1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/MachineSizeOpts.h"
26 #include "llvm/CodeGen/RegisterBankInfo.h"
27 #include "llvm/CodeGen/StackProtector.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35
36 #define DEBUG_TYPE "globalisel-utils"
37
38 using namespace llvm;
39 using namespace MIPatternMatch;
40
constrainRegToClass(MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,Register Reg,const TargetRegisterClass & RegClass)41 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
42 const TargetInstrInfo &TII,
43 const RegisterBankInfo &RBI, Register Reg,
44 const TargetRegisterClass &RegClass) {
45 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
46 return MRI.createVirtualRegister(&RegClass);
47
48 return Reg;
49 }
50
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const TargetRegisterClass & RegClass,MachineOperand & RegMO)51 Register llvm::constrainOperandRegClass(
52 const MachineFunction &MF, const TargetRegisterInfo &TRI,
53 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
54 const RegisterBankInfo &RBI, MachineInstr &InsertPt,
55 const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
56 Register Reg = RegMO.getReg();
57 // Assume physical registers are properly constrained.
58 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
59
60 // Save the old register class to check whether
61 // the change notifications will be required.
62 // TODO: A better approach would be to pass
63 // the observers to constrainRegToClass().
64 auto *OldRegClass = MRI.getRegClassOrNull(Reg);
65 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
66 // If we created a new virtual register because the class is not compatible
67 // then create a copy between the new and the old register.
68 if (ConstrainedReg != Reg) {
69 MachineBasicBlock::iterator InsertIt(&InsertPt);
70 MachineBasicBlock &MBB = *InsertPt.getParent();
71 // FIXME: The copy needs to have the classes constrained for its operands.
72 // Use operand's regbank to get the class for old register (Reg).
73 if (RegMO.isUse()) {
74 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
75 TII.get(TargetOpcode::COPY), ConstrainedReg)
76 .addReg(Reg);
77 } else {
78 assert(RegMO.isDef() && "Must be a definition");
79 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
80 TII.get(TargetOpcode::COPY), Reg)
81 .addReg(ConstrainedReg);
82 }
83 if (GISelChangeObserver *Observer = MF.getObserver()) {
84 Observer->changingInstr(*RegMO.getParent());
85 }
86 RegMO.setReg(ConstrainedReg);
87 if (GISelChangeObserver *Observer = MF.getObserver()) {
88 Observer->changedInstr(*RegMO.getParent());
89 }
90 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
91 if (GISelChangeObserver *Observer = MF.getObserver()) {
92 if (!RegMO.isDef()) {
93 MachineInstr *RegDef = MRI.getVRegDef(Reg);
94 Observer->changedInstr(*RegDef);
95 }
96 Observer->changingAllUsesOfReg(MRI, Reg);
97 Observer->finishedChangingAllUsesOfReg();
98 }
99 }
100 return ConstrainedReg;
101 }
102
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const MCInstrDesc & II,MachineOperand & RegMO,unsigned OpIdx)103 Register llvm::constrainOperandRegClass(
104 const MachineFunction &MF, const TargetRegisterInfo &TRI,
105 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
106 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
107 MachineOperand &RegMO, unsigned OpIdx) {
108 Register Reg = RegMO.getReg();
109 // Assume physical registers are properly constrained.
110 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
111
112 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
113 // Some of the target independent instructions, like COPY, may not impose any
114 // register class constraints on some of their operands: If it's a use, we can
115 // skip constraining as the instruction defining the register would constrain
116 // it.
117
118 if (OpRC) {
119 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands
120 // can have multiple regbanks for a superclass that combine different
121 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
122 // resolved by targets during regbankselect should not be overridden.
123 if (const auto *SubRC = TRI.getCommonSubClass(
124 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
125 OpRC = SubRC;
126
127 OpRC = TRI.getAllocatableClass(OpRC);
128 }
129
130 if (!OpRC) {
131 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
132 "Register class constraint is required unless either the "
133 "instruction is target independent or the operand is a use");
134 // FIXME: Just bailing out like this here could be not enough, unless we
135 // expect the users of this function to do the right thing for PHIs and
136 // COPY:
137 // v1 = COPY v0
138 // v2 = COPY v1
139 // v1 here may end up not being constrained at all. Please notice that to
140 // reproduce the issue we likely need a destination pattern of a selection
141 // rule producing such extra copies, not just an input GMIR with them as
142 // every existing target using selectImpl handles copies before calling it
143 // and they never reach this function.
144 return Reg;
145 }
146 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
147 RegMO);
148 }
149
constrainSelectedInstRegOperands(MachineInstr & I,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)150 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
151 const TargetInstrInfo &TII,
152 const TargetRegisterInfo &TRI,
153 const RegisterBankInfo &RBI) {
154 assert(!isPreISelGenericOpcode(I.getOpcode()) &&
155 "A selected instruction is expected");
156 MachineBasicBlock &MBB = *I.getParent();
157 MachineFunction &MF = *MBB.getParent();
158 MachineRegisterInfo &MRI = MF.getRegInfo();
159
160 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
161 MachineOperand &MO = I.getOperand(OpI);
162
163 // There's nothing to be done on non-register operands.
164 if (!MO.isReg())
165 continue;
166
167 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
168 assert(MO.isReg() && "Unsupported non-reg operand");
169
170 Register Reg = MO.getReg();
171 // Physical registers don't need to be constrained.
172 if (Register::isPhysicalRegister(Reg))
173 continue;
174
175 // Register operands with a value of 0 (e.g. predicate operands) don't need
176 // to be constrained.
