // Create the CFG diamond to select between doing the conversion or using 412 // the substitute value. 413 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 414 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 415 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 416 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 417 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 418 .addReg(FalseReg) 419 .addMBB(FalseMBB) 420 .addReg(TrueReg) 421 .addMBB(TrueMBB); 422 423 return DoneMBB; 424 } 425 426 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 427 DebugLoc DL, MachineBasicBlock *BB, 428 const TargetInstrInfo &TII) { 429 MachineInstr &CallParams = *CallResults.getPrevNode(); 430 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 431 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 432 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 433 434 bool IsIndirect = CallParams.getOperand(0).isReg(); 435 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 436 437 unsigned CallOp; 438 if (IsIndirect && IsRetCall) { 439 CallOp = WebAssembly::RET_CALL_INDIRECT; 440 } else if (IsIndirect) { 441 CallOp = WebAssembly::CALL_INDIRECT; 442 } else if (IsRetCall) { 443 CallOp = WebAssembly::RET_CALL; 444 } else { 445 CallOp = WebAssembly::CALL; 446 } 447 448 MachineFunction &MF = *BB->getParent(); 449 const MCInstrDesc &MCID = TII.get(CallOp); 450 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 451 452 // See if we must truncate the function pointer. 453 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 454 // as 64-bit for uniformity with other pointer types. 455 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 456 Register Reg32 = 457 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 458 auto &FnPtr = CallParams.getOperand(0); 459 BuildMI(*BB, CallResults.getIterator(), DL, 460 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 461 .addReg(FnPtr.getReg()); 462 FnPtr.setReg(Reg32); 463 } 464 465 // Move the function pointer to the end of the arguments for indirect calls 466 if (IsIndirect) { 467 auto FnPtr = CallParams.getOperand(0); 468 CallParams.RemoveOperand(0); 469 CallParams.addOperand(FnPtr); 470 } 471 472 for (auto Def : CallResults.defs()) 473 MIB.add(Def); 474 475 // Add placeholders for the type index and immediate flags 476 if (IsIndirect) { 477 MIB.addImm(0); 478 MIB.addImm(0); 479 } 480 481 for (auto Use : CallParams.uses()) 482 MIB.add(Use); 483 484 BB->insert(CallResults.getIterator(), MIB); 485 CallParams.eraseFromParent(); 486 CallResults.eraseFromParent(); 487 488 return BB; 489 } 490 491 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 492 MachineInstr &MI, MachineBasicBlock *BB) const { 493 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 494 DebugLoc DL = MI.getDebugLoc(); 495 496 switch (MI.getOpcode()) { 497 default: 498 llvm_unreachable("Unexpected instr type to insert"); 499 case WebAssembly::FP_TO_SINT_I32_F32: 500 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 501 WebAssembly::I32_TRUNC_S_F32); 502 case WebAssembly::FP_TO_UINT_I32_F32: 503 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 504 WebAssembly::I32_TRUNC_U_F32); 505 case WebAssembly::FP_TO_SINT_I64_F32: 506 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 507 WebAssembly::I64_TRUNC_S_F32); 508 case WebAssembly::FP_TO_UINT_I64_F32: 509 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 510 WebAssembly::I64_TRUNC_U_F32); 511 case WebAssembly::FP_TO_SINT_I32_F64: 512 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 513 WebAssembly::I32_TRUNC_S_F64); 514 case WebAssembly::FP_TO_UINT_I32_F64: 515 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 516 WebAssembly::I32_TRUNC_U_F64); 517 case WebAssembly::FP_TO_SINT_I64_F64: 518 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 519 WebAssembly::I64_TRUNC_S_F64); 520 case WebAssembly::FP_TO_UINT_I64_F64: 521 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 522 WebAssembly::I64_TRUNC_U_F64); 523 case WebAssembly::CALL_RESULTS: 524 case WebAssembly::RET_CALL_RESULTS: 525 return LowerCallResults(MI, DL, BB, TII); 526 } 527 } 528 529 const char * 530 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 531 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 532 case WebAssemblyISD::FIRST_NUMBER: 533 case WebAssemblyISD::FIRST_MEM_OPCODE: 534 break; 535 #define HANDLE_NODETYPE(NODE) \ 536 case WebAssemblyISD::NODE: \ 537 return "WebAssemblyISD::" #NODE; 538 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 539 #include "WebAssemblyISD.def" 540 #undef HANDLE_MEM_NODETYPE 541 #undef HANDLE_NODETYPE 542 } 543 return nullptr; 544 } 545 546 std::pair<unsigned, const TargetRegisterClass *> 547 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 548 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 549 // First, see if this is a constraint that directly corresponds to a 550 // WebAssembly register class. 551 if (Constraint.size() == 1) { 552 switch (Constraint[0]) { 553 case 'r': 554 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 555 if (Subtarget->hasSIMD128() && VT.isVector()) { 556 if (VT.getSizeInBits() == 128) 557 return std::make_pair(0U, &WebAssembly::V128RegClass); 558 } 559 if (VT.isInteger() && !VT.isVector()) { 560 if (VT.getSizeInBits() <= 32) 561 return std::make_pair(0U, &WebAssembly::I32RegClass); 562 if (VT.getSizeInBits() <= 64) 563 return std::make_pair(0U, &WebAssembly::I64RegClass); 564 } 565 break; 566 default: 567 break; 568 } 569 } 570 571 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 572 } 573 574 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 575 // Assume ctz is a relatively cheap operation. 576 return true; 577 } 578 579 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 580 // Assume clz is a relatively cheap operation. 581 return true; 582 } 583 584 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 585 const AddrMode &AM, 586 Type *Ty, unsigned AS, 587 Instruction *I) const { 588 // WebAssembly offsets are added as unsigned without wrapping. The 589 // isLegalAddressingMode gives us no way to determine if wrapping could be 590 // happening, so we approximate this by accepting only non-negative offsets. 591 if (AM.BaseOffs < 0) 592 return false; 593 594 // WebAssembly has no scale register operands. 595 if (AM.Scale != 0) 596 return false; 597 598 // Everything else is legal. 599 return true; 600 } 601 602 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 603 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 604 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 605 // WebAssembly supports unaligned accesses, though it should be declared 606 // with the p2align attribute on loads and stores which do so, and there 607 // may be a performance impact. We tell LLVM they're "fast" because 608 // for the kinds of things that LLVM uses this for (merging adjacent stores 609 // of constants, etc.), WebAssembly implementations will either want the 610 // unaligned access or they'll split anyway. 