1 //===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Top-level implementation for the PowerPC target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCTargetMachine.h" 15 #include "PPC.h" 16 #include "PPCTargetObjectFile.h" 17 #include "PPCTargetTransformInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/LegacyPassManager.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/FormattedStream.h" 24 #include "llvm/Support/TargetRegistry.h" 25 #include "llvm/Target/TargetOptions.h" 26 #include "llvm/Transforms/Scalar.h" 27 using namespace llvm; 28 29 static cl:: 30 opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden, 31 cl::desc("Disable CTR loops for PPC")); 32 33 static cl:: 34 opt<bool> DisablePreIncPrep("disable-ppc-preinc-prep", cl::Hidden, 35 cl::desc("Disable PPC loop preinc prep")); 36 37 static cl::opt<bool> 38 VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early", 39 cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early")); 40 41 static cl:: 42 opt<bool> DisableVSXSwapRemoval("disable-ppc-vsx-swap-removal", cl::Hidden, 43 cl::desc("Disable VSX Swap Removal for PPC")); 44 45 static cl:: 46 opt<bool> DisableMIPeephole("disable-ppc-peephole", cl::Hidden, 47 cl::desc("Disable machine peepholes for PPC")); 48 49 static cl::opt<bool> 50 EnableGEPOpt("ppc-gep-opt", cl::Hidden, 51 cl::desc("Enable optimizations on complex GEPs"), 52 cl::init(true)); 53 54 static cl::opt<bool> 55 EnablePrefetch("enable-ppc-prefetching", 56 cl::desc("disable software prefetching on PPC"), 57 cl::init(false), cl::Hidden); 58 59 static cl::opt<bool> 60 EnableExtraTOCRegDeps("enable-ppc-extra-toc-reg-deps", 61 cl::desc("Add extra TOC register dependencies"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 EnableMachineCombinerPass("ppc-machine-combiner", 66 cl::desc("Enable the machine combiner pass"), 67 cl::init(true), cl::Hidden); 68 69 extern "C" void LLVMInitializePowerPCTarget() { 70 // Register the targets 71 RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target); 72 RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target); 73 RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget); 74 } 75 76 /// Return the datalayout string of a subtarget. 77 static std::string getDataLayoutString(const Triple &T) { 78 bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; 79 std::string Ret; 80 81 // Most PPC* platforms are big endian, PPC64LE is little endian. 82 if (T.getArch() == Triple::ppc64le) 83 Ret = "e"; 84 else 85 Ret = "E"; 86 87 Ret += DataLayout::getManglingComponent(T); 88 89 // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit 90 // pointers. 91 if (!is64Bit || T.getOS() == Triple::Lv2) 92 Ret += "-p:32:32"; 93 94 // Note, the alignment values for f64 and i64 on ppc64 in Darwin 95 // documentation are wrong; these are correct (i.e. "what gcc does"). 96 if (is64Bit || !T.isOSDarwin()) 97 Ret += "-i64:64"; 98 else 99 Ret += "-f64:32:64"; 100 101 // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. 102 if (is64Bit) 103 Ret += "-n32:64"; 104 else 105 Ret += "-n32"; 106 107 return Ret; 108 } 109 110 static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, 111 const Triple &TT) { 112 std::string FullFS = FS; 113 114 // Make sure 64-bit features are available when CPUname is generic 115 if (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le) { 116 if (!FullFS.empty()) 117 FullFS = "+64bit," + FullFS; 118 else 119 FullFS = "+64bit"; 120 } 121 122 if (OL >= CodeGenOpt::Default) { 123 if (!FullFS.empty()) 124 FullFS = "+crbits," + FullFS; 125 else 126 FullFS = "+crbits"; 127 } 128 129 if (OL != CodeGenOpt::None) { 130 if (!FullFS.empty()) 131 FullFS = "+invariant-function-descriptors," + FullFS; 132 else 133 FullFS = "+invariant-function-descriptors"; 134 } 135 136 return FullFS; 137 } 138 139 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 140 // If it isn't a Mach-O file then it's going to be a linux ELF 141 // object file. 142 if (TT.isOSDarwin()) 143 return make_unique<TargetLoweringObjectFileMachO>(); 144 145 return make_unique<PPC64LinuxTargetObjectFile>(); 146 } 147 148 static PPCTargetMachine::PPCABI computeTargetABI(const Triple &TT, 149 const TargetOptions &Options) { 150 if (Options.MCOptions.getABIName().startswith("elfv1")) 151 return PPCTargetMachine::PPC_ABI_ELFv1; 152 else if (Options.MCOptions.getABIName().startswith("elfv2")) 153 return PPCTargetMachine::PPC_ABI_ELFv2; 154 155 assert(Options.MCOptions.getABIName().empty() && 156 "Unknown target-abi option!"); 157 158 if (!TT.isMacOSX()) { 159 switch (TT.getArch()) { 160 case Triple::ppc64le: 161 return PPCTargetMachine::PPC_ABI_ELFv2; 162 case Triple::ppc64: 163 return PPCTargetMachine::PPC_ABI_ELFv1; 164 default: 165 // Fallthrough. 