1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IntrinsicsNVPTX.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> // std::sort 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 // Helper for coercing an aggregate argument or return value into an integer 40 // array of the same size (including padding) and alignment. This alternate 41 // coercion happens only for the RenderScript ABI and can be removed after 42 // runtimes that rely on it are no longer supported. 43 // 44 // RenderScript assumes that the size of the argument / return value in the IR 45 // is the same as the size of the corresponding qualified type. This helper 46 // coerces the aggregate type into an array of the same size (including 47 // padding). This coercion is used in lieu of expansion of struct members or 48 // other canonical coercions that return a coerced-type of larger size. 49 // 50 // Ty - The argument / return value type 51 // Context - The associated ASTContext 52 // LLVMContext - The associated LLVMContext 53 static ABIArgInfo coerceToIntArray(QualType Ty, 54 ASTContext &Context, 55 llvm::LLVMContext &LLVMContext) { 56 // Alignment and Size are measured in bits. 57 const uint64_t Size = Context.getTypeSize(Ty); 58 const uint64_t Alignment = Context.getTypeAlign(Ty); 59 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 60 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 61 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 62 } 63 64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 65 llvm::Value *Array, 66 llvm::Value *Value, 67 unsigned FirstIndex, 68 unsigned LastIndex) { 69 // Alternatively, we could emit this as a loop in the source. 70 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 71 llvm::Value *Cell = 72 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 73 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 74 } 75 } 76 77 static bool isAggregateTypeForABI(QualType T) { 78 return !CodeGenFunction::hasScalarEvaluationKind(T) || 79 T->isMemberFunctionPointerType(); 80 } 81 82 ABIArgInfo 83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 84 llvm::Type *Padding) const { 85 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 86 ByRef, Realign, Padding); 87 } 88 89 ABIArgInfo 90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 91 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 92 /*ByRef*/ false, Realign); 93 } 94 95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 96 QualType Ty) const { 97 return Address::invalid(); 98 } 99 100 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 101 if (Ty->isPromotableIntegerType()) 102 return true; 103 104 if (const auto *EIT = Ty->getAs<ExtIntType>()) 105 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 106 return true; 107 108 return false; 109 } 110 111 ABIInfo::~ABIInfo() {} 112 113 /// Does the given lowering require more than the given number of 114 /// registers when expanded? 115 /// 116 /// This is intended to be the basis of a reasonable basic implementation 117 /// of should{Pass,Return}IndirectlyForSwift. 118 /// 119 /// For most targets, a limit of four total registers is reasonable; this 120 /// limits the amount of code required in order to move around the value 121 /// in case it wasn't produced immediately prior to the call by the caller 122 /// (or wasn't produced in exactly the right registers) or isn't used 123 /// immediately within the callee. But some targets may need to further 124 /// limit the register count due to an inability to support that many 125 /// return registers. 126 static bool occupiesMoreThan(CodeGenTypes &cgt, 127 ArrayRef<llvm::Type*> scalarTypes, 128 unsigned maxAllRegisters) { 129 unsigned intCount = 0, fpCount = 0; 130 for (llvm::Type *type : scalarTypes) { 131 if (type->isPointerTy()) { 132 intCount++; 133 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 134 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 135 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 136 } else { 137 assert(type->isVectorTy() || type->isFloatingPointTy()); 138 fpCount++; 139 } 140 } 141 142 return (intCount + fpCount > maxAllRegisters); 143 } 144 145 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 146 llvm::Type *eltTy, 147 unsigned numElts) const { 148 // The default implementation of this assumes that the target guarantees 149 // 128-bit SIMD support but nothing more. 150 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 151 } 152 153 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 154 CGCXXABI &CXXABI) { 155 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 156 if (!RD) { 157 if (!RT->getDecl()->canPassInRegisters()) 158 return CGCXXABI::RAA_Indirect; 159 return CGCXXABI::RAA_Default; 160 } 161 return CXXABI.getRecordArgABI(RD); 162 } 163 164 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 165 CGCXXABI &CXXABI) { 166 const RecordType *RT = T->getAs<RecordType>(); 167 if (!RT) 168 return CGCXXABI::RAA_Default; 169 return getRecordArgABI(RT, CXXABI); 170 } 171 172 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 173 const ABIInfo &Info) { 174 QualType Ty = FI.getReturnType(); 175 176 if (const auto *RT = Ty->getAs<RecordType>()) 177 if (!isa<CXXRecordDecl>(RT->getDecl()) && 178 !RT->getDecl()->canPassInRegisters()) { 179 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 180 return true; 181 } 182 183 return CXXABI.classifyReturnType(FI); 184 } 185 186 /// Pass transparent unions as if they were the type of the first element. Sema 187 /// should ensure that all elements of the union have the same "machine type". 188 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 189 if (const RecordType *UT = Ty->getAsUnionType()) { 190 const RecordDecl *UD = UT->getDecl(); 191 if (UD->hasAttr<TransparentUnionAttr>()) { 192 assert(!UD->field_empty() && "sema created an empty transparent union"); 193 return UD->field_begin()->getType(); 194 } 195 } 196 return Ty; 197 } 198 199 CGCXXABI &ABIInfo::getCXXABI() const { 200 return CGT.getCXXABI(); 201 } 202 203 ASTContext &ABIInfo::getContext() const { 204 return CGT.getContext(); 205 } 206 207 llvm::LLVMContext &ABIInfo::getVMContext() const { 208 return CGT.getLLVMContext(); 209 } 210 211 const llvm::DataLayout &ABIInfo::getDataLayout() const { 212 return CGT.getDataLayout(); 213 } 214 215 const TargetInfo &ABIInfo::getTarget() const { 216 return CGT.getTarget(); 217 } 218 219 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 220 return CGT.getCodeGenOpts(); 221 } 222 223 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 224 225 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 226 return false; 227 } 228 229 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 230 uint64_t Members) const { 231 return false; 232 } 233 234 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 235 raw_ostream &OS = llvm::errs(); 236 OS << "(ABIArgInfo Kind="; 237 switch (TheKind) { 238 case Direct: 239 OS << "Direct Type="; 240 if (llvm::Type *Ty = getCoerceToType()) 241 Ty->print(OS); 242 else 243 OS << "null"; 244 break; 245 case Extend: 246 OS << "Extend"; 247 break; 248 case Ignore: 249 OS << "Ignore"; 250 break; 251 case InAlloca: 252 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 253 break; 254 case Indirect: 255 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 256 << " ByVal=" << getIndirectByVal() 257 << " Realign=" << getIndirectRealign(); 258 break; 259 case Expand: 260 OS << "Expand"; 261 break; 262 case CoerceAndExpand: 263 OS << "CoerceAndExpand Type="; 264 getCoerceAndExpandType()->print(OS); 265 break; 266 } 267 OS << ")\n"; 268 } 269 270 // Dynamically round a pointer up to a multiple of the given alignment. 271 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 272 llvm::Value *Ptr, 273 CharUnits Align) { 274 llvm::Value *PtrAsInt = Ptr; 275 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 276 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 277 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 278 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 279 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 280 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 281 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 282 Ptr->getType(), 283 Ptr->getName() + ".aligned"); 284 return PtrAsInt; 285 } 286 287 /// Emit va_arg for a platform using the common void* representation, 288 /// where arguments are simply emitted in an array of slots on the stack. 289 /// 290 /// This version implements the core direct-value passing rules. 291 /// 292 /// \param SlotSize - The size and alignment of a stack slot. 293 /// Each argument will be allocated to a multiple of this number of 294 /// slots, and all the slots will be aligned to this value. 295 /// \param AllowHigherAlign - The slot alignment is not a cap; 296 /// an argument type with an alignment greater than the slot size 297 /// will be emitted on a higher-alignment address, potentially 298 /// leaving one or more empty slots behind as padding. If this 299 /// is false, the returned address might be less-aligned than 300 /// DirectAlign. 301 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 302 Address VAListAddr, 303 llvm::Type *DirectTy, 304 CharUnits DirectSize, 305 CharUnits DirectAlign, 306 CharUnits SlotSize, 307 bool AllowHigherAlign) { 308 // Cast the element type to i8* if necessary. Some platforms define 309 // va_list as a struct containing an i8* instead of just an i8*. 310 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 311 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 312 313 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 314 315 // If the CC aligns values higher than the slot size, do so if needed. 316 Address Addr = Address::invalid(); 317 if (AllowHigherAlign && DirectAlign > SlotSize) { 318 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 319 DirectAlign); 320 } else { 321 Addr = Address(Ptr, SlotSize); 322 } 323 324 // Advance the pointer past the argument, then store that back. 325 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 326 Address NextPtr = 327 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 328 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 329 330 // If the argument is smaller than a slot, and this is a big-endian 331 // target, the argument will be right-adjusted in its slot. 332 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 333 !DirectTy->isStructTy()) { 334 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 335 } 336 337 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 338 return Addr; 339 } 340 341 /// Emit va_arg for a platform using the common void* representation, 342 /// where arguments are simply emitted in an array of slots on the stack. 343 /// 344 /// \param IsIndirect - Values of this type are passed indirectly. 345 /// \param ValueInfo - The size and alignment of this type, generally 346 /// computed with getContext().getTypeInfoInChars(ValueTy). 347 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 348 /// Each argument will be allocated to a multiple of this number of 349 /// slots, and all the slots will be aligned to this value. 350 /// \param AllowHigherAlign - The slot alignment is not a cap; 351 /// an argument type with an alignment greater than the slot size 352 /// will be emitted on a higher-alignment address, potentially 353 /// leaving one or more empty slots behind as padding. 354 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 355 QualType ValueTy, bool IsIndirect, 356 std::pair<CharUnits, CharUnits> ValueInfo, 357 CharUnits SlotSizeAndAlign, 358 bool AllowHigherAlign) { 359 // The size and alignment of the value that was passed directly. 360 CharUnits DirectSize, DirectAlign; 361 if (IsIndirect) { 362 DirectSize = CGF.getPointerSize(); 363 DirectAlign = CGF.getPointerAlign(); 364 } else { 365 DirectSize = ValueInfo.first; 366 DirectAlign = ValueInfo.second; 367 } 368 369 // Cast the address we've calculated to the right type. 370 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 371 if (IsIndirect) 372 DirectTy = DirectTy->getPointerTo(0); 373 374 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 375 DirectSize, DirectAlign, 376 SlotSizeAndAlign, 377 AllowHigherAlign); 378 379 if (IsIndirect) { 380 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 381 } 382 383 return Addr; 384 385 } 386 387 static Address emitMergePHI(CodeGenFunction &CGF, 388 Address Addr1, llvm::BasicBlock *Block1, 389 Address Addr2, llvm::BasicBlock *Block2, 390 const llvm::Twine &Name = "") { 391 assert(Addr1.getType() == Addr2.getType()); 392 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 393 PHI->addIncoming(Addr1.getPointer(), Block1); 394 PHI->addIncoming(Addr2.getPointer(), Block2); 395 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 396 return Address(PHI, Align); 397 } 398 399 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 400 401 // If someone can figure out a general rule for this, that would be great. 402 // It's probably just doomed to be platform-dependent, though. 403 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 404 // Verified for: 405 // x86-64 FreeBSD, Linux, Darwin 406 // x86-32 FreeBSD, Linux, Darwin 407 // PowerPC Linux, Darwin 408 // ARM Darwin (*not* EABI) 409 // AArch64 Linux 410 return 32; 411 } 412 413 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 414 const FunctionNoProtoType *fnType) const { 415 // The following conventions are known to require this to be false: 416 // x86_stdcall 417 // MIPS 418 // For everything else, we just prefer false unless we opt out. 419 return false; 420 } 421 422 void 423 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 424 llvm::SmallString<24> &Opt) const { 425 // This assumes the user is passing a library name like "rt" instead of a 426 // filename like "librt.a/so", and that they don't care whether it's static or 427 // dynamic. 428 Opt = "-l"; 429 Opt += Lib; 430 } 431 432 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 433 // OpenCL kernels are called via an explicit runtime API with arguments 434 // set with clSetKernelArg(), not as normal sub-functions. 435 // Return SPIR_KERNEL by default as the kernel calling convention to 436 // ensure the fingerprint is fixed such way that each OpenCL argument 437 // gets one matching argument in the produced kernel function argument 438 // list to enable feasible implementation of clSetKernelArg() with 439 // aggregates etc. In case we would use the default C calling conv here, 440 // clSetKernelArg() might break depending on the target-specific 441 // conventions; different targets might split structs passed as values 442 // to multiple function arguments etc. 443 return llvm::CallingConv::SPIR_KERNEL; 444 } 445 446 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 447 llvm::PointerType *T, QualType QT) const { 448 return llvm::ConstantPointerNull::get(T); 449 } 450 451 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 452 const VarDecl *D) const { 453 assert(!CGM.getLangOpts().OpenCL && 454 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 455 "Address space agnostic languages only"); 456 return D ? D->getType().getAddressSpace() : LangAS::Default; 457 } 458 459 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 460 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 461 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 if (auto *C = dyn_cast<llvm::Constant>(Src)) 465 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 466 // Try to preserve the source's name to make IR more readable. 467 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 468 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 469 } 470 471 llvm::Constant * 472 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 473 LangAS SrcAddr, LangAS DestAddr, 474 llvm::Type *DestTy) const { 475 // Since target may map different address spaces in AST to the same address 476 // space, an address space conversion may end up as a bitcast. 477 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 478 } 479 480 llvm::SyncScope::ID 481 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 482 SyncScope Scope, 483 llvm::AtomicOrdering Ordering, 484 llvm::LLVMContext &Ctx) const { 485 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 486 } 487 488 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 489 490 /// isEmptyField - Return true iff a the field is "empty", that is it 491 /// is an unnamed bit-field or an (array of) empty record(s). 492 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 493 bool AllowArrays) { 494 if (FD->isUnnamedBitfield()) 495 return true; 496 497 QualType FT = FD->getType(); 498 499 // Constant arrays of empty records count as empty, strip them off. 500 // Constant arrays of zero length always count as empty. 501 if (AllowArrays) 502 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 503 if (AT->getSize() == 0) 504 return true; 505 FT = AT->getElementType(); 506 } 507 508 const RecordType *RT = FT->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 512 // C++ record fields are never empty, at least in the Itanium ABI. 513 // 514 // FIXME: We should use a predicate for whether this behavior is true in the 515 // current ABI. 516 if (isa<CXXRecordDecl>(RT->getDecl())) 517 return false; 518 519 return isEmptyRecord(Context, FT, AllowArrays); 520 } 521 522 /// isEmptyRecord - Return true iff a structure contains only empty 523 /// fields. Note that a structure with a flexible array member is not 524 /// considered empty. 525 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 526 const RecordType *RT = T->getAs<RecordType>(); 527 if (!RT) 528 return false; 529 const RecordDecl *RD = RT->getDecl(); 530 if (RD->hasFlexibleArrayMember()) 531 return false; 532 533 // If this is a C++ record, check the bases first. 534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 535 for (const auto &I : CXXRD->bases()) 536 if (!isEmptyRecord(Context, I.getType(), true)) 537 return false; 538 539 for (const auto *I : RD->fields()) 540 if (!isEmptyField(Context, I, AllowArrays)) 541 return false; 542 return true; 543 } 544 545 /// isSingleElementStruct - Determine if a structure is a "single 546 /// element struct", i.e. it has exactly one non-empty field or 547 /// exactly one field which is itself a single element 548 /// struct. Structures with flexible array members are never 549 /// considered single element structs. 550 /// 551 /// \return The field declaration for the single non-empty field, if 552 /// it exists. 553 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 554 const RecordType *RT = T->getAs<RecordType>(); 555 if (!RT) 556 return nullptr; 557 558 const RecordDecl *RD = RT->getDecl(); 559 if (RD->hasFlexibleArrayMember()) 560 return nullptr; 561 562 const Type *Found = nullptr; 563 564 // If this is a C++ record, check the bases first. 565 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 566 for (const auto &I : CXXRD->bases()) { 567 // Ignore empty records. 568 if (isEmptyRecord(Context, I.getType(), true)) 569 continue; 570 571 // If we already found an element then this isn't a single-element struct. 572 if (Found) 573 return nullptr; 574 575 // If this is non-empty and not a single element struct, the composite 576 // cannot be a single element struct. 577 Found = isSingleElementStruct(I.getType(), Context); 578 if (!Found) 579 return nullptr; 580 } 581 } 582 583 // Check for single element. 584 for (const auto *FD : RD->fields()) { 585 QualType FT = FD->getType(); 586 587 // Ignore empty fields. 588 if (isEmptyField(Context, FD, true)) 589 continue; 590 591 // If we already found an element then this isn't a single-element 592 // struct. 593 if (Found) 594 return nullptr; 595 596 // Treat single element arrays as the element. 597 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 598 if (AT->getSize().getZExtValue() != 1) 599 break; 600 FT = AT->getElementType(); 601 } 602 603 if (!isAggregateTypeForABI(FT)) { 604 Found = FT.getTypePtr(); 605 } else { 606 Found = isSingleElementStruct(FT, Context); 607 if (!Found) 608 return nullptr; 609 } 610 } 611 612 // We don't consider a struct a single-element struct if it has 613 // padding beyond the element type. 614 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 615 return nullptr; 616 617 return Found; 618 } 619 620 namespace { 621 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 622 const ABIArgInfo &AI) { 623 // This default implementation defers to the llvm backend's va_arg 624 // instruction. It can handle only passing arguments directly 625 // (typically only handled in the backend for primitive types), or 626 // aggregates passed indirectly by pointer (NOTE: if the "byval" 627 // flag has ABI impact in the callee, this implementation cannot 628 // work.) 629 630 // Only a few cases are covered here at the moment -- those needed 631 // by the default abi. 632 llvm::Value *Val; 633 634 if (AI.isIndirect()) { 635 assert(!AI.getPaddingType() && 636 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 637 assert( 638 !AI.getIndirectRealign() && 639 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 640 641 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 642 CharUnits TyAlignForABI = TyInfo.second; 643 644 llvm::Type *BaseTy = 645 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 646 llvm::Value *Addr = 647 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 648 return Address(Addr, TyAlignForABI); 649 } else { 650 assert((AI.isDirect() || AI.isExtend()) && 651 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 652 653 assert(!AI.getInReg() && 654 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 655 assert(!AI.getPaddingType() && 656 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 657 assert(!AI.getDirectOffset() && 658 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 659 assert(!AI.getCoerceToType() && 660 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 661 662 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 663 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 664 CGF.Builder.CreateStore(Val, Temp); 665 return Temp; 666 } 667 } 668 669 /// DefaultABIInfo - The default implementation for ABI specific 670 /// details. This implementation provides information which results in 671 /// self-consistent and sensible LLVM IR generation, but does not 672 /// conform to any particular ABI. 673 class DefaultABIInfo : public ABIInfo { 674 public: 675 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 676 677 ABIArgInfo classifyReturnType(QualType RetTy) const; 678 ABIArgInfo classifyArgumentType(QualType RetTy) const; 679 680 void computeInfo(CGFunctionInfo &FI) const override { 681 if (!getCXXABI().classifyReturnType(FI)) 682 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 683 for (auto &I : FI.arguments()) 684 I.info = classifyArgumentType(I.type); 685 } 686 687 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 688 QualType Ty) const override { 689 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 690 } 691 }; 692 693 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 694 public: 695 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 697 }; 698 699 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 700 Ty = useFirstFieldIfTransparentUnion(Ty); 701 702 if (isAggregateTypeForABI(Ty)) { 703 // Records with non-trivial destructors/copy-constructors should not be 704 // passed by value. 705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 706 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 707 708 return getNaturalAlignIndirect(Ty); 709 } 710 711 // Treat an enum type as its underlying type. 712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 713 Ty = EnumTy->getDecl()->getIntegerType(); 714 715 ASTContext &Context = getContext(); 716 if (const auto *EIT = Ty->getAs<ExtIntType>()) 717 if (EIT->getNumBits() > 718 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 719 ? Context.Int128Ty 720 : Context.LongLongTy)) 721 return getNaturalAlignIndirect(Ty); 722 723 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 724 : ABIArgInfo::getDirect()); 725 } 726 727 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 728 if (RetTy->isVoidType()) 729 return ABIArgInfo::getIgnore(); 730 731 if (isAggregateTypeForABI(RetTy)) 732 return getNaturalAlignIndirect(RetTy); 733 734 // Treat an enum type as its underlying type. 735 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 736 RetTy = EnumTy->getDecl()->getIntegerType(); 737 738 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 739 if (EIT->getNumBits() > 740 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 741 ? getContext().Int128Ty 742 : getContext().LongLongTy)) 743 return getNaturalAlignIndirect(RetTy); 744 745 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 746 : ABIArgInfo::getDirect()); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // WebAssembly ABI Implementation 751 // 752 // This is a very simple ABI that relies a lot on DefaultABIInfo. 753 //===----------------------------------------------------------------------===// 754 755 class WebAssemblyABIInfo final : public SwiftABIInfo { 756 public: 757 enum ABIKind { 758 MVP = 0, 759 ExperimentalMV = 1, 760 }; 761 762 private: 763 DefaultABIInfo defaultInfo; 764 ABIKind Kind; 765 766 public: 767 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 768 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 769 770 private: 771 ABIArgInfo classifyReturnType(QualType RetTy) const; 772 ABIArgInfo classifyArgumentType(QualType Ty) const; 773 774 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 775 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 776 // overload them. 777 void computeInfo(CGFunctionInfo &FI) const override { 778 if (!getCXXABI().classifyReturnType(FI)) 779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 780 for (auto &Arg : FI.arguments()) 781 Arg.info = classifyArgumentType(Arg.type); 782 } 783 784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 785 QualType Ty) const override; 786 787 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 788 bool asReturnValue) const override { 789 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 790 } 791 792 bool isSwiftErrorInRegister() const override { 793 return false; 794 } 795 }; 796 797 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 798 public: 799 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 800 WebAssemblyABIInfo::ABIKind K) 801 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 802 803 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 804 CodeGen::CodeGenModule &CGM) const override { 805 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 806 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 807 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 808 llvm::Function *Fn = cast<llvm::Function>(GV); 809 llvm::AttrBuilder B; 810 B.addAttribute("wasm-import-module", Attr->getImportModule()); 811 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 812 } 813 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 814 llvm::Function *Fn = cast<llvm::Function>(GV); 815 llvm::AttrBuilder B; 816 B.addAttribute("wasm-import-name", Attr->getImportName()); 817 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 818 } 819 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-export-name", Attr->getExportName()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 } 826 827 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 828 llvm::Function *Fn = cast<llvm::Function>(GV); 829 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 830 Fn->addFnAttr("no-prototype"); 831 } 832 } 833 }; 834 835 /// Classify argument of given type \p Ty. 836 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 837 Ty = useFirstFieldIfTransparentUnion(Ty); 838 839 if (isAggregateTypeForABI(Ty)) { 840 // Records with non-trivial destructors/copy-constructors should not be 841 // passed by value. 842 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 843 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 844 // Ignore empty structs/unions. 845 if (isEmptyRecord(getContext(), Ty, true)) 846 return ABIArgInfo::getIgnore(); 847 // Lower single-element structs to just pass a regular value. TODO: We 848 // could do reasonable-size multiple-element structs too, using getExpand(), 849 // though watch out for things like bitfields. 850 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 851 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 852 // For the experimental multivalue ABI, fully expand all other aggregates 853 if (Kind == ABIKind::ExperimentalMV) { 854 const RecordType *RT = Ty->getAs<RecordType>(); 855 assert(RT); 856 bool HasBitField = false; 857 for (auto *Field : RT->getDecl()->fields()) { 858 if (Field->isBitField()) { 859 HasBitField = true; 860 break; 861 } 862 } 863 if (!HasBitField) 864 return ABIArgInfo::getExpand(); 865 } 866 } 867 868 // Otherwise just do the default thing. 869 return defaultInfo.classifyArgumentType(Ty); 870 } 871 872 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 873 if (isAggregateTypeForABI(RetTy)) { 874 // Records with non-trivial destructors/copy-constructors should not be 875 // returned by value. 876 if (!getRecordArgABI(RetTy, getCXXABI())) { 877 // Ignore empty structs/unions. 878 if (isEmptyRecord(getContext(), RetTy, true)) 879 return ABIArgInfo::getIgnore(); 880 // Lower single-element structs to just return a regular value. TODO: We 881 // could do reasonable-size multiple-element structs too, using 882 // ABIArgInfo::getDirect(). 883 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 884 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 885 // For the experimental multivalue ABI, return all other aggregates 886 if (Kind == ABIKind::ExperimentalMV) 887 return ABIArgInfo::getDirect(); 888 } 889 } 890 891 // Otherwise just do the default thing. 892 return defaultInfo.classifyReturnType(RetTy); 893 } 894 895 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 896 QualType Ty) const { 897 bool IsIndirect = isAggregateTypeForABI(Ty) && 898 !isEmptyRecord(getContext(), Ty, true) && 899 !isSingleElementStruct(Ty, getContext()); 900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 901 getContext().getTypeInfoInChars(Ty), 902 CharUnits::fromQuantity(4), 903 /*AllowHigherAlign=*/true); 904 } 905 906 //===----------------------------------------------------------------------===// 907 // le32/PNaCl bitcode ABI Implementation 908 // 909 // This is a simplified version of the x86_32 ABI. Arguments and return values 910 // are always passed on the stack. 911 //===----------------------------------------------------------------------===// 912 913 class PNaClABIInfo : public ABIInfo { 914 public: 915 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 916 917 ABIArgInfo classifyReturnType(QualType RetTy) const; 918 ABIArgInfo classifyArgumentType(QualType RetTy) const; 919 920 void computeInfo(CGFunctionInfo &FI) const override; 921 Address EmitVAArg(CodeGenFunction &CGF, 922 Address VAListAddr, QualType Ty) const override; 923 }; 924 925 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 926 public: 927 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 928 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 929 }; 930 931 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 932 if (!getCXXABI().classifyReturnType(FI)) 933 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 934 935 for (auto &I : FI.arguments()) 936 I.info = classifyArgumentType(I.type); 937 } 938 939 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const { 941 // The PNaCL ABI is a bit odd, in that varargs don't use normal 942 // function classification. Structs get passed directly for varargs 943 // functions, through a rewriting transform in 944 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 945 // this target to actually support a va_arg instructions with an 946 // aggregate type, unlike other targets. 947 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 948 } 949 950 /// Classify argument of given type \p Ty. 951 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 952 if (isAggregateTypeForABI(Ty)) { 953 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 954 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 955 return getNaturalAlignIndirect(Ty); 956 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 957 // Treat an enum type as its underlying type. 958 Ty = EnumTy->getDecl()->getIntegerType(); 959 } else if (Ty->isFloatingType()) { 960 // Floating-point types don't go inreg. 961 return ABIArgInfo::getDirect(); 962 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 963 // Treat extended integers as integers if <=64, otherwise pass indirectly. 964 if (EIT->getNumBits() > 64) 965 return getNaturalAlignIndirect(Ty); 966 return ABIArgInfo::getDirect(); 967 } 968 969 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 970 : ABIArgInfo::getDirect()); 971 } 972 973 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 974 if (RetTy->isVoidType()) 975 return ABIArgInfo::getIgnore(); 976 977 // In the PNaCl ABI we always return records/structures on the stack. 978 if (isAggregateTypeForABI(RetTy)) 979 return getNaturalAlignIndirect(RetTy); 980 981 // Treat extended integers as integers if <=64, otherwise pass indirectly. 982 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(RetTy); 985 return ABIArgInfo::getDirect(); 986 } 987 988 // Treat an enum type as its underlying type. 989 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 990 RetTy = EnumTy->getDecl()->getIntegerType(); 991 992 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 993 : ABIArgInfo::getDirect()); 994 } 995 996 /// IsX86_MMXType - Return true if this is an MMX type. 997 bool IsX86_MMXType(llvm::Type *IRType) { 998 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 999 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1000 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1001 IRType->getScalarSizeInBits() != 64; 1002 } 1003 1004 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1005 StringRef Constraint, 1006 llvm::Type* Ty) { 1007 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1008 .Cases("y", "&y", "^Ym", true) 1009 .Default(false); 1010 if (IsMMXCons && Ty->isVectorTy()) { 1011 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1012 64) { 1013 // Invalid MMX constraint 1014 return nullptr; 1015 } 1016 1017 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1018 } 1019 1020 // No operation needed 1021 return Ty; 1022 } 1023 1024 /// Returns true if this type can be passed in SSE registers with the 1025 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1026 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1027 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1028 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1029 if (BT->getKind() == BuiltinType::LongDouble) { 1030 if (&Context.getTargetInfo().getLongDoubleFormat() == 1031 &llvm::APFloat::x87DoubleExtended()) 1032 return false; 1033 } 1034 return true; 1035 } 1036 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1037 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1038 // registers specially. 1039 unsigned VecSize = Context.getTypeSize(VT); 1040 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 /// Returns true if this aggregate is small enough to be passed in SSE registers 1047 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1048 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1049 return NumMembers <= 4; 1050 } 1051 1052 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1053 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1054 auto AI = ABIArgInfo::getDirect(T); 1055 AI.setInReg(true); 1056 AI.setCanBeFlattened(false); 1057 return AI; 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // X86-32 ABI Implementation 1062 //===----------------------------------------------------------------------===// 1063 1064 /// Similar to llvm::CCState, but for Clang. 1065 struct CCState { 1066 CCState(CGFunctionInfo &FI) 1067 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1068 1069 llvm::SmallBitVector IsPreassigned; 1070 unsigned CC = CallingConv::CC_C; 1071 unsigned FreeRegs = 0; 1072 unsigned FreeSSERegs = 0; 1073 }; 1074 1075 enum { 1076 // Vectorcall only allows the first 6 parameters to be passed in registers. 1077 VectorcallMaxParamNumAsReg = 6 1078 }; 1079 1080 /// X86_32ABIInfo - The X86-32 ABI information. 1081 class X86_32ABIInfo : public SwiftABIInfo { 1082 enum Class { 1083 Integer, 1084 Float 1085 }; 1086 1087 static const unsigned MinABIStackAlignInBytes = 4; 1088 1089 bool IsDarwinVectorABI; 1090 bool IsRetSmallStructInRegABI; 1091 bool IsWin32StructABI; 1092 bool IsSoftFloatABI; 1093 bool IsMCUABI; 1094 unsigned DefaultNumRegisterParameters; 1095 1096 static bool isRegisterSize(unsigned Size) { 1097 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1098 } 1099 1100 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1101 // FIXME: Assumes vectorcall is in use. 1102 return isX86VectorTypeForVectorCall(getContext(), Ty); 1103 } 1104 1105 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1106 uint64_t NumMembers) const override { 1107 // FIXME: Assumes vectorcall is in use. 1108 return isX86VectorCallAggregateSmallEnough(NumMembers); 1109 } 1110 1111 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1112 1113 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1114 /// such that the argument will be passed in memory. 1115 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1116 1117 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1118 1119 /// Return the alignment to use for the given type on the stack. 1120 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1121 1122 Class classify(QualType Ty) const; 1123 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1124 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1125 1126 /// Updates the number of available free registers, returns 1127 /// true if any registers were allocated. 1128 bool updateFreeRegs(QualType Ty, CCState &State) const; 1129 1130 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1131 bool &NeedsPadding) const; 1132 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1133 1134 bool canExpandIndirectArgument(QualType Ty) const; 1135 1136 /// Rewrite the function info so that all memory arguments use 1137 /// inalloca. 1138 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1139 1140 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1141 CharUnits &StackOffset, ABIArgInfo &Info, 1142 QualType Type) const; 1143 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1144 1145 public: 1146 1147 void computeInfo(CGFunctionInfo &FI) const override; 1148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1149 QualType Ty) const override; 1150 1151 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1152 bool RetSmallStructInRegABI, bool Win32StructABI, 1153 unsigned NumRegisterParameters, bool SoftFloatABI) 1154 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1155 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1156 IsWin32StructABI(Win32StructABI), 1157 IsSoftFloatABI(SoftFloatABI), 1158 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1159 DefaultNumRegisterParameters(NumRegisterParameters) {} 1160 1161 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1162 bool asReturnValue) const override { 1163 // LLVM's x86-32 lowering currently only assigns up to three 1164 // integer registers and three fp registers. Oddly, it'll use up to 1165 // four vector registers for vectors, but those can overlap with the 1166 // scalar registers. 1167 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1168 } 1169 1170 bool isSwiftErrorInRegister() const override { 1171 // x86-32 lowering does not support passing swifterror in a register. 1172 return false; 1173 } 1174 }; 1175 1176 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1177 public: 1178 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1179 bool RetSmallStructInRegABI, bool Win32StructABI, 1180 unsigned NumRegisterParameters, bool SoftFloatABI) 1181 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1182 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1183 NumRegisterParameters, SoftFloatABI)) {} 1184 1185 static bool isStructReturnInRegABI( 1186 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1187 1188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1189 CodeGen::CodeGenModule &CGM) const override; 1190 1191 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1192 // Darwin uses different dwarf register numbers for EH. 1193 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1194 return 4; 1195 } 1196 1197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1198 llvm::Value *Address) const override; 1199 1200 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1201 StringRef Constraint, 1202 llvm::Type* Ty) const override { 1203 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1204 } 1205 1206 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1207 std::string &Constraints, 1208 std::vector<llvm::Type *> &ResultRegTypes, 1209 std::vector<llvm::Type *> &ResultTruncRegTypes, 1210 std::vector<LValue> &ResultRegDests, 1211 std::string &AsmString, 1212 unsigned NumOutputs) const override; 1213 1214 llvm::Constant * 1215 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1216 unsigned Sig = (0xeb << 0) | // jmp rel8 1217 (0x06 << 8) | // .+0x08 1218 ('v' << 16) | 1219 ('2' << 24); 1220 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1221 } 1222 1223 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1224 return "movl\t%ebp, %ebp" 1225 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1226 } 1227 }; 1228 1229 } 1230 1231 /// Rewrite input constraint references after adding some output constraints. 1232 /// In the case where there is one output and one input and we add one output, 1233 /// we need to replace all operand references greater than or equal to 1: 1234 /// mov $0, $1 1235 /// mov eax, $1 1236 /// The result will be: 1237 /// mov $0, $2 1238 /// mov eax, $2 1239 static void rewriteInputConstraintReferences(unsigned FirstIn, 1240 unsigned NumNewOuts, 1241 std::string &AsmString) { 1242 std::string Buf; 1243 llvm::raw_string_ostream OS(Buf); 1244 size_t Pos = 0; 1245 while (Pos < AsmString.size()) { 1246 size_t DollarStart = AsmString.find('$', Pos); 1247 if (DollarStart == std::string::npos) 1248 DollarStart = AsmString.size(); 1249 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1250 if (DollarEnd == std::string::npos) 1251 DollarEnd = AsmString.size(); 1252 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1253 Pos = DollarEnd; 1254 size_t NumDollars = DollarEnd - DollarStart; 1255 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1256 // We have an operand reference. 1257 size_t DigitStart = Pos; 1258 if (AsmString[DigitStart] == '{') { 1259 OS << '{'; 1260 ++DigitStart; 1261 } 1262 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1263 if (DigitEnd == std::string::npos) 1264 DigitEnd = AsmString.size(); 1265 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1266 unsigned OperandIndex; 1267 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1268 if (OperandIndex >= FirstIn) 1269 OperandIndex += NumNewOuts; 1270 OS << OperandIndex; 1271 } else { 1272 OS << OperandStr; 1273 } 1274 Pos = DigitEnd; 1275 } 1276 } 1277 AsmString = std::move(OS.str()); 1278 } 1279 1280 /// Add output constraints for EAX:EDX because they are return registers. 