xref: /llvm-project-15.0.7/lld/ELF/Arch/PPC64.cpp (revision 2da3facd)
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SymbolTable.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 constexpr uint64_t ppc64TocOffset = 0x8000;
26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
27 
28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
29 // instructions that can be used as part of the initial exec TLS sequence.
30 enum XFormOpcd {
31   LBZX = 87,
32   LHZX = 279,
33   LWZX = 23,
34   LDX = 21,
35   STBX = 215,
36   STHX = 407,
37   STWX = 151,
38   STDX = 149,
39   ADD = 266,
40 };
41 
42 enum DFormOpcd {
43   LBZ = 34,
44   LBZU = 35,
45   LHZ = 40,
46   LHZU = 41,
47   LHAU = 43,
48   LWZ = 32,
49   LWZU = 33,
50   LFSU = 49,
51   LD = 58,
52   LFDU = 51,
53   STB = 38,
54   STBU = 39,
55   STH = 44,
56   STHU = 45,
57   STW = 36,
58   STWU = 37,
59   STFSU = 53,
60   STFDU = 55,
61   STD = 62,
62   ADDI = 14
63 };
64 
65 constexpr uint32_t NOP = 0x60000000;
66 
67 enum class PPCLegacyInsn : uint32_t {
68   NOINSN = 0,
69   // Loads.
70   LBZ = 0x88000000,
71   LHZ = 0xa0000000,
72   LWZ = 0x80000000,
73   LHA = 0xa8000000,
74   LWA = 0xe8000002,
75   LD = 0xe8000000,
76   LFS = 0xC0000000,
77   LXSSP = 0xe4000003,
78   LFD = 0xc8000000,
79   LXSD = 0xe4000002,
80   LXV = 0xf4000001,
81   LXVP = 0x18000000,
82 
83   // Stores.
84   STB = 0x98000000,
85   STH = 0xb0000000,
86   STW = 0x90000000,
87   STD = 0xf8000000,
88   STFS = 0xd0000000,
89   STXSSP = 0xf4000003,
90   STFD = 0xd8000000,
91   STXSD = 0xf4000002,
92   STXV = 0xf4000005,
93   STXVP = 0x18000001
94 };
95 enum class PPCPrefixedInsn : uint64_t {
96   NOINSN = 0,
97   PREFIX_MLS = 0x0610000000000000,
98   PREFIX_8LS = 0x0410000000000000,
99 
100   // Loads.
101   PLBZ = PREFIX_MLS,
102   PLHZ = PREFIX_MLS,
103   PLWZ = PREFIX_MLS,
104   PLHA = PREFIX_MLS,
105   PLWA = PREFIX_8LS | 0xa4000000,
106   PLD = PREFIX_8LS | 0xe4000000,
107   PLFS = PREFIX_MLS,
108   PLXSSP = PREFIX_8LS | 0xac000000,
109   PLFD = PREFIX_MLS,
110   PLXSD = PREFIX_8LS | 0xa8000000,
111   PLXV = PREFIX_8LS | 0xc8000000,
112   PLXVP = PREFIX_8LS | 0xe8000000,
113 
114   // Stores.
115   PSTB = PREFIX_MLS,
116   PSTH = PREFIX_MLS,
117   PSTW = PREFIX_MLS,
118   PSTD = PREFIX_8LS | 0xf4000000,
119   PSTFS = PREFIX_MLS,
120   PSTXSSP = PREFIX_8LS | 0xbc000000,
121   PSTFD = PREFIX_MLS,
122   PSTXSD = PREFIX_8LS | 0xb8000000,
123   PSTXV = PREFIX_8LS | 0xd8000000,
124   PSTXVP = PREFIX_8LS | 0xf8000000
125 };
126 static bool checkPPCLegacyInsn(uint32_t encoding) {
127   PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
128   if (insn == PPCLegacyInsn::NOINSN)
129     return false;
130 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
131   if (insn == PPCLegacyInsn::Legacy)                                           \
132     return true;
133 #include "PPCInsns.def"
134 #undef PCREL_OPT
135   return false;
136 }
137 
138 // Masks to apply to legacy instructions when converting them to prefixed,
139 // pc-relative versions. For the most part, the primary opcode is shared
140 // between the legacy instruction and the suffix of its prefixed version.
141 // However, there are some instances where that isn't the case (DS-Form and
142 // DQ-form instructions).
143 enum class LegacyToPrefixMask : uint64_t {
144   NOMASK = 0x0,
145   OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
146   ONLY_RST = 0x3e00000,     // [RS]T (6-10).
147   ST_STX28_TO5 =
148       0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
149 };
150 
151 uint64_t elf::getPPC64TocBase() {
152   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
153   // TOC starts where the first of these sections starts. We always create a
154   // .got when we see a relocation that uses it, so for us the start is always
155   // the .got.
156   uint64_t tocVA = in.got->getVA();
157 
158   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
159   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
160   // code (crt1.o) assumes that you can get from the TOC base to the
161   // start of the .toc section with only a single (signed) 16-bit relocation.
162   return tocVA + ppc64TocOffset;
163 }
164 
165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
166   // The offset is encoded into the 3 most significant bits of the st_other
167   // field, with some special values described in section 3.4.1 of the ABI:
168   // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
169   //         the TOC pointer (r2). r2 will hold the same value on returning from
170   //         the function as it did on entering the function.
171   // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
172   //         caller-saved register for all callers.
173   // 2-6 --> The  binary logarithm of the offset eg:
174   //         2 --> 2^2 = 4 bytes -->  1 instruction.
175   //         6 --> 2^6 = 64 bytes --> 16 instructions.
176   // 7   --> Reserved.
177   uint8_t gepToLep = (stOther >> 5) & 7;
178   if (gepToLep < 2)
179     return 0;
180 
181   // The value encoded in the st_other bits is the
182   // log-base-2(offset).
183   if (gepToLep < 7)
184     return 1 << gepToLep;
185 
186   error("reserved value of 7 in the 3 most-significant-bits of st_other");
187   return 0;
188 }
189 
190 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
191   // The only small code model relocations that access the .toc section.
192   return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
193 }
194 
195 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
196   insn = config->isLE ? insn << 32 | insn >> 32 : insn;
197   write64(loc, insn);
198 }
199 
200 static bool addOptional(StringRef name, uint64_t value,
201                         std::vector<Defined *> &defined) {
202   Symbol *sym = symtab->find(name);
203   if (!sym || sym->isDefined())
204     return false;
205   sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
206                        STV_HIDDEN, STT_FUNC, value,
207                        /*size=*/0, /*section=*/nullptr});
208   defined.push_back(cast<Defined>(sym));
209   return true;
210 }
211 
212 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
213 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
214 // The labels are defined only if they exist in the symbol table.