166 ; 167 } 168 } 169 return PPCTargetMachine::PPC_ABI_UNKNOWN; 170 } 171 172 // The FeatureString here is a little subtle. We are modifying the feature 173 // string with what are (currently) non-function specific overrides as it goes 174 // into the LLVMTargetMachine constructor and then using the stored value in the 175 // Subtarget constructor below it. 176 PPCTargetMachine::PPCTargetMachine(const Target &T, const Triple &TT, 177 StringRef CPU, StringRef FS, 178 const TargetOptions &Options, 179 Reloc::Model RM, CodeModel::Model CM, 180 CodeGenOpt::Level OL) 181 : LLVMTargetMachine(T, getDataLayoutString(TT), TT, CPU, 182 computeFSAdditions(FS, OL, TT), Options, RM, CM, OL), 183 TLOF(createTLOF(getTargetTriple())), 184 TargetABI(computeTargetABI(TT, Options)), 185 Subtarget(TargetTriple, CPU, computeFSAdditions(FS, OL, TT), *this) { 186 187 // For the estimates, convergence is quadratic, so we essentially double the 188 // number of digits correct after every iteration. For both FRE and FRSQRTE, 189 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 190 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 191 unsigned RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3, 192 RefinementSteps64 = RefinementSteps + 1; 193 194 this->Options.Reciprocals.setDefaults("sqrtf", true, RefinementSteps); 195 this->Options.Reciprocals.setDefaults("vec-sqrtf", true, RefinementSteps); 196 this->Options.Reciprocals.setDefaults("divf", true, RefinementSteps); 197 this->Options.Reciprocals.setDefaults("vec-divf", true, RefinementSteps); 198 199 this->Options.Reciprocals.setDefaults("sqrtd", true, RefinementSteps64); 200 this->Options.Reciprocals.setDefaults("vec-sqrtd", true, RefinementSteps64); 201 this->Options.Reciprocals.setDefaults("divd", true, RefinementSteps64); 202 this->Options.Reciprocals.setDefaults("vec-divd", true, RefinementSteps64); 203 204 initAsmInfo(); 205 } 206 207 PPCTargetMachine::~PPCTargetMachine() {} 208 209 void PPC32TargetMachine::anchor() { } 210 211 PPC32TargetMachine::PPC32TargetMachine(const Target &T, const Triple &TT, 212 StringRef CPU, StringRef FS, 213 const TargetOptions &Options, 214 Reloc::Model RM, CodeModel::Model CM, 215 CodeGenOpt::Level OL) 216 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 217 218 void PPC64TargetMachine::anchor() { } 219 220 PPC64TargetMachine::PPC64TargetMachine(const Target &T, const Triple &TT, 221 StringRef CPU, StringRef FS, 222 const TargetOptions &Options, 223 Reloc::Model RM, CodeModel::Model CM, 224 CodeGenOpt::Level OL) 225 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 226 227 const PPCSubtarget * 228 PPCTargetMachine::getSubtargetImpl(const Function &F) const { 229 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 230 Attribute FSAttr = F.getFnAttribute("target-features"); 231 232 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 233 ? CPUAttr.getValueAsString().str() 234 : TargetCPU; 235 std::string FS = !FSAttr.hasAttribute(Attribute::None) 236 ? FSAttr.getValueAsString().str() 237 : TargetFS; 238 239 auto &I = SubtargetMap[CPU + FS]; 240 if (!I) { 241 // This needs to be done before we create a new subtarget since any 242 // creation will depend on the TM and the code generation flags on the 243 // function that reside in TargetOptions. 244 resetTargetOptions(F); 245 I = llvm::make_unique<PPCSubtarget>( 246 TargetTriple, CPU, 247 // FIXME: It would be good to have the subtarget additions here 248 // not necessary. Anything that turns them on/off (overrides) ends 249 // up being put at the end of the feature string, but the defaults 250 // shouldn't require adding them. Fixing this means pulling Feature64Bit 251 // out of most of the target cpus in the .td file and making it set only 252 // as part of initialization via the TargetTriple. 