611 if (Fast) 612 *Fast = true; 613 return true; 614 } 615 616 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 617 AttributeList Attr) const { 618 // The current thinking is that wasm engines will perform this optimization, 619 // so we can save on code size. 620 return true; 621 } 622 623 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 624 EVT ExtT = ExtVal.getValueType(); 625 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 626 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 627 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 628 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 629 } 630 631 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 632 LLVMContext &C, 633 EVT VT) const { 634 if (VT.isVector()) 635 return VT.changeVectorElementTypeToInteger(); 636 637 // So far, all branch instructions in Wasm take an I32 condition. 638 // The default TargetLowering::getSetCCResultType returns the pointer size, 639 // which would be useful to reduce instruction counts when testing 640 // against 64-bit pointers/values if at some point Wasm supports that. 641 return EVT::getIntegerVT(C, 32); 642 } 643 644 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 645 const CallInst &I, 646 MachineFunction &MF, 647 unsigned Intrinsic) const { 648 switch (Intrinsic) { 649 case Intrinsic::wasm_atomic_notify: 650 Info.opc = ISD::INTRINSIC_W_CHAIN; 651 Info.memVT = MVT::i32; 652 Info.ptrVal = I.getArgOperand(0); 653 Info.offset = 0; 654 Info.align = Align(4); 655 // atomic.notify instruction does not really load the memory specified with 656 // this argument, but MachineMemOperand should either be load or store, so 657 // we set this to a load. 658 // FIXME Volatile isn't really correct, but currently all LLVM atomic 659 // instructions are treated as volatiles in the backend, so we should be 660 // consistent. The same applies for wasm_atomic_wait intrinsics too. 661 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 662 return true; 663 case Intrinsic::wasm_atomic_wait_i32: 664 Info.opc = ISD::INTRINSIC_W_CHAIN; 665 Info.memVT = MVT::i32; 666 Info.ptrVal = I.getArgOperand(0); 667 Info.offset = 0; 668 Info.align = Align(4); 669 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 670 return true; 671 case Intrinsic::wasm_atomic_wait_i64: 672 Info.opc = ISD::INTRINSIC_W_CHAIN; 673 Info.memVT = MVT::i64; 674 Info.ptrVal = I.getArgOperand(0); 675 Info.offset = 0; 676 Info.align = Align(8); 677 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 678 return true; 679 case Intrinsic::wasm_load32_zero: 680 case Intrinsic::wasm_load64_zero: 681 Info.opc = ISD::INTRINSIC_W_CHAIN; 682 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 683 Info.ptrVal = I.getArgOperand(0); 684 Info.offset = 0; 685 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 686 Info.flags = MachineMemOperand::MOLoad; 687 return true; 688 case Intrinsic::wasm_load8_lane: 689 case Intrinsic::wasm_load16_lane: 690 case Intrinsic::wasm_load32_lane: 691 case Intrinsic::wasm_load64_lane: 692 case Intrinsic::wasm_store8_lane: 693 case Intrinsic::wasm_store16_lane: 694 case Intrinsic::wasm_store32_lane: 695 case Intrinsic::wasm_store64_lane: { 696 MVT MemVT; 697 Align MemAlign; 698 switch (Intrinsic) { 699 case Intrinsic::wasm_load8_lane: 700 case Intrinsic::wasm_store8_lane: 701 MemVT = MVT::i8; 702 MemAlign = Align(1); 703 break; 704 case Intrinsic::wasm_load16_lane: 705 case Intrinsic::wasm_store16_lane: 706 MemVT = MVT::i16; 707 MemAlign = Align(2); 708 break; 709 case Intrinsic::wasm_load32_lane: 710 case Intrinsic::wasm_store32_lane: 711 MemVT = MVT::i32; 712 MemAlign = Align(4); 713 break; 714 case Intrinsic::wasm_load64_lane: 715 case Intrinsic::wasm_store64_lane: 716 MemVT = MVT::i64; 717 MemAlign = Align(8); 718 break; 719 default: 720 llvm_unreachable("unexpected intrinsic"); 721 } 722 if (Intrinsic == Intrinsic::wasm_load8_lane || 723 Intrinsic == Intrinsic::wasm_load16_lane || 724 Intrinsic == Intrinsic::wasm_load32_lane || 725 Intrinsic == Intrinsic::wasm_load64_lane) { 726 Info.opc = ISD::INTRINSIC_W_CHAIN; 727 Info.flags = MachineMemOperand::MOLoad; 728 } else { 729 Info.opc = ISD::INTRINSIC_VOID; 730 Info.flags = MachineMemOperand::MOStore; 731 } 732 Info.ptrVal = I.getArgOperand(0); 733 Info.memVT = MemVT; 734 Info.offset = 0; 735 Info.align = MemAlign; 736 return true; 737 } 738 default: 739 return false; 740 } 741 } 742 743 //===----------------------------------------------------------------------===// 744 // WebAssembly Lowering private implementation. 745 //===----------------------------------------------------------------------===// 746 747 //===----------------------------------------------------------------------===// 748 // Lowering Code 749 //===----------------------------------------------------------------------===// 750 751 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 752 MachineFunction &MF = DAG.getMachineFunction(); 753 DAG.getContext()->diagnose( 754 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 755 } 756 757 // Test whether the given calling convention is supported. 758 static bool callingConvSupported(CallingConv::ID CallConv) { 759 // We currently support the language-independent target-independent 760 // conventions. We don't yet have a way to annotate calls with properties like 761 // "cold", and we don't have any call-clobbered registers, so these are mostly 762 // all handled the same. 763 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 764 CallConv == CallingConv::Cold || 765 CallConv == CallingConv::PreserveMost || 766 CallConv == CallingConv::PreserveAll || 767 CallConv == CallingConv::CXX_FAST_TLS || 768 CallConv == CallingConv::WASM_EmscriptenInvoke || 769 CallConv == CallingConv::Swift; 770 } 771 772 SDValue 773 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 774 SmallVectorImpl<SDValue> &InVals) const { 775 SelectionDAG &DAG = CLI.DAG; 776 SDLoc DL = CLI.DL; 777 SDValue Chain = CLI.Chain; 778 SDValue Callee = CLI.Callee; 779 MachineFunction &MF = DAG.getMachineFunction(); 780 auto Layout = MF.getDataLayout(); 781 782 CallingConv::ID CallConv = CLI.CallConv; 783 if (!callingConvSupported(CallConv)) 784 fail(DL, DAG, 785 "WebAssembly doesn't support language-specific or target-specific " 786 "calling conventions yet"); 787 if (CLI.IsPatchPoint) 788 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 789 790 if (CLI.IsTailCall) { 791 auto NoTail = [&](const char *Msg) { 792 if (CLI.CB && CLI.CB->isMustTailCall()) 793 fail(DL, DAG, Msg); 794 CLI.IsTailCall = false; 795 }; 796 797 if (!Subtarget->hasTailCall()) 798 NoTail("WebAssembly 'tail-call' feature not enabled"); 799 800 // Varargs calls cannot be tail calls because the buffer is on the stack 801 if (CLI.IsVarArg) 802 NoTail("WebAssembly does not support varargs tail calls"); 803 804 // Do not