1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "SymbolTable.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "Thunks.h"
15 #include "lld/Common/CommonLinkerContext.h"
16 #include "llvm/Support/Endian.h"
17
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24
25 constexpr uint64_t ppc64TocOffset = 0x8000;
26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
27
28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
29 // instructions that can be used as part of the initial exec TLS sequence.
30 enum XFormOpcd {
31 LBZX = 87,
32 LHZX = 279,
33 LWZX = 23,
34 LDX = 21,
35 STBX = 215,
36 STHX = 407,
37 STWX = 151,
38 STDX = 149,
39 ADD = 266,
40 };
41
42 enum DFormOpcd {
43 LBZ = 34,
44 LBZU = 35,
45 LHZ = 40,
46 LHZU = 41,
47 LHAU = 43,
48 LWZ = 32,
49 LWZU = 33,
50 LFSU = 49,
51 LD = 58,
52 LFDU = 51,
53 STB = 38,
54 STBU = 39,
55 STH = 44,
56 STHU = 45,
57 STW = 36,
58 STWU = 37,
59 STFSU = 53,
60 STFDU = 55,
61 STD = 62,
62 ADDI = 14
63 };
64
65 constexpr uint32_t NOP = 0x60000000;
66
67 enum class PPCLegacyInsn : uint32_t {
68 NOINSN = 0,
69 // Loads.
70 LBZ = 0x88000000,
71 LHZ = 0xa0000000,
72 LWZ = 0x80000000,
73 LHA = 0xa8000000,
74 LWA = 0xe8000002,
75 LD = 0xe8000000,
76 LFS = 0xC0000000,
77 LXSSP = 0xe4000003,
78 LFD = 0xc8000000,
79 LXSD = 0xe4000002,
80 LXV = 0xf4000001,
81 LXVP = 0x18000000,
82
83 // Stores.
84 STB = 0x98000000,
85 STH = 0xb0000000,
86 STW = 0x90000000,
87 STD = 0xf8000000,
88 STFS = 0xd0000000,
89 STXSSP = 0xf4000003,
90 STFD = 0xd8000000,
91 STXSD = 0xf4000002,
92 STXV = 0xf4000005,
93 STXVP = 0x18000001
94 };
95 enum class PPCPrefixedInsn : uint64_t {
96 NOINSN = 0,
97 PREFIX_MLS = 0x0610000000000000,
98 PREFIX_8LS = 0x0410000000000000,
99
100 // Loads.
101 PLBZ = PREFIX_MLS,
102 PLHZ = PREFIX_MLS,
103 PLWZ = PREFIX_MLS,
104 PLHA = PREFIX_MLS,
105 PLWA = PREFIX_8LS | 0xa4000000,
106 PLD = PREFIX_8LS | 0xe4000000,
107 PLFS = PREFIX_MLS,
108 PLXSSP = PREFIX_8LS | 0xac000000,
109 PLFD = PREFIX_MLS,
110 PLXSD = PREFIX_8LS | 0xa8000000,
111 PLXV = PREFIX_8LS | 0xc8000000,
112 PLXVP = PREFIX_8LS | 0xe8000000,
113
114 // Stores.
115 PSTB = PREFIX_MLS,
116 PSTH = PREFIX_MLS,
117 PSTW = PREFIX_MLS,
118 PSTD = PREFIX_8LS | 0xf4000000,
119 PSTFS = PREFIX_MLS,
120 PSTXSSP = PREFIX_8LS | 0xbc000000,
121 PSTFD = PREFIX_MLS,
122 PSTXSD = PREFIX_8LS | 0xb8000000,
123 PSTXV = PREFIX_8LS | 0xd8000000,
124 PSTXVP = PREFIX_8LS | 0xf8000000
125 };
checkPPCLegacyInsn(uint32_t encoding)126 static bool checkPPCLegacyInsn(uint32_t encoding) {
127 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
128 if (insn == PPCLegacyInsn::NOINSN)
129 return false;
130 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
131 if (insn == PPCLegacyInsn::Legacy) \
132 return true;
133 #include "PPCInsns.def"
134 #undef PCREL_OPT
135 return false;
136 }
137
138 // Masks to apply to legacy instructions when converting them to prefixed,
139 // pc-relative versions. For the most part, the primary opcode is shared
140 // between the legacy instruction and the suffix of its prefixed version.
141 // However, there are some instances where that isn't the case (DS-Form and
142 // DQ-form instructions).
143 enum class LegacyToPrefixMask : uint64_t {
144 NOMASK = 0x0,
145 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
146 ONLY_RST = 0x3e00000, // [RS]T (6-10).
147 ST_STX28_TO5 =
148 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
149 };
150
getPPC64TocBase()151 uint64_t elf::getPPC64TocBase() {
152 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
153 // TOC starts where the first of these sections starts. We always create a
154 // .got when we see a relocation that uses it, so for us the start is always
155 // the .got.
156 uint64_t tocVA = in.got->getVA();
157
158 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
159 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
160 // code (crt1.o) assumes that you can get from the TOC base to the
161 // start of the .toc section with only a single (signed) 16-bit relocation.
162 return tocVA + ppc64TocOffset;
163 }
164
getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther)165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
166 // The offset is encoded into the 3 most significant bits of the st_other
167 // field, with some special values described in section 3.4.1 of the ABI:
168 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
169 // the TOC pointer (r2). r2 will hold the same value on returning from
170 // the function as it did on entering the function.
171 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
172 // caller-saved register for all callers.
173 // 2-6 --> The binary logarithm of the offset eg:
174 // 2 --> 2^2 = 4 bytes --> 1 instruction.
175 // 6 --> 2^6 = 64 bytes --> 16 instructions.
176 // 7 --> Reserved.
177 uint8_t gepToLep = (stOther >> 5) & 7;
178 if (gepToLep < 2)
179 return 0;
180
181 // The value encoded in the st_other bits is the
182 // log-base-2(offset).
183 if (gepToLep < 7)
184 return 1 << gepToLep;
185
186 error("reserved value of 7 in the 3 most-significant-bits of st_other");
187 return 0;
188 }
189
writePrefixedInstruction(uint8_t * loc,uint64_t insn)190 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
191 insn = config->isLE ? insn << 32 | insn >> 32 : insn;
192 write64(loc, insn);
193 }
194
addOptional(StringRef name,uint64_t value,std::vector<Defined * > & defined)195 static bool addOptional(StringRef name, uint64_t value,
196 std::vector<Defined *> &defined) {
197 Symbol *sym = symtab->find(name);
198 if (!sym || sym->isDefined())
199 return false;
200 sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
201 STT_FUNC, value,
202 /*size=*/0, /*section=*/nullptr});
203 defined.push_back(cast<Defined>(sym));
204 return true;
205 }
206
207 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
208 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
209 // The labels are defined only if they exist in the symbol table.
writeSequence(MutableArrayRef<uint32_t> buf,const char * prefix,int from,uint32_t firstInsn,ArrayRef<uint32_t> tail)210 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
211 int from, uint32_t firstInsn,
212 ArrayRef<uint32_t> tail) {
213 std::vector<Defined *> defined;
214 char name[16];
215 int first;
216 uint32_t *ptr = buf.data();
217 for (int r = from; r < 32; ++r) {
218 format("%s%d", prefix, r).snprint(name, sizeof(name));
219 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
220 first = r - from;
221 write32(ptr++, firstInsn + 0x200008 * (r - from));
222 }
223 for (uint32_t insn : tail)
224 write32(ptr++, insn);
225 assert(ptr == &*buf.end());
226
227 if (defined.empty())
228 return;
229 // The full section content has the extent of [begin, end). We drop unused
230 // instructions and write [first,end).