177 if (Reg == 0)
178 continue;
179
180 // If the operand is a vreg, we should constrain its regclass, and only
181 // insert COPYs if that's impossible.
182 // constrainOperandRegClass does that for us.
183 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
184
185 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
186 // done.
187 if (MO.isUse()) {
188 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
189 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
190 I.tieOperands(DefIdx, OpI);
191 }
192 }
193 return true;
194 }
195
canReplaceReg(Register DstReg,Register SrcReg,MachineRegisterInfo & MRI)196 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
197 MachineRegisterInfo &MRI) {
198 // Give up if either DstReg or SrcReg is a physical register.
199 if (DstReg.isPhysical() || SrcReg.isPhysical())
200 return false;
201 // Give up if the types don't match.
202 if (MRI.getType(DstReg) != MRI.getType(SrcReg))
203 return false;
204 // Replace if either DstReg has no constraints or the register
205 // constraints match.
206 return !MRI.getRegClassOrRegBank(DstReg) ||
207 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
208 }
209
isTriviallyDead(const MachineInstr & MI,const MachineRegisterInfo & MRI)210 bool llvm::isTriviallyDead(const MachineInstr &MI,
211 const MachineRegisterInfo &MRI) {
212 // FIXME: This logical is mostly duplicated with
213 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
214 // MachineInstr::isLabel?
215
216 // Don't delete frame allocation labels.
217 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
218 return false;
219 // LIFETIME markers should be preserved even if they seem dead.
220 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
221 MI.getOpcode() == TargetOpcode::LIFETIME_END)
222 return false;
223
224 // If we can move an instruction, we can remove it. Otherwise, it has
225 // a side-effect of some sort.
226 bool SawStore = false;
227 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
228 return false;
229
230 // Instructions without side-effects are dead iff they only define dead vregs.
231 for (const auto &MO : MI.operands()) {
232 if (!MO.isReg() || !MO.isDef())
233 continue;
234
235 Register Reg = MO.getReg();
236 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
237 return false;
238 }
239 return true;
240 }
241
reportGISelDiagnostic(DiagnosticSeverity Severity,MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)242 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
243 MachineFunction &MF,
244 const TargetPassConfig &TPC,
245 MachineOptimizationRemarkEmitter &MORE,
246 MachineOptimizationRemarkMissed &R) {
247 bool IsFatal = Severity == DS_Error &&
248 TPC.isGlobalISelAbortEnabled();
249 // Print the function name explicitly if we don't have a debug location (which
250 // makes the diagnostic less useful) or if we're going to emit a raw error.
251 if (!R.getLocation().isValid() || IsFatal)
252 R << (" (in function: " + MF.getName() + ")").str();
253
254 if (IsFatal)
255 report_fatal_error(Twine(R.getMsg()));
256 else
257 MORE.emit(R);
258 }
259
reportGISelWarning(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)260 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
261 MachineOptimizationRemarkEmitter &MORE,
262 MachineOptimizationRemarkMissed &R) {
263 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
264 }
265
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)266 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
267 MachineOptimizationRemarkEmitter &MORE,
268 MachineOptimizationRemarkMissed &R) {
269 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
270 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
271 }
272
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,const char * PassName,StringRef Msg,const MachineInstr & MI)273 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
274 MachineOptimizationRemarkEmitter &MORE,
275 const char *PassName, StringRef Msg,
276 const MachineInstr &MI) {
277 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
278 MI.getDebugLoc(), MI.getParent());
279 R << Msg;
280 // Printing MI is expensive; only do it if expensive remarks are enabled.
281 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
282 R << ": " << ore::MNV("Inst", MI);
283 reportGISelFailure(MF, TPC, MORE, R);
284 }
285
getIConstantVRegVal(Register VReg,const MachineRegisterInfo & MRI)286 Optional<APInt> llvm::getIConstantVRegVal(Register VReg,
287 const MachineRegisterInfo &MRI) {
288 Optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
289 VReg, MRI, /*LookThroughInstrs*/ false);
290 assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
291 "Value found while looking through instrs");
292 if (!ValAndVReg)
293 return None;
294 return ValAndVReg->Value;
295 }
296
297 Optional<int64_t>
getIConstantVRegSExtVal(Register VReg,const MachineRegisterInfo & MRI)298 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
299 Optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
300 if (Val && Val->getBitWidth() <= 64)
301 return Val->getSExtValue();
302 return None;
303 }
304
305 namespace {
306
307 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn;
308 typedef std::function<Optional<APInt>(const MachineInstr *MI)> GetAPCstFn;
309
getConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,IsOpcodeFn IsConstantOpcode,GetAPCstFn getAPCstValue,bool LookThroughInstrs=true,bool LookThroughAnyExt=false)310 Optional<ValueAndVReg> getConstantVRegValWithLookThrough(
311 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode,
312 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true,
313 bool LookThroughAnyExt = false) {
314 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
315 MachineInstr *MI;
316
317 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