215 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
216                           int from, uint32_t firstInsn,
217                           ArrayRef<uint32_t> tail) {
218   std::vector<Defined *> defined;
219   char name[16];
220   int first;
221   uint32_t *ptr = buf.data();
222   for (int r = from; r < 32; ++r) {
223     format("%s%d", prefix, r).snprint(name, sizeof(name));
224     if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
225       first = r - from;
226     write32(ptr++, firstInsn + 0x200008 * (r - from));
227   }
228   for (uint32_t insn : tail)
229     write32(ptr++, insn);
230   assert(ptr == &*buf.end());
231 
232   if (defined.empty())
233     return;
234   // The full section content has the extent of [begin, end). We drop unused
235   // instructions and write [first,end).
236   auto *sec = make<InputSection>(
237       nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
238       makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
239                    4 * (buf.size() - first)),
240       ".text");
241   inputSections.push_back(sec);
242   for (Defined *sym : defined) {
243     sym->section = sec;
244     sym->value -= 4 * first;
245   }
246 }
247 
248 // Implements some save and restore functions as described by ELF V2 ABI to be
249 // compatible with GCC. With GCC -Os, when the number of call-saved registers
250 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
251 // expects the linker to define them. See
252 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
253 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
254 // weird because libgcc.a would be the natural place. The linker generation
255 // approach has the advantage that the linker can generate multiple copies to
256 // avoid long branch thunks. However, we don't consider the advantage
257 // significant enough to complicate our trunk implementation, so we take the
258 // simple approach and synthesize .text sections providing the implementation.
259 void elf::addPPC64SaveRestore() {
260   static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
261   constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
262 
263   // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
264   // Tail: ld 0, 16(1); mtlr 0; blr
265   writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
266                 {0xe8010010, mtlr_0, blr});
267   // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
268   // Tail: blr
269   writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
270   // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
271   // Tail: std 0, 16(1); blr
272   writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
273   // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
274   // Tail: blr
275   writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
276 }
277 
278 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
279 template <typename ELFT>
280 static std::pair<Defined *, int64_t>
281 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
282   if (tocSec->numRelocations == 0)
283     return {};
284 
285   // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
286   // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
287   // relocation index in most cases.
288   //
289   // In rare cases a TOC entry may store a constant that doesn't need an
290   // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
291   // points to a relocation with larger r_offset. Do a linear probe then.
292   // Constants are extremely uncommon in .toc and the extra number of array
293   // accesses can be seen as a small constant.
294   ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
295   uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
296   for (;;) {
297     if (relas[index].r_offset == offset) {
298       Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
299       return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
300     }
301     if (relas[index].r_offset < offset || index == 0)
302       break;
303     --index;
304   }
305   return {};
306 }
307 
308 // When accessing a symbol defined in another translation unit, compilers
309 // reserve a .toc entry, allocate a local label and generate toc-indirect
310 // instructions:
311 //
312 //   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
313 //   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
314 //   ld/lwa 3, 0(3)           # load the value from the address
315 //
316 //   .section .toc,"aw",@progbits
317 //   .LC0: .tc var[TC],var
318 //
319 // If var is defined, non-preemptable and addressable with a 32-bit signed
320 // offset from the toc base, the address of var can be computed by adding an
321 // offset to the toc base, saving a load.
322 //
323 //   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
324 //   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
325 //   ld/lwa 3, 0(3)           # load the value from the address
326 //
327 // Returns true if the relaxation is performed.
328 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
329   assert(config->tocOptimize);
330   if (rel.addend < 0)
331     return false;
332 
333   // If the symbol is not the .toc section, this isn't a toc-indirection.
334   Defined *defSym = dyn_cast<Defined>(rel.sym);
335   if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
336     return false;
337 
338   Defined *d;
339   int64_t addend;
340   auto *tocISB = cast<InputSectionBase>(defSym->section);
341   std::tie(d, addend) =
342       config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
343                    : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
344 
345   // Only non-preemptable defined symbols can be relaxed.
346   if (!d || d->isPreemptible)
347     return false;
348 
349   // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
350   // ifunc and changed its type to STT_FUNC.
351   assert(!d->isGnuIFunc());
352 
353   // Two instructions can materialize a 32-bit signed offset from the toc base.
354   uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
355   if (!isInt<32>(tocRelative))
356     return false;
357 
358   // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
359   target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
360   return true;
361 }
362 
363 namespace {
364 class PPC64 final : public TargetInfo {
365 public:
366   PPC64();
367   int getTlsGdRelaxSkip(RelType type) const override;
368   uint32_t calcEFlags() const override;
369   RelExpr getRelExpr(RelType type, const Symbol &s,
370                      const uint8_t *loc) const override;
371   RelType getDynRel(RelType type) const override;
372   void writePltHeader(uint8_t *buf) const override;
373   void writePlt(uint8_t *buf, const Symbol &sym,
374                 uint64_t pltEntryAddr) const override;
375   void writeIplt(uint8_t *buf, const Symbol &sym,
376                  uint64_t pltEntryAddr) const override;
377   void relocate(uint8_t *loc, const Relocation &rel,
378                 uint64_t val) const override;
379   void writeGotHeader(uint8_t *buf) const override;
380   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
381                   uint64_t branchAddr, const Symbol &s,
382                   int64_t a) const override;
383   uint32_t getThunkSectionSpacing() const override;
384   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
385   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
386   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
387                           const uint8_t *loc) const override;
388   void relaxGot(uint8_t *loc, const Relocation &rel,
389                 uint64_t val) const override;
390   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
391                       uint64_t val) const override;
392   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
393                       uint64_t val) const override;
394   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
395                       uint64_t val) const override;
396   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
397                       uint64_t val) const override;
398 
399   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
400                                         uint8_t stOther) const override;
401 };
402 } // namespace
403 
404 // Relocation masks following the #lo(value), #hi(value), #ha(value),
405 // #higher(value), #highera(value), #highest(value), and #highesta(value)
406 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
407 // document.
408 static uint16_t lo(uint64_t v) { return v; }
409 static uint16_t hi(uint64_t v) { return v >> 16; }
410 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
411 static uint16_t higher(uint64_t v) { return v >> 32; }
412 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
413 static uint16_t highest(uint64_t v) { return v >> 48; }
414 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
415 
416 // Extracts the 'PO' field of an instruction encoding.
417 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
418 
419 static bool isDQFormInstruction(uint32_t encoding) {
420   switch (getPrimaryOpCode(encoding)) {
421   default:
422     return false;
423   case 6: // Power10 paired loads/stores (lxvp, stxvp).
424   case 56:
425     // The only instruction with a primary opcode of 56 is `lq`.
426     return true;
427   case 61:
428     // There are both DS and DQ instruction forms with this primary opcode.
429     // Namely `lxv` and `stxv` are the DQ-forms that use it.
430     // The DS 'XO' bits being set to 01 is restricted to DQ form.
431     return (encoding & 3) == 0x1;
432   }
433 }
434 
435 static bool isDSFormInstruction(PPCLegacyInsn insn) {
436   switch (insn) {
437   default:
438     return false;
439   case PPCLegacyInsn::LWA:
440   case PPCLegacyInsn::LD:
441   case PPCLegacyInsn::LXSD:
442   case PPCLegacyInsn::LXSSP:
443   case PPCLegacyInsn::STD:
444   case PPCLegacyInsn::STXSD:
445   case PPCLegacyInsn::STXSSP:
446     return true;
447   }
448 }
449 
450 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
451   uint32_t opc = encoding & 0xfc000000;
452 
453   // If the primary opcode is shared between multiple instructions, we need to
454   // fix it up to match the actual instruction we are after.
