1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 153 // conversions ops 154 setTargetDAGCombine(ISD::SINT_TO_FP); 155 setTargetDAGCombine(ISD::UINT_TO_FP); 156 setTargetDAGCombine(ISD::FP_EXTEND); 157 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 158 159 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 160 // into conversion ops 161 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 162 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 163 setTargetDAGCombine(ISD::FP_ROUND); 164 setTargetDAGCombine(ISD::CONCAT_VECTORS); 165 166 // Support saturating add for i8x16 and i16x8 167 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 168 for (auto T : {MVT::v16i8, MVT::v8i16}) 169 setOperationAction(Op, T, Legal); 170 171 // Support integer abs 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 173 setOperationAction(ISD::ABS, T, Legal); 174 175 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 176 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 177 MVT::v2f64}) 178 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 179 180 // We have custom shuffle lowering to expose the shuffle mask 181 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 182 MVT::v2f64}) 183 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 184 185 // Custom lowering since wasm shifts must have a scalar shift amount 186 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 188 setOperationAction(Op, T, Custom); 189 190 // Custom lower lane accesses to expand out variable indices 191 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(Op, T, Custom); 195 196 // There is no i8x16.mul instruction 197 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 198 199 // There is no vector conditional select instruction 200 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 201 MVT::v2f64}) 202 setOperationAction(ISD::SELECT_CC, T, Expand); 203 204 // Expand integer operations supported for scalars but not SIMD 205 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 206 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 208 setOperationAction(Op, T, Expand); 209 210 // But we do have integer min and max operations 211 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 213 setOperationAction(Op, T, Legal); 214 215 // And we have popcnt for i8x16 216 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 217 218 // Expand float operations supported for scalars but not SIMD 219 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 220 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 221 for (auto T : {MVT::v4f32, MVT::v2f64}) 222 setOperationAction(Op, T, Expand); 223 224 // Unsigned comparison operations are unavailable for i64x2 vectors. 225 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 226 setCondCodeAction(CC, MVT::v2i64, Custom); 227 228 // 64x2 conversions are not in the spec 229 for (auto Op : 230 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 231 for (auto T : {MVT::v2i64, MVT::v2f64}) 232 setOperationAction(Op, T, Expand); 233 234 // But saturating fp_to_int converstions are 235 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 236 setOperationAction(Op, MVT::v4i32, Custom); 237 } 238 239 // As a special case, these operators use the type to mean the type to 240 // sign-extend from. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 if (!Subtarget->hasSignExt()) { 243 // Sign extends are legal only when extending a vector extract 244 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 245 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 246 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 247 } 248 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 249 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 250 251 // Dynamic stack allocation: use the default expansion. 252 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 253 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 254 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 255 256 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 257 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 258 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 259 260 // Expand these forms; we pattern-match the forms that we can handle in isel. 261 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 262 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 263 setOperationAction(Op, T, Expand); 264 265 // We have custom switch handling. 266 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 267 268 // WebAssembly doesn't have: 269 // - Floating-point extending loads. 270 // - Floating-point truncating stores. 271 // - i1 extending loads. 272 // - truncating SIMD stores and most extending loads 273 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 274 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 275 for (auto T : MVT::integer_valuetypes()) 276 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 277 setLoadExtAction(Ext, T, MVT::i1, Promote); 278 if (Subtarget->hasSIMD128()) { 279 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 280 MVT::v2f64}) { 281 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 282 if (MVT(T) != MemT) { 283 setTruncStoreAction(T, MemT, Expand); 284 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 285 setLoadExtAction(Ext, T, MemT, Expand); 286 } 287 } 288 } 289 // But some vector extending loads are legal 290 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 291 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 292 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 293 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 294 } 295 // And some truncating stores are legal as well 296 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 297 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 298 } 299 300 // Don't do anything clever with build_pairs 301 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 302 303 // Trap lowers to wasm unreachable 304 setOperationAction(ISD::TRAP, MVT::Other, Legal); 305 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 306 307 // Exception handling intrinsics 308 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 309 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 310 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 311 312 setMaxAtomicSizeInBitsSupported(64); 313 314 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 315 // consistent with the f64 and f128 names. 316 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 317 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 318 319 // Define the emscripten name for return address helper. 320 // TODO: when implementing other Wasm backends, make this generic or only do 321 // this on emscripten depending on what they end up doing. 322 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 323 324 // Always convert switches to br_tables unless there is only one case, which 325 // is equivalent to a simple branch. This reduces code size for wasm, and we 326 // defer possible jump table optimizations to the VM. 327 setMinimumJumpTableEntries(2); 328 } 329 330 TargetLowering::AtomicExpansionKind 331 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 332 // We have wasm instructions for these 333 switch (AI->getOperation()) { 334 case AtomicRMWInst::Add: 335 case AtomicRMWInst::Sub: 336 case AtomicRMWInst::And: 337 case AtomicRMWInst::Or: 338 case AtomicRMWInst::Xor: 339 case AtomicRMWInst::Xchg: 340 return AtomicExpansionKind::None; 341 default: 342 break; 343 } 344 return AtomicExpansionKind::CmpXChg; 345 } 346 347 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 348 // Implementation copied from X86TargetLowering. 349 unsigned Opc = VecOp.getOpcode(); 350 351 // Assume target opcodes can't be scalarized. 352 // TODO - do we have any exceptions? 353 if (Opc >= ISD::BUILTIN_OP_END) 354 return false; 355 356 // If the vector op is not supported, try to convert to scalar. 357 EVT VecVT = VecOp.getValueType(); 358 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 359 return true; 360 361 // If the vector op is supported, but the scalar op is not, the transform may 362 // not be worthwhile. 363 EVT ScalarVT = VecVT.getScalarType(); 364 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 365 } 366 367 FastISel *WebAssemblyTargetLowering::createFastISel( 368 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 369 return WebAssembly::createFastISel(FuncInfo, LibInfo); 370 } 371 372 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 373 EVT VT) const { 374 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 375 if (BitWidth > 1 && BitWidth < 8) 376 BitWidth = 8; 377 378 if (BitWidth > 64) { 379 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 380 // the count to be an i32. 381 BitWidth = 32; 382 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 383 "32-bit shift counts ought to be enough for anyone"); 384 } 385 386 MVT Result = MVT::getIntegerVT(BitWidth); 387 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 388 "Unable to represent scalar shift amount type"); 389 return Result; 390 } 391 392 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 393 // undefined result on invalid/overflow, to the WebAssembly opcode, which 394 // traps on invalid/overflow. 395 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 396 MachineBasicBlock *BB, 397 const TargetInstrInfo &TII, 398 bool IsUnsigned, bool Int64, 399 bool Float64, unsigned LoweredOpcode) { 400 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 401 402 Register OutReg = MI.getOperand(0).getReg(); 403 Register InReg = MI.getOperand(1).getReg(); 404 405 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 406 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 407 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 408 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 409 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 410 unsigned Eqz = WebAssembly::EQZ_I32; 411 unsigned And = WebAssembly::AND_I32; 412 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 413 int64_t Substitute = IsUnsigned ? 