1 //===- PPC64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SymbolTable.h" 10 #include "Symbols.h" 11 #include "SyntheticSections.h" 12 #include "Target.h" 13 #include "Thunks.h" 14 #include "lld/Common/CommonLinkerContext.h" 15 #include "llvm/Support/Endian.h" 16 17 using namespace llvm; 18 using namespace llvm::object; 19 using namespace llvm::support::endian; 20 using namespace llvm::ELF; 21 using namespace lld; 22 using namespace lld::elf; 23 24 constexpr uint64_t ppc64TocOffset = 0x8000; 25 constexpr uint64_t dynamicThreadPointerOffset = 0x8000; 26 27 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform 28 // instructions that can be used as part of the initial exec TLS sequence. 29 enum XFormOpcd { 30 LBZX = 87, 31 LHZX = 279, 32 LWZX = 23, 33 LDX = 21, 34 STBX = 215, 35 STHX = 407, 36 STWX = 151, 37 STDX = 149, 38 ADD = 266, 39 }; 40 41 enum DFormOpcd { 42 LBZ = 34, 43 LBZU = 35, 44 LHZ = 40, 45 LHZU = 41, 46 LHAU = 43, 47 LWZ = 32, 48 LWZU = 33, 49 LFSU = 49, 50 LD = 58, 51 LFDU = 51, 52 STB = 38, 53 STBU = 39, 54 STH = 44, 55 STHU = 45, 56 STW = 36, 57 STWU = 37, 58 STFSU = 53, 59 STFDU = 55, 60 STD = 62, 61 ADDI = 14 62 }; 63 64 constexpr uint32_t NOP = 0x60000000; 65 66 enum class PPCLegacyInsn : uint32_t { 67 NOINSN = 0, 68 // Loads. 69 LBZ = 0x88000000, 70 LHZ = 0xa0000000, 71 LWZ = 0x80000000, 72 LHA = 0xa8000000, 73 LWA = 0xe8000002, 74 LD = 0xe8000000, 75 LFS = 0xC0000000, 76 LXSSP = 0xe4000003, 77 LFD = 0xc8000000, 78 LXSD = 0xe4000002, 79 LXV = 0xf4000001, 80 LXVP = 0x18000000, 81 82 // Stores. 83 STB = 0x98000000, 84 STH = 0xb0000000, 85 STW = 0x90000000, 86 STD = 0xf8000000, 87 STFS = 0xd0000000, 88 STXSSP = 0xf4000003, 89 STFD = 0xd8000000, 90 STXSD = 0xf4000002, 91 STXV = 0xf4000005, 92 STXVP = 0x18000001 93 }; 94 enum class PPCPrefixedInsn : uint64_t { 95 NOINSN = 0, 96 PREFIX_MLS = 0x0610000000000000, 97 PREFIX_8LS = 0x0410000000000000, 98 99 // Loads. 100 PLBZ = PREFIX_MLS, 101 PLHZ = PREFIX_MLS, 102 PLWZ = PREFIX_MLS, 103 PLHA = PREFIX_MLS, 104 PLWA = PREFIX_8LS | 0xa4000000, 105 PLD = PREFIX_8LS | 0xe4000000, 106 PLFS = PREFIX_MLS, 107 PLXSSP = PREFIX_8LS | 0xac000000, 108 PLFD = PREFIX_MLS, 109 PLXSD = PREFIX_8LS | 0xa8000000, 110 PLXV = PREFIX_8LS | 0xc8000000, 111 PLXVP = PREFIX_8LS | 0xe8000000, 112 113 // Stores. 114 PSTB = PREFIX_MLS, 115 PSTH = PREFIX_MLS, 116 PSTW = PREFIX_MLS, 117 PSTD = PREFIX_8LS | 0xf4000000, 118 PSTFS = PREFIX_MLS, 119 PSTXSSP = PREFIX_8LS | 0xbc000000, 120 PSTFD = PREFIX_MLS, 121 PSTXSD = PREFIX_8LS | 0xb8000000, 122 PSTXV = PREFIX_8LS | 0xd8000000, 123 PSTXVP = PREFIX_8LS | 0xf8000000 124 }; 125 static bool checkPPCLegacyInsn(uint32_t encoding) { 126 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); 127 if (insn == PPCLegacyInsn::NOINSN) 128 return false; 129 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 130 if (insn == PPCLegacyInsn::Legacy) \ 131 return true; 132 #include "PPCInsns.def" 133 #undef PCREL_OPT 134 return false; 135 } 136 137 // Masks to apply to legacy instructions when converting them to prefixed, 138 // pc-relative versions. For the most part, the primary opcode is shared 139 // between the legacy instruction and the suffix of its prefixed version. 140 // However, there are some instances where that isn't the case (DS-Form and 141 // DQ-form instructions). 142 enum class LegacyToPrefixMask : uint64_t { 143 NOMASK = 0x0, 144 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). 145 ONLY_RST = 0x3e00000, // [RS]T (6-10). 146 ST_STX28_TO5 = 147 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. 148 }; 149 150 uint64_t elf::getPPC64TocBase() { 151 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 152 // TOC starts where the first of these sections starts. We always create a 153 // .got when we see a relocation that uses it, so for us the start is always 154 // the .got. 155 uint64_t tocVA = in.got->getVA(); 156 157 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 158 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 159 // code (crt1.o) assumes that you can get from the TOC base to the 160 // start of the .toc section with only a single (signed) 16-bit relocation. 161 return tocVA + ppc64TocOffset; 162 } 163 164 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { 165 // The offset is encoded into the 3 most significant bits of the st_other 166 // field, with some special values described in section 3.4.1 of the ABI: 167 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use 168 // the TOC pointer (r2). r2 will hold the same value on returning from 169 // the function as it did on entering the function. 170 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a 171 // caller-saved register for all callers. 172 // 2-6 --> The binary logarithm of the offset eg: 173 // 2 --> 2^2 = 4 bytes --> 1 instruction. 174 // 6 --> 2^6 = 64 bytes --> 16 instructions. 175 // 7 --> Reserved. 176 uint8_t gepToLep = (stOther >> 5) & 7; 177 if (gepToLep < 2) 178 return 0; 179 180 // The value encoded in the st_other bits is the 181 // log-base-2(offset). 182 if (gepToLep < 7) 183 return 1 << gepToLep; 184 185 error("reserved value of 7 in the 3 most-significant-bits of st_other"); 186 return 0; 187 } 188 189 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { 190 insn = config->isLE ? insn << 32 | insn >> 32 : insn; 191 write64(loc, insn); 192 } 193 194 static bool addOptional(StringRef name, uint64_t value, 195 std::vector<Defined *> &defined) { 196 Symbol *sym = symtab->find(name); 197 if (!sym || sym->isDefined()) 198 return false; 199 sym->resolve(Defined{/*file=*/nullptr, saver().save(name), STB_GLOBAL, 200 STV_HIDDEN, STT_FUNC, value, 201 /*size=*/0, /*section=*/nullptr}); 202 defined.push_back(cast<Defined>(sym)); 203 return true; 204 } 205 206 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: 207 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail 208 // The labels are defined only if they exist in the symbol table. 209 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix, 210 int from, uint32_t firstInsn, 211 ArrayRef<uint32_t> tail) { 212 std::vector<Defined *> defined; 213 char name[16]; 214 int first; 215 uint32_t *ptr = buf.data(); 216 for (int r = from; r < 32; ++r) { 217 format("%s%d", prefix, r).snprint(name, sizeof(name)); 218 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) 219 first = r - from; 220 write32(ptr++, firstInsn + 0x200008 * (r - from)); 221 } 222 for (uint32_t insn : tail) 223 write32(ptr++, insn); 224 assert(ptr == &*buf.end()); 225 226 if (defined.empty()) 227 return; 228 // The full section content has the extent of [begin, end). We drop unused 229 // instructions and write [first,end). 