231 auto *sec = make<InputSection>(
232 nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
233 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
234 4 * (buf.size() - first)),
235 ".text");
236 inputSections.push_back(sec);
237 for (Defined *sym : defined) {
238 sym->section = sec;
239 sym->value -= 4 * first;
240 }
241 }
242
243 // Implements some save and restore functions as described by ELF V2 ABI to be
244 // compatible with GCC. With GCC -Os, when the number of call-saved registers
245 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
246 // expects the linker to define them. See
247 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
248 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
249 // weird because libgcc.a would be the natural place. The linker generation
250 // approach has the advantage that the linker can generate multiple copies to
251 // avoid long branch thunks. However, we don't consider the advantage
252 // significant enough to complicate our trunk implementation, so we take the
253 // simple approach and synthesize .text sections providing the implementation.
addPPC64SaveRestore()254 void elf::addPPC64SaveRestore() {
255 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
256 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
257
258 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
259 // Tail: ld 0, 16(1); mtlr 0; blr
260 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
261 {0xe8010010, mtlr_0, blr});
262 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
263 // Tail: blr
264 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
265 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
266 // Tail: std 0, 16(1); blr
267 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
268 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
269 // Tail: blr
270 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
271 }
272
273 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
274 template <typename ELFT>
275 static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase * tocSec,uint64_t offset)276 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
277 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
278 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
279 // relocation index in most cases.
280 //
281 // In rare cases a TOC entry may store a constant that doesn't need an
282 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
283 // points to a relocation with larger r_offset. Do a linear probe then.
284 // Constants are extremely uncommon in .toc and the extra number of array
285 // accesses can be seen as a small constant.
286 ArrayRef<typename ELFT::Rela> relas =
287 tocSec->template relsOrRelas<ELFT>().relas;
288 if (relas.empty())
289 return {};
290 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
291 for (;;) {
292 if (relas[index].r_offset == offset) {
293 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
294 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
295 }
296 if (relas[index].r_offset < offset || index == 0)
297 break;
298 --index;
299 }
300 return {};
301 }
302
303 // When accessing a symbol defined in another translation unit, compilers
304 // reserve a .toc entry, allocate a local label and generate toc-indirect
305 // instructions:
306 //
307 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
308 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
309 // ld/lwa 3, 0(3) # load the value from the address
310 //
311 // .section .toc,"aw",@progbits
312 // .LC0: .tc var[TC],var
313 //
314 // If var is defined, non-preemptable and addressable with a 32-bit signed
315 // offset from the toc base, the address of var can be computed by adding an
316 // offset to the toc base, saving a load.
317 //
318 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
319 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
320 // ld/lwa 3, 0(3) # load the value from the address
321 //
322 // Returns true if the relaxation is performed.
tryRelaxPPC64TocIndirection(const Relocation & rel,uint8_t * bufLoc)323 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
324 assert(config->tocOptimize);
325 if (rel.addend < 0)
326 return false;
327
328 // If the symbol is not the .toc section, this isn't a toc-indirection.
329 Defined *defSym = dyn_cast<Defined>(rel.sym);
330 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
331 return false;
332
333 Defined *d;
334 int64_t addend;
335 auto *tocISB = cast<InputSectionBase>(defSym->section);
336 std::tie(d, addend) =
337 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
338 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
339
340 // Only non-preemptable defined symbols can be relaxed.
341 if (!d || d->isPreemptible)
342 return false;
343
344 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
345 // ifunc and changed its type to STT_FUNC.
346 assert(!d->isGnuIFunc());
347
348 // Two instructions can materialize a 32-bit signed offset from the toc base.
349 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
350 if (!isInt<32>(tocRelative))
351 return false;
352
353 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
354 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
355 return true;
356 }
357
358 namespace {
359 class PPC64 final : public TargetInfo {
360 public:
361 PPC64();
362 int getTlsGdRelaxSkip(RelType type) const override;
363 uint32_t calcEFlags() const override;
364 RelExpr getRelExpr(RelType type, const Symbol &s,
365 const uint8_t *loc) const override;
366 RelType getDynRel(RelType type) const override;
367 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
368 void writePltHeader(uint8_t *buf) const override;
369 void writePlt(uint8_t *buf, const Symbol &sym,
370 uint64_t pltEntryAddr) const override;
371 void writeIplt(uint8_t *buf, const Symbol &sym,
372 uint64_t pltEntryAddr) const override;
373 void relocate(uint8_t *loc, const Relocation &rel,
374 uint64_t val) const override;
375 void writeGotHeader(uint8_t *buf) const override;
376 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
377 uint64_t branchAddr, const Symbol &s,
378 int64_t a) const override;
379 uint32_t getThunkSectionSpacing() const override;
380 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
381 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
382 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
383 const uint8_t *loc) const override;
384 void relaxGot(uint8_t *loc, const Relocation &rel,
385 uint64_t val) const override;
386 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
387 uint64_t val) const override;
388 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
389 uint64_t val) const override;
390 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
391 uint64_t val) const override;
392 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
393 uint64_t val) const override;
394
395 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
396 uint8_t stOther) const override;
397 };
398 } // namespace
399
400 // Relocation masks following the #lo(value), #hi(value), #ha(value),
401 // #higher(value), #highera(value), #highest(value), and #highesta(value)
402 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
403 // document.
lo(uint64_t v)404 static uint16_t lo(uint64_t v) { return v; }
hi(uint64_t v)405 static uint16_t hi(uint64_t v) { return v >> 16; }
ha(uint64_t v)406 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
higher(uint64_t v)407 static uint16_t higher(uint64_t v) { return v >> 32; }
highera(uint64_t v)408 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
highest(uint64_t v)409 static uint16_t highest(uint64_t v) { return v >> 48; }
highesta(uint64_t v)410 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
411
412 // Extracts the 'PO' field of an instruction encoding.
getPrimaryOpCode(uint32_t encoding)413 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
414
isDQFormInstruction(uint32_t encoding)415 static bool isDQFormInstruction(uint32_t encoding) {
416 switch (getPrimaryOpCode(encoding)) {
417 default:
418 return false;
419 case 6: // Power10 paired loads/stores (lxvp, stxvp).
420 case 56:
421 // The only instruction with a primary opcode of 56 is `lq`.
422 return true;
423 case 61:
424 // There are both DS and DQ instruction forms with this primary opcode.
425 // Namely `lxv` and `stxv` are the DQ-forms that use it.
426 // The DS 'XO' bits being set to 01 is restricted to DQ form.