0 : Limit; 414 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 415 auto &Context = BB->getParent()->getFunction().getContext(); 416 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 417 418 const BasicBlock *LLVMBB = BB->getBasicBlock(); 419 MachineFunction *F = BB->getParent(); 420 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 421 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 422 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 423 424 MachineFunction::iterator It = ++BB->getIterator(); 425 F->insert(It, FalseMBB); 426 F->insert(It, TrueMBB); 427 F->insert(It, DoneMBB); 428 429 // Transfer the remainder of BB and its successor edges to DoneMBB. 430 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 431 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 432 433 BB->addSuccessor(TrueMBB); 434 BB->addSuccessor(FalseMBB); 435 TrueMBB->addSuccessor(DoneMBB); 436 FalseMBB->addSuccessor(DoneMBB); 437 438 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 439 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 440 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 441 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 442 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 443 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 444 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 445 446 MI.eraseFromParent(); 447 // For signed numbers, we can do a single comparison to determine whether 448 // fabs(x) is within range. 449 if (IsUnsigned) { 450 Tmp0 = InReg; 451 } else { 452 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 453 } 454 BuildMI(BB, DL, TII.get(FConst), Tmp1) 455 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 456 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 457 458 // For unsigned numbers, we have to do a separate comparison with zero. 459 if (IsUnsigned) { 460 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 461 Register SecondCmpReg = 462 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 463 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 464 BuildMI(BB, DL, TII.get(FConst), Tmp1) 465 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 466 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 467 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 468 CmpReg = AndReg; 469 } 470 471 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 472 473 // Create the CFG diamond to select between doing the conversion or using 474 // the substitute value. 475 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 476 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 477 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 478 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 479 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 480 .addReg(FalseReg) 481 .addMBB(FalseMBB) 482 .addReg(TrueReg) 483 .addMBB(TrueMBB); 484 485 return DoneMBB; 486 } 487 488 static MachineBasicBlock * 489 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 490 const WebAssemblySubtarget *Subtarget, 491 const TargetInstrInfo &TII) { 492 MachineInstr &CallParams = *CallResults.getPrevNode(); 493 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 494 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 495 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 496 497 bool IsIndirect = CallParams.getOperand(0).isReg(); 498 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 499 500 unsigned CallOp; 501 if (IsIndirect && IsRetCall) { 502 CallOp = WebAssembly::RET_CALL_INDIRECT; 503 } else if (IsIndirect) { 504 CallOp = WebAssembly::CALL_INDIRECT; 505 } else if (IsRetCall) { 506 CallOp = WebAssembly::RET_CALL; 507 } else { 508 CallOp = WebAssembly::CALL; 509 } 510 511 MachineFunction &MF = *BB->getParent(); 512 const MCInstrDesc &MCID = TII.get(CallOp); 513 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 514 515 // See if we must truncate the function pointer. 516 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 517 // as 64-bit for uniformity with other pointer types. 518 // See also: WebAssemblyFastISel::selectCall 519 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 520 Register Reg32 = 521 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 522 auto &FnPtr = CallParams.getOperand(0); 523 BuildMI(*BB, CallResults.getIterator(), DL, 524 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 525 .addReg(FnPtr.getReg()); 526 FnPtr.setReg(Reg32); 527 } 528 529 // Move the function pointer to the end of the arguments for indirect calls 530 if (IsIndirect) { 531 auto FnPtr = CallParams.getOperand(0); 532 CallParams.RemoveOperand(0); 533 CallParams.addOperand(FnPtr); 534 } 535 536 for (auto Def : CallResults.defs()) 537 MIB.add(Def); 538 539 if (IsIndirect) { 540 // Placeholder for the type index. 541 MIB.addImm(0); 542 // The table into which this call_indirect indexes. 543 MCSymbolWasm *Table = 544 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 545 if (Subtarget->hasReferenceTypes()) { 546 MIB.addSym(Table); 547 } else { 548 // For the MVP there is at most one table whose number is 0, but we can't 549 // write a table symbol or issue relocations. Instead we just ensure the 550 // table is live and write a zero. 551 Table->setNoStrip(); 552 MIB.addImm(0); 553 } 554 } 555 556 for (auto Use : CallParams.uses()) 557 MIB.add(Use); 558 559 BB->insert(CallResults.getIterator(), MIB); 560 CallParams.eraseFromParent(); 561 CallResults.eraseFromParent(); 562 563 return BB; 564 } 565 566 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 567 MachineInstr &MI, MachineBasicBlock *BB) const { 568 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 569 DebugLoc DL = MI.getDebugLoc(); 570 571 switch (MI.getOpcode()) { 572 default: 573 llvm_unreachable("Unexpected instr type to insert"); 574 case WebAssembly::FP_TO_SINT_I32_F32: 575 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 576 WebAssembly::I32_TRUNC_S_F32); 577 case WebAssembly::FP_TO_UINT_I32_F32: 578 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 579 WebAssembly::I32_TRUNC_U_F32); 580 case WebAssembly::FP_TO_SINT_I64_F32: 581 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 582 WebAssembly::I64_TRUNC_S_F32); 583 case WebAssembly::FP_TO_UINT_I64_F32: 584 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 585 WebAssembly::I64_TRUNC_U_F32); 586 case WebAssembly::FP_TO_SINT_I32_F64: 587 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 588 WebAssembly::I32_TRUNC_S_F64); 589 case WebAssembly::FP_TO_UINT_I32_F64: 590 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 591 WebAssembly::I32_TRUNC_U_F64); 592 case WebAssembly::FP_TO_SINT_I64_F64: 593 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 594 WebAssembly::I64_TRUNC_S_F64); 595 case WebAssembly::FP_TO_UINT_I64_F64: 596 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 597 WebAssembly::I64_TRUNC_U_F64); 598 case WebAssembly::CALL_RESULTS: 599 case WebAssembly::RET_CALL_RESULTS: 600 return LowerCallResults(MI, DL, BB, Subtarget, TII); 601 } 602 } 603 604 const char * 605 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 606 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 607 case WebAssemblyISD::FIRST_NUMBER: 608 case WebAssemblyISD::FIRST_MEM_OPCODE: 609 break; 610 #define HANDLE_NODETYPE(NODE) \ 611 case WebAssemblyISD::NODE: \ 612 return "WebAssemblyISD::" #NODE; 613 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 614 #include "WebAssemblyISD.def" 615 #undef HANDLE_MEM_NODETYPE 616 #undef HANDLE_NODETYPE 617 } 618 return nullptr; 619 } 620 621 std::pair<unsigned, const TargetRegisterClass *> 622 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 623 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 624 // First, see if this is a constraint that directly corresponds to a 625 // WebAssembly register class. 626 if (Constraint.size() == 1) { 627 switch (Constraint[0]) { 628 case 'r': 629 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 630 if (Subtarget->hasSIMD128() && VT.isVector()) { 631 if (VT.getSizeInBits() == 128) 632 return std::make_pair(0U, &WebAssembly::V128RegClass); 633 } 634 if (VT.isInteger() && !VT.isVector()) { 635 if (VT.getSizeInBits() <= 32) 636 return std::make_pair(0U, &WebAssembly::I32RegClass); 637 if (VT.getSizeInBits() <= 64) 638 return std::make_pair(0U, &WebAssembly::I64RegClass); 639 } 640 if (VT.isFloatingPoint() && !VT.isVector()) { 641 switch (VT.getSizeInBits()) { 642 case 32: 643 return std::make_pair(0U, &WebAssembly::F32RegClass); 644 case 64: 645 return std::make_pair(0U, &WebAssembly::F64RegClass); 646 default: 647 break; 648 } 649 } 650 break; 651 default: 652 break; 653 } 654 } 655 656 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 657 } 658 659 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 660 // Assume ctz is a relatively cheap operation. 661 return true; 662 } 663 664 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 665 // Assume clz is a relatively cheap operation. 666 return true; 667 } 668 669 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 670 const AddrMode &AM, 671 Type *Ty, unsigned AS, 672 Instruction *I) const { 673 // WebAssembly offsets are added as unsigned without wrapping. The 674 // isLegalAddressingMode gives us no way to determine if wrapping could be 675 // happening, so we approximate this by accepting only non-negative offsets. 676 if (AM.BaseOffs < 0) 677 return false; 678 679 // WebAssembly has no scale register operands. 680 if (AM.Scale != 0) 681 return false; 682 683 // Everything else is legal. 684 return true; 685 } 686 687 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 688 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 689 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 690 // WebAssembly supports unaligned accesses, though it should be declared 691 // with the p2align attribute on loads and stores which do so, and there 692 // may be a performance impact. We tell LLVM they're "fast" because 693 // for the kinds of things that LLVM uses this for (merging adjacent stores 694 // of constants, etc.), WebAssembly implementations will either want the 695 // unaligned access or they'll split anyway. 