1281 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1282 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1283 std::vector<llvm::Type *> &ResultRegTypes, 1284 std::vector<llvm::Type *> &ResultTruncRegTypes, 1285 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1286 unsigned NumOutputs) const { 1287 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1288 1289 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1290 // larger. 1291 if (!Constraints.empty()) 1292 Constraints += ','; 1293 if (RetWidth <= 32) { 1294 Constraints += "={eax}"; 1295 ResultRegTypes.push_back(CGF.Int32Ty); 1296 } else { 1297 // Use the 'A' constraint for EAX:EDX. 1298 Constraints += "=A"; 1299 ResultRegTypes.push_back(CGF.Int64Ty); 1300 } 1301 1302 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1303 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1304 ResultTruncRegTypes.push_back(CoerceTy); 1305 1306 // Coerce the integer by bitcasting the return slot pointer. 1307 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1308 CoerceTy->getPointerTo())); 1309 ResultRegDests.push_back(ReturnSlot); 1310 1311 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1312 } 1313 1314 /// shouldReturnTypeInRegister - Determine if the given type should be 1315 /// returned in a register (for the Darwin and MCU ABI). 1316 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1317 ASTContext &Context) const { 1318 uint64_t Size = Context.getTypeSize(Ty); 1319 1320 // For i386, type must be register sized. 1321 // For the MCU ABI, it only needs to be <= 8-byte 1322 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1323 return false; 1324 1325 if (Ty->isVectorType()) { 1326 // 64- and 128- bit vectors inside structures are not returned in 1327 // registers. 1328 if (Size == 64 || Size == 128) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 // If this is a builtin, pointer, enum, complex type, member pointer, or 1335 // member function pointer it is ok. 1336 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1337 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1338 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1339 return true; 1340 1341 // Arrays are treated like records. 1342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1343 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1344 1345 // Otherwise, it must be a record type. 1346 const RecordType *RT = Ty->getAs<RecordType>(); 1347 if (!RT) return false; 1348 1349 // FIXME: Traverse bases here too. 1350 1351 // Structure types are passed in register if all fields would be 1352 // passed in a register. 1353 for (const auto *FD : RT->getDecl()->fields()) { 1354 // Empty fields are ignored. 1355 if (isEmptyField(Context, FD, true)) 1356 continue; 1357 1358 // Check fields recursively. 1359 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1366 // Treat complex types as the element type. 1367 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1368 Ty = CTy->getElementType(); 1369 1370 // Check for a type which we know has a simple scalar argument-passing 1371 // convention without any padding. (We're specifically looking for 32 1372 // and 64-bit integer and integer-equivalents, float, and double.) 1373 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1374 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1375 return false; 1376 1377 uint64_t Size = Context.getTypeSize(Ty); 1378 return Size == 32 || Size == 64; 1379 } 1380 1381 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1382 uint64_t &Size) { 1383 for (const auto *FD : RD->fields()) { 1384 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1385 // argument is smaller than 32-bits, expanding the struct will create 1386 // alignment padding. 1387 if (!is32Or64BitBasicType(FD->getType(), Context)) 1388 return false; 1389 1390 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1391 // how to expand them yet, and the predicate for telling if a bitfield still 1392 // counts as "basic" is more complicated than what we were doing previously. 1393 if (FD->isBitField()) 1394 return false; 1395 1396 Size += Context.getTypeSize(FD->getType()); 1397 } 1398 return true; 1399 } 1400 1401 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1402 uint64_t &Size) { 1403 // Don't do this if there are any non-empty bases. 1404 for (const CXXBaseSpecifier &Base : RD->bases()) { 1405 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1406 Size)) 1407 return false; 1408 } 1409 if (!addFieldSizes(Context, RD, Size)) 1410 return false; 1411 return true; 1412 } 1413 1414 /// Test whether an argument type which is to be passed indirectly (on the 1415 /// stack) would have the equivalent layout if it was expanded into separate 1416 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1417 /// optimizations. 1418 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1419 // We can only expand structure types. 1420 const RecordType *RT = Ty->getAs<RecordType>(); 1421 if (!RT) 1422 return false; 1423 const RecordDecl *RD = RT->getDecl(); 1424 uint64_t Size = 0; 1425 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1426 if (!IsWin32StructABI) { 1427 // On non-Windows, we have to conservatively match our old bitcode 1428 // prototypes in order to be ABI-compatible at the bitcode level. 1429 if (!CXXRD->isCLike()) 1430 return false; 1431 } else { 1432 // Don't do this for dynamic classes. 1433 if (CXXRD->isDynamicClass()) 1434 return false; 1435 } 1436 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1437 return false; 1438 } else { 1439 if (!addFieldSizes(getContext(), RD, Size)) 1440 return false; 1441 } 1442 1443 // We can do this if there was no alignment padding. 1444 return Size == getContext().getTypeSize(Ty); 1445 } 1446 1447 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1448 // If the return value is indirect, then the hidden argument is consuming one 1449 // integer register. 1450 if (State.FreeRegs) { 1451 --State.FreeRegs; 1452 if (!IsMCUABI) 1453 return getNaturalAlignIndirectInReg(RetTy); 1454 } 1455 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1456 } 1457 1458 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1459 CCState &State) const { 1460 if (RetTy->isVoidType()) 1461 return ABIArgInfo::getIgnore(); 1462 1463 const Type *Base = nullptr; 1464 uint64_t NumElts = 0; 1465 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1466 State.CC == llvm::CallingConv::X86_RegCall) && 1467 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1468 // The LLVM struct type for such an aggregate should lower properly. 1469 return ABIArgInfo::getDirect(); 1470 } 1471 1472 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1473 // On Darwin, some vectors are returned in registers. 1474 if (IsDarwinVectorABI) { 1475 uint64_t Size = getContext().getTypeSize(RetTy); 1476 1477 // 128-bit vectors are a special case; they are returned in 1478 // registers and we need to make sure to pick a type the LLVM 1479 // backend will like. 1480 if (Size == 128) 1481 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1482 llvm::Type::getInt64Ty(getVMContext()), 2)); 1483 1484 // Always return in register if it fits in a general purpose 1485 // register, or if it is 64 bits and has a single element. 1486 if ((Size == 8 || Size == 16 || Size == 32) || 1487 (Size == 64 && VT->getNumElements() == 1)) 1488 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1489 Size)); 1490 1491 return getIndirectReturnResult(RetTy, State); 1492 } 1493 1494 return ABIArgInfo::getDirect(); 1495 } 1496 1497 if (isAggregateTypeForABI(RetTy)) { 1498 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1499 // Structures with flexible arrays are always indirect. 1500 if (RT->getDecl()->hasFlexibleArrayMember()) 1501 return getIndirectReturnResult(RetTy, State); 1502 } 1503 1504 // If specified, structs and unions are always indirect. 1505 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1506 return getIndirectReturnResult(RetTy, State); 1507 1508 // Ignore empty structs/unions. 1509 if (isEmptyRecord(getContext(), RetTy, true)) 1510 return ABIArgInfo::getIgnore(); 1511 1512 // Small structures which are register sized are generally returned 1513 // in a register. 1514 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1515 uint64_t Size = getContext().getTypeSize(RetTy); 1516 1517 // As a special-case, if the struct is a "single-element" struct, and 1518 // the field is of type "float" or "double", return it in a 1519 // floating-point register. (MSVC does not apply this special case.) 1520 // We apply a similar transformation for pointer types to improve the 1521 // quality of the generated IR. 1522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1523 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1524 || SeltTy->hasPointerRepresentation()) 1525 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1526 1527 // FIXME: We should be able to narrow this integer in cases with dead 1528 // padding. 1529 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1530 } 1531 1532 return getIndirectReturnResult(RetTy, State); 1533 } 1534 1535 // Treat an enum type as its underlying type. 1536 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1537 RetTy = EnumTy->getDecl()->getIntegerType(); 1538 1539 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1540 if (EIT->getNumBits() > 64) 1541 return getIndirectReturnResult(RetTy, State); 1542 1543 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1544 : ABIArgInfo::getDirect()); 1545 } 1546 1547 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1548 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1549 } 1550 1551 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1552 const RecordType *RT = Ty->getAs<RecordType>(); 1553 if (!RT) 1554 return 0; 1555 const RecordDecl *RD = RT->getDecl(); 1556 1557 // If this is a C++ record, check the bases first. 1558 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1559 for (const auto &I : CXXRD->bases()) 1560 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1561 return false; 1562 1563 for (const auto *i : RD->fields()) { 1564 QualType FT = i->getType(); 1565 1566 if (isSIMDVectorType(Context, FT)) 1567 return true; 1568 1569 if (isRecordWithSIMDVectorType(Context, FT)) 1570 return true; 1571 } 1572 1573 return false; 1574 } 1575 1576 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1577 unsigned Align) const { 1578 // Otherwise, if the alignment is less than or equal to the minimum ABI 1579 // alignment, just use the default; the backend will handle this. 1580 if (Align <= MinABIStackAlignInBytes) 1581 return 0; // Use default alignment. 1582 1583 // On non-Darwin, the stack type alignment is always 4. 1584 if (!IsDarwinVectorABI) { 1585 // Set explicit alignment, since we may need to realign the top. 1586 return MinABIStackAlignInBytes; 1587 } 1588 1589 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1590 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1591 isRecordWithSIMDVectorType(getContext(), Ty))) 1592 return 16; 1593 1594 return MinABIStackAlignInBytes; 1595 } 1596 1597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1598 CCState &State) const { 1599 if (!ByVal) { 1600 if (State.FreeRegs) { 1601 --State.FreeRegs; // Non-byval indirects just use one pointer. 1602 if (!IsMCUABI) 1603 return getNaturalAlignIndirectInReg(Ty); 1604 } 1605 return getNaturalAlignIndirect(Ty, false); 1606 } 1607 1608 // Compute the byval alignment. 1609 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1610 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1611 if (StackAlign == 0) 1612 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1613 1614 // If the stack alignment is less than the type alignment, realign the 1615 // argument. 1616 bool Realign = TypeAlign > StackAlign; 1617 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1618 /*ByVal=*/true, Realign); 1619 } 1620 1621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1622 const Type *T = isSingleElementStruct(Ty, getContext()); 1623 if (!T) 1624 T = Ty.getTypePtr(); 1625 1626 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1627 BuiltinType::Kind K = BT->getKind(); 1628 if (K == BuiltinType::Float || K == BuiltinType::Double) 1629 return Float; 1630 } 1631 return Integer; 1632 } 1633 1634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1635 if (!IsSoftFloatABI) { 1636 Class C = classify(Ty); 1637 if (C == Float) 1638 return false; 1639 } 1640 1641 unsigned Size = getContext().getTypeSize(Ty); 1642 unsigned SizeInRegs = (Size + 31) / 32; 1643 1644 if (SizeInRegs == 0) 1645 return false; 1646 1647 if (!IsMCUABI) { 1648 if (SizeInRegs > State.FreeRegs) { 1649 State.FreeRegs = 0; 1650 return false; 1651 } 1652 } else { 1653 // The MCU psABI allows passing parameters in-reg even if there are 1654 // earlier parameters that are passed on the stack. Also, 1655 // it does not allow passing >8-byte structs in-register, 1656 // even if there are 3 free registers available. 1657 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1658 return false; 1659 } 1660 1661 State.FreeRegs -= SizeInRegs; 1662 return true; 1663 } 1664 1665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1666 bool &InReg, 1667 bool &NeedsPadding) const { 1668 // On Windows, aggregates other than HFAs are never passed in registers, and 1669 // they do not consume register slots. Homogenous floating-point aggregates 1670 // (HFAs) have already been dealt with at this point. 1671 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1672 return false; 1673 1674 NeedsPadding = false; 1675 InReg = !IsMCUABI; 1676 1677 if (!updateFreeRegs(Ty, State)) 1678 return false; 1679 1680 if (IsMCUABI) 1681 return true; 1682 1683 if (State.CC == llvm::CallingConv::X86_FastCall || 1684 State.CC == llvm::CallingConv::X86_VectorCall || 1685 State.CC == llvm::CallingConv::X86_RegCall) { 1686 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1687 NeedsPadding = true; 1688 1689 return false; 1690 } 1691 1692 return true; 1693 } 1694 1695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1696 if (!updateFreeRegs(Ty, State)) 1697 return false; 1698 1699 if (IsMCUABI) 1700 return false; 1701 1702 if (State.CC == llvm::CallingConv::X86_FastCall || 1703 State.CC == llvm::CallingConv::X86_VectorCall || 1704 State.CC == llvm::CallingConv::X86_RegCall) { 1705 if (getContext().getTypeSize(Ty) > 32) 1706 return false; 1707 1708 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1709 Ty->isReferenceType()); 1710 } 1711 1712 return true; 1713 } 1714 1715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1716 // Vectorcall x86 works subtly different than in x64, so the format is 1717 // a bit different than the x64 version. First, all vector types (not HVAs) 1718 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1719 // This differs from the x64 implementation, where the first 6 by INDEX get 1720 // registers. 1721 // In the second pass over the arguments, HVAs are passed in the remaining 1722 // vector registers if possible, or indirectly by address. The address will be 1723 // passed in ECX/EDX if available. Any other arguments are passed according to 1724 // the usual fastcall rules. 1725 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1726 for (int I = 0, E = Args.size(); I < E; ++I) { 1727 const Type *Base = nullptr; 1728 uint64_t NumElts = 0; 1729 const QualType &Ty = Args[I].type; 1730 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1731 isHomogeneousAggregate(Ty, Base, NumElts)) { 1732 if (State.FreeSSERegs >= NumElts) { 1733 State.FreeSSERegs -= NumElts; 1734 Args[I].info = ABIArgInfo::getDirectInReg(); 1735 State.IsPreassigned.set(I); 1736 } 1737 } 1738 } 1739 } 1740 1741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1742 CCState &State) const { 1743 // FIXME: Set alignment on indirect arguments. 1744 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1745 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1746 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1747 1748 Ty = useFirstFieldIfTransparentUnion(Ty); 1749 TypeInfo TI = getContext().getTypeInfo(Ty); 1750 1751 // Check with the C++ ABI first. 1752 const RecordType *RT = Ty->getAs<RecordType>(); 1753 if (RT) { 1754 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1755 if (RAA == CGCXXABI::RAA_Indirect) { 1756 return getIndirectResult(Ty, false, State); 1757 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1758 // The field index doesn't matter, we'll fix it up later. 1759 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1760 } 1761 } 1762 1763 // Regcall uses the concept of a homogenous vector aggregate, similar 1764 // to other targets. 1765 const Type *Base = nullptr; 1766 uint64_t NumElts = 0; 1767 if ((IsRegCall || IsVectorCall) && 1768 isHomogeneousAggregate(Ty, Base, NumElts)) { 1769 if (State.FreeSSERegs >= NumElts) { 1770 State.FreeSSERegs -= NumElts; 1771 1772 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1773 // does. 1774 if (IsVectorCall) 1775 return getDirectX86Hva(); 1776 1777 if (Ty->isBuiltinType() || Ty->isVectorType()) 1778 return ABIArgInfo::getDirect(); 1779 return ABIArgInfo::getExpand(); 1780 } 1781 return getIndirectResult(Ty, /*ByVal=*/false, State); 1782 } 1783 1784 if (isAggregateTypeForABI(Ty)) { 1785 // Structures with flexible arrays are always indirect. 1786 // FIXME: This should not be byval! 1787 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1788 return getIndirectResult(Ty, true, State); 1789 1790 // Ignore empty structs/unions on non-Windows. 1791 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1792 return ABIArgInfo::getIgnore(); 1793 1794 llvm::LLVMContext &LLVMContext = getVMContext(); 1795 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1796 bool NeedsPadding = false; 1797 bool InReg; 1798 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1799 unsigned SizeInRegs = (TI.Width + 31) / 32; 1800 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1801 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1802 if (InReg) 1803 return ABIArgInfo::getDirectInReg(Result); 1804 else 1805 return ABIArgInfo::getDirect(Result); 1806 } 1807 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1808 1809 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1810 // added in MSVC 2015. 1811 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1812 return getIndirectResult(Ty, /*ByVal=*/false, State); 1813 1814 // Expand small (<= 128-bit) record types when we know that the stack layout 1815 // of those arguments will match the struct. This is important because the 1816 // LLVM backend isn't smart enough to remove byval, which inhibits many 1817 // optimizations. 1818 // Don't do this for the MCU if there are still free integer registers 1819 // (see X86_64 ABI for full explanation). 1820 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1821 canExpandIndirectArgument(Ty)) 1822 return ABIArgInfo::getExpandWithPadding( 1823 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1824 1825 return getIndirectResult(Ty, true, State); 1826 } 1827 1828 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1829 // On Windows, vectors are passed directly if registers are available, or 1830 // indirectly if not. This avoids the need to align argument memory. Pass 1831 // user-defined vector types larger than 512 bits indirectly for simplicity. 1832 if (IsWin32StructABI) { 1833 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1834 --State.FreeSSERegs; 1835 return ABIArgInfo::getDirectInReg(); 1836 } 1837 return getIndirectResult(Ty, /*ByVal=*/false, State); 1838 } 1839 1840 // On Darwin, some vectors are passed in memory, we handle this by passing 1841 // it as an i8/i16/i32/i64. 1842 if (IsDarwinVectorABI) { 1843 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1844 (TI.Width == 64 && VT->getNumElements() == 1)) 1845 return ABIArgInfo::getDirect( 1846 llvm::IntegerType::get(getVMContext(), TI.Width)); 1847 } 1848 1849 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1850 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1851 1852 return ABIArgInfo::getDirect(); 1853 } 1854 1855 1856 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1857 Ty = EnumTy->getDecl()->getIntegerType(); 1858 1859 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1860 1861 if (isPromotableIntegerTypeForABI(Ty)) { 1862 if (InReg) 1863 return ABIArgInfo::getExtendInReg(Ty); 1864 return ABIArgInfo::getExtend(Ty); 1865 } 1866 1867 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1868 if (EIT->getNumBits() <= 64) { 1869 if (InReg) 1870 return ABIArgInfo::getDirectInReg(); 1871 return ABIArgInfo::getDirect(); 1872 } 1873 return getIndirectResult(Ty, /*ByVal=*/false, State); 1874 } 1875 1876 if (InReg) 1877 return ABIArgInfo::getDirectInReg(); 1878 return ABIArgInfo::getDirect(); 1879 } 1880 1881 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1882 CCState State(FI); 1883 if (IsMCUABI) 1884 State.FreeRegs = 3; 1885 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1886 State.FreeRegs = 2; 1887 State.FreeSSERegs = 3; 1888 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1889 State.FreeRegs = 2; 1890 State.FreeSSERegs = 6; 1891 } else if (FI.getHasRegParm()) 1892 State.FreeRegs = FI.getRegParm(); 1893 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1894 State.FreeRegs = 5; 1895 State.FreeSSERegs = 8; 1896 } else if (IsWin32StructABI) { 1897 // Since MSVC 2015, the first three SSE vectors have been passed in 1898 // registers. The rest are passed indirectly. 1899 State.FreeRegs = DefaultNumRegisterParameters; 1900 State.FreeSSERegs = 3; 1901 } else 1902 State.FreeRegs = DefaultNumRegisterParameters; 1903 1904 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1905 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1906 } else if (FI.getReturnInfo().isIndirect()) { 1907 // The C++ ABI is not aware of register usage, so we have to check if the 1908 // return value was sret and put it in a register ourselves if appropriate. 1909 if (State.FreeRegs) { 1910 --State.FreeRegs; // The sret parameter consumes a register. 1911 if (!IsMCUABI) 1912 FI.getReturnInfo().setInReg(true); 1913 } 1914 } 1915 1916 // The chain argument effectively gives us another free register. 1917 if (FI.isChainCall()) 1918 ++State.FreeRegs; 1919 1920 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1921 // arguments to XMM registers as available. 1922 if (State.CC == llvm::CallingConv::X86_VectorCall) 1923 runVectorCallFirstPass(FI, State); 1924 1925 bool UsedInAlloca = false; 1926 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1927 for (int I = 0, E = Args.size(); I < E; ++I) { 1928 // Skip arguments that have already been assigned. 1929 if (State.IsPreassigned.test(I)) 1930 continue; 1931 1932 Args[I].info = classifyArgumentType(Args[I].type, State); 1933 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1934 } 1935 1936 // If we needed to use inalloca for any argument, do a second pass and rewrite 1937 // all the memory arguments to use inalloca. 1938 if (UsedInAlloca) 1939 rewriteWithInAlloca(FI); 1940 } 1941 1942 void 1943 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1944 CharUnits &StackOffset, ABIArgInfo &Info, 1945 QualType Type) const { 1946 // Arguments are always 4-byte-aligned. 1947 CharUnits WordSize = CharUnits::fromQuantity(4); 1948 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1949 1950 // sret pointers and indirect things will require an extra pointer 1951 // indirection, unless they are byval. Most things are byval, and will not 1952 // require this indirection. 1953 bool IsIndirect = false; 1954 if (Info.isIndirect() && !Info.getIndirectByVal()) 1955 IsIndirect = true; 1956 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1957 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1958 if (IsIndirect) 1959 LLTy = LLTy->getPointerTo(0); 1960 FrameFields.push_back(LLTy); 1961 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1962 1963 // Insert padding bytes to respect alignment. 1964 CharUnits FieldEnd = StackOffset; 1965 StackOffset = FieldEnd.alignTo(WordSize); 1966 if (StackOffset != FieldEnd) { 1967 CharUnits NumBytes = StackOffset - FieldEnd; 1968 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1969 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1970 FrameFields.push_back(Ty); 1971 } 1972 } 1973 1974 static bool isArgInAlloca(const ABIArgInfo &Info) { 1975 // Leave ignored and inreg arguments alone. 1976 switch (Info.getKind()) { 1977 case ABIArgInfo::InAlloca: 1978 return true; 1979 case ABIArgInfo::Ignore: 1980 return false; 1981 case ABIArgInfo::Indirect: 1982 case ABIArgInfo::Direct: 1983 case ABIArgInfo::Extend: 1984 return !Info.getInReg(); 1985 case ABIArgInfo::Expand: 1986 case ABIArgInfo::CoerceAndExpand: 1987 // These are aggregate types which are never passed in registers when 1988 // inalloca is involved. 1989 return true; 1990 } 1991 llvm_unreachable("invalid enum"); 1992 } 1993 1994 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1995 assert(IsWin32StructABI && "inalloca only supported on win32"); 1996 1997 // Build a packed struct type for all of the arguments in memory. 1998 SmallVector<llvm::Type *, 6> FrameFields; 1999 2000 // The stack alignment is always 4. 2001 CharUnits StackAlign = CharUnits::fromQuantity(4); 2002 2003 CharUnits StackOffset; 2004 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2005 2006 // Put 'this' into the struct before 'sret', if necessary. 2007 bool IsThisCall = 2008 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2009 ABIArgInfo &Ret = FI.getReturnInfo(); 2010 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2011 isArgInAlloca(I->info)) { 2012 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2013 ++I; 2014 } 2015 2016 // Put the sret parameter into the inalloca struct if it's in memory. 2017 if (Ret.isIndirect() && !Ret.getInReg()) { 2018 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2019 // On Windows, the hidden sret parameter is always returned in eax. 2020 Ret.setInAllocaSRet(IsWin32StructABI); 2021 } 2022 2023 // Skip the 'this' parameter in ecx. 2024 if (IsThisCall) 2025 ++I; 2026 2027 // Put arguments passed in memory into the struct. 2028 for (; I != E; ++I) { 2029 if (isArgInAlloca(I->info)) 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 } 2032 2033 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2034 /*isPacked=*/true), 2035 StackAlign); 2036 } 2037 2038 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2039 Address VAListAddr, QualType Ty) const { 2040 2041 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2042 2043 // x86-32 changes the alignment of certain arguments on the stack. 2044 // 2045 // Just messing with TypeInfo like this works because we never pass 2046 // anything indirectly. 2047 TypeInfo.second = CharUnits::fromQuantity( 2048 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2049 2050 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2051 TypeInfo, CharUnits::fromQuantity(4), 2052 /*AllowHigherAlign*/ true); 2053 } 2054 2055 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2056 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2057 assert(Triple.getArch() == llvm::Triple::x86); 2058 2059 switch (Opts.getStructReturnConvention()) { 2060 case CodeGenOptions::SRCK_Default: 2061 break; 2062 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2063 return false; 2064 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2065 return true; 2066 } 2067 2068 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2069 return true; 2070 2071 switch (Triple.getOS()) { 2072 case llvm::Triple::DragonFly: 2073 case llvm::Triple::FreeBSD: 2074 case llvm::Triple::OpenBSD: 2075 case llvm::Triple::Win32: 2076 return true; 2077 default: 2078 return false; 2079 } 2080 } 2081 2082 void X86_32TargetCodeGenInfo::setTargetAttributes( 2083 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2084 if (GV->isDeclaration()) 2085 return; 2086 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2087 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2088 llvm::Function *Fn = cast<llvm::Function>(GV); 2089 Fn->addFnAttr("stackrealign"); 2090 } 2091 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2092 llvm::Function *Fn = cast<llvm::Function>(GV); 2093 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2094 } 2095 } 2096 } 2097 2098 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2099 CodeGen::CodeGenFunction &CGF, 2100 llvm::Value *Address) const { 2101 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2102 2103 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2104 2105 // 0-7 are the eight integer registers; the order is different 2106 // on Darwin (for EH), but the range is the same. 2107 // 8 is %eip. 2108 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2109 2110 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2111 // 12-16 are st(0..4). Not sure why we stop at 4. 2112 // These have size 16, which is sizeof(long double) on 2113 // platforms with 8-byte alignment for that type. 2114 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2115 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2116 2117 } else { 2118 // 9 is %eflags, which doesn't get a size on Darwin for some 2119 // reason. 2120 Builder.CreateAlignedStore( 2121 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2122 CharUnits::One()); 2123 2124 // 11-16 are st(0..5). Not sure why we stop at 5. 2125 // These have size 12, which is sizeof(long double) on 2126 // platforms with 4-byte alignment for that type. 2127 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2128 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2129 } 2130 2131 return false; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // X86-64 ABI Implementation 2136 //===----------------------------------------------------------------------===// 2137 2138 2139 namespace { 2140 /// The AVX ABI level for X86 targets. 2141 enum class X86AVXABILevel { 2142 None, 2143 AVX, 2144 AVX512 2145 }; 2146 2147 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2148 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2149 switch (AVXLevel) { 2150 case X86AVXABILevel::AVX512: 2151 return 512; 2152 case X86AVXABILevel::AVX: 2153 return 256; 2154 case X86AVXABILevel::None: 2155 return 128; 2156 } 2157 llvm_unreachable("Unknown AVXLevel"); 2158 } 2159 2160 /// X86_64ABIInfo - The X86_64 ABI information. 2161 class X86_64ABIInfo : public SwiftABIInfo { 2162 enum Class { 2163 Integer = 0, 2164 SSE, 2165 SSEUp, 2166 X87, 2167 X87Up, 2168 ComplexX87, 2169 NoClass, 2170 Memory 2171 }; 2172 2173 /// merge - Implement the X86_64 ABI merging algorithm. 2174 /// 2175 /// Merge an accumulating classification \arg Accum with a field 2176 /// classification \arg Field. 2177 /// 2178 /// \param Accum - The accumulating classification. This should 2179 /// always be either NoClass or the result of a previous merge 2180 /// call. In addition, this should never be Memory (the caller 2181 /// should just return Memory for the aggregate). 2182 static Class merge(Class Accum, Class Field); 2183 2184 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2185 /// 2186 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2187 /// final MEMORY or SSE classes when necessary. 2188 /// 2189 /// \param AggregateSize - The size of the current aggregate in 2190 /// the classification process. 2191 /// 2192 /// \param Lo - The classification for the parts of the type 2193 /// residing in the low word of the containing object. 2194 /// 2195 /// \param Hi - The classification for the parts of the type 2196 /// residing in the higher words of the containing object. 2197 /// 2198 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2199 2200 /// classify - Determine the x86_64 register classes in which the 2201 /// given type T should be passed. 2202 /// 2203 /// \param Lo - The classification for the parts of the type 2204 /// residing in the low word of the containing object. 2205 /// 2206 /// \param Hi - The classification for the parts of the type 2207 /// residing in the high word of the containing object. 2208 /// 2209 /// \param OffsetBase - The bit offset of this type in the 2210 /// containing object. Some parameters are classified different 2211 /// depending on whether they straddle an eightbyte boundary. 2212 /// 2213 /// \param isNamedArg - Whether the argument in question is a "named" 2214 /// argument, as used in AMD64-ABI 3.5.7. 2215 /// 2216 /// If a word is unused its result will be NoClass; if a type should 2217 /// be passed in Memory then at least the classification of \arg Lo 2218 /// will be Memory. 2219 /// 2220 /// The \arg Lo class will be NoClass iff the argument is ignored. 2221 /// 2222 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2223 /// also be ComplexX87. 2224 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2225 bool isNamedArg) const; 2226 2227 llvm::Type *GetByteVectorType(QualType Ty) const; 2228 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2229 unsigned IROffset, QualType SourceTy, 2230 unsigned SourceOffset) const; 2231 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2232 unsigned IROffset, QualType SourceTy, 2233 unsigned SourceOffset) const; 2234 2235 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2236 /// such that the argument will be returned in memory. 2237 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2238 2239 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2240 /// such that the argument will be passed in memory. 2241 /// 2242 /// \param freeIntRegs - The number of free integer registers remaining 2243 /// available. 2244 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2245 2246 ABIArgInfo classifyReturnType(QualType RetTy) const; 2247 2248 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2249 unsigned &neededInt, unsigned &neededSSE, 2250 bool isNamedArg) const; 2251 2252 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2253 unsigned &NeededSSE) const; 2254 2255 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2256 unsigned &NeededSSE) const; 2257 2258 bool IsIllegalVectorType(QualType Ty) const; 2259 2260 /// The 0.98 ABI revision clarified a lot of ambiguities, 2261 /// unfortunately in ways that were not always consistent with 2262 /// certain previous compilers. In particular, platforms which 2263 /// required strict binary compatibility with older versions of GCC 2264 /// may need to exempt themselves. 2265 bool honorsRevision0_98() const { 2266 return !getTarget().getTriple().isOSDarwin(); 2267 } 2268 2269 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2270 /// classify it as INTEGER (for compatibility with older clang compilers). 2271 bool classifyIntegerMMXAsSSE() const { 2272 // Clang <= 3.8 did not do this. 2273 if (getContext().getLangOpts().getClangABICompat() <= 2274 LangOptions::ClangABI::Ver3_8) 2275 return false; 2276 2277 const llvm::Triple &Triple = getTarget().getTriple(); 2278 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2279 return false; 2280 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2281 return false; 2282 return true; 2283 } 2284 2285 // GCC classifies vectors of __int128 as memory. 2286 bool passInt128VectorsInMem() const { 2287 // Clang <= 9.0 did not do this. 2288 if (getContext().getLangOpts().getClangABICompat() <= 2289 LangOptions::ClangABI::Ver9) 2290 return false; 2291 2292 const llvm::Triple &T = getTarget().getTriple(); 2293 return T.isOSLinux() || T.isOSNetBSD(); 2294 } 2295 2296 X86AVXABILevel AVXLevel; 2297 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2298 // 64-bit hardware. 2299 bool Has64BitPointers; 2300 2301 public: 2302 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2303 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2304 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2305 } 2306 2307 bool isPassedUsingAVXType(QualType type) const { 2308 unsigned neededInt, neededSSE; 2309 // The freeIntRegs argument doesn't matter here. 2310 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2311 /*isNamedArg*/true); 2312 if (info.isDirect()) { 2313 llvm::Type *ty = info.getCoerceToType(); 2314 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2315 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2316 } 2317 return false; 2318 } 2319 2320 void computeInfo(CGFunctionInfo &FI) const override; 2321 2322 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2323 QualType Ty) const override; 2324 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2325 QualType Ty) const override; 2326 2327 bool has64BitPointers() const { 2328 return Has64BitPointers; 2329 } 2330 2331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2332 bool asReturnValue) const override { 2333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2334 } 2335 bool isSwiftErrorInRegister() const override { 2336 return true; 2337 } 2338 }; 2339 2340 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2341 class WinX86_64ABIInfo : public SwiftABIInfo { 2342 public: 2343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2344 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2345 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2346 2347 void computeInfo(CGFunctionInfo &FI) const override; 2348 2349 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2350 QualType Ty) const override; 2351 2352 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2353 // FIXME: Assumes vectorcall is in use. 2354 return isX86VectorTypeForVectorCall(getContext(), Ty); 2355 } 2356 2357 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2358 uint64_t NumMembers) const override { 2359 // FIXME: Assumes vectorcall is in use. 2360 return isX86VectorCallAggregateSmallEnough(NumMembers); 2361 } 2362 2363 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2364 bool asReturnValue) const override { 2365 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2366 } 2367 2368 bool isSwiftErrorInRegister() const override { 2369 return true; 2370 } 2371 2372 private: 2373 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2374 bool IsVectorCall, bool IsRegCall) const; 2375 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2376 const ABIArgInfo ¤t) const; 2377 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2378 bool IsVectorCall, bool IsRegCall) const; 2379 2380 X86AVXABILevel AVXLevel; 2381 2382 bool IsMingw64; 2383 }; 2384 2385 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2386 public: 2387 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2388 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2389 2390 const X86_64ABIInfo &getABIInfo() const { 2391 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2392 } 2393 2394 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2395 /// the autoreleaseRV/retainRV optimization. 2396 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2397 return true; 2398 } 2399 2400 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2401 return 7; 2402 } 2403 2404 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2405 llvm::Value *Address) const override { 2406 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2407 2408 // 0-15 are the 16 integer registers. 2409 // 16 is %rip. 2410 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2411 return false; 2412 } 2413 2414 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2415 StringRef Constraint, 2416 llvm::Type* Ty) const override { 2417 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2418 } 2419 2420 bool isNoProtoCallVariadic(const CallArgList &args, 2421 const FunctionNoProtoType *fnType) const override { 2422 // The default CC on x86-64 sets %al to the number of SSA 2423 // registers used, and GCC sets this when calling an unprototyped 2424 // function, so we override the default behavior. However, don't do 2425 // that when AVX types are involved: the ABI explicitly states it is 2426 // undefined, and it doesn't work in practice because of how the ABI 2427 // defines varargs anyway. 2428 if (fnType->getCallConv() == CC_C) { 2429 bool HasAVXType = false; 2430 for (CallArgList::const_iterator 2431 it = args.begin(), ie = args.end(); it != ie; ++it) { 2432 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2433 HasAVXType = true; 2434 break; 2435 } 2436 } 2437 2438 if (!HasAVXType) 2439 return true; 2440 } 2441 2442 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2443 } 2444 2445 llvm::Constant * 2446 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2447 unsigned Sig = (0xeb << 0) | // jmp rel8 2448 (0x06 << 8) | // .+0x08 2449 ('v' << 16) | 2450 ('2' << 24); 2451 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2452 } 2453 2454 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2455 CodeGen::CodeGenModule &CGM) const override { 2456 if (GV->isDeclaration()) 2457 return; 2458 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2459 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2460 llvm::Function *Fn = cast<llvm::Function>(GV); 2461 Fn->addFnAttr("stackrealign"); 2462 } 2463 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2464 llvm::Function *Fn = cast<llvm::Function>(GV); 2465 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2466 } 2467 } 2468 } 2469 }; 2470 2471 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2472 // If the argument does not end in .lib, automatically add the suffix. 2473 // If the argument contains a space, enclose it in quotes. 2474 // This matches the behavior of MSVC. 2475 bool Quote = (Lib.find(" ") != StringRef::npos); 2476 std::string ArgStr = Quote ? "\"" : ""; 2477 ArgStr += Lib; 2478 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2479 ArgStr += ".lib"; 2480 ArgStr += Quote ? "\"" : ""; 2481 return ArgStr; 2482 } 2483 2484 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2485 public: 2486 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2487 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2488 unsigned NumRegisterParameters) 2489 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2490 Win32StructABI, NumRegisterParameters, false) {} 2491 2492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2493 CodeGen::CodeGenModule &CGM) const override; 2494 2495 void getDependentLibraryOption(llvm::StringRef Lib, 2496 llvm::SmallString<24> &Opt) const override { 2497 Opt = "/DEFAULTLIB:"; 2498 Opt += qualifyWindowsLibrary(Lib); 2499 } 2500 2501 void getDetectMismatchOption(llvm::StringRef Name, 2502 llvm::StringRef Value, 2503 llvm::SmallString<32> &Opt) const override { 2504 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2505 } 2506 }; 2507 2508 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2509 CodeGen::CodeGenModule &CGM) { 2510 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2511 2512 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2513 Fn->addFnAttr("stack-probe-size", 2514 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2515 if (CGM.getCodeGenOpts().NoStackArgProbe) 2516 Fn->addFnAttr("no-stack-arg-probe"); 2517 } 2518 } 2519 2520 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2521 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2522 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2523 if (GV->isDeclaration()) 2524 return; 2525 addStackProbeTargetAttributes(D, GV, CGM); 2526 } 2527 2528 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2529 public: 2530 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2531 X86AVXABILevel AVXLevel) 2532 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2533 2534 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2535 CodeGen::CodeGenModule &CGM) const override; 2536 2537 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2538 return 7; 2539 } 2540 2541 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2542 llvm::Value *Address) const override { 2543 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2544 2545 // 0-15 are the 16 integer registers. 