318 LookThroughInstrs) {
319 switch (MI->getOpcode()) {
320 case TargetOpcode::G_ANYEXT:
321 if (!LookThroughAnyExt)
322 return None;
323 LLVM_FALLTHROUGH;
324 case TargetOpcode::G_TRUNC:
325 case TargetOpcode::G_SEXT:
326 case TargetOpcode::G_ZEXT:
327 SeenOpcodes.push_back(std::make_pair(
328 MI->getOpcode(),
329 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
330 VReg = MI->getOperand(1).getReg();
331 break;
332 case TargetOpcode::COPY:
333 VReg = MI->getOperand(1).getReg();
334 if (Register::isPhysicalRegister(VReg))
335 return None;
336 break;
337 case TargetOpcode::G_INTTOPTR:
338 VReg = MI->getOperand(1).getReg();
339 break;
340 default:
341 return None;
342 }
343 }
344 if (!MI || !IsConstantOpcode(MI))
345 return None;
346
347 Optional<APInt> MaybeVal = getAPCstValue(MI);
348 if (!MaybeVal)
349 return None;
350 APInt &Val = *MaybeVal;
351 while (!SeenOpcodes.empty()) {
352 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
353 switch (OpcodeAndSize.first) {
354 case TargetOpcode::G_TRUNC:
355 Val = Val.trunc(OpcodeAndSize.second);
356 break;
357 case TargetOpcode::G_ANYEXT:
358 case TargetOpcode::G_SEXT:
359 Val = Val.sext(OpcodeAndSize.second);
360 break;
361 case TargetOpcode::G_ZEXT:
362 Val = Val.zext(OpcodeAndSize.second);
363 break;
364 }
365 }
366
367 return ValueAndVReg{Val, VReg};
368 }
369
isIConstant(const MachineInstr * MI)370 bool isIConstant(const MachineInstr *MI) {
371 if (!MI)
372 return false;
373 return MI->getOpcode() == TargetOpcode::G_CONSTANT;
374 }
375
isFConstant(const MachineInstr * MI)376 bool isFConstant(const MachineInstr *MI) {
377 if (!MI)
378 return false;
379 return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
380 }
381
isAnyConstant(const MachineInstr * MI)382 bool isAnyConstant(const MachineInstr *MI) {
383 if (!MI)
384 return false;
385 unsigned Opc = MI->getOpcode();
386 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
387 }
388
getCImmAsAPInt(const MachineInstr * MI)389 Optional<APInt> getCImmAsAPInt(const MachineInstr *MI) {
390 const MachineOperand &CstVal = MI->getOperand(1);
391 if (CstVal.isCImm())
392 return CstVal.getCImm()->getValue();
393 return None;
394 }
395
getCImmOrFPImmAsAPInt(const MachineInstr * MI)396 Optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) {
397 const MachineOperand &CstVal = MI->getOperand(1);
398 if (CstVal.isCImm())
399 return CstVal.getCImm()->getValue();
400 if (CstVal.isFPImm())
401 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
402 return None;
403 }
404
405 } // end anonymous namespace
406
getIConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs)407 Optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
408 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
409 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant,
410 getCImmAsAPInt, LookThroughInstrs);
411 }
412
getAnyConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs,bool LookThroughAnyExt)413 Optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
414 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
415 bool LookThroughAnyExt) {
416 return getConstantVRegValWithLookThrough(
417 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs,
418 LookThroughAnyExt);
419 }
420
getFConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs)421 Optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
422 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
423 auto Reg = getConstantVRegValWithLookThrough(
424 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs);
425 if (!Reg)
426 return None;
427 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
428 Reg->VReg};
429 }
430
431 const ConstantFP *
getConstantFPVRegVal(Register VReg,const MachineRegisterInfo & MRI)432 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
433 MachineInstr *MI = MRI.getVRegDef(VReg);
434 if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
435 return nullptr;
436 return MI->getOperand(1).getFPImm();
437 }
438
439 Optional<DefinitionAndSourceRegister>
getDefSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)440 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
441 Register DefSrcReg = Reg;
442 auto *DefMI = MRI.getVRegDef(Reg);
443 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
444 if (!DstTy.isValid())
445 return None;
446 unsigned Opc = DefMI->getOpcode();
447 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
448 Register SrcReg = DefMI->getOperand(1).getReg();
449 auto SrcTy = MRI.getType(SrcReg);
450 if (!SrcTy.isValid())
451 break;
452 DefMI = MRI.getVRegDef(SrcReg);
453 DefSrcReg = SrcReg;
454 Opc = DefMI->getOpcode();
455 }
456 return DefinitionAndSourceRegister{DefMI, DefSrcReg};
457 }
458
getDefIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)459 MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
460 const MachineRegisterInfo &MRI) {
461 Optional<DefinitionAndSourceRegister> DefSrcReg =
462 getDefSrcRegIgnoringCopies(Reg, MRI);
463 return DefSrcReg ? DefSrcReg->MI : nullptr;
464 }
465
getSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)466 Register llvm::getSrcRegIgnoringCopies(Register Reg,
467 const MachineRegisterInfo &MRI) {
468 Optional<DefinitionAndSourceRegister> DefSrcReg =
469 getDefSrcRegIgnoringCopies(Reg, MRI);
470 return DefSrcReg ? DefSrcReg->Reg : Register();
471 }
472
getOpcodeDef(unsigned Opcode,Register Reg,const MachineRegisterInfo & MRI)473 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
474 const MachineRegisterInfo &MRI) {
475 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
476 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
477 }
478
getAPFloatFromSize(double Val,unsigned Size)479 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
480 if (Size == 32)
481 return APFloat(float(Val));
482 if (Size == 64)
483 return APFloat(Val);