696 if (Fast) 697 *Fast = true; 698 return true; 699 } 700 701 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 702 AttributeList Attr) const { 703 // The current thinking is that wasm engines will perform this optimization, 704 // so we can save on code size. 705 return true; 706 } 707 708 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 709 EVT ExtT = ExtVal.getValueType(); 710 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 711 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 712 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 713 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 714 } 715 716 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 717 LLVMContext &C, 718 EVT VT) const { 719 if (VT.isVector()) 720 return VT.changeVectorElementTypeToInteger(); 721 722 // So far, all branch instructions in Wasm take an I32 condition. 723 // The default TargetLowering::getSetCCResultType returns the pointer size, 724 // which would be useful to reduce instruction counts when testing 725 // against 64-bit pointers/values if at some point Wasm supports that. 726 return EVT::getIntegerVT(C, 32); 727 } 728 729 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 730 const CallInst &I, 731 MachineFunction &MF, 732 unsigned Intrinsic) const { 733 switch (Intrinsic) { 734 case Intrinsic::wasm_memory_atomic_notify: 735 Info.opc = ISD::INTRINSIC_W_CHAIN; 736 Info.memVT = MVT::i32; 737 Info.ptrVal = I.getArgOperand(0); 738 Info.offset = 0; 739 Info.align = Align(4); 740 // atomic.notify instruction does not really load the memory specified with 741 // this argument, but MachineMemOperand should either be load or store, so 742 // we set this to a load. 743 // FIXME Volatile isn't really correct, but currently all LLVM atomic 744 // instructions are treated as volatiles in the backend, so we should be 745 // consistent. The same applies for wasm_atomic_wait intrinsics too. 746 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 747 return true; 748 case Intrinsic::wasm_memory_atomic_wait32: 749 Info.opc = ISD::INTRINSIC_W_CHAIN; 750 Info.memVT = MVT::i32; 751 Info.ptrVal = I.getArgOperand(0); 752 Info.offset = 0; 753 Info.align = Align(4); 754 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 755 return true; 756 case Intrinsic::wasm_memory_atomic_wait64: 757 Info.opc = ISD::INTRINSIC_W_CHAIN; 758 Info.memVT = MVT::i64; 759 Info.ptrVal = I.getArgOperand(0); 760 Info.offset = 0; 761 Info.align = Align(8); 762 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 763 return true; 764 default: 765 return false; 766 } 767 } 768 769 //===----------------------------------------------------------------------===// 770 // WebAssembly Lowering private implementation. 771 //===----------------------------------------------------------------------===// 772 773 //===----------------------------------------------------------------------===// 774 // Lowering Code 775 //===----------------------------------------------------------------------===// 776 777 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 778 MachineFunction &MF = DAG.getMachineFunction(); 779 DAG.getContext()->diagnose( 780 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 781 } 782 783 // Test whether the given calling convention is supported. 784 static bool callingConvSupported(CallingConv::ID CallConv) { 785 // We currently support the language-independent target-independent 786 // conventions. We don't yet have a way to annotate calls with properties like 787 // "cold", and we don't have any call-clobbered registers, so these are mostly 788 // all handled the same. 789 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 790 CallConv == CallingConv::Cold || 791 CallConv == CallingConv::PreserveMost || 792 CallConv == CallingConv::PreserveAll || 793 CallConv == CallingConv::CXX_FAST_TLS || 794 CallConv == CallingConv::WASM_EmscriptenInvoke || 795 CallConv == CallingConv::Swift; 796 } 797 798 SDValue 799 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 800 SmallVectorImpl<SDValue> &InVals) const { 801 SelectionDAG &DAG = CLI.DAG; 802 SDLoc DL = CLI.DL; 803 SDValue Chain = CLI.Chain; 804 SDValue Callee = CLI.Callee; 805 MachineFunction &MF = DAG.getMachineFunction(); 806 auto Layout = MF.getDataLayout(); 807 808 CallingConv::ID CallConv = CLI.CallConv; 809 if (!callingConvSupported(CallConv)) 810 fail(DL, DAG, 811 "WebAssembly doesn't support language-specific or target-specific " 812 "calling conventions yet"); 813 if (CLI.IsPatchPoint) 814 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 815 816 if (CLI.IsTailCall) { 817 auto NoTail = [&](const char *Msg) { 818 if (CLI.CB && CLI.CB->isMustTailCall()) 819 fail(DL, DAG, Msg); 820 CLI.IsTailCall = false; 821 }; 822 823 if (!Subtarget->hasTailCall()) 824 NoTail("WebAssembly 'tail-call' feature not enabled"); 825 826 // Varargs calls cannot be tail calls because the buffer is on the stack 827 if (CLI.IsVarArg) 828 NoTail("WebAssembly does not support varargs tail calls"); 829 830 // Do not tail call unless caller and callee return types match 831 const Function &F = MF.getFunction(); 832 const TargetMachine &TM = getTargetMachine(); 833 Type *RetTy = F.getReturnType(); 834 SmallVector<MVT, 4> CallerRetTys; 835 SmallVector<MVT, 4> CalleeRetTys; 836 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 837 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 838 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 839 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 840 CalleeRetTys.begin()); 841 if (!TypesMatch) 842 NoTail("WebAssembly tail call requires caller and callee return types to " 843 "match"); 844 845 // If pointers to local stack values are passed, we cannot tail call 846 if (CLI.CB) { 847 for (auto &Arg : CLI.CB->args()) { 848 Value *Val = Arg.get(); 849 // Trace the value back through pointer operations 850 while (true) { 851 Value *Src = Val->stripPointerCastsAndAliases(); 852 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 853 Src = GEP->getPointerOperand(); 854 if (Val == Src) 855 break; 856 Val = Src; 857 } 858 if (isa<AllocaInst>(Val)) { 859 NoTail( 860 "WebAssembly does not support tail calling with stack arguments"); 861 break; 862 } 863 } 864 } 865 } 866 867 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 868 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 869 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 870 871 // The generic code may have added an sret argument. If we're lowering an 872 // invoke function, the ABI requires that the function pointer be the first 873 // argument, so we may have to swap the arguments. 874 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 875 Outs[0].Flags.isSRet()) { 876 std::swap(Outs[0], Outs[1]); 877 std::swap(OutVals[0], OutVals[1]); 878 } 879 880 bool HasSwiftSelfArg = false; 881 bool HasSwiftErrorArg = false; 882 unsigned NumFixedArgs = 0; 883 for (unsigned I = 0; I < Outs.size(); ++I) { 884 const ISD::OutputArg &Out = Outs[I]; 885 SDValue &OutVal = OutVals[I]; 886 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 887 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 888 if (Out.Flags.isNest()) 889 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 890 if (Out.Flags.isInAlloca()) 891 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 892 if (Out.Flags.isInConsecutiveRegs()) 893 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 894 if (Out.Flags.isInConsecutiveRegsLast()) 895 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 896 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 897 auto &MFI = MF.getFrameInfo(); 898 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 899 Out.Flags.getNonZeroByValAlign(), 900 /*isSS=*/false); 901 SDValue SizeNode = 902 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 903 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 904 Chain = DAG.getMemcpy( 905 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 906 /*isVolatile*/ false, /*AlwaysInline=*/false, 907 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 908 OutVal = FINode; 909 } 910 // Count the number of fixed args *after* legalization. 911 NumFixedArgs += Out.IsFixed; 912 } 913 914 bool IsVarArg = CLI.IsVarArg; 915 auto PtrVT = getPointerTy(Layout); 916 917 // For swiftcc, emit additional swiftself and swifterror arguments 918 // if there aren't. These additional arguments are also added for callee 919 // signature They are necessary to match callee and caller signature for 920 // indirect call. 921 if (CallConv == CallingConv::Swift) { 922 if (!HasSwiftSelfArg) { 923 NumFixedArgs++; 924 ISD::OutputArg Arg; 925 Arg.Flags.setSwiftSelf(); 926 CLI.Outs.push_back(Arg); 927 SDValue ArgVal = DAG.getUNDEF(PtrVT); 928 CLI.OutVals.push_back(ArgVal); 929 } 930 if (!HasSwiftErrorArg) { 931 NumFixedArgs++; 932 ISD::OutputArg Arg; 933 Arg.Flags.setSwiftError(); 934 CLI.Outs.push_back(Arg); 935 SDValue ArgVal = DAG.getUNDEF(PtrVT); 936 CLI.OutVals.push_back(ArgVal); 937 } 938 } 939 940 // Analyze operands of the call, assigning locations to each operand. 941 SmallVector<CCValAssign, 16> ArgLocs; 942 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 943 944 if (IsVarArg) { 945 // Outgoing non-fixed arguments are placed in a buffer. First 946 // compute their offsets and the total amount of buffer space needed. 947 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 948 const ISD::OutputArg &Out = Outs[I]; 949 SDValue &Arg = OutVals[I]; 950 EVT VT = Arg.getValueType(); 951 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 952 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 953 Align Alignment = 954 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 955 unsigned Offset = 956 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 957 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 958 Offset, VT.getSimpleVT(), 959 CCValAssign::Full)); 960 } 961 } 962 963 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 964 965 SDValue FINode; 966 if (IsVarArg && NumBytes) { 967 // For non-fixed arguments, next emit stores to store the argument values 968 // to the stack buffer at the offsets computed above. 