230 auto *sec = make<InputSection>( 231 nullptr, SHF_ALLOC, SHT_PROGBITS, 4, 232 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), 233 4 * (buf.size() - first)), 234 ".text"); 235 inputSections.push_back(sec); 236 for (Defined *sym : defined) { 237 sym->section = sec; 238 sym->value -= 4 * first; 239 } 240 } 241 242 // Implements some save and restore functions as described by ELF V2 ABI to be 243 // compatible with GCC. With GCC -Os, when the number of call-saved registers 244 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and 245 // expects the linker to define them. See 246 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and 247 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is 248 // weird because libgcc.a would be the natural place. The linker generation 249 // approach has the advantage that the linker can generate multiple copies to 250 // avoid long branch thunks. However, we don't consider the advantage 251 // significant enough to complicate our trunk implementation, so we take the 252 // simple approach and synthesize .text sections providing the implementation. 253 void elf::addPPC64SaveRestore() { 254 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; 255 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; 256 257 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... 258 // Tail: ld 0, 16(1); mtlr 0; blr 259 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, 260 {0xe8010010, mtlr_0, blr}); 261 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... 262 // Tail: blr 263 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); 264 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... 265 // Tail: std 0, 16(1); blr 266 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); 267 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... 268 // Tail: blr 269 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); 270 } 271 272 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. 273 template <typename ELFT> 274 static std::pair<Defined *, int64_t> 275 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { 276 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by 277 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the 278 // relocation index in most cases. 279 // 280 // In rare cases a TOC entry may store a constant that doesn't need an 281 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 282 // points to a relocation with larger r_offset. Do a linear probe then. 283 // Constants are extremely uncommon in .toc and the extra number of array 284 // accesses can be seen as a small constant. 285 ArrayRef<typename ELFT::Rela> relas = 286 tocSec->template relsOrRelas<ELFT>().relas; 287 if (relas.empty()) 288 return {}; 289 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); 290 for (;;) { 291 if (relas[index].r_offset == offset) { 292 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]); 293 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])}; 294 } 295 if (relas[index].r_offset < offset || index == 0) 296 break; 297 --index; 298 } 299 return {}; 300 } 301 302 // When accessing a symbol defined in another translation unit, compilers 303 // reserve a .toc entry, allocate a local label and generate toc-indirect 304 // instructions: 305 // 306 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA 307 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry 308 // ld/lwa 3, 0(3) # load the value from the address 309 // 310 // .section .toc,"aw",@progbits 311 // .LC0: .tc var[TC],var 312 // 313 // If var is defined, non-preemptable and addressable with a 32-bit signed 314 // offset from the toc base, the address of var can be computed by adding an 315 // offset to the toc base, saving a load. 316 // 317 // addis 3,2,var@toc@ha # this may be relaxed to a nop, 318 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc 319 // ld/lwa 3, 0(3) # load the value from the address 320 // 321 // Returns true if the relaxation is performed. 322 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { 323 assert(config->tocOptimize); 324 if (rel.addend < 0) 325 return false; 326 327 // If the symbol is not the .toc section, this isn't a toc-indirection. 328 Defined *defSym = dyn_cast<Defined>(rel.sym); 329 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") 330 return false; 331 332 Defined *d; 333 int64_t addend; 334 auto *tocISB = cast<InputSectionBase>(defSym->section); 335 std::tie(d, addend) = 336 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend) 337 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend); 338 339 // Only non-preemptable defined symbols can be relaxed. 340 if (!d || d->isPreemptible) 341 return false; 342 343 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable 344 // ifunc and changed its type to STT_FUNC. 345 assert(!d->isGnuIFunc()); 346 347 // Two instructions can materialize a 32-bit signed offset from the toc base. 348 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); 349 if (!isInt<32>(tocRelative)) 350 return false; 351 352 // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). 353 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); 354 return true; 355 } 356 357 namespace { 358 class PPC64 final : public TargetInfo { 359 public: 360 PPC64(); 361 int getTlsGdRelaxSkip(RelType type) const override; 362 uint32_t calcEFlags() const override; 363 RelExpr getRelExpr(RelType type, const Symbol &s, 364 const uint8_t *loc) const override; 365 RelType getDynRel(RelType type) const override; 366 void writePltHeader(uint8_t *buf) const override; 367 void writePlt(uint8_t *buf, const Symbol &sym, 368 uint64_t pltEntryAddr) const override; 369 void writeIplt(uint8_t *buf, const Symbol &sym, 370 uint64_t pltEntryAddr) const override; 371 void relocate(uint8_t *loc, const Relocation &rel, 372 uint64_t val) const override; 373 void writeGotHeader(uint8_t *buf) const override; 374 bool needsThunk(RelExpr expr, RelType type, const InputFile *file, 375 uint64_t branchAddr, const Symbol &s, 376 int64_t a) const override; 377 uint32_t getThunkSectionSpacing() const override; 378 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; 379 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; 380 RelExpr adjustGotPcExpr(RelType type, int64_t addend, 381 const uint8_t *loc) const override; 382 void relaxGot(uint8_t *loc, const Relocation &rel, 383 uint64_t val) const override; 384 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 385 uint64_t val) const override; 386 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 387 uint64_t val) const override; 388 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 389 uint64_t val) const override; 390 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 391 uint64_t val) const override; 392 393 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 394 uint8_t stOther) const override; 395 }; 396 } // namespace 397 398 // Relocation masks following the #lo(value), #hi(value), #ha(value), 399 // #higher(value), #highera(value), #highest(value), and #highesta(value) 400 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 401 // document. 