1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/MachineSizeOpts.h" 26 #include "llvm/CodeGen/RegisterBankInfo.h" 27 #include "llvm/CodeGen/StackProtector.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/Target/TargetMachine.h" 34 35 #define DEBUG_TYPE "globalisel-utils" 36 37 using namespace llvm; 38 using namespace MIPatternMatch; 39 40 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 41 const TargetInstrInfo &TII, 42 const RegisterBankInfo &RBI, Register Reg, 43 const TargetRegisterClass &RegClass) { 44 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 45 return MRI.createVirtualRegister(&RegClass); 46 47 return Reg; 48 } 49 50 Register llvm::constrainOperandRegClass( 51 const MachineFunction &MF, const TargetRegisterInfo &TRI, 52 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 53 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 54 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 55 Register Reg = RegMO.getReg(); 56 // Assume physical registers are properly constrained. 57 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 58 59 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 60 // If we created a new virtual register because the class is not compatible 61 // then create a copy between the new and the old register. 62 if (ConstrainedReg != Reg) { 63 MachineBasicBlock::iterator InsertIt(&InsertPt); 64 MachineBasicBlock &MBB = *InsertPt.getParent(); 65 // FIXME: The copy needs to have the classes constrained for its operands. 66 // Use operand's regbank to get the class for old register (Reg). 67 if (RegMO.isUse()) { 68 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 69 TII.get(TargetOpcode::COPY), ConstrainedReg) 70 .addReg(Reg); 71 } else { 72 assert(RegMO.isDef() && "Must be a definition"); 73 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 74 TII.get(TargetOpcode::COPY), Reg) 75 .addReg(ConstrainedReg); 76 } 77 if (GISelChangeObserver *Observer = MF.getObserver()) { 78 Observer->changingInstr(*RegMO.getParent()); 79 } 80 RegMO.setReg(ConstrainedReg); 81 if (GISelChangeObserver *Observer = MF.getObserver()) { 82 Observer->changedInstr(*RegMO.getParent()); 83 } 84 } else { 85 if (GISelChangeObserver *Observer = MF.getObserver()) { 86 if (!RegMO.isDef()) { 87 MachineInstr *RegDef = MRI.getVRegDef(Reg); 88 Observer->changedInstr(*RegDef); 89 } 90 Observer->changingAllUsesOfReg(MRI, Reg); 91 Observer->finishedChangingAllUsesOfReg(); 92 } 93 } 94 return ConstrainedReg; 95 } 96 97 Register llvm::constrainOperandRegClass( 98 const MachineFunction &MF, const TargetRegisterInfo &TRI, 99 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 100 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 101 MachineOperand &RegMO, unsigned OpIdx) { 102 Register Reg = RegMO.getReg(); 103 // Assume physical registers are properly constrained. 104 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 105 106 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 107 // Some of the target independent instructions, like COPY, may not impose any 108 // register class constraints on some of their operands: If it's a use, we can 109 // skip constraining as the instruction defining the register would constrain 110 // it. 111 112 if (OpRC) { 113 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 114 // can have multiple regbanks for a superclass that combine different 115 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 116 // resolved by targets during regbankselect should not be overridden. 117 if (const auto *SubRC = TRI.getCommonSubClass( 118 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 119 OpRC = SubRC; 120 121 OpRC = TRI.getAllocatableClass(OpRC); 122 } 123 124 if (!OpRC) { 125 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 126 "Register class constraint is required unless either the " 127 "instruction is target independent or the operand is a use"); 128 // FIXME: Just bailing out like this here could be not enough, unless we 129 // expect the users of this function to do the right thing for PHIs and 130 // COPY: 131 // v1 = COPY v0 132 // v2 = COPY v1 133 // v1 here may end up not being constrained at all. Please notice that to 134 // reproduce the issue we likely need a destination pattern of a selection 135 // rule producing such extra copies, not just an input GMIR with them as 136 // every existing target using selectImpl handles copies before calling it 137 // and they never reach this function. 138 return Reg; 139 } 140 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 141 RegMO); 142 } 143 144 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 145 const TargetInstrInfo &TII, 146 const TargetRegisterInfo &TRI, 147 const RegisterBankInfo &RBI) { 148 assert(!isPreISelGenericOpcode(I.getOpcode()) && 149 "A selected instruction is expected"); 150 MachineBasicBlock &MBB = *I.getParent(); 151 MachineFunction &MF = *MBB.getParent(); 152 MachineRegisterInfo &MRI = MF.getRegInfo(); 153 154 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 155 MachineOperand &MO = I.getOperand(OpI); 156 157 // There's nothing to be done on non-register operands. 