455   if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
456        opc == 0xf8000000) &&
457       !isDQFormInstruction(encoding))
458     opc = encoding & 0xfc000003;
459   else if (opc == 0xf4000000)
460     opc = encoding & 0xfc000007;
461   else if (opc == 0x18000000)
462     opc = encoding & 0xfc00000f;
463 
464   // If the value is not one of the enumerators in PPCLegacyInsn, we want to
465   // return PPCLegacyInsn::NOINSN.
466   if (!checkPPCLegacyInsn(opc))
467     return PPCLegacyInsn::NOINSN;
468   return static_cast<PPCLegacyInsn>(opc);
469 }
470 
471 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
472   switch (insn) {
473 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
474   case PPCLegacyInsn::Legacy:                                                  \
475     return PPCPrefixedInsn::PCRel
476 #include "PPCInsns.def"
477 #undef PCREL_OPT
478   }
479   return PPCPrefixedInsn::NOINSN;
480 }
481 
482 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
483   switch (insn) {
484 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
485   case PPCLegacyInsn::Legacy:                                                  \
486     return LegacyToPrefixMask::InsnMask
487 #include "PPCInsns.def"
488 #undef PCREL_OPT
489   }
490   return LegacyToPrefixMask::NOMASK;
491 }
492 static uint64_t getPCRelativeForm(uint32_t encoding) {
493   PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
494   PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
495   if (pcrelInsn == PPCPrefixedInsn::NOINSN)
496     return UINT64_C(-1);
497   LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
498   uint64_t pcrelEncoding =
499       (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
500 
501   // If the mask requires moving bit 28 to bit 5, do that now.
502   if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
503     pcrelEncoding |= (encoding & 0x8) << 23;
504   return pcrelEncoding;
505 }
506 
507 static bool isInstructionUpdateForm(uint32_t encoding) {
508   switch (getPrimaryOpCode(encoding)) {
509   default:
510     return false;
511   case LBZU:
512   case LHAU:
513   case LHZU:
514   case LWZU:
515   case LFSU:
516   case LFDU:
517   case STBU:
518   case STHU:
519   case STWU:
520   case STFSU:
521   case STFDU:
522     return true;
523     // LWA has the same opcode as LD, and the DS bits is what differentiates
524     // between LD/LDU/LWA
525   case LD:
526   case STD:
527     return (encoding & 3) == 1;
528   }
529 }
530 
531 // Compute the total displacement between the prefixed instruction that gets
532 // to the start of the data and the load/store instruction that has the offset
533 // into the data structure.
534 // For example:
535 // paddi 3, 0, 1000, 1
536 // lwz 3, 20(3)
537 // Should add up to 1020 for total displacement.
538 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
539   int64_t disp34 = llvm::SignExtend64(
540       ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
541   int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
542   // For DS and DQ form instructions, we need to mask out the XO bits.
543   if (isDQFormInstruction(accessInsn))
544     disp16 &= ~0xf;
545   else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
546     disp16 &= ~0x3;
547   return disp34 + disp16;
548 }
549 
550 // There are a number of places when we either want to read or write an
551 // instruction when handling a half16 relocation type. On big-endian the buffer
552 // pointer is pointing into the middle of the word we want to extract, and on
553 // little-endian it is pointing to the start of the word. These 2 helpers are to
554 // simplify reading and writing in that context.
555 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
556   write32(config->isLE ? loc : loc - 2, insn);
557 }
558 
559 static uint32_t readFromHalf16(const uint8_t *loc) {
560   return read32(config->isLE ? loc : loc - 2);
561 }
562 
563 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
564   uint64_t fullInstr = read64(loc);
565   return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
566 }
567 
568 PPC64::PPC64() {
569   copyRel = R_PPC64_COPY;
570   gotRel = R_PPC64_GLOB_DAT;
571   pltRel = R_PPC64_JMP_SLOT;
572   relativeRel = R_PPC64_RELATIVE;
573   iRelativeRel = R_PPC64_IRELATIVE;
574   symbolicRel = R_PPC64_ADDR64;
575   pltHeaderSize = 60;
576   pltEntrySize = 4;
577   ipltEntrySize = 16; // PPC64PltCallStub::size
578   gotHeaderEntriesNum = 1;
579   gotPltHeaderEntriesNum = 2;
580   needsThunks = true;
581 
582   tlsModuleIndexRel = R_PPC64_DTPMOD64;
583   tlsOffsetRel = R_PPC64_DTPREL64;
584 
585   tlsGotRel = R_PPC64_TPREL64;
586 
587   needsMoreStackNonSplit = false;
588 
589   // We need 64K pages (at least under glibc/Linux, the loader won't
590   // set different permissions on a finer granularity than that).
591   defaultMaxPageSize = 65536;
592 
593   // The PPC64 ELF ABI v1 spec, says:
594   //
595   //   It is normally desirable to put segments with different characteristics
596   //   in separate 256 Mbyte portions of the address space, to give the
597   //   operating system full paging flexibility in the 64-bit address space.
598   //
599   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
600   // use 0x10000000 as the starting address.
601   defaultImageBase = 0x10000000;
602 
603   write32(trapInstr.data(), 0x7fe00008);
604 }
605 
606 int PPC64::getTlsGdRelaxSkip(RelType type) const {
607   // A __tls_get_addr call instruction is marked with 2 relocations:
608   //
609   //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
610   //   R_PPC64_REL24: __tls_get_addr
611   //
612   // After the relaxation we no longer call __tls_get_addr and should skip both
613   // relocations to not create a false dependence on __tls_get_addr being
614   // defined.
615   if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
616     return 2;
617   return 1;
618 }
619 
620 static uint32_t getEFlags(InputFile *file) {
621   if (config->ekind == ELF64BEKind)
622     return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
623   return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
624 }
625 
626 // This file implements v2 ABI. This function makes sure that all
627 // object files have v2 or an unspecified version as an ABI version.
628 uint32_t PPC64::calcEFlags() const {
629   for (InputFile *f : objectFiles) {
630     uint32_t flag = getEFlags(f);
631     if (flag == 1)
632       error(toString(f) + ": ABI version 1 is not supported");
633     else if (flag > 2)
634       error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
635   }
636   return 2;
637 }
638 
639 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
640   switch (rel.type) {
641   case R_PPC64_TOC16_HA:
642     // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
643     relocate(loc, rel, val);
644     break;
645   case R_PPC64_TOC16_LO_DS: {
646     // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
647     // "addi reg, 2, var@toc".
648     uint32_t insn = readFromHalf16(loc);
649     if (getPrimaryOpCode(insn) != LD)
650       error("expected a 'ld' for got-indirect to toc-relative relaxing");
651     writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
652     relocateNoSym(loc, R_PPC64_TOC16_LO, val);
653     break;
654   }
655   case R_PPC64_GOT_PCREL34: {
656     // Clear the first 8 bits of the prefix and the first 6 bits of the
657     // instruction (the primary opcode).