484 if (Size != 16)
485 llvm_unreachable("Unsupported FPConstant size");
486 bool Ignored;
487 APFloat APF(Val);
488 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
489 return APF;
490 }
491
ConstantFoldBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)492 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
493 const Register Op2,
494 const MachineRegisterInfo &MRI) {
495 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
496 if (!MaybeOp2Cst)
497 return None;
498
499 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
500 if (!MaybeOp1Cst)
501 return None;
502
503 const APInt &C1 = MaybeOp1Cst->Value;
504 const APInt &C2 = MaybeOp2Cst->Value;
505 switch (Opcode) {
506 default:
507 break;
508 case TargetOpcode::G_ADD:
509 case TargetOpcode::G_PTR_ADD:
510 return C1 + C2;
511 case TargetOpcode::G_AND:
512 return C1 & C2;
513 case TargetOpcode::G_ASHR:
514 return C1.ashr(C2);
515 case TargetOpcode::G_LSHR:
516 return C1.lshr(C2);
517 case TargetOpcode::G_MUL:
518 return C1 * C2;
519 case TargetOpcode::G_OR:
520 return C1 | C2;
521 case TargetOpcode::G_SHL:
522 return C1 << C2;
523 case TargetOpcode::G_SUB:
524 return C1 - C2;
525 case TargetOpcode::G_XOR:
526 return C1 ^ C2;
527 case TargetOpcode::G_UDIV:
528 if (!C2.getBoolValue())
529 break;
530 return C1.udiv(C2);
531 case TargetOpcode::G_SDIV:
532 if (!C2.getBoolValue())
533 break;
534 return C1.sdiv(C2);
535 case TargetOpcode::G_UREM:
536 if (!C2.getBoolValue())
537 break;
538 return C1.urem(C2);
539 case TargetOpcode::G_SREM:
540 if (!C2.getBoolValue())
541 break;
542 return C1.srem(C2);
543 case TargetOpcode::G_SMIN:
544 return APIntOps::smin(C1, C2);
545 case TargetOpcode::G_SMAX:
546 return APIntOps::smax(C1, C2);
547 case TargetOpcode::G_UMIN:
548 return APIntOps::umin(C1, C2);
549 case TargetOpcode::G_UMAX:
550 return APIntOps::umax(C1, C2);
551 }
552
553 return None;
554 }
555
ConstantFoldFPBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)556 Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
557 const Register Op2,
558 const MachineRegisterInfo &MRI) {
559 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
560 if (!Op2Cst)
561 return None;
562
563 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
564 if (!Op1Cst)
565 return None;
566
567 APFloat C1 = Op1Cst->getValueAPF();
568 const APFloat &C2 = Op2Cst->getValueAPF();
569 switch (Opcode) {
570 case TargetOpcode::G_FADD:
571 C1.add(C2, APFloat::rmNearestTiesToEven);
572 return C1;
573 case TargetOpcode::G_FSUB:
574 C1.subtract(C2, APFloat::rmNearestTiesToEven);
575 return C1;
576 case TargetOpcode::G_FMUL:
577 C1.multiply(C2, APFloat::rmNearestTiesToEven);
578 return C1;
579 case TargetOpcode::G_FDIV:
580 C1.divide(C2, APFloat::rmNearestTiesToEven);
581 return C1;
582 case TargetOpcode::G_FREM:
583 C1.mod(C2);
584 return C1;
585 case TargetOpcode::G_FCOPYSIGN:
586 C1.copySign(C2);
587 return C1;
588 case TargetOpcode::G_FMINNUM:
589 return minnum(C1, C2);
590 case TargetOpcode::G_FMAXNUM:
591 return maxnum(C1, C2);
592 case TargetOpcode::G_FMINIMUM:
593 return minimum(C1, C2);
594 case TargetOpcode::G_FMAXIMUM:
595 return maximum(C1, C2);
596 case TargetOpcode::G_FMINNUM_IEEE:
597 case TargetOpcode::G_FMAXNUM_IEEE:
598 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
599 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
600 // and currently there isn't a nice wrapper in APFloat for the version with
601 // correct snan handling.
602 break;
603 default:
604 break;
605 }
606
607 return None;
608 }
609
610 SmallVector<APInt>
ConstantFoldVectorBinop(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)611 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
612 const Register Op2,
613 const MachineRegisterInfo &MRI) {
614 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
615 if (!SrcVec2)
616 return SmallVector<APInt>();
617
618 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
619 if (!SrcVec1)
620 return SmallVector<APInt>();
621
622 SmallVector<APInt> FoldedElements;
623 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
624 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
625 SrcVec2->getSourceReg(Idx), MRI);
626 if (!MaybeCst)
627 return SmallVector<APInt>();
628 FoldedElements.push_back(*MaybeCst);
629 }
630 return FoldedElements;
631 }
632
isKnownNeverNaN(Register Val,const MachineRegisterInfo & MRI,bool SNaN)633 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
634 bool SNaN) {
635 const MachineInstr *DefMI = MRI.getVRegDef(Val);
636 if (!DefMI)
637 return false;
638
639 const TargetMachine& TM = DefMI->getMF()->getTarget();
640 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
641 return true;
642
643 // If the value is a constant, we can obviously see if it is a NaN or not.
644 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
645 return !FPVal->getValueAPF().isNaN() ||
646 (SNaN && !FPVal->getValueAPF().isSignaling());
647 }
648
649 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
650 for (const auto &Op : DefMI->uses())
651 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
652 return false;
653 return true;
654 }
655
656 switch (DefMI->getOpcode()) {
657 default:
658 break;
659 case TargetOpcode::G_FMINNUM_IEEE:
660 case TargetOpcode::G_FMAXNUM_IEEE: {
661 if (SNaN)
662 return true;
663 // This can return a NaN if either operand is an sNaN, or if both operands
664 // are NaN.
665 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
666 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
667 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
668 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
669 }
670 case TargetOpcode::G_FMINNUM:
671 case TargetOpcode::G_FMAXNUM: {
672 // Only one needs to be known not-nan, since it will be returned if the
673 // other ends up being one.