158 if (!MO.isReg()) 159 continue; 160 161 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 162 assert(MO.isReg() && "Unsupported non-reg operand"); 163 164 Register Reg = MO.getReg(); 165 // Physical registers don't need to be constrained. 166 if (Register::isPhysicalRegister(Reg)) 167 continue; 168 169 // Register operands with a value of 0 (e.g. predicate operands) don't need 170 // to be constrained. 171 if (Reg == 0) 172 continue; 173 174 // If the operand is a vreg, we should constrain its regclass, and only 175 // insert COPYs if that's impossible. 176 // constrainOperandRegClass does that for us. 177 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 178 179 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 180 // done. 181 if (MO.isUse()) { 182 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 183 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 184 I.tieOperands(DefIdx, OpI); 185 } 186 } 187 return true; 188 } 189 190 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 191 MachineRegisterInfo &MRI) { 192 // Give up if either DstReg or SrcReg is a physical register. 193 if (DstReg.isPhysical() || SrcReg.isPhysical()) 194 return false; 195 // Give up if the types don't match. 196 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 197 return false; 198 // Replace if either DstReg has no constraints or the register 199 // constraints match. 200 return !MRI.getRegClassOrRegBank(DstReg) || 201 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); 202 } 203 204 bool llvm::isTriviallyDead(const MachineInstr &MI, 205 const MachineRegisterInfo &MRI) { 206 // FIXME: This logical is mostly duplicated with 207 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 208 // MachineInstr::isLabel? 209 210 // Don't delete frame allocation labels. 211 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 212 return false; 213 // LIFETIME markers should be preserved even if they seem dead. 214 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 215 MI.getOpcode() == TargetOpcode::LIFETIME_END) 216 return false; 217 218 // If we can move an instruction, we can remove it. Otherwise, it has 219 // a side-effect of some sort. 220 bool SawStore = false; 221 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 222 return false; 223 224 // Instructions without side-effects are dead iff they only define dead vregs. 225 for (auto &MO : MI.operands()) { 226 if (!MO.isReg() || !MO.isDef()) 227 continue; 228 229 Register Reg = MO.getReg(); 230 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) 231 return false; 232 } 233 return true; 234 } 235 236 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 237 MachineFunction &MF, 238 const TargetPassConfig &TPC, 239 MachineOptimizationRemarkEmitter &MORE, 240 MachineOptimizationRemarkMissed &R) { 241 bool IsFatal = Severity == DS_Error && 242 TPC.isGlobalISelAbortEnabled(); 243 // Print the function name explicitly if we don't have a debug location (which 244 // makes the diagnostic less useful) or if we're going to emit a raw error. 245 if (!R.getLocation().isValid() || IsFatal) 246 R << (" (in function: " + MF.getName() + ")").str(); 247 248 if (IsFatal) 249 report_fatal_error(Twine(R.getMsg())); 250 else 251 MORE.emit(R); 252 } 253 254 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 255 MachineOptimizationRemarkEmitter &MORE, 256 MachineOptimizationRemarkMissed &R) { 257 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 258 } 259 260 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 261 MachineOptimizationRemarkEmitter &MORE, 262 MachineOptimizationRemarkMissed &R) { 263 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 264 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 265 } 266 267 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 268 MachineOptimizationRemarkEmitter &MORE, 269 const char *PassName, StringRef Msg, 270 const MachineInstr &MI) { 271 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 272 MI.getDebugLoc(), MI.getParent()); 273 R << Msg; 274 // Printing MI is expensive; only do it if expensive remarks are enabled. 275 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 276 R << ": " << ore::MNV("Inst", MI); 277 reportGISelFailure(MF, TPC, MORE, R); 278 } 279 280 Optional<APInt> llvm::getIConstantVRegVal(Register VReg, 281 const MachineRegisterInfo &MRI) { 282 Optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 283 VReg, MRI, /*LookThroughInstrs*/ false); 284 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 285 "Value found while looking through instrs"); 286 if (!ValAndVReg) 287 return None; 288 return ValAndVReg->Value; 289 } 290 291 Optional<int64_t> 292 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 293 Optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 294 if (Val && Val->getBitWidth() <= 64) 295 return Val->getSExtValue(); 296 return None; 297 } 298 299 namespace { 300 301 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 302 typedef std::function<Optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 303 304 Optional<ValueAndVReg> getConstantVRegValWithLookThrough( 305 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 306 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 307 bool LookThroughAnyExt = false) { 308 