2546 // 16 is %rip. 2547 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2548 return false; 2549 } 2550 2551 void getDependentLibraryOption(llvm::StringRef Lib, 2552 llvm::SmallString<24> &Opt) const override { 2553 Opt = "/DEFAULTLIB:"; 2554 Opt += qualifyWindowsLibrary(Lib); 2555 } 2556 2557 void getDetectMismatchOption(llvm::StringRef Name, 2558 llvm::StringRef Value, 2559 llvm::SmallString<32> &Opt) const override { 2560 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2561 } 2562 }; 2563 2564 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2565 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2566 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2567 if (GV->isDeclaration()) 2568 return; 2569 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2570 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2571 llvm::Function *Fn = cast<llvm::Function>(GV); 2572 Fn->addFnAttr("stackrealign"); 2573 } 2574 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2575 llvm::Function *Fn = cast<llvm::Function>(GV); 2576 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2577 } 2578 } 2579 2580 addStackProbeTargetAttributes(D, GV, CGM); 2581 } 2582 } 2583 2584 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2585 Class &Hi) const { 2586 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2587 // 2588 // (a) If one of the classes is Memory, the whole argument is passed in 2589 // memory. 2590 // 2591 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2592 // memory. 2593 // 2594 // (c) If the size of the aggregate exceeds two eightbytes and the first 2595 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2596 // argument is passed in memory. NOTE: This is necessary to keep the 2597 // ABI working for processors that don't support the __m256 type. 2598 // 2599 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2600 // 2601 // Some of these are enforced by the merging logic. Others can arise 2602 // only with unions; for example: 2603 // union { _Complex double; unsigned; } 2604 // 2605 // Note that clauses (b) and (c) were added in 0.98. 2606 // 2607 if (Hi == Memory) 2608 Lo = Memory; 2609 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2610 Lo = Memory; 2611 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2612 Lo = Memory; 2613 if (Hi == SSEUp && Lo != SSE) 2614 Hi = SSE; 2615 } 2616 2617 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2618 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2619 // classified recursively so that always two fields are 2620 // considered. The resulting class is calculated according to 2621 // the classes of the fields in the eightbyte: 2622 // 2623 // (a) If both classes are equal, this is the resulting class. 2624 // 2625 // (b) If one of the classes is NO_CLASS, the resulting class is 2626 // the other class. 2627 // 2628 // (c) If one of the classes is MEMORY, the result is the MEMORY 2629 // class. 2630 // 2631 // (d) If one of the classes is INTEGER, the result is the 2632 // INTEGER. 2633 // 2634 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2635 // MEMORY is used as class. 2636 // 2637 // (f) Otherwise class SSE is used. 2638 2639 // Accum should never be memory (we should have returned) or 2640 // ComplexX87 (because this cannot be passed in a structure). 2641 assert((Accum != Memory && Accum != ComplexX87) && 2642 "Invalid accumulated classification during merge."); 2643 if (Accum == Field || Field == NoClass) 2644 return Accum; 2645 if (Field == Memory) 2646 return Memory; 2647 if (Accum == NoClass) 2648 return Field; 2649 if (Accum == Integer || Field == Integer) 2650 return Integer; 2651 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2652 Accum == X87 || Accum == X87Up) 2653 return Memory; 2654 return SSE; 2655 } 2656 2657 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2658 Class &Lo, Class &Hi, bool isNamedArg) const { 2659 // FIXME: This code can be simplified by introducing a simple value class for 2660 // Class pairs with appropriate constructor methods for the various 2661 // situations. 2662 2663 // FIXME: Some of the split computations are wrong; unaligned vectors 2664 // shouldn't be passed in registers for example, so there is no chance they 2665 // can straddle an eightbyte. Verify & simplify. 2666 2667 Lo = Hi = NoClass; 2668 2669 Class &Current = OffsetBase < 64 ? Lo : Hi; 2670 Current = Memory; 2671 2672 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2673 BuiltinType::Kind k = BT->getKind(); 2674 2675 if (k == BuiltinType::Void) { 2676 Current = NoClass; 2677 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2678 Lo = Integer; 2679 Hi = Integer; 2680 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2681 Current = Integer; 2682 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2683 Current = SSE; 2684 } else if (k == BuiltinType::LongDouble) { 2685 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2686 if (LDF == &llvm::APFloat::IEEEquad()) { 2687 Lo = SSE; 2688 Hi = SSEUp; 2689 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2690 Lo = X87; 2691 Hi = X87Up; 2692 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2693 Current = SSE; 2694 } else 2695 llvm_unreachable("unexpected long double representation!"); 2696 } 2697 // FIXME: _Decimal32 and _Decimal64 are SSE. 2698 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2699 return; 2700 } 2701 2702 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2703 // Classify the underlying integer type. 2704 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2705 return; 2706 } 2707 2708 if (Ty->hasPointerRepresentation()) { 2709 Current = Integer; 2710 return; 2711 } 2712 2713 if (Ty->isMemberPointerType()) { 2714 if (Ty->isMemberFunctionPointerType()) { 2715 if (Has64BitPointers) { 2716 // If Has64BitPointers, this is an {i64, i64}, so classify both 2717 // Lo and Hi now. 2718 Lo = Hi = Integer; 2719 } else { 2720 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2721 // straddles an eightbyte boundary, Hi should be classified as well. 2722 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2723 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2724 if (EB_FuncPtr != EB_ThisAdj) { 2725 Lo = Hi = Integer; 2726 } else { 2727 Current = Integer; 2728 } 2729 } 2730 } else { 2731 Current = Integer; 2732 } 2733 return; 2734 } 2735 2736 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2737 uint64_t Size = getContext().getTypeSize(VT); 2738 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2739 // gcc passes the following as integer: 2740 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2741 // 2 bytes - <2 x char>, <1 x short> 2742 // 1 byte - <1 x char> 2743 Current = Integer; 2744 2745 // If this type crosses an eightbyte boundary, it should be 2746 // split. 2747 uint64_t EB_Lo = (OffsetBase) / 64; 2748 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2749 if (EB_Lo != EB_Hi) 2750 Hi = Lo; 2751 } else if (Size == 64) { 2752 QualType ElementType = VT->getElementType(); 2753 2754 // gcc passes <1 x double> in memory. :( 2755 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2756 return; 2757 2758 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2759 // pass them as integer. For platforms where clang is the de facto 2760 // platform compiler, we must continue to use integer. 2761 if (!classifyIntegerMMXAsSSE() && 2762 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2763 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2764 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2765 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2766 Current = Integer; 2767 else 2768 Current = SSE; 2769 2770 // If this type crosses an eightbyte boundary, it should be 2771 // split. 2772 if (OffsetBase && OffsetBase != 64) 2773 Hi = Lo; 2774 } else if (Size == 128 || 2775 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2776 QualType ElementType = VT->getElementType(); 2777 2778 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2779 if (passInt128VectorsInMem() && Size != 128 && 2780 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2781 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2782 return; 2783 2784 // Arguments of 256-bits are split into four eightbyte chunks. The 2785 // least significant one belongs to class SSE and all the others to class 2786 // SSEUP. The original Lo and Hi design considers that types can't be 2787 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2788 // This design isn't correct for 256-bits, but since there're no cases 2789 // where the upper parts would need to be inspected, avoid adding 2790 // complexity and just consider Hi to match the 64-256 part. 2791 // 2792 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2793 // registers if they are "named", i.e. not part of the "..." of a 2794 // variadic function. 2795 // 2796 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2797 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2798 Lo = SSE; 2799 Hi = SSEUp; 2800 } 2801 return; 2802 } 2803 2804 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2805 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2806 2807 uint64_t Size = getContext().getTypeSize(Ty); 2808 if (ET->isIntegralOrEnumerationType()) { 2809 if (Size <= 64) 2810 Current = Integer; 2811 else if (Size <= 128) 2812 Lo = Hi = Integer; 2813 } else if (ET == getContext().FloatTy) { 2814 Current = SSE; 2815 } else if (ET == getContext().DoubleTy) { 2816 Lo = Hi = SSE; 2817 } else if (ET == getContext().LongDoubleTy) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) 2820 Current = Memory; 2821 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2822 Current = ComplexX87; 2823 else if (LDF == &llvm::APFloat::IEEEdouble()) 2824 Lo = Hi = SSE; 2825 else 2826 llvm_unreachable("unexpected long double representation!"); 2827 } 2828 2829 // If this complex type crosses an eightbyte boundary then it 2830 // should be split. 2831 uint64_t EB_Real = (OffsetBase) / 64; 2832 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2833 if (Hi == NoClass && EB_Real != EB_Imag) 2834 Hi = Lo; 2835 2836 return; 2837 } 2838 2839 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2840 if (EITy->getNumBits() <= 64) 2841 Current = Integer; 2842 else if (EITy->getNumBits() <= 128) 2843 Lo = Hi = Integer; 2844 // Larger values need to get passed in memory. 2845 return; 2846 } 2847 2848 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2849 // Arrays are treated like structures. 2850 2851 uint64_t Size = getContext().getTypeSize(Ty); 2852 2853 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2854 // than eight eightbytes, ..., it has class MEMORY. 2855 if (Size > 512) 2856 return; 2857 2858 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2859 // fields, it has class MEMORY. 2860 // 2861 // Only need to check alignment of array base. 2862 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2863 return; 2864 2865 // Otherwise implement simplified merge. We could be smarter about 2866 // this, but it isn't worth it and would be harder to verify. 2867 Current = NoClass; 2868 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2869 uint64_t ArraySize = AT->getSize().getZExtValue(); 2870 2871 // The only case a 256-bit wide vector could be used is when the array 2872 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2873 // to work for sizes wider than 128, early check and fallback to memory. 2874 // 2875 if (Size > 128 && 2876 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2877 return; 2878 2879 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2880 Class FieldLo, FieldHi; 2881 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2882 Lo = merge(Lo, FieldLo); 2883 Hi = merge(Hi, FieldHi); 2884 if (Lo == Memory || Hi == Memory) 2885 break; 2886 } 2887 2888 postMerge(Size, Lo, Hi); 2889 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2890 return; 2891 } 2892 2893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2894 uint64_t Size = getContext().getTypeSize(Ty); 2895 2896 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2897 // than eight eightbytes, ..., it has class MEMORY. 2898 if (Size > 512) 2899 return; 2900 2901 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2902 // copy constructor or a non-trivial destructor, it is passed by invisible 2903 // reference. 2904 if (getRecordArgABI(RT, getCXXABI())) 2905 return; 2906 2907 const RecordDecl *RD = RT->getDecl(); 2908 2909 // Assume variable sized types are passed in memory. 2910 if (RD->hasFlexibleArrayMember()) 2911 return; 2912 2913 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2914 2915 // Reset Lo class, this will be recomputed. 2916 Current = NoClass; 2917 2918 // If this is a C++ record, classify the bases first. 2919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2920 for (const auto &I : CXXRD->bases()) { 2921 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2922 "Unexpected base class!"); 2923 const auto *Base = 2924 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2925 2926 // Classify this field. 2927 // 2928 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2929 // single eightbyte, each is classified separately. Each eightbyte gets 2930 // initialized to class NO_CLASS. 2931 Class FieldLo, FieldHi; 2932 uint64_t Offset = 2933 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2934 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2935 Lo = merge(Lo, FieldLo); 2936 Hi = merge(Hi, FieldHi); 2937 if (Lo == Memory || Hi == Memory) { 2938 postMerge(Size, Lo, Hi); 2939 return; 2940 } 2941 } 2942 } 2943 2944 // Classify the fields one at a time, merging the results. 2945 unsigned idx = 0; 2946 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2947 i != e; ++i, ++idx) { 2948 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2949 bool BitField = i->isBitField(); 2950 2951 // Ignore padding bit-fields. 2952 if (BitField && i->isUnnamedBitfield()) 2953 continue; 2954 2955 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2956 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2957 // 2958 // The only case a 256-bit wide vector could be used is when the struct 2959 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2960 // to work for sizes wider than 128, early check and fallback to memory. 2961 // 2962 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2963 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2964 Lo = Memory; 2965 postMerge(Size, Lo, Hi); 2966 return; 2967 } 2968 // Note, skip this test for bit-fields, see below. 2969 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2970 Lo = Memory; 2971 postMerge(Size, Lo, Hi); 2972 return; 2973 } 2974 2975 // Classify this field. 2976 // 2977 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2978 // exceeds a single eightbyte, each is classified 2979 // separately. Each eightbyte gets initialized to class 2980 // NO_CLASS. 2981 Class FieldLo, FieldHi; 2982 2983 // Bit-fields require special handling, they do not force the 2984 // structure to be passed in memory even if unaligned, and 2985 // therefore they can straddle an eightbyte. 2986 if (BitField) { 2987 assert(!i->isUnnamedBitfield()); 2988 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2989 uint64_t Size = i->getBitWidthValue(getContext()); 2990 2991 uint64_t EB_Lo = Offset / 64; 2992 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2993 2994 if (EB_Lo) { 2995 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2996 FieldLo = NoClass; 2997 FieldHi = Integer; 2998 } else { 2999 FieldLo = Integer; 3000 FieldHi = EB_Hi ? Integer : NoClass; 3001 } 3002 } else 3003 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3004 Lo = merge(Lo, FieldLo); 3005 Hi = merge(Hi, FieldHi); 3006 if (Lo == Memory || Hi == Memory) 3007 break; 3008 } 3009 3010 postMerge(Size, Lo, Hi); 3011 } 3012 } 3013 3014 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3015 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3016 // place naturally. 3017 if (!isAggregateTypeForABI(Ty)) { 3018 // Treat an enum type as its underlying type. 3019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3020 Ty = EnumTy->getDecl()->getIntegerType(); 3021 3022 if (Ty->isExtIntType()) 3023 return getNaturalAlignIndirect(Ty); 3024 3025 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3026 : ABIArgInfo::getDirect()); 3027 } 3028 3029 return getNaturalAlignIndirect(Ty); 3030 } 3031 3032 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3033 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3034 uint64_t Size = getContext().getTypeSize(VecTy); 3035 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3036 if (Size <= 64 || Size > LargestVector) 3037 return true; 3038 QualType EltTy = VecTy->getElementType(); 3039 if (passInt128VectorsInMem() && 3040 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3041 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3049 unsigned freeIntRegs) const { 3050 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3051 // place naturally. 3052 // 3053 // This assumption is optimistic, as there could be free registers available 3054 // when we need to pass this argument in memory, and LLVM could try to pass 3055 // the argument in the free register. This does not seem to happen currently, 3056 // but this code would be much safer if we could mark the argument with 3057 // 'onstack'. See PR12193. 3058 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3059 !Ty->isExtIntType()) { 3060 // Treat an enum type as its underlying type. 3061 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3062 Ty = EnumTy->getDecl()->getIntegerType(); 3063 3064 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3065 : ABIArgInfo::getDirect()); 3066 } 3067 3068 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3069 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3070 3071 // Compute the byval alignment. We specify the alignment of the byval in all 3072 // cases so that the mid-level optimizer knows the alignment of the byval. 3073 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3074 3075 // Attempt to avoid passing indirect results using byval when possible. This 3076 // is important for good codegen. 3077 // 3078 // We do this by coercing the value into a scalar type which the backend can 3079 // handle naturally (i.e., without using byval). 3080 // 3081 // For simplicity, we currently only do this when we have exhausted all of the 3082 // free integer registers. Doing this when there are free integer registers 3083 // would require more care, as we would have to ensure that the coerced value 3084 // did not claim the unused register. That would require either reording the 3085 // arguments to the function (so that any subsequent inreg values came first), 3086 // or only doing this optimization when there were no following arguments that 3087 // might be inreg. 3088 // 3089 // We currently expect it to be rare (particularly in well written code) for 3090 // arguments to be passed on the stack when there are still free integer 3091 // registers available (this would typically imply large structs being passed 3092 // by value), so this seems like a fair tradeoff for now. 3093 // 3094 // We can revisit this if the backend grows support for 'onstack' parameter 3095 // attributes. See PR12193. 3096 if (freeIntRegs == 0) { 3097 uint64_t Size = getContext().getTypeSize(Ty); 3098 3099 // If this type fits in an eightbyte, coerce it into the matching integral 3100 // type, which will end up on the stack (with alignment 8). 3101 if (Align == 8 && Size <= 64) 3102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3103 Size)); 3104 } 3105 3106 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3107 } 3108 3109 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3110 /// register. Pick an LLVM IR type that will be passed as a vector register. 3111 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3112 // Wrapper structs/arrays that only contain vectors are passed just like 3113 // vectors; strip them off if present. 3114 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3115 Ty = QualType(InnerTy, 0); 3116 3117 llvm::Type *IRType = CGT.ConvertType(Ty); 3118 if (isa<llvm::VectorType>(IRType)) { 3119 // Don't pass vXi128 vectors in their native type, the backend can't 3120 // legalize them. 3121 if (passInt128VectorsInMem() && 3122 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3123 // Use a vXi64 vector. 3124 uint64_t Size = getContext().getTypeSize(Ty); 3125 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3126 Size / 64); 3127 } 3128 3129 return IRType; 3130 } 3131 3132 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3133 return IRType; 3134 3135 // We couldn't find the preferred IR vector type for 'Ty'. 3136 uint64_t Size = getContext().getTypeSize(Ty); 3137 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3138 3139 3140 // Return a LLVM IR vector type based on the size of 'Ty'. 3141 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3142 Size / 64); 3143 } 3144 3145 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3146 /// is known to either be off the end of the specified type or being in 3147 /// alignment padding. The user type specified is known to be at most 128 bits 3148 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3149 /// classification that put one of the two halves in the INTEGER class. 3150 /// 3151 /// It is conservatively correct to return false. 3152 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3153 unsigned EndBit, ASTContext &Context) { 3154 // If the bytes being queried are off the end of the type, there is no user 3155 // data hiding here. This handles analysis of builtins, vectors and other 3156 // types that don't contain interesting padding. 3157 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3158 if (TySize <= StartBit) 3159 return true; 3160 3161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3162 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3163 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3164 3165 // Check each element to see if the element overlaps with the queried range. 3166 for (unsigned i = 0; i != NumElts; ++i) { 3167 // If the element is after the span we care about, then we're done.. 3168 unsigned EltOffset = i*EltSize; 3169 if (EltOffset >= EndBit) break; 3170 3171 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3172 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3173 EndBit-EltOffset, Context)) 3174 return false; 3175 } 3176 // If it overlaps no elements, then it is safe to process as padding. 3177 return true; 3178 } 3179 3180 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3181 const RecordDecl *RD = RT->getDecl(); 3182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3183 3184 // If this is a C++ record, check the bases first. 3185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3186 for (const auto &I : CXXRD->bases()) { 3187 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3188 "Unexpected base class!"); 3189 const auto *Base = 3190 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3191 3192 // If the base is after the span we care about, ignore it. 3193 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3194 if (BaseOffset >= EndBit) continue; 3195 3196 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3197 if (!BitsContainNoUserData(I.getType(), BaseStart, 3198 EndBit-BaseOffset, Context)) 3199 return false; 3200 } 3201 } 3202 3203 // Verify that no field has data that overlaps the region of interest. Yes 3204 // this could be sped up a lot by being smarter about queried fields, 3205 // however we're only looking at structs up to 16 bytes, so we don't care 3206 // much. 3207 unsigned idx = 0; 3208 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3209 i != e; ++i, ++idx) { 3210 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3211 3212 // If we found a field after the region we care about, then we're done. 3213 if (FieldOffset >= EndBit) break; 3214 3215 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3216 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3217 Context)) 3218 return false; 3219 } 3220 3221 // If nothing in this record overlapped the area of interest, then we're 3222 // clean. 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3230 /// float member at the specified offset. For example, {int,{float}} has a 3231 /// float at offset 4. It is conservatively correct for this routine to return 3232 /// false. 3233 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3234 const llvm::DataLayout &TD) { 3235 // Base case if we find a float. 3236 if (IROffset == 0 && IRType->isFloatTy()) 3237 return true; 3238 3239 // If this is a struct, recurse into the field at the specified offset. 3240 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3241 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3242 unsigned Elt = SL->getElementContainingOffset(IROffset); 3243 IROffset -= SL->getElementOffset(Elt); 3244 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3245 } 3246 3247 // If this is an array, recurse into the field at the specified offset. 3248 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3249 llvm::Type *EltTy = ATy->getElementType(); 3250 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3251 IROffset -= IROffset/EltSize*EltSize; 3252 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3253 } 3254 3255 return false; 3256 } 3257 3258 3259 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3260 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3261 llvm::Type *X86_64ABIInfo:: 3262 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3263 QualType SourceTy, unsigned SourceOffset) const { 3264 // The only three choices we have are either double, <2 x float>, or float. We 3265 // pass as float if the last 4 bytes is just padding. This happens for 3266 // structs that contain 3 floats. 3267 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3268 SourceOffset*8+64, getContext())) 3269 return llvm::Type::getFloatTy(getVMContext()); 3270 3271 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3272 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3273 // case. 3274 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3275 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3276 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3277 2); 3278 3279 return llvm::Type::getDoubleTy(getVMContext()); 3280 } 3281 3282 3283 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3284 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3285 /// about the high or low part of an up-to-16-byte struct. This routine picks 3286 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3287 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3288 /// etc). 3289 /// 3290 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3291 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3292 /// the 8-byte value references. PrefType may be null. 3293 /// 3294 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3295 /// an offset into this that we're processing (which is always either 0 or 8). 3296 /// 3297 llvm::Type *X86_64ABIInfo:: 3298 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3299 QualType SourceTy, unsigned SourceOffset) const { 3300 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3301 // returning an 8-byte unit starting with it. See if we can safely use it. 3302 if (IROffset == 0) { 3303 // Pointers and int64's always fill the 8-byte unit. 3304 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3305 IRType->isIntegerTy(64)) 3306 return IRType; 3307 3308 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3309 // goodness in the source type is just tail padding. This is allowed to 3310 // kick in for struct {double,int} on the int, but not on 3311 // struct{double,int,int} because we wouldn't return the second int. We 3312 // have to do this analysis on the source type because we can't depend on 3313 // unions being lowered a specific way etc. 3314 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3315 IRType->isIntegerTy(32) || 3316 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3317 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3318 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3319 3320 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3321 SourceOffset*8+64, getContext())) 3322 return IRType; 3323 } 3324 } 3325 3326 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3327 // If this is a struct, recurse into the field at the specified offset. 3328 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3329 if (IROffset < SL->getSizeInBytes()) { 3330 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3331 IROffset -= SL->getElementOffset(FieldIdx); 3332 3333 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3334 SourceTy, SourceOffset); 3335 } 3336 } 3337 3338 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3339 llvm::Type *EltTy = ATy->getElementType(); 3340 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3341 unsigned EltOffset = IROffset/EltSize*EltSize; 3342 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3343 SourceOffset); 3344 } 3345 3346 // Okay, we don't have any better idea of what to pass, so we pass this in an 3347 // integer register that isn't too big to fit the rest of the struct. 3348 unsigned TySizeInBytes = 3349 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3350 3351 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3352 3353 // It is always safe to classify this as an integer type up to i64 that 3354 // isn't larger than the structure. 3355 return llvm::IntegerType::get(getVMContext(), 3356 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3357 } 3358 3359 3360 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3361 /// be used as elements of a two register pair to pass or return, return a 3362 /// first class aggregate to represent them. For example, if the low part of 3363 /// a by-value argument should be passed as i32* and the high part as float, 3364 /// return {i32*, float}. 3365 static llvm::Type * 3366 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3367 const llvm::DataLayout &TD) { 3368 // In order to correctly satisfy the ABI, we need to the high part to start 3369 // at offset 8. If the high and low parts we inferred are both 4-byte types 3370 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3371 // the second element at offset 8. Check for this: 3372 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3373 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3374 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3375 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3376 3377 // To handle this, we have to increase the size of the low part so that the 3378 // second element will start at an 8 byte offset. We can't increase the size 3379 // of the second element because it might make us access off the end of the 3380 // struct. 3381 if (HiStart != 8) { 3382 // There are usually two sorts of types the ABI generation code can produce 3383 // for the low part of a pair that aren't 8 bytes in size: float or 3384 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3385 // NaCl). 3386 // Promote these to a larger type. 3387 if (Lo->isFloatTy()) 3388 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3389 else { 3390 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3391 && "Invalid/unknown lo type"); 3392 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3393 } 3394 } 3395 3396 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3397 3398 // Verify that the second element is at an 8-byte offset. 3399 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3400 "Invalid x86-64 argument pair!"); 3401 return Result; 3402 } 3403 3404 ABIArgInfo X86_64ABIInfo:: 3405 classifyReturnType(QualType RetTy) const { 3406 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3407 // classification algorithm. 3408 X86_64ABIInfo::Class Lo, Hi; 3409 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3410 3411 // Check some invariants. 3412 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3413 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3414 3415 llvm::Type *ResType = nullptr; 3416 switch (Lo) { 3417 case NoClass: 3418 if (Hi == NoClass) 3419 return ABIArgInfo::getIgnore(); 3420 // If the low part is just padding, it takes no register, leave ResType 3421 // null. 3422 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3423 "Unknown missing lo part"); 3424 break; 3425 3426 case SSEUp: 3427 case X87Up: 3428 llvm_unreachable("Invalid classification for lo word."); 3429 3430 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3431 // hidden argument. 3432 case Memory: 3433 return getIndirectReturnResult(RetTy); 3434 3435 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3436 // available register of the sequence %rax, %rdx is used. 3437 case Integer: 3438 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3439 3440 // If we have a sign or zero extended integer, make sure to return Extend 3441 // so that the parameter gets the right LLVM IR attributes. 3442 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3443 // Treat an enum type as its underlying type. 3444 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3445 RetTy = EnumTy->getDecl()->getIntegerType(); 3446 3447 if (RetTy->isIntegralOrEnumerationType() && 3448 isPromotableIntegerTypeForABI(RetTy)) 3449 return ABIArgInfo::getExtend(RetTy); 3450 } 3451 break; 3452 3453 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3454 // available SSE register of the sequence %xmm0, %xmm1 is used. 3455 case SSE: 3456 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3457 break; 3458 3459 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3460 // returned on the X87 stack in %st0 as 80-bit x87 number. 3461 case X87: 3462 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3463 break; 3464 3465 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3466 // part of the value is returned in %st0 and the imaginary part in 3467 // %st1. 3468 case ComplexX87: 3469 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3470 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3471 llvm::Type::getX86_FP80Ty(getVMContext())); 3472 break; 3473 } 3474 3475 llvm::Type *HighPart = nullptr; 3476 switch (Hi) { 3477 // Memory was handled previously and X87 should 3478 // never occur as a hi class. 3479 case Memory: 3480 case X87: 3481 llvm_unreachable("Invalid classification for hi word."); 3482 3483 case ComplexX87: // Previously handled. 3484 case NoClass: 3485 break; 3486 3487 case Integer: 3488 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3489 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3490 return ABIArgInfo::getDirect(HighPart, 8); 3491 break; 3492 case SSE: 3493 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3494 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3495 return ABIArgInfo::getDirect(HighPart, 8); 3496 break; 3497 3498 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3499 // is passed in the next available eightbyte chunk if the last used 3500 // vector register. 3501 // 3502 // SSEUP should always be preceded by SSE, just widen. 3503 case SSEUp: 3504 assert(Lo == SSE && "Unexpected SSEUp classification."); 3505 ResType = GetByteVectorType(RetTy); 3506 break; 3507 3508 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3509 // returned together with the previous X87 value in %st0. 3510 case X87Up: 3511 // If X87Up is preceded by X87, we don't need to do 3512 // anything. However, in some cases with unions it may not be 3513 // preceded by X87. In such situations we follow gcc and pass the 3514 // extra bits in an SSE reg. 3515 if (Lo != X87) { 3516 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3517 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3518 return ABIArgInfo::getDirect(HighPart, 8); 3519 } 3520 break; 3521 } 3522 3523 // If a high part was specified, merge it together with the low part. It is 3524 // known to pass in the high eightbyte of the result. We do this by forming a 3525 // first class struct aggregate with the high and low part: {low, high} 3526 if (HighPart) 3527 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3528 3529 return ABIArgInfo::getDirect(ResType); 3530 } 3531 3532 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3533 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3534 bool isNamedArg) 3535 const 3536 { 3537 Ty = useFirstFieldIfTransparentUnion(Ty); 3538 3539 X86_64ABIInfo::Class Lo, Hi; 3540 classify(Ty, 0, Lo, Hi, isNamedArg); 3541 3542 // Check some invariants. 3543 // FIXME: Enforce these by construction. 3544 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3545 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3546 3547 neededInt = 0; 3548 neededSSE = 0; 3549 llvm::Type *ResType = nullptr; 3550 switch (Lo) { 3551 case NoClass: 3552 if (Hi == NoClass) 3553 return ABIArgInfo::getIgnore(); 3554 // If the low part is just padding, it takes no register, leave ResType 3555 // null. 3556 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3557 "Unknown missing lo part"); 3558 break; 3559 3560 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3561 // on the stack. 3562 case Memory: 3563 3564 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3565 // COMPLEX_X87, it is passed in memory. 3566 case X87: 3567 case ComplexX87: 3568 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3569 ++neededInt; 3570 return getIndirectResult(Ty, freeIntRegs); 3571 3572 case SSEUp: 3573 case X87Up: 3574 llvm_unreachable("Invalid classification for lo word."); 3575 3576 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3577 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3578 // and %r9 is used. 3579 case Integer: 3580 ++neededInt; 3581 3582 // Pick an 8-byte type based on the preferred type. 3583 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3584 3585 // If we have a sign or zero extended integer, make sure to return Extend 3586 // so that the parameter gets the right LLVM IR attributes. 3587 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3588 // Treat an enum type as its underlying type. 3589 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3590 Ty = EnumTy->getDecl()->getIntegerType(); 3591 3592 if (Ty->isIntegralOrEnumerationType() && 3593 isPromotableIntegerTypeForABI(Ty)) 3594 return ABIArgInfo::getExtend(Ty); 3595 } 3596 3597 break; 3598 3599 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3600 // available SSE register is used, the registers are taken in the 3601 // order from %xmm0 to %xmm7. 3602 case SSE: { 3603 llvm::Type *IRType = CGT.ConvertType(Ty); 3604 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3605 ++neededSSE; 3606 break; 3607 } 3608 } 3609 3610 llvm::Type *HighPart = nullptr; 3611 switch (Hi) { 3612 // Memory was handled previously, ComplexX87 and X87 should 3613 // never occur as hi classes, and X87Up must be preceded by X87, 3614 // which is passed in memory. 3615 case Memory: 3616 case X87: 3617 case ComplexX87: 3618 llvm_unreachable("Invalid classification for hi word."); 3619 3620 case NoClass: break; 3621 3622 case Integer: 3623 ++neededInt; 3624 // Pick an 8-byte type based on the preferred type. 3625 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3626 3627 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3628 return ABIArgInfo::getDirect(HighPart, 8); 3629 break; 3630 3631 // X87Up generally doesn't occur here (long double is passed in 3632 // memory), except in situations involving unions. 3633 case X87Up: 3634 case SSE: 3635 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3636 3637 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3638 return ABIArgInfo::getDirect(HighPart, 8); 3639 3640 ++neededSSE; 3641 break; 3642 3643 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3644 // eightbyte is passed in the upper half of the last used SSE 3645 // register. This only happens when 128-bit vectors are passed. 3646 case SSEUp: 3647 assert(Lo == SSE && "Unexpected SSEUp classification"); 3648 ResType = GetByteVectorType(Ty); 3649 break; 3650 } 3651 3652 // If a high part was specified, merge it together with the low part. It is 3653 // known to pass in the high eightbyte of the result. We do this by forming a 3654 // first class struct aggregate with the high and low part: {low, high} 3655 if (HighPart) 3656 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3657 3658 return ABIArgInfo::getDirect(ResType); 3659 } 3660 3661 ABIArgInfo 3662 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3663 unsigned &NeededSSE) const { 3664 auto RT = Ty->getAs<RecordType>(); 3665 assert(RT && "classifyRegCallStructType only valid with struct types"); 3666 3667 if (RT->getDecl()->hasFlexibleArrayMember()) 3668 return getIndirectReturnResult(Ty); 3669 3670 // Sum up bases 3671 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3672 if (CXXRD->isDynamicClass()) { 3673 NeededInt = NeededSSE = 0; 3674 return getIndirectReturnResult(Ty); 3675 } 3676 3677 for (const auto &I : CXXRD->bases()) 3678 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3679 .isIndirect()) { 3680 NeededInt = NeededSSE = 0; 3681 return getIndirectReturnResult(Ty); 3682 } 3683 } 3684 3685 // Sum up members 3686 for (const auto *FD : RT->getDecl()->fields()) { 3687 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3688 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3689 .isIndirect()) { 3690 NeededInt = NeededSSE = 0; 3691 return getIndirectReturnResult(Ty); 3692 } 3693 } else { 3694 unsigned LocalNeededInt, LocalNeededSSE; 3695 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3696 LocalNeededSSE, true) 3697 .isIndirect()) { 3698 NeededInt = NeededSSE = 0; 3699 return getIndirectReturnResult(Ty); 3700 } 3701 NeededInt += LocalNeededInt; 3702 NeededSSE += LocalNeededSSE; 3703 } 3704 } 3705 3706 return ABIArgInfo::getDirect(); 3707 } 3708 3709 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3710 unsigned &NeededInt, 3711 unsigned &NeededSSE) const { 3712 3713 NeededInt = 0; 3714 NeededSSE = 0; 3715 3716 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3717 } 3718 3719 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3720 3721 const unsigned CallingConv = FI.getCallingConvention(); 3722 // It is possible to force Win64 calling convention on any x86_64 target by 3723 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3724 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3725 if (CallingConv == llvm::CallingConv::Win64) { 3726 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3727 Win64ABIInfo.computeInfo(FI); 3728 return; 3729 } 3730 3731 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3732 3733 // Keep track of the number of assigned registers. 