969 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 970 Layout.getStackAlignment(), 971 /*isSS=*/false); 972 unsigned ValNo = 0; 973 SmallVector<SDValue, 8> Chains; 974 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 975 assert(ArgLocs[ValNo].getValNo() == ValNo && 976 "ArgLocs should remain in order and only hold varargs args"); 977 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 978 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 979 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 980 DAG.getConstant(Offset, DL, PtrVT)); 981 Chains.push_back( 982 DAG.getStore(Chain, DL, Arg, Add, 983 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 984 } 985 if (!Chains.empty()) 986 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 987 } else if (IsVarArg) { 988 FINode = DAG.getIntPtrConstant(0, DL); 989 } 990 991 if (Callee->getOpcode() == ISD::GlobalAddress) { 992 // If the callee is a GlobalAddress node (quite common, every direct call 993 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 994 // doesn't at MO_GOT which is not needed for direct calls. 995 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 996 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 997 getPointerTy(DAG.getDataLayout()), 998 GA->getOffset()); 999 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1000 getPointerTy(DAG.getDataLayout()), Callee); 1001 } 1002 1003 // Compute the operands for the CALLn node. 1004 SmallVector<SDValue, 16> Ops; 1005 Ops.push_back(Chain); 1006 Ops.push_back(Callee); 1007 1008 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1009 // isn't reliable. 1010 Ops.append(OutVals.begin(), 1011 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1012 // Add a pointer to the vararg buffer. 1013 if (IsVarArg) 1014 Ops.push_back(FINode); 1015 1016 SmallVector<EVT, 8> InTys; 1017 for (const auto &In : Ins) { 1018 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1019 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1020 if (In.Flags.isInAlloca()) 1021 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1022 if (In.Flags.isInConsecutiveRegs()) 1023 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1024 if (In.Flags.isInConsecutiveRegsLast()) 1025 fail(DL, DAG, 1026 "WebAssembly hasn't implemented cons regs last return values"); 1027 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1028 // registers. 1029 InTys.push_back(In.VT); 1030 } 1031 1032 if (CLI.IsTailCall) { 1033 // ret_calls do not return values to the current frame 1034 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1035 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1036 } 1037 1038 InTys.push_back(MVT::Other); 1039 SDVTList InTyList = DAG.getVTList(InTys); 1040 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1041 1042 for (size_t I = 0; I < Ins.size(); ++I) 1043 InVals.push_back(Res.getValue(I)); 1044 1045 // Return the chain 1046 return Res.getValue(Ins.size()); 1047 } 1048 1049 bool WebAssemblyTargetLowering::CanLowerReturn( 1050 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1051 const SmallVectorImpl<ISD::OutputArg> &Outs, 1052 LLVMContext & /*Context*/) const { 1053 // WebAssembly can only handle returning tuples with multivalue enabled 1054 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1055 } 1056 1057 SDValue WebAssemblyTargetLowering::LowerReturn( 1058 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1059 const SmallVectorImpl<ISD::OutputArg> &Outs, 1060 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1061 SelectionDAG &DAG) const { 1062 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1063 "MVP WebAssembly can only return up to one value"); 1064 if (!callingConvSupported(CallConv)) 1065 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1066 1067 SmallVector<SDValue, 4> RetOps(1, Chain); 1068 RetOps.append(OutVals.begin(), OutVals.end()); 1069 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1070 1071 // Record the number and types of the return values. 1072 for (const ISD::OutputArg &Out : Outs) { 1073 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1074 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1075 assert(Out.IsFixed && "non-fixed return value is not valid"); 1076 if (Out.Flags.isInAlloca()) 1077 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1078 if (Out.Flags.isInConsecutiveRegs()) 1079 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1080 if (Out.Flags.isInConsecutiveRegsLast()) 1081 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1082 } 1083 1084 return Chain; 1085 } 1086 1087 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1088 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1089 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1090 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1091 if (!callingConvSupported(CallConv)) 1092 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1093 1094 MachineFunction &MF = DAG.getMachineFunction(); 1095 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1096 1097 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1098 // of the incoming values before they're represented by virtual registers. 1099 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1100 1101 bool HasSwiftErrorArg = false; 1102 bool HasSwiftSelfArg = false; 1103 for (const ISD::InputArg &In : Ins) { 1104 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1105 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1106 if (In.Flags.isInAlloca()) 1107 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1108 if (In.Flags.isNest()) 1109 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1110 if (In.Flags.isInConsecutiveRegs()) 1111 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1112 if (In.Flags.isInConsecutiveRegsLast()) 1113 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1114 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1115 // registers. 1116 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1117 DAG.getTargetConstant(InVals.size(), 1118 DL, MVT::i32)) 1119 : DAG.getUNDEF(In.VT)); 1120 1121 // Record the number and types of arguments. 1122 MFI->addParam(In.VT); 1123 } 1124 1125 // For swiftcc, emit additional swiftself and swifterror arguments 1126 // if there aren't. These additional arguments are also added for callee 1127 // signature They are necessary to match callee and caller signature for 1128 // indirect call. 1129 auto PtrVT = getPointerTy(MF.getDataLayout()); 1130 if (CallConv == CallingConv::Swift) { 1131 if (!HasSwiftSelfArg) { 1132 MFI->addParam(PtrVT); 1133 } 1134 if (!HasSwiftErrorArg) { 1135 MFI->addParam(PtrVT); 1136 } 1137 } 1138 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1139 // the buffer is passed as an argument. 1140 if (IsVarArg) { 1141 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1142 Register VarargVreg = 1143 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1144 MFI->setVarargBufferVreg(VarargVreg); 1145 Chain = DAG.getCopyToReg( 1146 Chain, DL, VarargVreg, 1147 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1148 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1149 MFI->addParam(PtrVT); 1150 } 1151 1152 // Record the number and types of arguments and results. 1153 SmallVector<MVT, 4> Params; 1154 SmallVector<MVT, 4> Results; 1155 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1156 MF.getFunction(), DAG.getTarget(), Params, Results); 1157 for (MVT VT : Results) 1158 MFI->addResult(VT); 1159 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1160 // the param logic here with ComputeSignatureVTs 1161 assert(MFI->getParams().size() == Params.size() && 1162 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1163 Params.begin())); 1164 1165 return Chain; 1166 } 1167 1168 void WebAssemblyTargetLowering::ReplaceNodeResults( 1169 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1170 switch (N->getOpcode()) { 1171 case ISD::SIGN_EXTEND_INREG: 1172 // Do not add any results, signifying that N should not be custom lowered 1173 // after all. This happens because simd128 turns on custom lowering for 1174 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1175 // illegal type. 1176 break; 1177 default: 1178 llvm_unreachable( 1179 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1180 } 1181 } 1182 1183 //===----------------------------------------------------------------------===// 1184 // Custom lowering hooks. 