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 309 MachineInstr *MI; 310 311 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 312 LookThroughInstrs) { 313 switch (MI->getOpcode()) { 314 case TargetOpcode::G_ANYEXT: 315 if (!LookThroughAnyExt) 316 return None; 317 LLVM_FALLTHROUGH; 318 case TargetOpcode::G_TRUNC: 319 case TargetOpcode::G_SEXT: 320 case TargetOpcode::G_ZEXT: 321 SeenOpcodes.push_back(std::make_pair( 322 MI->getOpcode(), 323 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 324 VReg = MI->getOperand(1).getReg(); 325 break; 326 case TargetOpcode::COPY: 327 VReg = MI->getOperand(1).getReg(); 328 if (Register::isPhysicalRegister(VReg)) 329 return None; 330 break; 331 case TargetOpcode::G_INTTOPTR: 332 VReg = MI->getOperand(1).getReg(); 333 break; 334 default: 335 return None; 336 } 337 } 338 if (!MI || !IsConstantOpcode(MI)) 339 return None; 340 341 Optional<APInt> MaybeVal = getAPCstValue(MI); 342 if (!MaybeVal) 343 return None; 344 APInt &Val = *MaybeVal; 345 while (!SeenOpcodes.empty()) { 346 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 347 switch (OpcodeAndSize.first) { 348 case TargetOpcode::G_TRUNC: 349 Val = Val.trunc(OpcodeAndSize.second); 350 break; 351 case TargetOpcode::G_ANYEXT: 352 case TargetOpcode::G_SEXT: 353 Val = Val.sext(OpcodeAndSize.second); 354 break; 355 case TargetOpcode::G_ZEXT: 356 Val = Val.zext(OpcodeAndSize.second); 357 break; 358 } 359 } 360 361 return ValueAndVReg{Val, VReg}; 362 } 363 364 bool isIConstant(const MachineInstr *MI) { 365 if (!MI) 366 return false; 367 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 368 } 369 370 bool isFConstant(const MachineInstr *MI) { 371 if (!MI) 372 return false; 373 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 374 } 375 376 bool isAnyConstant(const MachineInstr *MI) { 377 if (!MI) 378 return false; 379 unsigned Opc = MI->getOpcode(); 380 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 381 } 382 383 Optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 384 const MachineOperand &CstVal = MI->getOperand(1); 385 if (CstVal.isCImm()) 386 return CstVal.getCImm()->getValue(); 387 return None; 388 } 389 390 Optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 391 const MachineOperand &CstVal = MI->getOperand(1); 392 if (CstVal.isCImm()) 393 return CstVal.getCImm()->getValue(); 394 if (CstVal.isFPImm()) 395 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 396 return None; 397 } 398 399 } // end anonymous namespace 400 401 Optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 402 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 403 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 404 getCImmAsAPInt, LookThroughInstrs); 405 } 406 407 Optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 408 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 409 bool LookThroughAnyExt) { 410 return getConstantVRegValWithLookThrough( 411 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 412 LookThroughAnyExt); 413 } 414 415 Optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 416 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 417 auto Reg = getConstantVRegValWithLookThrough( 418 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 419 if (!Reg) 420 return None; 421 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 422 Reg->VReg}; 423 } 424 425 const ConstantFP * 426 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 427 MachineInstr *MI = MRI.getVRegDef(VReg); 428 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 429 return nullptr; 430 return MI->getOperand(1).getFPImm(); 431 } 432 433 Optional<DefinitionAndSourceRegister> 434 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 435 Register DefSrcReg = Reg; 436 auto *DefMI = MRI.getVRegDef(Reg); 437 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 438 if (!DstTy.isValid()) 439 return None; 440 unsigned Opc = DefMI->getOpcode(); 441 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 442 Register SrcReg = DefMI->getOperand(1).getReg(); 443 auto SrcTy = MRI.getType(SrcReg); 444 if (!SrcTy.isValid()) 445 break; 446 DefMI = MRI.getVRegDef(SrcReg); 447 DefSrcReg = SrcReg; 448 Opc = DefMI->getOpcode(); 449 } 450 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 451 } 452 453 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 454 const MachineRegisterInfo &MRI) { 455 Optional<DefinitionAndSourceRegister> DefSrcReg = 456 getDefSrcRegIgnoringCopies(Reg, MRI); 457 return DefSrcReg ? DefSrcReg->MI : nullptr; 458 } 459 460 Register llvm::getSrcRegIgnoringCopies(Register Reg, 461 const MachineRegisterInfo &MRI) { 462 Optional<DefinitionAndSourceRegister> DefSrcReg = 463 getDefSrcRegIgnoringCopies(Reg, MRI); 464 return DefSrcReg ? DefSrcReg->Reg : Register(); 465 } 466 467 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 468 const MachineRegisterInfo &MRI) { 469 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 470 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 471 } 472 473 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 474 if (Size == 32) 475 return APFloat(float(Val)); 476 if (Size == 64) 477 return APFloat(Val); 478 if (Size != 16) 479 llvm_unreachable("Unsupported FPConstant size"); 