1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/MachineSizeOpts.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/StackProtector.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/Utils/SizeOpts.h" 36 37 #define DEBUG_TYPE "globalisel-utils" 38 39 using namespace llvm; 40 using namespace MIPatternMatch; 41 42 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 43 const TargetInstrInfo &TII, 44 const RegisterBankInfo &RBI, Register Reg, 45 const TargetRegisterClass &RegClass) { 46 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 47 return MRI.createVirtualRegister(&RegClass); 48 49 return Reg; 50 } 51 52 Register llvm::constrainOperandRegClass( 53 const MachineFunction &MF, const TargetRegisterInfo &TRI, 54 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 55 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 56 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 57 Register Reg = RegMO.getReg(); 58 // Assume physical registers are properly constrained. 59 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 60 61 // Save the old register class to check whether 62 // the change notifications will be required. 63 // TODO: A better approach would be to pass 64 // the observers to constrainRegToClass(). 65 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 66 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 67 // If we created a new virtual register because the class is not compatible 68 // then create a copy between the new and the old register. 69 if (ConstrainedReg != Reg) { 70 MachineBasicBlock::iterator InsertIt(&InsertPt); 71 MachineBasicBlock &MBB = *InsertPt.getParent(); 72 // FIXME: The copy needs to have the classes constrained for its operands. 73 // Use operand's regbank to get the class for old register (Reg). 74 if (RegMO.isUse()) { 75 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 76 TII.get(TargetOpcode::COPY), ConstrainedReg) 77 .addReg(Reg); 78 } else { 79 assert(RegMO.isDef() && "Must be a definition"); 80 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 81 TII.get(TargetOpcode::COPY), Reg) 82 .addReg(ConstrainedReg); 83 } 84 if (GISelChangeObserver *Observer = MF.getObserver()) { 85 Observer->changingInstr(*RegMO.getParent()); 86 } 87 RegMO.setReg(ConstrainedReg); 88 if (GISelChangeObserver *Observer = MF.getObserver()) { 89 Observer->changedInstr(*RegMO.getParent()); 90 } 91 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 92 if (GISelChangeObserver *Observer = MF.getObserver()) { 93 if (!RegMO.isDef()) { 94 MachineInstr *RegDef = MRI.getVRegDef(Reg); 95 Observer->changedInstr(*RegDef); 96 } 97 Observer->changingAllUsesOfReg(MRI, Reg); 98 Observer->finishedChangingAllUsesOfReg(); 99 } 100 } 101 return ConstrainedReg; 102 } 103 104 Register llvm::constrainOperandRegClass( 105 const MachineFunction &MF, const TargetRegisterInfo &TRI, 106 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 107 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 108 MachineOperand &RegMO, unsigned OpIdx) { 109 Register Reg = RegMO.getReg(); 110 // Assume physical registers are properly constrained. 111 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 112 113 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 114 // Some of the target independent instructions, like COPY, may not impose any 115 // register class constraints on some of their operands: If it's a use, we can 116 // skip constraining as the instruction defining the register would constrain 117 // it. 118 119 if (OpRC) { 120 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 121 // can have multiple regbanks for a superclass that combine different 122 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 123 // resolved by targets during regbankselect should not be overridden. 124 if (const auto *SubRC = TRI.getCommonSubClass( 125 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 126 OpRC = SubRC; 127 128 OpRC = TRI.getAllocatableClass(OpRC); 129 } 130 131 if (!OpRC) { 132 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 133 "Register class constraint is required unless either the " 134 "instruction is target independent or the operand is a use"); 135 // FIXME: Just bailing out like this here could be not enough, unless we 136 // expect the users of this function to do the right thing for PHIs and 137 // COPY: 138 // v1 = COPY v0 139 // v2 = COPY v1 140 // v1 here may end up not being constrained at all. Please notice that to 141 // reproduce the issue we likely need a destination pattern of a selection 142 // rule producing such extra copies, not just an input GMIR with them as 143 // every existing target using selectImpl handles copies before calling it 144 // and they never reach this function. 145 return Reg; 146 } 147 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 148 RegMO); 149 } 150 151 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 152 const TargetInstrInfo &TII, 153 const TargetRegisterInfo &TRI, 154 const RegisterBankInfo &RBI) { 155 assert(!isPreISelGenericOpcode(I.getOpcode()) && 156 "A selected instruction is expected"); 157 MachineBasicBlock &MBB = *I.getParent(); 158 MachineFunction &MF = *MBB.getParent(); 159 MachineRegisterInfo &MRI = MF.getRegInfo(); 160 161 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 162 MachineOperand &MO = I.getOperand(OpI); 163 164 // There's nothing to be done on non-register operands. 