427 return (encoding & 3) == 0x1;
428 }
429 }
430
isDSFormInstruction(PPCLegacyInsn insn)431 static bool isDSFormInstruction(PPCLegacyInsn insn) {
432 switch (insn) {
433 default:
434 return false;
435 case PPCLegacyInsn::LWA:
436 case PPCLegacyInsn::LD:
437 case PPCLegacyInsn::LXSD:
438 case PPCLegacyInsn::LXSSP:
439 case PPCLegacyInsn::STD:
440 case PPCLegacyInsn::STXSD:
441 case PPCLegacyInsn::STXSSP:
442 return true;
443 }
444 }
445
getPPCLegacyInsn(uint32_t encoding)446 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
447 uint32_t opc = encoding & 0xfc000000;
448
449 // If the primary opcode is shared between multiple instructions, we need to
450 // fix it up to match the actual instruction we are after.
451 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
452 opc == 0xf8000000) &&
453 !isDQFormInstruction(encoding))
454 opc = encoding & 0xfc000003;
455 else if (opc == 0xf4000000)
456 opc = encoding & 0xfc000007;
457 else if (opc == 0x18000000)
458 opc = encoding & 0xfc00000f;
459
460 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
461 // return PPCLegacyInsn::NOINSN.
462 if (!checkPPCLegacyInsn(opc))
463 return PPCLegacyInsn::NOINSN;
464 return static_cast<PPCLegacyInsn>(opc);
465 }
466
getPCRelativeForm(PPCLegacyInsn insn)467 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
468 switch (insn) {
469 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
470 case PPCLegacyInsn::Legacy: \
471 return PPCPrefixedInsn::PCRel
472 #include "PPCInsns.def"
473 #undef PCREL_OPT
474 }
475 return PPCPrefixedInsn::NOINSN;
476 }
477
getInsnMask(PPCLegacyInsn insn)478 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
479 switch (insn) {
480 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
481 case PPCLegacyInsn::Legacy: \
482 return LegacyToPrefixMask::InsnMask
483 #include "PPCInsns.def"
484 #undef PCREL_OPT
485 }
486 return LegacyToPrefixMask::NOMASK;
487 }
getPCRelativeForm(uint32_t encoding)488 static uint64_t getPCRelativeForm(uint32_t encoding) {
489 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
490 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
491 if (pcrelInsn == PPCPrefixedInsn::NOINSN)
492 return UINT64_C(-1);
493 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
494 uint64_t pcrelEncoding =
495 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
496
497 // If the mask requires moving bit 28 to bit 5, do that now.
498 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
499 pcrelEncoding |= (encoding & 0x8) << 23;
500 return pcrelEncoding;
501 }
502
isInstructionUpdateForm(uint32_t encoding)503 static bool isInstructionUpdateForm(uint32_t encoding) {
504 switch (getPrimaryOpCode(encoding)) {
505 default:
506 return false;
507 case LBZU:
508 case LHAU:
509 case LHZU:
510 case LWZU:
511 case LFSU:
512 case LFDU:
513 case STBU:
514 case STHU:
515 case STWU:
516 case STFSU:
517 case STFDU:
518 return true;
519 // LWA has the same opcode as LD, and the DS bits is what differentiates
520 // between LD/LDU/LWA
521 case LD:
522 case STD:
523 return (encoding & 3) == 1;
524 }
525 }
526
527 // Compute the total displacement between the prefixed instruction that gets
528 // to the start of the data and the load/store instruction that has the offset
529 // into the data structure.
530 // For example:
531 // paddi 3, 0, 1000, 1
532 // lwz 3, 20(3)
533 // Should add up to 1020 for total displacement.
getTotalDisp(uint64_t prefixedInsn,uint32_t accessInsn)534 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
535 int64_t disp34 = llvm::SignExtend64(
536 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
537 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
538 // For DS and DQ form instructions, we need to mask out the XO bits.
539 if (isDQFormInstruction(accessInsn))
540 disp16 &= ~0xf;
541 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
542 disp16 &= ~0x3;
543 return disp34 + disp16;
544 }
545
546 // There are a number of places when we either want to read or write an
547 // instruction when handling a half16 relocation type. On big-endian the buffer
548 // pointer is pointing into the middle of the word we want to extract, and on
549 // little-endian it is pointing to the start of the word. These 2 helpers are to
550 // simplify reading and writing in that context.
writeFromHalf16(uint8_t * loc,uint32_t insn)551 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
552 write32(config->isLE ? loc : loc - 2, insn);
553 }
554
readFromHalf16(const uint8_t * loc)555 static uint32_t readFromHalf16(const uint8_t *loc) {
556 return read32(config->isLE ? loc : loc - 2);
557 }
558
readPrefixedInstruction(const uint8_t * loc)559 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
560 uint64_t fullInstr = read64(loc);
561 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
562 }
563
PPC64()564 PPC64::PPC64() {
565 copyRel = R_PPC64_COPY;
566 gotRel = R_PPC64_GLOB_DAT;
567 pltRel = R_PPC64_JMP_SLOT;
568 relativeRel = R_PPC64_RELATIVE;
569 iRelativeRel = R_PPC64_IRELATIVE;
570 symbolicRel = R_PPC64_ADDR64;
571 pltHeaderSize = 60;
572 pltEntrySize = 4;
573 ipltEntrySize = 16; // PPC64PltCallStub::size
574 gotHeaderEntriesNum = 1;
575 gotPltHeaderEntriesNum = 2;
576 needsThunks = true;
577
578 tlsModuleIndexRel = R_PPC64_DTPMOD64;
579 tlsOffsetRel = R_PPC64_DTPREL64;
580
581 tlsGotRel = R_PPC64_TPREL64;
582
583 needsMoreStackNonSplit = false;
584
585 // We need 64K pages (at least under glibc/Linux, the loader won't
586 // set different permissions on a finer granularity than that).
587 defaultMaxPageSize = 65536;
588
589 // The PPC64 ELF ABI v1 spec, says:
590 //
591 // It is normally desirable to put segments with different characteristics
592 // in separate 256 Mbyte portions of the address space, to give the
593 // operating system full paging flexibility in the 64-bit address space.
594 //
595 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
596 // use 0x10000000 as the starting address.
597 defaultImageBase = 0x10000000;
598
599 write32(trapInstr.data(), 0x7fe00008);
600 }
601
getTlsGdRelaxSkip(RelType type) const602 int PPC64::getTlsGdRelaxSkip(RelType type) const {
603 // A __tls_get_addr call instruction is marked with 2 relocations:
604 //
605 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
606 // R_PPC64_REL24: __tls_get_addr
607 //
608 // After the relaxation we no longer call __tls_get_addr and should skip both
609 // relocations to not create a false dependence on __tls_get_addr being
610 // defined.
611 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
612 return 2;
613 return 1;
614 }
615
getEFlags(InputFile * file)616 static uint32_t getEFlags(InputFile *file) {
617 if (config->ekind == ELF64BEKind)
618 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
619 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
620 }
621
622 // This file implements v2 ABI. This function makes sure that all
623 // object files have v2 or an unspecified version as an ABI version.
calcEFlags() const624 uint32_t PPC64::calcEFlags() const {
625 for (InputFile *f : ctx->objectFiles) {
626 uint32_t flag = getEFlags(f);
627 if (flag == 1)
628 error(toString(f) + ": ABI version 1 is not supported");
629 else if (flag > 2)
630 error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
631 }
632 return 2;
633 }
634
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val) const635 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
636 switch (rel.type) {
637 case R_PPC64_TOC16_HA:
638 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
639 relocate(loc, rel, val);
640 break;
641 case R_PPC64_TOC16_LO_DS: {
642 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
643 // "addi reg, 2, var@toc".