tail call unless caller and callee return types match 805 const Function &F = MF.getFunction(); 806 const TargetMachine &TM = getTargetMachine(); 807 Type *RetTy = F.getReturnType(); 808 SmallVector<MVT, 4> CallerRetTys; 809 SmallVector<MVT, 4> CalleeRetTys; 810 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 811 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 812 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 813 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 814 CalleeRetTys.begin()); 815 if (!TypesMatch) 816 NoTail("WebAssembly tail call requires caller and callee return types to " 817 "match"); 818 819 // If pointers to local stack values are passed, we cannot tail call 820 if (CLI.CB) { 821 for (auto &Arg : CLI.CB->args()) { 822 Value *Val = Arg.get(); 823 // Trace the value back through pointer operations 824 while (true) { 825 Value *Src = Val->stripPointerCastsAndAliases(); 826 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 827 Src = GEP->getPointerOperand(); 828 if (Val == Src) 829 break; 830 Val = Src; 831 } 832 if (isa<AllocaInst>(Val)) { 833 NoTail( 834 "WebAssembly does not support tail calling with stack arguments"); 835 break; 836 } 837 } 838 } 839 } 840 841 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 842 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 843 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 844 845 // The generic code may have added an sret argument. If we're lowering an 846 // invoke function, the ABI requires that the function pointer be the first 847 // argument, so we may have to swap the arguments. 848 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 849 Outs[0].Flags.isSRet()) { 850 std::swap(Outs[0], Outs[1]); 851 std::swap(OutVals[0], OutVals[1]); 852 } 853 854 bool HasSwiftSelfArg = false; 855 bool HasSwiftErrorArg = false; 856 unsigned NumFixedArgs = 0; 857 for (unsigned I = 0; I < Outs.size(); ++I) { 858 const ISD::OutputArg &Out = Outs[I]; 859 SDValue &OutVal = OutVals[I]; 860 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 861 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 862 if (Out.Flags.isNest()) 863 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 864 if (Out.Flags.isInAlloca()) 865 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 866 if (Out.Flags.isInConsecutiveRegs()) 867 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 868 if (Out.Flags.isInConsecutiveRegsLast()) 869 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 870 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 871 auto &MFI = MF.getFrameInfo(); 872 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 873 Out.Flags.getNonZeroByValAlign(), 874 /*isSS=*/false); 875 SDValue SizeNode = 876 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 877 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 878 Chain = DAG.getMemcpy( 879 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 880 /*isVolatile*/ false, /*AlwaysInline=*/false, 881 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 882 OutVal = FINode; 883 } 884 // Count the number of fixed args *after* legalization. 885 NumFixedArgs += Out.IsFixed; 886 } 887 888 bool IsVarArg = CLI.IsVarArg; 889 auto PtrVT = getPointerTy(Layout); 890 891 // For swiftcc, emit additional swiftself and swifterror arguments 892 // if there aren't. These additional arguments are also added for callee 893 // signature They are necessary to match callee and caller signature for 894 // indirect call. 895 if (CallConv == CallingConv::Swift) { 896 if (!HasSwiftSelfArg) { 897 NumFixedArgs++; 898 ISD::OutputArg Arg; 899 Arg.Flags.setSwiftSelf(); 900 CLI.Outs.push_back(Arg); 901 SDValue ArgVal = DAG.getUNDEF(PtrVT); 902 CLI.OutVals.push_back(ArgVal); 903 } 904 if (!HasSwiftErrorArg) { 905 NumFixedArgs++; 906 ISD::OutputArg Arg; 907 Arg.Flags.setSwiftError(); 908 CLI.Outs.push_back(Arg); 909 SDValue ArgVal = DAG.getUNDEF(PtrVT); 910 CLI.OutVals.push_back(ArgVal); 911 } 912 } 913 914 // Analyze operands of the call, assigning locations to each operand. 915 SmallVector<CCValAssign, 16> ArgLocs; 916 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 917 918 if (IsVarArg) { 919 // Outgoing non-fixed arguments are placed in a buffer. First 920 // compute their offsets and the total amount of buffer space needed. 921 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 922 const ISD::OutputArg &Out = Outs[I]; 923 SDValue &Arg = OutVals[I]; 924 EVT VT = Arg.getValueType(); 925 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 926 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 927 Align Alignment = 928 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 929 unsigned Offset = 930 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 931 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 932 Offset, VT.getSimpleVT(), 933 CCValAssign::Full)); 934 } 935 } 936 937 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 938 939 SDValue FINode; 940 if (IsVarArg && NumBytes) { 941 // For non-fixed arguments, next emit stores to store the argument values 942 // to the stack buffer at the offsets computed above. 943 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 944 Layout.getStackAlignment(), 945 /*isSS=*/false); 946 unsigned ValNo = 0; 947 SmallVector<SDValue, 8> Chains; 948 for (SDValue Arg : 949 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 950 assert(ArgLocs[ValNo].getValNo() == ValNo && 951 "ArgLocs should remain in order and only hold varargs args"); 952 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 953 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 954 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 955 DAG.getConstant(Offset, DL, PtrVT)); 956 Chains.push_back( 957 DAG.getStore(Chain, DL, Arg, Add, 958 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 959 } 960 if (!Chains.empty()) 961 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 962 } else if (IsVarArg) { 963 FINode = DAG.getIntPtrConstant(0, DL); 964 } 965 966 if (Callee->getOpcode() == ISD::GlobalAddress) { 967 // If the callee is a GlobalAddress node (quite common, every direct call 968 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 969 // doesn't at MO_GOT which is not needed for direct calls. 970 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 971 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 972 getPointerTy(DAG.getDataLayout()), 973 GA->getOffset()); 974 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 975 getPointerTy(DAG.getDataLayout()), Callee); 976 } 977 978 // Compute the operands for the CALLn node. 979 SmallVector<SDValue, 16> Ops; 980 Ops.push_back(Chain); 981 Ops.push_back(Callee); 982 983 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 984 // isn't reliable. 985 Ops.append(OutVals.begin(), 986 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 987 // Add a pointer to the vararg buffer. 