674 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
675 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
676 }
677 }
678
679 if (SNaN) {
680 // FP operations quiet. For now, just handle the ones inserted during
681 // legalization.
682 switch (DefMI->getOpcode()) {
683 case TargetOpcode::G_FPEXT:
684 case TargetOpcode::G_FPTRUNC:
685 case TargetOpcode::G_FCANONICALIZE:
686 return true;
687 default:
688 return false;
689 }
690 }
691
692 return false;
693 }
694
inferAlignFromPtrInfo(MachineFunction & MF,const MachinePointerInfo & MPO)695 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
696 const MachinePointerInfo &MPO) {
697 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
698 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
699 MachineFrameInfo &MFI = MF.getFrameInfo();
700 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
701 MPO.Offset);
702 }
703
704 if (const Value *V = MPO.V.dyn_cast<const Value *>()) {
705 const Module *M = MF.getFunction().getParent();
706 return V->getPointerAlignment(M->getDataLayout());
707 }
708
709 return Align(1);
710 }
711
getFunctionLiveInPhysReg(MachineFunction & MF,const TargetInstrInfo & TII,MCRegister PhysReg,const TargetRegisterClass & RC,const DebugLoc & DL,LLT RegTy)712 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
713 const TargetInstrInfo &TII,
714 MCRegister PhysReg,
715 const TargetRegisterClass &RC,
716 const DebugLoc &DL, LLT RegTy) {
717 MachineBasicBlock &EntryMBB = MF.front();
718 MachineRegisterInfo &MRI = MF.getRegInfo();
719 Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
720 if (LiveIn) {
721 MachineInstr *Def = MRI.getVRegDef(LiveIn);
722 if (Def) {
723 // FIXME: Should the verifier check this is in the entry block?
724 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
725 return LiveIn;
726 }
727
728 // It's possible the incoming argument register and copy was added during
729 // lowering, but later deleted due to being/becoming dead. If this happens,
730 // re-insert the copy.
731 } else {
732 // The live in register was not present, so add it.
733 LiveIn = MF.addLiveIn(PhysReg, &RC);
734 if (RegTy.isValid())
735 MRI.setType(LiveIn, RegTy);
736 }
737
738 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
739 .addReg(PhysReg);
740 if (!EntryMBB.isLiveIn(PhysReg))
741 EntryMBB.addLiveIn(PhysReg);
742 return LiveIn;
743 }
744
ConstantFoldExtOp(unsigned Opcode,const Register Op1,uint64_t Imm,const MachineRegisterInfo & MRI)745 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
746 uint64_t Imm,
747 const MachineRegisterInfo &MRI) {
748 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
749 if (MaybeOp1Cst) {
750 switch (Opcode) {
751 default:
752 break;
753 case TargetOpcode::G_SEXT_INREG: {
754 LLT Ty = MRI.getType(Op1);
755 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
756 }
757 }
758 }
759 return None;
760 }
761
ConstantFoldIntToFloat(unsigned Opcode,LLT DstTy,Register Src,const MachineRegisterInfo & MRI)762 Optional<APFloat> llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy,
763 Register Src,
764 const MachineRegisterInfo &MRI) {
765 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
766 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
767 APFloat DstVal(getFltSemanticForLLT(DstTy));
768 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
769 APFloat::rmNearestTiesToEven);
770 return DstVal;
771 }
772 return None;
773 }
774
775 Optional<SmallVector<unsigned>>
ConstantFoldCTLZ(Register Src,const MachineRegisterInfo & MRI)776 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) {
777 LLT Ty = MRI.getType(Src);
778 SmallVector<unsigned> FoldedCTLZs;
779 auto tryFoldScalar = [&](Register R) -> Optional<unsigned> {
780 auto MaybeCst = getIConstantVRegVal(R, MRI);
781 if (!MaybeCst)
782 return None;
783 return MaybeCst->countLeadingZeros();
784 };
785 if (Ty.isVector()) {
786 // Try to constant fold each element.
787 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
788 if (!BV)
789 return None;
790 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
791 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
792 FoldedCTLZs.emplace_back(*MaybeFold);
793 continue;
794 }
795 return None;
796 }
797 return FoldedCTLZs;
798 }
799 if (auto MaybeCst = tryFoldScalar(Src)) {
800 FoldedCTLZs.emplace_back(*MaybeCst);
801 return FoldedCTLZs;
802 }
803 return None;
804 }
805
isKnownToBeAPowerOfTwo(Register Reg,const MachineRegisterInfo & MRI,GISelKnownBits * KB)806 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
807 GISelKnownBits *KB) {
808 Optional<DefinitionAndSourceRegister> DefSrcReg =
809 getDefSrcRegIgnoringCopies(Reg, MRI);
810 if (!DefSrcReg)
811 return false;
812
813 const MachineInstr &MI = *DefSrcReg->MI;
814 const LLT Ty = MRI.getType(Reg);
815
816 switch (MI.getOpcode()) {
817 case TargetOpcode::G_CONSTANT: {
818 unsigned BitWidth = Ty.getScalarSizeInBits();
819 const ConstantInt *CI = MI.getOperand(1).getCImm();
820 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
821 }
822 case TargetOpcode::G_SHL: {
823 // A left-shift of a constant one will have exactly one bit set because
824 // shifting the bit off the end is undefined.