165 if (!MO.isReg()) 166 continue; 167 168 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 169 assert(MO.isReg() && "Unsupported non-reg operand"); 170 171 Register Reg = MO.getReg(); 172 // Physical registers don't need to be constrained. 173 if (Register::isPhysicalRegister(Reg)) 174 continue; 175 176 // Register operands with a value of 0 (e.g. predicate operands) don't need 177 // to be constrained. 178 if (Reg == 0) 179 continue; 180 181 // If the operand is a vreg, we should constrain its regclass, and only 182 // insert COPYs if that's impossible. 183 // constrainOperandRegClass does that for us. 184 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 185 186 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 187 // done. 188 if (MO.isUse()) { 189 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 190 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 191 I.tieOperands(DefIdx, OpI); 192 } 193 } 194 return true; 195 } 196 197 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 198 MachineRegisterInfo &MRI) { 199 // Give up if either DstReg or SrcReg is a physical register. 200 if (DstReg.isPhysical() || SrcReg.isPhysical()) 201 return false; 202 // Give up if the types don't match. 203 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 204 return false; 205 // Replace if either DstReg has no constraints or the register 206 // constraints match. 207 return !MRI.getRegClassOrRegBank(DstReg) || 208 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); 209 } 210 211 bool llvm::isTriviallyDead(const MachineInstr &MI, 212 const MachineRegisterInfo &MRI) { 213 // FIXME: This logical is mostly duplicated with 214 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 215 // MachineInstr::isLabel? 216 217 // Don't delete frame allocation labels. 218 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 219 return false; 220 // LIFETIME markers should be preserved even if they seem dead. 221 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 222 MI.getOpcode() == TargetOpcode::LIFETIME_END) 223 return false; 224 225 // If we can move an instruction, we can remove it. Otherwise, it has 226 // a side-effect of some sort. 227 bool SawStore = false; 228 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 229 return false; 230 231 // Instructions without side-effects are dead iff they only define dead vregs. 232 for (auto &MO : MI.operands()) { 233 if (!MO.isReg() || !MO.isDef()) 234 continue; 235 236 Register Reg = MO.getReg(); 237 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) 238 return false; 239 } 240 return true; 241 } 242 243 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 244 MachineFunction &MF, 245 const TargetPassConfig &TPC, 246 MachineOptimizationRemarkEmitter &MORE, 247 MachineOptimizationRemarkMissed &R) { 248 bool IsFatal = Severity == DS_Error && 249 TPC.isGlobalISelAbortEnabled(); 250 // Print the function name explicitly if we don't have a debug location (which 251 // makes the diagnostic less useful) or if we're going to emit a raw error. 252 if (!R.getLocation().isValid() || IsFatal) 253 R << (" (in function: " + MF.getName() + ")").str(); 254 255 if (IsFatal) 256 report_fatal_error(Twine(R.getMsg())); 257 else 258 MORE.emit(R); 259 } 260 261 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 262 MachineOptimizationRemarkEmitter &MORE, 263 MachineOptimizationRemarkMissed &R) { 264 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 265 } 266 267 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 268 MachineOptimizationRemarkEmitter &MORE, 269 MachineOptimizationRemarkMissed &R) { 270 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 271 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 272 } 273 274 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 275 MachineOptimizationRemarkEmitter &MORE, 276 const char *PassName, StringRef Msg, 277 const MachineInstr &MI) { 278 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 279 MI.getDebugLoc(), MI.getParent()); 280 R << Msg; 281 // Printing MI is expensive; only do it if expensive remarks are enabled. 282 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 283 R << ": " << ore::MNV("Inst", MI); 284 reportGISelFailure(MF, TPC, MORE, R); 285 } 286 287 Optional<APInt> llvm::getIConstantVRegVal(Register VReg, 288 const MachineRegisterInfo &MRI) { 289 Optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 290 VReg, MRI, /*LookThroughInstrs*/ false); 291 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 292 "Value found while looking through instrs"); 293 if (!ValAndVReg) 294 return None; 295 return ValAndVReg->Value; 296 } 297 298 Optional<int64_t> 299 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 300 Optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 301 if (Val && Val->getBitWidth() <= 64) 302 return Val->getSExtValue(); 303 return None; 304 } 305 306 namespace { 307 308 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 309 typedef std::function<Optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 310 311 Optional<ValueAndVReg> getConstantVRegValWithLookThrough( 312 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 313 