1 //===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Top-level implementation for the PowerPC target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCTargetMachine.h" 15 #include "PPC.h" 16 #include "PPCTargetObjectFile.h" 17 #include "PPCTargetTransformInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/LegacyPassManager.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/FormattedStream.h" 24 #include "llvm/Support/TargetRegistry.h" 25 #include "llvm/Target/TargetOptions.h" 26 #include "llvm/Transforms/Scalar.h" 27 using namespace llvm; 28 29 static cl:: 30 opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden, 31 cl::desc("Disable CTR loops for PPC")); 32 33 static cl:: 34 opt<bool> DisablePreIncPrep("disable-ppc-preinc-prep", cl::Hidden, 35 cl::desc("Disable PPC loop preinc prep")); 36 37 static cl::opt<bool> 38 VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early", 39 cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early")); 40 41 static cl:: 42 opt<bool> DisableVSXSwapRemoval("disable-ppc-vsx-swap-removal", cl::Hidden, 43 cl::desc("Disable VSX Swap Removal for PPC")); 44 45 static cl::opt<bool> 46 EnableGEPOpt("ppc-gep-opt", cl::Hidden, 47 cl::desc("Enable optimizations on complex GEPs"), 48 cl::init(true)); 49 50 static cl::opt<bool> 51 EnablePrefetch("enable-ppc-prefetching", 52 cl::desc("disable software prefetching on PPC"), 53 cl::init(false), cl::Hidden); 54 55 static cl::opt<bool> 56 EnableExtraTOCRegDeps("enable-ppc-extra-toc-reg-deps", 57 cl::desc("Add extra TOC register dependencies"), 58 cl::init(true), cl::Hidden); 59 60 extern "C" void LLVMInitializePowerPCTarget() { 61 // Register the targets 62 RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target); 63 RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target); 64 RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget); 65 } 66 67 /// Return the datalayout string of a subtarget. 68 static std::string getDataLayoutString(const Triple &T) { 69 bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; 70 std::string Ret; 71 72 // Most PPC* platforms are big endian, PPC64LE is little endian. 73 if (T.getArch() == Triple::ppc64le) 74 Ret = "e"; 75 else 76 Ret = "E"; 77 78 Ret += DataLayout::getManglingComponent(T); 79 80 // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit 81 // pointers. 82 if (!is64Bit || T.getOS() == Triple::Lv2) 83 Ret += "-p:32:32"; 84 85 // Note, the alignment values for f64 and i64 on ppc64 in Darwin 86 // documentation are wrong; these are correct (i.e. "what gcc does"). 87 if (is64Bit || !T.isOSDarwin()) 88 Ret += "-i64:64"; 89 else 90 Ret += "-f64:32:64"; 91 92 // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. 93 if (is64Bit) 94 Ret += "-n32:64"; 95 else 96 Ret += "-n32"; 97 98 return Ret; 99 } 100 101 static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, StringRef TT) { 102 std::string FullFS = FS; 103 Triple TargetTriple(TT); 104 105 // Make sure 64-bit features are available when CPUname is generic 106 if (TargetTriple.getArch() == Triple::ppc64 || 107 TargetTriple.getArch() == Triple::ppc64le) { 108 if (!FullFS.empty()) 109 FullFS = "+64bit," + FullFS; 110 else 111 FullFS = "+64bit"; 112 } 113 114 if (OL >= CodeGenOpt::Default) { 115 if (!FullFS.empty()) 116 FullFS = "+crbits," + FullFS; 117 else 118 FullFS = "+crbits"; 119 } 120 121 if (OL != CodeGenOpt::None) { 122 if (!FullFS.empty()) 123 FullFS = "+invariant-function-descriptors," + FullFS; 124 else 125 FullFS = "+invariant-function-descriptors"; 126 } 127 128 return FullFS; 129 } 130 131 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 132 // If it isn't a Mach-O file then it's going to be a linux ELF 133 // object file. 134 if (TT.isOSDarwin()) 135 return make_unique<TargetLoweringObjectFileMachO>(); 136 137 return