825
826 // TODO: Constant splat
827 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
828 if (*ConstLHS == 1)
829 return true;
830 }
831
832 break;
833 }
834 case TargetOpcode::G_LSHR: {
835 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
836 if (ConstLHS->isSignMask())
837 return true;
838 }
839
840 break;
841 }
842 case TargetOpcode::G_BUILD_VECTOR: {
843 // TODO: Probably should have a recursion depth guard since you could have
844 // bitcasted vector elements.
845 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
846 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
847 return false;
848
849 return true;
850 }
851 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
852 // Only handle constants since we would need to know if number of leading
853 // zeros is greater than the truncation amount.
854 const unsigned BitWidth = Ty.getScalarSizeInBits();
855 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
856 auto Const = getIConstantVRegVal(MO.getReg(), MRI);
857 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
858 return false;
859 }
860
861 return true;
862 }
863 default:
864 break;
865 }
866
867 if (!KB)
868 return false;
869
870 // More could be done here, though the above checks are enough
871 // to handle some common cases.
872
873 // Fall back to computeKnownBits to catch other known cases.
874 KnownBits Known = KB->getKnownBits(Reg);
875 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
876 }
877
getSelectionDAGFallbackAnalysisUsage(AnalysisUsage & AU)878 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
879 AU.addPreserved<StackProtector>();
880 }
881
getLCMSize(unsigned OrigSize,unsigned TargetSize)882 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) {
883 unsigned Mul = OrigSize * TargetSize;
884 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize);
885 return Mul / GCDSize;
886 }
887
getLCMType(LLT OrigTy,LLT TargetTy)888 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
889 const unsigned OrigSize = OrigTy.getSizeInBits();
890 const unsigned TargetSize = TargetTy.getSizeInBits();
891
892 if (OrigSize == TargetSize)
893 return OrigTy;
894
895 if (OrigTy.isVector()) {
896 const LLT OrigElt = OrigTy.getElementType();
897
898 if (TargetTy.isVector()) {
899 const LLT TargetElt = TargetTy.getElementType();
900
901 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
902 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(),
903 TargetTy.getNumElements());
904 // Prefer the original element type.
905 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements();
906 return LLT::vector(Mul.divideCoefficientBy(GCDElts),
907 OrigTy.getElementType());
908 }
909 } else {
910 if (OrigElt.getSizeInBits() == TargetSize)
911 return OrigTy;
912 }
913
914 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
915 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt);
916 }
917
918 if (TargetTy.isVector()) {
919 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
920 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy);
921 }
922
923 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
924
925 // Preserve pointer types.
926 if (LCMSize == OrigSize)
927 return OrigTy;
928 if (LCMSize == TargetSize)
929 return TargetTy;
930
931 return LLT::scalar(LCMSize);
932 }
933
getCoverTy(LLT OrigTy,LLT TargetTy)934 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
935 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
936 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
937 return getLCMType(OrigTy, TargetTy);
938
939 unsigned OrigTyNumElts = OrigTy.getNumElements();
940 unsigned TargetTyNumElts = TargetTy.getNumElements();
941 if (OrigTyNumElts % TargetTyNumElts == 0)
942 return OrigTy;
943
944 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
945 return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
946 OrigTy.getElementType());
947 }
948
getGCDType(LLT OrigTy,LLT TargetTy)949 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
950 const unsigned OrigSize = OrigTy.getSizeInBits();
951 const unsigned TargetSize = TargetTy.getSizeInBits();
952
953 if (OrigSize == TargetSize)
954 return OrigTy;
955
956 if (OrigTy.isVector()) {
957 LLT OrigElt = OrigTy.getElementType();
958 if (TargetTy.isVector()) {
959 LLT TargetElt = TargetTy.getElementType();
960 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
961 int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
962 TargetTy.getNumElements());
963 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt);
964 }
965 } else {
966 // If the source is a vector of pointers, return a pointer element.
967 if (OrigElt.getSizeInBits() == TargetSize)
968 return OrigElt;
969 }
970
971 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
972 if (GCD == OrigElt.getSizeInBits())
973 return OrigElt;
974
975 // If we can't produce the original element type, we have to use a smaller
976 // scalar.
977 if (GCD < OrigElt.getSizeInBits())
978 return LLT::scalar(GCD);
979 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt);
980 }
981
982 if (TargetTy.isVector()) {
983 // Try to preserve the original element type.
984 LLT TargetElt = TargetTy.getElementType();
985 if (TargetElt.getSizeInBits() == OrigSize)
986 return OrigTy;
987 }
988
989 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
990 return LLT::scalar(GCD);
991 }
992
getSplatIndex(MachineInstr & MI)993 Optional<int> llvm::getSplatIndex(MachineInstr &MI) {
994 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
995 "Only G_SHUFFLE_VECTOR can have a splat index!");
996 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
997 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
998
999 // If all elements are undefined, this shuffle can be considered a splat.
1000 // Return 0 for better potential for callers to simplify.
1001 if (FirstDefinedIdx == Mask.end())
1002 return 0;
1003
1004 // Make sure all remaining elements are either undef or the same
1005 // as the first non-undef value.
1006 int SplatValue = *FirstDefinedIdx;
1007 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
1008 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
1009 return None;
1010
1011 return SplatValue;
1012 }
1013
isBuildVectorOp(unsigned Opcode)1014 static bool isBuildVectorOp(unsigned Opcode) {
1015 return Opcode == TargetOpcode::G_BUILD_VECTOR ||
1016 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
1017 }
1018
1019 namespace {
1020
getAnyConstantSplat(Register VReg,const MachineRegisterInfo & MRI,bool AllowUndef)1021 Optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
1022 const MachineRegisterInfo &MRI,
1023 bool AllowUndef) {
1024 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
1025 if (!MI)
1026 return None;
1027
1028 if (!isBuildVectorOp(MI->getOpcode()))
1029 return None;
1030
1031 Optional<ValueAndVReg> SplatValAndReg = None;
1032 for (MachineOperand &Op : MI->uses()) {
1033 Register Element = Op.getReg();
1034 auto ElementValAndReg =
1035 getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
1036
1037 // If AllowUndef, treat undef as value that will result in a constant splat.