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 314 bool LookThroughAnyExt = false) { 315 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 316 MachineInstr *MI; 317 318 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 319 LookThroughInstrs) { 320 switch (MI->getOpcode()) { 321 case TargetOpcode::G_ANYEXT: 322 if (!LookThroughAnyExt) 323 return None; 324 LLVM_FALLTHROUGH; 325 case TargetOpcode::G_TRUNC: 326 case TargetOpcode::G_SEXT: 327 case TargetOpcode::G_ZEXT: 328 SeenOpcodes.push_back(std::make_pair( 329 MI->getOpcode(), 330 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 331 VReg = MI->getOperand(1).getReg(); 332 break; 333 case TargetOpcode::COPY: 334 VReg = MI->getOperand(1).getReg(); 335 if (Register::isPhysicalRegister(VReg)) 336 return None; 337 break; 338 case TargetOpcode::G_INTTOPTR: 339 VReg = MI->getOperand(1).getReg(); 340 break; 341 default: 342 return None; 343 } 344 } 345 if (!MI || !IsConstantOpcode(MI)) 346 return None; 347 348 Optional<APInt> MaybeVal = getAPCstValue(MI); 349 if (!MaybeVal) 350 return None; 351 APInt &Val = *MaybeVal; 352 while (!SeenOpcodes.empty()) { 353 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 354 switch (OpcodeAndSize.first) { 355 case TargetOpcode::G_TRUNC: 356 Val = Val.trunc(OpcodeAndSize.second); 357 break; 358 case TargetOpcode::G_ANYEXT: 359 case TargetOpcode::G_SEXT: 360 Val = Val.sext(OpcodeAndSize.second); 361 break; 362 case TargetOpcode::G_ZEXT: 363 Val = Val.zext(OpcodeAndSize.second); 364 break; 365 } 366 } 367 368 return ValueAndVReg{Val, VReg}; 369 } 370 371 bool isIConstant(const MachineInstr *MI) { 372 if (!MI) 373 return false; 374 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 375 } 376 377 bool isFConstant(const MachineInstr *MI) { 378 if (!MI) 379 return false; 380 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 381 } 382 383 bool isAnyConstant(const MachineInstr *MI) { 384 if (!MI) 385 return false; 386 unsigned Opc = MI->getOpcode(); 387 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 388 } 389 390 Optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 391 const MachineOperand &CstVal = MI->getOperand(1); 392 if (CstVal.isCImm()) 393 return CstVal.getCImm()->getValue(); 394 return None; 395 } 396 397 Optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 398 const MachineOperand &CstVal = MI->getOperand(1); 399 if (CstVal.isCImm()) 400 return CstVal.getCImm()->getValue(); 401 if (CstVal.isFPImm()) 402 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 403 return None; 404 } 405 406 } // end anonymous namespace 407 408 Optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 409 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 410 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 411 getCImmAsAPInt, LookThroughInstrs); 412 } 413 414 Optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 415 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 416 bool LookThroughAnyExt) { 417 return getConstantVRegValWithLookThrough( 418 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 419 LookThroughAnyExt); 420 } 421 422 Optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 423 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 424 auto Reg = getConstantVRegValWithLookThrough( 425 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 426 if (!Reg) 427 return None; 428 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 429 Reg->VReg}; 430 } 431 432 const ConstantFP * 433 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 434 MachineInstr *MI = MRI.getVRegDef(VReg); 435 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 436 return nullptr; 437 return MI->getOperand(1).getFPImm(); 438 } 439 440 Optional<DefinitionAndSourceRegister> 441 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 442 Register DefSrcReg = Reg; 443 auto *DefMI = MRI.getVRegDef(Reg); 444 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 445 if (!DstTy.isValid()) 446 return None; 447 unsigned Opc = DefMI->getOpcode(); 448 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 449 Register SrcReg = DefMI->getOperand(1).getReg(); 450 auto SrcTy = MRI.getType(SrcReg); 451 if (!SrcTy.isValid()) 452 break; 453 DefMI = MRI.getVRegDef(SrcReg); 454 DefSrcReg = SrcReg; 455 Opc = DefMI->getOpcode(); 456 } 457 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 458 } 459 460 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 461 const MachineRegisterInfo &MRI) { 462 Optional<DefinitionAndSourceRegister> DefSrcReg = 463 getDefSrcRegIgnoringCopies(Reg, MRI); 464 return DefSrcReg ? DefSrcReg->MI : nullptr; 465 } 466 467 Register llvm::getSrcRegIgnoringCopies(Register Reg, 468 const MachineRegisterInfo &MRI) { 469 Optional<DefinitionAndSourceRegister> DefSrcReg = 470 getDefSrcRegIgnoringCopies(Reg, MRI); 471 return DefSrcReg ? DefSrcReg->Reg : Register(); 472 } 473 474 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 475 const MachineRegisterInfo &MRI) { 476 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 477 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 478 } 479 480 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 481 if (Size == 32) 482 return APFloat(float(Val)); 483 if (Size == 64) 484 return APFloat(Val); 485 if (Size != 16) 486 llvm_unreachable("Unsupported FPConstant