3734 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3735 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3736 unsigned NeededInt, NeededSSE; 3737 3738 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3739 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3740 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3741 FI.getReturnInfo() = 3742 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3743 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3744 FreeIntRegs -= NeededInt; 3745 FreeSSERegs -= NeededSSE; 3746 } else { 3747 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3748 } 3749 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3750 getContext().getCanonicalType(FI.getReturnType() 3751 ->getAs<ComplexType>() 3752 ->getElementType()) == 3753 getContext().LongDoubleTy) 3754 // Complex Long Double Type is passed in Memory when Regcall 3755 // calling convention is used. 3756 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3757 else 3758 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3759 } 3760 3761 // If the return value is indirect, then the hidden argument is consuming one 3762 // integer register. 3763 if (FI.getReturnInfo().isIndirect()) 3764 --FreeIntRegs; 3765 3766 // The chain argument effectively gives us another free register. 3767 if (FI.isChainCall()) 3768 ++FreeIntRegs; 3769 3770 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3771 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3772 // get assigned (in left-to-right order) for passing as follows... 3773 unsigned ArgNo = 0; 3774 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3775 it != ie; ++it, ++ArgNo) { 3776 bool IsNamedArg = ArgNo < NumRequiredArgs; 3777 3778 if (IsRegCall && it->type->isStructureOrClassType()) 3779 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3780 else 3781 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3782 NeededSSE, IsNamedArg); 3783 3784 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3785 // eightbyte of an argument, the whole argument is passed on the 3786 // stack. If registers have already been assigned for some 3787 // eightbytes of such an argument, the assignments get reverted. 3788 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3789 FreeIntRegs -= NeededInt; 3790 FreeSSERegs -= NeededSSE; 3791 } else { 3792 it->info = getIndirectResult(it->type, FreeIntRegs); 3793 } 3794 } 3795 } 3796 3797 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3798 Address VAListAddr, QualType Ty) { 3799 Address overflow_arg_area_p = 3800 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3801 llvm::Value *overflow_arg_area = 3802 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3803 3804 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3805 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3806 // It isn't stated explicitly in the standard, but in practice we use 3807 // alignment greater than 16 where necessary. 3808 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3809 if (Align > CharUnits::fromQuantity(8)) { 3810 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3811 Align); 3812 } 3813 3814 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3815 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3816 llvm::Value *Res = 3817 CGF.Builder.CreateBitCast(overflow_arg_area, 3818 llvm::PointerType::getUnqual(LTy)); 3819 3820 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3821 // l->overflow_arg_area + sizeof(type). 3822 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3823 // an 8 byte boundary. 3824 3825 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3826 llvm::Value *Offset = 3827 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3828 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3829 "overflow_arg_area.next"); 3830 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3831 3832 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3833 return Address(Res, Align); 3834 } 3835 3836 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3837 QualType Ty) const { 3838 // Assume that va_list type is correct; should be pointer to LLVM type: 3839 // struct { 3840 // i32 gp_offset; 3841 // i32 fp_offset; 3842 // i8* overflow_arg_area; 3843 // i8* reg_save_area; 3844 // }; 3845 unsigned neededInt, neededSSE; 3846 3847 Ty = getContext().getCanonicalType(Ty); 3848 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3849 /*isNamedArg*/false); 3850 3851 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3852 // in the registers. If not go to step 7. 3853 if (!neededInt && !neededSSE) 3854 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3855 3856 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3857 // general purpose registers needed to pass type and num_fp to hold 3858 // the number of floating point registers needed. 3859 3860 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3861 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3862 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3863 // 3864 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3865 // register save space). 3866 3867 llvm::Value *InRegs = nullptr; 3868 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3869 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3870 if (neededInt) { 3871 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3872 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3873 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3874 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3875 } 3876 3877 if (neededSSE) { 3878 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3879 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3880 llvm::Value *FitsInFP = 3881 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3882 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3883 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3884 } 3885 3886 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3887 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3888 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3889 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3890 3891 // Emit code to load the value if it was passed in registers. 3892 3893 CGF.EmitBlock(InRegBlock); 3894 3895 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3896 // an offset of l->gp_offset and/or l->fp_offset. This may require 3897 // copying to a temporary location in case the parameter is passed 3898 // in different register classes or requires an alignment greater 3899 // than 8 for general purpose registers and 16 for XMM registers. 3900 // 3901 // FIXME: This really results in shameful code when we end up needing to 3902 // collect arguments from different places; often what should result in a 3903 // simple assembling of a structure from scattered addresses has many more 3904 // loads than necessary. Can we clean this up? 3905 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3906 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3907 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3908 3909 Address RegAddr = Address::invalid(); 3910 if (neededInt && neededSSE) { 3911 // FIXME: Cleanup. 3912 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3913 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3914 Address Tmp = CGF.CreateMemTemp(Ty); 3915 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3916 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3917 llvm::Type *TyLo = ST->getElementType(0); 3918 llvm::Type *TyHi = ST->getElementType(1); 3919 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3920 "Unexpected ABI info for mixed regs"); 3921 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3922 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3923 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3924 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3925 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3926 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3927 3928 // Copy the first element. 3929 // FIXME: Our choice of alignment here and below is probably pessimistic. 3930 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3931 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3932 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3933 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3934 3935 // Copy the second element. 3936 V = CGF.Builder.CreateAlignedLoad( 3937 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3938 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3939 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3940 3941 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3942 } else if (neededInt) { 3943 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3944 CharUnits::fromQuantity(8)); 3945 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3946 3947 // Copy to a temporary if necessary to ensure the appropriate alignment. 3948 std::pair<CharUnits, CharUnits> SizeAlign = 3949 getContext().getTypeInfoInChars(Ty); 3950 uint64_t TySize = SizeAlign.first.getQuantity(); 3951 CharUnits TyAlign = SizeAlign.second; 3952 3953 // Copy into a temporary if the type is more aligned than the 3954 // register save area. 3955 if (TyAlign.getQuantity() > 8) { 3956 Address Tmp = CGF.CreateMemTemp(Ty); 3957 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3958 RegAddr = Tmp; 3959 } 3960 3961 } else if (neededSSE == 1) { 3962 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3963 CharUnits::fromQuantity(16)); 3964 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3965 } else { 3966 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3967 // SSE registers are spaced 16 bytes apart in the register save 3968 // area, we need to collect the two eightbytes together. 3969 // The ABI isn't explicit about this, but it seems reasonable 3970 // to assume that the slots are 16-byte aligned, since the stack is 3971 // naturally 16-byte aligned and the prologue is expected to store 3972 // all the SSE registers to the RSA. 3973 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3974 CharUnits::fromQuantity(16)); 3975 Address RegAddrHi = 3976 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3977 CharUnits::fromQuantity(16)); 3978 llvm::Type *ST = AI.canHaveCoerceToType() 3979 ? AI.getCoerceToType() 3980 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3981 llvm::Value *V; 3982 Address Tmp = CGF.CreateMemTemp(Ty); 3983 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3984 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3985 RegAddrLo, ST->getStructElementType(0))); 3986 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3987 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3988 RegAddrHi, ST->getStructElementType(1))); 3989 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3990 3991 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3992 } 3993 3994 // AMD64-ABI 3.5.7p5: Step 5. Set: 3995 // l->gp_offset = l->gp_offset + num_gp * 8 3996 // l->fp_offset = l->fp_offset + num_fp * 16. 3997 if (neededInt) { 3998 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3999 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4000 gp_offset_p); 4001 } 4002 if (neededSSE) { 4003 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4004 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4005 fp_offset_p); 4006 } 4007 CGF.EmitBranch(ContBlock); 4008 4009 // Emit code to load the value if it was passed in memory. 4010 4011 CGF.EmitBlock(InMemBlock); 4012 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4013 4014 // Return the appropriate result. 4015 4016 CGF.EmitBlock(ContBlock); 4017 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4018 "vaarg.addr"); 4019 return ResAddr; 4020 } 4021 4022 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4023 QualType Ty) const { 4024 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4025 CGF.getContext().getTypeInfoInChars(Ty), 4026 CharUnits::fromQuantity(8), 4027 /*allowHigherAlign*/ false); 4028 } 4029 4030 ABIArgInfo 4031 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4032 const ABIArgInfo ¤t) const { 4033 // Assumes vectorCall calling convention. 4034 const Type *Base = nullptr; 4035 uint64_t NumElts = 0; 4036 4037 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4038 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4039 FreeSSERegs -= NumElts; 4040 return getDirectX86Hva(); 4041 } 4042 return current; 4043 } 4044 4045 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4046 bool IsReturnType, bool IsVectorCall, 4047 bool IsRegCall) const { 4048 4049 if (Ty->isVoidType()) 4050 return ABIArgInfo::getIgnore(); 4051 4052 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4053 Ty = EnumTy->getDecl()->getIntegerType(); 4054 4055 TypeInfo Info = getContext().getTypeInfo(Ty); 4056 uint64_t Width = Info.Width; 4057 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4058 4059 const RecordType *RT = Ty->getAs<RecordType>(); 4060 if (RT) { 4061 if (!IsReturnType) { 4062 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4063 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4064 } 4065 4066 if (RT->getDecl()->hasFlexibleArrayMember()) 4067 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4068 4069 } 4070 4071 const Type *Base = nullptr; 4072 uint64_t NumElts = 0; 4073 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4074 // other targets. 4075 if ((IsVectorCall || IsRegCall) && 4076 isHomogeneousAggregate(Ty, Base, NumElts)) { 4077 if (IsRegCall) { 4078 if (FreeSSERegs >= NumElts) { 4079 FreeSSERegs -= NumElts; 4080 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4081 return ABIArgInfo::getDirect(); 4082 return ABIArgInfo::getExpand(); 4083 } 4084 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4085 } else if (IsVectorCall) { 4086 if (FreeSSERegs >= NumElts && 4087 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4088 FreeSSERegs -= NumElts; 4089 return ABIArgInfo::getDirect(); 4090 } else if (IsReturnType) { 4091 return ABIArgInfo::getExpand(); 4092 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4093 // HVAs are delayed and reclassified in the 2nd step. 4094 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4095 } 4096 } 4097 } 4098 4099 if (Ty->isMemberPointerType()) { 4100 // If the member pointer is represented by an LLVM int or ptr, pass it 4101 // directly. 4102 llvm::Type *LLTy = CGT.ConvertType(Ty); 4103 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4104 return ABIArgInfo::getDirect(); 4105 } 4106 4107 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4108 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4109 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4110 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4111 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4112 4113 // Otherwise, coerce it to a small integer. 4114 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4115 } 4116 4117 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4118 switch (BT->getKind()) { 4119 case BuiltinType::Bool: 4120 // Bool type is always extended to the ABI, other builtin types are not 4121 // extended. 4122 return ABIArgInfo::getExtend(Ty); 4123 4124 case BuiltinType::LongDouble: 4125 // Mingw64 GCC uses the old 80 bit extended precision floating point 4126 // unit. It passes them indirectly through memory. 4127 if (IsMingw64) { 4128 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4129 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4130 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4131 } 4132 break; 4133 4134 case BuiltinType::Int128: 4135 case BuiltinType::UInt128: 4136 // If it's a parameter type, the normal ABI rule is that arguments larger 4137 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4138 // even though it isn't particularly efficient. 4139 if (!IsReturnType) 4140 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4141 4142 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4143 // Clang matches them for compatibility. 4144 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4145 llvm::Type::getInt64Ty(getVMContext()), 2)); 4146 4147 default: 4148 break; 4149 } 4150 } 4151 4152 if (Ty->isExtIntType()) { 4153 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4154 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4155 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4156 // anyway as long is it fits in them, so we don't have to check the power of 4157 // 2. 4158 if (Width <= 64) 4159 return ABIArgInfo::getDirect(); 4160 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4161 } 4162 4163 return ABIArgInfo::getDirect(); 4164 } 4165 4166 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4167 unsigned FreeSSERegs, 4168 bool IsVectorCall, 4169 bool IsRegCall) const { 4170 unsigned Count = 0; 4171 for (auto &I : FI.arguments()) { 4172 // Vectorcall in x64 only permits the first 6 arguments to be passed 4173 // as XMM/YMM registers. 4174 if (Count < VectorcallMaxParamNumAsReg) 4175 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4176 else { 4177 // Since these cannot be passed in registers, pretend no registers 4178 // are left. 4179 unsigned ZeroSSERegsAvail = 0; 4180 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4181 IsVectorCall, IsRegCall); 4182 } 4183 ++Count; 4184 } 4185 4186 for (auto &I : FI.arguments()) { 4187 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4188 } 4189 } 4190 4191 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4192 const unsigned CC = FI.getCallingConvention(); 4193 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4194 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4195 4196 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4197 // classification rules. 4198 if (CC == llvm::CallingConv::X86_64_SysV) { 4199 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4200 SysVABIInfo.computeInfo(FI); 4201 return; 4202 } 4203 4204 unsigned FreeSSERegs = 0; 4205 if (IsVectorCall) { 4206 // We can use up to 4 SSE return registers with vectorcall. 4207 FreeSSERegs = 4; 4208 } else if (IsRegCall) { 4209 // RegCall gives us 16 SSE registers. 4210 FreeSSERegs = 16; 4211 } 4212 4213 if (!getCXXABI().classifyReturnType(FI)) 4214 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4215 IsVectorCall, IsRegCall); 4216 4217 if (IsVectorCall) { 4218 // We can use up to 6 SSE register parameters with vectorcall. 4219 FreeSSERegs = 6; 4220 } else if (IsRegCall) { 4221 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4222 FreeSSERegs = 16; 4223 } 4224 4225 if (IsVectorCall) { 4226 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4227 } else { 4228 for (auto &I : FI.arguments()) 4229 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4230 } 4231 4232 } 4233 4234 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4235 QualType Ty) const { 4236 4237 bool IsIndirect = false; 4238 4239 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4240 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4241 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4242 uint64_t Width = getContext().getTypeSize(Ty); 4243 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4244 } 4245 4246 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4247 CGF.getContext().getTypeInfoInChars(Ty), 4248 CharUnits::fromQuantity(8), 4249 /*allowHigherAlign*/ false); 4250 } 4251 4252 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4253 llvm::Value *Address, bool Is64Bit, 4254 bool IsAIX) { 4255 // This is calculated from the LLVM and GCC tables and verified 4256 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4257 4258 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4259 4260 llvm::IntegerType *i8 = CGF.Int8Ty; 4261 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4262 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4263 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4264 4265 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4266 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4267 4268 // 32-63: fp0-31, the 8-byte floating-point registers 4269 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4270 4271 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4272 // 64: mq 4273 // 65: lr 4274 // 66: ctr 4275 // 67: ap 4276 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4277 4278 // 68-76 are various 4-byte special-purpose registers: 4279 // 68-75 cr0-7 4280 // 76: xer 4281 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4282 4283 // 77-108: v0-31, the 16-byte vector registers 4284 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4285 4286 // 109: vrsave 4287 // 110: vscr 4288 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4289 4290 // AIX does not utilize the rest of the registers. 4291 if (IsAIX) 4292 return false; 4293 4294 // 111: spe_acc 4295 // 112: spefscr 4296 // 113: sfp 4297 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4298 4299 if (!Is64Bit) 4300 return false; 4301 4302 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4303 // or above CPU. 4304 // 64-bit only registers: 4305 // 114: tfhar 4306 // 115: tfiar 4307 // 116: texasr 4308 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4309 4310 return false; 4311 } 4312 4313 // AIX 4314 namespace { 4315 /// AIXABIInfo - The AIX XCOFF ABI information. 4316 class AIXABIInfo : public ABIInfo { 4317 const bool Is64Bit; 4318 const unsigned PtrByteSize; 4319 CharUnits getParamTypeAlignment(QualType Ty) const; 4320 4321 public: 4322 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4323 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4324 4325 bool isPromotableTypeForABI(QualType Ty) const; 4326 4327 ABIArgInfo classifyReturnType(QualType RetTy) const; 4328 ABIArgInfo classifyArgumentType(QualType Ty) const; 4329 4330 void computeInfo(CGFunctionInfo &FI) const override { 4331 if (!getCXXABI().classifyReturnType(FI)) 4332 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4333 4334 for (auto &I : FI.arguments()) 4335 I.info = classifyArgumentType(I.type); 4336 } 4337 4338 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4339 QualType Ty) const override; 4340 }; 4341 4342 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4343 const bool Is64Bit; 4344 4345 public: 4346 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4347 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4348 Is64Bit(Is64Bit) {} 4349 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4350 return 1; // r1 is the dedicated stack pointer 4351 } 4352 4353 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4354 llvm::Value *Address) const override; 4355 }; 4356 } // namespace 4357 4358 // Return true if the ABI requires Ty to be passed sign- or zero- 4359 // extended to 32/64 bits. 4360 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4361 // Treat an enum type as its underlying type. 4362 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4363 Ty = EnumTy->getDecl()->getIntegerType(); 4364 4365 // Promotable integer types are required to be promoted by the ABI. 4366 if (Ty->isPromotableIntegerType()) 4367 return true; 4368 4369 if (!Is64Bit) 4370 return false; 4371 4372 // For 64 bit mode, in addition to the usual promotable integer types, we also 4373 // need to extend all 32-bit types, since the ABI requires promotion to 64 4374 // bits. 4375 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4376 switch (BT->getKind()) { 4377 case BuiltinType::Int: 4378 case BuiltinType::UInt: 4379 return true; 4380 default: 4381 break; 4382 } 4383 4384 return false; 4385 } 4386 4387 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4388 if (RetTy->isAnyComplexType()) 4389 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4390 4391 if (RetTy->isVectorType()) 4392 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4393 4394 if (RetTy->isVoidType()) 4395 return ABIArgInfo::getIgnore(); 4396 4397 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4398 // alignment here. 4399 if (isAggregateTypeForABI(RetTy)) 4400 return getNaturalAlignIndirect(RetTy); 4401 4402 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4403 : ABIArgInfo::getDirect()); 4404 } 4405 4406 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4407 Ty = useFirstFieldIfTransparentUnion(Ty); 4408 4409 if (Ty->isAnyComplexType()) 4410 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4411 4412 if (Ty->isVectorType()) 4413 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4414 4415 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4416 // alignment here. 4417 if (isAggregateTypeForABI(Ty)) { 4418 // Records with non-trivial destructors/copy-constructors should not be 4419 // passed by value. 4420 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4421 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4422 4423 CharUnits CCAlign = getParamTypeAlignment(Ty); 4424 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4425 4426 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4427 /*Realign*/ TyAlign > CCAlign); 4428 } 4429 4430 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4431 : ABIArgInfo::getDirect()); 4432 } 4433 4434 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4435 if (Ty->isAnyComplexType()) 4436 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4437 4438 if (Ty->isVectorType()) 4439 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4440 4441 // If the structure contains a vector type, the alignment is 16. 4442 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4443 return CharUnits::fromQuantity(16); 4444 4445 return CharUnits::fromQuantity(PtrByteSize); 4446 } 4447 4448 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4449 QualType Ty) const { 4450 if (Ty->isAnyComplexType()) 4451 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4452 4453 if (Ty->isVectorType()) 4454 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4455 4456 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4457 TypeInfo.second = getParamTypeAlignment(Ty); 4458 4459 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4460 4461 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4462 SlotSize, /*AllowHigher*/ true); 4463 } 4464 4465 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4466 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4467 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4468 } 4469 4470 // PowerPC-32 4471 namespace { 4472 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4473 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4474 bool IsSoftFloatABI; 4475 bool IsRetSmallStructInRegABI; 4476 4477 CharUnits getParamTypeAlignment(QualType Ty) const; 4478 4479 public: 4480 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4481 bool RetSmallStructInRegABI) 4482 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4483 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4484 4485 ABIArgInfo classifyReturnType(QualType RetTy) const; 4486 4487 void computeInfo(CGFunctionInfo &FI) const override { 4488 if (!getCXXABI().classifyReturnType(FI)) 4489 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4490 for (auto &I : FI.arguments()) 4491 I.info = classifyArgumentType(I.type); 4492 } 4493 4494 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4495 QualType Ty) const override; 4496 }; 4497 4498 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4499 public: 4500 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4501 bool RetSmallStructInRegABI) 4502 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4503 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4504 4505 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4506 const CodeGenOptions &Opts); 4507 4508 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4509 // This is recovered from gcc output. 4510 return 1; // r1 is the dedicated stack pointer 4511 } 4512 4513 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4514 llvm::Value *Address) const override; 4515 }; 4516 } 4517 4518 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4519 // Complex types are passed just like their elements. 4520 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4521 Ty = CTy->getElementType(); 4522 4523 if (Ty->isVectorType()) 4524 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4525 : 4); 4526 4527 // For single-element float/vector structs, we consider the whole type 4528 // to have the same alignment requirements as its single element. 4529 const Type *AlignTy = nullptr; 4530 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4531 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4532 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4533 (BT && BT->isFloatingPoint())) 4534 AlignTy = EltType; 4535 } 4536 4537 if (AlignTy) 4538 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4539 return CharUnits::fromQuantity(4); 4540 } 4541 4542 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4543 uint64_t Size; 4544 4545 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4546 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4547 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4548 // System V ABI (1995), page 3-22, specified: 4549 // > A structure or union whose size is less than or equal to 8 bytes 4550 // > shall be returned in r3 and r4, as if it were first stored in the 4551 // > 8-byte aligned memory area and then the low addressed word were 4552 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4553 // > the last member of the structure or union are not defined. 4554 // 4555 // GCC for big-endian PPC32 inserts the pad before the first member, 4556 // not "beyond the last member" of the struct. To stay compatible 4557 // with GCC, we coerce the struct to an integer of the same size. 4558 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4559 if (Size == 0) 4560 return ABIArgInfo::getIgnore(); 4561 else { 4562 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4563 return ABIArgInfo::getDirect(CoerceTy); 4564 } 4565 } 4566 4567 return DefaultABIInfo::classifyReturnType(RetTy); 4568 } 4569 4570 // TODO: this implementation is now likely redundant with 4571 // DefaultABIInfo::EmitVAArg. 4572 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4573 QualType Ty) const { 4574 if (getTarget().getTriple().isOSDarwin()) { 4575 auto TI = getContext().getTypeInfoInChars(Ty); 4576 TI.second = getParamTypeAlignment(Ty); 4577 4578 CharUnits SlotSize = CharUnits::fromQuantity(4); 4579 return emitVoidPtrVAArg(CGF, VAList, Ty, 4580 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4581 /*AllowHigherAlign=*/true); 4582 } 4583 4584 const unsigned OverflowLimit = 8; 4585 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4586 // TODO: Implement this. For now ignore. 4587 (void)CTy; 4588 return Address::invalid(); // FIXME? 4589 } 4590 4591 // struct __va_list_tag { 4592 // unsigned char gpr; 4593 // unsigned char fpr; 4594 // unsigned short reserved; 4595 // void *overflow_arg_area; 4596 // void *reg_save_area; 4597 // }; 4598 4599 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4600 bool isInt = 4601 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4602 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4603 4604 // All aggregates are passed indirectly? That doesn't seem consistent 4605 // with the argument-lowering code. 4606 bool isIndirect = Ty->isAggregateType(); 4607 4608 CGBuilderTy &Builder = CGF.Builder; 4609 4610 // The calling convention either uses 1-2 GPRs or 1 FPR. 4611 Address NumRegsAddr = Address::invalid(); 4612 if (isInt || IsSoftFloatABI) { 4613 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4614 } else { 4615 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4616 } 4617 4618 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4619 4620 // "Align" the register count when TY is i64. 4621 if (isI64 || (isF64 && IsSoftFloatABI)) { 4622 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4623 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4624 } 4625 4626 llvm::Value *CC = 4627 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4628 4629 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4630 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4631 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4632 4633 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4634 4635 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4636 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4637 4638 // Case 1: consume registers. 4639 Address RegAddr = Address::invalid(); 4640 { 4641 CGF.EmitBlock(UsingRegs); 4642 4643 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4644 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4645 CharUnits::fromQuantity(8)); 4646 assert(RegAddr.getElementType() == CGF.Int8Ty); 4647 4648 // Floating-point registers start after the general-purpose registers. 4649 if (!(isInt || IsSoftFloatABI)) { 4650 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4651 CharUnits::fromQuantity(32)); 4652 } 4653 4654 // Get the address of the saved value by scaling the number of 4655 // registers we've used by the number of 4656 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4657 llvm::Value *RegOffset = 4658 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4659 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4660 RegAddr.getPointer(), RegOffset), 4661 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4662 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4663 4664 // Increase the used-register count. 4665 NumRegs = 4666 Builder.CreateAdd(NumRegs, 4667 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4668 Builder.CreateStore(NumRegs, NumRegsAddr); 4669 4670 CGF.EmitBranch(Cont); 4671 } 4672 4673 // Case 2: consume space in the overflow area. 4674 Address MemAddr = Address::invalid(); 4675 { 4676 CGF.EmitBlock(UsingOverflow); 4677 4678 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4679 4680 // Everything in the overflow area is rounded up to a size of at least 4. 4681 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4682 4683 CharUnits Size; 4684 if (!isIndirect) { 4685 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4686 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4687 } else { 4688 Size = CGF.getPointerSize(); 4689 } 4690 4691 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4692 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4693 OverflowAreaAlign); 4694 // Round up address of argument to alignment 4695 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4696 if (Align > OverflowAreaAlign) { 4697 llvm::Value *Ptr = OverflowArea.getPointer(); 4698 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4699 Align); 4700 } 4701 4702 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4703 4704 // Increase the overflow area. 4705 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4706 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4707 CGF.EmitBranch(Cont); 4708 } 4709 4710 CGF.EmitBlock(Cont); 4711 4712 // Merge the cases with a phi. 4713 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4714 "vaarg.addr"); 4715 4716 // Load the pointer if the argument was passed indirectly. 4717 if (isIndirect) { 4718 Result = Address(Builder.CreateLoad(Result, "aggr"), 4719 getContext().getTypeAlignInChars(Ty)); 4720 } 4721 4722 return Result; 4723 } 4724 4725 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4726 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4727 assert(Triple.getArch() == llvm::Triple::ppc); 4728 4729 switch (Opts.getStructReturnConvention()) { 4730 case CodeGenOptions::SRCK_Default: 4731 break; 4732 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4733 return false; 4734 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4735 return true; 4736 } 4737 4738 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4739 return true; 4740 4741 return false; 4742 } 4743 4744 bool 4745 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4746 llvm::Value *Address) const { 4747 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4748 /*IsAIX*/ false); 4749 } 4750 4751 // PowerPC-64 4752 4753 namespace { 4754 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4755 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4756 public: 4757 enum ABIKind { 4758 ELFv1 = 0, 4759 ELFv2 4760 }; 4761 4762 private: 4763 static const unsigned GPRBits = 64; 4764 ABIKind Kind; 4765 bool HasQPX; 4766 bool IsSoftFloatABI; 4767 4768 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4769 // will be passed in a QPX register. 4770 bool IsQPXVectorTy(const Type *Ty) const { 4771 if (!HasQPX) 4772 return false; 4773 4774 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4775 unsigned NumElements = VT->getNumElements(); 4776 if (NumElements == 1) 4777 return false; 4778 4779 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4780 if (getContext().getTypeSize(Ty) <= 256) 4781 return true; 4782 } else if (VT->getElementType()-> 4783 isSpecificBuiltinType(BuiltinType::Float)) { 4784 if (getContext().getTypeSize(Ty) <= 128) 4785 return true; 4786 } 4787 } 4788 4789 return false; 4790 } 4791 4792 bool IsQPXVectorTy(QualType Ty) const { 4793 return IsQPXVectorTy(Ty.getTypePtr()); 4794 } 4795 4796 public: 4797 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4798 bool SoftFloatABI) 4799 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4800 IsSoftFloatABI(SoftFloatABI) {} 4801 4802 bool isPromotableTypeForABI(QualType Ty) const; 4803 CharUnits getParamTypeAlignment(QualType Ty) const; 4804 4805 ABIArgInfo classifyReturnType(QualType RetTy) const; 4806 ABIArgInfo classifyArgumentType(QualType Ty) const; 4807 4808 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4809 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4810 uint64_t Members) const override; 4811 4812 // TODO: We can add more logic to computeInfo to improve performance. 4813 // Example: For aggregate arguments that fit in a register, we could 4814 // use getDirectInReg (as is done below for structs containing a single 4815 // floating-point value) to avoid pushing them to memory on function 4816 // entry. This would require changing the logic in PPCISelLowering 4817 // when lowering the parameters in the caller and args in the callee. 4818 void computeInfo(CGFunctionInfo &FI) const override { 4819 if (!getCXXABI().classifyReturnType(FI)) 4820 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4821 for (auto &I : FI.arguments()) { 4822 // We rely on the default argument classification for the most part. 4823 // One exception: An aggregate containing a single floating-point 4824 // or vector item must be passed in a register if one is available. 4825 const Type *T = isSingleElementStruct(I.type, getContext()); 4826 if (T) { 4827 const BuiltinType *BT = T->getAs<BuiltinType>(); 4828 if (IsQPXVectorTy(T) || 4829 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4830 (BT && BT->isFloatingPoint())) { 4831 QualType QT(T, 0); 4832 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4833 continue; 4834 } 4835 } 4836 I.info = classifyArgumentType(I.type); 4837 } 4838 } 4839 4840 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4841 QualType Ty) const override; 4842 4843 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4844 bool asReturnValue) const override { 4845 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4846 } 4847 4848 bool isSwiftErrorInRegister() const override { 4849 return false; 4850 } 4851 }; 4852 4853 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4854 4855 public: 4856 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4857 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4858 bool SoftFloatABI) 4859 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4860 CGT, Kind, HasQPX, SoftFloatABI)) {} 4861 4862 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4863 // This is recovered from gcc output. 4864 return 1; // r1 is the dedicated stack pointer 4865 } 4866 4867 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4868 llvm::Value *Address) const override; 4869 }; 4870 4871 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4872 public: 4873 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4874 4875 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4876 // This is recovered from gcc output. 4877 return 1; // r1 is the dedicated stack pointer 4878 } 4879 4880 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4881 llvm::Value *Address) const override; 4882 }; 4883 4884 } 4885 4886 // Return true if the ABI requires Ty to be passed sign- or zero- 4887 // extended to 64 bits. 4888 bool 4889 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4890 // Treat an enum type as its underlying type. 4891 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4892 Ty = EnumTy->getDecl()->getIntegerType(); 4893 4894 // Promotable integer types are required to be promoted by the ABI. 4895 if (isPromotableIntegerTypeForABI(Ty)) 4896 return true; 4897 4898 // In addition to the usual promotable integer types, we also need to 4899 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4900 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4901 switch (BT->getKind()) { 4902 case BuiltinType::Int: 4903 case BuiltinType::UInt: 4904 return true; 4905 default: 4906 break; 4907 } 4908 4909 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4910 if (EIT->getNumBits() < 64) 4911 return true; 4912 4913 return false; 4914 } 4915 4916 /// isAlignedParamType - Determine whether a type requires 16-byte or 4917 /// higher alignment in the parameter area. Always returns at least 8. 4918 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4919 // Complex types are passed just like their elements. 4920 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4921 Ty = CTy->getElementType(); 4922 4923 // Only vector types of size 16 bytes need alignment (larger types are 4924 // passed via reference, smaller types are not aligned). 4925 if (IsQPXVectorTy(Ty)) { 4926 if (getContext().getTypeSize(Ty) > 128) 4927 return CharUnits::fromQuantity(32); 4928 4929 return CharUnits::fromQuantity(16); 4930 } else if (Ty->isVectorType()) { 4931 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4932 } 4933 4934 // For single-element float/vector structs, we consider the whole type 4935 // to have the same alignment requirements as its single element. 4936 const Type *AlignAsType = nullptr; 4937 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4938 if (EltType) { 4939 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4940 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4941 getContext().getTypeSize(EltType) == 128) || 4942 (BT && BT->isFloatingPoint())) 4943 AlignAsType = EltType; 4944 } 4945 4946 // Likewise for ELFv2 homogeneous aggregates. 4947 const Type *Base = nullptr; 4948 uint64_t Members = 0; 4949 if (!AlignAsType && Kind == ELFv2 && 4950 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4951 AlignAsType = Base; 4952 4953 // With special case aggregates, only vector base types need alignment. 4954 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4955 if (getContext().getTypeSize(AlignAsType) > 128) 4956 return CharUnits::fromQuantity(32); 4957 4958 return CharUnits::fromQuantity(16); 4959 } else if (AlignAsType) { 4960 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4961 } 4962 4963 // Otherwise, we only need alignment for any aggregate type that 4964 // has an alignment requirement of >= 16 bytes. 