480 bool Ignored; 481 APFloat APF(Val); 482 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 483 return APF; 484 } 485 486 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, 487 const Register Op2, 488 const MachineRegisterInfo &MRI) { 489 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 490 if (!MaybeOp2Cst) 491 return None; 492 493 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 494 if (!MaybeOp1Cst) 495 return None; 496 497 const APInt &C1 = MaybeOp1Cst->Value; 498 const APInt &C2 = MaybeOp2Cst->Value; 499 switch (Opcode) { 500 default: 501 break; 502 case TargetOpcode::G_ADD: 503 case TargetOpcode::G_PTR_ADD: 504 return C1 + C2; 505 case TargetOpcode::G_AND: 506 return C1 & C2; 507 case TargetOpcode::G_ASHR: 508 return C1.ashr(C2); 509 case TargetOpcode::G_LSHR: 510 return C1.lshr(C2); 511 case TargetOpcode::G_MUL: 512 return C1 * C2; 513 case TargetOpcode::G_OR: 514 return C1 | C2; 515 case TargetOpcode::G_SHL: 516 return C1 << C2; 517 case TargetOpcode::G_SUB: 518 return C1 - C2; 519 case TargetOpcode::G_XOR: 520 return C1 ^ C2; 521 case TargetOpcode::G_UDIV: 522 if (!C2.getBoolValue()) 523 break; 524 return C1.udiv(C2); 525 case TargetOpcode::G_SDIV: 526 if (!C2.getBoolValue()) 527 break; 528 return C1.sdiv(C2); 529 case TargetOpcode::G_UREM: 530 if (!C2.getBoolValue()) 531 break; 532 return C1.urem(C2); 533 case TargetOpcode::G_SREM: 534 if (!C2.getBoolValue()) 535 break; 536 return C1.srem(C2); 537 case TargetOpcode::G_SMIN: 538 return APIntOps::smin(C1, C2); 539 case TargetOpcode::G_SMAX: 540 return APIntOps::smax(C1, C2); 541 case TargetOpcode::G_UMIN: 542 return APIntOps::umin(C1, C2); 543 case TargetOpcode::G_UMAX: 544 return APIntOps::umax(C1, C2); 545 } 546 547 return None; 548 } 549 550 Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 551 const Register Op2, 552 const MachineRegisterInfo &MRI) { 553 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 554 if (!Op2Cst) 555 return None; 556 557 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 558 if (!Op1Cst) 559 return None; 560 561 APFloat C1 = Op1Cst->getValueAPF(); 562 const APFloat &C2 = Op2Cst->getValueAPF(); 563 switch (Opcode) { 564 case TargetOpcode::G_FADD: 565 C1.add(C2, APFloat::rmNearestTiesToEven); 566 return C1; 567 case TargetOpcode::G_FSUB: 568 C1.subtract(C2, APFloat::rmNearestTiesToEven); 569 return C1; 570 case TargetOpcode::G_FMUL: 571 C1.multiply(C2, APFloat::rmNearestTiesToEven); 572 return C1; 573 case TargetOpcode::G_FDIV: 574 C1.divide(C2, APFloat::rmNearestTiesToEven); 575 return C1; 576 case TargetOpcode::G_FREM: 577 C1.mod(C2); 578 return C1; 579 case TargetOpcode::G_FCOPYSIGN: 580 C1.copySign(C2); 581 return C1; 582 case TargetOpcode::G_FMINNUM: 583 return minnum(C1, C2); 584 case TargetOpcode::G_FMAXNUM: 585 return maxnum(C1, C2); 586 case TargetOpcode::G_FMINIMUM: 587 return minimum(C1, C2); 588 case TargetOpcode::G_FMAXIMUM: 589 return maximum(C1, C2); 590 case TargetOpcode::G_FMINNUM_IEEE: 591 case TargetOpcode::G_FMAXNUM_IEEE: 592 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 593 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 594 // and currently there isn't a nice wrapper in APFloat for the version with 595 // correct snan handling. 596 break; 597 default: 598 break; 599 } 600 601 return None; 602 } 603 604 Register llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 605 const Register Op2, 606 const MachineRegisterInfo &MRI, 607 MachineIRBuilder &MIB) { 608 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 609 if (!SrcVec2) 610 return Register(); 611 612 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 613 if (!SrcVec1) 614 return Register(); 615 616 const LLT EltTy = MRI.getType(SrcVec1->getSourceReg(0)); 617 618 SmallVector<Register, 16> FoldedElements; 619 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 620 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 621 SrcVec2->getSourceReg(Idx), MRI); 622 if (!MaybeCst) 623 return Register(); 624 auto FoldedCstReg = MIB.buildConstant(EltTy, *MaybeCst).getReg(0); 625 FoldedElements.emplace_back(FoldedCstReg); 626 } 627 // Create the new vector constant. 628 auto CstVec = 629 MIB.buildBuildVector(MRI.getType(SrcVec1->getReg(0)), FoldedElements); 630 return CstVec.getReg(0); 631 } 632 633 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 634 bool SNaN) { 635 const MachineInstr *DefMI = MRI.getVRegDef(Val); 636 if (!DefMI) 637 return false; 638 639 const TargetMachine& TM = DefMI->getMF()->getTarget(); 640 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 641 return true; 642 643 // If the value is a constant, we can obviously see if it is a NaN or not. 644 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 645 return !FPVal->getValueAPF().isNaN() || 646 (SNaN && !FPVal->getValueAPF().isSignaling()); 647 } 648 649 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 650 for (const auto &Op : DefMI->uses()) 651 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 652 return false; 653 return true; 654 } 655 656 switch (DefMI->getOpcode()) { 657 default: 658 break; 659 case TargetOpcode::G_FMINNUM_IEEE: 660 case TargetOpcode::G_FMAXNUM_IEEE: { 661 if (SNaN) 662 return true; 663 // This can return a NaN if either operand is an sNaN, or if both operands 664 // are NaN. 665 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 666 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 667 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 668 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 669 } 670 case TargetOpcode::G_FMINNUM: 671 case TargetOpcode::G_FMAXNUM: { 672 // Only one needs to be known not-nan, since it will be returned if the 673 // other ends up being one. 674 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 675 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 676 } 677 } 678 679 if (SNaN) { 680 // FP operations quiet. For now, just handle the ones inserted during 681 // legalization. 