size"); 487 bool Ignored; 488 APFloat APF(Val); 489 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 490 return APF; 491 } 492 493 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, 494 const Register Op2, 495 const MachineRegisterInfo &MRI) { 496 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 497 if (!MaybeOp2Cst) 498 return None; 499 500 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 501 if (!MaybeOp1Cst) 502 return None; 503 504 const APInt &C1 = MaybeOp1Cst->Value; 505 const APInt &C2 = MaybeOp2Cst->Value; 506 switch (Opcode) { 507 default: 508 break; 509 case TargetOpcode::G_ADD: 510 case TargetOpcode::G_PTR_ADD: 511 return C1 + C2; 512 case TargetOpcode::G_AND: 513 return C1 & C2; 514 case TargetOpcode::G_ASHR: 515 return C1.ashr(C2); 516 case TargetOpcode::G_LSHR: 517 return C1.lshr(C2); 518 case TargetOpcode::G_MUL: 519 return C1 * C2; 520 case TargetOpcode::G_OR: 521 return C1 | C2; 522 case TargetOpcode::G_SHL: 523 return C1 << C2; 524 case TargetOpcode::G_SUB: 525 return C1 - C2; 526 case TargetOpcode::G_XOR: 527 return C1 ^ C2; 528 case TargetOpcode::G_UDIV: 529 if (!C2.getBoolValue()) 530 break; 531 return C1.udiv(C2); 532 case TargetOpcode::G_SDIV: 533 if (!C2.getBoolValue()) 534 break; 535 return C1.sdiv(C2); 536 case TargetOpcode::G_UREM: 537 if (!C2.getBoolValue()) 538 break; 539 return C1.urem(C2); 540 case TargetOpcode::G_SREM: 541 if (!C2.getBoolValue()) 542 break; 543 return C1.srem(C2); 544 case TargetOpcode::G_SMIN: 545 return APIntOps::smin(C1, C2); 546 case TargetOpcode::G_SMAX: 547 return APIntOps::smax(C1, C2); 548 case TargetOpcode::G_UMIN: 549 return APIntOps::umin(C1, C2); 550 case TargetOpcode::G_UMAX: 551 return APIntOps::umax(C1, C2); 552 } 553 554 return None; 555 } 556 557 Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 558 const Register Op2, 559 const MachineRegisterInfo &MRI) { 560 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 561 if (!Op2Cst) 562 return None; 563 564 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 565 if (!Op1Cst) 566 return None; 567 568 APFloat C1 = Op1Cst->getValueAPF(); 569 const APFloat &C2 = Op2Cst->getValueAPF(); 570 switch (Opcode) { 571 case TargetOpcode::G_FADD: 572 C1.add(C2, APFloat::rmNearestTiesToEven); 573 return C1; 574 case TargetOpcode::G_FSUB: 575 C1.subtract(C2, APFloat::rmNearestTiesToEven); 576 return C1; 577 case TargetOpcode::G_FMUL: 578 C1.multiply(C2, APFloat::rmNearestTiesToEven); 579 return C1; 580 case TargetOpcode::G_FDIV: 581 C1.divide(C2, APFloat::rmNearestTiesToEven); 582 return C1; 583 case TargetOpcode::G_FREM: 584 C1.mod(C2); 585 return C1; 586 case TargetOpcode::G_FCOPYSIGN: 587 C1.copySign(C2); 588 return C1; 589 case TargetOpcode::G_FMINNUM: 590 return minnum(C1, C2); 591 case TargetOpcode::G_FMAXNUM: 592 return maxnum(C1, C2); 593 case TargetOpcode::G_FMINIMUM: 594 return minimum(C1, C2); 595 case TargetOpcode::G_FMAXIMUM: 596 return maximum(C1, C2); 597 case TargetOpcode::G_FMINNUM_IEEE: 598 case TargetOpcode::G_FMAXNUM_IEEE: 599 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 600 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 601 // and currently there isn't a nice wrapper in APFloat for the version with 602 // correct snan handling. 603 break; 604 default: 605 break; 606 } 607 608 return None; 609 } 610 611 SmallVector<APInt> 612 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 613 const Register Op2, 614 const MachineRegisterInfo &MRI) { 615 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 616 if (!SrcVec2) 617 return SmallVector<APInt>(); 618 619 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 620 if (!SrcVec1) 621 return SmallVector<APInt>(); 622 623 SmallVector<APInt> FoldedElements; 624 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 625 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 626 SrcVec2->getSourceReg(Idx), MRI); 627 if (!MaybeCst) 628 return SmallVector<APInt>(); 629 FoldedElements.push_back(*MaybeCst); 630 } 631 return FoldedElements; 632 } 633 634 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 635 bool SNaN) { 636 const MachineInstr *DefMI = MRI.getVRegDef(Val); 637 if (!DefMI) 638 return false; 639 640 const TargetMachine& TM = DefMI->getMF()->getTarget(); 641 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 642 return true; 643 644 // If the value is a constant, we can obviously see if it is a NaN or not. 645 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 646 return !FPVal->getValueAPF().isNaN() || 647 (SNaN && !FPVal->getValueAPF().isSignaling()); 648 } 649 650 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 651 for (const auto &Op : DefMI->uses()) 652 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 653 return false; 654 return true; 655 } 656 657 switch (DefMI->getOpcode()) { 658 default: 659 break; 660 case TargetOpcode::G_FMINNUM_IEEE: 661 case TargetOpcode::G_FMAXNUM_IEEE: { 662 if (SNaN) 663 return true; 664 // This can return a NaN if either operand is an sNaN, or if both operands 665 // are NaN. 666 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 667 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 668 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 669 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 670 } 671 case TargetOpcode::G_FMINNUM: 672 case TargetOpcode::G_FMAXNUM: { 673 // Only one needs to be known not-nan, since it will be returned if the 674 // other ends up being one. 675 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 676 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 677 } 678 } 679 680 if (SNaN) { 681 // FP operations quiet. For now, just handle the ones inserted during 682 // legalization. 