988 if (IsVarArg) 989 Ops.push_back(FINode); 990 991 SmallVector<EVT, 8> InTys; 992 for (const auto &In : Ins) { 993 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 994 assert(!In.Flags.isNest() && "nest is not valid for return values"); 995 if (In.Flags.isInAlloca()) 996 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 997 if (In.Flags.isInConsecutiveRegs()) 998 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 999 if (In.Flags.isInConsecutiveRegsLast()) 1000 fail(DL, DAG, 1001 "WebAssembly hasn't implemented cons regs last return values"); 1002 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1003 // registers. 1004 InTys.push_back(In.VT); 1005 } 1006 1007 if (CLI.IsTailCall) { 1008 // ret_calls do not return values to the current frame 1009 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1010 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1011 } 1012 1013 InTys.push_back(MVT::Other); 1014 SDVTList InTyList = DAG.getVTList(InTys); 1015 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1016 1017 for (size_t I = 0; I < Ins.size(); ++I) 1018 InVals.push_back(Res.getValue(I)); 1019 1020 // Return the chain 1021 return Res.getValue(Ins.size()); 1022 } 1023 1024 bool WebAssemblyTargetLowering::CanLowerReturn( 1025 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1026 const SmallVectorImpl<ISD::OutputArg> &Outs, 1027 LLVMContext & /*Context*/) const { 1028 // WebAssembly can only handle returning tuples with multivalue enabled 1029 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1030 } 1031 1032 SDValue WebAssemblyTargetLowering::LowerReturn( 1033 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1034 const SmallVectorImpl<ISD::OutputArg> &Outs, 1035 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1036 SelectionDAG &DAG) const { 1037 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1038 "MVP WebAssembly can only return up to one value"); 1039 if (!callingConvSupported(CallConv)) 1040 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1041 1042 SmallVector<SDValue, 4> RetOps(1, Chain); 1043 RetOps.append(OutVals.begin(), OutVals.end()); 1044 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1045 1046 // Record the number and types of the return values. 1047 for (const ISD::OutputArg &Out : Outs) { 1048 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1049 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1050 assert(Out.IsFixed && "non-fixed return value is not valid"); 1051 if (Out.Flags.isInAlloca()) 1052 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1053 if (Out.Flags.isInConsecutiveRegs()) 1054 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1055 if (Out.Flags.isInConsecutiveRegsLast()) 1056 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1057 } 1058 1059 return Chain; 1060 } 1061 1062 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1063 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1064 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1065 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1066 if (!callingConvSupported(CallConv)) 1067 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1068 1069 MachineFunction &MF = DAG.getMachineFunction(); 1070 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1071 1072 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1073 // of the incoming values before they're represented by virtual registers. 1074 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1075 1076 bool HasSwiftErrorArg = false; 1077 bool HasSwiftSelfArg = false; 1078 for (const ISD::InputArg &In : Ins) { 1079 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1080 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1081 if (In.Flags.isInAlloca()) 1082 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1083 if (In.Flags.isNest()) 1084 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1085 if (In.Flags.isInConsecutiveRegs()) 1086 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1087 if (In.Flags.isInConsecutiveRegsLast()) 1088 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1089 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1090 // registers. 1091 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1092 DAG.getTargetConstant(InVals.size(), 1093 DL, MVT::i32)) 1094 : DAG.getUNDEF(In.VT)); 1095 1096 // Record the number and types of arguments. 1097 MFI->addParam(In.VT); 1098 } 1099 1100 // For swiftcc, emit additional swiftself and swifterror arguments 1101 // if there aren't. These additional arguments are also added for callee 1102 // signature They are necessary to match callee and caller signature for 1103 // indirect call. 1104 auto PtrVT = getPointerTy(MF.getDataLayout()); 1105 if (CallConv == CallingConv::Swift) { 1106 if (!HasSwiftSelfArg) { 1107 MFI->addParam(PtrVT); 1108 } 1109 if (!HasSwiftErrorArg) { 1110 MFI->addParam(PtrVT); 1111 } 1112 } 1113 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1114 // the buffer is passed as an argument. 1115 if (IsVarArg) { 1116 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1117 Register VarargVreg = 1118 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1119 MFI->setVarargBufferVreg(VarargVreg); 1120 Chain = DAG.getCopyToReg( 1121 Chain, DL, VarargVreg, 1122 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1123 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1124 MFI->addParam(PtrVT); 1125 } 1126 1127 // Record the number and types of arguments and results. 1128 SmallVector<MVT, 4> Params; 1129 SmallVector<MVT, 4> Results; 1130 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1131 MF.getFunction(), DAG.getTarget(), Params, Results); 1132 for (MVT VT : Results) 1133 MFI->addResult(VT); 1134 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1135 // the param logic here with ComputeSignatureVTs 1136 assert(MFI->getParams().size() == Params.size() && 1137 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1138 Params.begin())); 1139 1140 return Chain; 1141 } 1142 1143 void WebAssemblyTargetLowering::ReplaceNodeResults( 1144 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1145 switch (N->getOpcode()) { 1146 case ISD::SIGN_EXTEND_INREG: 1147 // Do not add any results, signifying that N should not be custom lowered 1148 // after all. This happens because simd128 turns on custom lowering for 1149 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1150 // illegal type. 1151 break; 1152 default: 1153 llvm_unreachable( 1154 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1155 } 1156 } 1157 1158 //===----------------------------------------------------------------------===// 1159 // Custom lowering hooks. 