4965 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4966 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4967 return CharUnits::fromQuantity(32); 4968 return CharUnits::fromQuantity(16); 4969 } 4970 4971 return CharUnits::fromQuantity(8); 4972 } 4973 4974 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4975 /// aggregate. Base is set to the base element type, and Members is set 4976 /// to the number of base elements. 4977 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4978 uint64_t &Members) const { 4979 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4980 uint64_t NElements = AT->getSize().getZExtValue(); 4981 if (NElements == 0) 4982 return false; 4983 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4984 return false; 4985 Members *= NElements; 4986 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4987 const RecordDecl *RD = RT->getDecl(); 4988 if (RD->hasFlexibleArrayMember()) 4989 return false; 4990 4991 Members = 0; 4992 4993 // If this is a C++ record, check the bases first. 4994 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4995 for (const auto &I : CXXRD->bases()) { 4996 // Ignore empty records. 4997 if (isEmptyRecord(getContext(), I.getType(), true)) 4998 continue; 4999 5000 uint64_t FldMembers; 5001 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5002 return false; 5003 5004 Members += FldMembers; 5005 } 5006 } 5007 5008 for (const auto *FD : RD->fields()) { 5009 // Ignore (non-zero arrays of) empty records. 5010 QualType FT = FD->getType(); 5011 while (const ConstantArrayType *AT = 5012 getContext().getAsConstantArrayType(FT)) { 5013 if (AT->getSize().getZExtValue() == 0) 5014 return false; 5015 FT = AT->getElementType(); 5016 } 5017 if (isEmptyRecord(getContext(), FT, true)) 5018 continue; 5019 5020 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5021 if (getContext().getLangOpts().CPlusPlus && 5022 FD->isZeroLengthBitField(getContext())) 5023 continue; 5024 5025 uint64_t FldMembers; 5026 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5027 return false; 5028 5029 Members = (RD->isUnion() ? 5030 std::max(Members, FldMembers) : Members + FldMembers); 5031 } 5032 5033 if (!Base) 5034 return false; 5035 5036 // Ensure there is no padding. 5037 if (getContext().getTypeSize(Base) * Members != 5038 getContext().getTypeSize(Ty)) 5039 return false; 5040 } else { 5041 Members = 1; 5042 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5043 Members = 2; 5044 Ty = CT->getElementType(); 5045 } 5046 5047 // Most ABIs only support float, double, and some vector type widths. 5048 if (!isHomogeneousAggregateBaseType(Ty)) 5049 return false; 5050 5051 // The base type must be the same for all members. Types that 5052 // agree in both total size and mode (float vs. vector) are 5053 // treated as being equivalent here. 5054 const Type *TyPtr = Ty.getTypePtr(); 5055 if (!Base) { 5056 Base = TyPtr; 5057 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5058 // so make sure to widen it explicitly. 5059 if (const VectorType *VT = Base->getAs<VectorType>()) { 5060 QualType EltTy = VT->getElementType(); 5061 unsigned NumElements = 5062 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5063 Base = getContext() 5064 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5065 .getTypePtr(); 5066 } 5067 } 5068 5069 if (Base->isVectorType() != TyPtr->isVectorType() || 5070 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5071 return false; 5072 } 5073 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5074 } 5075 5076 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5077 // Homogeneous aggregates for ELFv2 must have base types of float, 5078 // double, long double, or 128-bit vectors. 5079 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5080 if (BT->getKind() == BuiltinType::Float || 5081 BT->getKind() == BuiltinType::Double || 5082 BT->getKind() == BuiltinType::LongDouble || 5083 (getContext().getTargetInfo().hasFloat128Type() && 5084 (BT->getKind() == BuiltinType::Float128))) { 5085 if (IsSoftFloatABI) 5086 return false; 5087 return true; 5088 } 5089 } 5090 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5091 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5092 return true; 5093 } 5094 return false; 5095 } 5096 5097 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5098 const Type *Base, uint64_t Members) const { 5099 // Vector and fp128 types require one register, other floating point types 5100 // require one or two registers depending on their size. 5101 uint32_t NumRegs = 5102 ((getContext().getTargetInfo().hasFloat128Type() && 5103 Base->isFloat128Type()) || 5104 Base->isVectorType()) ? 1 5105 : (getContext().getTypeSize(Base) + 63) / 64; 5106 5107 // Homogeneous Aggregates may occupy at most 8 registers. 5108 return Members * NumRegs <= 8; 5109 } 5110 5111 ABIArgInfo 5112 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5113 Ty = useFirstFieldIfTransparentUnion(Ty); 5114 5115 if (Ty->isAnyComplexType()) 5116 return ABIArgInfo::getDirect(); 5117 5118 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5119 // or via reference (larger than 16 bytes). 5120 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5121 uint64_t Size = getContext().getTypeSize(Ty); 5122 if (Size > 128) 5123 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5124 else if (Size < 128) { 5125 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5126 return ABIArgInfo::getDirect(CoerceTy); 5127 } 5128 } 5129 5130 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5131 if (EIT->getNumBits() > 128) 5132 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5133 5134 if (isAggregateTypeForABI(Ty)) { 5135 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5136 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5137 5138 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5139 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5140 5141 // ELFv2 homogeneous aggregates are passed as array types. 5142 const Type *Base = nullptr; 5143 uint64_t Members = 0; 5144 if (Kind == ELFv2 && 5145 isHomogeneousAggregate(Ty, Base, Members)) { 5146 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5147 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5148 return ABIArgInfo::getDirect(CoerceTy); 5149 } 5150 5151 // If an aggregate may end up fully in registers, we do not 5152 // use the ByVal method, but pass the aggregate as array. 5153 // This is usually beneficial since we avoid forcing the 5154 // back-end to store the argument to memory. 5155 uint64_t Bits = getContext().getTypeSize(Ty); 5156 if (Bits > 0 && Bits <= 8 * GPRBits) { 5157 llvm::Type *CoerceTy; 5158 5159 // Types up to 8 bytes are passed as integer type (which will be 5160 // properly aligned in the argument save area doubleword). 5161 if (Bits <= GPRBits) 5162 CoerceTy = 5163 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5164 // Larger types are passed as arrays, with the base type selected 5165 // according to the required alignment in the save area. 5166 else { 5167 uint64_t RegBits = ABIAlign * 8; 5168 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5169 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5170 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5171 } 5172 5173 return ABIArgInfo::getDirect(CoerceTy); 5174 } 5175 5176 // All other aggregates are passed ByVal. 5177 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5178 /*ByVal=*/true, 5179 /*Realign=*/TyAlign > ABIAlign); 5180 } 5181 5182 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5183 : ABIArgInfo::getDirect()); 5184 } 5185 5186 ABIArgInfo 5187 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5188 if (RetTy->isVoidType()) 5189 return ABIArgInfo::getIgnore(); 5190 5191 if (RetTy->isAnyComplexType()) 5192 return ABIArgInfo::getDirect(); 5193 5194 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5195 // or via reference (larger than 16 bytes). 5196 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5197 uint64_t Size = getContext().getTypeSize(RetTy); 5198 if (Size > 128) 5199 return getNaturalAlignIndirect(RetTy); 5200 else if (Size < 128) { 5201 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5202 return ABIArgInfo::getDirect(CoerceTy); 5203 } 5204 } 5205 5206 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5207 if (EIT->getNumBits() > 128) 5208 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5209 5210 if (isAggregateTypeForABI(RetTy)) { 5211 // ELFv2 homogeneous aggregates are returned as array types. 5212 const Type *Base = nullptr; 5213 uint64_t Members = 0; 5214 if (Kind == ELFv2 && 5215 isHomogeneousAggregate(RetTy, Base, Members)) { 5216 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5217 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5218 return ABIArgInfo::getDirect(CoerceTy); 5219 } 5220 5221 // ELFv2 small aggregates are returned in up to two registers. 5222 uint64_t Bits = getContext().getTypeSize(RetTy); 5223 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5224 if (Bits == 0) 5225 return ABIArgInfo::getIgnore(); 5226 5227 llvm::Type *CoerceTy; 5228 if (Bits > GPRBits) { 5229 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5230 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5231 } else 5232 CoerceTy = 5233 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5234 return ABIArgInfo::getDirect(CoerceTy); 5235 } 5236 5237 // All other aggregates are returned indirectly. 5238 return getNaturalAlignIndirect(RetTy); 5239 } 5240 5241 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5242 : ABIArgInfo::getDirect()); 5243 } 5244 5245 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5246 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5247 QualType Ty) const { 5248 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5249 TypeInfo.second = getParamTypeAlignment(Ty); 5250 5251 CharUnits SlotSize = CharUnits::fromQuantity(8); 5252 5253 // If we have a complex type and the base type is smaller than 8 bytes, 5254 // the ABI calls for the real and imaginary parts to be right-adjusted 5255 // in separate doublewords. However, Clang expects us to produce a 5256 // pointer to a structure with the two parts packed tightly. So generate 5257 // loads of the real and imaginary parts relative to the va_list pointer, 5258 // and store them to a temporary structure. 5259 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5260 CharUnits EltSize = TypeInfo.first / 2; 5261 if (EltSize < SlotSize) { 5262 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5263 SlotSize * 2, SlotSize, 5264 SlotSize, /*AllowHigher*/ true); 5265 5266 Address RealAddr = Addr; 5267 Address ImagAddr = RealAddr; 5268 if (CGF.CGM.getDataLayout().isBigEndian()) { 5269 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5270 SlotSize - EltSize); 5271 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5272 2 * SlotSize - EltSize); 5273 } else { 5274 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5275 } 5276 5277 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5278 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5279 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5280 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5281 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5282 5283 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5284 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5285 /*init*/ true); 5286 return Temp; 5287 } 5288 } 5289 5290 // Otherwise, just use the general rule. 5291 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5292 TypeInfo, SlotSize, /*AllowHigher*/ true); 5293 } 5294 5295 bool 5296 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5297 CodeGen::CodeGenFunction &CGF, 5298 llvm::Value *Address) const { 5299 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5300 /*IsAIX*/ false); 5301 } 5302 5303 bool 5304 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5305 llvm::Value *Address) const { 5306 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5307 /*IsAIX*/ false); 5308 } 5309 5310 //===----------------------------------------------------------------------===// 5311 // AArch64 ABI Implementation 5312 //===----------------------------------------------------------------------===// 5313 5314 namespace { 5315 5316 class AArch64ABIInfo : public SwiftABIInfo { 5317 public: 5318 enum ABIKind { 5319 AAPCS = 0, 5320 DarwinPCS, 5321 Win64 5322 }; 5323 5324 private: 5325 ABIKind Kind; 5326 5327 public: 5328 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5329 : SwiftABIInfo(CGT), Kind(Kind) {} 5330 5331 private: 5332 ABIKind getABIKind() const { return Kind; } 5333 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5334 5335 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5336 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5337 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5338 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5339 uint64_t Members) const override; 5340 5341 bool isIllegalVectorType(QualType Ty) const; 5342 5343 void computeInfo(CGFunctionInfo &FI) const override { 5344 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5345 FI.getReturnInfo() = 5346 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5347 5348 for (auto &it : FI.arguments()) 5349 it.info = classifyArgumentType(it.type); 5350 } 5351 5352 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5353 CodeGenFunction &CGF) const; 5354 5355 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5356 CodeGenFunction &CGF) const; 5357 5358 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5359 QualType Ty) const override { 5360 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5361 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5362 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5363 } 5364 5365 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5366 QualType Ty) const override; 5367 5368 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5369 bool asReturnValue) const override { 5370 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5371 } 5372 bool isSwiftErrorInRegister() const override { 5373 return true; 5374 } 5375 5376 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5377 unsigned elts) const override; 5378 5379 bool allowBFloatArgsAndRet() const override { 5380 return getTarget().hasBFloat16Type(); 5381 } 5382 }; 5383 5384 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5385 public: 5386 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5387 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5388 5389 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5390 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5391 } 5392 5393 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5394 return 31; 5395 } 5396 5397 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5398 5399 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5400 CodeGen::CodeGenModule &CGM) const override { 5401 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5402 if (!FD) 5403 return; 5404 5405 LangOptions::SignReturnAddressScopeKind Scope = 5406 CGM.getLangOpts().getSignReturnAddressScope(); 5407 LangOptions::SignReturnAddressKeyKind Key = 5408 CGM.getLangOpts().getSignReturnAddressKey(); 5409 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5410 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5411 ParsedTargetAttr Attr = TA->parse(); 5412 if (!Attr.BranchProtection.empty()) { 5413 TargetInfo::BranchProtectionInfo BPI; 5414 StringRef Error; 5415 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5416 BPI, Error); 5417 assert(Error.empty()); 5418 Scope = BPI.SignReturnAddr; 5419 Key = BPI.SignKey; 5420 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5421 } 5422 } 5423 5424 auto *Fn = cast<llvm::Function>(GV); 5425 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5426 Fn->addFnAttr("sign-return-address", 5427 Scope == LangOptions::SignReturnAddressScopeKind::All 5428 ? "all" 5429 : "non-leaf"); 5430 5431 Fn->addFnAttr("sign-return-address-key", 5432 Key == LangOptions::SignReturnAddressKeyKind::AKey 5433 ? "a_key" 5434 : "b_key"); 5435 } 5436 5437 if (BranchTargetEnforcement) 5438 Fn->addFnAttr("branch-target-enforcement"); 5439 } 5440 }; 5441 5442 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5443 public: 5444 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5445 : AArch64TargetCodeGenInfo(CGT, K) {} 5446 5447 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5448 CodeGen::CodeGenModule &CGM) const override; 5449 5450 void getDependentLibraryOption(llvm::StringRef Lib, 5451 llvm::SmallString<24> &Opt) const override { 5452 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5453 } 5454 5455 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5456 llvm::SmallString<32> &Opt) const override { 5457 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5458 } 5459 }; 5460 5461 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5462 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5463 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5464 if (GV->isDeclaration()) 5465 return; 5466 addStackProbeTargetAttributes(D, GV, CGM); 5467 } 5468 } 5469 5470 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5471 Ty = useFirstFieldIfTransparentUnion(Ty); 5472 5473 // Handle illegal vector types here. 5474 if (isIllegalVectorType(Ty)) { 5475 uint64_t Size = getContext().getTypeSize(Ty); 5476 // Android promotes <2 x i8> to i16, not i32 5477 if (isAndroid() && (Size <= 16)) { 5478 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5479 return ABIArgInfo::getDirect(ResType); 5480 } 5481 if (Size <= 32) { 5482 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5483 return ABIArgInfo::getDirect(ResType); 5484 } 5485 if (Size == 64) { 5486 auto *ResType = 5487 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5488 return ABIArgInfo::getDirect(ResType); 5489 } 5490 if (Size == 128) { 5491 auto *ResType = 5492 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5493 return ABIArgInfo::getDirect(ResType); 5494 } 5495 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5496 } 5497 5498 if (!isAggregateTypeForABI(Ty)) { 5499 // Treat an enum type as its underlying type. 5500 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5501 Ty = EnumTy->getDecl()->getIntegerType(); 5502 5503 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5504 if (EIT->getNumBits() > 128) 5505 return getNaturalAlignIndirect(Ty); 5506 5507 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5508 ? ABIArgInfo::getExtend(Ty) 5509 : ABIArgInfo::getDirect()); 5510 } 5511 5512 // Structures with either a non-trivial destructor or a non-trivial 5513 // copy constructor are always indirect. 5514 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5515 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5516 CGCXXABI::RAA_DirectInMemory); 5517 } 5518 5519 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5520 // elsewhere for GNU compatibility. 5521 uint64_t Size = getContext().getTypeSize(Ty); 5522 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5523 if (IsEmpty || Size == 0) { 5524 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5525 return ABIArgInfo::getIgnore(); 5526 5527 // GNU C mode. The only argument that gets ignored is an empty one with size 5528 // 0. 5529 if (IsEmpty && Size == 0) 5530 return ABIArgInfo::getIgnore(); 5531 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5532 } 5533 5534 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5535 const Type *Base = nullptr; 5536 uint64_t Members = 0; 5537 if (isHomogeneousAggregate(Ty, Base, Members)) { 5538 return ABIArgInfo::getDirect( 5539 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5540 } 5541 5542 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5543 if (Size <= 128) { 5544 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5545 // same size and alignment. 5546 if (getTarget().isRenderScriptTarget()) { 5547 return coerceToIntArray(Ty, getContext(), getVMContext()); 5548 } 5549 unsigned Alignment; 5550 if (Kind == AArch64ABIInfo::AAPCS) { 5551 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5552 Alignment = Alignment < 128 ? 64 : 128; 5553 } else { 5554 Alignment = std::max(getContext().getTypeAlign(Ty), 5555 (unsigned)getTarget().getPointerWidth(0)); 5556 } 5557 Size = llvm::alignTo(Size, Alignment); 5558 5559 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5560 // For aggregates with 16-byte alignment, we use i128. 5561 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5562 return ABIArgInfo::getDirect( 5563 Size == Alignment ? BaseTy 5564 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5565 } 5566 5567 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5568 } 5569 5570 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5571 bool IsVariadic) const { 5572 if (RetTy->isVoidType()) 5573 return ABIArgInfo::getIgnore(); 5574 5575 // Large vector types should be returned via memory. 5576 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5577 return getNaturalAlignIndirect(RetTy); 5578 5579 if (!isAggregateTypeForABI(RetTy)) { 5580 // Treat an enum type as its underlying type. 5581 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5582 RetTy = EnumTy->getDecl()->getIntegerType(); 5583 5584 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5585 if (EIT->getNumBits() > 128) 5586 return getNaturalAlignIndirect(RetTy); 5587 5588 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5589 ? ABIArgInfo::getExtend(RetTy) 5590 : ABIArgInfo::getDirect()); 5591 } 5592 5593 uint64_t Size = getContext().getTypeSize(RetTy); 5594 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5595 return ABIArgInfo::getIgnore(); 5596 5597 const Type *Base = nullptr; 5598 uint64_t Members = 0; 5599 if (isHomogeneousAggregate(RetTy, Base, Members) && 5600 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5601 IsVariadic)) 5602 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5603 return ABIArgInfo::getDirect(); 5604 5605 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5606 if (Size <= 128) { 5607 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5608 // same size and alignment. 5609 if (getTarget().isRenderScriptTarget()) { 5610 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5611 } 5612 unsigned Alignment = getContext().getTypeAlign(RetTy); 5613 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5614 5615 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5616 // For aggregates with 16-byte alignment, we use i128. 5617 if (Alignment < 128 && Size == 128) { 5618 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5619 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5620 } 5621 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5622 } 5623 5624 return getNaturalAlignIndirect(RetTy); 5625 } 5626 5627 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5628 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5629 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5630 // Check whether VT is legal. 5631 unsigned NumElements = VT->getNumElements(); 5632 uint64_t Size = getContext().getTypeSize(VT); 5633 // NumElements should be power of 2. 5634 if (!llvm::isPowerOf2_32(NumElements)) 5635 return true; 5636 5637 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5638 // vectors for some reason. 5639 llvm::Triple Triple = getTarget().getTriple(); 5640 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5641 Triple.isOSBinFormatMachO()) 5642 return Size <= 32; 5643 5644 return Size != 64 && (Size != 128 || NumElements == 1); 5645 } 5646 return false; 5647 } 5648 5649 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5650 llvm::Type *eltTy, 5651 unsigned elts) const { 5652 if (!llvm::isPowerOf2_32(elts)) 5653 return false; 5654 if (totalSize.getQuantity() != 8 && 5655 (totalSize.getQuantity() != 16 || elts == 1)) 5656 return false; 5657 return true; 5658 } 5659 5660 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5661 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5662 // point type or a short-vector type. This is the same as the 32-bit ABI, 5663 // but with the difference that any floating-point type is allowed, 5664 // including __fp16. 5665 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5666 if (BT->isFloatingPoint()) 5667 return true; 5668 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5669 unsigned VecSize = getContext().getTypeSize(VT); 5670 if (VecSize == 64 || VecSize == 128) 5671 return true; 5672 } 5673 return false; 5674 } 5675 5676 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5677 uint64_t Members) const { 5678 return Members <= 4; 5679 } 5680 5681 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5682 QualType Ty, 5683 CodeGenFunction &CGF) const { 5684 ABIArgInfo AI = classifyArgumentType(Ty); 5685 bool IsIndirect = AI.isIndirect(); 5686 5687 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5688 if (IsIndirect) 5689 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5690 else if (AI.getCoerceToType()) 5691 BaseTy = AI.getCoerceToType(); 5692 5693 unsigned NumRegs = 1; 5694 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5695 BaseTy = ArrTy->getElementType(); 5696 NumRegs = ArrTy->getNumElements(); 5697 } 5698 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5699 5700 // The AArch64 va_list type and handling is specified in the Procedure Call 5701 // Standard, section B.4: 5702 // 5703 // struct { 5704 // void *__stack; 5705 // void *__gr_top; 5706 // void *__vr_top; 5707 // int __gr_offs; 5708 // int __vr_offs; 5709 // }; 5710 5711 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5712 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5713 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5714 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5715 5716 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5717 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5718 5719 Address reg_offs_p = Address::invalid(); 5720 llvm::Value *reg_offs = nullptr; 5721 int reg_top_index; 5722 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5723 if (!IsFPR) { 5724 // 3 is the field number of __gr_offs 5725 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5726 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5727 reg_top_index = 1; // field number for __gr_top 5728 RegSize = llvm::alignTo(RegSize, 8); 5729 } else { 5730 // 4 is the field number of __vr_offs. 5731 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5732 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5733 reg_top_index = 2; // field number for __vr_top 5734 RegSize = 16 * NumRegs; 5735 } 5736 5737 //======================================= 5738 // Find out where argument was passed 5739 //======================================= 5740 5741 // If reg_offs >= 0 we're already using the stack for this type of 5742 // argument. We don't want to keep updating reg_offs (in case it overflows, 5743 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5744 // whatever they get). 5745 llvm::Value *UsingStack = nullptr; 5746 UsingStack = CGF.Builder.CreateICmpSGE( 5747 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5748 5749 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5750 5751 // Otherwise, at least some kind of argument could go in these registers, the 5752 // question is whether this particular type is too big. 5753 CGF.EmitBlock(MaybeRegBlock); 5754 5755 // Integer arguments may need to correct register alignment (for example a 5756 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5757 // align __gr_offs to calculate the potential address. 5758 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5759 int Align = TyAlign.getQuantity(); 5760 5761 reg_offs = CGF.Builder.CreateAdd( 5762 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5763 "align_regoffs"); 5764 reg_offs = CGF.Builder.CreateAnd( 5765 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5766 "aligned_regoffs"); 5767 } 5768 5769 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5770 // The fact that this is done unconditionally reflects the fact that 5771 // allocating an argument to the stack also uses up all the remaining 5772 // registers of the appropriate kind. 5773 llvm::Value *NewOffset = nullptr; 5774 NewOffset = CGF.Builder.CreateAdd( 5775 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5776 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5777 5778 // Now we're in a position to decide whether this argument really was in 5779 // registers or not. 5780 llvm::Value *InRegs = nullptr; 5781 InRegs = CGF.Builder.CreateICmpSLE( 5782 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5783 5784 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5785 5786 //======================================= 5787 // Argument was in registers 5788 //======================================= 5789 5790 // Now we emit the code for if the argument was originally passed in 5791 // registers. First start the appropriate block: 5792 CGF.EmitBlock(InRegBlock); 5793 5794 llvm::Value *reg_top = nullptr; 5795 Address reg_top_p = 5796 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5797 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5798 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5799 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5800 Address RegAddr = Address::invalid(); 5801 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5802 5803 if (IsIndirect) { 5804 // If it's been passed indirectly (actually a struct), whatever we find from 5805 // stored registers or on the stack will actually be a struct **. 5806 MemTy = llvm::PointerType::getUnqual(MemTy); 5807 } 5808 5809 const Type *Base = nullptr; 5810 uint64_t NumMembers = 0; 5811 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5812 if (IsHFA && NumMembers > 1) { 5813 // Homogeneous aggregates passed in registers will have their elements split 5814 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5815 // qN+1, ...). We reload and store into a temporary local variable 5816 // contiguously. 5817 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5818 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5819 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5820 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5821 Address Tmp = CGF.CreateTempAlloca(HFATy, 5822 std::max(TyAlign, BaseTyInfo.second)); 5823 5824 // On big-endian platforms, the value will be right-aligned in its slot. 5825 int Offset = 0; 5826 if (CGF.CGM.getDataLayout().isBigEndian() && 5827 BaseTyInfo.first.getQuantity() < 16) 5828 Offset = 16 - BaseTyInfo.first.getQuantity(); 5829 5830 for (unsigned i = 0; i < NumMembers; ++i) { 5831 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5832 Address LoadAddr = 5833 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5834 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5835 5836 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5837 5838 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5839 CGF.Builder.CreateStore(Elem, StoreAddr); 5840 } 5841 5842 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5843 } else { 5844 // Otherwise the object is contiguous in memory. 5845 5846 // It might be right-aligned in its slot. 5847 CharUnits SlotSize = BaseAddr.getAlignment(); 5848 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5849 (IsHFA || !isAggregateTypeForABI(Ty)) && 5850 TySize < SlotSize) { 5851 CharUnits Offset = SlotSize - TySize; 5852 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5853 } 5854 5855 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5856 } 5857 5858 CGF.EmitBranch(ContBlock); 5859 5860 //======================================= 5861 // Argument was on the stack 5862 //======================================= 5863 CGF.EmitBlock(OnStackBlock); 5864 5865 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5866 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5867 5868 // Again, stack arguments may need realignment. In this case both integer and 5869 // floating-point ones might be affected. 5870 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5871 int Align = TyAlign.getQuantity(); 5872 5873 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5874 5875 OnStackPtr = CGF.Builder.CreateAdd( 5876 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5877 "align_stack"); 5878 OnStackPtr = CGF.Builder.CreateAnd( 5879 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5880 "align_stack"); 5881 5882 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5883 } 5884 Address OnStackAddr(OnStackPtr, 5885 std::max(CharUnits::fromQuantity(8), TyAlign)); 5886 5887 // All stack slots are multiples of 8 bytes. 5888 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5889 CharUnits StackSize; 5890 if (IsIndirect) 5891 StackSize = StackSlotSize; 5892 else 5893 StackSize = TySize.alignTo(StackSlotSize); 5894 5895 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5896 llvm::Value *NewStack = 5897 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5898 5899 // Write the new value of __stack for the next call to va_arg 5900 CGF.Builder.CreateStore(NewStack, stack_p); 5901 5902 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5903 TySize < StackSlotSize) { 5904 CharUnits Offset = StackSlotSize - TySize; 5905 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5906 } 5907 5908 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5909 5910 CGF.EmitBranch(ContBlock); 5911 5912 //======================================= 5913 // Tidy up 5914 //======================================= 5915 CGF.EmitBlock(ContBlock); 5916 5917 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5918 OnStackAddr, OnStackBlock, "vaargs.addr"); 5919 5920 if (IsIndirect) 5921 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5922 TyAlign); 5923 5924 return ResAddr; 5925 } 5926 5927 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5928 CodeGenFunction &CGF) const { 5929 // The backend's lowering doesn't support va_arg for aggregates or 5930 // illegal vector types. Lower VAArg here for these cases and use 5931 // the LLVM va_arg instruction for everything else. 5932 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5933 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5934 5935 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5936 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5937 5938 // Empty records are ignored for parameter passing purposes. 5939 if (isEmptyRecord(getContext(), Ty, true)) { 5940 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5941 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5942 return Addr; 5943 } 5944 5945 // The size of the actual thing passed, which might end up just 5946 // being a pointer for indirect types. 5947 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5948 5949 // Arguments bigger than 16 bytes which aren't homogeneous 5950 // aggregates should be passed indirectly. 5951 bool IsIndirect = false; 5952 if (TyInfo.first.getQuantity() > 16) { 5953 const Type *Base = nullptr; 5954 uint64_t Members = 0; 5955 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5956 } 5957 5958 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5959 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5960 } 5961 5962 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5963 QualType Ty) const { 5964 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5965 CGF.getContext().getTypeInfoInChars(Ty), 5966 CharUnits::fromQuantity(8), 5967 /*allowHigherAlign*/ false); 5968 } 5969 5970 //===----------------------------------------------------------------------===// 5971 // ARM ABI Implementation 5972 //===----------------------------------------------------------------------===// 5973 5974 namespace { 5975 5976 class ARMABIInfo : public SwiftABIInfo { 5977 public: 5978 enum ABIKind { 5979 APCS = 0, 5980 AAPCS = 1, 5981 AAPCS_VFP = 2, 5982 AAPCS16_VFP = 3, 5983 }; 5984 5985 private: 5986 ABIKind Kind; 5987 bool IsFloatABISoftFP; 5988 5989 public: 5990 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5991 : SwiftABIInfo(CGT), Kind(_Kind) { 5992 setCCs(); 5993 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 5994 CGT.getCodeGenOpts().FloatABI == ""; // default 5995 } 5996 5997 bool isEABI() const { 5998 switch (getTarget().getTriple().getEnvironment()) { 5999 case llvm::Triple::Android: 6000 case llvm::Triple::EABI: 6001 case llvm::Triple::EABIHF: 6002 case llvm::Triple::GNUEABI: 6003 case llvm::Triple::GNUEABIHF: 6004 case llvm::Triple::MuslEABI: 6005 case llvm::Triple::MuslEABIHF: 6006 return true; 6007 default: 6008 return false; 6009 } 6010 } 6011 6012 bool isEABIHF() const { 6013 switch (getTarget().getTriple().getEnvironment()) { 6014 case llvm::Triple::EABIHF: 6015 case llvm::Triple::GNUEABIHF: 6016 case llvm::Triple::MuslEABIHF: 6017 return true; 6018 default: 6019 return false; 6020 } 6021 } 6022 6023 ABIKind getABIKind() const { return Kind; } 6024 6025 bool allowBFloatArgsAndRet() const override { 6026 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6027 } 6028 6029 private: 6030 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6031 unsigned functionCallConv) const; 6032 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6033 unsigned functionCallConv) const; 6034 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6035 uint64_t Members) const; 6036 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6037 bool isIllegalVectorType(QualType Ty) const; 6038 bool containsAnyFP16Vectors(QualType Ty) const; 6039 6040 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6041 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6042 uint64_t Members) const override; 6043 6044 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6045 6046 void computeInfo(CGFunctionInfo &FI) const override; 6047 6048 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6049 QualType Ty) const override; 6050 6051 llvm::CallingConv::ID getLLVMDefaultCC() const; 6052 llvm::CallingConv::ID getABIDefaultCC() const; 6053 void setCCs(); 6054 6055 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6056 bool asReturnValue) const override { 6057 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6058 } 6059 bool isSwiftErrorInRegister() const override { 6060 return true; 6061 } 6062 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6063 unsigned elts) const override; 6064 }; 6065 6066 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6067 public: 6068 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6069 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6070 6071 const ARMABIInfo &getABIInfo() const { 6072 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6073 } 6074 6075 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6076 return 13; 6077 } 6078 6079 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6080 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6081 } 6082 6083 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6084 llvm::Value *Address) const override { 6085 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6086 6087 // 0-15 are the 16 integer registers. 6088 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6089 return false; 6090 } 6091 6092 unsigned getSizeOfUnwindException() const override { 6093 if (getABIInfo().isEABI()) return 88; 6094 return TargetCodeGenInfo::getSizeOfUnwindException(); 6095 } 6096 6097 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6098 CodeGen::CodeGenModule &CGM) const override { 6099 if (GV->isDeclaration()) 6100 return; 6101 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6102 if (!FD) 6103 return; 6104 6105 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6106 if (!Attr) 6107 return; 6108 6109 const char *Kind; 6110 switch (Attr->getInterrupt()) { 6111 case ARMInterruptAttr::Generic: Kind = ""; break; 6112 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6113 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6114 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6115 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6116 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6117 } 6118 6119 llvm::Function *Fn = cast<llvm::Function>(GV); 6120 6121 Fn->addFnAttr("interrupt", Kind); 6122 6123 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6124 if (ABI == ARMABIInfo::APCS) 6125 return; 6126 6127 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6128 // however this is not necessarily true on taking any interrupt. Instruct 6129 // the backend to perform a realignment as part of the function prologue. 6130 llvm::AttrBuilder B; 6131 B.addStackAlignmentAttr(8); 6132 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6133 } 6134 }; 6135 6136 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6137 public: 6138 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6139 : ARMTargetCodeGenInfo(CGT, K) {} 6140 6141 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6142 CodeGen::CodeGenModule &CGM) const override; 6143 6144 void getDependentLibraryOption(llvm::StringRef Lib, 6145 llvm::SmallString<24> &Opt) const override { 6146 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6147 } 6148 6149 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6150 llvm::SmallString<32> &Opt) const override { 6151 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6152 } 6153 }; 6154 6155 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6156 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6157 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6158 if (GV->isDeclaration()) 6159 return; 6160 addStackProbeTargetAttributes(D, GV, CGM); 6161 } 6162 } 6163 6164 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6165 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6166 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6167 FI.getCallingConvention()); 6168 6169 for (auto &I : FI.arguments()) 6170 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6171 FI.getCallingConvention()); 6172 6173 6174 // Always honor user-specified calling convention. 6175 if (FI.getCallingConvention() != llvm::CallingConv::C) 6176 return; 6177 6178 llvm::CallingConv::ID cc = getRuntimeCC(); 6179 if (cc != llvm::CallingConv::C) 6180 FI.setEffectiveCallingConvention(cc); 6181 } 6182 6183 /// Return the default calling convention that LLVM will use. 6184 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6185 // The default calling convention that LLVM will infer. 6186 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6187 return llvm::CallingConv::ARM_AAPCS_VFP; 6188 else if (isEABI()) 6189 return llvm::CallingConv::ARM_AAPCS; 6190 else 6191 return llvm::CallingConv::ARM_APCS; 6192 } 6193 6194 /// Return the calling convention that our ABI would like us to use 6195 /// as the C calling convention. 6196 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6197 switch (getABIKind()) { 6198 case APCS: return llvm::CallingConv::ARM_APCS; 6199 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6200 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6201 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6202 } 6203 llvm_unreachable("bad ABI kind"); 6204 } 6205 6206 void ARMABIInfo::setCCs() { 6207 assert(getRuntimeCC() == llvm::CallingConv::C); 6208 6209 // Don't muddy up the IR with a ton of explicit annotations if 6210 // they'd just match what LLVM will infer from the triple. 