402 static uint16_t lo(uint64_t v) { return v; } 403 static uint16_t hi(uint64_t v) { return v >> 16; } 404 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } 405 static uint16_t higher(uint64_t v) { return v >> 32; } 406 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } 407 static uint16_t highest(uint64_t v) { return v >> 48; } 408 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } 409 410 // Extracts the 'PO' field of an instruction encoding. 411 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } 412 413 static bool isDQFormInstruction(uint32_t encoding) { 414 switch (getPrimaryOpCode(encoding)) { 415 default: 416 return false; 417 case 6: // Power10 paired loads/stores (lxvp, stxvp). 418 case 56: 419 // The only instruction with a primary opcode of 56 is `lq`. 420 return true; 421 case 61: 422 // There are both DS and DQ instruction forms with this primary opcode. 423 // Namely `lxv` and `stxv` are the DQ-forms that use it. 424 // The DS 'XO' bits being set to 01 is restricted to DQ form. 425 return (encoding & 3) == 0x1; 426 } 427 } 428 429 static bool isDSFormInstruction(PPCLegacyInsn insn) { 430 switch (insn) { 431 default: 432 return false; 433 case PPCLegacyInsn::LWA: 434 case PPCLegacyInsn::LD: 435 case PPCLegacyInsn::LXSD: 436 case PPCLegacyInsn::LXSSP: 437 case PPCLegacyInsn::STD: 438 case PPCLegacyInsn::STXSD: 439 case PPCLegacyInsn::STXSSP: 440 return true; 441 } 442 } 443 444 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { 445 uint32_t opc = encoding & 0xfc000000; 446 447 // If the primary opcode is shared between multiple instructions, we need to 448 // fix it up to match the actual instruction we are after. 449 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || 450 opc == 0xf8000000) && 451 !isDQFormInstruction(encoding)) 452 opc = encoding & 0xfc000003; 453 else if (opc == 0xf4000000) 454 opc = encoding & 0xfc000007; 455 else if (opc == 0x18000000) 456 opc = encoding & 0xfc00000f; 457 458 // If the value is not one of the enumerators in PPCLegacyInsn, we want to 459 // return PPCLegacyInsn::NOINSN. 460 if (!checkPPCLegacyInsn(opc)) 461 return PPCLegacyInsn::NOINSN; 462 return static_cast<PPCLegacyInsn>(opc); 463 } 464 465 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { 466 switch (insn) { 467 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 468 case PPCLegacyInsn::Legacy: \ 469 return PPCPrefixedInsn::PCRel 470 #include "PPCInsns.def" 471 #undef PCREL_OPT 472 } 473 return PPCPrefixedInsn::NOINSN; 474 } 475 476 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { 477 switch (insn) { 478 #define PCREL_OPT(Legacy, PCRel, InsnMask) \ 479 case PPCLegacyInsn::Legacy: \ 480 return LegacyToPrefixMask::InsnMask 481 #include "PPCInsns.def" 482 #undef PCREL_OPT 483 } 484 return LegacyToPrefixMask::NOMASK; 485 } 486 static uint64_t getPCRelativeForm(uint32_t encoding) { 487 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); 488 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); 489 if (pcrelInsn == PPCPrefixedInsn::NOINSN) 490 return UINT64_C(-1); 491 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); 492 uint64_t pcrelEncoding = 493 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); 494 495 // If the mask requires moving bit 28 to bit 5, do that now. 496 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) 497 pcrelEncoding |= (encoding & 0x8) << 23; 498 return pcrelEncoding; 499 } 500 501 static bool isInstructionUpdateForm(uint32_t encoding) { 502 switch (getPrimaryOpCode(encoding)) { 503 default: 504 return false; 505 case LBZU: 506 case LHAU: 507 case LHZU: 508 case LWZU: 509 case LFSU: 510 case LFDU: 511 case STBU: 512 case STHU: 513 case STWU: 514 case STFSU: 515 case STFDU: 516 return true; 517 // LWA has the same opcode as LD, and the DS bits is what differentiates 518 // between LD/LDU/LWA 519 case LD: 520 case STD: 521 return (encoding & 3) == 1; 522 } 523 } 524 525 // Compute the total displacement between the prefixed instruction that gets 526 // to the start of the data and the load/store instruction that has the offset 527 // into the data structure. 528 // For example: 529 // paddi 3, 0, 1000, 1 530 // lwz 3, 20(3) 531 // Should add up to 1020 for total displacement. 532 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { 533 int64_t disp34 = llvm::SignExtend64( 534 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); 535 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); 536 // For DS and DQ form instructions, we need to mask out the XO bits. 537 if (isDQFormInstruction(accessInsn)) 538 disp16 &= ~0xf; 539 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) 540 disp16 &= ~0x3; 541 return disp34 + disp16; 542 } 543 544 // There are a number of places when we either want to read or write an 545 // instruction when handling a half16 relocation type. On big-endian the buffer 546 // pointer is pointing into the middle of the word we want to extract, and on 547 // little-endian it is pointing to the start of the word. These 2 helpers are to 548 // simplify reading and writing in that context. 549 static void writeFromHalf16(uint8_t *loc, uint32_t insn) { 550 write32(config->isLE ? loc : loc - 2, insn); 551 } 552 553 static uint32_t readFromHalf16(const uint8_t *loc) { 554 return read32(config->isLE ? loc : loc - 2); 555 } 556 557 static uint64_t readPrefixedInstruction(const uint8_t *loc) { 558 uint64_t fullInstr = read64(loc); 559 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; 560 } 561 562 PPC64::PPC64() { 563 copyRel = R_PPC64_COPY; 564 gotRel = R_PPC64_GLOB_DAT; 565 pltRel = R_PPC64_JMP_SLOT; 566 relativeRel = R_PPC64_RELATIVE; 567 iRelativeRel = R_PPC64_IRELATIVE; 568 symbolicRel = R_PPC64_ADDR64; 569 pltHeaderSize = 60; 570 pltEntrySize = 4; 571 ipltEntrySize = 16; // PPC64PltCallStub::size 572 gotHeaderEntriesNum = 1; 573 gotPltHeaderEntriesNum = 2; 574 needsThunks = true; 575 576 tlsModuleIndexRel = R_PPC64_DTPMOD64; 577 tlsOffsetRel = R_PPC64_DTPREL64; 578 579 tlsGotRel = R_PPC64_TPREL64; 580 581 needsMoreStackNonSplit = false; 582 583 // We need 64K pages (at least under glibc/Linux, the loader won't 584 // set different permissions on a finer granularity than that). 585 defaultMaxPageSize = 65536; 586 587 // The PPC64 ELF ABI v1 spec, says: 588 // 589 // It is normally desirable to put segments with different characteristics 590 // in separate 256 Mbyte portions of the address space, to give the 591 // operating system full paging flexibility in the 64-bit address space. 592 // 593 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 594 // use 0x10000000 as the starting address. 595 defaultImageBase = 0x10000000; 596 597 write32(trapInstr.data(), 0x7fe00008); 598 } 599 600 int PPC64::getTlsGdRelaxSkip(RelType type) const { 601 // A __tls_get_addr call instruction is marked with 2 relocations: 602 // 603 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation 604 // R_PPC64_REL24: __tls_get_addr 605 // 606 // After the relaxation we no longer call __tls_get_addr and should skip both 607 // relocations to not create a false dependence on __tls_get_addr being 608 // defined. 