682 switch (DefMI->getOpcode()) { 683 case TargetOpcode::G_FPEXT: 684 case TargetOpcode::G_FPTRUNC: 685 case TargetOpcode::G_FCANONICALIZE: 686 return true; 687 default: 688 return false; 689 } 690 } 691 692 return false; 693 } 694 695 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 696 const MachinePointerInfo &MPO) { 697 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>(); 698 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 699 MachineFrameInfo &MFI = MF.getFrameInfo(); 700 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 701 MPO.Offset); 702 } 703 704 if (const Value *V = MPO.V.dyn_cast<const Value *>()) { 705 const Module *M = MF.getFunction().getParent(); 706 return V->getPointerAlignment(M->getDataLayout()); 707 } 708 709 return Align(1); 710 } 711 712 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 713 const TargetInstrInfo &TII, 714 MCRegister PhysReg, 715 const TargetRegisterClass &RC, 716 const DebugLoc &DL, LLT RegTy) { 717 MachineBasicBlock &EntryMBB = MF.front(); 718 MachineRegisterInfo &MRI = MF.getRegInfo(); 719 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 720 if (LiveIn) { 721 MachineInstr *Def = MRI.getVRegDef(LiveIn); 722 if (Def) { 723 // FIXME: Should the verifier check this is in the entry block? 724 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 725 return LiveIn; 726 } 727 728 // It's possible the incoming argument register and copy was added during 729 // lowering, but later deleted due to being/becoming dead. If this happens, 730 // re-insert the copy. 731 } else { 732 // The live in register was not present, so add it. 733 LiveIn = MF.addLiveIn(PhysReg, &RC); 734 if (RegTy.isValid()) 735 MRI.setType(LiveIn, RegTy); 736 } 737 738 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 739 .addReg(PhysReg); 740 if (!EntryMBB.isLiveIn(PhysReg)) 741 EntryMBB.addLiveIn(PhysReg); 742 return LiveIn; 743 } 744 745 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, 746 uint64_t Imm, 747 const MachineRegisterInfo &MRI) { 748 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 749 if (MaybeOp1Cst) { 750 switch (Opcode) { 751 default: 752 break; 753 case TargetOpcode::G_SEXT_INREG: { 754 LLT Ty = MRI.getType(Op1); 755 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 756 } 757 } 758 } 759 return None; 760 } 761 762 Optional<APFloat> llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, 763 Register Src, 764 const MachineRegisterInfo &MRI) { 765 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 766 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 767 APFloat DstVal(getFltSemanticForLLT(DstTy)); 768 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 769 APFloat::rmNearestTiesToEven); 770 return DstVal; 771 } 772 return None; 773 } 774 775 Optional<SmallVector<unsigned>> 776 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 777 LLT Ty = MRI.getType(Src); 778 SmallVector<unsigned> FoldedCTLZs; 779 auto tryFoldScalar = [&](Register R) -> Optional<unsigned> { 780 auto MaybeCst = getIConstantVRegVal(R, MRI); 781 if (!MaybeCst) 782 return None; 783 return MaybeCst->countLeadingZeros(); 784 }; 785 if (Ty.isVector()) { 786 // Try to constant fold each element. 787 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 788 if (!BV) 789 return None; 790 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 791 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 792 FoldedCTLZs.emplace_back(*MaybeFold); 793 continue; 794 } 795 return None; 796 } 797 return FoldedCTLZs; 798 } 799 if (auto MaybeCst = tryFoldScalar(Src)) { 800 FoldedCTLZs.emplace_back(*MaybeCst); 801 return FoldedCTLZs; 802 } 803 return None; 804 } 805 806 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 807 GISelKnownBits *KB) { 808 Optional<DefinitionAndSourceRegister> DefSrcReg = 809 getDefSrcRegIgnoringCopies(Reg, MRI); 810 if (!DefSrcReg) 811 return false; 812 813 const MachineInstr &MI = *DefSrcReg->MI; 814 const LLT Ty = MRI.getType(Reg); 815 816 switch (MI.getOpcode()) { 817 case TargetOpcode::G_CONSTANT: { 818 unsigned BitWidth = Ty.getScalarSizeInBits(); 819 const ConstantInt *CI = MI.getOperand(1).getCImm(); 820 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 821 } 822 case TargetOpcode::G_SHL: { 823 // A left-shift of a constant one will have exactly one bit set because 824 // shifting the bit off the end is undefined. 