683 switch (DefMI->getOpcode()) { 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: 686 case TargetOpcode::G_FCANONICALIZE: 687 return true; 688 default: 689 return false; 690 } 691 } 692 693 return false; 694 } 695 696 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 697 const MachinePointerInfo &MPO) { 698 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>(); 699 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 700 MachineFrameInfo &MFI = MF.getFrameInfo(); 701 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 702 MPO.Offset); 703 } 704 705 if (const Value *V = MPO.V.dyn_cast<const Value *>()) { 706 const Module *M = MF.getFunction().getParent(); 707 return V->getPointerAlignment(M->getDataLayout()); 708 } 709 710 return Align(1); 711 } 712 713 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 714 const TargetInstrInfo &TII, 715 MCRegister PhysReg, 716 const TargetRegisterClass &RC, 717 const DebugLoc &DL, LLT RegTy) { 718 MachineBasicBlock &EntryMBB = MF.front(); 719 MachineRegisterInfo &MRI = MF.getRegInfo(); 720 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 721 if (LiveIn) { 722 MachineInstr *Def = MRI.getVRegDef(LiveIn); 723 if (Def) { 724 // FIXME: Should the verifier check this is in the entry block? 725 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 726 return LiveIn; 727 } 728 729 // It's possible the incoming argument register and copy was added during 730 // lowering, but later deleted due to being/becoming dead. If this happens, 731 // re-insert the copy. 732 } else { 733 // The live in register was not present, so add it. 734 LiveIn = MF.addLiveIn(PhysReg, &RC); 735 if (RegTy.isValid()) 736 MRI.setType(LiveIn, RegTy); 737 } 738 739 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 740 .addReg(PhysReg); 741 if (!EntryMBB.isLiveIn(PhysReg)) 742 EntryMBB.addLiveIn(PhysReg); 743 return LiveIn; 744 } 745 746 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, 747 uint64_t Imm, 748 const MachineRegisterInfo &MRI) { 749 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 750 if (MaybeOp1Cst) { 751 switch (Opcode) { 752 default: 753 break; 754 case TargetOpcode::G_SEXT_INREG: { 755 LLT Ty = MRI.getType(Op1); 756 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 757 } 758 } 759 } 760 return None; 761 } 762 763 Optional<APFloat> llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, 764 Register Src, 765 const MachineRegisterInfo &MRI) { 766 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 767 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 768 APFloat DstVal(getFltSemanticForLLT(DstTy)); 769 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 770 APFloat::rmNearestTiesToEven); 771 return DstVal; 772 } 773 return None; 774 } 775 776 Optional<SmallVector<unsigned>> 777 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 778 LLT Ty = MRI.getType(Src); 779 SmallVector<unsigned> FoldedCTLZs; 780 auto tryFoldScalar = [&](Register R) -> Optional<unsigned> { 781 auto MaybeCst = getIConstantVRegVal(R, MRI); 782 if (!MaybeCst) 783 return None; 784 return MaybeCst->countLeadingZeros(); 785 }; 786 if (Ty.isVector()) { 787 // Try to constant fold each element. 788 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 789 if (!BV) 790 return None; 791 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 792 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 793 FoldedCTLZs.emplace_back(*MaybeFold); 794 continue; 795 } 796 return None; 797 } 798 return FoldedCTLZs; 799 } 800 if (auto MaybeCst = tryFoldScalar(Src)) { 801 FoldedCTLZs.emplace_back(*MaybeCst); 802 return FoldedCTLZs; 803 } 804 return None; 805 } 806 807 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 808 GISelKnownBits *KB) { 809 Optional<DefinitionAndSourceRegister> DefSrcReg = 810 getDefSrcRegIgnoringCopies(Reg, MRI); 811 if (!DefSrcReg) 812 return false; 813 814 const MachineInstr &MI = *DefSrcReg->MI; 815 const LLT Ty = MRI.getType(Reg); 816 817 switch (MI.getOpcode()) { 818 case TargetOpcode::G_CONSTANT: { 819 unsigned BitWidth = Ty.getScalarSizeInBits(); 820 const ConstantInt *CI = MI.getOperand(1).getCImm(); 821 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 822 } 823 case TargetOpcode::G_SHL: { 824 // A left-shift of a constant one will have exactly one bit set because 825 // shifting the bit off the end is undefined. 826 827 // TODO: Constant splat 828 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 829 if (*ConstLHS == 1) 830 return true; 831 } 832 833 break; 834 } 835 case TargetOpcode::G_LSHR: { 836 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 837 if (ConstLHS->isSignMask()) 838 return true; 839 } 840 841 break; 842 } 843 case TargetOpcode::G_BUILD_VECTOR: { 844 // TODO: Probably should have a recursion depth guard since you could have 845 // bitcasted vector elements. 