658     uint64_t insn = readPrefixedInstruction(loc);
659     if ((insn & 0xfc000000) != 0xe4000000)
660       error("expected a 'pld' for got-indirect to pc-relative relaxing");
661     insn &= ~0xff000000fc000000;
662 
663     // Replace the cleared bits with the values for PADDI (0x600000038000000);
664     insn |= 0x600000038000000;
665     writePrefixedInstruction(loc, insn);
666     relocate(loc, rel, val);
667     break;
668   }
669   case R_PPC64_PCREL_OPT: {
670     // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
671     // be relaxed. The eligibility for the relaxation needs to be determined
672     // on that relocation since this one does not relocate a symbol.
673     uint64_t insn = readPrefixedInstruction(loc);
674     uint32_t accessInsn = read32(loc + rel.addend);
675     uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
676 
677     // This error is not necessary for correctness but is emitted for now
678     // to ensure we don't miss these opportunities in real code. It can be
679     // removed at a later date.
680     if (pcRelInsn == UINT64_C(-1)) {
681       errorOrWarn(
682           "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
683           Twine::utohexstr(accessInsn));
684       break;
685     }
686 
687     int64_t totalDisp = getTotalDisp(insn, accessInsn);
688     if (!isInt<34>(totalDisp))
689       break; // Displacement doesn't fit.
690     // Convert the PADDI to the prefixed version of accessInsn and convert
691     // accessInsn to a nop.
692     writePrefixedInstruction(loc, pcRelInsn |
693                                       ((totalDisp & 0x3ffff0000) << 16) |
694                                       (totalDisp & 0xffff));
695     write32(loc + rel.addend, NOP); // nop accessInsn.
696     break;
697   }
698   default:
699     llvm_unreachable("unexpected relocation type");
700   }
701 }
702 
703 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
704                            uint64_t val) const {
705   // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
706   // The general dynamic code sequence for a global `x` will look like:
707   // Instruction                    Relocation                Symbol
708   // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
709   // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
710   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
711   //                                R_PPC64_REL24               __tls_get_addr
712   // nop                            None                       None
713 
714   // Relaxing to local exec entails converting:
715   // addis r3, r2, x@got@tlsgd@ha    into      nop
716   // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
717   // bl __tls_get_addr(x@tlsgd)      into      nop
718   // nop                             into      addi r3, r3, x@tprel@l
719 
720   switch (rel.type) {
721   case R_PPC64_GOT_TLSGD16_HA:
722     writeFromHalf16(loc, NOP);
723     break;
724   case R_PPC64_GOT_TLSGD16:
725   case R_PPC64_GOT_TLSGD16_LO:
726     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
727     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
728     break;
729   case R_PPC64_GOT_TLSGD_PCREL34:
730     // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
731     //            paddi r3, r13, x@tprel, 0
732     writePrefixedInstruction(loc, 0x06000000386d0000);
733     relocateNoSym(loc, R_PPC64_TPREL34, val);
734     break;
735   case R_PPC64_TLSGD: {
736     // PC Relative Relaxation:
737     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
738     //            nop
739     // TOC Relaxation:
740     // Relax from bl __tls_get_addr(x@tlsgd)
741     //            nop
742     // to
743     //            nop
744     //            addi r3, r3, x@tprel@l
745     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
746     if (locAsInt % 4 == 0) {
747       write32(loc, NOP);            // nop
748       write32(loc + 4, 0x38630000); // addi r3, r3
749       // Since we are relocating a half16 type relocation and Loc + 4 points to
750       // the start of an instruction we need to advance the buffer by an extra
751       // 2 bytes on BE.
752       relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
753                     R_PPC64_TPREL16_LO, val);
754     } else if (locAsInt % 4 == 1) {
755       write32(loc - 1, NOP);
756     } else {
757       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
758     }
759     break;
760   }
761   default:
762     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
763   }
764 }
765 
766 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
767                            uint64_t val) const {
768   // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
769   // The local dynamic code sequence for a global `x` will look like:
770   // Instruction                    Relocation                Symbol
771   // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
772   // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
773   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
774   //                                R_PPC64_REL24               __tls_get_addr
775   // nop                            None                       None
776 
777   // Relaxing to local exec entails converting:
778   // addis r3, r2, x@got@tlsld@ha   into      nop
779   // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
780   // bl __tls_get_addr(x@tlsgd)     into      nop
781   // nop                            into      addi r3, r3, 4096
782 
783   switch (rel.type) {
784   case R_PPC64_GOT_TLSLD16_HA:
785     writeFromHalf16(loc, NOP);
786     break;
787   case R_PPC64_GOT_TLSLD16_LO:
788     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
789     break;
790   case R_PPC64_GOT_TLSLD_PCREL34:
791     // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
792     //            paddi r3, r13, 0x1000, 0
793     writePrefixedInstruction(loc, 0x06000000386d1000);
794     break;
795   case R_PPC64_TLSLD: {
796     // PC Relative Relaxation:
797     // Relax from bl __tls_get_addr@notoc(x@tlsld)
798     // to
799     //            nop
800     // TOC Relaxation:
801     // Relax from bl __tls_get_addr(x@tlsld)
802     //            nop
803     // to
804     //            nop
805     //            addi r3, r3, 4096
806     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
807     if (locAsInt % 4 == 0) {
808       write32(loc, NOP);
809       write32(loc + 4, 0x38631000); // addi r3, r3, 4096
810     } else if (locAsInt % 4 == 1) {
811       write32(loc - 1, NOP);
812     } else {
813       errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
814     }
815     break;
816   }
817   case R_PPC64_DTPREL16:
818   case R_PPC64_DTPREL16_HA:
819   case R_PPC64_DTPREL16_HI:
820   case R_PPC64_DTPREL16_DS:
821   case R_PPC64_DTPREL16_LO:
822   case R_PPC64_DTPREL16_LO_DS:
823   case R_PPC64_DTPREL34:
824     relocate(loc, rel, val);
825     break;
826   default:
827     llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
828   }
829 }
830 
831 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
832   switch (secondaryOp) {
833   case LBZX:
834     return LBZ;
835   case LHZX:
836     return LHZ;
837   case LWZX:
838     return LWZ;
839   case LDX:
840     return LD;
841   case STBX:
842     return STB;
843   case STHX:
844     return STH;
845   case STWX:
846     return STW;
847   case STDX:
848     return STD;
849   case ADD:
850     return ADDI;
851   default:
852     return 0;
853   }
854 }
855 
856 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
857                            uint64_t val) const {
858   // The initial exec code sequence for a global `x` will look like:
859   // Instruction                    Relocation                Symbol
860   // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
861   // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
862   // add r9, r9, x@tls              R_PPC64_TLS                 x
863 
864   // Relaxing to local exec entails converting:
865   // addis r9, r2, x@got@tprel@ha       into        nop
866   // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
867   // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
868 
869   // x@tls R_PPC64_TLS is a relocation which does not compute anything,
870   // it is replaced with r13 (thread pointer).