609 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) 610 return 2; 611 return 1; 612 } 613 614 static uint32_t getEFlags(InputFile *file) { 615 if (config->ekind == ELF64BEKind) 616 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags; 617 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags; 618 } 619 620 // This file implements v2 ABI. This function makes sure that all 621 // object files have v2 or an unspecified version as an ABI version. 622 uint32_t PPC64::calcEFlags() const { 623 for (InputFile *f : objectFiles) { 624 uint32_t flag = getEFlags(f); 625 if (flag == 1) 626 error(toString(f) + ": ABI version 1 is not supported"); 627 else if (flag > 2) 628 error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); 629 } 630 return 2; 631 } 632 633 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { 634 switch (rel.type) { 635 case R_PPC64_TOC16_HA: 636 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". 637 relocate(loc, rel, val); 638 break; 639 case R_PPC64_TOC16_LO_DS: { 640 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or 641 // "addi reg, 2, var@toc". 642 uint32_t insn = readFromHalf16(loc); 643 if (getPrimaryOpCode(insn) != LD) 644 error("expected a 'ld' for got-indirect to toc-relative relaxing"); 645 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); 646 relocateNoSym(loc, R_PPC64_TOC16_LO, val); 647 break; 648 } 649 case R_PPC64_GOT_PCREL34: { 650 // Clear the first 8 bits of the prefix and the first 6 bits of the 651 // instruction (the primary opcode). 652 uint64_t insn = readPrefixedInstruction(loc); 653 if ((insn & 0xfc000000) != 0xe4000000) 654 error("expected a 'pld' for got-indirect to pc-relative relaxing"); 655 insn &= ~0xff000000fc000000; 656 657 // Replace the cleared bits with the values for PADDI (0x600000038000000); 658 insn |= 0x600000038000000; 659 writePrefixedInstruction(loc, insn); 660 relocate(loc, rel, val); 661 break; 662 } 663 case R_PPC64_PCREL_OPT: { 664 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can 665 // be relaxed. The eligibility for the relaxation needs to be determined 666 // on that relocation since this one does not relocate a symbol. 667 uint64_t insn = readPrefixedInstruction(loc); 668 uint32_t accessInsn = read32(loc + rel.addend); 669 uint64_t pcRelInsn = getPCRelativeForm(accessInsn); 670 671 // This error is not necessary for correctness but is emitted for now 672 // to ensure we don't miss these opportunities in real code. It can be 673 // removed at a later date. 674 if (pcRelInsn == UINT64_C(-1)) { 675 errorOrWarn( 676 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + 677 Twine::utohexstr(accessInsn)); 678 break; 679 } 680 681 int64_t totalDisp = getTotalDisp(insn, accessInsn); 682 if (!isInt<34>(totalDisp)) 683 break; // Displacement doesn't fit. 684 // Convert the PADDI to the prefixed version of accessInsn and convert 685 // accessInsn to a nop. 686 writePrefixedInstruction(loc, pcRelInsn | 687 ((totalDisp & 0x3ffff0000) << 16) | 688 (totalDisp & 0xffff)); 689 write32(loc + rel.addend, NOP); // nop accessInsn. 690 break; 691 } 692 default: 693 llvm_unreachable("unexpected relocation type"); 694 } 695 } 696 697 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, 698 uint64_t val) const { 699 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. 700 // The general dynamic code sequence for a global `x` will look like: 701 // Instruction Relocation Symbol 702 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 703 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 704 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 705 // R_PPC64_REL24 __tls_get_addr 706 // nop None None 707 708 // Relaxing to local exec entails converting: 709 // addis r3, r2, x@got@tlsgd@ha into nop 710 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha 711 // bl __tls_get_addr(x@tlsgd) into nop 712 // nop into addi r3, r3, x@tprel@l 713 714 switch (rel.type) { 715 case R_PPC64_GOT_TLSGD16_HA: 716 writeFromHalf16(loc, NOP); 717 break; 718 case R_PPC64_GOT_TLSGD16: 719 case R_PPC64_GOT_TLSGD16_LO: 720 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 721 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 722 break; 723 case R_PPC64_GOT_TLSGD_PCREL34: 724 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to 725 // paddi r3, r13, x@tprel, 0 726 writePrefixedInstruction(loc, 0x06000000386d0000); 727 relocateNoSym(loc, R_PPC64_TPREL34, val); 728 break; 729 case R_PPC64_TLSGD: { 730 // PC Relative Relaxation: 731 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 732 // nop 733 // TOC Relaxation: 734 // Relax from bl __tls_get_addr(x@tlsgd) 735 // nop 736 // to 737 // nop 738 // addi r3, r3, x@tprel@l 739 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 740 if (locAsInt % 4 == 0) { 741 write32(loc, NOP); // nop 742 write32(loc + 4, 0x38630000); // addi r3, r3 743 // Since we are relocating a half16 type relocation and Loc + 4 points to 744 // the start of an instruction we need to advance the buffer by an extra 745 // 2 bytes on BE. 746 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), 747 R_PPC64_TPREL16_LO, val); 748 } else if (locAsInt % 4 == 1) { 749 write32(loc - 1, NOP); 750 } else { 751 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 752 } 753 break; 754 } 755 default: 756 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 757 } 758 } 759 760 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, 761 uint64_t val) const { 762 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. 763 // The local dynamic code sequence for a global `x` will look like: 764 // Instruction Relocation Symbol 765 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x 766 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x 767 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x 768 // R_PPC64_REL24 __tls_get_addr 769 // nop None None 770 771 // Relaxing to local exec entails converting: 772 // addis r3, r2, x@got@tlsld@ha into nop 773 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 774 // bl __tls_get_addr(x@tlsgd) into nop 775 // nop into addi r3, r3, 4096 776 777 switch (rel.type) { 778 case R_PPC64_GOT_TLSLD16_HA: 779 writeFromHalf16(loc, NOP); 780 break; 781 case R_PPC64_GOT_TLSLD16_LO: 782 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 783 break; 784 case R_PPC64_GOT_TLSLD_PCREL34: 785 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to 786 // paddi r3, r13, 0x1000, 0 787 writePrefixedInstruction(loc, 0x06000000386d1000); 788 break; 789 case R_PPC64_TLSLD: { 790 // PC Relative Relaxation: 791 // Relax from bl __tls_get_addr@notoc(x@tlsld) 792 // to 793 // nop 794 // TOC Relaxation: 795 // Relax from bl __tls_get_addr(x@tlsld) 796 // nop 797 // to 798 // nop 799 // addi r3, r3, 4096 800 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 801 if (locAsInt % 4 == 0) { 802 write32(loc, NOP); 803 write32(loc + 4, 0x38631000); // addi r3, r3, 4096 804 } else if (locAsInt % 4 == 1) { 805 write32(loc - 1, NOP); 806 } else { 807 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); 