846 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 847 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 848 return false; 849 850 return true; 851 } 852 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 853 // Only handle constants since we would need to know if number of leading 854 // zeros is greater than the truncation amount. 855 const unsigned BitWidth = Ty.getScalarSizeInBits(); 856 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 857 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 858 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 859 return false; 860 } 861 862 return true; 863 } 864 default: 865 break; 866 } 867 868 if (!KB) 869 return false; 870 871 // More could be done here, though the above checks are enough 872 // to handle some common cases. 873 874 // Fall back to computeKnownBits to catch other known cases. 875 KnownBits Known = KB->getKnownBits(Reg); 876 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 877 } 878 879 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 880 AU.addPreserved<StackProtector>(); 881 } 882 883 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { 884 unsigned Mul = OrigSize * TargetSize; 885 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); 886 return Mul / GCDSize; 887 } 888 889 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 890 const unsigned OrigSize = OrigTy.getSizeInBits(); 891 const unsigned TargetSize = TargetTy.getSizeInBits(); 892 893 if (OrigSize == TargetSize) 894 return OrigTy; 895 896 if (OrigTy.isVector()) { 897 const LLT OrigElt = OrigTy.getElementType(); 898 899 if (TargetTy.isVector()) { 900 const LLT TargetElt = TargetTy.getElementType(); 901 902 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 903 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), 904 TargetTy.getNumElements()); 905 // Prefer the original element type. 906 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements(); 907 return LLT::vector(Mul.divideCoefficientBy(GCDElts), 908 OrigTy.getElementType()); 909 } 910 } else { 911 if (OrigElt.getSizeInBits() == TargetSize) 912 return OrigTy; 913 } 914 915 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 916 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 917 } 918 919 if (TargetTy.isVector()) { 920 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 921 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy); 922 } 923 924 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 925 926 // Preserve pointer types. 927 if (LCMSize == OrigSize) 928 return OrigTy; 929 if (LCMSize == TargetSize) 930 return TargetTy; 931 932 return LLT::scalar(LCMSize); 933 } 934 935 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 936 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 937 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 938 return getLCMType(OrigTy, TargetTy); 939 940 unsigned OrigTyNumElts = OrigTy.getNumElements(); 941 unsigned TargetTyNumElts = TargetTy.getNumElements(); 942 if (OrigTyNumElts % TargetTyNumElts == 0) 943 return OrigTy; 944 945 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 946 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 947 OrigTy.getElementType()); 948 } 949 950 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 951 const unsigned OrigSize = OrigTy.getSizeInBits(); 952 const unsigned TargetSize = TargetTy.getSizeInBits(); 953 954 if (OrigSize == TargetSize) 955 return OrigTy; 956 957 if (OrigTy.isVector()) { 958 LLT OrigElt = OrigTy.getElementType(); 959 if (TargetTy.isVector()) { 960 LLT TargetElt = TargetTy.getElementType(); 961 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 962 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 963 TargetTy.getNumElements()); 964 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt); 965 } 966 } else { 967 // If the source is a vector of pointers, return a pointer element. 968 if (OrigElt.getSizeInBits() == TargetSize) 969 return OrigElt; 970 } 971 972 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 973 if (GCD == OrigElt.getSizeInBits()) 974 return OrigElt; 975 976 // If we can't produce the original element type, we have to use a smaller 977 // scalar. 978 if (GCD < OrigElt.getSizeInBits()) 979 return LLT::scalar(GCD); 980 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt); 981 } 982 983 if (TargetTy.isVector()) { 984 // Try to preserve the original element type. 985 LLT TargetElt = TargetTy.getElementType(); 986 if (TargetElt.getSizeInBits() == OrigSize) 987 return OrigTy; 988 } 989 990 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 991 return LLT::scalar(GCD); 992 } 993 994 Optional<int> llvm::getSplatIndex(MachineInstr &MI) { 995 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 996 "Only G_SHUFFLE_VECTOR can have a splat index!"); 997 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 998 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 999 1000 // If all elements are undefined, this shuffle can be considered a splat. 1001 // Return 0 for better potential for callers to simplify. 1002 if (FirstDefinedIdx == Mask.end()) 1003 return 0; 1004 1005 // Make sure all remaining elements are either undef or the same 1006 // as the first non-undef value. 