871 
872   // The add instruction in the initial exec sequence has multiple variations
873   // that need to be handled. If we are building an address it will use an add
874   // instruction, if we are accessing memory it will use any of the X-form
875   // indexed load or store instructions.
876 
877   unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
878   switch (rel.type) {
879   case R_PPC64_GOT_TPREL16_HA:
880     write32(loc - offset, NOP);
881     break;
882   case R_PPC64_GOT_TPREL16_LO_DS:
883   case R_PPC64_GOT_TPREL16_DS: {
884     uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
885     write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
886     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
887     break;
888   }
889   case R_PPC64_GOT_TPREL_PCREL34: {
890     const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
891     // paddi RT(from pld), r13, symbol@tprel, 0
892     writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
893     relocateNoSym(loc, R_PPC64_TPREL34, val);
894     break;
895   }
896   case R_PPC64_TLS: {
897     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
898     if (locAsInt % 4 == 0) {
899       uint32_t primaryOp = getPrimaryOpCode(read32(loc));
900       if (primaryOp != 31)
901         error("unrecognized instruction for IE to LE R_PPC64_TLS");
902       uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
903       uint32_t dFormOp = getPPCDFormOp(secondaryOp);
904       if (dFormOp == 0)
905         error("unrecognized instruction for IE to LE R_PPC64_TLS");
906       write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
907       relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
908     } else if (locAsInt % 4 == 1) {
909       // If the offset is not 4 byte aligned then we have a PCRel type reloc.
910       // This version of the relocation is offset by one byte from the
911       // instruction it references.
912       uint32_t tlsInstr = read32(loc - 1);
913       uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
914       if (primaryOp != 31)
915         errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
916       uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
917       // The add is a special case and should be turned into a nop. The paddi
918       // that comes before it will already have computed the address of the
919       // symbol.
920       if (secondaryOp == 266) {
921         // Check if the add uses the same result register as the input register.
922         uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
923         uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
924         if (ra == rt) {
925           write32(loc - 1, NOP);
926         } else {
927           // mr rt, ra
928           write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
929         }
930       } else {
931         uint32_t dFormOp = getPPCDFormOp(secondaryOp);
932         if (dFormOp == 0)
933           errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
934         write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
935       }
936     } else {
937       errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
938                   "offset from 4 byte aligned");
939     }
940     break;
941   }
942   default:
943     llvm_unreachable("unknown relocation for IE to LE");
944     break;
945   }
946 }
947 
948 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
949                           const uint8_t *loc) const {
950   switch (type) {
951   case R_PPC64_NONE:
952     return R_NONE;
953   case R_PPC64_ADDR16:
954   case R_PPC64_ADDR16_DS:
955   case R_PPC64_ADDR16_HA:
956   case R_PPC64_ADDR16_HI:
957   case R_PPC64_ADDR16_HIGH:
958   case R_PPC64_ADDR16_HIGHER:
959   case R_PPC64_ADDR16_HIGHERA:
960   case R_PPC64_ADDR16_HIGHEST:
961   case R_PPC64_ADDR16_HIGHESTA:
962   case R_PPC64_ADDR16_LO:
963   case R_PPC64_ADDR16_LO_DS:
964   case R_PPC64_ADDR32:
965   case R_PPC64_ADDR64:
966     return R_ABS;
967   case R_PPC64_GOT16:
968   case R_PPC64_GOT16_DS:
969   case R_PPC64_GOT16_HA:
970   case R_PPC64_GOT16_HI:
971   case R_PPC64_GOT16_LO:
972   case R_PPC64_GOT16_LO_DS:
973     return R_GOT_OFF;
974   case R_PPC64_TOC16:
975   case R_PPC64_TOC16_DS:
976   case R_PPC64_TOC16_HI:
977   case R_PPC64_TOC16_LO:
978     return R_GOTREL;
979   case R_PPC64_GOT_PCREL34:
980   case R_PPC64_GOT_TPREL_PCREL34:
981   case R_PPC64_PCREL_OPT:
982     return R_GOT_PC;
983   case R_PPC64_TOC16_HA:
984   case R_PPC64_TOC16_LO_DS:
985     return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
986   case R_PPC64_TOC:
987     return R_PPC64_TOCBASE;
988   case R_PPC64_REL14:
989   case R_PPC64_REL24:
990     return R_PPC64_CALL_PLT;
991   case R_PPC64_REL24_NOTOC:
992     return R_PLT_PC;
993   case R_PPC64_REL16_LO:
994   case R_PPC64_REL16_HA:
995   case R_PPC64_REL16_HI:
996   case R_PPC64_REL32:
997   case R_PPC64_REL64:
998   case R_PPC64_PCREL34:
999     return R_PC;
1000   case R_PPC64_GOT_TLSGD16:
1001   case R_PPC64_GOT_TLSGD16_HA:
1002   case R_PPC64_GOT_TLSGD16_HI:
1003   case R_PPC64_GOT_TLSGD16_LO:
1004     return R_TLSGD_GOT;
1005   case R_PPC64_GOT_TLSGD_PCREL34:
1006     return R_TLSGD_PC;
1007   case R_PPC64_GOT_TLSLD16:
1008   case R_PPC64_GOT_TLSLD16_HA:
1009   case R_PPC64_GOT_TLSLD16_HI:
1010   case R_PPC64_GOT_TLSLD16_LO:
1011     return R_TLSLD_GOT;
1012   case R_PPC64_GOT_TLSLD_PCREL34:
1013     return R_TLSLD_PC;
1014   case R_PPC64_GOT_TPREL16_HA:
1015   case R_PPC64_GOT_TPREL16_LO_DS:
1016   case R_PPC64_GOT_TPREL16_DS:
1017   case R_PPC64_GOT_TPREL16_HI:
1018     return R_GOT_OFF;
1019   case R_PPC64_GOT_DTPREL16_HA:
1020   case R_PPC64_GOT_DTPREL16_LO_DS:
1021   case R_PPC64_GOT_DTPREL16_DS:
1022   case R_PPC64_GOT_DTPREL16_HI:
1023     return R_TLSLD_GOT_OFF;
1024   case R_PPC64_TPREL16:
1025   case R_PPC64_TPREL16_HA:
1026   case R_PPC64_TPREL16_LO:
1027   case R_PPC64_TPREL16_HI:
1028   case R_PPC64_TPREL16_DS:
1029   case R_PPC64_TPREL16_LO_DS:
1030   case R_PPC64_TPREL16_HIGHER:
1031   case R_PPC64_TPREL16_HIGHERA:
1032   case R_PPC64_TPREL16_HIGHEST:
1033   case R_PPC64_TPREL16_HIGHESTA:
1034   case R_PPC64_TPREL34:
1035     return R_TPREL;
1036   case R_PPC64_DTPREL16:
1037   case R_PPC64_DTPREL16_DS:
1038   case R_PPC64_DTPREL16_HA:
1039   case R_PPC64_DTPREL16_HI:
1040   case R_PPC64_DTPREL16_HIGHER:
1041   case R_PPC64_DTPREL16_HIGHERA:
1042   case R_PPC64_DTPREL16_HIGHEST:
1043   case R_PPC64_DTPREL16_HIGHESTA:
1044   case R_PPC64_DTPREL16_LO:
1045   case R_PPC64_DTPREL16_LO_DS:
1046   case R_PPC64_DTPREL64:
1047   case R_PPC64_DTPREL34:
1048     return R_DTPREL;
1049   case R_PPC64_TLSGD:
1050     return R_TLSDESC_CALL;
1051   case R_PPC64_TLSLD:
1052     return R_TLSLD_HINT;
1053   case R_PPC64_TLS:
1054     return R_TLSIE_HINT;
1055   default:
1056     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1057           ") against symbol " + toString(s));
1058     return R_NONE;
1059   }
1060 }
1061 
1062 RelType PPC64::getDynRel(RelType type) const {
1063   if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1064     return R_PPC64_ADDR64;
1065   return R_PPC64_NONE;
1066 }
1067 
1068 void PPC64::writeGotHeader(uint8_t *buf) const {
1069   write64(buf, getPPC64TocBase());
1070 }
1071 
1072 void PPC64::writePltHeader(uint8_t *buf) const {
1073   // The generic resolver stub goes first.