825 826 // TODO: Constant splat 827 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 828 if (*ConstLHS == 1) 829 return true; 830 } 831 832 break; 833 } 834 case TargetOpcode::G_LSHR: { 835 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 836 if (ConstLHS->isSignMask()) 837 return true; 838 } 839 840 break; 841 } 842 case TargetOpcode::G_BUILD_VECTOR: { 843 // TODO: Probably should have a recursion depth guard since you could have 844 // bitcasted vector elements. 845 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 846 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 847 return false; 848 849 return true; 850 } 851 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 852 // Only handle constants since we would need to know if number of leading 853 // zeros is greater than the truncation amount. 854 const unsigned BitWidth = Ty.getScalarSizeInBits(); 855 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 856 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 857 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 858 return false; 859 } 860 861 return true; 862 } 863 default: 864 break; 865 } 866 867 if (!KB) 868 return false; 869 870 // More could be done here, though the above checks are enough 871 // to handle some common cases. 872 873 // Fall back to computeKnownBits to catch other known cases. 874 KnownBits Known = KB->getKnownBits(Reg); 875 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 876 } 877 878 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 879 AU.addPreserved<StackProtector>(); 880 } 881 882 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { 883 unsigned Mul = OrigSize * TargetSize; 884 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); 885 return Mul / GCDSize; 886 } 887 888 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 889 const unsigned OrigSize = OrigTy.getSizeInBits(); 890 const unsigned TargetSize = TargetTy.getSizeInBits(); 891 892 if (OrigSize == TargetSize) 893 return OrigTy; 894 895 if (OrigTy.isVector()) { 896 const LLT OrigElt = OrigTy.getElementType(); 897 898 if (TargetTy.isVector()) { 899 const LLT TargetElt = TargetTy.getElementType(); 900 901 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 902 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), 903 TargetTy.getNumElements()); 904 // Prefer the original element type. 905 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements(); 906 return LLT::vector(Mul.divideCoefficientBy(GCDElts), 907 OrigTy.getElementType()); 908 } 909 } else { 910 if (OrigElt.getSizeInBits() == TargetSize) 911 return OrigTy; 912 } 913 914 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 915 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 916 } 917 918 if (TargetTy.isVector()) { 919 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 920 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy); 921 } 922 923 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 924 925 // Preserve pointer types. 926 if (LCMSize == OrigSize) 927 return OrigTy; 928 if (LCMSize == TargetSize) 929 return TargetTy; 930 931 return LLT::scalar(LCMSize); 932 } 933 934 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 935 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 936 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 937 return getLCMType(OrigTy, TargetTy); 938 939 unsigned OrigTyNumElts = OrigTy.getNumElements(); 940 unsigned TargetTyNumElts = TargetTy.getNumElements(); 941 if (OrigTyNumElts % TargetTyNumElts == 0) 942 return OrigTy; 943 944 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 945 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 946 OrigTy.getElementType()); 947 } 948 949 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 950 const unsigned OrigSize = OrigTy.getSizeInBits(); 951 const unsigned TargetSize = TargetTy.getSizeInBits(); 952 953 if (OrigSize == TargetSize) 954 return OrigTy; 955 956 if (OrigTy.isVector()) { 957 LLT OrigElt = OrigTy.getElementType(); 958 if (TargetTy.isVector()) { 959 LLT TargetElt = TargetTy.getElementType(); 960 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 961 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 962 TargetTy.getNumElements()); 963 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt); 964 } 965 } else { 966 // If the source is a vector of pointers, return a pointer element. 967 if (OrigElt.getSizeInBits() == TargetSize) 968 return OrigElt; 969 } 970 971 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 972 if (GCD == OrigElt.getSizeInBits()) 973 return OrigElt; 974 975 // If we can't produce the original element type, we have to use a smaller 976 // scalar. 977 if (GCD < OrigElt.getSizeInBits()) 978 return LLT::scalar(GCD); 979 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt); 980 } 981 982 if (TargetTy.isVector()) { 983 // Try to preserve the original element type. 984 LLT TargetElt = TargetTy.getElementType(); 985 if (TargetElt.getSizeInBits() == OrigSize) 986 return OrigTy; 987 } 988 989 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 990 return LLT::scalar(GCD); 991 } 992 993 Optional<int> llvm::getSplatIndex(MachineInstr &MI) { 994 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 995 "Only G_SHUFFLE_VECTOR can have a splat index!"); 996 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 997 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 998 999 // If all elements are undefined, this shuffle can be considered a splat. 