1038 if (!ElementValAndReg) {
1039 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
1040 continue;
1041 return None;
1042 }
1043
1044 // Record splat value
1045 if (!SplatValAndReg)
1046 SplatValAndReg = ElementValAndReg;
1047
1048 // Different constant then the one already recorded, not a constant splat.
1049 if (SplatValAndReg->Value != ElementValAndReg->Value)
1050 return None;
1051 }
1052
1053 return SplatValAndReg;
1054 }
1055
1056 } // end anonymous namespace
1057
isBuildVectorConstantSplat(const Register Reg,const MachineRegisterInfo & MRI,int64_t SplatValue,bool AllowUndef)1058 bool llvm::isBuildVectorConstantSplat(const Register Reg,
1059 const MachineRegisterInfo &MRI,
1060 int64_t SplatValue, bool AllowUndef) {
1061 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
1062 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
1063 return false;
1064 }
1065
isBuildVectorConstantSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,int64_t SplatValue,bool AllowUndef)1066 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
1067 const MachineRegisterInfo &MRI,
1068 int64_t SplatValue, bool AllowUndef) {
1069 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
1070 AllowUndef);
1071 }
1072
getIConstantSplatVal(const Register Reg,const MachineRegisterInfo & MRI)1073 Optional<APInt> llvm::getIConstantSplatVal(const Register Reg,
1074 const MachineRegisterInfo &MRI) {
1075 if (auto SplatValAndReg =
1076 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
1077 Optional<ValueAndVReg> ValAndVReg =
1078 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1079 return ValAndVReg->Value;
1080 }
1081
1082 return None;
1083 }
1084
getIConstantSplatVal(const MachineInstr & MI,const MachineRegisterInfo & MRI)1085 Optional<APInt> getIConstantSplatVal(const MachineInstr &MI,
1086 const MachineRegisterInfo &MRI) {
1087 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
1088 }
1089
1090 Optional<int64_t>
getIConstantSplatSExtVal(const Register Reg,const MachineRegisterInfo & MRI)1091 llvm::getIConstantSplatSExtVal(const Register Reg,
1092 const MachineRegisterInfo &MRI) {
1093 if (auto SplatValAndReg =
1094 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
1095 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
1096 return None;
1097 }
1098
1099 Optional<int64_t>
getIConstantSplatSExtVal(const MachineInstr & MI,const MachineRegisterInfo & MRI)1100 llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
1101 const MachineRegisterInfo &MRI) {
1102 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
1103 }
1104
getFConstantSplat(Register VReg,const MachineRegisterInfo & MRI,bool AllowUndef)1105 Optional<FPValueAndVReg> llvm::getFConstantSplat(Register VReg,
1106 const MachineRegisterInfo &MRI,
1107 bool AllowUndef) {
1108 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
1109 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1110 return None;
1111 }
1112
isBuildVectorAllZeros(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndef)1113 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
1114 const MachineRegisterInfo &MRI,
1115 bool AllowUndef) {
1116 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
1117 }
1118
isBuildVectorAllOnes(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndef)1119 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
1120 const MachineRegisterInfo &MRI,
1121 bool AllowUndef) {
1122 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
1123 }
1124
getVectorSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI)1125 Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI,
1126 const MachineRegisterInfo &MRI) {
1127 unsigned Opc = MI.getOpcode();
1128 if (!isBuildVectorOp(Opc))
1129 return None;
1130 if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
1131 return RegOrConstant(*Splat);
1132 auto Reg = MI.getOperand(1).getReg();
1133 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()),
1134 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
1135 return None;
1136 return RegOrConstant(Reg);
1137 }
1138
isConstantScalar(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowFP=true,bool AllowOpaqueConstants=true)1139 static bool isConstantScalar(const MachineInstr &MI,
1140 const MachineRegisterInfo &MRI,
1141 bool AllowFP = true,
1142 bool AllowOpaqueConstants = true) {
1143 switch (MI.getOpcode()) {
1144 case TargetOpcode::G_CONSTANT:
1145 case TargetOpcode::G_IMPLICIT_DEF:
1146 return true;
1147 case TargetOpcode::G_FCONSTANT:
1148 return AllowFP;
1149 case TargetOpcode::G_GLOBAL_VALUE:
1150 case TargetOpcode::G_FRAME_INDEX:
1151 case TargetOpcode::G_BLOCK_ADDR:
1152 case TargetOpcode::G_JUMP_TABLE:
1153 return AllowOpaqueConstants;
1154 default:
1155 return false;
1156 }
1157 }
1158
isConstantOrConstantVector(MachineInstr & MI,const MachineRegisterInfo & MRI)1159 bool llvm::isConstantOrConstantVector(MachineInstr &MI,
1160 const MachineRegisterInfo &MRI) {
1161 Register Def = MI.getOperand(0).getReg();
1162 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1163 return true;
1164 GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
1165 if (!BV)
1166 return false;
1167 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1168 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
1169 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
1170 continue;
1171 return false;
1172 }
1173 return true;
1174 }
1175
isConstantOrConstantVector(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowFP,bool AllowOpaqueConstants)1176 bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
1177 const MachineRegisterInfo &MRI,
1178 bool AllowFP, bool AllowOpaqueConstants) {
1179 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
1180 return true;
1181
1182 if (!isBuildVectorOp(MI.getOpcode()))
1183 return false;
1184
1185 const unsigned NumOps = MI.getNumOperands();
1186 for (unsigned I = 1; I != NumOps; ++I) {