1160 //===----------------------------------------------------------------------===// 1161 1162 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1163 SelectionDAG &DAG) const { 1164 SDLoc DL(Op); 1165 switch (Op.getOpcode()) { 1166 default: 1167 llvm_unreachable("unimplemented operation lowering"); 1168 return SDValue(); 1169 case ISD::FrameIndex: 1170 return LowerFrameIndex(Op, DAG); 1171 case ISD::GlobalAddress: 1172 return LowerGlobalAddress(Op, DAG); 1173 case ISD::ExternalSymbol: 1174 return LowerExternalSymbol(Op, DAG); 1175 case ISD::JumpTable: 1176 return LowerJumpTable(Op, DAG); 1177 case ISD::BR_JT: 1178 return LowerBR_JT(Op, DAG); 1179 case ISD::VASTART: 1180 return LowerVASTART(Op, DAG); 1181 case ISD::BlockAddress: 1182 case ISD::BRIND: 1183 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1184 return SDValue(); 1185 case ISD::RETURNADDR: 1186 return LowerRETURNADDR(Op, DAG); 1187 case ISD::FRAMEADDR: 1188 return LowerFRAMEADDR(Op, DAG); 1189 case ISD::CopyToReg: 1190 return LowerCopyToReg(Op, DAG); 1191 case ISD::EXTRACT_VECTOR_ELT: 1192 case ISD::INSERT_VECTOR_ELT: 1193 return LowerAccessVectorElement(Op, DAG); 1194 case ISD::INTRINSIC_VOID: 1195 case ISD::INTRINSIC_WO_CHAIN: 1196 case ISD::INTRINSIC_W_CHAIN: 1197 return LowerIntrinsic(Op, DAG); 1198 case ISD::SIGN_EXTEND_INREG: 1199 return LowerSIGN_EXTEND_INREG(Op, DAG); 1200 case ISD::BUILD_VECTOR: 1201 return LowerBUILD_VECTOR(Op, DAG); 1202 case ISD::VECTOR_SHUFFLE: 1203 return LowerVECTOR_SHUFFLE(Op, DAG); 1204 case ISD::SETCC: 1205 return LowerSETCC(Op, DAG); 1206 case ISD::SHL: 1207 case ISD::SRA: 1208 case ISD::SRL: 1209 return LowerShift(Op, DAG); 1210 } 1211 } 1212 1213 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1214 SelectionDAG &DAG) const { 1215 SDValue Src = Op.getOperand(2); 1216 if (isa<FrameIndexSDNode>(Src.getNode())) { 1217 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1218 // the FI to some LEA-like instruction, but since we don't have that, we 1219 // need to insert some kind of instruction that can take an FI operand and 1220 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1221 // local.copy between Op and its FI operand. 1222 SDValue Chain = Op.getOperand(0); 1223 SDLoc DL(Op); 1224 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1225 EVT VT = Src.getValueType(); 1226 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1227 : WebAssembly::COPY_I64, 1228 DL, VT, Src), 1229 0); 1230 return Op.getNode()->getNumValues() == 1 1231 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1232 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1233 Op.getNumOperands() == 4 ? Op.getOperand(3) 1234 : SDValue()); 1235 } 1236 return SDValue(); 1237 } 1238 1239 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1240 SelectionDAG &DAG) const { 1241 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1242 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1243 } 1244 1245 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1246 SelectionDAG &DAG) const { 1247 SDLoc DL(Op); 1248 1249 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1250 fail(DL, DAG, 1251 "Non-Emscripten WebAssembly hasn't implemented " 1252 "__builtin_return_address"); 1253 return SDValue(); 1254 } 1255 1256 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1257 return SDValue(); 1258 1259 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1260 MakeLibCallOptions CallOptions; 1261 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1262 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1263 .first; 1264 } 1265 1266 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 // Non-zero depths are not supported by WebAssembly currently. Use the 1269 // legalizer's default expansion, which is to return 0 (what this function is 1270 // documented to do). 1271 if (Op.getConstantOperandVal(0) > 0) 1272 return SDValue(); 1273 1274 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1275 EVT VT = Op.getValueType(); 1276 Register FP = 1277 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1278 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1279 } 1280 1281 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1282 SelectionDAG &DAG) const { 1283 SDLoc DL(Op); 1284 const auto *GA = cast<GlobalAddressSDNode>(Op); 1285 EVT VT = Op.getValueType(); 1286 assert(GA->getTargetFlags() == 0 && 1287 "Unexpected target flags on generic GlobalAddressSDNode"); 1288 if (GA->getAddressSpace() != 0) 1289 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1290 1291 unsigned OperandFlags = 0; 1292 if (isPositionIndependent()) { 1293 const GlobalValue *GV = GA->getGlobal(); 1294 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1295 MachineFunction &MF = DAG.getMachineFunction(); 1296 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1297 const char *BaseName; 1298 if (GV->getValueType()->isFunctionTy()) { 1299 BaseName = MF.createExternalSymbolName("__table_base"); 1300 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1301 } 1302 else { 1303 BaseName = MF.createExternalSymbolName("__memory_base"); 1304 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1305 } 1306 SDValue BaseAddr = 1307 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1308 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1309 1310 SDValue SymAddr = DAG.getNode( 1311 WebAssemblyISD::WrapperPIC, DL, VT, 1312 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1313 OperandFlags)); 1314 1315 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1316 } else { 1317 OperandFlags = WebAssemblyII::MO_GOT; 1318 } 1319 } 1320 1321 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1322 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1323 GA->getOffset(), OperandFlags)); 1324 } 1325 1326 SDValue 1327 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1328 SelectionDAG &DAG) const { 1329 SDLoc DL(Op); 1330 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1331 EVT VT = Op.getValueType(); 1332 assert(ES->getTargetFlags() == 0 && 1333 "Unexpected target flags on generic ExternalSymbolSDNode"); 1334 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1335 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1336 } 1337 1338 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1339 SelectionDAG &DAG) const { 1340 // There's no need for a Wrapper node because we always incorporate a jump 1341 // table operand into a BR_TABLE instruction, rather than ever 1342 // materializing it in a register. 1343 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1344 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1345 JT->getTargetFlags()); 1346 } 1347 1348 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1349 SelectionDAG &DAG) const { 1350 SDLoc DL(Op); 1351 SDValue Chain = Op.getOperand(0); 1352 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1353 SDValue Index = Op.getOperand(2); 1354 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1355 1356 SmallVector<SDValue, 8> Ops; 1357 Ops.push_back(Chain); 1358 Ops.push_back(Index); 1359 1360 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1361 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1362 1363 // Add an operand for each case. 1364 for (auto MBB : MBBs) 1365 Ops.push_back(DAG.getBasicBlock(MBB)); 1366 1367 // Add the first MBB as a dummy default target for now. This will be replaced 1368 // with the proper default target (and the preceding range check eliminated) 1369 // if possible by WebAssemblyFixBrTableDefaults. 