1185 //===----------------------------------------------------------------------===// 1186 1187 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1188 SelectionDAG &DAG) const { 1189 SDLoc DL(Op); 1190 switch (Op.getOpcode()) { 1191 default: 1192 llvm_unreachable("unimplemented operation lowering"); 1193 return SDValue(); 1194 case ISD::FrameIndex: 1195 return LowerFrameIndex(Op, DAG); 1196 case ISD::GlobalAddress: 1197 return LowerGlobalAddress(Op, DAG); 1198 case ISD::GlobalTLSAddress: 1199 return LowerGlobalTLSAddress(Op, DAG); 1200 case ISD::ExternalSymbol: 1201 return LowerExternalSymbol(Op, DAG); 1202 case ISD::JumpTable: 1203 return LowerJumpTable(Op, DAG); 1204 case ISD::BR_JT: 1205 return LowerBR_JT(Op, DAG); 1206 case ISD::VASTART: 1207 return LowerVASTART(Op, DAG); 1208 case ISD::BlockAddress: 1209 case ISD::BRIND: 1210 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1211 return SDValue(); 1212 case ISD::RETURNADDR: 1213 return LowerRETURNADDR(Op, DAG); 1214 case ISD::FRAMEADDR: 1215 return LowerFRAMEADDR(Op, DAG); 1216 case ISD::CopyToReg: 1217 return LowerCopyToReg(Op, DAG); 1218 case ISD::EXTRACT_VECTOR_ELT: 1219 case ISD::INSERT_VECTOR_ELT: 1220 return LowerAccessVectorElement(Op, DAG); 1221 case ISD::INTRINSIC_VOID: 1222 case ISD::INTRINSIC_WO_CHAIN: 1223 case ISD::INTRINSIC_W_CHAIN: 1224 return LowerIntrinsic(Op, DAG); 1225 case ISD::SIGN_EXTEND_INREG: 1226 return LowerSIGN_EXTEND_INREG(Op, DAG); 1227 case ISD::BUILD_VECTOR: 1228 return LowerBUILD_VECTOR(Op, DAG); 1229 case ISD::VECTOR_SHUFFLE: 1230 return LowerVECTOR_SHUFFLE(Op, DAG); 1231 case ISD::SETCC: 1232 return LowerSETCC(Op, DAG); 1233 case ISD::SHL: 1234 case ISD::SRA: 1235 case ISD::SRL: 1236 return LowerShift(Op, DAG); 1237 case ISD::FP_TO_SINT_SAT: 1238 case ISD::FP_TO_UINT_SAT: 1239 return LowerFP_TO_INT_SAT(Op, DAG); 1240 case ISD::LOAD: 1241 return LowerLoad(Op, DAG); 1242 case ISD::STORE: 1243 return LowerStore(Op, DAG); 1244 } 1245 } 1246 1247 static bool IsWebAssemblyGlobal(SDValue Op) { 1248 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1249 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1250 1251 return false; 1252 } 1253 1254 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1255 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1256 if (!FI) 1257 return None; 1258 1259 auto &MF = DAG.getMachineFunction(); 1260 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1261 } 1262 1263 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1264 SelectionDAG &DAG) const { 1265 SDLoc DL(Op); 1266 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1267 const SDValue &Value = SN->getValue(); 1268 const SDValue &Base = SN->getBasePtr(); 1269 const SDValue &Offset = SN->getOffset(); 1270 1271 if (IsWebAssemblyGlobal(Base)) { 1272 if (!Offset->isUndef()) 1273 report_fatal_error("unexpected offset when storing to webassembly global", 1274 false); 1275 1276 SDVTList Tys = DAG.getVTList(MVT::Other); 1277 SDValue Ops[] = {SN->getChain(), Value, Base}; 1278 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1279 SN->getMemoryVT(), SN->getMemOperand()); 1280 } 1281 1282 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1283 if (!Offset->isUndef()) 1284 report_fatal_error("unexpected offset when storing to webassembly local", 1285 false); 1286 1287 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1288 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1289 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1290 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1291 } 1292 1293 return Op; 1294 } 1295 1296 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1297 SelectionDAG &DAG) const { 1298 SDLoc DL(Op); 1299 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1300 const SDValue &Base = LN->getBasePtr(); 1301 const SDValue &Offset = LN->getOffset(); 1302 1303 if (IsWebAssemblyGlobal(Base)) { 1304 if (!Offset->isUndef()) 1305 report_fatal_error( 1306 "unexpected offset when loading from webassembly global", false); 1307 1308 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1309 SDValue Ops[] = {LN->getChain(), Base}; 1310 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1311 LN->getMemoryVT(), LN->getMemOperand()); 1312 } 1313 1314 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1315 if (!Offset->isUndef()) 1316 report_fatal_error( 1317 "unexpected offset when loading from webassembly local", false); 1318 1319 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1320 EVT LocalVT = LN->getValueType(0); 1321 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1322 {LN->getChain(), Idx}); 1323 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1324 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1325 return Result; 1326 } 1327 1328 return Op; 1329 } 1330 1331 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1332 SelectionDAG &DAG) const { 1333 SDValue Src = Op.getOperand(2); 1334 if (isa<FrameIndexSDNode>(Src.getNode())) { 1335 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1336 // the FI to some LEA-like instruction, but since we don't have that, we 1337 // need to insert some kind of instruction that can take an FI operand and 1338 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1339 // local.copy between Op and its FI operand. 1340 SDValue Chain = Op.getOperand(0); 1341 SDLoc DL(Op); 1342 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1343 EVT VT = Src.getValueType(); 1344 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1345 : WebAssembly::COPY_I64, 1346 DL, VT, Src), 1347 0); 1348 return Op.getNode()->getNumValues() == 1 1349 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1350 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1351 Op.getNumOperands() == 4 ? Op.getOperand(3) 1352 : SDValue()); 1353 } 1354 return SDValue(); 1355 } 1356 1357 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1358 SelectionDAG &DAG) const { 1359 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1360 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1361 } 1362 1363 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1364 SelectionDAG &DAG) const { 1365 SDLoc DL(Op); 1366 1367 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1368 fail(DL, DAG, 1369 "Non-Emscripten WebAssembly hasn't implemented " 1370 "__builtin_return_address"); 1371 return SDValue(); 1372 } 1373 1374 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1375 return SDValue(); 1376 1377 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1378 MakeLibCallOptions CallOptions; 1379 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1380 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1381 .first; 1382 } 1383 1384 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1385 SelectionDAG &DAG) const { 1386 // Non-zero depths are not supported by WebAssembly currently. Use the 1387 // legalizer's default expansion, which is to return 0 (what this function is 1388 // documented to do). 1389 if (Op.getConstantOperandVal(0) > 0) 1390 return SDValue(); 1391 1392 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1393 EVT VT = Op.getValueType(); 1394 Register FP = 1395 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1396 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1397 } 1398 1399 SDValue 1400 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 SDLoc DL(Op); 1403 const auto *GA = cast<GlobalAddressSDNode>(Op); 1404 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1405 1406 MachineFunction &MF = DAG.getMachineFunction(); 1407 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1408 report_fatal_error("cannot use thread-local storage without bulk memory", 1409 false); 1410 1411 const GlobalValue *GV = GA->getGlobal(); 1412 1413 // Currently Emscripten does not support dynamic linking with threads. 1414 // Therefore, if we have thread-local storage, only the local-exec model 1415 // is possible. 1416 // TODO: remove this and implement proper TLS models once Emscripten 1417 // supports dynamic linking with threads. 1418 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1419 !Subtarget->getTargetTriple().isOSEmscripten()) { 1420 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1421 "non-Emscripten OSes: variable " + 1422 GV->getName(), 1423 false); 1424 } 1425 1426 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1427 : WebAssembly::GLOBAL_GET_I32; 1428 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1429 1430 SDValue BaseAddr( 1431 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1432 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1433 0); 1434 1435 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1436 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1437 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1438 1439 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1440 } 1441 1442 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1443 SelectionDAG &DAG) const { 1444 SDLoc DL(Op); 1445 const auto *GA = cast<GlobalAddressSDNode>(Op); 1446 EVT VT = Op.getValueType(); 1447 assert(GA->getTargetFlags() == 0 && 1448 "Unexpected target flags on generic GlobalAddressSDNode"); 1449 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1450 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1451 1452 unsigned OperandFlags = 0; 1453 if (isPositionIndependent()) { 1454 const GlobalValue *GV = GA->getGlobal(); 1455 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1456 MachineFunction &MF = DAG.getMachineFunction(); 1457 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1458 const char *BaseName; 1459 if (GV->getValueType()->isFunctionTy()) { 1460 BaseName = MF.createExternalSymbolName("__table_base"); 1461 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1462 } 1463 else { 1464 BaseName = MF.createExternalSymbolName("__memory_base"); 1465 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1466 } 1467 SDValue BaseAddr = 1468 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1469 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1470 1471 SDValue SymAddr = DAG.getNode( 1472 WebAssemblyISD::WrapperPIC, DL, VT, 1473 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1474 OperandFlags)); 1475 1476 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1477 } else { 1478 OperandFlags = WebAssemblyII::MO_GOT; 1479 } 1480 } 1481 1482 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1483 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1484 GA->getOffset(), OperandFlags)); 1485 } 1486 1487 SDValue 1488 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1489 SelectionDAG &DAG) const { 1490 SDLoc DL(Op); 1491 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1492 EVT VT = Op.getValueType(); 1493 assert(ES->getTargetFlags() == 0 && 1494 "Unexpected target flags on generic ExternalSymbolSDNode"); 1495 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1496 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1497 } 1498 1499 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1500 SelectionDAG &DAG) const { 1501 // There's no need for a Wrapper node because we always incorporate a jump 1502 // table operand into a BR_TABLE instruction, rather than ever 1503 // materializing it in a register. 