1 //===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Top-level implementation for the PowerPC target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCTargetMachine.h" 15 #include "PPC.h" 16 #include "PPCTargetObjectFile.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/MC/MCStreamer.h" 20 #include "llvm/PassManager.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/FormattedStream.h" 23 #include "llvm/Support/TargetRegistry.h" 24 #include "llvm/Target/TargetOptions.h" 25 #include "llvm/Transforms/Scalar.h" 26 using namespace llvm; 27 28 static cl:: 29 opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden, 30 cl::desc("Disable CTR loops for PPC")); 31 32 static cl::opt<bool> 33 VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early", 34 cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early")); 35 36 static cl::opt<bool> 37 EnableGEPOpt("ppc-gep-opt", cl::Hidden, 38 cl::desc("Enable optimizations on complex GEPs"), 39 cl::init(true)); 40 41 extern "C" void LLVMInitializePowerPCTarget() { 42 // Register the targets 43 RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target); 44 RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target); 45 RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget); 46 } 47 48 /// Return the datalayout string of a subtarget. 49 static std::string getDataLayoutString(const Triple &T) { 50 bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; 51 std::string Ret; 52 53 // Most PPC* platforms are big endian, PPC64LE is little endian. 54 if (T.getArch() == Triple::ppc64le) 55 Ret = "e"; 56 else 57 Ret = "E"; 58 59 Ret += DataLayout::getManglingComponent(T); 60 61 // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit 62 // pointers. 63 if (!is64Bit || T.getOS() == Triple::Lv2) 64 Ret += "-p:32:32"; 65 66 // Note, the alignment values for f64 and i64 on ppc64 in Darwin 67 // documentation are wrong; these are correct (i.e. "what gcc does"). 68 if (is64Bit || !T.isOSDarwin()) 69 Ret += "-i64:64"; 70 else 71 Ret += "-f64:32:64"; 72 73 // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. 74 if (is64Bit) 75 Ret += "-n32:64"; 76 else 77 Ret += "-n32"; 78 79 return Ret; 80 } 81 82 static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, StringRef TT) { 83 std::string FullFS = FS; 84 Triple TargetTriple(TT); 85 86 // Make sure 64-bit features are available when CPUname is generic 87 if (TargetTriple.getArch() == Triple::ppc64 || 88 TargetTriple.getArch() == Triple::ppc64le) { 89 if (!FullFS.empty()) 90 FullFS = "+64bit," + FullFS; 91 else 92 FullFS = "+64bit"; 93 } 94 95 if (OL >= CodeGenOpt::Default) { 96 if (!FullFS.empty()) 97 FullFS = "+crbits," + FullFS; 98 else 99 FullFS = "+crbits"; 100 } 101 102 if (OL != CodeGenOpt::None) { 103 if (!FullFS.empty()) 104 FullFS = "+invariant-function-descriptors," + FullFS; 105 else 106 FullFS = "+invariant-function-descriptors"; 107 } 108 109 return FullFS; 110 } 111 112 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 113 // If it isn't a Mach-O file then it's going to be a linux ELF 114 // object file. 115 if (TT.isOSDarwin()) 116 return make_unique<TargetLoweringObjectFileMachO>(); 117 118 return make_unique<PPC64LinuxTargetObjectFile>(); 119 } 120 121 // The FeatureString here is a little subtle. We are modifying the feature string 122 // with what are (currently) non-function specific overrides as it goes into the 123 // LLVMTargetMachine constructor and then using the stored value in the 124 // Subtarget constructor below it. 125 PPCTargetMachine::PPCTargetMachine(const Target &T, StringRef TT, StringRef CPU, 126 StringRef FS, const TargetOptions &Options, 127 Reloc::Model RM, CodeModel::Model CM, 128 CodeGenOpt::Level OL) 129 : LLVMTargetMachine(T, TT, CPU, computeFSAdditions(FS, OL, TT), Options, RM, 130 CM, OL), 131 TLOF(createTLOF(Triple(getTargetTriple()))), 132 DL(getDataLayoutString(Triple(TT))), Subtarget(TT, CPU, TargetFS, *this) { 133 initAsmInfo(); 134 } 135 136 PPCTargetMachine::~PPCTargetMachine() {} 137 138 void PPC32TargetMachine::anchor() { } 139 140 PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT, 141 StringRef CPU, StringRef FS, 142 const TargetOptions &Options, 143 Reloc::Model RM, CodeModel::Model CM, 144 CodeGenOpt::Level OL) 145 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 146 } 147 148 void PPC64TargetMachine::anchor() { } 149 150 PPC64TargetMachine::PPC64TargetMachine(const Target &T, StringRef TT, 151 StringRef CPU, StringRef FS, 