1370 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1371 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1372 } 1373 1374 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1375 SelectionDAG &DAG) const { 1376 SDLoc DL(Op); 1377 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1378 1379 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1380 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1381 1382 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1383 MFI->getVarargBufferVreg(), PtrVT); 1384 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1385 MachinePointerInfo(SV)); 1386 } 1387 1388 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1389 SelectionDAG &DAG) const { 1390 MachineFunction &MF = DAG.getMachineFunction(); 1391 unsigned IntNo; 1392 switch (Op.getOpcode()) { 1393 case ISD::INTRINSIC_VOID: 1394 case ISD::INTRINSIC_W_CHAIN: 1395 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1396 break; 1397 case ISD::INTRINSIC_WO_CHAIN: 1398 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1399 break; 1400 default: 1401 llvm_unreachable("Invalid intrinsic"); 1402 } 1403 SDLoc DL(Op); 1404 1405 switch (IntNo) { 1406 default: 1407 return SDValue(); // Don't custom lower most intrinsics. 1408 1409 case Intrinsic::wasm_lsda: { 1410 EVT VT = Op.getValueType(); 1411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1412 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1413 auto &Context = MF.getMMI().getContext(); 1414 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1415 Twine(MF.getFunctionNumber())); 1416 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1417 DAG.getMCSymbol(S, PtrVT)); 1418 } 1419 1420 case Intrinsic::wasm_throw: { 1421 // We only support C++ exceptions for now 1422 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1423 if (Tag != CPP_EXCEPTION) 1424 llvm_unreachable("Invalid tag!"); 1425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1426 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1427 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1428 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1429 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1430 return DAG.getNode(WebAssemblyISD::THROW, DL, 1431 MVT::Other, // outchain type 1432 { 1433 Op.getOperand(0), // inchain 1434 SymNode, // exception symbol 1435 Op.getOperand(3) // thrown value 1436 }); 1437 } 1438 1439 case Intrinsic::wasm_shuffle: { 1440 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1441 SDValue Ops[18]; 1442 size_t OpIdx = 0; 1443 Ops[OpIdx++] = Op.getOperand(1); 1444 Ops[OpIdx++] = Op.getOperand(2); 1445 while (OpIdx < 18) { 1446 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1447 if (MaskIdx.isUndef() || 1448 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1449 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1450 } else { 1451 Ops[OpIdx++] = MaskIdx; 1452 } 1453 } 1454 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1455 } 1456 } 1457 } 1458 1459 SDValue 1460 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1461 SelectionDAG &DAG) const { 1462 SDLoc DL(Op); 1463 // If sign extension operations are disabled, allow sext_inreg only if operand 1464 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1465 // extension operations, but allowing sext_inreg in this context lets us have 1466 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1467 // everywhere would be simpler in this file, but would necessitate large and 1468 // brittle patterns to undo the expansion and select extract_lane_s 1469 // instructions. 1470 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1471 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1472 return SDValue(); 1473 1474 const SDValue &Extract = Op.getOperand(0); 1475 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1476 if (VecT.getVectorElementType().getSizeInBits() > 32) 1477 return SDValue(); 1478 MVT ExtractedLaneT = 1479 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1480 MVT ExtractedVecT = 1481 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1482 if (ExtractedVecT == VecT) 1483 return Op; 1484 1485 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1486 const SDNode *Index = Extract.getOperand(1).getNode(); 1487 if (!isa<ConstantSDNode>(Index)) 1488 return SDValue(); 1489 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1490 unsigned Scale = 1491 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1492 assert(Scale > 1); 1493 SDValue NewIndex = 1494 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1495 SDValue NewExtract = DAG.getNode( 1496 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1497 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1498 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1499 Op.getOperand(1)); 1500 } 1501 1502 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1503 SelectionDAG &DAG) const { 1504 SDLoc DL(Op); 1505 const EVT VecT = Op.getValueType(); 1506 const EVT LaneT = Op.getOperand(0).getValueType(); 1507 const size_t Lanes = Op.getNumOperands(); 1508 bool CanSwizzle = VecT == MVT::v16i8; 1509 1510 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1511 // possible number of lanes at once followed by a sequence of replace_lane 1512 // instructions to individually initialize any remaining lanes. 1513 1514 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1515 // swizzled lanes should be given greater weight. 1516 1517 // TODO: Investigate building vectors by shuffling together vectors built by 1518 // separately specialized means. 1519 1520 auto IsConstant = [](const SDValue &V) { 1521 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1522 }; 1523 1524 // Returns the source vector and index vector pair if they exist. Checks for: 1525 // (extract_vector_elt 1526 // $src, 1527 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1528 // ) 1529 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1530 auto Bail = std::make_pair(SDValue(), SDValue()); 1531 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1532 return Bail; 1533 const SDValue &SwizzleSrc = Lane->getOperand(0); 1534 const SDValue &IndexExt = Lane->getOperand(1); 1535 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1536 return Bail; 1537 const SDValue &Index = IndexExt->getOperand(0); 1538 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1539 return Bail; 1540 const SDValue &SwizzleIndices = Index->getOperand(0); 1541 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1542 SwizzleIndices.getValueType() != MVT::v16i8 || 1543 Index->getOperand(1)->getOpcode() != ISD::Constant || 1544 Index->getConstantOperandVal(1) != I) 1545 return Bail; 1546 return