1504 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1505 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1506 JT->getTargetFlags()); 1507 } 1508 1509 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1510 SelectionDAG &DAG) const { 1511 SDLoc DL(Op); 1512 SDValue Chain = Op.getOperand(0); 1513 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1514 SDValue Index = Op.getOperand(2); 1515 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1516 1517 SmallVector<SDValue, 8> Ops; 1518 Ops.push_back(Chain); 1519 Ops.push_back(Index); 1520 1521 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1522 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1523 1524 // Add an operand for each case. 1525 for (auto MBB : MBBs) 1526 Ops.push_back(DAG.getBasicBlock(MBB)); 1527 1528 // Add the first MBB as a dummy default target for now. This will be replaced 1529 // with the proper default target (and the preceding range check eliminated) 1530 // if possible by WebAssemblyFixBrTableDefaults. 1531 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1532 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1533 } 1534 1535 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1536 SelectionDAG &DAG) const { 1537 SDLoc DL(Op); 1538 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1539 1540 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1541 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1542 1543 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1544 MFI->getVarargBufferVreg(), PtrVT); 1545 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1546 MachinePointerInfo(SV)); 1547 } 1548 1549 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1550 SelectionDAG &DAG) { 1551 // We only support C++ exceptions for now 1552 int Tag = 1553 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1554 if (Tag != WebAssembly::CPP_EXCEPTION) 1555 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1556 auto &MF = DAG.getMachineFunction(); 1557 const auto &TLI = DAG.getTargetLoweringInfo(); 1558 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1559 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1560 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1561 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1562 } 1563 1564 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1565 SelectionDAG &DAG) const { 1566 MachineFunction &MF = DAG.getMachineFunction(); 1567 unsigned IntNo; 1568 switch (Op.getOpcode()) { 1569 case ISD::INTRINSIC_VOID: 1570 case ISD::INTRINSIC_W_CHAIN: 1571 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1572 break; 1573 case ISD::INTRINSIC_WO_CHAIN: 1574 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1575 break; 1576 default: 1577 llvm_unreachable("Invalid intrinsic"); 1578 } 1579 SDLoc DL(Op); 1580 1581 switch (IntNo) { 1582 default: 1583 return SDValue(); // Don't custom lower most intrinsics. 1584 1585 case Intrinsic::wasm_lsda: { 1586 EVT VT = Op.getValueType(); 1587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1588 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1589 auto &Context = MF.getMMI().getContext(); 1590 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1591 Twine(MF.getFunctionNumber())); 1592 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1593 DAG.getMCSymbol(S, PtrVT)); 1594 } 1595 1596 case Intrinsic::wasm_throw: { 1597 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1598 return DAG.getNode(WebAssemblyISD::THROW, DL, 1599 MVT::Other, // outchain type 1600 { 1601 Op.getOperand(0), // inchain 1602 SymNode, // exception symbol 1603 Op.getOperand(3) // thrown value 1604 }); 1605 } 1606 1607 case Intrinsic::wasm_catch: { 1608 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1609 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1610 { 1611 MVT::i32, // outchain type 1612 MVT::Other // return value 1613 }, 1614 { 1615 Op.getOperand(0), // inchain 1616 SymNode // exception symbol 1617 }); 1618 } 1619 1620 case Intrinsic::wasm_shuffle: { 1621 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1622 SDValue Ops[18]; 1623 size_t OpIdx = 0; 1624 Ops[OpIdx++] = Op.getOperand(1); 1625 Ops[OpIdx++] = Op.getOperand(2); 1626 while (OpIdx < 18) { 1627 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1628 if (MaskIdx.isUndef() || 1629 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1630 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1631 } else { 1632 Ops[OpIdx++] = MaskIdx; 1633 } 1634 } 1635 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1636 } 1637 } 1638 } 1639 1640 SDValue 1641 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1642 SelectionDAG &DAG) const { 1643 SDLoc DL(Op); 1644 // If sign extension operations are disabled, allow sext_inreg only if operand 1645 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1646 // extension operations, but allowing sext_inreg in this context lets us have 1647 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1648 // everywhere would be simpler in this file, but would necessitate large and 1649 // brittle patterns to undo the expansion and select extract_lane_s 1650 // instructions. 1651 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1652 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1653 return SDValue(); 1654 1655 const SDValue &Extract = Op.getOperand(0); 1656 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1657 if (VecT.getVectorElementType().getSizeInBits() > 32) 1658 return SDValue(); 1659 MVT ExtractedLaneT = 1660 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1661 MVT ExtractedVecT = 1662 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1663 if (ExtractedVecT == VecT) 1664 return Op; 1665 1666 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1667 const SDNode *Index = Extract.getOperand(1).getNode(); 1668 if (!isa<ConstantSDNode>(Index)) 1669 return SDValue(); 1670 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1671 unsigned Scale = 1672 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1673 assert(Scale > 1); 1674 SDValue NewIndex = 1675 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1676 SDValue NewExtract = DAG.getNode( 1677 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1678 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1679 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1680 Op.getOperand(1)); 1681 } 1682 1683 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1684 SelectionDAG &DAG) const { 1685 SDLoc DL(Op); 1686 const EVT VecT = Op.getValueType(); 1687 const EVT LaneT = Op.getOperand(0).getValueType(); 1688 const size_t Lanes = Op.getNumOperands(); 1689 bool CanSwizzle = VecT == MVT::v16i8; 1690 1691 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1692 // possible number of lanes at once followed by a sequence of replace_lane 1693 // instructions to individually initialize any remaining lanes. 1694 1695 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1696 // swizzled lanes should be given greater weight. 1697 1698 // TODO: Investigate looping rather than always extracting/replacing specific 1699 // lanes to fill gaps. 1700 1701 auto IsConstant = [](const SDValue &V) { 1702 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1703 }; 1704 1705 // Returns the source vector and index vector pair if they exist. Checks for: 1706 // (extract_vector_elt 1707 // $src, 1708 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1709 // ) 1710 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1711 auto Bail = std::make_pair(SDValue(), SDValue()); 1712 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1713 return Bail; 1714 const SDValue &SwizzleSrc = Lane->getOperand(0); 1715 const SDValue &IndexExt = Lane->getOperand(1); 1716 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1717 return Bail; 1718 const SDValue &Index = IndexExt->getOperand(0); 1719 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1720 return Bail; 1721 const SDValue &SwizzleIndices = Index->getOperand(0); 1722 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1723 SwizzleIndices.getValueType() != MVT::v16i8 || 1724 Index->getOperand(1)->getOpcode() != ISD::Constant || 1725 Index->getConstantOperandVal(1) != I) 1726 return Bail; 1727 return std::make_pair(SwizzleSrc, SwizzleIndices); 1728 }; 1729 1730 // If the lane is extracted from another vector at a constant index, return 1731 // that vector. The source vector must not have more lanes than the dest 1732 // because the shufflevector indices are in terms of the destination lanes and 1733 // would not be able to address the smaller individual source lanes. 1734 auto GetShuffleSrc = [&](const SDValue &Lane) { 1735 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1736 return SDValue(); 1737 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1738 return SDValue(); 1739 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1740 VecT.getVectorNumElements()) 1741 return SDValue(); 1742 return Lane->getOperand(0); 1743 }; 1744 1745 using ValueEntry = std::pair<SDValue, size_t>; 1746 SmallVector<ValueEntry, 16> SplatValueCounts; 1747 1748 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1749 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1750 1751 using ShuffleEntry = std::pair<SDValue, size_t>; 1752 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1753 1754 auto AddCount = [](auto &Counts, const auto &Val) { 1755 auto CountIt = 1756 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1757 if (CountIt == Counts.end()) { 1758 Counts.emplace_back(Val, 1); 1759 } else { 1760 CountIt->second++; 1761 } 1762 }; 1763 1764 auto GetMostCommon = [](auto &Counts) { 1765 auto CommonIt = 1766 std::max_element(Counts.begin(), Counts.end(), 1767 [](auto A, auto B) { return A.second < B.second; }); 1768 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1769 return *CommonIt; 1770 }; 1771 1772 size_t NumConstantLanes = 0; 1773 1774 // Count eligible lanes for each type of vector creation op 1775 for (size_t I = 0; I < Lanes; ++I) { 1776 const SDValue &Lane = Op->getOperand(I); 1777 if (Lane.isUndef()) 1778 continue; 1779 1780 AddCount(SplatValueCounts, Lane); 1781 1782 if (IsConstant(Lane)) 1783 NumConstantLanes++; 1784 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1785 AddCount(ShuffleCounts, ShuffleSrc); 1786 if (CanSwizzle) { 1787 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1788 if (SwizzleSrcs.first) 1789 AddCount(SwizzleCounts, SwizzleSrcs); 1790 } 1791 } 1792 1793 SDValue SplatValue; 1794 size_t NumSplatLanes; 1795 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1796 1797 SDValue SwizzleSrc; 1798 SDValue SwizzleIndices; 1799 size_t NumSwizzleLanes = 0; 1800 if (SwizzleCounts.size()) 1801 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1802 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1803 1804 // Shuffles can draw from up to two vectors, so find the two most common 1805 // sources. 