808 } 809 break; 810 } 811 case R_PPC64_DTPREL16: 812 case R_PPC64_DTPREL16_HA: 813 case R_PPC64_DTPREL16_HI: 814 case R_PPC64_DTPREL16_DS: 815 case R_PPC64_DTPREL16_LO: 816 case R_PPC64_DTPREL16_LO_DS: 817 case R_PPC64_DTPREL34: 818 relocate(loc, rel, val); 819 break; 820 default: 821 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); 822 } 823 } 824 825 unsigned elf::getPPCDFormOp(unsigned secondaryOp) { 826 switch (secondaryOp) { 827 case LBZX: 828 return LBZ; 829 case LHZX: 830 return LHZ; 831 case LWZX: 832 return LWZ; 833 case LDX: 834 return LD; 835 case STBX: 836 return STB; 837 case STHX: 838 return STH; 839 case STWX: 840 return STW; 841 case STDX: 842 return STD; 843 case ADD: 844 return ADDI; 845 default: 846 return 0; 847 } 848 } 849 850 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, 851 uint64_t val) const { 852 // The initial exec code sequence for a global `x` will look like: 853 // Instruction Relocation Symbol 854 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x 855 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x 856 // add r9, r9, x@tls R_PPC64_TLS x 857 858 // Relaxing to local exec entails converting: 859 // addis r9, r2, x@got@tprel@ha into nop 860 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha 861 // add r9, r9, x@tls into addi r9, r9, x@tprel@l 862 863 // x@tls R_PPC64_TLS is a relocation which does not compute anything, 864 // it is replaced with r13 (thread pointer). 865 866 // The add instruction in the initial exec sequence has multiple variations 867 // that need to be handled. If we are building an address it will use an add 868 // instruction, if we are accessing memory it will use any of the X-form 869 // indexed load or store instructions. 870 871 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; 872 switch (rel.type) { 873 case R_PPC64_GOT_TPREL16_HA: 874 write32(loc - offset, NOP); 875 break; 876 case R_PPC64_GOT_TPREL16_LO_DS: 877 case R_PPC64_GOT_TPREL16_DS: { 878 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 879 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 880 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); 881 break; 882 } 883 case R_PPC64_GOT_TPREL_PCREL34: { 884 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; 885 // paddi RT(from pld), r13, symbol@tprel, 0 886 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); 887 relocateNoSym(loc, R_PPC64_TPREL34, val); 888 break; 889 } 890 case R_PPC64_TLS: { 891 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 892 if (locAsInt % 4 == 0) { 893 uint32_t primaryOp = getPrimaryOpCode(read32(loc)); 894 if (primaryOp != 31) 895 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 896 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 897 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 898 if (dFormOp == 0) 899 error("unrecognized instruction for IE to LE R_PPC64_TLS"); 900 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF))); 901 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val); 902 } else if (locAsInt % 4 == 1) { 903 // If the offset is not 4 byte aligned then we have a PCRel type reloc. 904 // This version of the relocation is offset by one byte from the 905 // instruction it references. 906 uint32_t tlsInstr = read32(loc - 1); 907 uint32_t primaryOp = getPrimaryOpCode(tlsInstr); 908 if (primaryOp != 31) 909 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 910 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 911 // The add is a special case and should be turned into a nop. The paddi 912 // that comes before it will already have computed the address of the 913 // symbol. 914 if (secondaryOp == 266) { 915 // Check if the add uses the same result register as the input register. 916 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 917 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 918 if (ra == rt) { 919 write32(loc - 1, NOP); 920 } else { 921 // mr rt, ra 922 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); 923 } 924 } else { 925 uint32_t dFormOp = getPPCDFormOp(secondaryOp); 926 if (dFormOp == 0) 927 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); 928 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000))); 929 } 930 } else { 931 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " 932 "offset from 4 byte aligned"); 933 } 934 break; 935 } 936 default: 937 llvm_unreachable("unknown relocation for IE to LE"); 938 break; 939 } 940 } 941 942 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, 943 const uint8_t *loc) const { 944 switch (type) { 945 case R_PPC64_NONE: 946 return R_NONE; 947 case R_PPC64_ADDR16: 948 case R_PPC64_ADDR16_DS: 949 case R_PPC64_ADDR16_HA: 950 case R_PPC64_ADDR16_HI: 951 case R_PPC64_ADDR16_HIGH: 952 case R_PPC64_ADDR16_HIGHER: 953 case R_PPC64_ADDR16_HIGHERA: 954 case R_PPC64_ADDR16_HIGHEST: 955 case R_PPC64_ADDR16_HIGHESTA: 956 case R_PPC64_ADDR16_LO: 957 case R_PPC64_ADDR16_LO_DS: 958 case R_PPC64_ADDR32: 959 case R_PPC64_ADDR64: 960 return R_ABS; 961 case R_PPC64_GOT16: 962 case R_PPC64_GOT16_DS: 963 case R_PPC64_GOT16_HA: 964 case R_PPC64_GOT16_HI: 965 case R_PPC64_GOT16_LO: 966 case R_PPC64_GOT16_LO_DS: 967 return R_GOT_OFF; 968 case R_PPC64_TOC16: 969 case R_PPC64_TOC16_DS: 970 case R_PPC64_TOC16_HI: 971 case R_PPC64_TOC16_LO: 972 return R_GOTREL; 973 case R_PPC64_GOT_PCREL34: 974 case R_PPC64_GOT_TPREL_PCREL34: 975 case R_PPC64_PCREL_OPT: 976 return R_GOT_PC; 977 case R_PPC64_TOC16_HA: 978 case R_PPC64_TOC16_LO_DS: 979 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; 980 case R_PPC64_TOC: 981 return R_PPC64_TOCBASE; 982 case R_PPC64_REL14: 983 case R_PPC64_REL24: 984 return R_PPC64_CALL_PLT; 985 case R_PPC64_REL24_NOTOC: 986 return R_PLT_PC; 987 case R_PPC64_REL16_LO: 988 case R_PPC64_REL16_HA: 989 case R_PPC64_REL16_HI: 990 case R_PPC64_REL32: 991 case R_PPC64_REL64: 992 case R_PPC64_PCREL34: 993 return R_PC; 994 case R_PPC64_GOT_TLSGD16: 995 case R_PPC64_GOT_TLSGD16_HA: 996 case R_PPC64_GOT_TLSGD16_HI: 997 case R_PPC64_GOT_TLSGD16_LO: 998 return R_TLSGD_GOT; 999 case R_PPC64_GOT_TLSGD_PCREL34: 1000 return R_TLSGD_PC; 1001 case R_PPC64_GOT_TLSLD16: 1002 case R_PPC64_GOT_TLSLD16_HA: 1003 case R_PPC64_GOT_TLSLD16_HI: 1004 case R_PPC64_GOT_TLSLD16_LO: 1005 return R_TLSLD_GOT; 1006 case R_PPC64_GOT_TLSLD_PCREL34: 1007 return R_TLSLD_PC; 1008 case R_PPC64_GOT_TPREL16_HA: 1009 case R_PPC64_GOT_TPREL16_LO_DS: 1010 case R_PPC64_GOT_TPREL16_DS: 1011 case R_PPC64_GOT_TPREL16_HI: 1012 return R_GOT_OFF; 1013 case R_PPC64_GOT_DTPREL16_HA: 1014 case R_PPC64_GOT_DTPREL16_LO_DS: 1015 case R_PPC64_GOT_DTPREL16_DS: 1016 case R_PPC64_GOT_DTPREL16_HI: 1017 return R_TLSLD_GOT_OFF; 1018 case R_PPC64_TPREL16: 1019 case R_PPC64_TPREL16_HA: 1020 case R_PPC64_TPREL16_LO: 1021 case R_PPC64_TPREL16_HI: 1022 case R_PPC64_TPREL16_DS: 1023 case R_PPC64_TPREL16_LO_DS: 1024 case R_PPC64_TPREL16_HIGHER: 1025 case R_PPC64_TPREL16_HIGHERA: 1026 case R_PPC64_TPREL16_HIGHEST: 1027 case R_PPC64_TPREL16_HIGHESTA: 