1000 // Return 0 for better potential for callers to simplify. 1001 if (FirstDefinedIdx == Mask.end()) 1002 return 0; 1003 1004 // Make sure all remaining elements are either undef or the same 1005 // as the first non-undef value. 1006 int SplatValue = *FirstDefinedIdx; 1007 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1008 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1009 return None; 1010 1011 return SplatValue; 1012 } 1013 1014 static bool isBuildVectorOp(unsigned Opcode) { 1015 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1016 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1017 } 1018 1019 namespace { 1020 1021 Optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1022 const MachineRegisterInfo &MRI, 1023 bool AllowUndef) { 1024 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1025 if (!MI) 1026 return None; 1027 1028 if (!isBuildVectorOp(MI->getOpcode())) 1029 return None; 1030 1031 Optional<ValueAndVReg> SplatValAndReg = None; 1032 for (MachineOperand &Op : MI->uses()) { 1033 Register Element = Op.getReg(); 1034 auto ElementValAndReg = 1035 getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1036 1037 // If AllowUndef, treat undef as value that will result in a constant splat. 1038 if (!ElementValAndReg) { 1039 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1040 continue; 1041 return None; 1042 } 1043 1044 // Record splat value 1045 if (!SplatValAndReg) 1046 SplatValAndReg = ElementValAndReg; 1047 1048 // Different constant then the one already recorded, not a constant splat. 1049 if (SplatValAndReg->Value != ElementValAndReg->Value) 1050 return None; 1051 } 1052 1053 return SplatValAndReg; 1054 } 1055 1056 } // end anonymous namespace 1057 1058 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1059 const MachineRegisterInfo &MRI, 1060 int64_t SplatValue, bool AllowUndef) { 1061 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1062 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1063 return false; 1064 } 1065 1066 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1067 const MachineRegisterInfo &MRI, 1068 int64_t SplatValue, bool AllowUndef) { 1069 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1070 AllowUndef); 1071 } 1072 1073 Optional<int64_t> 1074 llvm::getBuildVectorConstantSplat(const MachineInstr &MI, 1075 const MachineRegisterInfo &MRI) { 1076 if (auto SplatValAndReg = 1077 getAnyConstantSplat(MI.getOperand(0).getReg(), MRI, false)) 1078 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1079 return None; 1080 } 1081 1082 Optional<FPValueAndVReg> llvm::getFConstantSplat(Register VReg, 1083 const MachineRegisterInfo &MRI, 1084 bool AllowUndef) { 1085 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1086 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1087 return None; 1088 } 1089 1090 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1091 const MachineRegisterInfo &MRI, 1092 bool AllowUndef) { 1093 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1094 } 1095 1096 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1097 const MachineRegisterInfo &MRI, 1098 bool AllowUndef) { 1099 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1100 } 1101 1102 Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI, 1103 const MachineRegisterInfo &MRI) { 1104 unsigned Opc = MI.getOpcode(); 1105 if (!isBuildVectorOp(Opc)) 1106 return None; 1107 if (auto Splat = getBuildVectorConstantSplat(MI, MRI)) 1108 return RegOrConstant(*Splat); 1109 auto Reg = MI.getOperand(1).getReg(); 1110 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()), 1111 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1112 return None; 1113 return RegOrConstant(Reg); 1114 } 1115 1116 static bool isConstantScalar(const MachineInstr &MI, 1117 const MachineRegisterInfo &MRI, 1118 bool AllowFP = true, 1119 bool AllowOpaqueConstants = true) { 1120 switch (MI.getOpcode()) { 1121 case TargetOpcode::G_CONSTANT: 1122 case TargetOpcode::G_IMPLICIT_DEF: 1123 return true; 1124 case TargetOpcode::G_FCONSTANT: 1125 return AllowFP; 1126 case TargetOpcode::G_GLOBAL_VALUE: 1127 case TargetOpcode::G_FRAME_INDEX: 1128 case TargetOpcode::G_BLOCK_ADDR: 1129 case TargetOpcode::G_JUMP_TABLE: 1130 return AllowOpaqueConstants; 1131 default: 1132 return false; 1133 } 1134 } 1135 1136 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1137 const MachineRegisterInfo &MRI) { 1138 Register Def = MI.getOperand(0).getReg(); 1139 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1140 return true; 1141 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1142 if (!BV) 1143 return false; 1144 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1145 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1146 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1147 continue; 1148 return false; 1149 } 1150 return true; 1151 } 1152 1153 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1154 const MachineRegisterInfo &MRI, 1155 bool AllowFP, bool AllowOpaqueConstants) { 1156 