6211 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6212 if (abiCC != getLLVMDefaultCC()) 6213 RuntimeCC = abiCC; 6214 } 6215 6216 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6217 uint64_t Size = getContext().getTypeSize(Ty); 6218 if (Size <= 32) { 6219 llvm::Type *ResType = 6220 llvm::Type::getInt32Ty(getVMContext()); 6221 return ABIArgInfo::getDirect(ResType); 6222 } 6223 if (Size == 64 || Size == 128) { 6224 auto *ResType = llvm::FixedVectorType::get( 6225 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6226 return ABIArgInfo::getDirect(ResType); 6227 } 6228 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6229 } 6230 6231 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6232 const Type *Base, 6233 uint64_t Members) const { 6234 assert(Base && "Base class should be set for homogeneous aggregate"); 6235 // Base can be a floating-point or a vector. 6236 if (const VectorType *VT = Base->getAs<VectorType>()) { 6237 // FP16 vectors should be converted to integer vectors 6238 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6239 uint64_t Size = getContext().getTypeSize(VT); 6240 auto *NewVecTy = llvm::FixedVectorType::get( 6241 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6242 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6243 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6244 } 6245 } 6246 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6247 } 6248 6249 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6250 unsigned functionCallConv) const { 6251 // 6.1.2.1 The following argument types are VFP CPRCs: 6252 // A single-precision floating-point type (including promoted 6253 // half-precision types); A double-precision floating-point type; 6254 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6255 // with a Base Type of a single- or double-precision floating-point type, 6256 // 64-bit containerized vectors or 128-bit containerized vectors with one 6257 // to four Elements. 6258 // Variadic functions should always marshal to the base standard. 6259 bool IsAAPCS_VFP = 6260 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6261 6262 Ty = useFirstFieldIfTransparentUnion(Ty); 6263 6264 // Handle illegal vector types here. 6265 if (isIllegalVectorType(Ty)) 6266 return coerceIllegalVector(Ty); 6267 6268 // _Float16 and __fp16 get passed as if it were an int or float, but 6269 // with the top 16 bits unspecified. This is not done for OpenCL as it handles 6270 // the half type natively, and does not need to interwork with AAPCS code. 6271 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 6272 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6273 llvm::Type *ResType = IsAAPCS_VFP ? 6274 llvm::Type::getFloatTy(getVMContext()) : 6275 llvm::Type::getInt32Ty(getVMContext()); 6276 return ABIArgInfo::getDirect(ResType); 6277 } 6278 6279 // __bf16 gets passed using the bfloat IR type, or using i32 but 6280 // with the top 16 bits unspecified. 6281 if (Ty->isBFloat16Type() && IsFloatABISoftFP) { 6282 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 6283 return ABIArgInfo::getDirect(ResType); 6284 } 6285 6286 if (!isAggregateTypeForABI(Ty)) { 6287 // Treat an enum type as its underlying type. 6288 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6289 Ty = EnumTy->getDecl()->getIntegerType(); 6290 } 6291 6292 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6293 if (EIT->getNumBits() > 64) 6294 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6295 6296 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6297 : ABIArgInfo::getDirect()); 6298 } 6299 6300 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6301 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6302 } 6303 6304 // Ignore empty records. 6305 if (isEmptyRecord(getContext(), Ty, true)) 6306 return ABIArgInfo::getIgnore(); 6307 6308 if (IsAAPCS_VFP) { 6309 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6310 // into VFP registers. 6311 const Type *Base = nullptr; 6312 uint64_t Members = 0; 6313 if (isHomogeneousAggregate(Ty, Base, Members)) 6314 return classifyHomogeneousAggregate(Ty, Base, Members); 6315 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6316 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6317 // this convention even for a variadic function: the backend will use GPRs 6318 // if needed. 6319 const Type *Base = nullptr; 6320 uint64_t Members = 0; 6321 if (isHomogeneousAggregate(Ty, Base, Members)) { 6322 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6323 llvm::Type *Ty = 6324 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6325 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6326 } 6327 } 6328 6329 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6330 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6331 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6332 // bigger than 128-bits, they get placed in space allocated by the caller, 6333 // and a pointer is passed. 6334 return ABIArgInfo::getIndirect( 6335 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6336 } 6337 6338 // Support byval for ARM. 6339 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6340 // most 8-byte. We realign the indirect argument if type alignment is bigger 6341 // than ABI alignment. 6342 uint64_t ABIAlign = 4; 6343 uint64_t TyAlign; 6344 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6345 getABIKind() == ARMABIInfo::AAPCS) { 6346 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6347 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6348 } else { 6349 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6350 } 6351 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6352 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6353 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6354 /*ByVal=*/true, 6355 /*Realign=*/TyAlign > ABIAlign); 6356 } 6357 6358 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6359 // same size and alignment. 6360 if (getTarget().isRenderScriptTarget()) { 6361 return coerceToIntArray(Ty, getContext(), getVMContext()); 6362 } 6363 6364 // Otherwise, pass by coercing to a structure of the appropriate size. 6365 llvm::Type* ElemTy; 6366 unsigned SizeRegs; 6367 // FIXME: Try to match the types of the arguments more accurately where 6368 // we can. 6369 if (TyAlign <= 4) { 6370 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6371 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6372 } else { 6373 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6374 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6375 } 6376 6377 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6378 } 6379 6380 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6381 llvm::LLVMContext &VMContext) { 6382 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6383 // is called integer-like if its size is less than or equal to one word, and 6384 // the offset of each of its addressable sub-fields is zero. 6385 6386 uint64_t Size = Context.getTypeSize(Ty); 6387 6388 // Check that the type fits in a word. 6389 if (Size > 32) 6390 return false; 6391 6392 // FIXME: Handle vector types! 6393 if (Ty->isVectorType()) 6394 return false; 6395 6396 // Float types are never treated as "integer like". 6397 if (Ty->isRealFloatingType()) 6398 return false; 6399 6400 // If this is a builtin or pointer type then it is ok. 6401 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6402 return true; 6403 6404 // Small complex integer types are "integer like". 6405 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6406 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6407 6408 // Single element and zero sized arrays should be allowed, by the definition 6409 // above, but they are not. 6410 6411 // Otherwise, it must be a record type. 6412 const RecordType *RT = Ty->getAs<RecordType>(); 6413 if (!RT) return false; 6414 6415 // Ignore records with flexible arrays. 6416 const RecordDecl *RD = RT->getDecl(); 6417 if (RD->hasFlexibleArrayMember()) 6418 return false; 6419 6420 // Check that all sub-fields are at offset 0, and are themselves "integer 6421 // like". 6422 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6423 6424 bool HadField = false; 6425 unsigned idx = 0; 6426 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6427 i != e; ++i, ++idx) { 6428 const FieldDecl *FD = *i; 6429 6430 // Bit-fields are not addressable, we only need to verify they are "integer 6431 // like". We still have to disallow a subsequent non-bitfield, for example: 6432 // struct { int : 0; int x } 6433 // is non-integer like according to gcc. 6434 if (FD->isBitField()) { 6435 if (!RD->isUnion()) 6436 HadField = true; 6437 6438 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6439 return false; 6440 6441 continue; 6442 } 6443 6444 // Check if this field is at offset 0. 6445 if (Layout.getFieldOffset(idx) != 0) 6446 return false; 6447 6448 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6449 return false; 6450 6451 // Only allow at most one field in a structure. This doesn't match the 6452 // wording above, but follows gcc in situations with a field following an 6453 // empty structure. 6454 if (!RD->isUnion()) { 6455 if (HadField) 6456 return false; 6457 6458 HadField = true; 6459 } 6460 } 6461 6462 return true; 6463 } 6464 6465 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6466 unsigned functionCallConv) const { 6467 6468 // Variadic functions should always marshal to the base standard. 6469 bool IsAAPCS_VFP = 6470 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6471 6472 if (RetTy->isVoidType()) 6473 return ABIArgInfo::getIgnore(); 6474 6475 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6476 // Large vector types should be returned via memory. 6477 if (getContext().getTypeSize(RetTy) > 128) 6478 return getNaturalAlignIndirect(RetTy); 6479 // TODO: FP16/BF16 vectors should be converted to integer vectors 6480 // This check is similar to isIllegalVectorType - refactor? 6481 if ((!getTarget().hasLegalHalfType() && 6482 (VT->getElementType()->isFloat16Type() || 6483 VT->getElementType()->isHalfType())) || 6484 (IsFloatABISoftFP && 6485 VT->getElementType()->isBFloat16Type())) 6486 return coerceIllegalVector(RetTy); 6487 } 6488 6489 // _Float16 and __fp16 get returned as if it were an int or float, but with 6490 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6491 // half type natively, and does not need to interwork with AAPCS code. 6492 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6493 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6494 llvm::Type *ResType = IsAAPCS_VFP ? 6495 llvm::Type::getFloatTy(getVMContext()) : 6496 llvm::Type::getInt32Ty(getVMContext()); 6497 return ABIArgInfo::getDirect(ResType); 6498 } 6499 6500 // if we're using the softfp float abi, __bf16 get returned as if it were an 6501 // int but with the top 16 bits unspecified. 6502 if (RetTy->isBFloat16Type()) { 6503 llvm::Type *ResType = IsAAPCS_VFP ? 6504 llvm::Type::getBFloatTy(getVMContext()) : 6505 llvm::Type::getInt32Ty(getVMContext()); 6506 return ABIArgInfo::getDirect(ResType); 6507 } 6508 6509 if (!isAggregateTypeForABI(RetTy)) { 6510 // Treat an enum type as its underlying type. 6511 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6512 RetTy = EnumTy->getDecl()->getIntegerType(); 6513 6514 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6515 if (EIT->getNumBits() > 64) 6516 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6517 6518 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6519 : ABIArgInfo::getDirect(); 6520 } 6521 6522 // Are we following APCS? 6523 if (getABIKind() == APCS) { 6524 if (isEmptyRecord(getContext(), RetTy, false)) 6525 return ABIArgInfo::getIgnore(); 6526 6527 // Complex types are all returned as packed integers. 6528 // 6529 // FIXME: Consider using 2 x vector types if the back end handles them 6530 // correctly. 6531 if (RetTy->isAnyComplexType()) 6532 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6533 getVMContext(), getContext().getTypeSize(RetTy))); 6534 6535 // Integer like structures are returned in r0. 6536 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6537 // Return in the smallest viable integer type. 6538 uint64_t Size = getContext().getTypeSize(RetTy); 6539 if (Size <= 8) 6540 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6541 if (Size <= 16) 6542 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6543 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6544 } 6545 6546 // Otherwise return in memory. 6547 return getNaturalAlignIndirect(RetTy); 6548 } 6549 6550 // Otherwise this is an AAPCS variant. 6551 6552 if (isEmptyRecord(getContext(), RetTy, true)) 6553 return ABIArgInfo::getIgnore(); 6554 6555 // Check for homogeneous aggregates with AAPCS-VFP. 6556 if (IsAAPCS_VFP) { 6557 const Type *Base = nullptr; 6558 uint64_t Members = 0; 6559 if (isHomogeneousAggregate(RetTy, Base, Members)) 6560 return classifyHomogeneousAggregate(RetTy, Base, Members); 6561 } 6562 6563 // Aggregates <= 4 bytes are returned in r0; other aggregates 6564 // are returned indirectly. 6565 uint64_t Size = getContext().getTypeSize(RetTy); 6566 if (Size <= 32) { 6567 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6568 // same size and alignment. 6569 if (getTarget().isRenderScriptTarget()) { 6570 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6571 } 6572 if (getDataLayout().isBigEndian()) 6573 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6574 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6575 6576 // Return in the smallest viable integer type. 6577 if (Size <= 8) 6578 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6579 if (Size <= 16) 6580 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6581 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6582 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6583 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6584 llvm::Type *CoerceTy = 6585 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6586 return ABIArgInfo::getDirect(CoerceTy); 6587 } 6588 6589 return getNaturalAlignIndirect(RetTy); 6590 } 6591 6592 /// isIllegalVector - check whether Ty is an illegal vector type. 6593 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6594 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6595 // On targets that don't support half, fp16 or bfloat, they are expanded 6596 // into float, and we don't want the ABI to depend on whether or not they 6597 // are supported in hardware. Thus return false to coerce vectors of these 6598 // types into integer vectors. 6599 // We do not depend on hasLegalHalfType for bfloat as it is a 6600 // separate IR type. 6601 if ((!getTarget().hasLegalHalfType() && 6602 (VT->getElementType()->isFloat16Type() || 6603 VT->getElementType()->isHalfType())) || 6604 (IsFloatABISoftFP && 6605 VT->getElementType()->isBFloat16Type())) 6606 return true; 6607 if (isAndroid()) { 6608 // Android shipped using Clang 3.1, which supported a slightly different 6609 // vector ABI. The primary differences were that 3-element vector types 6610 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6611 // accepts that legacy behavior for Android only. 6612 // Check whether VT is legal. 6613 unsigned NumElements = VT->getNumElements(); 6614 // NumElements should be power of 2 or equal to 3. 6615 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6616 return true; 6617 } else { 6618 // Check whether VT is legal. 6619 unsigned NumElements = VT->getNumElements(); 6620 uint64_t Size = getContext().getTypeSize(VT); 6621 // NumElements should be power of 2. 6622 if (!llvm::isPowerOf2_32(NumElements)) 6623 return true; 6624 // Size should be greater than 32 bits. 6625 return Size <= 32; 6626 } 6627 } 6628 return false; 6629 } 6630 6631 /// Return true if a type contains any 16-bit floating point vectors 6632 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6633 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6634 uint64_t NElements = AT->getSize().getZExtValue(); 6635 if (NElements == 0) 6636 return false; 6637 return containsAnyFP16Vectors(AT->getElementType()); 6638 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6639 const RecordDecl *RD = RT->getDecl(); 6640 6641 // If this is a C++ record, check the bases first. 6642 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6643 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6644 return containsAnyFP16Vectors(B.getType()); 6645 })) 6646 return true; 6647 6648 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6649 return FD && containsAnyFP16Vectors(FD->getType()); 6650 })) 6651 return true; 6652 6653 return false; 6654 } else { 6655 if (const VectorType *VT = Ty->getAs<VectorType>()) 6656 return (VT->getElementType()->isFloat16Type() || 6657 VT->getElementType()->isBFloat16Type() || 6658 VT->getElementType()->isHalfType()); 6659 return false; 6660 } 6661 } 6662 6663 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6664 llvm::Type *eltTy, 6665 unsigned numElts) const { 6666 if (!llvm::isPowerOf2_32(numElts)) 6667 return false; 6668 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6669 if (size > 64) 6670 return false; 6671 if (vectorSize.getQuantity() != 8 && 6672 (vectorSize.getQuantity() != 16 || numElts == 1)) 6673 return false; 6674 return true; 6675 } 6676 6677 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6678 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6679 // double, or 64-bit or 128-bit vectors. 6680 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6681 if (BT->getKind() == BuiltinType::Float || 6682 BT->getKind() == BuiltinType::Double || 6683 BT->getKind() == BuiltinType::LongDouble) 6684 return true; 6685 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6686 unsigned VecSize = getContext().getTypeSize(VT); 6687 if (VecSize == 64 || VecSize == 128) 6688 return true; 6689 } 6690 return false; 6691 } 6692 6693 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6694 uint64_t Members) const { 6695 return Members <= 4; 6696 } 6697 6698 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6699 bool acceptHalf) const { 6700 // Give precedence to user-specified calling conventions. 6701 if (callConvention != llvm::CallingConv::C) 6702 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6703 else 6704 return (getABIKind() == AAPCS_VFP) || 6705 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6706 } 6707 6708 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6709 QualType Ty) const { 6710 CharUnits SlotSize = CharUnits::fromQuantity(4); 6711 6712 // Empty records are ignored for parameter passing purposes. 6713 if (isEmptyRecord(getContext(), Ty, true)) { 6714 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6715 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6716 return Addr; 6717 } 6718 6719 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6720 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6721 6722 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6723 bool IsIndirect = false; 6724 const Type *Base = nullptr; 6725 uint64_t Members = 0; 6726 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6727 IsIndirect = true; 6728 6729 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6730 // allocated by the caller. 6731 } else if (TySize > CharUnits::fromQuantity(16) && 6732 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6733 !isHomogeneousAggregate(Ty, Base, Members)) { 6734 IsIndirect = true; 6735 6736 // Otherwise, bound the type's ABI alignment. 6737 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6738 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6739 // Our callers should be prepared to handle an under-aligned address. 6740 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6741 getABIKind() == ARMABIInfo::AAPCS) { 6742 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6743 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6744 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6745 // ARMv7k allows type alignment up to 16 bytes. 6746 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6747 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6748 } else { 6749 TyAlignForABI = CharUnits::fromQuantity(4); 6750 } 6751 6752 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6753 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6754 SlotSize, /*AllowHigherAlign*/ true); 6755 } 6756 6757 //===----------------------------------------------------------------------===// 6758 // NVPTX ABI Implementation 6759 //===----------------------------------------------------------------------===// 6760 6761 namespace { 6762 6763 class NVPTXTargetCodeGenInfo; 6764 6765 class NVPTXABIInfo : public ABIInfo { 6766 NVPTXTargetCodeGenInfo &CGInfo; 6767 6768 public: 6769 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6770 : ABIInfo(CGT), CGInfo(Info) {} 6771 6772 ABIArgInfo classifyReturnType(QualType RetTy) const; 6773 ABIArgInfo classifyArgumentType(QualType Ty) const; 6774 6775 void computeInfo(CGFunctionInfo &FI) const override; 6776 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6777 QualType Ty) const override; 6778 bool isUnsupportedType(QualType T) const; 6779 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6780 }; 6781 6782 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6783 public: 6784 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6785 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6786 6787 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6788 CodeGen::CodeGenModule &M) const override; 6789 bool shouldEmitStaticExternCAliases() const override; 6790 6791 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6792 // On the device side, surface reference is represented as an object handle 6793 // in 64-bit integer. 6794 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6795 } 6796 6797 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6798 // On the device side, texture reference is represented as an object handle 6799 // in 64-bit integer. 6800 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6801 } 6802 6803 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6804 LValue Src) const override { 6805 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6806 return true; 6807 } 6808 6809 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6810 LValue Src) const override { 6811 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6812 return true; 6813 } 6814 6815 private: 6816 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6817 // resulting MDNode to the nvvm.annotations MDNode. 6818 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6819 int Operand); 6820 6821 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6822 LValue Src) { 6823 llvm::Value *Handle = nullptr; 6824 llvm::Constant *C = 6825 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6826 // Lookup `addrspacecast` through the constant pointer if any. 6827 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6828 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6829 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6830 // Load the handle from the specific global variable using 6831 // `nvvm.texsurf.handle.internal` intrinsic. 6832 Handle = CGF.EmitRuntimeCall( 6833 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6834 {GV->getType()}), 6835 {GV}, "texsurf_handle"); 6836 } else 6837 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6838 CGF.EmitStoreOfScalar(Handle, Dst); 6839 } 6840 }; 6841 6842 /// Checks if the type is unsupported directly by the current target. 6843 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6844 ASTContext &Context = getContext(); 6845 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6846 return true; 6847 if (!Context.getTargetInfo().hasFloat128Type() && 6848 (T->isFloat128Type() || 6849 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6850 return true; 6851 if (const auto *EIT = T->getAs<ExtIntType>()) 6852 return EIT->getNumBits() > 6853 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6854 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6855 Context.getTypeSize(T) > 64U) 6856 return true; 6857 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6858 return isUnsupportedType(AT->getElementType()); 6859 const auto *RT = T->getAs<RecordType>(); 6860 if (!RT) 6861 return false; 6862 const RecordDecl *RD = RT->getDecl(); 6863 6864 // If this is a C++ record, check the bases first. 6865 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6866 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6867 if (isUnsupportedType(I.getType())) 6868 return true; 6869 6870 for (const FieldDecl *I : RD->fields()) 6871 if (isUnsupportedType(I->getType())) 6872 return true; 6873 return false; 6874 } 6875 6876 /// Coerce the given type into an array with maximum allowed size of elements. 6877 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6878 unsigned MaxSize) const { 6879 // Alignment and Size are measured in bits. 6880 const uint64_t Size = getContext().getTypeSize(Ty); 6881 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6882 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6883 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6884 const uint64_t NumElements = (Size + Div - 1) / Div; 6885 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6886 } 6887 6888 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6889 if (RetTy->isVoidType()) 6890 return ABIArgInfo::getIgnore(); 6891 6892 if (getContext().getLangOpts().OpenMP && 6893 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6894 return coerceToIntArrayWithLimit(RetTy, 64); 6895 6896 // note: this is different from default ABI 6897 if (!RetTy->isScalarType()) 6898 return ABIArgInfo::getDirect(); 6899 6900 // Treat an enum type as its underlying type. 6901 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6902 RetTy = EnumTy->getDecl()->getIntegerType(); 6903 6904 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6905 : ABIArgInfo::getDirect()); 6906 } 6907 6908 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6909 // Treat an enum type as its underlying type. 6910 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6911 Ty = EnumTy->getDecl()->getIntegerType(); 6912 6913 // Return aggregates type as indirect by value 6914 if (isAggregateTypeForABI(Ty)) { 6915 // Under CUDA device compilation, tex/surf builtin types are replaced with 6916 // object types and passed directly. 6917 if (getContext().getLangOpts().CUDAIsDevice) { 6918 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6919 return ABIArgInfo::getDirect( 6920 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 6921 if (Ty->isCUDADeviceBuiltinTextureType()) 6922 return ABIArgInfo::getDirect( 6923 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 6924 } 6925 return getNaturalAlignIndirect(Ty, /* byval */ true); 6926 } 6927 6928 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 6929 if ((EIT->getNumBits() > 128) || 6930 (!getContext().getTargetInfo().hasInt128Type() && 6931 EIT->getNumBits() > 64)) 6932 return getNaturalAlignIndirect(Ty, /* byval */ true); 6933 } 6934 6935 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6936 : ABIArgInfo::getDirect()); 6937 } 6938 6939 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6940 if (!getCXXABI().classifyReturnType(FI)) 6941 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6942 for (auto &I : FI.arguments()) 6943 I.info = classifyArgumentType(I.type); 6944 6945 // Always honor user-specified calling convention. 6946 if (FI.getCallingConvention() != llvm::CallingConv::C) 6947 return; 6948 6949 FI.setEffectiveCallingConvention(getRuntimeCC()); 6950 } 6951 6952 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6953 QualType Ty) const { 6954 llvm_unreachable("NVPTX does not support varargs"); 6955 } 6956 6957 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6958 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6959 if (GV->isDeclaration()) 6960 return; 6961 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 6962 if (VD) { 6963 if (M.getLangOpts().CUDA) { 6964 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 6965 addNVVMMetadata(GV, "surface", 1); 6966 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 6967 addNVVMMetadata(GV, "texture", 1); 6968 return; 6969 } 6970 } 6971 6972 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6973 if (!FD) return; 6974 6975 llvm::Function *F = cast<llvm::Function>(GV); 6976 6977 // Perform special handling in OpenCL mode 6978 if (M.getLangOpts().OpenCL) { 6979 // Use OpenCL function attributes to check for kernel functions 6980 // By default, all functions are device functions 6981 if (FD->hasAttr<OpenCLKernelAttr>()) { 6982 // OpenCL __kernel functions get kernel metadata 6983 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6984 addNVVMMetadata(F, "kernel", 1); 6985 // And kernel functions are not subject to inlining 6986 F->addFnAttr(llvm::Attribute::NoInline); 6987 } 6988 } 6989 6990 // Perform special handling in CUDA mode. 6991 if (M.getLangOpts().CUDA) { 6992 // CUDA __global__ functions get a kernel metadata entry. Since 6993 // __global__ functions cannot be called from the device, we do not 6994 // need to set the noinline attribute. 6995 if (FD->hasAttr<CUDAGlobalAttr>()) { 6996 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6997 addNVVMMetadata(F, "kernel", 1); 6998 } 6999 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7000 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7001 llvm::APSInt MaxThreads(32); 7002 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7003 if (MaxThreads > 0) 7004 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7005 7006 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7007 // not specified in __launch_bounds__ or if the user specified a 0 value, 7008 // we don't have to add a PTX directive. 7009 if (Attr->getMinBlocks()) { 7010 llvm::APSInt MinBlocks(32); 7011 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7012 if (MinBlocks > 0) 7013 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7014 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7015 } 7016 } 7017 } 7018 } 7019 7020 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7021 StringRef Name, int Operand) { 7022 llvm::Module *M = GV->getParent(); 7023 llvm::LLVMContext &Ctx = M->getContext(); 7024 7025 // Get "nvvm.annotations" metadata node 7026 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7027 7028 llvm::Metadata *MDVals[] = { 7029 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7030 llvm::ConstantAsMetadata::get( 7031 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7032 // Append metadata to nvvm.annotations 7033 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7034 } 7035 7036 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7037 return false; 7038 } 7039 } 7040 7041 //===----------------------------------------------------------------------===// 7042 // SystemZ ABI Implementation 7043 //===----------------------------------------------------------------------===// 7044 7045 namespace { 7046 7047 class SystemZABIInfo : public SwiftABIInfo { 7048 bool HasVector; 7049 bool IsSoftFloatABI; 7050 7051 public: 7052 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7053 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7054 7055 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7056 bool isCompoundType(QualType Ty) const; 7057 bool isVectorArgumentType(QualType Ty) const; 7058 bool isFPArgumentType(QualType Ty) const; 7059 QualType GetSingleElementType(QualType Ty) const; 7060 7061 ABIArgInfo classifyReturnType(QualType RetTy) const; 7062 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7063 7064 void computeInfo(CGFunctionInfo &FI) const override { 7065 if (!getCXXABI().classifyReturnType(FI)) 7066 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7067 for (auto &I : FI.arguments()) 7068 I.info = classifyArgumentType(I.type); 7069 } 7070 7071 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7072 QualType Ty) const override; 7073 7074 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7075 bool asReturnValue) const override { 7076 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7077 } 7078 bool isSwiftErrorInRegister() const override { 7079 return false; 7080 } 7081 }; 7082 7083 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7084 public: 7085 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7086 : TargetCodeGenInfo( 7087 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7088 }; 7089 7090 } 7091 7092 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7093 // Treat an enum type as its underlying type. 7094 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7095 Ty = EnumTy->getDecl()->getIntegerType(); 7096 7097 // Promotable integer types are required to be promoted by the ABI. 7098 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7099 return true; 7100 7101 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7102 if (EIT->getNumBits() < 64) 7103 return true; 7104 7105 // 32-bit values must also be promoted. 7106 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7107 switch (BT->getKind()) { 7108 case BuiltinType::Int: 7109 case BuiltinType::UInt: 7110 return true; 7111 default: 7112 return false; 7113 } 7114 return false; 7115 } 7116 7117 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7118 return (Ty->isAnyComplexType() || 7119 Ty->isVectorType() || 7120 isAggregateTypeForABI(Ty)); 7121 } 7122 7123 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7124 return (HasVector && 7125 Ty->isVectorType() && 7126 getContext().getTypeSize(Ty) <= 128); 7127 } 7128 7129 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7130 if (IsSoftFloatABI) 7131 return false; 7132 7133 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7134 switch (BT->getKind()) { 7135 case BuiltinType::Float: 7136 case BuiltinType::Double: 7137 return true; 7138 default: 7139 return false; 7140 } 7141 7142 return false; 7143 } 7144 7145 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7146 if (const RecordType *RT = Ty->getAsStructureType()) { 7147 const RecordDecl *RD = RT->getDecl(); 7148 QualType Found; 7149 7150 // If this is a C++ record, check the bases first. 7151 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7152 for (const auto &I : CXXRD->bases()) { 7153 QualType Base = I.getType(); 7154 7155 // Empty bases don't affect things either way. 7156 if (isEmptyRecord(getContext(), Base, true)) 7157 continue; 7158 7159 if (!Found.isNull()) 7160 return Ty; 7161 Found = GetSingleElementType(Base); 7162 } 7163 7164 // Check the fields. 7165 for (const auto *FD : RD->fields()) { 7166 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7167 // Unlike isSingleElementStruct(), empty structure and array fields 7168 // do count. So do anonymous bitfields that aren't zero-sized. 7169 if (getContext().getLangOpts().CPlusPlus && 7170 FD->isZeroLengthBitField(getContext())) 7171 continue; 7172 7173 // Unlike isSingleElementStruct(), arrays do not count. 7174 // Nested structures still do though. 7175 if (!Found.isNull()) 7176 return Ty; 7177 Found = GetSingleElementType(FD->getType()); 7178 } 7179 7180 // Unlike isSingleElementStruct(), trailing padding is allowed. 7181 // An 8-byte aligned struct s { float f; } is passed as a double. 7182 if (!Found.isNull()) 7183 return Found; 7184 } 7185 7186 return Ty; 7187 } 7188 7189 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7190 QualType Ty) const { 7191 // Assume that va_list type is correct; should be pointer to LLVM type: 7192 // struct { 7193 // i64 __gpr; 7194 // i64 __fpr; 7195 // i8 *__overflow_arg_area; 7196 // i8 *__reg_save_area; 7197 // }; 7198 7199 // Every non-vector argument occupies 8 bytes and is passed by preference 7200 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7201 // always passed on the stack. 7202 Ty = getContext().getCanonicalType(Ty); 7203 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7204 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7205 llvm::Type *DirectTy = ArgTy; 7206 ABIArgInfo AI = classifyArgumentType(Ty); 7207 bool IsIndirect = AI.isIndirect(); 7208 bool InFPRs = false; 7209 bool IsVector = false; 7210 CharUnits UnpaddedSize; 7211 CharUnits DirectAlign; 7212 if (IsIndirect) { 7213 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7214 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7215 } else { 7216 if (AI.getCoerceToType()) 7217 ArgTy = AI.getCoerceToType(); 7218 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7219 IsVector = ArgTy->isVectorTy(); 7220 UnpaddedSize = TyInfo.first; 7221 DirectAlign = TyInfo.second; 7222 } 7223 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7224 if (IsVector && UnpaddedSize > PaddedSize) 7225 PaddedSize = CharUnits::fromQuantity(16); 7226 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7227 7228 CharUnits Padding = (PaddedSize - UnpaddedSize); 7229 7230 llvm::Type *IndexTy = CGF.Int64Ty; 7231 llvm::Value *PaddedSizeV = 7232 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7233 7234 if (IsVector) { 7235 // Work out the address of a vector argument on the stack. 7236 // Vector arguments are always passed in the high bits of a 7237 // single (8 byte) or double (16 byte) stack slot. 7238 Address OverflowArgAreaPtr = 7239 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7240 Address OverflowArgArea = 7241 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7242 TyInfo.second); 7243 Address MemAddr = 7244 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7245 7246 // Update overflow_arg_area_ptr pointer 7247 llvm::Value *NewOverflowArgArea = 7248 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7249 "overflow_arg_area"); 7250 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7251 7252 return MemAddr; 7253 } 7254 7255 assert(PaddedSize.getQuantity() == 8); 7256 7257 unsigned MaxRegs, RegCountField, RegSaveIndex; 7258 CharUnits RegPadding; 7259 if (InFPRs) { 7260 MaxRegs = 4; // Maximum of 4 FPR arguments 7261 RegCountField = 1; // __fpr 7262 RegSaveIndex = 16; // save offset for f0 7263 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7264 } else { 7265 MaxRegs = 5; // Maximum of 5 GPR arguments 7266 RegCountField = 0; // __gpr 7267 RegSaveIndex = 2; // save offset for r2 7268 RegPadding = Padding; // values are passed in the low bits of a GPR 7269 } 7270 7271 Address RegCountPtr = 7272 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7273 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7274 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7275 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7276 "fits_in_regs"); 7277 7278 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7279 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7280 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7281 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7282 7283 // Emit code to load the value if it was passed in registers. 7284 CGF.EmitBlock(InRegBlock); 7285 7286 // Work out the address of an argument register. 7287 llvm::Value *ScaledRegCount = 7288 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7289 llvm::Value *RegBase = 7290 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7291 + RegPadding.getQuantity()); 7292 llvm::Value *RegOffset = 7293 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7294 Address RegSaveAreaPtr = 7295 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7296 llvm::Value *RegSaveArea = 7297 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7298 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7299 "raw_reg_addr"), 7300 PaddedSize); 7301 Address RegAddr = 7302 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7303 7304 // Update the register count 7305 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7306 llvm::Value *NewRegCount = 7307 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7308 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7309 CGF.EmitBranch(ContBlock); 7310 7311 // Emit code to load the value if it was passed in memory. 7312 CGF.EmitBlock(InMemBlock); 7313 7314 // Work out the address of a stack argument. 7315 Address OverflowArgAreaPtr = 7316 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7317 Address OverflowArgArea = 7318 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7319 PaddedSize); 7320 Address RawMemAddr = 7321 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7322 Address MemAddr = 7323 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7324 7325 // Update overflow_arg_area_ptr pointer 7326 llvm::Value *NewOverflowArgArea = 7327 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7328 "overflow_arg_area"); 7329 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7330 CGF.EmitBranch(ContBlock); 7331 7332 // Return the appropriate result. 7333 CGF.EmitBlock(ContBlock); 7334 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7335 MemAddr, InMemBlock, "va_arg.addr"); 7336 7337 if (IsIndirect) 7338 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7339 TyInfo.second); 7340 7341 return ResAddr; 7342 } 7343 7344 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7345 if (RetTy->isVoidType()) 7346 return ABIArgInfo::getIgnore(); 7347 if (isVectorArgumentType(RetTy)) 7348 return ABIArgInfo::getDirect(); 7349 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7350 return getNaturalAlignIndirect(RetTy); 7351 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7352 : ABIArgInfo::getDirect()); 7353 } 7354 7355 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7356 // Handle the generic C++ ABI. 7357 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7358 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7359 7360 // Integers and enums are extended to full register width. 7361 if (isPromotableIntegerTypeForABI(Ty)) 7362 return ABIArgInfo::getExtend(Ty); 7363 7364 // Handle vector types and vector-like structure types. Note that 7365 // as opposed to float-like structure types, we do not allow any 7366 // padding for vector-like structures, so verify the sizes match. 7367 uint64_t Size = getContext().getTypeSize(Ty); 7368 QualType SingleElementTy = GetSingleElementType(Ty); 7369 if (isVectorArgumentType(SingleElementTy) && 7370 getContext().getTypeSize(SingleElementTy) == Size) 7371 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7372 7373 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7374 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7375 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7376 7377 // Handle small structures. 7378 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7379 // Structures with flexible arrays have variable length, so really 7380 // fail the size test above. 7381 const RecordDecl *RD = RT->getDecl(); 7382 if (RD->hasFlexibleArrayMember()) 7383 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7384 7385 // The structure is passed as an unextended integer, a float, or a double. 7386 llvm::Type *PassTy; 7387 if (isFPArgumentType(SingleElementTy)) { 7388 assert(Size == 32 || Size == 64); 7389 if (Size == 32) 7390 PassTy = llvm::Type::getFloatTy(getVMContext()); 7391 else 7392 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7393 } else 7394 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7395 return ABIArgInfo::getDirect(PassTy); 7396 } 7397 7398 // Non-structure compounds are passed indirectly. 