1007 int SplatValue = *FirstDefinedIdx; 1008 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1009 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1010 return None; 1011 1012 return SplatValue; 1013 } 1014 1015 static bool isBuildVectorOp(unsigned Opcode) { 1016 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1017 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1018 } 1019 1020 namespace { 1021 1022 Optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1023 const MachineRegisterInfo &MRI, 1024 bool AllowUndef) { 1025 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1026 if (!MI) 1027 return None; 1028 1029 if (!isBuildVectorOp(MI->getOpcode())) 1030 return None; 1031 1032 Optional<ValueAndVReg> SplatValAndReg = None; 1033 for (MachineOperand &Op : MI->uses()) { 1034 Register Element = Op.getReg(); 1035 auto ElementValAndReg = 1036 getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1037 1038 // If AllowUndef, treat undef as value that will result in a constant splat. 1039 if (!ElementValAndReg) { 1040 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1041 continue; 1042 return None; 1043 } 1044 1045 // Record splat value 1046 if (!SplatValAndReg) 1047 SplatValAndReg = ElementValAndReg; 1048 1049 // Different constant then the one already recorded, not a constant splat. 1050 if (SplatValAndReg->Value != ElementValAndReg->Value) 1051 return None; 1052 } 1053 1054 return SplatValAndReg; 1055 } 1056 1057 } // end anonymous namespace 1058 1059 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1060 const MachineRegisterInfo &MRI, 1061 int64_t SplatValue, bool AllowUndef) { 1062 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1063 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1064 return false; 1065 } 1066 1067 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1068 const MachineRegisterInfo &MRI, 1069 int64_t SplatValue, bool AllowUndef) { 1070 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1071 AllowUndef); 1072 } 1073 1074 Optional<APInt> llvm::getIConstantSplatVal(const Register Reg, 1075 const MachineRegisterInfo &MRI) { 1076 if (auto SplatValAndReg = 1077 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1078 Optional<ValueAndVReg> ValAndVReg = 1079 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1080 return ValAndVReg->Value; 1081 } 1082 1083 return None; 1084 } 1085 1086 Optional<APInt> getIConstantSplatVal(const MachineInstr &MI, 1087 const MachineRegisterInfo &MRI) { 1088 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1089 } 1090 1091 Optional<int64_t> 1092 llvm::getIConstantSplatSExtVal(const Register Reg, 1093 const MachineRegisterInfo &MRI) { 1094 if (auto SplatValAndReg = 1095 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1096 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1097 return None; 1098 } 1099 1100 Optional<int64_t> 1101 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1102 const MachineRegisterInfo &MRI) { 1103 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1104 } 1105 1106 Optional<FPValueAndVReg> llvm::getFConstantSplat(Register VReg, 1107 const MachineRegisterInfo &MRI, 1108 bool AllowUndef) { 1109 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1110 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1111 return None; 1112 } 1113 1114 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1115 const MachineRegisterInfo &MRI, 1116 bool AllowUndef) { 1117 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1118 } 1119 1120 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1121 const MachineRegisterInfo &MRI, 1122 bool AllowUndef) { 1123 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1124 } 1125 1126 Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI, 1127 const MachineRegisterInfo &MRI) { 1128 unsigned Opc = MI.getOpcode(); 1129 if (!isBuildVectorOp(Opc)) 1130 return None; 1131 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1132 return RegOrConstant(*Splat); 1133 auto Reg = MI.getOperand(1).getReg(); 1134 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()), 1135 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1136 return None; 1137 return RegOrConstant(Reg); 1138 } 1139 1140 static bool isConstantScalar(const MachineInstr &MI, 1141 const MachineRegisterInfo &MRI, 1142 bool AllowFP = true, 1143 bool AllowOpaqueConstants = true) { 1144 switch (MI.getOpcode()) { 1145 case TargetOpcode::G_CONSTANT: 1146 case TargetOpcode::G_IMPLICIT_DEF: 1147 return true; 1148 case TargetOpcode::G_FCONSTANT: 1149 return AllowFP; 1150 case TargetOpcode::G_GLOBAL_VALUE: 1151 case TargetOpcode::G_FRAME_INDEX: 1152 case TargetOpcode::G_BLOCK_ADDR: 1153 case TargetOpcode::G_JUMP_TABLE: 1154 return AllowOpaqueConstants; 1155 default: 1156 return false; 1157 } 1158 } 1159 1160 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1161 const MachineRegisterInfo &MRI) { 1162 Register Def = MI.getOperand(0).getReg(); 1163 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1164 return true; 1165 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1166 if (!BV) 1167 return false; 1168 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1169 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1170 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1171 continue; 1172 return false; 1173 } 1174 return true; 1175 } 1176 1177 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1178 