1187 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
1188 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
1189 return false;
1190 }
1191
1192 return true;
1193 }
1194
1195 Optional<APInt>
isConstantOrConstantSplatVector(MachineInstr & MI,const MachineRegisterInfo & MRI)1196 llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
1197 const MachineRegisterInfo &MRI) {
1198 Register Def = MI.getOperand(0).getReg();
1199 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1200 return C->Value;
1201 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
1202 if (!MaybeCst)
1203 return None;
1204 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
1205 return APInt(ScalarSize, *MaybeCst, true);
1206 }
1207
isNullOrNullSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndefs)1208 bool llvm::isNullOrNullSplat(const MachineInstr &MI,
1209 const MachineRegisterInfo &MRI, bool AllowUndefs) {
1210 switch (MI.getOpcode()) {
1211 case TargetOpcode::G_IMPLICIT_DEF:
1212 return AllowUndefs;
1213 case TargetOpcode::G_CONSTANT:
1214 return MI.getOperand(1).getCImm()->isNullValue();
1215 case TargetOpcode::G_FCONSTANT: {
1216 const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
1217 return FPImm->isZero() && !FPImm->isNegative();
1218 }
1219 default:
1220 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
1221 return false;
1222 return isBuildVectorAllZeros(MI, MRI);
1223 }
1224 }
1225
isAllOnesOrAllOnesSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndefs)1226 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
1227 const MachineRegisterInfo &MRI,
1228 bool AllowUndefs) {
1229 switch (MI.getOpcode()) {
1230 case TargetOpcode::G_IMPLICIT_DEF:
1231 return AllowUndefs;
1232 case TargetOpcode::G_CONSTANT:
1233 return MI.getOperand(1).getCImm()->isAllOnesValue();
1234 default:
1235 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
1236 return false;
1237 return isBuildVectorAllOnes(MI, MRI);
1238 }
1239 }
1240
matchUnaryPredicate(const MachineRegisterInfo & MRI,Register Reg,std::function<bool (const Constant * ConstVal)> Match,bool AllowUndefs)1241 bool llvm::matchUnaryPredicate(
1242 const MachineRegisterInfo &MRI, Register Reg,
1243 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
1244
1245 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
1246 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1247 return Match(nullptr);
1248
1249 // TODO: Also handle fconstant
1250 if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
1251 return Match(Def->getOperand(1).getCImm());
1252
1253 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1254 return false;
1255
1256 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
1257 Register SrcElt = Def->getOperand(I).getReg();
1258 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
1259 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
1260 if (!Match(nullptr))
1261 return false;
1262 continue;
1263 }
1264
1265 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
1266 !Match(SrcDef->getOperand(1).getCImm()))
1267 return false;
1268 }
1269
1270 return true;
1271 }
1272
isConstTrueVal(const TargetLowering & TLI,int64_t Val,bool IsVector,bool IsFP)1273 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
1274 bool IsFP) {
1275 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1276 case TargetLowering::UndefinedBooleanContent:
1277 return Val & 0x1;
1278 case TargetLowering::ZeroOrOneBooleanContent:
1279 return Val == 1;
1280 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1281 return Val == -1;
1282 }
1283 llvm_unreachable("Invalid boolean contents");
1284 }
1285
getICmpTrueVal(const TargetLowering & TLI,bool IsVector,bool IsFP)1286 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
1287 bool IsFP) {
1288 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1289 case TargetLowering::UndefinedBooleanContent:
1290 case TargetLowering::ZeroOrOneBooleanContent:
1291 return 1;
1292 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1293 return -1;
1294 }
1295 llvm_unreachable("Invalid boolean contents");
1296 }
1297
shouldOptForSize(const MachineBasicBlock & MBB,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)1298 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
1299 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
1300 const auto &F = MBB.getParent()->getFunction();
1301 return F.hasOptSize() || F.hasMinSize() ||
1302 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
1303 }
1304
saveUsesAndErase(MachineInstr & MI,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver,SmallInstListTy & DeadInstChain)1305 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
1306 LostDebugLocObserver *LocObserver,
1307 SmallInstListTy &DeadInstChain) {
1308 for (MachineOperand &Op : MI.uses()) {
1309 if (Op.isReg() && Op.getReg().isVirtual())
1310 DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
1311 }
1312 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
1313 DeadInstChain.remove(&MI);
1314 MI.eraseFromParent();
1315 if (LocObserver)
1316 LocObserver->checkpoint(false);
1317 }
1318
eraseInstrs(ArrayRef<MachineInstr * > DeadInstrs,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver)1319 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
1320 MachineRegisterInfo &MRI,
1321 LostDebugLocObserver *LocObserver) {
1322 SmallInstListTy DeadInstChain;
1323 for (MachineInstr *MI : DeadInstrs)
1324 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
1325
1326 while (!DeadInstChain.empty()) {
1327 MachineInstr *Inst = DeadInstChain.pop_back_val();
1328 if (!isTriviallyDead(*Inst, MRI))
1329 continue;
1330 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
1331 }
1332 }
1333
eraseInstr(MachineInstr & MI,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver)1334 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
1335 LostDebugLocObserver *LocObserver) {
1336 return eraseInstrs({&MI}, MRI, LocObserver);
1337 }
1338