7399 if (isCompoundType(Ty)) 7400 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7401 7402 return ABIArgInfo::getDirect(nullptr); 7403 } 7404 7405 //===----------------------------------------------------------------------===// 7406 // MSP430 ABI Implementation 7407 //===----------------------------------------------------------------------===// 7408 7409 namespace { 7410 7411 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7412 public: 7413 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7414 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7415 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7416 CodeGen::CodeGenModule &M) const override; 7417 }; 7418 7419 } 7420 7421 void MSP430TargetCodeGenInfo::setTargetAttributes( 7422 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7423 if (GV->isDeclaration()) 7424 return; 7425 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7426 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7427 if (!InterruptAttr) 7428 return; 7429 7430 // Handle 'interrupt' attribute: 7431 llvm::Function *F = cast<llvm::Function>(GV); 7432 7433 // Step 1: Set ISR calling convention. 7434 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7435 7436 // Step 2: Add attributes goodness. 7437 F->addFnAttr(llvm::Attribute::NoInline); 7438 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7439 } 7440 } 7441 7442 //===----------------------------------------------------------------------===// 7443 // MIPS ABI Implementation. This works for both little-endian and 7444 // big-endian variants. 7445 //===----------------------------------------------------------------------===// 7446 7447 namespace { 7448 class MipsABIInfo : public ABIInfo { 7449 bool IsO32; 7450 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7451 void CoerceToIntArgs(uint64_t TySize, 7452 SmallVectorImpl<llvm::Type *> &ArgList) const; 7453 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7454 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7455 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7456 public: 7457 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7458 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7459 StackAlignInBytes(IsO32 ? 8 : 16) {} 7460 7461 ABIArgInfo classifyReturnType(QualType RetTy) const; 7462 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7463 void computeInfo(CGFunctionInfo &FI) const override; 7464 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7465 QualType Ty) const override; 7466 ABIArgInfo extendType(QualType Ty) const; 7467 }; 7468 7469 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7470 unsigned SizeOfUnwindException; 7471 public: 7472 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7473 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7474 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7475 7476 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7477 return 29; 7478 } 7479 7480 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7481 CodeGen::CodeGenModule &CGM) const override { 7482 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7483 if (!FD) return; 7484 llvm::Function *Fn = cast<llvm::Function>(GV); 7485 7486 if (FD->hasAttr<MipsLongCallAttr>()) 7487 Fn->addFnAttr("long-call"); 7488 else if (FD->hasAttr<MipsShortCallAttr>()) 7489 Fn->addFnAttr("short-call"); 7490 7491 // Other attributes do not have a meaning for declarations. 7492 if (GV->isDeclaration()) 7493 return; 7494 7495 if (FD->hasAttr<Mips16Attr>()) { 7496 Fn->addFnAttr("mips16"); 7497 } 7498 else if (FD->hasAttr<NoMips16Attr>()) { 7499 Fn->addFnAttr("nomips16"); 7500 } 7501 7502 if (FD->hasAttr<MicroMipsAttr>()) 7503 Fn->addFnAttr("micromips"); 7504 else if (FD->hasAttr<NoMicroMipsAttr>()) 7505 Fn->addFnAttr("nomicromips"); 7506 7507 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7508 if (!Attr) 7509 return; 7510 7511 const char *Kind; 7512 switch (Attr->getInterrupt()) { 7513 case MipsInterruptAttr::eic: Kind = "eic"; break; 7514 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7515 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7516 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7517 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7518 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7519 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7520 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7521 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7522 } 7523 7524 Fn->addFnAttr("interrupt", Kind); 7525 7526 } 7527 7528 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7529 llvm::Value *Address) const override; 7530 7531 unsigned getSizeOfUnwindException() const override { 7532 return SizeOfUnwindException; 7533 } 7534 }; 7535 } 7536 7537 void MipsABIInfo::CoerceToIntArgs( 7538 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7539 llvm::IntegerType *IntTy = 7540 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7541 7542 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7543 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7544 ArgList.push_back(IntTy); 7545 7546 // If necessary, add one more integer type to ArgList. 7547 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7548 7549 if (R) 7550 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7551 } 7552 7553 // In N32/64, an aligned double precision floating point field is passed in 7554 // a register. 7555 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7556 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7557 7558 if (IsO32) { 7559 CoerceToIntArgs(TySize, ArgList); 7560 return llvm::StructType::get(getVMContext(), ArgList); 7561 } 7562 7563 if (Ty->isComplexType()) 7564 return CGT.ConvertType(Ty); 7565 7566 const RecordType *RT = Ty->getAs<RecordType>(); 7567 7568 // Unions/vectors are passed in integer registers. 7569 if (!RT || !RT->isStructureOrClassType()) { 7570 CoerceToIntArgs(TySize, ArgList); 7571 return llvm::StructType::get(getVMContext(), ArgList); 7572 } 7573 7574 const RecordDecl *RD = RT->getDecl(); 7575 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7576 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7577 7578 uint64_t LastOffset = 0; 7579 unsigned idx = 0; 7580 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7581 7582 // Iterate over fields in the struct/class and check if there are any aligned 7583 // double fields. 7584 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7585 i != e; ++i, ++idx) { 7586 const QualType Ty = i->getType(); 7587 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7588 7589 if (!BT || BT->getKind() != BuiltinType::Double) 7590 continue; 7591 7592 uint64_t Offset = Layout.getFieldOffset(idx); 7593 if (Offset % 64) // Ignore doubles that are not aligned. 7594 continue; 7595 7596 // Add ((Offset - LastOffset) / 64) args of type i64. 7597 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7598 ArgList.push_back(I64); 7599 7600 // Add double type. 7601 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7602 LastOffset = Offset + 64; 7603 } 7604 7605 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7606 ArgList.append(IntArgList.begin(), IntArgList.end()); 7607 7608 return llvm::StructType::get(getVMContext(), ArgList); 7609 } 7610 7611 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7612 uint64_t Offset) const { 7613 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7614 return nullptr; 7615 7616 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7617 } 7618 7619 ABIArgInfo 7620 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7621 Ty = useFirstFieldIfTransparentUnion(Ty); 7622 7623 uint64_t OrigOffset = Offset; 7624 uint64_t TySize = getContext().getTypeSize(Ty); 7625 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7626 7627 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7628 (uint64_t)StackAlignInBytes); 7629 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7630 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7631 7632 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7633 // Ignore empty aggregates. 7634 if (TySize == 0) 7635 return ABIArgInfo::getIgnore(); 7636 7637 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7638 Offset = OrigOffset + MinABIStackAlignInBytes; 7639 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7640 } 7641 7642 // If we have reached here, aggregates are passed directly by coercing to 7643 // another structure type. Padding is inserted if the offset of the 7644 // aggregate is unaligned. 7645 ABIArgInfo ArgInfo = 7646 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7647 getPaddingType(OrigOffset, CurrOffset)); 7648 ArgInfo.setInReg(true); 7649 return ArgInfo; 7650 } 7651 7652 // Treat an enum type as its underlying type. 7653 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7654 Ty = EnumTy->getDecl()->getIntegerType(); 7655 7656 // Make sure we pass indirectly things that are too large. 7657 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7658 if (EIT->getNumBits() > 128 || 7659 (EIT->getNumBits() > 64 && 7660 !getContext().getTargetInfo().hasInt128Type())) 7661 return getNaturalAlignIndirect(Ty); 7662 7663 // All integral types are promoted to the GPR width. 7664 if (Ty->isIntegralOrEnumerationType()) 7665 return extendType(Ty); 7666 7667 return ABIArgInfo::getDirect( 7668 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7669 } 7670 7671 llvm::Type* 7672 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7673 const RecordType *RT = RetTy->getAs<RecordType>(); 7674 SmallVector<llvm::Type*, 8> RTList; 7675 7676 if (RT && RT->isStructureOrClassType()) { 7677 const RecordDecl *RD = RT->getDecl(); 7678 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7679 unsigned FieldCnt = Layout.getFieldCount(); 7680 7681 // N32/64 returns struct/classes in floating point registers if the 7682 // following conditions are met: 7683 // 1. The size of the struct/class is no larger than 128-bit. 7684 // 2. The struct/class has one or two fields all of which are floating 7685 // point types. 7686 // 3. The offset of the first field is zero (this follows what gcc does). 7687 // 7688 // Any other composite results are returned in integer registers. 7689 // 7690 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7691 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7692 for (; b != e; ++b) { 7693 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7694 7695 if (!BT || !BT->isFloatingPoint()) 7696 break; 7697 7698 RTList.push_back(CGT.ConvertType(b->getType())); 7699 } 7700 7701 if (b == e) 7702 return llvm::StructType::get(getVMContext(), RTList, 7703 RD->hasAttr<PackedAttr>()); 7704 7705 RTList.clear(); 7706 } 7707 } 7708 7709 CoerceToIntArgs(Size, RTList); 7710 return llvm::StructType::get(getVMContext(), RTList); 7711 } 7712 7713 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7714 uint64_t Size = getContext().getTypeSize(RetTy); 7715 7716 if (RetTy->isVoidType()) 7717 return ABIArgInfo::getIgnore(); 7718 7719 // O32 doesn't treat zero-sized structs differently from other structs. 7720 // However, N32/N64 ignores zero sized return values. 7721 if (!IsO32 && Size == 0) 7722 return ABIArgInfo::getIgnore(); 7723 7724 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7725 if (Size <= 128) { 7726 if (RetTy->isAnyComplexType()) 7727 return ABIArgInfo::getDirect(); 7728 7729 // O32 returns integer vectors in registers and N32/N64 returns all small 7730 // aggregates in registers. 7731 if (!IsO32 || 7732 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7733 ABIArgInfo ArgInfo = 7734 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7735 ArgInfo.setInReg(true); 7736 return ArgInfo; 7737 } 7738 } 7739 7740 return getNaturalAlignIndirect(RetTy); 7741 } 7742 7743 // Treat an enum type as its underlying type. 7744 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7745 RetTy = EnumTy->getDecl()->getIntegerType(); 7746 7747 // Make sure we pass indirectly things that are too large. 7748 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7749 if (EIT->getNumBits() > 128 || 7750 (EIT->getNumBits() > 64 && 7751 !getContext().getTargetInfo().hasInt128Type())) 7752 return getNaturalAlignIndirect(RetTy); 7753 7754 if (isPromotableIntegerTypeForABI(RetTy)) 7755 return ABIArgInfo::getExtend(RetTy); 7756 7757 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7758 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7759 return ABIArgInfo::getSignExtend(RetTy); 7760 7761 return ABIArgInfo::getDirect(); 7762 } 7763 7764 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7765 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7766 if (!getCXXABI().classifyReturnType(FI)) 7767 RetInfo = classifyReturnType(FI.getReturnType()); 7768 7769 // Check if a pointer to an aggregate is passed as a hidden argument. 7770 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7771 7772 for (auto &I : FI.arguments()) 7773 I.info = classifyArgumentType(I.type, Offset); 7774 } 7775 7776 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7777 QualType OrigTy) const { 7778 QualType Ty = OrigTy; 7779 7780 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7781 // Pointers are also promoted in the same way but this only matters for N32. 7782 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7783 unsigned PtrWidth = getTarget().getPointerWidth(0); 7784 bool DidPromote = false; 7785 if ((Ty->isIntegerType() && 7786 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7787 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7788 DidPromote = true; 7789 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7790 Ty->isSignedIntegerType()); 7791 } 7792 7793 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7794 7795 // The alignment of things in the argument area is never larger than 7796 // StackAlignInBytes. 7797 TyInfo.second = 7798 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7799 7800 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7801 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7802 7803 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7804 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7805 7806 7807 // If there was a promotion, "unpromote" into a temporary. 7808 // TODO: can we just use a pointer into a subset of the original slot? 7809 if (DidPromote) { 7810 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7811 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7812 7813 // Truncate down to the right width. 7814 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7815 : CGF.IntPtrTy); 7816 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7817 if (OrigTy->isPointerType()) 7818 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7819 7820 CGF.Builder.CreateStore(V, Temp); 7821 Addr = Temp; 7822 } 7823 7824 return Addr; 7825 } 7826 7827 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7828 int TySize = getContext().getTypeSize(Ty); 7829 7830 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7831 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7832 return ABIArgInfo::getSignExtend(Ty); 7833 7834 return ABIArgInfo::getExtend(Ty); 7835 } 7836 7837 bool 7838 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7839 llvm::Value *Address) const { 7840 // This information comes from gcc's implementation, which seems to 7841 // as canonical as it gets. 7842 7843 // Everything on MIPS is 4 bytes. Double-precision FP registers 7844 // are aliased to pairs of single-precision FP registers. 7845 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7846 7847 // 0-31 are the general purpose registers, $0 - $31. 7848 // 32-63 are the floating-point registers, $f0 - $f31. 7849 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7850 // 66 is the (notional, I think) register for signal-handler return. 7851 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7852 7853 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7854 // They are one bit wide and ignored here. 7855 7856 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7857 // (coprocessor 1 is the FP unit) 7858 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7859 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7860 // 176-181 are the DSP accumulator registers. 7861 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7862 return false; 7863 } 7864 7865 //===----------------------------------------------------------------------===// 7866 // AVR ABI Implementation. 7867 //===----------------------------------------------------------------------===// 7868 7869 namespace { 7870 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7871 public: 7872 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7873 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7874 7875 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7876 CodeGen::CodeGenModule &CGM) const override { 7877 if (GV->isDeclaration()) 7878 return; 7879 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7880 if (!FD) return; 7881 auto *Fn = cast<llvm::Function>(GV); 7882 7883 if (FD->getAttr<AVRInterruptAttr>()) 7884 Fn->addFnAttr("interrupt"); 7885 7886 if (FD->getAttr<AVRSignalAttr>()) 7887 Fn->addFnAttr("signal"); 7888 } 7889 }; 7890 } 7891 7892 //===----------------------------------------------------------------------===// 7893 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7894 // Currently subclassed only to implement custom OpenCL C function attribute 7895 // handling. 7896 //===----------------------------------------------------------------------===// 7897 7898 namespace { 7899 7900 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7901 public: 7902 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7903 : DefaultTargetCodeGenInfo(CGT) {} 7904 7905 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7906 CodeGen::CodeGenModule &M) const override; 7907 }; 7908 7909 void TCETargetCodeGenInfo::setTargetAttributes( 7910 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7911 if (GV->isDeclaration()) 7912 return; 7913 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7914 if (!FD) return; 7915 7916 llvm::Function *F = cast<llvm::Function>(GV); 7917 7918 if (M.getLangOpts().OpenCL) { 7919 if (FD->hasAttr<OpenCLKernelAttr>()) { 7920 // OpenCL C Kernel functions are not subject to inlining 7921 F->addFnAttr(llvm::Attribute::NoInline); 7922 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7923 if (Attr) { 7924 // Convert the reqd_work_group_size() attributes to metadata. 7925 llvm::LLVMContext &Context = F->getContext(); 7926 llvm::NamedMDNode *OpenCLMetadata = 7927 M.getModule().getOrInsertNamedMetadata( 7928 "opencl.kernel_wg_size_info"); 7929 7930 SmallVector<llvm::Metadata *, 5> Operands; 7931 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7932 7933 Operands.push_back( 7934 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7935 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7936 Operands.push_back( 7937 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7938 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7939 Operands.push_back( 7940 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7941 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7942 7943 // Add a boolean constant operand for "required" (true) or "hint" 7944 // (false) for implementing the work_group_size_hint attr later. 7945 // Currently always true as the hint is not yet implemented. 7946 Operands.push_back( 7947 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7948 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7949 } 7950 } 7951 } 7952 } 7953 7954 } 7955 7956 //===----------------------------------------------------------------------===// 7957 // Hexagon ABI Implementation 7958 //===----------------------------------------------------------------------===// 7959 7960 namespace { 7961 7962 class HexagonABIInfo : public DefaultABIInfo { 7963 public: 7964 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7965 7966 private: 7967 ABIArgInfo classifyReturnType(QualType RetTy) const; 7968 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7969 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 7970 7971 void computeInfo(CGFunctionInfo &FI) const override; 7972 7973 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7974 QualType Ty) const override; 7975 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 7976 QualType Ty) const; 7977 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 7978 QualType Ty) const; 7979 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 7980 QualType Ty) const; 7981 }; 7982 7983 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7984 public: 7985 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7986 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 7987 7988 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7989 return 29; 7990 } 7991 7992 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7993 CodeGen::CodeGenModule &GCM) const override { 7994 if (GV->isDeclaration()) 7995 return; 7996 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7997 if (!FD) 7998 return; 7999 } 8000 }; 8001 8002 } // namespace 8003 8004 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8005 unsigned RegsLeft = 6; 8006 if (!getCXXABI().classifyReturnType(FI)) 8007 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8008 for (auto &I : FI.arguments()) 8009 I.info = classifyArgumentType(I.type, &RegsLeft); 8010 } 8011 8012 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8013 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8014 " through registers"); 8015 8016 if (*RegsLeft == 0) 8017 return false; 8018 8019 if (Size <= 32) { 8020 (*RegsLeft)--; 8021 return true; 8022 } 8023 8024 if (2 <= (*RegsLeft & (~1U))) { 8025 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8026 return true; 8027 } 8028 8029 // Next available register was r5 but candidate was greater than 32-bits so it 8030 // has to go on the stack. However we still consume r5 8031 if (*RegsLeft == 1) 8032 *RegsLeft = 0; 8033 8034 return false; 8035 } 8036 8037 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8038 unsigned *RegsLeft) const { 8039 if (!isAggregateTypeForABI(Ty)) { 8040 // Treat an enum type as its underlying type. 8041 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8042 Ty = EnumTy->getDecl()->getIntegerType(); 8043 8044 uint64_t Size = getContext().getTypeSize(Ty); 8045 if (Size <= 64) 8046 HexagonAdjustRegsLeft(Size, RegsLeft); 8047 8048 if (Size > 64 && Ty->isExtIntType()) 8049 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8050 8051 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8052 : ABIArgInfo::getDirect(); 8053 } 8054 8055 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8056 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8057 8058 // Ignore empty records. 8059 if (isEmptyRecord(getContext(), Ty, true)) 8060 return ABIArgInfo::getIgnore(); 8061 8062 uint64_t Size = getContext().getTypeSize(Ty); 8063 unsigned Align = getContext().getTypeAlign(Ty); 8064 8065 if (Size > 64) 8066 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8067 8068 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8069 Align = Size <= 32 ? 32 : 64; 8070 if (Size <= Align) { 8071 // Pass in the smallest viable integer type. 8072 if (!llvm::isPowerOf2_64(Size)) 8073 Size = llvm::NextPowerOf2(Size); 8074 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8075 } 8076 return DefaultABIInfo::classifyArgumentType(Ty); 8077 } 8078 8079 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8080 if (RetTy->isVoidType()) 8081 return ABIArgInfo::getIgnore(); 8082 8083 const TargetInfo &T = CGT.getTarget(); 8084 uint64_t Size = getContext().getTypeSize(RetTy); 8085 8086 if (RetTy->getAs<VectorType>()) { 8087 // HVX vectors are returned in vector registers or register pairs. 8088 if (T.hasFeature("hvx")) { 8089 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8090 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8091 if (Size == VecSize || Size == 2*VecSize) 8092 return ABIArgInfo::getDirectInReg(); 8093 } 8094 // Large vector types should be returned via memory. 8095 if (Size > 64) 8096 return getNaturalAlignIndirect(RetTy); 8097 } 8098 8099 if (!isAggregateTypeForABI(RetTy)) { 8100 // Treat an enum type as its underlying type. 8101 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8102 RetTy = EnumTy->getDecl()->getIntegerType(); 8103 8104 if (Size > 64 && RetTy->isExtIntType()) 8105 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8106 8107 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8108 : ABIArgInfo::getDirect(); 8109 } 8110 8111 if (isEmptyRecord(getContext(), RetTy, true)) 8112 return ABIArgInfo::getIgnore(); 8113 8114 // Aggregates <= 8 bytes are returned in registers, other aggregates 8115 // are returned indirectly. 8116 if (Size <= 64) { 8117 // Return in the smallest viable integer type. 8118 if (!llvm::isPowerOf2_64(Size)) 8119 Size = llvm::NextPowerOf2(Size); 8120 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8121 } 8122 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8123 } 8124 8125 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8126 Address VAListAddr, 8127 QualType Ty) const { 8128 // Load the overflow area pointer. 8129 Address __overflow_area_pointer_p = 8130 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8131 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8132 __overflow_area_pointer_p, "__overflow_area_pointer"); 8133 8134 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8135 if (Align > 4) { 8136 // Alignment should be a power of 2. 8137 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8138 8139 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8140 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8141 8142 // Add offset to the current pointer to access the argument. 8143 __overflow_area_pointer = 8144 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8145 llvm::Value *AsInt = 8146 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8147 8148 // Create a mask which should be "AND"ed 8149 // with (overflow_arg_area + align - 1) 8150 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8151 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8152 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8153 "__overflow_area_pointer.align"); 8154 } 8155 8156 // Get the type of the argument from memory and bitcast 8157 // overflow area pointer to the argument type. 8158 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8159 Address AddrTyped = CGF.Builder.CreateBitCast( 8160 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8161 llvm::PointerType::getUnqual(PTy)); 8162 8163 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8164 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8165 8166 __overflow_area_pointer = CGF.Builder.CreateGEP( 8167 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8168 "__overflow_area_pointer.next"); 8169 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8170 8171 return AddrTyped; 8172 } 8173 8174 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8175 Address VAListAddr, 8176 QualType Ty) const { 8177 // FIXME: Need to handle alignment 8178 llvm::Type *BP = CGF.Int8PtrTy; 8179 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8180 CGBuilderTy &Builder = CGF.Builder; 8181 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8182 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8183 // Handle address alignment for type alignment > 32 bits 8184 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8185 if (TyAlign > 4) { 8186 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8187 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8188 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8189 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8190 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8191 } 8192 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8193 Address AddrTyped = Builder.CreateBitCast( 8194 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8195 8196 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8197 llvm::Value *NextAddr = Builder.CreateGEP( 8198 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8199 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8200 8201 return AddrTyped; 8202 } 8203 8204 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8205 Address VAListAddr, 8206 QualType Ty) const { 8207 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8208 8209 if (ArgSize > 8) 8210 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8211 8212 // Here we have check if the argument is in register area or 8213 // in overflow area. 8214 // If the saved register area pointer + argsize rounded up to alignment > 8215 // saved register area end pointer, argument is in overflow area. 8216 unsigned RegsLeft = 6; 8217 Ty = CGF.getContext().getCanonicalType(Ty); 8218 (void)classifyArgumentType(Ty, &RegsLeft); 8219 8220 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8221 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8222 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8223 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8224 8225 // Get rounded size of the argument.GCC does not allow vararg of 8226 // size < 4 bytes. We follow the same logic here. 8227 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8228 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8229 8230 // Argument may be in saved register area 8231 CGF.EmitBlock(MaybeRegBlock); 8232 8233 // Load the current saved register area pointer. 8234 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8235 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8236 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8237 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8238 8239 // Load the saved register area end pointer. 8240 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8241 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8242 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8243 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8244 8245 // If the size of argument is > 4 bytes, check if the stack 8246 // location is aligned to 8 bytes 8247 if (ArgAlign > 4) { 8248 8249 llvm::Value *__current_saved_reg_area_pointer_int = 8250 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8251 CGF.Int32Ty); 8252 8253 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8254 __current_saved_reg_area_pointer_int, 8255 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8256 "align_current_saved_reg_area_pointer"); 8257 8258 __current_saved_reg_area_pointer_int = 8259 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8260 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8261 "align_current_saved_reg_area_pointer"); 8262 8263 __current_saved_reg_area_pointer = 8264 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8265 __current_saved_reg_area_pointer->getType(), 8266 "align_current_saved_reg_area_pointer"); 8267 } 8268 8269 llvm::Value *__new_saved_reg_area_pointer = 8270 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8271 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8272 "__new_saved_reg_area_pointer"); 8273 8274 llvm::Value *UsingStack = 0; 8275 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8276 __saved_reg_area_end_pointer); 8277 8278 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8279 8280 // Argument in saved register area 8281 // Implement the block where argument is in register saved area 8282 CGF.EmitBlock(InRegBlock); 8283 8284 llvm::Type *PTy = CGF.ConvertType(Ty); 8285 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8286 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8287 8288 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8289 __current_saved_reg_area_pointer_p); 8290 8291 CGF.EmitBranch(ContBlock); 8292 8293 // Argument in overflow area 8294 // Implement the block where the argument is in overflow area. 8295 CGF.EmitBlock(OnStackBlock); 8296 8297 // Load the overflow area pointer 8298 Address __overflow_area_pointer_p = 8299 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8300 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8301 __overflow_area_pointer_p, "__overflow_area_pointer"); 8302 8303 // Align the overflow area pointer according to the alignment of the argument 8304 if (ArgAlign > 4) { 8305 llvm::Value *__overflow_area_pointer_int = 8306 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8307 8308 __overflow_area_pointer_int = 8309 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8310 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8311 "align_overflow_area_pointer"); 8312 8313 __overflow_area_pointer_int = 8314 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8315 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8316 "align_overflow_area_pointer"); 8317 8318 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8319 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8320 "align_overflow_area_pointer"); 8321 } 8322 8323 // Get the pointer for next argument in overflow area and store it 8324 // to overflow area pointer. 8325 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8326 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8327 "__overflow_area_pointer.next"); 8328 8329 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8330 __overflow_area_pointer_p); 8331 8332 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8333 __current_saved_reg_area_pointer_p); 8334 8335 // Bitcast the overflow area pointer to the type of argument. 8336 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8337 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8338 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8339 8340 CGF.EmitBranch(ContBlock); 8341 8342 // Get the correct pointer to load the variable argument 8343 // Implement the ContBlock 8344 CGF.EmitBlock(ContBlock); 8345 8346 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8347 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8348 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8349 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8350 8351 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8352 } 8353 8354 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8355 QualType Ty) const { 8356 8357 if (getTarget().getTriple().isMusl()) 8358 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8359 8360 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8361 } 8362 8363 //===----------------------------------------------------------------------===// 8364 // Lanai ABI Implementation 8365 //===----------------------------------------------------------------------===// 8366 8367 namespace { 8368 class LanaiABIInfo : public DefaultABIInfo { 8369 public: 8370 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8371 8372 bool shouldUseInReg(QualType Ty, CCState &State) const; 8373 8374 void computeInfo(CGFunctionInfo &FI) const override { 8375 CCState State(FI); 8376 // Lanai uses 4 registers to pass arguments unless the function has the 8377 // regparm attribute set. 8378 if (FI.getHasRegParm()) { 8379 State.FreeRegs = FI.getRegParm(); 8380 } else { 8381 State.FreeRegs = 4; 8382 } 8383 8384 if (!getCXXABI().classifyReturnType(FI)) 8385 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8386 for (auto &I : FI.arguments()) 8387 I.info = classifyArgumentType(I.type, State); 8388 } 8389 8390 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8391 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8392 }; 8393 } // end anonymous namespace 8394 8395 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8396 unsigned Size = getContext().getTypeSize(Ty); 8397 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8398 8399 if (SizeInRegs == 0) 8400 return false; 8401 8402 if (SizeInRegs > State.FreeRegs) { 8403 State.FreeRegs = 0; 8404 return false; 8405 } 8406 8407 State.FreeRegs -= SizeInRegs; 8408 8409 return true; 8410 } 8411 8412 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8413 CCState &State) const { 8414 if (!ByVal) { 8415 if (State.FreeRegs) { 8416 --State.FreeRegs; // Non-byval indirects just use one pointer. 8417 return getNaturalAlignIndirectInReg(Ty); 8418 } 8419 return getNaturalAlignIndirect(Ty, false); 8420 } 8421 8422 // Compute the byval alignment. 8423 const unsigned MinABIStackAlignInBytes = 4; 8424 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8425 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8426 /*Realign=*/TypeAlign > 8427 MinABIStackAlignInBytes); 8428 } 8429 8430 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8431 CCState &State) const { 8432 // Check with the C++ ABI first. 8433 const RecordType *RT = Ty->getAs<RecordType>(); 8434 if (RT) { 8435 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8436 if (RAA == CGCXXABI::RAA_Indirect) { 8437 return getIndirectResult(Ty, /*ByVal=*/false, State); 8438 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8439 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8440 } 8441 } 8442 8443 if (isAggregateTypeForABI(Ty)) { 8444 // Structures with flexible arrays are always indirect. 8445 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8446 return getIndirectResult(Ty, /*ByVal=*/true, State); 8447 8448 // Ignore empty structs/unions. 8449 if (isEmptyRecord(getContext(), Ty, true)) 8450 return ABIArgInfo::getIgnore(); 8451 8452 llvm::LLVMContext &LLVMContext = getVMContext(); 8453 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8454 if (SizeInRegs <= State.FreeRegs) { 8455 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8456 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8457 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8458 State.FreeRegs -= SizeInRegs; 8459 return ABIArgInfo::getDirectInReg(Result); 8460 } else { 8461 State.FreeRegs = 0; 8462 } 8463 return getIndirectResult(Ty, true, State); 8464 } 8465 8466 // Treat an enum type as its underlying type. 8467 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8468 Ty = EnumTy->getDecl()->getIntegerType(); 8469 8470 bool InReg = shouldUseInReg(Ty, State); 8471 8472 // Don't pass >64 bit integers in registers. 8473 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8474 if (EIT->getNumBits() > 64) 8475 return getIndirectResult(Ty, /*ByVal=*/true, State); 8476 8477 if (isPromotableIntegerTypeForABI(Ty)) { 8478 if (InReg) 8479 return ABIArgInfo::getDirectInReg(); 8480 return ABIArgInfo::getExtend(Ty); 8481 } 8482 if (InReg) 8483 return ABIArgInfo::getDirectInReg(); 8484 return ABIArgInfo::getDirect(); 8485 } 8486 8487 namespace { 8488 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8489 public: 8490 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8491 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8492 }; 8493 } 8494 8495 //===----------------------------------------------------------------------===// 8496 // AMDGPU ABI Implementation 8497 //===----------------------------------------------------------------------===// 8498 8499 namespace { 8500 8501 class AMDGPUABIInfo final : public DefaultABIInfo { 8502 private: 8503 static const unsigned MaxNumRegsForArgsRet = 16; 8504 8505 unsigned numRegsForType(QualType Ty) const; 8506 8507 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8508 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8509 uint64_t Members) const override; 8510 8511 // Coerce HIP pointer arguments from generic pointers to global ones. 8512 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8513 unsigned ToAS) const { 8514 // Structure types. 8515 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8516 SmallVector<llvm::Type *, 8> EltTys; 8517 bool Changed = false; 8518 for (auto T : STy->elements()) { 8519 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8520 EltTys.push_back(NT); 8521 Changed |= (NT != T); 8522 } 8523 // Skip if there is no change in element types. 8524 if (!Changed) 8525 return STy; 8526 if (STy->hasName()) 8527 return llvm::StructType::create( 8528 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8529 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8530 } 8531 // Array types. 8532 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8533 auto T = ATy->getElementType(); 8534 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8535 // Skip if there is no change in that element type. 8536 if (NT == T) 8537 return ATy; 8538 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8539 } 8540 // Single value types. 8541 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8542 return llvm::PointerType::get( 8543 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8544 return Ty; 8545 } 8546 8547 public: 8548 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8549 DefaultABIInfo(CGT) {} 8550 8551 ABIArgInfo classifyReturnType(QualType RetTy) const; 8552 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8553 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8554 8555 void computeInfo(CGFunctionInfo &FI) const override; 8556 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8557 QualType Ty) const override; 8558 }; 8559 8560 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8561 return true; 8562 } 8563 8564 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8565 const Type *Base, uint64_t Members) const { 8566 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8567 8568 // Homogeneous Aggregates may occupy at most 16 registers. 8569 return Members * NumRegs <= MaxNumRegsForArgsRet; 8570 } 8571 8572 /// Estimate number of registers the type will use when passed in registers. 8573 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8574 unsigned NumRegs = 0; 8575 8576 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8577 // Compute from the number of elements. The reported size is based on the 8578 // in-memory size, which includes the padding 4th element for 3-vectors. 8579 QualType EltTy = VT->getElementType(); 8580 unsigned EltSize = getContext().getTypeSize(EltTy); 8581 8582 // 16-bit element vectors should be passed as packed. 8583 if (EltSize == 16) 8584 return (VT->getNumElements() + 1) / 2; 8585 8586 unsigned EltNumRegs = (EltSize + 31) / 32; 8587 return EltNumRegs * VT->getNumElements(); 8588 } 8589 8590 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8591 const RecordDecl *RD = RT->getDecl(); 8592 assert(!RD->hasFlexibleArrayMember()); 8593 8594 for (const FieldDecl *Field : RD->fields()) { 8595 QualType FieldTy = Field->getType(); 8596 NumRegs += numRegsForType(FieldTy); 8597 } 8598 8599 return NumRegs; 8600 } 8601 8602 return (getContext().getTypeSize(Ty) + 31) / 32; 8603 } 8604 8605 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8606 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8607 8608 if (!getCXXABI().classifyReturnType(FI)) 8609 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8610 8611 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8612 for (auto &Arg : FI.arguments()) { 8613 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8614 Arg.info = classifyKernelArgumentType(Arg.type); 8615 } else { 8616 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8617 } 8618 } 8619 } 8620 8621 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8622 QualType Ty) const { 8623 llvm_unreachable("AMDGPU does not support varargs"); 8624 } 8625 8626 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8627 if (isAggregateTypeForABI(RetTy)) { 8628 // Records with non-trivial destructors/copy-constructors should not be 8629 // returned by value. 8630 if (!getRecordArgABI(RetTy, getCXXABI())) { 8631 // Ignore empty structs/unions. 8632 if (isEmptyRecord(getContext(), RetTy, true)) 8633 return ABIArgInfo::getIgnore(); 8634 8635 // Lower single-element structs to just return a regular value. 