644 uint32_t insn = readFromHalf16(loc);
645 if (getPrimaryOpCode(insn) != LD)
646 error("expected a 'ld' for got-indirect to toc-relative relaxing");
647 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
648 relocateNoSym(loc, R_PPC64_TOC16_LO, val);
649 break;
650 }
651 case R_PPC64_GOT_PCREL34: {
652 // Clear the first 8 bits of the prefix and the first 6 bits of the
653 // instruction (the primary opcode).
654 uint64_t insn = readPrefixedInstruction(loc);
655 if ((insn & 0xfc000000) != 0xe4000000)
656 error("expected a 'pld' for got-indirect to pc-relative relaxing");
657 insn &= ~0xff000000fc000000;
658
659 // Replace the cleared bits with the values for PADDI (0x600000038000000);
660 insn |= 0x600000038000000;
661 writePrefixedInstruction(loc, insn);
662 relocate(loc, rel, val);
663 break;
664 }
665 case R_PPC64_PCREL_OPT: {
666 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
667 // be relaxed. The eligibility for the relaxation needs to be determined
668 // on that relocation since this one does not relocate a symbol.
669 uint64_t insn = readPrefixedInstruction(loc);
670 uint32_t accessInsn = read32(loc + rel.addend);
671 uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
672
673 // This error is not necessary for correctness but is emitted for now
674 // to ensure we don't miss these opportunities in real code. It can be
675 // removed at a later date.
676 if (pcRelInsn == UINT64_C(-1)) {
677 errorOrWarn(
678 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
679 Twine::utohexstr(accessInsn));
680 break;
681 }
682
683 int64_t totalDisp = getTotalDisp(insn, accessInsn);
684 if (!isInt<34>(totalDisp))
685 break; // Displacement doesn't fit.
686 // Convert the PADDI to the prefixed version of accessInsn and convert
687 // accessInsn to a nop.
688 writePrefixedInstruction(loc, pcRelInsn |
689 ((totalDisp & 0x3ffff0000) << 16) |
690 (totalDisp & 0xffff));
691 write32(loc + rel.addend, NOP); // nop accessInsn.
692 break;
693 }
694 default:
695 llvm_unreachable("unexpected relocation type");
696 }
697 }
698
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const699 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
700 uint64_t val) const {
701 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
702 // The general dynamic code sequence for a global `x` will look like:
703 // Instruction Relocation Symbol
704 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
705 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
706 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
707 // R_PPC64_REL24 __tls_get_addr
708 // nop None None
709
710 // Relaxing to local exec entails converting:
711 // addis r3, r2, x@got@tlsgd@ha into nop
712 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
713 // bl __tls_get_addr(x@tlsgd) into nop
714 // nop into addi r3, r3, x@tprel@l
715
716 switch (rel.type) {
717 case R_PPC64_GOT_TLSGD16_HA:
718 writeFromHalf16(loc, NOP);
719 break;
720 case R_PPC64_GOT_TLSGD16:
721 case R_PPC64_GOT_TLSGD16_LO:
722 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
723 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
724 break;
725 case R_PPC64_GOT_TLSGD_PCREL34:
726 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
727 // paddi r3, r13, x@tprel, 0
728 writePrefixedInstruction(loc, 0x06000000386d0000);
729 relocateNoSym(loc, R_PPC64_TPREL34, val);
730 break;
731 case R_PPC64_TLSGD: {
732 // PC Relative Relaxation:
733 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
734 // nop
735 // TOC Relaxation:
736 // Relax from bl __tls_get_addr(x@tlsgd)
737 // nop
738 // to
739 // nop
740 // addi r3, r3, x@tprel@l
741 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
742 if (locAsInt % 4 == 0) {
743 write32(loc, NOP); // nop
744 write32(loc + 4, 0x38630000); // addi r3, r3
745 // Since we are relocating a half16 type relocation and Loc + 4 points to
746 // the start of an instruction we need to advance the buffer by an extra
747 // 2 bytes on BE.
748 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
749 R_PPC64_TPREL16_LO, val);
750 } else if (locAsInt % 4 == 1) {
751 write32(loc - 1, NOP);
752 } else {
753 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
754 }
755 break;
756 }
757 default:
758 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
759 }
760 }
761
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const762 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
763 uint64_t val) const {
764 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
765 // The local dynamic code sequence for a global `x` will look like:
766 // Instruction Relocation Symbol
767 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
768 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
769 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
770 // R_PPC64_REL24 __tls_get_addr
771 // nop None None
772
773 // Relaxing to local exec entails converting:
774 // addis r3, r2, x@got@tlsld@ha into nop
775 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
776 // bl __tls_get_addr(x@tlsgd) into nop
777 // nop into addi r3, r3, 4096
778
779 switch (rel.type) {
780 case R_PPC64_GOT_TLSLD16_HA:
781 writeFromHalf16(loc, NOP);
782 break;
783 case R_PPC64_GOT_TLSLD16_LO:
784 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
785 break;
786 case R_PPC64_GOT_TLSLD_PCREL34:
787 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
788 // paddi r3, r13, 0x1000, 0
789 writePrefixedInstruction(loc, 0x06000000386d1000);
790 break;
791 case R_PPC64_TLSLD: {
792 // PC Relative Relaxation:
793 // Relax from bl __tls_get_addr@notoc(x@tlsld)
794 // to
795 // nop
796 // TOC Relaxation:
797 // Relax from bl __tls_get_addr(x@tlsld)
798 // nop
799 // to
800 // nop
801 // addi r3, r3, 4096
802 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
803 if (locAsInt % 4 == 0) {
804 write32(loc, NOP);
805 write32(loc + 4, 0x38631000); // addi r3, r3, 4096
806 } else if (locAsInt % 4 == 1) {
807 write32(loc - 1, NOP);
808 } else {
809 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
810 }
811 break;
812 }
813 case R_PPC64_DTPREL16:
814 case R_PPC64_DTPREL16_HA:
815 case R_PPC64_DTPREL16_HI:
816 case R_PPC64_DTPREL16_DS:
817 case R_PPC64_DTPREL16_LO:
818 case R_PPC64_DTPREL16_LO_DS:
819 case R_PPC64_DTPREL34:
820 relocate(loc, rel, val);
821 break;
822 default:
823 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
824 }
825 }
826
getPPCDFormOp(unsigned secondaryOp)827 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
828 switch (secondaryOp) {
829 case LBZX:
830 return LBZ;
831 case LHZX:
832 return LHZ;
833 case LWZX:
834 return LWZ;
835 case LDX:
836 return LD;
837 case STBX:
838 return STB;
839 case STHX:
840 return STH;
841 case STWX:
842 return STW;
843 case STDX:
844 return STD;
845 case ADD:
846 return ADDI;
847 default:
848 return 0;
849 }
850 }
851
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const852 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
853 uint64_t val) const {
854 // The initial exec code sequence for a global `x` will look like:
855 // Instruction Relocation Symbol
856 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
857 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
858 // add r9, r9, x@tls R_PPC64_TLS x
859
860 // Relaxing to local exec entails converting:
861 // addis r9, r2, x@got@tprel@ha into nop
862 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
863 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
864
865 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
866 // it is replaced with r13 (thread pointer).