152 const TargetOptions &Options, 153 Reloc::Model RM, CodeModel::Model CM, 154 CodeGenOpt::Level OL) 155 : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 156 } 157 158 const PPCSubtarget * 159 PPCTargetMachine::getSubtargetImpl(const Function &F) const { 160 AttributeSet FnAttrs = F.getAttributes(); 161 Attribute CPUAttr = 162 FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu"); 163 Attribute FSAttr = 164 FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features"); 165 166 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 167 ? CPUAttr.getValueAsString().str() 168 : TargetCPU; 169 std::string FS = !FSAttr.hasAttribute(Attribute::None) 170 ? FSAttr.getValueAsString().str() 171 : TargetFS; 172 173 auto &I = SubtargetMap[CPU + FS]; 174 if (!I) { 175 // This needs to be done before we create a new subtarget since any 176 // creation will depend on the TM and the code generation flags on the 177 // function that reside in TargetOptions. 178 resetTargetOptions(F); 179 I = llvm::make_unique<PPCSubtarget>(TargetTriple, CPU, FS, *this); 180 } 181 return I.get(); 182 } 183 184 //===----------------------------------------------------------------------===// 185 // Pass Pipeline Configuration 186 //===----------------------------------------------------------------------===// 187 188 namespace { 189 /// PPC Code Generator Pass Configuration Options. 190 class PPCPassConfig : public TargetPassConfig { 191 public: 192 PPCPassConfig(PPCTargetMachine *TM, PassManagerBase &PM) 193 : TargetPassConfig(TM, PM) {} 194 195 PPCTargetMachine &getPPCTargetMachine() const { 196 return getTM<PPCTargetMachine>(); 197 } 198 199 const PPCSubtarget &getPPCSubtarget() const { 200 return *getPPCTargetMachine().getSubtargetImpl(); 201 } 202 203 void addIRPasses() override; 204 bool addPreISel() override; 205 bool addILPOpts() override; 206 bool addInstSelector() override; 207 void addPreRegAlloc() override; 208 void addPreSched2() override; 209 void addPreEmitPass() override; 210 }; 211 } // namespace 212 213 TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) { 214 return new PPCPassConfig(this, PM); 215 } 216 217 void PPCPassConfig::addIRPasses() { 218 addPass(createAtomicExpandPass(&getPPCTargetMachine())); 219 220 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 221 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 222 // and lower a GEP with multiple indices to either arithmetic operations or 223 // multiple GEPs with single index. 224 addPass(createSeparateConstOffsetFromGEPPass(TM, true)); 225 // Call EarlyCSE pass to find and remove subexpressions in the lowered 226 // result. 227 addPass(createEarlyCSEPass()); 228 // Do loop invariant code motion in case part of the lowered result is 229 // invariant. 230 addPass(createLICMPass()); 231 } 232 233 TargetPassConfig::addIRPasses(); 234 } 235 236 bool PPCPassConfig::addPreISel() { 237 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 238 addPass(createPPCCTRLoops(getPPCTargetMachine())); 239 240 return false; 241 } 242 243 bool PPCPassConfig::addILPOpts() { 244 addPass(&EarlyIfConverterID); 245 return true; 246 } 247 248 bool PPCPassConfig::addInstSelector() { 249 // Install an instruction selector. 250 addPass(createPPCISelDag(getPPCTargetMachine())); 251 252 #ifndef NDEBUG 253 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 254 addPass(createPPCCTRLoopsVerify()); 255 #endif 256 257 addPass(createPPCVSXCopyPass()); 258 return false; 259 } 260 261 void PPCPassConfig::addPreRegAlloc() { 262 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 263 insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID, 264 &PPCVSXFMAMutateID); 265 } 266 267 void PPCPassConfig::addPreSched2() { 268 addPass(createPPCVSXCopyCleanupPass(), false); 269 270 if (getOptLevel() != CodeGenOpt::None) 271 addPass(&IfConverterID); 272 } 273 274 void PPCPassConfig::addPreEmitPass() { 275 if (getOptLevel() != CodeGenOpt::None) 276 addPass(createPPCEarlyReturnPass(), false); 277 // Must run branch selection immediately preceding the asm printer. 278 addPass(createPPCBranchSelectionPass(), false); 279 } 280 281 void PPCTargetMachine::addAnalysisPasses(PassManagerBase &PM) { 282 // Add first the target-independent BasicTTI pass, then our PPC pass. This 283 // allows the PPC pass to delegate to the target independent layer when 284 // appropriate. 285 PM.add(createBasicTargetTransformInfoPass(this)); 286 PM.add(createPPCTargetTransformInfoPass(this)); 287 } 288