1028 case R_PPC64_TPREL34: 1029 return R_TPREL; 1030 case R_PPC64_DTPREL16: 1031 case R_PPC64_DTPREL16_DS: 1032 case R_PPC64_DTPREL16_HA: 1033 case R_PPC64_DTPREL16_HI: 1034 case R_PPC64_DTPREL16_HIGHER: 1035 case R_PPC64_DTPREL16_HIGHERA: 1036 case R_PPC64_DTPREL16_HIGHEST: 1037 case R_PPC64_DTPREL16_HIGHESTA: 1038 case R_PPC64_DTPREL16_LO: 1039 case R_PPC64_DTPREL16_LO_DS: 1040 case R_PPC64_DTPREL64: 1041 case R_PPC64_DTPREL34: 1042 return R_DTPREL; 1043 case R_PPC64_TLSGD: 1044 return R_TLSDESC_CALL; 1045 case R_PPC64_TLSLD: 1046 return R_TLSLD_HINT; 1047 case R_PPC64_TLS: 1048 return R_TLSIE_HINT; 1049 default: 1050 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + 1051 ") against symbol " + toString(s)); 1052 return R_NONE; 1053 } 1054 } 1055 1056 RelType PPC64::getDynRel(RelType type) const { 1057 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) 1058 return R_PPC64_ADDR64; 1059 return R_PPC64_NONE; 1060 } 1061 1062 void PPC64::writeGotHeader(uint8_t *buf) const { 1063 write64(buf, getPPC64TocBase()); 1064 } 1065 1066 void PPC64::writePltHeader(uint8_t *buf) const { 1067 // The generic resolver stub goes first. 1068 write32(buf + 0, 0x7c0802a6); // mflr r0 1069 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> 1070 write32(buf + 8, 0x7d6802a6); // mflr r11 1071 write32(buf + 12, 0x7c0803a6); // mtlr r0 1072 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 1073 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 1074 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 1075 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) 1076 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 1077 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) 1078 write32(buf + 40, 0xe96b0008); // ld r11,8(r11) 1079 write32(buf + 44, 0x7d8903a6); // mtctr r12 1080 write32(buf + 48, 0x4e800420); // bctr 1081 1082 // The 'bcl' instruction will set the link register to the address of the 1083 // following instruction ('mflr r11'). Here we store the offset from that 1084 // instruction to the first entry in the GotPlt section. 1085 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); 1086 write64(buf + 52, gotPltOffset); 1087 } 1088 1089 void PPC64::writePlt(uint8_t *buf, const Symbol &sym, 1090 uint64_t /*pltEntryAddr*/) const { 1091 int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize; 1092 // bl __glink_PLTresolve 1093 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); 1094 } 1095 1096 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, 1097 uint64_t /*pltEntryAddr*/) const { 1098 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); 1099 } 1100 1101 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { 1102 // Relocations relative to the toc-base need to be adjusted by the Toc offset. 1103 uint64_t tocBiasedVal = val - ppc64TocOffset; 1104 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. 1105 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; 1106 1107 switch (type) { 1108 // TOC biased relocation. 1109 case R_PPC64_GOT16: 1110 case R_PPC64_GOT_TLSGD16: 1111 case R_PPC64_GOT_TLSLD16: 1112 case R_PPC64_TOC16: 1113 return {R_PPC64_ADDR16, tocBiasedVal}; 1114 case R_PPC64_GOT16_DS: 1115 case R_PPC64_TOC16_DS: 1116 case R_PPC64_GOT_TPREL16_DS: 1117 case R_PPC64_GOT_DTPREL16_DS: 1118 return {R_PPC64_ADDR16_DS, tocBiasedVal}; 1119 case R_PPC64_GOT16_HA: 1120 case R_PPC64_GOT_TLSGD16_HA: 1121 case R_PPC64_GOT_TLSLD16_HA: 1122 case R_PPC64_GOT_TPREL16_HA: 1123 case R_PPC64_GOT_DTPREL16_HA: 1124 case R_PPC64_TOC16_HA: 1125 return {R_PPC64_ADDR16_HA, tocBiasedVal}; 1126 case R_PPC64_GOT16_HI: 1127 case R_PPC64_GOT_TLSGD16_HI: 1128 case R_PPC64_GOT_TLSLD16_HI: 1129 case R_PPC64_GOT_TPREL16_HI: 1130 case R_PPC64_GOT_DTPREL16_HI: 1131 case R_PPC64_TOC16_HI: 1132 return {R_PPC64_ADDR16_HI, tocBiasedVal}; 1133 case R_PPC64_GOT16_LO: 1134 case R_PPC64_GOT_TLSGD16_LO: 1135 case R_PPC64_GOT_TLSLD16_LO: 1136 case R_PPC64_TOC16_LO: 1137 return {R_PPC64_ADDR16_LO, tocBiasedVal}; 1138 case R_PPC64_GOT16_LO_DS: 1139 case R_PPC64_TOC16_LO_DS: 1140 case R_PPC64_GOT_TPREL16_LO_DS: 1141 case R_PPC64_GOT_DTPREL16_LO_DS: 1142 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; 1143 1144 // Dynamic Thread pointer biased relocation types. 1145 case R_PPC64_DTPREL16: 1146 return {R_PPC64_ADDR16, dtpBiasedVal}; 1147 case R_PPC64_DTPREL16_DS: 1148 return {R_PPC64_ADDR16_DS, dtpBiasedVal}; 1149 case R_PPC64_DTPREL16_HA: 1150 return {R_PPC64_ADDR16_HA, dtpBiasedVal}; 1151 case R_PPC64_DTPREL16_HI: 1152 return {R_PPC64_ADDR16_HI, dtpBiasedVal}; 1153 case R_PPC64_DTPREL16_HIGHER: 1154 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; 1155 case R_PPC64_DTPREL16_HIGHERA: 1156 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; 1157 case R_PPC64_DTPREL16_HIGHEST: 1158 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; 1159 case R_PPC64_DTPREL16_HIGHESTA: 1160 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; 1161 case R_PPC64_DTPREL16_LO: 1162 return {R_PPC64_ADDR16_LO, dtpBiasedVal}; 1163 case R_PPC64_DTPREL16_LO_DS: 1164 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; 1165 case R_PPC64_DTPREL64: 1166 return {R_PPC64_ADDR64, dtpBiasedVal}; 1167 1168 default: 1169 return {type, val}; 1170 } 1171 } 1172 1173 static bool isTocOptType(RelType type) { 1174 switch (type) { 1175 case R_PPC64_GOT16_HA: 1176 case R_PPC64_GOT16_LO_DS: 1177 case R_PPC64_TOC16_HA: 1178 case R_PPC64_TOC16_LO_DS: 1179 case R_PPC64_TOC16_LO: 1180 return true; 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { 1187 RelType type = rel.type; 1188 bool shouldTocOptimize = isTocOptType(type); 1189 // For dynamic thread pointer relative, toc-relative, and got-indirect 1190 // relocations, proceed in terms of the corresponding ADDR16 relocation type. 1191 std::tie(type, val) = toAddr16Rel(type, val); 1192 1193 switch (type) { 1194 case R_PPC64_ADDR14: { 1195 checkAlignment(loc, val, 4, rel); 1196 // Preserve the AA/LK bits in the branch instruction 1197 uint8_t aalk = loc[3]; 1198 write16(loc + 2, (aalk & 3) | (val & 0xfffc)); 1199 break; 1200 } 1201 case R_PPC64_ADDR16: 1202 checkIntUInt(loc, val, 16, rel); 1203 write16(loc, val); 1204 break; 1205 case R_PPC64_ADDR32: 1206 checkIntUInt(loc, val, 32, rel); 1207 write32(loc, val); 1208 break; 1209 case R_PPC64_ADDR16_DS: 1210 case R_PPC64_TPREL16_DS: { 1211 checkInt(loc, val, 16, rel); 1212 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1213 // DS-form instructions only use bits 30-31. 