867
868 // The add instruction in the initial exec sequence has multiple variations
869 // that need to be handled. If we are building an address it will use an add
870 // instruction, if we are accessing memory it will use any of the X-form
871 // indexed load or store instructions.
872
873 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
874 switch (rel.type) {
875 case R_PPC64_GOT_TPREL16_HA:
876 write32(loc - offset, NOP);
877 break;
878 case R_PPC64_GOT_TPREL16_LO_DS:
879 case R_PPC64_GOT_TPREL16_DS: {
880 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
881 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
882 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
883 break;
884 }
885 case R_PPC64_GOT_TPREL_PCREL34: {
886 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
887 // paddi RT(from pld), r13, symbol@tprel, 0
888 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
889 relocateNoSym(loc, R_PPC64_TPREL34, val);
890 break;
891 }
892 case R_PPC64_TLS: {
893 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
894 if (locAsInt % 4 == 0) {
895 uint32_t primaryOp = getPrimaryOpCode(read32(loc));
896 if (primaryOp != 31)
897 error("unrecognized instruction for IE to LE R_PPC64_TLS");
898 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
899 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
900 if (dFormOp == 0)
901 error("unrecognized instruction for IE to LE R_PPC64_TLS");
902 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
903 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
904 } else if (locAsInt % 4 == 1) {
905 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
906 // This version of the relocation is offset by one byte from the
907 // instruction it references.
908 uint32_t tlsInstr = read32(loc - 1);
909 uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
910 if (primaryOp != 31)
911 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
912 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
913 // The add is a special case and should be turned into a nop. The paddi
914 // that comes before it will already have computed the address of the
915 // symbol.
916 if (secondaryOp == 266) {
917 // Check if the add uses the same result register as the input register.
918 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
919 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
920 if (ra == rt) {
921 write32(loc - 1, NOP);
922 } else {
923 // mr rt, ra
924 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
925 }
926 } else {
927 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
928 if (dFormOp == 0)
929 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
930 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
931 }
932 } else {
933 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
934 "offset from 4 byte aligned");
935 }
936 break;
937 }
938 default:
939 llvm_unreachable("unknown relocation for IE to LE");
940 break;
941 }
942 }
943
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const944 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
945 const uint8_t *loc) const {
946 switch (type) {
947 case R_PPC64_NONE:
948 return R_NONE;
949 case R_PPC64_ADDR16:
950 case R_PPC64_ADDR16_DS:
951 case R_PPC64_ADDR16_HA:
952 case R_PPC64_ADDR16_HI:
953 case R_PPC64_ADDR16_HIGH:
954 case R_PPC64_ADDR16_HIGHER:
955 case R_PPC64_ADDR16_HIGHERA:
956 case R_PPC64_ADDR16_HIGHEST:
957 case R_PPC64_ADDR16_HIGHESTA:
958 case R_PPC64_ADDR16_LO:
959 case R_PPC64_ADDR16_LO_DS:
960 case R_PPC64_ADDR32:
961 case R_PPC64_ADDR64:
962 return R_ABS;
963 case R_PPC64_GOT16:
964 case R_PPC64_GOT16_DS:
965 case R_PPC64_GOT16_HA:
966 case R_PPC64_GOT16_HI:
967 case R_PPC64_GOT16_LO:
968 case R_PPC64_GOT16_LO_DS:
969 return R_GOT_OFF;
970 case R_PPC64_TOC16:
971 case R_PPC64_TOC16_DS:
972 case R_PPC64_TOC16_HI:
973 case R_PPC64_TOC16_LO:
974 return R_GOTREL;
975 case R_PPC64_GOT_PCREL34:
976 case R_PPC64_GOT_TPREL_PCREL34:
977 case R_PPC64_PCREL_OPT:
978 return R_GOT_PC;
979 case R_PPC64_TOC16_HA:
980 case R_PPC64_TOC16_LO_DS:
981 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
982 case R_PPC64_TOC:
983 return R_PPC64_TOCBASE;
984 case R_PPC64_REL14:
985 case R_PPC64_REL24:
986 return R_PPC64_CALL_PLT;
987 case R_PPC64_REL24_NOTOC:
988 return R_PLT_PC;
989 case R_PPC64_REL16_LO:
990 case R_PPC64_REL16_HA:
991 case R_PPC64_REL16_HI:
992 case R_PPC64_REL32:
993 case R_PPC64_REL64:
994 case R_PPC64_PCREL34:
995 return R_PC;
996 case R_PPC64_GOT_TLSGD16:
997 case R_PPC64_GOT_TLSGD16_HA:
998 case R_PPC64_GOT_TLSGD16_HI:
999 case R_PPC64_GOT_TLSGD16_LO:
1000 return R_TLSGD_GOT;
1001 case R_PPC64_GOT_TLSGD_PCREL34:
1002 return R_TLSGD_PC;
1003 case R_PPC64_GOT_TLSLD16:
1004 case R_PPC64_GOT_TLSLD16_HA:
1005 case R_PPC64_GOT_TLSLD16_HI:
1006 case R_PPC64_GOT_TLSLD16_LO:
1007 return R_TLSLD_GOT;
1008 case R_PPC64_GOT_TLSLD_PCREL34:
1009 return R_TLSLD_PC;
1010 case R_PPC64_GOT_TPREL16_HA:
1011 case R_PPC64_GOT_TPREL16_LO_DS:
1012 case R_PPC64_GOT_TPREL16_DS:
1013 case R_PPC64_GOT_TPREL16_HI:
1014 return R_GOT_OFF;
1015 case R_PPC64_GOT_DTPREL16_HA:
1016 case R_PPC64_GOT_DTPREL16_LO_DS:
1017 case R_PPC64_GOT_DTPREL16_DS:
1018 case R_PPC64_GOT_DTPREL16_HI:
1019 return R_TLSLD_GOT_OFF;
1020 case R_PPC64_TPREL16:
1021 case R_PPC64_TPREL16_HA:
1022 case R_PPC64_TPREL16_LO:
1023 case R_PPC64_TPREL16_HI:
1024 case R_PPC64_TPREL16_DS:
1025 case R_PPC64_TPREL16_LO_DS:
1026 case R_PPC64_TPREL16_HIGHER:
1027 case R_PPC64_TPREL16_HIGHERA:
1028 case R_PPC64_TPREL16_HIGHEST:
1029 case R_PPC64_TPREL16_HIGHESTA:
1030 case R_PPC64_TPREL34:
1031 return R_TPREL;
1032 case R_PPC64_DTPREL16:
1033 case R_PPC64_DTPREL16_DS:
1034 case R_PPC64_DTPREL16_HA:
1035 case R_PPC64_DTPREL16_HI:
1036 case R_PPC64_DTPREL16_HIGHER:
1037 case R_PPC64_DTPREL16_HIGHERA:
1038 case R_PPC64_DTPREL16_HIGHEST:
1039 case R_PPC64_DTPREL16_HIGHESTA:
1040 case R_PPC64_DTPREL16_LO:
1041 case R_PPC64_DTPREL16_LO_DS:
1042 case R_PPC64_DTPREL64:
1043 case R_PPC64_DTPREL34:
1044 return R_DTPREL;
1045 case R_PPC64_TLSGD:
1046 return R_TLSDESC_CALL;
1047 case R_PPC64_TLSLD:
1048 return R_TLSLD_HINT;
1049 case R_PPC64_TLS:
1050 return R_TLSIE_HINT;
1051 default:
1052 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1053 ") against symbol " + toString(s));
1054 return R_NONE;
1055 }
1056 }
1057
getDynRel(RelType type) const1058 RelType PPC64::getDynRel(RelType type) const {
1059 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1060 return R_PPC64_ADDR64;
1061 return R_PPC64_NONE;
1062 }
1063
getImplicitAddend(const uint8_t * buf,RelType type) const1064 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1065 switch (type) {
1066 case R_PPC64_NONE:
1067 return 0;
1068 case R_PPC64_REL32:
1069 return SignExtend64<32>(read32(buf));
1070 case R_PPC64_ADDR64:
1071 case R_PPC64_REL64:
1072 return read64(buf);
1073 default:
1074 internalLinkerError(getErrorLocation(buf),
1075 "cannot read addend for relocation " + toString(type));
1076 return 0;
1077 }
1078 }
1079
writeGotHeader(uint8_t * buf) const1080 void PPC64::writeGotHeader(uint8_t *buf) const {
1081 write64(buf, getPPC64TocBase());
1082 }
1083
writePltHeader(uint8_t * buf) const1084 void PPC64::writePltHeader(uint8_t *buf) const {
1085 // The generic resolver stub goes first.