1074   write32(buf +  0, 0x7c0802a6); // mflr r0
1075   write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1076   write32(buf +  8, 0x7d6802a6); // mflr r11
1077   write32(buf + 12, 0x7c0803a6); // mtlr r0
1078   write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1079   write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1080   write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1081   write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1082   write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1083   write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1084   write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1085   write32(buf + 44, 0x7d8903a6); // mtctr   r12
1086   write32(buf + 48, 0x4e800420); // bctr
1087 
1088   // The 'bcl' instruction will set the link register to the address of the
1089   // following instruction ('mflr r11'). Here we store the offset from that
1090   // instruction  to the first entry in the GotPlt section.
1091   int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1092   write64(buf + 52, gotPltOffset);
1093 }
1094 
1095 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1096                      uint64_t /*pltEntryAddr*/) const {
1097   int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
1098   // bl __glink_PLTresolve
1099   write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1100 }
1101 
1102 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1103                       uint64_t /*pltEntryAddr*/) const {
1104   writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1105 }
1106 
1107 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1108   // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1109   uint64_t tocBiasedVal = val - ppc64TocOffset;
1110   // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1111   uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1112 
1113   switch (type) {
1114   // TOC biased relocation.
1115   case R_PPC64_GOT16:
1116   case R_PPC64_GOT_TLSGD16:
1117   case R_PPC64_GOT_TLSLD16:
1118   case R_PPC64_TOC16:
1119     return {R_PPC64_ADDR16, tocBiasedVal};
1120   case R_PPC64_GOT16_DS:
1121   case R_PPC64_TOC16_DS:
1122   case R_PPC64_GOT_TPREL16_DS:
1123   case R_PPC64_GOT_DTPREL16_DS:
1124     return {R_PPC64_ADDR16_DS, tocBiasedVal};
1125   case R_PPC64_GOT16_HA:
1126   case R_PPC64_GOT_TLSGD16_HA:
1127   case R_PPC64_GOT_TLSLD16_HA:
1128   case R_PPC64_GOT_TPREL16_HA:
1129   case R_PPC64_GOT_DTPREL16_HA:
1130   case R_PPC64_TOC16_HA:
1131     return {R_PPC64_ADDR16_HA, tocBiasedVal};
1132   case R_PPC64_GOT16_HI:
1133   case R_PPC64_GOT_TLSGD16_HI:
1134   case R_PPC64_GOT_TLSLD16_HI:
1135   case R_PPC64_GOT_TPREL16_HI:
1136   case R_PPC64_GOT_DTPREL16_HI:
1137   case R_PPC64_TOC16_HI:
1138     return {R_PPC64_ADDR16_HI, tocBiasedVal};
1139   case R_PPC64_GOT16_LO:
1140   case R_PPC64_GOT_TLSGD16_LO:
1141   case R_PPC64_GOT_TLSLD16_LO:
1142   case R_PPC64_TOC16_LO:
1143     return {R_PPC64_ADDR16_LO, tocBiasedVal};
1144   case R_PPC64_GOT16_LO_DS:
1145   case R_PPC64_TOC16_LO_DS:
1146   case R_PPC64_GOT_TPREL16_LO_DS:
1147   case R_PPC64_GOT_DTPREL16_LO_DS:
1148     return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1149 
1150   // Dynamic Thread pointer biased relocation types.
1151   case R_PPC64_DTPREL16:
1152     return {R_PPC64_ADDR16, dtpBiasedVal};
1153   case R_PPC64_DTPREL16_DS:
1154     return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1155   case R_PPC64_DTPREL16_HA:
1156     return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1157   case R_PPC64_DTPREL16_HI:
1158     return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1159   case R_PPC64_DTPREL16_HIGHER:
1160     return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1161   case R_PPC64_DTPREL16_HIGHERA:
1162     return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1163   case R_PPC64_DTPREL16_HIGHEST:
1164     return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1165   case R_PPC64_DTPREL16_HIGHESTA:
1166     return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1167   case R_PPC64_DTPREL16_LO:
1168     return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1169   case R_PPC64_DTPREL16_LO_DS:
1170     return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1171   case R_PPC64_DTPREL64:
1172     return {R_PPC64_ADDR64, dtpBiasedVal};
1173 
1174   default:
1175     return {type, val};
1176   }
1177 }
1178 
1179 static bool isTocOptType(RelType type) {
1180   switch (type) {
1181   case R_PPC64_GOT16_HA:
1182   case R_PPC64_GOT16_LO_DS:
1183   case R_PPC64_TOC16_HA:
1184   case R_PPC64_TOC16_LO_DS:
1185   case R_PPC64_TOC16_LO:
1186     return true;
1187   default:
1188     return false;
1189   }
1190 }
1191 
1192 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1193   RelType type = rel.type;
1194   bool shouldTocOptimize =  isTocOptType(type);
1195   // For dynamic thread pointer relative, toc-relative, and got-indirect
1196   // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1197   std::tie(type, val) = toAddr16Rel(type, val);
1198 
1199   switch (type) {
1200   case R_PPC64_ADDR14: {
1201     checkAlignment(loc, val, 4, rel);
1202     // Preserve the AA/LK bits in the branch instruction
1203     uint8_t aalk = loc[3];
1204     write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1205     break;
1206   }
1207   case R_PPC64_ADDR16:
1208     checkIntUInt(loc, val, 16, rel);
1209     write16(loc, val);
1210     break;
1211   case R_PPC64_ADDR32:
1212     checkIntUInt(loc, val, 32, rel);
1213     write32(loc, val);
1214     break;
1215   case R_PPC64_ADDR16_DS:
1216   case R_PPC64_TPREL16_DS: {
1217     checkInt(loc, val, 16, rel);
1218     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1219     // DS-form instructions only use bits 30-31.