1214 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; 1215 checkAlignment(loc, lo(val), mask + 1, rel); 1216 write16(loc, (read16(loc) & mask) | lo(val)); 1217 } break; 1218 case R_PPC64_ADDR16_HA: 1219 case R_PPC64_REL16_HA: 1220 case R_PPC64_TPREL16_HA: 1221 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) 1222 writeFromHalf16(loc, NOP); 1223 else { 1224 checkInt(loc, val + 0x8000, 32, rel); 1225 write16(loc, ha(val)); 1226 } 1227 break; 1228 case R_PPC64_ADDR16_HI: 1229 case R_PPC64_REL16_HI: 1230 case R_PPC64_TPREL16_HI: 1231 checkInt(loc, val, 32, rel); 1232 write16(loc, hi(val)); 1233 break; 1234 case R_PPC64_ADDR16_HIGH: 1235 write16(loc, hi(val)); 1236 break; 1237 case R_PPC64_ADDR16_HIGHER: 1238 case R_PPC64_TPREL16_HIGHER: 1239 write16(loc, higher(val)); 1240 break; 1241 case R_PPC64_ADDR16_HIGHERA: 1242 case R_PPC64_TPREL16_HIGHERA: 1243 write16(loc, highera(val)); 1244 break; 1245 case R_PPC64_ADDR16_HIGHEST: 1246 case R_PPC64_TPREL16_HIGHEST: 1247 write16(loc, highest(val)); 1248 break; 1249 case R_PPC64_ADDR16_HIGHESTA: 1250 case R_PPC64_TPREL16_HIGHESTA: 1251 write16(loc, highesta(val)); 1252 break; 1253 case R_PPC64_ADDR16_LO: 1254 case R_PPC64_REL16_LO: 1255 case R_PPC64_TPREL16_LO: 1256 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1257 // changed into a nop. The lo part then needs to be updated to use the 1258 // toc-pointer register r2, as the base register. 1259 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1260 uint32_t insn = readFromHalf16(loc); 1261 if (isInstructionUpdateForm(insn)) 1262 error(getErrorLocation(loc) + 1263 "can't toc-optimize an update instruction: 0x" + 1264 utohexstr(insn)); 1265 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); 1266 } else { 1267 write16(loc, lo(val)); 1268 } 1269 break; 1270 case R_PPC64_ADDR16_LO_DS: 1271 case R_PPC64_TPREL16_LO_DS: { 1272 // DQ-form instructions use bits 28-31 as part of the instruction encoding 1273 // DS-form instructions only use bits 30-31. 1274 uint32_t insn = readFromHalf16(loc); 1275 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; 1276 checkAlignment(loc, lo(val), mask + 1, rel); 1277 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { 1278 // When the high-adjusted part of a toc relocation evaluates to 0, it is 1279 // changed into a nop. The lo part then needs to be updated to use the toc 1280 // pointer register r2, as the base register. 1281 if (isInstructionUpdateForm(insn)) 1282 error(getErrorLocation(loc) + 1283 "Can't toc-optimize an update instruction: 0x" + 1284 Twine::utohexstr(insn)); 1285 insn &= 0xffe00000 | mask; 1286 writeFromHalf16(loc, insn | 0x00020000 | lo(val)); 1287 } else { 1288 write16(loc, (read16(loc) & mask) | lo(val)); 1289 } 1290 } break; 1291 case R_PPC64_TPREL16: 1292 checkInt(loc, val, 16, rel); 1293 write16(loc, val); 1294 break; 1295 case R_PPC64_REL32: 1296 checkInt(loc, val, 32, rel); 1297 write32(loc, val); 1298 break; 1299 case R_PPC64_ADDR64: 1300 case R_PPC64_REL64: 1301 case R_PPC64_TOC: 1302 write64(loc, val); 1303 break; 1304 case R_PPC64_REL14: { 1305 uint32_t mask = 0x0000FFFC; 1306 checkInt(loc, val, 16, rel); 1307 checkAlignment(loc, val, 4, rel); 1308 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1309 break; 1310 } 1311 case R_PPC64_REL24: 1312 case R_PPC64_REL24_NOTOC: { 1313 uint32_t mask = 0x03FFFFFC; 1314 checkInt(loc, val, 26, rel); 1315 checkAlignment(loc, val, 4, rel); 1316 write32(loc, (read32(loc) & ~mask) | (val & mask)); 1317 break; 1318 } 1319 case R_PPC64_DTPREL64: 1320 write64(loc, val - dynamicThreadPointerOffset); 1321 break; 1322 case R_PPC64_DTPREL34: 1323 // The Dynamic Thread Vector actually points 0x8000 bytes past the start 1324 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first 1325 // need to subtract that value then fallthrough to the general case. 1326 val -= dynamicThreadPointerOffset; 1327 LLVM_FALLTHROUGH; 1328 case R_PPC64_PCREL34: 1329 case R_PPC64_GOT_PCREL34: 1330 case R_PPC64_GOT_TLSGD_PCREL34: 1331 case R_PPC64_GOT_TLSLD_PCREL34: 1332 case R_PPC64_GOT_TPREL_PCREL34: 1333 case R_PPC64_TPREL34: { 1334 const uint64_t si0Mask = 0x00000003ffff0000; 1335 const uint64_t si1Mask = 0x000000000000ffff; 1336 const uint64_t fullMask = 0x0003ffff0000ffff; 1337 checkInt(loc, val, 34, rel); 1338 1339 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; 1340 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | 1341 (val & si1Mask)); 1342 break; 1343 } 1344 // If we encounter a PCREL_OPT relocation that we won't optimize. 1345 case R_PPC64_PCREL_OPT: 1346 break; 1347 default: 1348 llvm_unreachable("unknown relocation"); 1349 } 1350 } 1351 1352 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, 1353 uint64_t branchAddr, const Symbol &s, int64_t a) const { 1354 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && 1355 type != R_PPC64_REL24_NOTOC) 1356 return false; 1357 1358 // If a function is in the Plt it needs to be called with a call-stub. 1359 if (s.isInPlt()) 1360 return true; 1361 1362 // This check looks at the st_other bits of the callee with relocation 1363 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee 1364 // clobbers the TOC and we need an R2 save stub. 1365 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) 1366 return true; 1367 1368 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) 1369 return true; 1370 1371 // If a symbol is a weak undefined and we are compiling an executable 1372 // it doesn't need a range-extending thunk since it can't be called. 1373 if (s.isUndefWeak() && !config->shared) 1374 return false; 1375 1376 // If the offset exceeds the range of the branch type then it will need 1377 // a range-extending thunk. 1378 // See the comment in getRelocTargetVA() about R_PPC64_CALL. 1379 return !inBranchRange(type, branchAddr, 1380 s.getVA(a) + 1381 getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); 1382 } 1383 1384 uint32_t PPC64::getThunkSectionSpacing() const { 1385 // See comment in Arch/ARM.cpp for a more detailed explanation of 1386 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on 1387 // R_PPC64_REL24, which is used by unconditional branch instructions. 1388 // 0x2000000 = (1 << 24-1) * 4 1389 return 0x2000000; 1390 } 1391 1392 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { 1393 int64_t offset = dst - src; 1394 if (type == R_PPC64_REL14) 1395 return isInt<16>(offset); 1396 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) 1397 return isInt<26>(offset); 1398 llvm_unreachable("unsupported relocation type used in branch"); 1399 } 1400 1401 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { 1402 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) 1403 return R_RELAX_TLS_GD_TO_IE_GOT_OFF; 1404 if (expr == R_RELAX_TLS_LD_TO_LE) 1405 return R_RELAX_TLS_LD_TO_LE_ABS; 1406 return expr; 1407 } 1408 1409 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, 1410 const uint8_t *loc) const { 1411 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && 1412 config->pcRelOptimize) { 1413 // It only makes sense to optimize pld since paddi means that the address 1414 // of the object in the GOT is required rather than the object itself. 1415 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) 1416 return R_PPC64_RELAX_GOT_PC; 1417 } 1418 return R_GOT_PC; 1419 } 1420 1421 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. 1422 // The general dynamic code sequence for a global `x` uses 4 instructions. 