make_unique<PPC64LinuxTargetObjectFile>(); 138 } 139 140 static PPCTargetMachine::PPCABI computeTargetABI(const Triple &TT, 141 const TargetOptions &Options) { 142 if (Options.MCOptions.getABIName().startswith("elfv1")) 143 return PPCTargetMachine::PPC_ABI_ELFv1; 144 else if (Options.MCOptions.getABIName().startswith("elfv2")) 145 return PPCTargetMachine::PPC_ABI_ELFv2; 146 147 assert(Options.MCOptions.getABIName().empty() && 148 "Unknown target-abi option!"); 149 150 if (!TT.isMacOSX()) { 151 switch (TT.getArch()) { 152 case Triple::ppc64le: 153 return PPCTargetMachine::PPC_ABI_ELFv2; 154 case Triple::ppc64: 155 return PPCTargetMachine::PPC_ABI_ELFv1; 156 default: 157 // Fallthrough. 158 ; 159 } 160 } 161 return PPCTargetMachine::PPC_ABI_UNKNOWN; 162 } 163 164 // The FeatureString here is a little subtle. We are modifying the feature string 165 // with what are (currently) non-function specific overrides as it goes into the 166 // LLVMTargetMachine constructor and then using the stored value in the 167 // Subtarget constructor below it. 168 PPCTargetMachine::PPCTargetMachine(const Target &T, StringRef TT, StringRef CPU, 169 StringRef FS, const TargetOptions &Options, 170 Reloc::Model RM, CodeModel::Model CM, 171 CodeGenOpt::Level OL) 172 : LLVMTargetMachine(T, getDataLayoutString(Triple(TT)), TT, CPU, 173 computeFSAdditions(FS, OL, TT), Options, RM, CM, OL), 174 TLOF(createTLOF(Triple(getTargetTriple()))), 175 TargetABI(computeTargetABI(Triple(TT), Options)) { 176 initAsmInfo(); 177 } 178 179 PPCTargetMachine::~PPCTargetMachine() {} 180 181 void PPC32TargetMachine::anchor() { } 182 183 PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT, 184 StringRef CPU, StringRef FS, 185 const TargetOptions &Options, 186 Reloc::Model RM, CodeModel::Model CM, 187 CodeGenOpt::Level OL) 188 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 189 } 190 191 void PPC64TargetMachine::anchor() { } 192 193 PPC64TargetMachine::PPC64TargetMachine(const Target &T, StringRef TT, 194 StringRef CPU, StringRef FS, 195 const TargetOptions &Options, 196 Reloc::Model RM, CodeModel::Model CM, 197 CodeGenOpt::Level OL) 198 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 199 } 200 201 const PPCSubtarget * 202 PPCTargetMachine::getSubtargetImpl(const Function &F) const { 203 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 204 Attribute FSAttr = F.getFnAttribute("target-features"); 205 206 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 207 ? CPUAttr.getValueAsString().str() 208 : TargetCPU; 209 std::string FS = !FSAttr.hasAttribute(Attribute::None) 210 ? FSAttr.getValueAsString().str() 211 : TargetFS; 212 213 auto &I = SubtargetMap[CPU + FS]; 214 if (!I) { 215 // This needs to be done before we create a new subtarget since any 216 // creation will depend on the TM and the code generation flags on the 217 // function that reside in TargetOptions. 218 resetTargetOptions(F); 219 I = llvm::make_unique<PPCSubtarget>( 220 TargetTriple, CPU, 221 // FIXME: It would be good to have the subtarget additions here 222 // not necessary. Anything that turns them on/off (overrides) ends 223 // up being put at the end of the feature string, but the defaults 224 // shouldn't require adding them. Fixing this means pulling Feature64Bit 225 // out of most of the target cpus in the .td file and making it set only 226 // as part of initialization via the TargetTriple. 227 computeFSAdditions(FS, getOptLevel(), getTargetTriple()), *this); 228 } 229 return I.get(); 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Pass Pipeline Configuration 234 //===----------------------------------------------------------------------===// 235 236 namespace { 237 /// PPC Code Generator Pass Configuration Options. 