1806 SDValue ShuffleSrc1, ShuffleSrc2; 1807 size_t NumShuffleLanes = 0; 1808 if (ShuffleCounts.size()) { 1809 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1810 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1811 ShuffleCounts.end(), 1812 [&](const auto &Pair) { 1813 return Pair.first == ShuffleSrc1; 1814 }), 1815 ShuffleCounts.end()); 1816 } 1817 if (ShuffleCounts.size()) { 1818 size_t AdditionalShuffleLanes; 1819 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1820 GetMostCommon(ShuffleCounts); 1821 NumShuffleLanes += AdditionalShuffleLanes; 1822 } 1823 1824 // Predicate returning true if the lane is properly initialized by the 1825 // original instruction 1826 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1827 SDValue Result; 1828 // Prefer swizzles over shuffles over vector consts over splats 1829 if (NumSwizzleLanes >= NumShuffleLanes && 1830 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1831 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1832 SwizzleIndices); 1833 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1834 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1835 return Swizzled == GetSwizzleSrcs(I, Lane); 1836 }; 1837 } else if (NumShuffleLanes >= NumConstantLanes && 1838 NumShuffleLanes >= NumSplatLanes) { 1839 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1840 size_t DestLaneCount = VecT.getVectorNumElements(); 1841 size_t Scale1 = 1; 1842 size_t Scale2 = 1; 1843 SDValue Src1 = ShuffleSrc1; 1844 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1845 if (Src1.getValueType() != VecT) { 1846 size_t LaneSize = 1847 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1848 assert(LaneSize > DestLaneSize); 1849 Scale1 = LaneSize / DestLaneSize; 1850 Src1 = DAG.getBitcast(VecT, Src1); 1851 } 1852 if (Src2.getValueType() != VecT) { 1853 size_t LaneSize = 1854 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1855 assert(LaneSize > DestLaneSize); 1856 Scale2 = LaneSize / DestLaneSize; 1857 Src2 = DAG.getBitcast(VecT, Src2); 1858 } 1859 1860 int Mask[16]; 1861 assert(DestLaneCount <= 16); 1862 for (size_t I = 0; I < DestLaneCount; ++I) { 1863 const SDValue &Lane = Op->getOperand(I); 1864 SDValue Src = GetShuffleSrc(Lane); 1865 if (Src == ShuffleSrc1) { 1866 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1867 } else if (Src && Src == ShuffleSrc2) { 1868 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1869 } else { 1870 Mask[I] = -1; 1871 } 1872 } 1873 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1874 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1875 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1876 auto Src = GetShuffleSrc(Lane); 1877 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1878 }; 1879 } else if (NumConstantLanes >= NumSplatLanes) { 1880 SmallVector<SDValue, 16> ConstLanes; 1881 for (const SDValue &Lane : Op->op_values()) { 1882 if (IsConstant(Lane)) { 1883 ConstLanes.push_back(Lane); 1884 } else if (LaneT.isFloatingPoint()) { 1885 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1886 } else { 1887 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1888 } 1889 } 1890 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1891 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1892 return IsConstant(Lane); 1893 }; 1894 } else { 1895 // Use a splat, but possibly a load_splat 1896 LoadSDNode *SplattedLoad; 1897 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1898 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1899 Result = DAG.getMemIntrinsicNode( 1900 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1901 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1902 SplattedLoad->getOffset()}, 1903 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1904 } else { 1905 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1906 } 1907 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1908 return Lane == SplatValue; 1909 }; 1910 } 1911 1912 assert(Result); 1913 assert(IsLaneConstructed); 1914 1915 // Add replace_lane instructions for any unhandled values 1916 for (size_t I = 0; I < Lanes; ++I) { 1917 const SDValue &Lane = Op->getOperand(I); 1918 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1919 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1920 DAG.getConstant(I, DL, MVT::i32)); 1921 } 1922 1923 return Result; 1924 } 1925 1926 SDValue 1927 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1928 SelectionDAG &DAG) const { 1929 SDLoc DL(Op); 1930 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1931 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1932 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1933 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1934 1935 // Space for two vector args and sixteen mask indices 1936 SDValue Ops[18]; 1937 size_t OpIdx = 0; 1938 Ops[OpIdx++] = Op.getOperand(0); 1939 Ops[OpIdx++] = Op.getOperand(1); 1940 1941 // Expand mask indices to byte indices and materialize them as operands 1942 for (int M : Mask) { 1943 for (size_t J = 0; J < LaneBytes; ++J) { 1944 // Lower undefs (represented by -1 in mask) to zero 1945 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1946 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1947 } 1948 } 1949 1950 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1951 } 1952 1953 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1954 SelectionDAG &DAG) const { 1955 SDLoc DL(Op); 1956 // The legalizer does not know how to expand the unsupported comparison modes 1957 // of i64x2 vectors, so we manually unroll them here. 1958 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1959 SmallVector<SDValue, 2> LHS, RHS; 1960 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1961 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1962 const SDValue &CC = Op->getOperand(2); 1963 auto MakeLane = [&](unsigned I) { 1964 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1965 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1966 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1967 }; 1968 return DAG.getBuildVector(Op->getValueType(0), DL, 1969 {MakeLane(0), MakeLane(1)}); 1970 } 1971 1972 SDValue 1973 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1974 SelectionDAG &DAG) const { 1975 // Allow constant lane indices, expand variable lane indices 1976 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1977 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1978 return Op; 1979 else 1980 // Perform default expansion 1981 return SDValue(); 1982 } 1983 1984 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1985 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1986 // 32-bit and 64-bit unrolled shifts will have proper semantics 1987 if (LaneT.bitsGE(MVT::i32)) 1988 return DAG.UnrollVectorOp(Op.getNode()); 1989 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1990 SDLoc DL(Op); 1991 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1992 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1993 unsigned ShiftOpcode = Op.getOpcode(); 1994 SmallVector<SDValue, 16> ShiftedElements; 1995 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1996 SmallVector<SDValue, 16> ShiftElements; 1997 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1998 SmallVector<SDValue, 16> UnrolledOps; 1999 for (size_t i = 0; i < NumLanes; ++i) { 2000 SDValue MaskedShiftValue = 2001 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2002 SDValue ShiftedValue = ShiftedElements[i]; 2003 if (ShiftOpcode == ISD::SRA) 2004 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2005 ShiftedValue, DAG.getValueType(LaneT)); 2006 UnrolledOps.push_back( 2007 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2008 } 2009 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2010 } 2011 2012 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2013 SelectionDAG &DAG) const { 2014 SDLoc DL(Op); 2015 2016 // Only manually lower vector shifts 2017 assert(Op.getSimpleValueType().isVector()); 2018 2019 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2020 if (!ShiftVal) 2021 return unrollVectorShift(Op, DAG); 2022 2023 // Use anyext because none of the high bits can affect the shift 2024 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2025 2026 unsigned Opcode; 2027 switch (Op.getOpcode()) { 2028 case ISD::SHL: 2029 Opcode = WebAssemblyISD::VEC_SHL; 2030 break; 2031 case ISD::SRA: 2032 Opcode = WebAssemblyISD::VEC_SHR_S; 2033 break; 2034 case ISD::SRL: 2035 Opcode = WebAssemblyISD::VEC_SHR_U; 2036 break; 2037 default: 2038 llvm_unreachable("unexpected opcode"); 2039 } 2040 2041 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2042 } 2043 2044 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2045 SelectionDAG &DAG) const { 2046 SDLoc DL(Op); 2047 EVT ResT = Op.getValueType(); 2048 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2049 2050 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2051 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2052 return Op; 2053 2054 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2055 return Op; 2056 2057 return SDValue(); 2058 } 2059 2060 //===----------------------------------------------------------------------===// 2061 // Custom DAG combine hooks 2062 //===----------------------------------------------------------------------===// 2063 static SDValue 2064 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2065 auto &DAG = DCI.DAG; 2066 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2067 2068 // Hoist vector bitcasts that don't change the number of lanes out of unary 2069 // shuffles, where they are less likely to get in the way of other combines. 