const MachineRegisterInfo &MRI, 1179 bool AllowFP, bool AllowOpaqueConstants) { 1180 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1181 return true; 1182 1183 if (!isBuildVectorOp(MI.getOpcode())) 1184 return false; 1185 1186 const unsigned NumOps = MI.getNumOperands(); 1187 for (unsigned I = 1; I != NumOps; ++I) { 1188 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1189 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1190 return false; 1191 } 1192 1193 return true; 1194 } 1195 1196 Optional<APInt> 1197 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1198 const MachineRegisterInfo &MRI) { 1199 Register Def = MI.getOperand(0).getReg(); 1200 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1201 return C->Value; 1202 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1203 if (!MaybeCst) 1204 return None; 1205 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1206 return APInt(ScalarSize, *MaybeCst, true); 1207 } 1208 1209 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1210 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1211 switch (MI.getOpcode()) { 1212 case TargetOpcode::G_IMPLICIT_DEF: 1213 return AllowUndefs; 1214 case TargetOpcode::G_CONSTANT: 1215 return MI.getOperand(1).getCImm()->isNullValue(); 1216 case TargetOpcode::G_FCONSTANT: { 1217 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1218 return FPImm->isZero() && !FPImm->isNegative(); 1219 } 1220 default: 1221 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1222 return false; 1223 return isBuildVectorAllZeros(MI, MRI); 1224 } 1225 } 1226 1227 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1228 const MachineRegisterInfo &MRI, 1229 bool AllowUndefs) { 1230 switch (MI.getOpcode()) { 1231 case TargetOpcode::G_IMPLICIT_DEF: 1232 return AllowUndefs; 1233 case TargetOpcode::G_CONSTANT: 1234 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1235 default: 1236 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1237 return false; 1238 return isBuildVectorAllOnes(MI, MRI); 1239 } 1240 } 1241 1242 bool llvm::matchUnaryPredicate( 1243 const MachineRegisterInfo &MRI, Register Reg, 1244 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1245 1246 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1247 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1248 return Match(nullptr); 1249 1250 // TODO: Also handle fconstant 1251 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1252 return Match(Def->getOperand(1).getCImm()); 1253 1254 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1255 return false; 1256 1257 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1258 Register SrcElt = Def->getOperand(I).getReg(); 1259 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1260 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1261 if (!Match(nullptr)) 1262 return false; 1263 continue; 1264 } 1265 1266 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1267 !Match(SrcDef->getOperand(1).getCImm())) 1268 return false; 1269 } 1270 1271 return true; 1272 } 1273 1274 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1275 bool IsFP) { 1276 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1277 case TargetLowering::UndefinedBooleanContent: 1278 return Val & 0x1; 1279 case TargetLowering::ZeroOrOneBooleanContent: 1280 return Val == 1; 1281 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1282 return Val == -1; 1283 } 1284 llvm_unreachable("Invalid boolean contents"); 1285 } 1286 1287 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1288 bool IsFP) { 1289 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1290 case TargetLowering::UndefinedBooleanContent: 1291 case TargetLowering::ZeroOrOneBooleanContent: 1292 return 1; 1293 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1294 return -1; 1295 } 1296 llvm_unreachable("Invalid boolean contents"); 1297 } 1298 1299 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1300 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1301 const auto &F = MBB.getParent()->getFunction(); 1302 return F.hasOptSize() || F.hasMinSize() || 1303 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1304 } 1305 1306 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1307 LostDebugLocObserver *LocObserver, 1308 SmallInstListTy &DeadInstChain) { 1309 for (MachineOperand &Op : MI.uses()) { 1310 if (Op.isReg() && Op.getReg().isVirtual()) 1311 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1312 } 1313 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1314 DeadInstChain.remove(&MI); 1315 MI.eraseFromParent(); 1316 if (LocObserver) 1317 LocObserver->checkpoint(false); 1318 } 1319 1320 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1321 MachineRegisterInfo &MRI, 1322 LostDebugLocObserver *LocObserver) { 1323 SmallInstListTy DeadInstChain; 1324 for (MachineInstr *MI : DeadInstrs) 1325 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1326 1327 while (!DeadInstChain.empty()) { 1328 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1329 if (!isTriviallyDead(*Inst, MRI)) 1330 continue; 1331 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1332 } 1333 } 1334 1335 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1336 LostDebugLocObserver *LocObserver) { 1337 return eraseInstrs({&MI}, MRI, LocObserver); 1338 } 1339