1220     uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1221     checkAlignment(loc, lo(val), mask + 1, rel);
1222     write16(loc, (read16(loc) & mask) | lo(val));
1223   } break;
1224   case R_PPC64_ADDR16_HA:
1225   case R_PPC64_REL16_HA:
1226   case R_PPC64_TPREL16_HA:
1227     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1228       writeFromHalf16(loc, NOP);
1229     else {
1230       checkInt(loc, val + 0x8000, 32, rel);
1231       write16(loc, ha(val));
1232     }
1233     break;
1234   case R_PPC64_ADDR16_HI:
1235   case R_PPC64_REL16_HI:
1236   case R_PPC64_TPREL16_HI:
1237     checkInt(loc, val, 32, rel);
1238     write16(loc, hi(val));
1239     break;
1240   case R_PPC64_ADDR16_HIGH:
1241     write16(loc, hi(val));
1242     break;
1243   case R_PPC64_ADDR16_HIGHER:
1244   case R_PPC64_TPREL16_HIGHER:
1245     write16(loc, higher(val));
1246     break;
1247   case R_PPC64_ADDR16_HIGHERA:
1248   case R_PPC64_TPREL16_HIGHERA:
1249     write16(loc, highera(val));
1250     break;
1251   case R_PPC64_ADDR16_HIGHEST:
1252   case R_PPC64_TPREL16_HIGHEST:
1253     write16(loc, highest(val));
1254     break;
1255   case R_PPC64_ADDR16_HIGHESTA:
1256   case R_PPC64_TPREL16_HIGHESTA:
1257     write16(loc, highesta(val));
1258     break;
1259   case R_PPC64_ADDR16_LO:
1260   case R_PPC64_REL16_LO:
1261   case R_PPC64_TPREL16_LO:
1262     // When the high-adjusted part of a toc relocation evaluates to 0, it is
1263     // changed into a nop. The lo part then needs to be updated to use the
1264     // toc-pointer register r2, as the base register.
1265     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1266       uint32_t insn = readFromHalf16(loc);
1267       if (isInstructionUpdateForm(insn))
1268         error(getErrorLocation(loc) +
1269               "can't toc-optimize an update instruction: 0x" +
1270               utohexstr(insn));
1271       writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1272     } else {
1273       write16(loc, lo(val));
1274     }
1275     break;
1276   case R_PPC64_ADDR16_LO_DS:
1277   case R_PPC64_TPREL16_LO_DS: {
1278     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1279     // DS-form instructions only use bits 30-31.
1280     uint32_t insn = readFromHalf16(loc);
1281     uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1282     checkAlignment(loc, lo(val), mask + 1, rel);
1283     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1284       // When the high-adjusted part of a toc relocation evaluates to 0, it is
1285       // changed into a nop. The lo part then needs to be updated to use the toc
1286       // pointer register r2, as the base register.
1287       if (isInstructionUpdateForm(insn))
1288         error(getErrorLocation(loc) +
1289               "Can't toc-optimize an update instruction: 0x" +
1290               Twine::utohexstr(insn));
1291       insn &= 0xffe00000 | mask;
1292       writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1293     } else {
1294       write16(loc, (read16(loc) & mask) | lo(val));
1295     }
1296   } break;
1297   case R_PPC64_TPREL16:
1298     checkInt(loc, val, 16, rel);
1299     write16(loc, val);
1300     break;
1301   case R_PPC64_REL32:
1302     checkInt(loc, val, 32, rel);
1303     write32(loc, val);
1304     break;
1305   case R_PPC64_ADDR64:
1306   case R_PPC64_REL64:
1307   case R_PPC64_TOC:
1308     write64(loc, val);
1309     break;
1310   case R_PPC64_REL14: {
1311     uint32_t mask = 0x0000FFFC;
1312     checkInt(loc, val, 16, rel);
1313     checkAlignment(loc, val, 4, rel);
1314     write32(loc, (read32(loc) & ~mask) | (val & mask));
1315     break;
1316   }
1317   case R_PPC64_REL24:
1318   case R_PPC64_REL24_NOTOC: {
1319     uint32_t mask = 0x03FFFFFC;
1320     checkInt(loc, val, 26, rel);
1321     checkAlignment(loc, val, 4, rel);
1322     write32(loc, (read32(loc) & ~mask) | (val & mask));
1323     break;
1324   }
1325   case R_PPC64_DTPREL64:
1326     write64(loc, val - dynamicThreadPointerOffset);
1327     break;
1328   case R_PPC64_DTPREL34:
1329     // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1330     // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1331     // need to subtract that value then fallthrough to the general case.
1332     val -= dynamicThreadPointerOffset;
1333     LLVM_FALLTHROUGH;
1334   case R_PPC64_PCREL34:
1335   case R_PPC64_GOT_PCREL34:
1336   case R_PPC64_GOT_TLSGD_PCREL34:
1337   case R_PPC64_GOT_TLSLD_PCREL34:
1338   case R_PPC64_GOT_TPREL_PCREL34:
1339   case R_PPC64_TPREL34: {
1340     const uint64_t si0Mask = 0x00000003ffff0000;
1341     const uint64_t si1Mask = 0x000000000000ffff;
1342     const uint64_t fullMask = 0x0003ffff0000ffff;
1343     checkInt(loc, val, 34, rel);
1344 
1345     uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1346     writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1347                              (val & si1Mask));
1348     break;
1349   }
1350   // If we encounter a PCREL_OPT relocation that we won't optimize.
1351   case R_PPC64_PCREL_OPT:
1352     break;
1353   default:
1354     llvm_unreachable("unknown relocation");
1355   }
1356 }
1357 
1358 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1359                        uint64_t branchAddr, const Symbol &s, int64_t a) const {
1360   if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1361       type != R_PPC64_REL24_NOTOC)
1362     return false;
1363 
1364   // If a function is in the Plt it needs to be called with a call-stub.
1365   if (s.isInPlt())
1366     return true;
1367 
1368   // This check looks at the st_other bits of the callee with relocation
1369   // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1370   // clobbers the TOC and we need an R2 save stub.
1371   if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1372     return true;
1373 
1374   if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1375     return true;
1376 
1377   // If a symbol is a weak undefined and we are compiling an executable
1378   // it doesn't need a range-extending thunk since it can't be called.
1379   if (s.isUndefWeak() && !config->shared)
1380     return false;
1381 
1382   // If the offset exceeds the range of the branch type then it will need
1383   // a range-extending thunk.
1384   // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1385   return !inBranchRange(type, branchAddr,
1386                         s.getVA(a) +
1387                             getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1388 }
1389 
1390 uint32_t PPC64::getThunkSectionSpacing() const {
1391   // See comment in Arch/ARM.cpp for a more detailed explanation of
1392   // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1393   // R_PPC64_REL24, which is used by unconditional branch instructions.