1423 // Instruction Relocation Symbol 1424 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x 1425 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x 1426 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x 1427 // R_PPC64_REL24 __tls_get_addr 1428 // nop None None 1429 // 1430 // Relaxing to initial-exec entails: 1431 // 1) Convert the addis/addi pair that builds the address of the tls_index 1432 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. 1433 // 2) Convert the call to __tls_get_addr to a nop. 1434 // 3) Convert the nop following the call to an add of the loaded offset to the 1435 // thread pointer. 1436 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is 1437 // used as the relaxation hint for both steps 2 and 3. 1438 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, 1439 uint64_t val) const { 1440 switch (rel.type) { 1441 case R_PPC64_GOT_TLSGD16_HA: 1442 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to 1443 // addis rT, r2, sym@got@tprel@ha. 1444 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); 1445 return; 1446 case R_PPC64_GOT_TLSGD16: 1447 case R_PPC64_GOT_TLSGD16_LO: { 1448 // Relax from addi r3, rA, sym@got@tlsgd@l to 1449 // ld r3, sym@got@tprel@l(rA) 1450 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); 1451 writeFromHalf16(loc, 0xe8600000 | ra); 1452 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); 1453 return; 1454 } 1455 case R_PPC64_GOT_TLSGD_PCREL34: { 1456 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to 1457 // pld r3, sym@got@tprel@pcrel 1458 writePrefixedInstruction(loc, 0x04100000e4600000); 1459 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); 1460 return; 1461 } 1462 case R_PPC64_TLSGD: { 1463 // PC Relative Relaxation: 1464 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to 1465 // nop 1466 // TOC Relaxation: 1467 // Relax from bl __tls_get_addr(x@tlsgd) 1468 // nop 1469 // to 1470 // nop 1471 // add r3, r3, r13 1472 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); 1473 if (locAsInt % 4 == 0) { 1474 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop 1475 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 1476 } else if (locAsInt % 4 == 1) { 1477 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 1478 write32(loc - 1, 0x7c636a14); 1479 } else { 1480 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); 1481 } 1482 return; 1483 } 1484 default: 1485 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); 1486 } 1487 } 1488 1489 // The prologue for a split-stack function is expected to look roughly 1490 // like this: 1491 // .Lglobal_entry_point: 1492 // # TOC pointer initialization. 1493 // ... 1494 // .Llocal_entry_point: 1495 // # load the __private_ss member of the threads tcbhead. 1496 // ld r0,-0x7000-64(r13) 1497 // # subtract the functions stack size from the stack pointer. 1498 // addis r12, r1, ha(-stack-frame size) 1499 // addi r12, r12, l(-stack-frame size) 1500 // # compare needed to actual and branch to allocate_more_stack if more 1501 // # space is needed, otherwise fallthrough to 'normal' function body. 1502 // cmpld cr7,r12,r0 1503 // blt- cr7, .Lallocate_more_stack 1504 // 1505 // -) The allocate_more_stack block might be placed after the split-stack 1506 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` 1507 // instead. 1508 // -) If either the addis or addi is not needed due to the stack size being 1509 // smaller then 32K or a multiple of 64K they will be replaced with a nop, 1510 // but there will always be 2 instructions the linker can overwrite for the 1511 // adjusted stack size. 1512 // 1513 // The linkers job here is to increase the stack size used in the addis/addi 1514 // pair by split-stack-size-adjust. 1515 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) 1516 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) 1517 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, 1518 uint8_t stOther) const { 1519 // If the caller has a global entry point adjust the buffer past it. The start 1520 // of the split-stack prologue will be at the local entry point. 1521 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); 1522 1523 // At the very least we expect to see a load of some split-stack data from the 1524 // tcb, and 2 instructions that calculate the ending stack address this 1525 // function will require. If there is not enough room for at least 3 1526 // instructions it can't be a split-stack prologue. 1527 if (loc + 12 >= end) 1528 return false; 1529 1530 // First instruction must be `ld r0, -0x7000-64(r13)` 1531 if (read32(loc) != 0xe80d8fc0) 1532 return false; 1533 1534 int16_t hiImm = 0; 1535 int16_t loImm = 0; 1536 // First instruction can be either an addis if the frame size is larger then 1537 // 32K, or an addi if the size is less then 32K. 1538 int32_t firstInstr = read32(loc + 4); 1539 if (getPrimaryOpCode(firstInstr) == 15) { 1540 hiImm = firstInstr & 0xFFFF; 1541 } else if (getPrimaryOpCode(firstInstr) == 14) { 1542 loImm = firstInstr & 0xFFFF; 1543 } else { 1544 return false; 1545 } 1546 1547 // Second instruction is either an addi or a nop. If the first instruction was 1548 // an addi then LoImm is set and the second instruction must be a nop. 1549 uint32_t secondInstr = read32(loc + 8); 1550 if (!loImm && getPrimaryOpCode(secondInstr) == 14) { 1551 loImm = secondInstr & 0xFFFF; 1552 } else if (secondInstr != NOP) { 1553 return false; 1554 } 1555 1556 // The register operands of the first instruction should be the stack-pointer 1557 // (r1) as the input (RA) and r12 as the output (RT). If the second 1558 // instruction is not a nop, then it should use r12 as both input and output. 1559 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, 1560 uint8_t expectedRA) { 1561 return ((instr & 0x3E00000) >> 21 == expectedRT) && 1562 ((instr & 0x1F0000) >> 16 == expectedRA); 1563 }; 1564 if (!checkRegOperands(firstInstr, 12, 1)) 1565 return false; 1566 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) 1567 return false; 1568 1569 int32_t stackFrameSize = (hiImm * 65536) + loImm; 1570 // Check that the adjusted size doesn't overflow what we can represent with 2 1571 // instructions. 1572 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { 1573 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); 1574 return false; 1575 } 1576 1577 int32_t adjustedStackFrameSize = 1578 stackFrameSize - config->splitStackAdjustSize; 1579 1580 loImm = adjustedStackFrameSize & 0xFFFF; 1581 hiImm = (adjustedStackFrameSize + 0x8000) >> 16; 1582 if (hiImm) { 1583 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); 1584 // If the low immediate is zero the second instruction will be a nop. 1585 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; 1586 write32(loc + 8, secondInstr); 1587 } else { 1588 // addi r12, r1, imm 1589 write32(loc + 4, (0x39810000) | (uint16_t)loImm); 1590 write32(loc + 8, NOP); 1591 } 1592 1593 return true; 1594 } 1595 1596 TargetInfo *elf::getPPC64TargetInfo() { 1597 static PPC64 target; 1598 return ⌖ 1599 } 1600