1086 write32(buf + 0, 0x7c0802a6); // mflr r0
1087 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1088 write32(buf + 8, 0x7d6802a6); // mflr r11
1089 write32(buf + 12, 0x7c0803a6); // mtlr r0
1090 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1091 write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1092 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1093 write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
1094 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
1095 write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
1096 write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
1097 write32(buf + 44, 0x7d8903a6); // mtctr r12
1098 write32(buf + 48, 0x4e800420); // bctr
1099
1100 // The 'bcl' instruction will set the link register to the address of the
1101 // following instruction ('mflr r11'). Here we store the offset from that
1102 // instruction to the first entry in the GotPlt section.
1103 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1104 write64(buf + 52, gotPltOffset);
1105 }
1106
writePlt(uint8_t * buf,const Symbol & sym,uint64_t) const1107 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1108 uint64_t /*pltEntryAddr*/) const {
1109 int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1110 // bl __glink_PLTresolve
1111 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1112 }
1113
writeIplt(uint8_t * buf,const Symbol & sym,uint64_t) const1114 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1115 uint64_t /*pltEntryAddr*/) const {
1116 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1117 }
1118
toAddr16Rel(RelType type,uint64_t val)1119 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1120 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1121 uint64_t tocBiasedVal = val - ppc64TocOffset;
1122 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1123 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1124
1125 switch (type) {
1126 // TOC biased relocation.
1127 case R_PPC64_GOT16:
1128 case R_PPC64_GOT_TLSGD16:
1129 case R_PPC64_GOT_TLSLD16:
1130 case R_PPC64_TOC16:
1131 return {R_PPC64_ADDR16, tocBiasedVal};
1132 case R_PPC64_GOT16_DS:
1133 case R_PPC64_TOC16_DS:
1134 case R_PPC64_GOT_TPREL16_DS:
1135 case R_PPC64_GOT_DTPREL16_DS:
1136 return {R_PPC64_ADDR16_DS, tocBiasedVal};
1137 case R_PPC64_GOT16_HA:
1138 case R_PPC64_GOT_TLSGD16_HA:
1139 case R_PPC64_GOT_TLSLD16_HA:
1140 case R_PPC64_GOT_TPREL16_HA:
1141 case R_PPC64_GOT_DTPREL16_HA:
1142 case R_PPC64_TOC16_HA:
1143 return {R_PPC64_ADDR16_HA, tocBiasedVal};
1144 case R_PPC64_GOT16_HI:
1145 case R_PPC64_GOT_TLSGD16_HI:
1146 case R_PPC64_GOT_TLSLD16_HI:
1147 case R_PPC64_GOT_TPREL16_HI:
1148 case R_PPC64_GOT_DTPREL16_HI:
1149 case R_PPC64_TOC16_HI:
1150 return {R_PPC64_ADDR16_HI, tocBiasedVal};
1151 case R_PPC64_GOT16_LO:
1152 case R_PPC64_GOT_TLSGD16_LO:
1153 case R_PPC64_GOT_TLSLD16_LO:
1154 case R_PPC64_TOC16_LO:
1155 return {R_PPC64_ADDR16_LO, tocBiasedVal};
1156 case R_PPC64_GOT16_LO_DS:
1157 case R_PPC64_TOC16_LO_DS:
1158 case R_PPC64_GOT_TPREL16_LO_DS:
1159 case R_PPC64_GOT_DTPREL16_LO_DS:
1160 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1161
1162 // Dynamic Thread pointer biased relocation types.
1163 case R_PPC64_DTPREL16:
1164 return {R_PPC64_ADDR16, dtpBiasedVal};
1165 case R_PPC64_DTPREL16_DS:
1166 return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1167 case R_PPC64_DTPREL16_HA:
1168 return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1169 case R_PPC64_DTPREL16_HI:
1170 return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1171 case R_PPC64_DTPREL16_HIGHER:
1172 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1173 case R_PPC64_DTPREL16_HIGHERA:
1174 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1175 case R_PPC64_DTPREL16_HIGHEST:
1176 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1177 case R_PPC64_DTPREL16_HIGHESTA:
1178 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1179 case R_PPC64_DTPREL16_LO:
1180 return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1181 case R_PPC64_DTPREL16_LO_DS:
1182 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1183 case R_PPC64_DTPREL64:
1184 return {R_PPC64_ADDR64, dtpBiasedVal};
1185
1186 default:
1187 return {type, val};
1188 }
1189 }
1190
isTocOptType(RelType type)1191 static bool isTocOptType(RelType type) {
1192 switch (type) {
1193 case R_PPC64_GOT16_HA:
1194 case R_PPC64_GOT16_LO_DS:
1195 case R_PPC64_TOC16_HA:
1196 case R_PPC64_TOC16_LO_DS:
1197 case R_PPC64_TOC16_LO:
1198 return true;
1199 default:
1200 return false;
1201 }
1202 }
1203
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const1204 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1205 RelType type = rel.type;
1206 bool shouldTocOptimize = isTocOptType(type);
1207 // For dynamic thread pointer relative, toc-relative, and got-indirect
1208 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1209 std::tie(type, val) = toAddr16Rel(type, val);
1210
1211 switch (type) {
1212 case R_PPC64_ADDR14: {
1213 checkAlignment(loc, val, 4, rel);
1214 // Preserve the AA/LK bits in the branch instruction
1215 uint8_t aalk = loc[3];
1216 write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1217 break;
1218 }
1219 case R_PPC64_ADDR16:
1220 checkIntUInt(loc, val, 16, rel);
1221 write16(loc, val);
1222 break;
1223 case R_PPC64_ADDR32:
1224 checkIntUInt(loc, val, 32, rel);
1225 write32(loc, val);
1226 break;
1227 case R_PPC64_ADDR16_DS:
1228 case R_PPC64_TPREL16_DS: {
1229 checkInt(loc, val, 16, rel);
1230 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1231 // DS-form instructions only use bits 30-31.