std::make_pair(SwizzleSrc, SwizzleIndices); 1547 }; 1548 1549 using ValueEntry = std::pair<SDValue, size_t>; 1550 SmallVector<ValueEntry, 16> SplatValueCounts; 1551 1552 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1553 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1554 1555 auto AddCount = [](auto &Counts, const auto &Val) { 1556 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1557 [&Val](auto E) { return E.first == Val; }); 1558 if (CountIt == Counts.end()) { 1559 Counts.emplace_back(Val, 1); 1560 } else { 1561 CountIt->second++; 1562 } 1563 }; 1564 1565 auto GetMostCommon = [](auto &Counts) { 1566 auto CommonIt = 1567 std::max_element(Counts.begin(), Counts.end(), 1568 [](auto A, auto B) { return A.second < B.second; }); 1569 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1570 return *CommonIt; 1571 }; 1572 1573 size_t NumConstantLanes = 0; 1574 1575 // Count eligible lanes for each type of vector creation op 1576 for (size_t I = 0; I < Lanes; ++I) { 1577 const SDValue &Lane = Op->getOperand(I); 1578 if (Lane.isUndef()) 1579 continue; 1580 1581 AddCount(SplatValueCounts, Lane); 1582 1583 if (IsConstant(Lane)) { 1584 NumConstantLanes++; 1585 } else if (CanSwizzle) { 1586 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1587 if (SwizzleSrcs.first) 1588 AddCount(SwizzleCounts, SwizzleSrcs); 1589 } 1590 } 1591 1592 SDValue SplatValue; 1593 size_t NumSplatLanes; 1594 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1595 1596 SDValue SwizzleSrc; 1597 SDValue SwizzleIndices; 1598 size_t NumSwizzleLanes = 0; 1599 if (SwizzleCounts.size()) 1600 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1601 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1602 1603 // Predicate returning true if the lane is properly initialized by the 1604 // original instruction 1605 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1606 SDValue Result; 1607 // Prefer swizzles over vector consts over splats 1608 if (NumSwizzleLanes >= NumSplatLanes && 1609 (!Subtarget->hasUnimplementedSIMD128() || 1610 NumSwizzleLanes >= NumConstantLanes)) { 1611 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1612 SwizzleIndices); 1613 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1614 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1615 return Swizzled == GetSwizzleSrcs(I, Lane); 1616 }; 1617 } else if (NumConstantLanes >= NumSplatLanes && 1618 Subtarget->hasUnimplementedSIMD128()) { 1619 // If we support v128.const, emit it directly 1620 SmallVector<SDValue, 16> ConstLanes; 1621 for (const SDValue &Lane : Op->op_values()) { 1622 if (IsConstant(Lane)) { 1623 ConstLanes.push_back(Lane); 1624 } else if (LaneT.isFloatingPoint()) { 1625 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1626 } else { 1627 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1628 } 1629 } 1630 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1631 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1632 return IsConstant(Lane); 1633 }; 1634 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1635 // Otherwise, if this is an integer vector, pack the lane values together so 1636 // we can construct the 128-bit constant from a pair of i64s using a splat 1637 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1638 // that actually matter so we can avoid the replace_lane in more cases. 1639 std::array<uint64_t, 2> I64s{{0, 0}}; 1640 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1641 size_t LaneBits = 128 / Lanes; 1642 size_t HalfLanes = Lanes / 2; 1643 for (size_t I = 0; I < Lanes; ++I) { 1644 const SDValue &Lane = Op.getOperand(I); 1645 if (IsConstant(Lane)) { 1646 // How much we need to shift Val to position it in an i64 1647 auto Shift = LaneBits * (I % HalfLanes); 1648 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1649 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1650 I64s[I / HalfLanes] |= Val << Shift; 1651 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1652 } 1653 } 1654 // Check whether all constant lanes in the second half of the vector are 1655 // equivalent in the first half or vice versa to determine whether splatting 1656 // either side will be sufficient to materialize the constant. As a special 1657 // case, if the first and second halves have no constant lanes in common, we 1658 // can just combine them. 1659 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1660 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1661 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1662 1663 uint64_t Splatted; 1664 if (SecondHalfSufficient) { 1665 Splatted = I64s[1]; 1666 } else if (CombinedSufficient) { 1667 Splatted = I64s[0] | I64s[1]; 1668 } else { 1669 Splatted = I64s[0]; 1670 } 1671 1672 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1673 DAG.getConstant(Splatted, DL, MVT::i64)); 1674 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1675 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1676 DAG.getConstant(I64s[1], DL, MVT::i64), 1677 DAG.getConstant(1, DL, MVT::i32)); 1678 } 1679 Result = DAG.getBitcast(VecT, Result); 1680 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1681 return IsConstant(Lane); 1682 }; 1683 } else { 1684 // Use a splat, but possibly a load_splat 1685 LoadSDNode *SplattedLoad; 1686 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1687 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1688 Result = DAG.getMemIntrinsicNode( 1689 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1690 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1691 SplattedLoad->getOffset()}, 1692 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1693 } else { 1694 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1695 } 1696 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1697 return Lane == SplatValue; 1698 }; 1699 } 1700 1701 assert(Result); 1702 assert(IsLaneConstructed); 1703 1704 // Add replace_lane instructions for any unhandled values 1705 for (size_t I = 0; I < Lanes; ++I) { 1706 const SDValue &Lane = Op->getOperand(I); 1707 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1708 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1709 DAG.getConstant(I, DL, MVT::i32)); 1710 } 1711 1712 return Result; 1713 } 1714 1715 SDValue 1716 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1717 SelectionDAG &DAG) const { 1718 SDLoc DL(Op); 1719 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1720 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1721 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1722 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1723 1724 // Space for two vector args and sixteen mask indices 1725 SDValue Ops[18]; 1726 size_t OpIdx = 0; 1727 Ops[OpIdx++] = Op.getOperand(0); 1728 Ops[OpIdx++] = Op.getOperand(1); 1729 1730 // Expand mask indices to byte indices and materialize them as operands 1731 for (int M : Mask) { 1732 for (size_t J = 0; J < LaneBytes; ++J) { 1733 // Lower undefs (represented by -1 in mask) to zero 1734 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1735 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1736 } 1737 } 1738 1739 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1740 } 1741 1742 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1743 SelectionDAG &DAG) const { 1744 SDLoc DL(Op); 1745 // The legalizer does not know how to expand the comparison modes of i64x2 1746 // vectors because no comparison modes are supported. We could solve this by 1747 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1748 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1749 // comparisons here. 1750 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1751 SmallVector<SDValue, 2> LHS, RHS; 1752 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1753 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1754 const SDValue &CC = Op->getOperand(2); 1755 auto MakeLane = [&](unsigned I) { 1756 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1757 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1758 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1759 }; 1760 return DAG.getBuildVector(Op->getValueType(0), DL, 1761 {MakeLane(0), MakeLane(1)}); 1762 } 1763 1764 SDValue 1765 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1766 SelectionDAG &DAG) const { 1767 // Allow constant lane indices, expand variable lane indices 1768 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1769 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1770 return Op; 1771 else 1772 // Perform default expansion 1773 return SDValue(); 1774 } 1775 1776 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1777 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1778 // 32-bit and 64-bit unrolled shifts will have proper semantics 1779 if (LaneT.bitsGE(MVT::i32)) 1780 return DAG.UnrollVectorOp(Op.getNode()); 1781 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1782 SDLoc DL(Op); 1783 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1784 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1785 unsigned ShiftOpcode = Op.getOpcode(); 1786 SmallVector<SDValue, 16> ShiftedElements; 1787 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1788 SmallVector<SDValue, 16> ShiftElements; 1789 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1790 SmallVector<SDValue, 16> UnrolledOps; 1791 for (size_t i = 0; i < NumLanes; ++i) { 1792 SDValue MaskedShiftValue = 1793 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1794 SDValue ShiftedValue = ShiftedElements[i]; 1795 if (ShiftOpcode == ISD::SRA) 1796 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1797 ShiftedValue, DAG.getValueType(LaneT)); 1798 UnrolledOps.push_back( 1799 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1800 } 1801 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1802 } 1803 1804 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1805 SelectionDAG &DAG) const { 1806 SDLoc DL(Op); 1807 1808 // Only manually lower vector shifts 1809 assert(Op.getSimpleValueType().isVector()); 1810 1811 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1812 if (!ShiftVal) 1813 return unrollVectorShift(Op, DAG); 1814 1815 // Use anyext because none of the high bits can affect the shift 1816 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1817 1818 unsigned Opcode; 1819 switch (Op.getOpcode()) { 1820 case ISD::SHL: 1821 Opcode = WebAssemblyISD::VEC_SHL; 1822 break; 1823 case ISD::SRA: 1824 Opcode = WebAssemblyISD::VEC_SHR_S; 1825 break; 1826 case ISD::SRL: 1827 Opcode = WebAssemblyISD::VEC_SHR_U; 1828 break; 1829 default: 1830 llvm_unreachable("unexpected opcode"); 1831 } 1832 1833 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1834 } 1835 1836 //===----------------------------------------------------------------------===// 1837 // Custom DAG combine hooks 1838 //===----------------------------------------------------------------------===// 1839 static SDValue 1840 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1841 auto &DAG = DCI.DAG; 1842 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1843 1844 // Hoist vector bitcasts that don't change the number of lanes out of unary 1845 // shuffles, where they are less likely to get in the way of other combines. 1846 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1847 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1848 SDValue Bitcast = N->getOperand(0); 1849 if (Bitcast.getOpcode() != ISD::BITCAST) 1850 return SDValue(); 1851 if (!N->getOperand(1).isUndef()) 1852 return SDValue(); 1853 SDValue CastOp = Bitcast.getOperand(0); 1854 MVT SrcType = CastOp.getSimpleValueType(); 1855 MVT DstType = Bitcast.getSimpleValueType(); 1856 if (!SrcType.is128BitVector() || 1857 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1858 return SDValue(); 1859 SDValue NewShuffle = DAG.getVectorShuffle( 1860 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1861 return DAG.getBitcast(DstType, NewShuffle); 1862 } 1863 1864 static SDValue performVectorWidenCombine(SDNode *N, 1865 TargetLowering::DAGCombinerInfo &DCI) { 1866 auto &DAG = DCI.DAG; 1867 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1868 N->getOpcode() == ISD::ZERO_EXTEND); 1869 1870 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1871 // possible before the extract_subvector can be expanded. 1872 auto Extract = N->getOperand(0); 1873 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1874 return SDValue(); 1875 auto Source = Extract.getOperand(0); 1876 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1877 if (IndexNode == nullptr) 1878 return SDValue(); 1879 auto Index = IndexNode->getZExtValue(); 1880 1881 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1882 // subvector is the low or high half of its source. 1883 EVT ResVT = N->getValueType(0); 1884 if (ResVT == MVT::v8i16) { 1885 if (Extract.getValueType() != MVT::v8i8 || 1886 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1887 return SDValue(); 1888 } else if (ResVT == MVT::v4i32) { 1889 if (Extract.getValueType() != MVT::v4i16 || 1890 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1891 return SDValue(); 1892 } else { 1893 return SDValue(); 1894 } 1895 1896 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1897 bool IsLow = Index == 0; 1898 1899 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1900 : WebAssemblyISD::WIDEN_HIGH_S) 1901 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1902 : WebAssemblyISD::WIDEN_HIGH_U); 1903 1904 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 1905 } 1906 1907 SDValue 1908 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1909 DAGCombinerInfo &DCI) const { 1910 switch (N->getOpcode()) { 1911 default: 1912 return SDValue(); 1913 case ISD::VECTOR_SHUFFLE: 1914 return performVECTOR_SHUFFLECombine(N, DCI); 1915 case ISD::SIGN_EXTEND: 1916 case ISD::ZERO_EXTEND: 1917 return performVectorWidenCombine(N, DCI); 1918 } 1919 } 1920