1394   // 0x2000000 = (1 << 24-1) * 4
1395   return 0x2000000;
1396 }
1397 
1398 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1399   int64_t offset = dst - src;
1400   if (type == R_PPC64_REL14)
1401     return isInt<16>(offset);
1402   if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1403     return isInt<26>(offset);
1404   llvm_unreachable("unsupported relocation type used in branch");
1405 }
1406 
1407 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1408   if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1409     return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1410   if (expr == R_RELAX_TLS_LD_TO_LE)
1411     return R_RELAX_TLS_LD_TO_LE_ABS;
1412   return expr;
1413 }
1414 
1415 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1416                                const uint8_t *loc) const {
1417   if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1418       config->pcRelOptimize) {
1419     // It only makes sense to optimize pld since paddi means that the address
1420     // of the object in the GOT is required rather than the object itself.
1421     if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1422       return R_PPC64_RELAX_GOT_PC;
1423   }
1424   return R_GOT_PC;
1425 }
1426 
1427 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1428 // The general dynamic code sequence for a global `x` uses 4 instructions.
1429 // Instruction                    Relocation                Symbol
1430 // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1431 // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1432 // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1433 //                                R_PPC64_REL24               __tls_get_addr
1434 // nop                            None                       None
1435 //
1436 // Relaxing to initial-exec entails:
1437 // 1) Convert the addis/addi pair that builds the address of the tls_index
1438 //    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1439 // 2) Convert the call to __tls_get_addr to a nop.
1440 // 3) Convert the nop following the call to an add of the loaded offset to the
1441 //    thread pointer.
1442 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1443 // used as the relaxation hint for both steps 2 and 3.
1444 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1445                            uint64_t val) const {
1446   switch (rel.type) {
1447   case R_PPC64_GOT_TLSGD16_HA:
1448     // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1449     //                      addis rT, r2, sym@got@tprel@ha.
1450     relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1451     return;
1452   case R_PPC64_GOT_TLSGD16:
1453   case R_PPC64_GOT_TLSGD16_LO: {
1454     // Relax from addi  r3, rA, sym@got@tlsgd@l to
1455     //            ld r3, sym@got@tprel@l(rA)
1456     uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1457     writeFromHalf16(loc, 0xe8600000 | ra);
1458     relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1459     return;
1460   }
1461   case R_PPC64_GOT_TLSGD_PCREL34: {
1462     // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1463     //            pld r3, sym@got@tprel@pcrel
1464     writePrefixedInstruction(loc, 0x04100000e4600000);
1465     relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1466     return;
1467   }
1468   case R_PPC64_TLSGD: {
1469     // PC Relative Relaxation:
1470     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1471     //            nop
1472     // TOC Relaxation:
1473     // Relax from bl __tls_get_addr(x@tlsgd)
1474     //            nop
1475     // to
1476     //            nop
1477     //            add r3, r3, r13
1478     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1479     if (locAsInt % 4 == 0) {
1480       write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1481       write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1482     } else if (locAsInt % 4 == 1) {
1483       // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1484       write32(loc - 1, 0x7c636a14);
1485     } else {
1486       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1487     }
1488     return;
1489   }
1490   default:
1491     llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1492   }
1493 }
1494 
1495 // The prologue for a split-stack function is expected to look roughly
1496 // like this:
1497 //    .Lglobal_entry_point:
1498 //      # TOC pointer initialization.
1499 //      ...
1500 //    .Llocal_entry_point:
1501 //      # load the __private_ss member of the threads tcbhead.
1502 //      ld r0,-0x7000-64(r13)
1503 //      # subtract the functions stack size from the stack pointer.
1504 //      addis r12, r1, ha(-stack-frame size)
1505 //      addi  r12, r12, l(-stack-frame size)
1506 //      # compare needed to actual and branch to allocate_more_stack if more
1507 //      # space is needed, otherwise fallthrough to 'normal' function body.
1508 //      cmpld cr7,r12,r0
1509 //      blt- cr7, .Lallocate_more_stack
1510 //
1511 // -) The allocate_more_stack block might be placed after the split-stack
1512 //    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1513 //    instead.
1514 // -) If either the addis or addi is not needed due to the stack size being
1515 //    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1516 //    but there will always be 2 instructions the linker can overwrite for the
1517 //    adjusted stack size.
1518 //
1519 // The linkers job here is to increase the stack size used in the addis/addi
1520 // pair by split-stack-size-adjust.
1521 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1522 // addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
1523 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1524                                              uint8_t stOther) const {
1525   // If the caller has a global entry point adjust the buffer past it. The start
1526   // of the split-stack prologue will be at the local entry point.
1527   loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1528 
1529   // At the very least we expect to see a load of some split-stack data from the
1530   // tcb, and 2 instructions that calculate the ending stack address this
1531   // function will require. If there is not enough room for at least 3
1532   // instructions it can't be a split-stack prologue.
1533   if (loc + 12 >= end)
1534     return false;
1535 
1536   // First instruction must be `ld r0, -0x7000-64(r13)`
1537   if (read32(loc) != 0xe80d8fc0)
1538     return false;
1539 
1540   int16_t hiImm = 0;
1541   int16_t loImm = 0;
1542   // First instruction can be either an addis if the frame size is larger then
1543   // 32K, or an addi if the size is less then 32K.
1544   int32_t firstInstr = read32(loc + 4);
1545   if (getPrimaryOpCode(firstInstr) == 15) {
1546     hiImm = firstInstr & 0xFFFF;
1547   } else if (getPrimaryOpCode(firstInstr) == 14) {
1548     loImm = firstInstr & 0xFFFF;
1549   } else {
1550     return false;
1551   }
1552 
1553   // Second instruction is either an addi or a nop. If the first instruction was
1554   // an addi then LoImm is set and the second instruction must be a nop.
1555   uint32_t secondInstr = read32(loc + 8);
1556   if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1557     loImm = secondInstr & 0xFFFF;
1558   } else if (secondInstr != NOP) {
1559     return false;
1560   }
1561 
1562   // The register operands of the first instruction should be the stack-pointer
1563   // (r1) as the input (RA) and r12 as the output (RT). If the second
1564   // instruction is not a nop, then it should use r12 as both input and output.
1565   auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1566                              uint8_t expectedRA) {
1567     return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1568            ((instr & 0x1F0000) >> 16 == expectedRA);
1569   };
1570   if (!checkRegOperands(firstInstr, 12, 1))
1571     return false;
1572   if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1573     return false;
1574 
1575   int32_t stackFrameSize = (hiImm * 65536) + loImm;
1576   // Check that the adjusted size doesn't overflow what we can represent with 2
1577   // instructions.
1578   if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1579     error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1580     return false;
1581   }
1582 
1583   int32_t adjustedStackFrameSize =
1584       stackFrameSize - config->splitStackAdjustSize;
1585 
1586   loImm = adjustedStackFrameSize & 0xFFFF;
1587   hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1588   if (hiImm) {
1589     write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1590     // If the low immediate is zero the second instruction will be a nop.
1591     secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1592     write32(loc + 8, secondInstr);
1593   } else {
1594     // addi r12, r1, imm
1595     write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1596     write32(loc + 8, NOP);
1597   }
1598 
1599   return true;
1600 }
1601 
1602 TargetInfo *elf::getPPC64TargetInfo() {
1603   static PPC64 target;
1604   return &target;
1605 }
1606