1232 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1233 checkAlignment(loc, lo(val), mask + 1, rel);
1234 write16(loc, (read16(loc) & mask) | lo(val));
1235 } break;
1236 case R_PPC64_ADDR16_HA:
1237 case R_PPC64_REL16_HA:
1238 case R_PPC64_TPREL16_HA:
1239 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1240 writeFromHalf16(loc, NOP);
1241 else {
1242 checkInt(loc, val + 0x8000, 32, rel);
1243 write16(loc, ha(val));
1244 }
1245 break;
1246 case R_PPC64_ADDR16_HI:
1247 case R_PPC64_REL16_HI:
1248 case R_PPC64_TPREL16_HI:
1249 checkInt(loc, val, 32, rel);
1250 write16(loc, hi(val));
1251 break;
1252 case R_PPC64_ADDR16_HIGH:
1253 write16(loc, hi(val));
1254 break;
1255 case R_PPC64_ADDR16_HIGHER:
1256 case R_PPC64_TPREL16_HIGHER:
1257 write16(loc, higher(val));
1258 break;
1259 case R_PPC64_ADDR16_HIGHERA:
1260 case R_PPC64_TPREL16_HIGHERA:
1261 write16(loc, highera(val));
1262 break;
1263 case R_PPC64_ADDR16_HIGHEST:
1264 case R_PPC64_TPREL16_HIGHEST:
1265 write16(loc, highest(val));
1266 break;
1267 case R_PPC64_ADDR16_HIGHESTA:
1268 case R_PPC64_TPREL16_HIGHESTA:
1269 write16(loc, highesta(val));
1270 break;
1271 case R_PPC64_ADDR16_LO:
1272 case R_PPC64_REL16_LO:
1273 case R_PPC64_TPREL16_LO:
1274 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1275 // changed into a nop. The lo part then needs to be updated to use the
1276 // toc-pointer register r2, as the base register.
1277 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1278 uint32_t insn = readFromHalf16(loc);
1279 if (isInstructionUpdateForm(insn))
1280 error(getErrorLocation(loc) +
1281 "can't toc-optimize an update instruction: 0x" +
1282 utohexstr(insn));
1283 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1284 } else {
1285 write16(loc, lo(val));
1286 }
1287 break;
1288 case R_PPC64_ADDR16_LO_DS:
1289 case R_PPC64_TPREL16_LO_DS: {
1290 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1291 // DS-form instructions only use bits 30-31.
1292 uint32_t insn = readFromHalf16(loc);
1293 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1294 checkAlignment(loc, lo(val), mask + 1, rel);
1295 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1296 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1297 // changed into a nop. The lo part then needs to be updated to use the toc
1298 // pointer register r2, as the base register.
1299 if (isInstructionUpdateForm(insn))
1300 error(getErrorLocation(loc) +
1301 "Can't toc-optimize an update instruction: 0x" +
1302 Twine::utohexstr(insn));
1303 insn &= 0xffe00000 | mask;
1304 writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1305 } else {
1306 write16(loc, (read16(loc) & mask) | lo(val));
1307 }
1308 } break;
1309 case R_PPC64_TPREL16:
1310 checkInt(loc, val, 16, rel);
1311 write16(loc, val);
1312 break;
1313 case R_PPC64_REL32:
1314 checkInt(loc, val, 32, rel);
1315 write32(loc, val);
1316 break;
1317 case R_PPC64_ADDR64:
1318 case R_PPC64_REL64:
1319 case R_PPC64_TOC:
1320 write64(loc, val);
1321 break;
1322 case R_PPC64_REL14: {
1323 uint32_t mask = 0x0000FFFC;
1324 checkInt(loc, val, 16, rel);
1325 checkAlignment(loc, val, 4, rel);
1326 write32(loc, (read32(loc) & ~mask) | (val & mask));
1327 break;
1328 }
1329 case R_PPC64_REL24:
1330 case R_PPC64_REL24_NOTOC: {
1331 uint32_t mask = 0x03FFFFFC;
1332 checkInt(loc, val, 26, rel);
1333 checkAlignment(loc, val, 4, rel);
1334 write32(loc, (read32(loc) & ~mask) | (val & mask));
1335 break;
1336 }
1337 case R_PPC64_DTPREL64:
1338 write64(loc, val - dynamicThreadPointerOffset);
1339 break;
1340 case R_PPC64_DTPREL34:
1341 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1342 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1343 // need to subtract that value then fallthrough to the general case.
1344 val -= dynamicThreadPointerOffset;
1345 LLVM_FALLTHROUGH;
1346 case R_PPC64_PCREL34:
1347 case R_PPC64_GOT_PCREL34:
1348 case R_PPC64_GOT_TLSGD_PCREL34:
1349 case R_PPC64_GOT_TLSLD_PCREL34:
1350 case R_PPC64_GOT_TPREL_PCREL34:
1351 case R_PPC64_TPREL34: {
1352 const uint64_t si0Mask = 0x00000003ffff0000;
1353 const uint64_t si1Mask = 0x000000000000ffff;
1354 const uint64_t fullMask = 0x0003ffff0000ffff;
1355 checkInt(loc, val, 34, rel);
1356
1357 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1358 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1359 (val & si1Mask));
1360 break;
1361 }
1362 // If we encounter a PCREL_OPT relocation that we won't optimize.
1363 case R_PPC64_PCREL_OPT:
1364 break;
1365 default:
1366 llvm_unreachable("unknown relocation");
1367 }
1368 }
1369
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const1370 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1371 uint64_t branchAddr, const Symbol &s, int64_t a) const {
1372 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1373 type != R_PPC64_REL24_NOTOC)
1374 return false;
1375
1376 // If a function is in the Plt it needs to be called with a call-stub.
1377 if (s.isInPlt())
1378 return true;
1379
1380 // This check looks at the st_other bits of the callee with relocation
1381 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1382 // clobbers the TOC and we need an R2 save stub.
1383 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1384 return true;
1385
1386 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1387 return true;
1388
1389 // An undefined weak symbol not in a PLT does not need a thunk. If it is
1390 // hidden, its binding has been converted to local, so we just check
1391 // isUndefined() here. A undefined non-weak symbol has been errored.
1392 if (s.isUndefined())
1393 return false;
1394
1395 // If the offset exceeds the range of the branch type then it will need
1396 // a range-extending thunk.
1397 // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1398 return !inBranchRange(type, branchAddr,
1399 s.getVA(a) +
1400 getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1401 }
1402
getThunkSectionSpacing() const1403 uint32_t PPC64::getThunkSectionSpacing() const {
1404 // See comment in Arch/ARM.cpp for a more detailed explanation of
1405 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1406 // R_PPC64_REL24, which is used by unconditional branch instructions.