238 class PPCPassConfig : public TargetPassConfig { 239 public: 240 PPCPassConfig(PPCTargetMachine *TM, PassManagerBase &PM) 241 : TargetPassConfig(TM, PM) {} 242 243 PPCTargetMachine &getPPCTargetMachine() const { 244 return getTM<PPCTargetMachine>(); 245 } 246 247 void addIRPasses() override; 248 bool addPreISel() override; 249 bool addILPOpts() override; 250 bool addInstSelector() override; 251 void addMachineSSAOptimization() override; 252 void addPreRegAlloc() override; 253 void addPreSched2() override; 254 void addPreEmitPass() override; 255 }; 256 } // namespace 257 258 TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) { 259 return new PPCPassConfig(this, PM); 260 } 261 262 void PPCPassConfig::addIRPasses() { 263 addPass(createAtomicExpandPass(&getPPCTargetMachine())); 264 265 // For the BG/Q (or if explicitly requested), add explicit data prefetch 266 // intrinsics. 267 bool UsePrefetching = 268 Triple(TM->getTargetTriple()).getVendor() == Triple::BGQ && 269 getOptLevel() != CodeGenOpt::None; 270 if (EnablePrefetch.getNumOccurrences() > 0) 271 UsePrefetching = EnablePrefetch; 272 if (UsePrefetching) 273 addPass(createPPCLoopDataPrefetchPass()); 274 275 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 276 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 277 // and lower a GEP with multiple indices to either arithmetic operations or 278 // multiple GEPs with single index. 279 addPass(createSeparateConstOffsetFromGEPPass(TM, true)); 280 // Call EarlyCSE pass to find and remove subexpressions in the lowered 281 // result. 282 addPass(createEarlyCSEPass()); 283 // Do loop invariant code motion in case part of the lowered result is 284 // invariant. 285 addPass(createLICMPass()); 286 } 287 288 TargetPassConfig::addIRPasses(); 289 } 290 291 bool PPCPassConfig::addPreISel() { 292 if (!DisablePreIncPrep && getOptLevel() != CodeGenOpt::None) 293 addPass(createPPCLoopPreIncPrepPass(getPPCTargetMachine())); 294 295 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 296 addPass(createPPCCTRLoops(getPPCTargetMachine())); 297 298 return false; 299 } 300 301 bool PPCPassConfig::addILPOpts() { 302 addPass(&EarlyIfConverterID); 303 return true; 304 } 305 306 bool PPCPassConfig::addInstSelector() { 307 // Install an instruction selector. 308 addPass(createPPCISelDag(getPPCTargetMachine())); 309 310 #ifndef NDEBUG 311 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 312 addPass(createPPCCTRLoopsVerify()); 313 #endif 314 315 addPass(createPPCVSXCopyPass()); 316 return false; 317 } 318 319 void PPCPassConfig::addMachineSSAOptimization() { 320 TargetPassConfig::addMachineSSAOptimization(); 321 // For little endian, remove where possible the vector swap instructions 322 // introduced at code generation to normalize vector element order. 323 if (Triple(TM->getTargetTriple()).getArch() == Triple::ppc64le && 324 !DisableVSXSwapRemoval) 325 addPass(createPPCVSXSwapRemovalPass()); 326 } 327 328 void PPCPassConfig::addPreRegAlloc() { 329 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 330 insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID, 331 &PPCVSXFMAMutateID); 332 if (getPPCTargetMachine().getRelocationModel() == Reloc::PIC_) 333 addPass(createPPCTLSDynamicCallPass()); 334 if (EnableExtraTOCRegDeps) 335 addPass(createPPCTOCRegDepsPass()); 336 } 337 338 void PPCPassConfig::addPreSched2() { 339 if (getOptLevel() != CodeGenOpt::None) 340 addPass(&IfConverterID); 341 } 342 343 void PPCPassConfig::addPreEmitPass() { 344 if (getOptLevel() != CodeGenOpt::None) 345 addPass(createPPCEarlyReturnPass(), false); 346 // Must run branch selection immediately preceding the asm printer. 347 addPass(createPPCBranchSelectionPass(), false); 348 } 349 350 TargetIRAnalysis PPCTargetMachine::getTargetIRAnalysis() { 351 return TargetIRAnalysis( 352 [this](Function &F) { return TargetTransformInfo(PPCTTIImpl(this, F)); }); 353 } 354