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1157 return true; 1158 1159 if (!isBuildVectorOp(MI.getOpcode())) 1160 return false; 1161 1162 const unsigned NumOps = MI.getNumOperands(); 1163 for (unsigned I = 1; I != NumOps; ++I) { 1164 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1165 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1166 return false; 1167 } 1168 1169 return true; 1170 } 1171 1172 Optional<APInt> 1173 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1174 const MachineRegisterInfo &MRI) { 1175 Register Def = MI.getOperand(0).getReg(); 1176 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1177 return C->Value; 1178 auto MaybeCst = getBuildVectorConstantSplat(MI, MRI); 1179 if (!MaybeCst) 1180 return None; 1181 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1182 return APInt(ScalarSize, *MaybeCst, true); 1183 } 1184 1185 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1186 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1187 switch (MI.getOpcode()) { 1188 case TargetOpcode::G_IMPLICIT_DEF: 1189 return AllowUndefs; 1190 case TargetOpcode::G_CONSTANT: 1191 return MI.getOperand(1).getCImm()->isNullValue(); 1192 case TargetOpcode::G_FCONSTANT: { 1193 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1194 return FPImm->isZero() && !FPImm->isNegative(); 1195 } 1196 default: 1197 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1198 return false; 1199 return isBuildVectorAllZeros(MI, MRI); 1200 } 1201 } 1202 1203 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1204 const MachineRegisterInfo &MRI, 1205 bool AllowUndefs) { 1206 switch (MI.getOpcode()) { 1207 case TargetOpcode::G_IMPLICIT_DEF: 1208 return AllowUndefs; 1209 case TargetOpcode::G_CONSTANT: 1210 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1211 default: 1212 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1213 return false; 1214 return isBuildVectorAllOnes(MI, MRI); 1215 } 1216 } 1217 1218 bool llvm::matchUnaryPredicate( 1219 const MachineRegisterInfo &MRI, Register Reg, 1220 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1221 1222 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1223 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1224 return Match(nullptr); 1225 1226 // TODO: Also handle fconstant 1227 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1228 return Match(Def->getOperand(1).getCImm()); 1229 1230 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1231 return false; 1232 1233 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1234 Register SrcElt = Def->getOperand(I).getReg(); 1235 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1236 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1237 if (!Match(nullptr)) 1238 return false; 1239 continue; 1240 } 1241 1242 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1243 !Match(SrcDef->getOperand(1).getCImm())) 1244 return false; 1245 } 1246 1247 return true; 1248 } 1249 1250 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1251 bool IsFP) { 1252 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1253 case TargetLowering::UndefinedBooleanContent: 1254 return Val & 0x1; 1255 case TargetLowering::ZeroOrOneBooleanContent: 1256 return Val == 1; 1257 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1258 return Val == -1; 1259 } 1260 llvm_unreachable("Invalid boolean contents"); 1261 } 1262 1263 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1264 bool IsFP) { 1265 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1266 case TargetLowering::UndefinedBooleanContent: 1267 case TargetLowering::ZeroOrOneBooleanContent: 1268 return 1; 1269 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1270 return -1; 1271 } 1272 llvm_unreachable("Invalid boolean contents"); 1273 } 1274 1275 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1276 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1277 const auto &F = MBB.getParent()->getFunction(); 1278 return F.hasOptSize() || F.hasMinSize() || 1279 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1280 } 1281 1282 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1283 LostDebugLocObserver *LocObserver, 1284 SmallInstListTy &DeadInstChain) { 1285 for (MachineOperand &Op : MI.uses()) { 1286 if (Op.isReg() && Op.getReg().isVirtual()) 1287 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1288 } 1289 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1290 DeadInstChain.remove(&MI); 1291 MI.eraseFromParent(); 1292 if (LocObserver) 1293 LocObserver->checkpoint(false); 1294 } 1295 1296 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1297 MachineRegisterInfo &MRI, 1298 LostDebugLocObserver *LocObserver) { 1299 SmallInstListTy DeadInstChain; 1300 for (MachineInstr *MI : DeadInstrs) 1301 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1302 1303 while (!DeadInstChain.empty()) { 1304 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1305 if (!isTriviallyDead(*Inst, MRI)) 1306 continue; 1307 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1308 } 1309 } 1310 1311 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1312 LostDebugLocObserver *LocObserver) { 1313 return eraseInstrs({&MI}, MRI, LocObserver); 1314 } 1315