1407 // 0x2000000 = (1 << 24-1) * 4
1408 return 0x2000000;
1409 }
1410
inBranchRange(RelType type,uint64_t src,uint64_t dst) const1411 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1412 int64_t offset = dst - src;
1413 if (type == R_PPC64_REL14)
1414 return isInt<16>(offset);
1415 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1416 return isInt<26>(offset);
1417 llvm_unreachable("unsupported relocation type used in branch");
1418 }
1419
adjustTlsExpr(RelType type,RelExpr expr) const1420 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1421 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1422 return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1423 if (expr == R_RELAX_TLS_LD_TO_LE)
1424 return R_RELAX_TLS_LD_TO_LE_ABS;
1425 return expr;
1426 }
1427
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const1428 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1429 const uint8_t *loc) const {
1430 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1431 config->pcRelOptimize) {
1432 // It only makes sense to optimize pld since paddi means that the address
1433 // of the object in the GOT is required rather than the object itself.
1434 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1435 return R_PPC64_RELAX_GOT_PC;
1436 }
1437 return R_GOT_PC;
1438 }
1439
1440 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1441 // The general dynamic code sequence for a global `x` uses 4 instructions.
1442 // Instruction Relocation Symbol
1443 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1444 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1445 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1446 // R_PPC64_REL24 __tls_get_addr
1447 // nop None None
1448 //
1449 // Relaxing to initial-exec entails:
1450 // 1) Convert the addis/addi pair that builds the address of the tls_index
1451 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1452 // 2) Convert the call to __tls_get_addr to a nop.
1453 // 3) Convert the nop following the call to an add of the loaded offset to the
1454 // thread pointer.
1455 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1456 // used as the relaxation hint for both steps 2 and 3.
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const1457 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1458 uint64_t val) const {
1459 switch (rel.type) {
1460 case R_PPC64_GOT_TLSGD16_HA:
1461 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1462 // addis rT, r2, sym@got@tprel@ha.
1463 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1464 return;
1465 case R_PPC64_GOT_TLSGD16:
1466 case R_PPC64_GOT_TLSGD16_LO: {
1467 // Relax from addi r3, rA, sym@got@tlsgd@l to
1468 // ld r3, sym@got@tprel@l(rA)
1469 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1470 writeFromHalf16(loc, 0xe8600000 | ra);
1471 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1472 return;
1473 }
1474 case R_PPC64_GOT_TLSGD_PCREL34: {
1475 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1476 // pld r3, sym@got@tprel@pcrel
1477 writePrefixedInstruction(loc, 0x04100000e4600000);
1478 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1479 return;
1480 }
1481 case R_PPC64_TLSGD: {
1482 // PC Relative Relaxation:
1483 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1484 // nop
1485 // TOC Relaxation:
1486 // Relax from bl __tls_get_addr(x@tlsgd)
1487 // nop
1488 // to
1489 // nop
1490 // add r3, r3, r13
1491 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1492 if (locAsInt % 4 == 0) {
1493 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
1494 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1495 } else if (locAsInt % 4 == 1) {
1496 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1497 write32(loc - 1, 0x7c636a14);
1498 } else {
1499 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1500 }
1501 return;
1502 }
1503 default:
1504 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1505 }
1506 }
1507
1508 // The prologue for a split-stack function is expected to look roughly
1509 // like this:
1510 // .Lglobal_entry_point:
1511 // # TOC pointer initialization.
1512 // ...
1513 // .Llocal_entry_point:
1514 // # load the __private_ss member of the threads tcbhead.
1515 // ld r0,-0x7000-64(r13)
1516 // # subtract the functions stack size from the stack pointer.
1517 // addis r12, r1, ha(-stack-frame size)
1518 // addi r12, r12, l(-stack-frame size)
1519 // # compare needed to actual and branch to allocate_more_stack if more
1520 // # space is needed, otherwise fallthrough to 'normal' function body.
1521 // cmpld cr7,r12,r0
1522 // blt- cr7, .Lallocate_more_stack
1523 //
1524 // -) The allocate_more_stack block might be placed after the split-stack
1525 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1526 // instead.
1527 // -) If either the addis or addi is not needed due to the stack size being
1528 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1529 // but there will always be 2 instructions the linker can overwrite for the
1530 // adjusted stack size.
1531 //
1532 // The linkers job here is to increase the stack size used in the addis/addi
1533 // pair by split-stack-size-adjust.
1534 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1535 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const1536 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1537 uint8_t stOther) const {
1538 // If the caller has a global entry point adjust the buffer past it. The start
1539 // of the split-stack prologue will be at the local entry point.
1540 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1541
1542 // At the very least we expect to see a load of some split-stack data from the
1543 // tcb, and 2 instructions that calculate the ending stack address this
1544 // function will require. If there is not enough room for at least 3
1545 // instructions it can't be a split-stack prologue.
1546 if (loc + 12 >= end)
1547 return false;
1548
1549 // First instruction must be `ld r0, -0x7000-64(r13)`
1550 if (read32(loc) != 0xe80d8fc0)
1551 return false;
1552
1553 int16_t hiImm = 0;
1554 int16_t loImm = 0;
1555 // First instruction can be either an addis if the frame size is larger then
1556 // 32K, or an addi if the size is less then 32K.
1557 int32_t firstInstr = read32(loc + 4);
1558 if (getPrimaryOpCode(firstInstr) == 15) {
1559 hiImm = firstInstr & 0xFFFF;
1560 } else if (getPrimaryOpCode(firstInstr) == 14) {
1561 loImm = firstInstr & 0xFFFF;
1562 } else {
1563 return false;
1564 }
1565
1566 // Second instruction is either an addi or a nop. If the first instruction was
1567 // an addi then LoImm is set and the second instruction must be a nop.
1568 uint32_t secondInstr = read32(loc + 8);
1569 if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1570 loImm = secondInstr & 0xFFFF;
1571 } else if (secondInstr != NOP) {
1572 return false;
1573 }
1574
1575 // The register operands of the first instruction should be the stack-pointer
1576 // (r1) as the input (RA) and r12 as the output (RT). If the second
1577 // instruction is not a nop, then it should use r12 as both input and output.
1578 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1579 uint8_t expectedRA) {
1580 return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1581 ((instr & 0x1F0000) >> 16 == expectedRA);
1582 };
1583 if (!checkRegOperands(firstInstr, 12, 1))
1584 return false;
1585 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1586 return false;
1587
1588 int32_t stackFrameSize = (hiImm * 65536) + loImm;
1589 // Check that the adjusted size doesn't overflow what we can represent with 2
1590 // instructions.
1591 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1592 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1593 return false;
1594 }
1595
1596 int32_t adjustedStackFrameSize =
1597 stackFrameSize - config->splitStackAdjustSize;
1598
1599 loImm = adjustedStackFrameSize & 0xFFFF;
1600 hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1601 if (hiImm) {
1602 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1603 // If the low immediate is zero the second instruction will be a nop.
1604 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1605 write32(loc + 8, secondInstr);
1606 } else {
1607 // addi r12, r1, imm
1608 write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1609 write32(loc + 8, NOP);
1610 }
1611
1612 return true;
1613 }
1614
getPPC64TargetInfo()1615 TargetInfo *elf::getPPC64TargetInfo() {
1616 static PPC64 target;
1617 return ⌖
1618 }
1619