2070 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2071 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2072 SDValue Bitcast = N->getOperand(0); 2073 if (Bitcast.getOpcode() != ISD::BITCAST) 2074 return SDValue(); 2075 if (!N->getOperand(1).isUndef()) 2076 return SDValue(); 2077 SDValue CastOp = Bitcast.getOperand(0); 2078 MVT SrcType = CastOp.getSimpleValueType(); 2079 MVT DstType = Bitcast.getSimpleValueType(); 2080 if (!SrcType.is128BitVector() || 2081 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2082 return SDValue(); 2083 SDValue NewShuffle = DAG.getVectorShuffle( 2084 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2085 return DAG.getBitcast(DstType, NewShuffle); 2086 } 2087 2088 static SDValue 2089 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2090 auto &DAG = DCI.DAG; 2091 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2092 N->getOpcode() == ISD::ZERO_EXTEND); 2093 2094 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2095 // possible before the extract_subvector can be expanded. 2096 auto Extract = N->getOperand(0); 2097 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2098 return SDValue(); 2099 auto Source = Extract.getOperand(0); 2100 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2101 if (IndexNode == nullptr) 2102 return SDValue(); 2103 auto Index = IndexNode->getZExtValue(); 2104 2105 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2106 // extracted subvector is the low or high half of its source. 2107 EVT ResVT = N->getValueType(0); 2108 if (ResVT == MVT::v8i16) { 2109 if (Extract.getValueType() != MVT::v8i8 || 2110 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2111 return SDValue(); 2112 } else if (ResVT == MVT::v4i32) { 2113 if (Extract.getValueType() != MVT::v4i16 || 2114 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2115 return SDValue(); 2116 } else if (ResVT == MVT::v2i64) { 2117 if (Extract.getValueType() != MVT::v2i32 || 2118 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2119 return SDValue(); 2120 } else { 2121 return SDValue(); 2122 } 2123 2124 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2125 bool IsLow = Index == 0; 2126 2127 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2128 : WebAssemblyISD::EXTEND_HIGH_S) 2129 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2130 : WebAssemblyISD::EXTEND_HIGH_U); 2131 2132 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2133 } 2134 2135 static SDValue 2136 performVectorConvertLowCombine(SDNode *N, 2137 TargetLowering::DAGCombinerInfo &DCI) { 2138 auto &DAG = DCI.DAG; 2139 2140 EVT ResVT = N->getValueType(0); 2141 if (ResVT != MVT::v2f64) 2142 return SDValue(); 2143 2144 auto GetWasmConversionOp = [](unsigned Op) { 2145 switch (Op) { 2146 case ISD::SINT_TO_FP: 2147 return WebAssemblyISD::CONVERT_LOW_S; 2148 case ISD::UINT_TO_FP: 2149 return WebAssemblyISD::CONVERT_LOW_U; 2150 case ISD::FP_EXTEND: 2151 return WebAssemblyISD::PROMOTE_LOW; 2152 } 2153 llvm_unreachable("unexpected op"); 2154 }; 2155 2156 if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2157 // Combine this: 2158 // 2159 // (v2f64 (extract_subvector 2160 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2161 // 2162 // into (f64x2.convert_low_i32x4_{s,u} $x). 2163 // 2164 // Or this: 2165 // 2166 // (v2f64 (extract_subvector 2167 // (v4f64 (fp_extend (v4f32 $x))), 0)) 2168 // 2169 // into (f64x2.promote_low_f32x4 $x). 2170 auto Conversion = N->getOperand(0); 2171 auto ConversionOp = Conversion.getOpcode(); 2172 MVT ExpectedSourceType; 2173 switch (ConversionOp) { 2174 case ISD::SINT_TO_FP: 2175 case ISD::UINT_TO_FP: 2176 ExpectedSourceType = MVT::v4i32; 2177 break; 2178 case ISD::FP_EXTEND: 2179 ExpectedSourceType = MVT::v4f32; 2180 break; 2181 default: 2182 return SDValue(); 2183 } 2184 2185 if (Conversion.getValueType() != MVT::v4f64) 2186 return SDValue(); 2187 2188 auto Source = Conversion.getOperand(0); 2189 if (Source.getValueType() != ExpectedSourceType) 2190 return SDValue(); 2191 2192 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2193 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2194 return SDValue(); 2195 2196 auto Op = GetWasmConversionOp(ConversionOp); 2197 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2198 } 2199 2200 // Combine this: 2201 // 2202 // (v2f64 ({s,u}int_to_fp 2203 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2204 // 2205 // into (f64x2.convert_low_i32x4_{s,u} $x). 2206 // 2207 // Or this: 2208 // 2209 // (v2f64 (fp_extend 2210 // (v2f32 (extract_subvector (v4f32 $x), 0)))) 2211 // 2212 // into (f64x2.promote_low_f32x4 $x). 2213 auto ConversionOp = N->getOpcode(); 2214 MVT ExpectedExtractType; 2215 MVT ExpectedSourceType; 2216 switch (ConversionOp) { 2217 case ISD::SINT_TO_FP: 2218 case ISD::UINT_TO_FP: 2219 ExpectedExtractType = MVT::v2i32; 2220 ExpectedSourceType = MVT::v4i32; 2221 break; 2222 case ISD::FP_EXTEND: 2223 ExpectedExtractType = MVT::v2f32; 2224 ExpectedSourceType = MVT::v4f32; 2225 break; 2226 default: 2227 llvm_unreachable("unexpected opcode"); 2228 } 2229 2230 auto Extract = N->getOperand(0); 2231 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2232 return SDValue(); 2233 2234 if (Extract.getValueType() != ExpectedExtractType) 2235 return SDValue(); 2236 2237 auto Source = Extract.getOperand(0); 2238 if (Source.getValueType() != ExpectedSourceType) 2239 return SDValue(); 2240 2241 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2242 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2243 return SDValue(); 2244 2245 unsigned Op = GetWasmConversionOp(ConversionOp); 2246 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2247 } 2248 2249 static SDValue 2250 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2251 auto &DAG = DCI.DAG; 2252 2253 auto GetWasmConversionOp = [](unsigned Op) { 2254 switch (Op) { 2255 case ISD::FP_TO_SINT_SAT: 2256 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2257 case ISD::FP_TO_UINT_SAT: 2258 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2259 case ISD::FP_ROUND: 2260 return WebAssemblyISD::DEMOTE_ZERO; 2261 } 2262 llvm_unreachable("unexpected op"); 2263 }; 2264 2265 auto IsZeroSplat = [](SDValue SplatVal) { 2266 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2267 APInt SplatValue, SplatUndef; 2268 unsigned SplatBitSize; 2269 bool HasAnyUndefs; 2270 return Splat && 2271 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2272 HasAnyUndefs) && 2273 SplatValue == 0; 2274 }; 2275 2276 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2277 // Combine this: 2278 // 2279 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2280 // 2281 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2282 // 2283 // Or this: 2284 // 2285 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2286 // 2287 // into (f32x4.demote_zero_f64x2 $x). 2288 EVT ResVT; 2289 EVT ExpectedConversionType; 2290 auto Conversion = N->getOperand(0); 2291 auto ConversionOp = Conversion.getOpcode(); 2292 switch (ConversionOp) { 2293 case ISD::FP_TO_SINT_SAT: 2294 case ISD::FP_TO_UINT_SAT: 2295 ResVT = MVT::v4i32; 2296 ExpectedConversionType = MVT::v2i32; 2297 break; 2298 case ISD::FP_ROUND: 2299 ResVT = MVT::v4f32; 2300 ExpectedConversionType = MVT::v2f32; 2301 break; 2302 default: 2303 return SDValue(); 2304 } 2305 2306 if (N->getValueType(0) != ResVT) 2307 return SDValue(); 2308 2309 if (Conversion.getValueType() != ExpectedConversionType) 2310 return SDValue(); 2311 2312 auto Source = Conversion.getOperand(0); 2313 if (Source.getValueType() != MVT::v2f64) 2314 return SDValue(); 2315 2316 if (!IsZeroSplat(N->getOperand(1)) || 2317 N->getOperand(1).getValueType() != ExpectedConversionType) 2318 return SDValue(); 2319 2320 unsigned Op = GetWasmConversionOp(ConversionOp); 2321 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2322 } 2323 2324 // Combine this: 2325 // 2326 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2327 // 2328 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2329 // 2330 // Or this: 2331 // 2332 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2333 // 2334 // into (f32x4.demote_zero_f64x2 $x). 2335 EVT ResVT; 2336 auto ConversionOp = N->getOpcode(); 2337 switch (ConversionOp) { 2338 case ISD::FP_TO_SINT_SAT: 2339 case ISD::FP_TO_UINT_SAT: 2340 ResVT = MVT::v4i32; 2341 break; 2342 case ISD::FP_ROUND: 2343 ResVT = MVT::v4f32; 2344 break; 2345 default: 2346 llvm_unreachable("unexpected op"); 2347 } 2348 2349 if (N->getValueType(0) != ResVT) 2350 return SDValue(); 2351 2352 auto Concat = N->getOperand(0); 2353 if (Concat.getValueType() != MVT::v4f64) 2354 return SDValue(); 2355 2356 auto Source = Concat.getOperand(0); 2357 if (Source.getValueType() != MVT::v2f64) 2358 return SDValue(); 2359 2360 if (!IsZeroSplat(Concat.getOperand(1)) || 2361 Concat.getOperand(1).getValueType() != MVT::v2f64) 2362 return SDValue(); 2363 2364 unsigned Op = GetWasmConversionOp(ConversionOp); 2365 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2366 } 2367 2368 SDValue 2369 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2370 DAGCombinerInfo &DCI) const { 2371 switch (N->getOpcode()) { 2372 default: 2373 return SDValue(); 2374 case ISD::VECTOR_SHUFFLE: 2375 return performVECTOR_SHUFFLECombine(N, DCI); 2376 case ISD::SIGN_EXTEND: 2377 case ISD::ZERO_EXTEND: 2378 return performVectorExtendCombine(N, DCI); 2379 case ISD::SINT_TO_FP: 2380 case ISD::UINT_TO_FP: 2381 case ISD::FP_EXTEND: 2382 case ISD::EXTRACT_SUBVECTOR: 2383 return performVectorConvertLowCombine(N, DCI); 2384 case ISD::FP_TO_SINT_SAT: 2385 case ISD::FP_TO_UINT_SAT: 2386 case ISD::FP_ROUND: 2387 case ISD::CONCAT_VECTORS: 2388 return performVectorTruncZeroCombine(N, DCI); 2389 } 2390 } 2391