253 computeFSAdditions(FS, getOptLevel(), getTargetTriple()), *this); 254 } 255 return I.get(); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // Pass Pipeline Configuration 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 /// PPC Code Generator Pass Configuration Options. 264 class PPCPassConfig : public TargetPassConfig { 265 public: 266 PPCPassConfig(PPCTargetMachine *TM, PassManagerBase &PM) 267 : TargetPassConfig(TM, PM) {} 268 269 PPCTargetMachine &getPPCTargetMachine() const { 270 return getTM<PPCTargetMachine>(); 271 } 272 273 void addIRPasses() override; 274 bool addPreISel() override; 275 bool addILPOpts() override; 276 bool addInstSelector() override; 277 void addMachineSSAOptimization() override; 278 void addPreRegAlloc() override; 279 void addPreSched2() override; 280 void addPreEmitPass() override; 281 }; 282 } // namespace 283 284 TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) { 285 return new PPCPassConfig(this, PM); 286 } 287 288 void PPCPassConfig::addIRPasses() { 289 addPass(createAtomicExpandPass(&getPPCTargetMachine())); 290 291 // For the BG/Q (or if explicitly requested), add explicit data prefetch 292 // intrinsics. 293 bool UsePrefetching = TM->getTargetTriple().getVendor() == Triple::BGQ && 294 getOptLevel() != CodeGenOpt::None; 295 if (EnablePrefetch.getNumOccurrences() > 0) 296 UsePrefetching = EnablePrefetch; 297 if (UsePrefetching) 298 addPass(createPPCLoopDataPrefetchPass()); 299 300 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 301 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 302 // and lower a GEP with multiple indices to either arithmetic operations or 303 // multiple GEPs with single index. 304 addPass(createSeparateConstOffsetFromGEPPass(TM, true)); 305 // Call EarlyCSE pass to find and remove subexpressions in the lowered 306 // result. 307 addPass(createEarlyCSEPass()); 308 // Do loop invariant code motion in case part of the lowered result is 309 // invariant. 310 addPass(createLICMPass()); 311 } 312 313 TargetPassConfig::addIRPasses(); 314 } 315 316 bool PPCPassConfig::addPreISel() { 317 if (!DisablePreIncPrep && getOptLevel() != CodeGenOpt::None) 318 addPass(createPPCLoopPreIncPrepPass(getPPCTargetMachine())); 319 320 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 321 addPass(createPPCCTRLoops(getPPCTargetMachine())); 322 323 return false; 324 } 325 326 bool PPCPassConfig::addILPOpts() { 327 addPass(&EarlyIfConverterID); 328 329 if (EnableMachineCombinerPass) 330 addPass(&MachineCombinerID); 331 332 return true; 333 } 334 335 bool PPCPassConfig::addInstSelector() { 336 // Install an instruction selector. 337 addPass(createPPCISelDag(getPPCTargetMachine())); 338 339 #ifndef NDEBUG 340 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 341 addPass(createPPCCTRLoopsVerify()); 342 #endif 343 344 addPass(createPPCVSXCopyPass()); 345 return false; 346 } 347 348 void PPCPassConfig::addMachineSSAOptimization() { 349 TargetPassConfig::addMachineSSAOptimization(); 350 // For little endian, remove where possible the vector swap instructions 351 // introduced at code generation to normalize vector element order. 352 if (TM->getTargetTriple().getArch() == Triple::ppc64le && 353 !DisableVSXSwapRemoval) 354 addPass(createPPCVSXSwapRemovalPass()); 355 // Target-specific peephole cleanups performed after instruction 356 // selection. 357 if (!DisableMIPeephole) { 358 addPass(createPPCMIPeepholePass()); 359 addPass(&DeadMachineInstructionElimID); 360 } 361 } 362 363 void PPCPassConfig::addPreRegAlloc() { 364 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 365 insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID, 366 &PPCVSXFMAMutateID); 367 if (getPPCTargetMachine().getRelocationModel() == Reloc::PIC_) 368 addPass(createPPCTLSDynamicCallPass()); 369 if (EnableExtraTOCRegDeps) 370 addPass(createPPCTOCRegDepsPass()); 371 } 372 373 void PPCPassConfig::addPreSched2() { 374 if (getOptLevel() != CodeGenOpt::None) 375 addPass(&IfConverterID); 376 } 377 378 void PPCPassConfig::addPreEmitPass() { 379 if (getOptLevel() != CodeGenOpt::None) 380 addPass(createPPCEarlyReturnPass(), false); 381 // Must run branch selection immediately preceding the asm printer. 382 addPass(createPPCBranchSelectionPass(), false); 383 } 384 385 TargetIRAnalysis PPCTargetMachine::getTargetIRAnalysis() { 386 return TargetIRAnalysis([this](const Function &F) { 387 return TargetTransformInfo(PPCTTIImpl(this, F)); 388 }); 389 } 390