8636 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8637 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8638 8639 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8640 const RecordDecl *RD = RT->getDecl(); 8641 if (RD->hasFlexibleArrayMember()) 8642 return DefaultABIInfo::classifyReturnType(RetTy); 8643 } 8644 8645 // Pack aggregates <= 4 bytes into single VGPR or pair. 8646 uint64_t Size = getContext().getTypeSize(RetTy); 8647 if (Size <= 16) 8648 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8649 8650 if (Size <= 32) 8651 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8652 8653 if (Size <= 64) { 8654 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8655 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8656 } 8657 8658 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8659 return ABIArgInfo::getDirect(); 8660 } 8661 } 8662 8663 // Otherwise just do the default thing. 8664 return DefaultABIInfo::classifyReturnType(RetTy); 8665 } 8666 8667 /// For kernels all parameters are really passed in a special buffer. It doesn't 8668 /// make sense to pass anything byval, so everything must be direct. 8669 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8670 Ty = useFirstFieldIfTransparentUnion(Ty); 8671 8672 // TODO: Can we omit empty structs? 8673 8674 llvm::Type *LTy = nullptr; 8675 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8676 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8677 8678 if (getContext().getLangOpts().HIP) { 8679 if (!LTy) 8680 LTy = CGT.ConvertType(Ty); 8681 LTy = coerceKernelArgumentType( 8682 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8683 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8684 } 8685 8686 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8687 // individual elements, which confuses the Clover OpenCL backend; therefore we 8688 // have to set it to false here. Other args of getDirect() are just defaults. 8689 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8690 } 8691 8692 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8693 unsigned &NumRegsLeft) const { 8694 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8695 8696 Ty = useFirstFieldIfTransparentUnion(Ty); 8697 8698 if (isAggregateTypeForABI(Ty)) { 8699 // Records with non-trivial destructors/copy-constructors should not be 8700 // passed by value. 8701 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8702 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8703 8704 // Ignore empty structs/unions. 8705 if (isEmptyRecord(getContext(), Ty, true)) 8706 return ABIArgInfo::getIgnore(); 8707 8708 // Lower single-element structs to just pass a regular value. TODO: We 8709 // could do reasonable-size multiple-element structs too, using getExpand(), 8710 // though watch out for things like bitfields. 8711 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8712 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8713 8714 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8715 const RecordDecl *RD = RT->getDecl(); 8716 if (RD->hasFlexibleArrayMember()) 8717 return DefaultABIInfo::classifyArgumentType(Ty); 8718 } 8719 8720 // Pack aggregates <= 8 bytes into single VGPR or pair. 8721 uint64_t Size = getContext().getTypeSize(Ty); 8722 if (Size <= 64) { 8723 unsigned NumRegs = (Size + 31) / 32; 8724 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8725 8726 if (Size <= 16) 8727 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8728 8729 if (Size <= 32) 8730 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8731 8732 // XXX: Should this be i64 instead, and should the limit increase? 8733 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8734 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8735 } 8736 8737 if (NumRegsLeft > 0) { 8738 unsigned NumRegs = numRegsForType(Ty); 8739 if (NumRegsLeft >= NumRegs) { 8740 NumRegsLeft -= NumRegs; 8741 return ABIArgInfo::getDirect(); 8742 } 8743 } 8744 } 8745 8746 // Otherwise just do the default thing. 8747 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8748 if (!ArgInfo.isIndirect()) { 8749 unsigned NumRegs = numRegsForType(Ty); 8750 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8751 } 8752 8753 return ArgInfo; 8754 } 8755 8756 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8757 public: 8758 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8759 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8760 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8761 CodeGen::CodeGenModule &M) const override; 8762 unsigned getOpenCLKernelCallingConv() const override; 8763 8764 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8765 llvm::PointerType *T, QualType QT) const override; 8766 8767 LangAS getASTAllocaAddressSpace() const override { 8768 return getLangASFromTargetAS( 8769 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8770 } 8771 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8772 const VarDecl *D) const override; 8773 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8774 SyncScope Scope, 8775 llvm::AtomicOrdering Ordering, 8776 llvm::LLVMContext &Ctx) const override; 8777 llvm::Function * 8778 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8779 llvm::Function *BlockInvokeFunc, 8780 llvm::Value *BlockLiteral) const override; 8781 bool shouldEmitStaticExternCAliases() const override; 8782 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8783 }; 8784 } 8785 8786 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8787 llvm::GlobalValue *GV) { 8788 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8789 return false; 8790 8791 return D->hasAttr<OpenCLKernelAttr>() || 8792 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8793 (isa<VarDecl>(D) && 8794 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8795 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8796 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8797 } 8798 8799 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8800 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8801 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8802 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8803 GV->setDSOLocal(true); 8804 } 8805 8806 if (GV->isDeclaration()) 8807 return; 8808 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8809 if (!FD) 8810 return; 8811 8812 llvm::Function *F = cast<llvm::Function>(GV); 8813 8814 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8815 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8816 8817 8818 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8819 FD->hasAttr<OpenCLKernelAttr>(); 8820 const bool IsHIPKernel = M.getLangOpts().HIP && 8821 FD->hasAttr<CUDAGlobalAttr>(); 8822 if ((IsOpenCLKernel || IsHIPKernel) && 8823 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8824 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8825 8826 if (IsHIPKernel) 8827 F->addFnAttr("uniform-work-group-size", "true"); 8828 8829 8830 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8831 if (ReqdWGS || FlatWGS) { 8832 unsigned Min = 0; 8833 unsigned Max = 0; 8834 if (FlatWGS) { 8835 Min = FlatWGS->getMin() 8836 ->EvaluateKnownConstInt(M.getContext()) 8837 .getExtValue(); 8838 Max = FlatWGS->getMax() 8839 ->EvaluateKnownConstInt(M.getContext()) 8840 .getExtValue(); 8841 } 8842 if (ReqdWGS && Min == 0 && Max == 0) 8843 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8844 8845 if (Min != 0) { 8846 assert(Min <= Max && "Min must be less than or equal Max"); 8847 8848 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8849 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8850 } else 8851 assert(Max == 0 && "Max must be zero"); 8852 } else if (IsOpenCLKernel || IsHIPKernel) { 8853 // By default, restrict the maximum size to a value specified by 8854 // --gpu-max-threads-per-block=n or its default value for HIP. 8855 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 8856 const unsigned DefaultMaxWorkGroupSize = 8857 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 8858 : M.getLangOpts().GPUMaxThreadsPerBlock; 8859 std::string AttrVal = 8860 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 8861 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8862 } 8863 8864 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8865 unsigned Min = 8866 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8867 unsigned Max = Attr->getMax() ? Attr->getMax() 8868 ->EvaluateKnownConstInt(M.getContext()) 8869 .getExtValue() 8870 : 0; 8871 8872 if (Min != 0) { 8873 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8874 8875 std::string AttrVal = llvm::utostr(Min); 8876 if (Max != 0) 8877 AttrVal = AttrVal + "," + llvm::utostr(Max); 8878 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8879 } else 8880 assert(Max == 0 && "Max must be zero"); 8881 } 8882 8883 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8884 unsigned NumSGPR = Attr->getNumSGPR(); 8885 8886 if (NumSGPR != 0) 8887 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8888 } 8889 8890 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8891 uint32_t NumVGPR = Attr->getNumVGPR(); 8892 8893 if (NumVGPR != 0) 8894 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8895 } 8896 } 8897 8898 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8899 return llvm::CallingConv::AMDGPU_KERNEL; 8900 } 8901 8902 // Currently LLVM assumes null pointers always have value 0, 8903 // which results in incorrectly transformed IR. Therefore, instead of 8904 // emitting null pointers in private and local address spaces, a null 8905 // pointer in generic address space is emitted which is casted to a 8906 // pointer in local or private address space. 8907 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8908 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8909 QualType QT) const { 8910 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8911 return llvm::ConstantPointerNull::get(PT); 8912 8913 auto &Ctx = CGM.getContext(); 8914 auto NPT = llvm::PointerType::get(PT->getElementType(), 8915 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8916 return llvm::ConstantExpr::getAddrSpaceCast( 8917 llvm::ConstantPointerNull::get(NPT), PT); 8918 } 8919 8920 LangAS 8921 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8922 const VarDecl *D) const { 8923 assert(!CGM.getLangOpts().OpenCL && 8924 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8925 "Address space agnostic languages only"); 8926 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8927 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8928 if (!D) 8929 return DefaultGlobalAS; 8930 8931 LangAS AddrSpace = D->getType().getAddressSpace(); 8932 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8933 if (AddrSpace != LangAS::Default) 8934 return AddrSpace; 8935 8936 if (CGM.isTypeConstant(D->getType(), false)) { 8937 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8938 return ConstAS.getValue(); 8939 } 8940 return DefaultGlobalAS; 8941 } 8942 8943 llvm::SyncScope::ID 8944 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8945 SyncScope Scope, 8946 llvm::AtomicOrdering Ordering, 8947 llvm::LLVMContext &Ctx) const { 8948 std::string Name; 8949 switch (Scope) { 8950 case SyncScope::OpenCLWorkGroup: 8951 Name = "workgroup"; 8952 break; 8953 case SyncScope::OpenCLDevice: 8954 Name = "agent"; 8955 break; 8956 case SyncScope::OpenCLAllSVMDevices: 8957 Name = ""; 8958 break; 8959 case SyncScope::OpenCLSubGroup: 8960 Name = "wavefront"; 8961 } 8962 8963 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8964 if (!Name.empty()) 8965 Name = Twine(Twine(Name) + Twine("-")).str(); 8966 8967 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8968 } 8969 8970 return Ctx.getOrInsertSyncScopeID(Name); 8971 } 8972 8973 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8974 return false; 8975 } 8976 8977 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8978 const FunctionType *&FT) const { 8979 FT = getABIInfo().getContext().adjustFunctionType( 8980 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8981 } 8982 8983 //===----------------------------------------------------------------------===// 8984 // SPARC v8 ABI Implementation. 8985 // Based on the SPARC Compliance Definition version 2.4.1. 8986 // 8987 // Ensures that complex values are passed in registers. 8988 // 8989 namespace { 8990 class SparcV8ABIInfo : public DefaultABIInfo { 8991 public: 8992 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8993 8994 private: 8995 ABIArgInfo classifyReturnType(QualType RetTy) const; 8996 void computeInfo(CGFunctionInfo &FI) const override; 8997 }; 8998 } // end anonymous namespace 8999 9000 9001 ABIArgInfo 9002 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9003 if (Ty->isAnyComplexType()) { 9004 return ABIArgInfo::getDirect(); 9005 } 9006 else { 9007 return DefaultABIInfo::classifyReturnType(Ty); 9008 } 9009 } 9010 9011 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9012 9013 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9014 for (auto &Arg : FI.arguments()) 9015 Arg.info = classifyArgumentType(Arg.type); 9016 } 9017 9018 namespace { 9019 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9020 public: 9021 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9022 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9023 }; 9024 } // end anonymous namespace 9025 9026 //===----------------------------------------------------------------------===// 9027 // SPARC v9 ABI Implementation. 9028 // Based on the SPARC Compliance Definition version 2.4.1. 9029 // 9030 // Function arguments a mapped to a nominal "parameter array" and promoted to 9031 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9032 // the array, structs larger than 16 bytes are passed indirectly. 9033 // 9034 // One case requires special care: 9035 // 9036 // struct mixed { 9037 // int i; 9038 // float f; 9039 // }; 9040 // 9041 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9042 // parameter array, but the int is passed in an integer register, and the float 9043 // is passed in a floating point register. This is represented as two arguments 9044 // with the LLVM IR inreg attribute: 9045 // 9046 // declare void f(i32 inreg %i, float inreg %f) 9047 // 9048 // The code generator will only allocate 4 bytes from the parameter array for 9049 // the inreg arguments. All other arguments are allocated a multiple of 8 9050 // bytes. 9051 // 9052 namespace { 9053 class SparcV9ABIInfo : public ABIInfo { 9054 public: 9055 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9056 9057 private: 9058 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9059 void computeInfo(CGFunctionInfo &FI) const override; 9060 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9061 QualType Ty) const override; 9062 9063 // Coercion type builder for structs passed in registers. The coercion type 9064 // serves two purposes: 9065 // 9066 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9067 // in registers. 9068 // 2. Expose aligned floating point elements as first-level elements, so the 9069 // code generator knows to pass them in floating point registers. 9070 // 9071 // We also compute the InReg flag which indicates that the struct contains 9072 // aligned 32-bit floats. 9073 // 9074 struct CoerceBuilder { 9075 llvm::LLVMContext &Context; 9076 const llvm::DataLayout &DL; 9077 SmallVector<llvm::Type*, 8> Elems; 9078 uint64_t Size; 9079 bool InReg; 9080 9081 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9082 : Context(c), DL(dl), Size(0), InReg(false) {} 9083 9084 // Pad Elems with integers until Size is ToSize. 9085 void pad(uint64_t ToSize) { 9086 assert(ToSize >= Size && "Cannot remove elements"); 9087 if (ToSize == Size) 9088 return; 9089 9090 // Finish the current 64-bit word. 9091 uint64_t Aligned = llvm::alignTo(Size, 64); 9092 if (Aligned > Size && Aligned <= ToSize) { 9093 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9094 Size = Aligned; 9095 } 9096 9097 // Add whole 64-bit words. 9098 while (Size + 64 <= ToSize) { 9099 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9100 Size += 64; 9101 } 9102 9103 // Final in-word padding. 9104 if (Size < ToSize) { 9105 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9106 Size = ToSize; 9107 } 9108 } 9109 9110 // Add a floating point element at Offset. 9111 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9112 // Unaligned floats are treated as integers. 9113 if (Offset % Bits) 9114 return; 9115 // The InReg flag is only required if there are any floats < 64 bits. 9116 if (Bits < 64) 9117 InReg = true; 9118 pad(Offset); 9119 Elems.push_back(Ty); 9120 Size = Offset + Bits; 9121 } 9122 9123 // Add a struct type to the coercion type, starting at Offset (in bits). 9124 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9125 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9126 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9127 llvm::Type *ElemTy = StrTy->getElementType(i); 9128 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9129 switch (ElemTy->getTypeID()) { 9130 case llvm::Type::StructTyID: 9131 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9132 break; 9133 case llvm::Type::FloatTyID: 9134 addFloat(ElemOffset, ElemTy, 32); 9135 break; 9136 case llvm::Type::DoubleTyID: 9137 addFloat(ElemOffset, ElemTy, 64); 9138 break; 9139 case llvm::Type::FP128TyID: 9140 addFloat(ElemOffset, ElemTy, 128); 9141 break; 9142 case llvm::Type::PointerTyID: 9143 if (ElemOffset % 64 == 0) { 9144 pad(ElemOffset); 9145 Elems.push_back(ElemTy); 9146 Size += 64; 9147 } 9148 break; 9149 default: 9150 break; 9151 } 9152 } 9153 } 9154 9155 // Check if Ty is a usable substitute for the coercion type. 9156 bool isUsableType(llvm::StructType *Ty) const { 9157 return llvm::makeArrayRef(Elems) == Ty->elements(); 9158 } 9159 9160 // Get the coercion type as a literal struct type. 9161 llvm::Type *getType() const { 9162 if (Elems.size() == 1) 9163 return Elems.front(); 9164 else 9165 return llvm::StructType::get(Context, Elems); 9166 } 9167 }; 9168 }; 9169 } // end anonymous namespace 9170 9171 ABIArgInfo 9172 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9173 if (Ty->isVoidType()) 9174 return ABIArgInfo::getIgnore(); 9175 9176 uint64_t Size = getContext().getTypeSize(Ty); 9177 9178 // Anything too big to fit in registers is passed with an explicit indirect 9179 // pointer / sret pointer. 9180 if (Size > SizeLimit) 9181 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9182 9183 // Treat an enum type as its underlying type. 9184 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9185 Ty = EnumTy->getDecl()->getIntegerType(); 9186 9187 // Integer types smaller than a register are extended. 9188 if (Size < 64 && Ty->isIntegerType()) 9189 return ABIArgInfo::getExtend(Ty); 9190 9191 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9192 if (EIT->getNumBits() < 64) 9193 return ABIArgInfo::getExtend(Ty); 9194 9195 // Other non-aggregates go in registers. 9196 if (!isAggregateTypeForABI(Ty)) 9197 return ABIArgInfo::getDirect(); 9198 9199 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9200 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9201 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9202 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9203 9204 // This is a small aggregate type that should be passed in registers. 9205 // Build a coercion type from the LLVM struct type. 9206 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9207 if (!StrTy) 9208 return ABIArgInfo::getDirect(); 9209 9210 CoerceBuilder CB(getVMContext(), getDataLayout()); 9211 CB.addStruct(0, StrTy); 9212 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9213 9214 // Try to use the original type for coercion. 9215 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9216 9217 if (CB.InReg) 9218 return ABIArgInfo::getDirectInReg(CoerceTy); 9219 else 9220 return ABIArgInfo::getDirect(CoerceTy); 9221 } 9222 9223 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9224 QualType Ty) const { 9225 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9226 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9227 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9228 AI.setCoerceToType(ArgTy); 9229 9230 CharUnits SlotSize = CharUnits::fromQuantity(8); 9231 9232 CGBuilderTy &Builder = CGF.Builder; 9233 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9234 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9235 9236 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9237 9238 Address ArgAddr = Address::invalid(); 9239 CharUnits Stride; 9240 switch (AI.getKind()) { 9241 case ABIArgInfo::Expand: 9242 case ABIArgInfo::CoerceAndExpand: 9243 case ABIArgInfo::InAlloca: 9244 llvm_unreachable("Unsupported ABI kind for va_arg"); 9245 9246 case ABIArgInfo::Extend: { 9247 Stride = SlotSize; 9248 CharUnits Offset = SlotSize - TypeInfo.first; 9249 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9250 break; 9251 } 9252 9253 case ABIArgInfo::Direct: { 9254 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9255 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9256 ArgAddr = Addr; 9257 break; 9258 } 9259 9260 case ABIArgInfo::Indirect: 9261 Stride = SlotSize; 9262 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9263 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9264 TypeInfo.second); 9265 break; 9266 9267 case ABIArgInfo::Ignore: 9268 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9269 } 9270 9271 // Update VAList. 9272 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9273 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9274 9275 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9276 } 9277 9278 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9279 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9280 for (auto &I : FI.arguments()) 9281 I.info = classifyType(I.type, 16 * 8); 9282 } 9283 9284 namespace { 9285 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9286 public: 9287 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9288 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9289 9290 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9291 return 14; 9292 } 9293 9294 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9295 llvm::Value *Address) const override; 9296 }; 9297 } // end anonymous namespace 9298 9299 bool 9300 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9301 llvm::Value *Address) const { 9302 // This is calculated from the LLVM and GCC tables and verified 9303 // against gcc output. AFAIK all ABIs use the same encoding. 9304 9305 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9306 9307 llvm::IntegerType *i8 = CGF.Int8Ty; 9308 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9309 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9310 9311 // 0-31: the 8-byte general-purpose registers 9312 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9313 9314 // 32-63: f0-31, the 4-byte floating-point registers 9315 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9316 9317 // Y = 64 9318 // PSR = 65 9319 // WIM = 66 9320 // TBR = 67 9321 // PC = 68 9322 // NPC = 69 9323 // FSR = 70 9324 // CSR = 71 9325 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9326 9327 // 72-87: d0-15, the 8-byte floating-point registers 9328 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9329 9330 return false; 9331 } 9332 9333 // ARC ABI implementation. 9334 namespace { 9335 9336 class ARCABIInfo : public DefaultABIInfo { 9337 public: 9338 using DefaultABIInfo::DefaultABIInfo; 9339 9340 private: 9341 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9342 QualType Ty) const override; 9343 9344 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9345 if (!State.FreeRegs) 9346 return; 9347 if (Info.isIndirect() && Info.getInReg()) 9348 State.FreeRegs--; 9349 else if (Info.isDirect() && Info.getInReg()) { 9350 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9351 if (sz < State.FreeRegs) 9352 State.FreeRegs -= sz; 9353 else 9354 State.FreeRegs = 0; 9355 } 9356 } 9357 9358 void computeInfo(CGFunctionInfo &FI) const override { 9359 CCState State(FI); 9360 // ARC uses 8 registers to pass arguments. 9361 State.FreeRegs = 8; 9362 9363 if (!getCXXABI().classifyReturnType(FI)) 9364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9365 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9366 for (auto &I : FI.arguments()) { 9367 I.info = classifyArgumentType(I.type, State.FreeRegs); 9368 updateState(I.info, I.type, State); 9369 } 9370 } 9371 9372 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9373 ABIArgInfo getIndirectByValue(QualType Ty) const; 9374 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9375 ABIArgInfo classifyReturnType(QualType RetTy) const; 9376 }; 9377 9378 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9379 public: 9380 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9381 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9382 }; 9383 9384 9385 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9386 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9387 getNaturalAlignIndirect(Ty, false); 9388 } 9389 9390 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9391 // Compute the byval alignment. 9392 const unsigned MinABIStackAlignInBytes = 4; 9393 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9394 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9395 TypeAlign > MinABIStackAlignInBytes); 9396 } 9397 9398 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9399 QualType Ty) const { 9400 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9401 getContext().getTypeInfoInChars(Ty), 9402 CharUnits::fromQuantity(4), true); 9403 } 9404 9405 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9406 uint8_t FreeRegs) const { 9407 // Handle the generic C++ ABI. 9408 const RecordType *RT = Ty->getAs<RecordType>(); 9409 if (RT) { 9410 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9411 if (RAA == CGCXXABI::RAA_Indirect) 9412 return getIndirectByRef(Ty, FreeRegs > 0); 9413 9414 if (RAA == CGCXXABI::RAA_DirectInMemory) 9415 return getIndirectByValue(Ty); 9416 } 9417 9418 // Treat an enum type as its underlying type. 9419 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9420 Ty = EnumTy->getDecl()->getIntegerType(); 9421 9422 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9423 9424 if (isAggregateTypeForABI(Ty)) { 9425 // Structures with flexible arrays are always indirect. 9426 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9427 return getIndirectByValue(Ty); 9428 9429 // Ignore empty structs/unions. 9430 if (isEmptyRecord(getContext(), Ty, true)) 9431 return ABIArgInfo::getIgnore(); 9432 9433 llvm::LLVMContext &LLVMContext = getVMContext(); 9434 9435 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9436 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9437 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9438 9439 return FreeRegs >= SizeInRegs ? 9440 ABIArgInfo::getDirectInReg(Result) : 9441 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9442 } 9443 9444 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9445 if (EIT->getNumBits() > 64) 9446 return getIndirectByValue(Ty); 9447 9448 return isPromotableIntegerTypeForABI(Ty) 9449 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9450 : ABIArgInfo::getExtend(Ty)) 9451 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9452 : ABIArgInfo::getDirect()); 9453 } 9454 9455 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9456 if (RetTy->isAnyComplexType()) 9457 return ABIArgInfo::getDirectInReg(); 9458 9459 // Arguments of size > 4 registers are indirect. 9460 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9461 if (RetSize > 4) 9462 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9463 9464 return DefaultABIInfo::classifyReturnType(RetTy); 9465 } 9466 9467 } // End anonymous namespace. 9468 9469 //===----------------------------------------------------------------------===// 9470 // XCore ABI Implementation 9471 //===----------------------------------------------------------------------===// 9472 9473 namespace { 9474 9475 /// A SmallStringEnc instance is used to build up the TypeString by passing 9476 /// it by reference between functions that append to it. 9477 typedef llvm::SmallString<128> SmallStringEnc; 9478 9479 /// TypeStringCache caches the meta encodings of Types. 9480 /// 9481 /// The reason for caching TypeStrings is two fold: 9482 /// 1. To cache a type's encoding for later uses; 9483 /// 2. As a means to break recursive member type inclusion. 9484 /// 9485 /// A cache Entry can have a Status of: 9486 /// NonRecursive: The type encoding is not recursive; 9487 /// Recursive: The type encoding is recursive; 9488 /// Incomplete: An incomplete TypeString; 9489 /// IncompleteUsed: An incomplete TypeString that has been used in a 9490 /// Recursive type encoding. 9491 /// 9492 /// A NonRecursive entry will have all of its sub-members expanded as fully 9493 /// as possible. Whilst it may contain types which are recursive, the type 9494 /// itself is not recursive and thus its encoding may be safely used whenever 9495 /// the type is encountered. 9496 /// 9497 /// A Recursive entry will have all of its sub-members expanded as fully as 9498 /// possible. The type itself is recursive and it may contain other types which 9499 /// are recursive. The Recursive encoding must not be used during the expansion 9500 /// of a recursive type's recursive branch. For simplicity the code uses 9501 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9502 /// 9503 /// An Incomplete entry is always a RecordType and only encodes its 9504 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9505 /// are placed into the cache during type expansion as a means to identify and 9506 /// handle recursive inclusion of types as sub-members. If there is recursion 9507 /// the entry becomes IncompleteUsed. 9508 /// 9509 /// During the expansion of a RecordType's members: 9510 /// 9511 /// If the cache contains a NonRecursive encoding for the member type, the 9512 /// cached encoding is used; 9513 /// 9514 /// If the cache contains a Recursive encoding for the member type, the 9515 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9516 /// 9517 /// If the member is a RecordType, an Incomplete encoding is placed into the 9518 /// cache to break potential recursive inclusion of itself as a sub-member; 9519 /// 9520 /// Once a member RecordType has been expanded, its temporary incomplete 9521 /// entry is removed from the cache. If a Recursive encoding was swapped out 9522 /// it is swapped back in; 9523 /// 9524 /// If an incomplete entry is used to expand a sub-member, the incomplete 9525 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9526 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9527 /// 9528 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9529 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9530 /// Else the member is part of a recursive type and thus the recursion has 9531 /// been exited too soon for the encoding to be correct for the member. 9532 /// 9533 class TypeStringCache { 9534 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9535 struct Entry { 9536 std::string Str; // The encoded TypeString for the type. 9537 enum Status State; // Information about the encoding in 'Str'. 9538 std::string Swapped; // A temporary place holder for a Recursive encoding 9539 // during the expansion of RecordType's members. 9540 }; 9541 std::map<const IdentifierInfo *, struct Entry> Map; 9542 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9543 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9544 public: 9545 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9546 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9547 bool removeIncomplete(const IdentifierInfo *ID); 9548 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9549 bool IsRecursive); 9550 StringRef lookupStr(const IdentifierInfo *ID); 9551 }; 9552 9553 /// TypeString encodings for enum & union fields must be order. 9554 /// FieldEncoding is a helper for this ordering process. 9555 class FieldEncoding { 9556 bool HasName; 9557 std::string Enc; 9558 public: 9559 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9560 StringRef str() { return Enc; } 9561 bool operator<(const FieldEncoding &rhs) const { 9562 if (HasName != rhs.HasName) return HasName; 9563 return Enc < rhs.Enc; 9564 } 9565 }; 9566 9567 class XCoreABIInfo : public DefaultABIInfo { 9568 public: 9569 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9570 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9571 QualType Ty) const override; 9572 }; 9573 9574 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9575 mutable TypeStringCache TSC; 9576 public: 9577 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9578 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9579 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9580 CodeGen::CodeGenModule &M) const override; 9581 }; 9582 9583 } // End anonymous namespace. 9584 9585 // TODO: this implementation is likely now redundant with the default 9586 // EmitVAArg. 9587 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9588 QualType Ty) const { 9589 CGBuilderTy &Builder = CGF.Builder; 9590 9591 // Get the VAList. 9592 CharUnits SlotSize = CharUnits::fromQuantity(4); 9593 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9594 9595 // Handle the argument. 9596 ABIArgInfo AI = classifyArgumentType(Ty); 9597 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9598 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9599 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9600 AI.setCoerceToType(ArgTy); 9601 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9602 9603 Address Val = Address::invalid(); 9604 CharUnits ArgSize = CharUnits::Zero(); 9605 switch (AI.getKind()) { 9606 case ABIArgInfo::Expand: 9607 case ABIArgInfo::CoerceAndExpand: 9608 case ABIArgInfo::InAlloca: 9609 llvm_unreachable("Unsupported ABI kind for va_arg"); 9610 case ABIArgInfo::Ignore: 9611 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9612 ArgSize = CharUnits::Zero(); 9613 break; 9614 case ABIArgInfo::Extend: 9615 case ABIArgInfo::Direct: 9616 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9617 ArgSize = CharUnits::fromQuantity( 9618 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9619 ArgSize = ArgSize.alignTo(SlotSize); 9620 break; 9621 case ABIArgInfo::Indirect: 9622 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9623 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9624 ArgSize = SlotSize; 9625 break; 9626 } 9627 9628 // Increment the VAList. 9629 if (!ArgSize.isZero()) { 9630 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9631 Builder.CreateStore(APN.getPointer(), VAListAddr); 9632 } 9633 9634 return Val; 9635 } 9636 9637 /// During the expansion of a RecordType, an incomplete TypeString is placed 9638 /// into the cache as a means to identify and break recursion. 9639 /// If there is a Recursive encoding in the cache, it is swapped out and will 9640 /// be reinserted by removeIncomplete(). 9641 /// All other types of encoding should have been used rather than arriving here. 9642 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9643 std::string StubEnc) { 9644 if (!ID) 9645 return; 9646 Entry &E = Map[ID]; 9647 assert( (E.Str.empty() || E.State == Recursive) && 9648 "Incorrectly use of addIncomplete"); 9649 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9650 E.Swapped.swap(E.Str); // swap out the Recursive 9651 E.Str.swap(StubEnc); 9652 E.State = Incomplete; 9653 ++IncompleteCount; 9654 } 9655 9656 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9657 /// must be removed from the cache. 9658 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9659 /// Returns true if the RecordType was defined recursively. 9660 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9661 if (!ID) 9662 return false; 9663 auto I = Map.find(ID); 9664 assert(I != Map.end() && "Entry not present"); 9665 Entry &E = I->second; 9666 assert( (E.State == Incomplete || 9667 E.State == IncompleteUsed) && 9668 "Entry must be an incomplete type"); 9669 bool IsRecursive = false; 9670 if (E.State == IncompleteUsed) { 9671 // We made use of our Incomplete encoding, thus we are recursive. 9672 IsRecursive = true; 9673 --IncompleteUsedCount; 9674 } 9675 if (E.Swapped.empty()) 9676 Map.erase(I); 9677 else { 9678 // Swap the Recursive back. 9679 E.Swapped.swap(E.Str); 9680 E.Swapped.clear(); 9681 E.State = Recursive; 9682 } 9683 --IncompleteCount; 9684 return IsRecursive; 9685 } 9686 9687 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9688 /// Recursive (viz: all sub-members were expanded as fully as possible). 9689 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9690 bool IsRecursive) { 9691 if (!ID || IncompleteUsedCount) 9692 return; // No key or it is is an incomplete sub-type so don't add. 9693 Entry &E = Map[ID]; 9694 if (IsRecursive && !E.Str.empty()) { 9695 assert(E.State==Recursive && E.Str.size() == Str.size() && 9696 "This is not the same Recursive entry"); 9697 // The parent container was not recursive after all, so we could have used 9698 // this Recursive sub-member entry after all, but we assumed the worse when 9699 // we started viz: IncompleteCount!=0. 9700 return; 9701 } 9702 assert(E.Str.empty() && "Entry already present"); 9703 E.Str = Str.str(); 9704 E.State = IsRecursive? Recursive : NonRecursive; 9705 } 9706 9707 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9708 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9709 /// encoding is Recursive, return an empty StringRef. 9710 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9711 if (!ID) 9712 return StringRef(); // We have no key. 9713 auto I = Map.find(ID); 9714 if (I == Map.end()) 9715 return StringRef(); // We have no encoding. 9716 Entry &E = I->second; 9717 if (E.State == Recursive && IncompleteCount) 9718 return StringRef(); // We don't use Recursive encodings for member types. 9719 9720 if (E.State == Incomplete) { 9721 // The incomplete type is being used to break out of recursion. 9722 E.State = IncompleteUsed; 9723 ++IncompleteUsedCount; 9724 } 9725 return E.Str; 9726 } 9727 9728 /// The XCore ABI includes a type information section that communicates symbol 9729 /// type information to the linker. The linker uses this information to verify 9730 /// safety/correctness of things such as array bound and pointers et al. 9731 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9732 /// This type information (TypeString) is emitted into meta data for all global 9733 /// symbols: definitions, declarations, functions & variables. 9734 /// 9735 /// The TypeString carries type, qualifier, name, size & value details. 9736 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9737 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9738 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9739 /// 9740 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9741 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 9742 9743 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9744 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9745 CodeGen::CodeGenModule &CGM) const { 9746 SmallStringEnc Enc; 9747 if (getTypeString(Enc, D, CGM, TSC)) { 9748 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9749 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9750 llvm::MDString::get(Ctx, Enc.str())}; 9751 llvm::NamedMDNode *MD = 9752 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9753 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9754 } 9755 } 9756 9757 //===----------------------------------------------------------------------===// 9758 // SPIR ABI Implementation 9759 //===----------------------------------------------------------------------===// 9760 9761 namespace { 9762 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9763 public: 9764 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9765 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9766 unsigned getOpenCLKernelCallingConv() const override; 9767 }; 9768 9769 } // End anonymous namespace. 9770 9771 namespace clang { 9772 namespace CodeGen { 9773 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9774 DefaultABIInfo SPIRABI(CGM.getTypes()); 9775 SPIRABI.computeInfo(FI); 9776 } 9777 } 9778 } 9779 9780 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9781 return llvm::CallingConv::SPIR_KERNEL; 9782 } 9783 9784 static bool appendType(SmallStringEnc &Enc, QualType QType, 9785 const CodeGen::CodeGenModule &CGM, 9786 TypeStringCache &TSC); 9787 9788 /// Helper function for appendRecordType(). 9789 /// Builds a SmallVector containing the encoded field types in declaration 9790 /// order. 9791 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9792 const RecordDecl *RD, 9793 const CodeGen::CodeGenModule &CGM, 9794 TypeStringCache &TSC) { 9795 for (const auto *Field : RD->fields()) { 9796 SmallStringEnc Enc; 9797 Enc += "m("; 9798 Enc += Field->getName(); 9799 Enc += "){"; 9800 if (Field->isBitField()) { 9801 Enc += "b("; 9802 llvm::raw_svector_ostream OS(Enc); 9803 OS << Field->getBitWidthValue(CGM.getContext()); 9804 Enc += ':'; 9805 } 9806 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9807 return false; 9808 if (Field->isBitField()) 9809 Enc += ')'; 9810 Enc += '}'; 9811 FE.emplace_back(!Field->getName().empty(), Enc); 9812 } 9813 return true; 9814 } 9815 9816 /// Appends structure and union types to Enc and adds encoding to cache. 9817 /// Recursively calls appendType (via extractFieldType) for each field. 9818 /// Union types have their fields ordered according to the ABI. 9819 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9820 const CodeGen::CodeGenModule &CGM, 9821 TypeStringCache &TSC, const IdentifierInfo *ID) { 9822 // Append the cached TypeString if we have one. 9823 StringRef TypeString = TSC.lookupStr(ID); 9824 if (!TypeString.empty()) { 9825 Enc += TypeString; 9826 return true; 9827 } 9828 9829 // Start to emit an incomplete TypeString. 9830 size_t Start = Enc.size(); 9831 Enc += (RT->isUnionType()? 'u' : 's'); 9832 Enc += '('; 9833 if (ID) 9834 Enc += ID->getName(); 9835 Enc += "){"; 9836 9837 // We collect all encoded fields and order as necessary. 9838 bool IsRecursive = false; 9839 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9840 if (RD && !RD->field_empty()) { 9841 // An incomplete TypeString stub is placed in the cache for this RecordType 9842 // so that recursive calls to this RecordType will use it whilst building a 9843 // complete TypeString for this RecordType. 9844 SmallVector<FieldEncoding, 16> FE; 9845 std::string StubEnc(Enc.substr(Start).str()); 9846 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9847 TSC.addIncomplete(ID, std::move(StubEnc)); 9848 if (!extractFieldType(FE, RD, CGM, TSC)) { 9849 (void) TSC.removeIncomplete(ID); 9850 return false; 9851 } 9852 IsRecursive = TSC.removeIncomplete(ID); 9853 // The ABI requires unions to be sorted but not structures. 9854 // See FieldEncoding::operator< for sort algorithm. 9855 if (RT->isUnionType()) 9856 llvm::sort(FE); 9857 // We can now complete the TypeString. 9858 unsigned E = FE.size(); 9859 for (unsigned I = 0; I != E; ++I) { 9860 if (I) 9861 Enc += ','; 9862 Enc += FE[I].str(); 9863 } 9864 } 9865 Enc += '}'; 9866 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9867 return true; 9868 } 9869 9870 /// Appends enum types to Enc and adds the encoding to the cache. 9871 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9872 TypeStringCache &TSC, 9873 const IdentifierInfo *ID) { 9874 // Append the cached TypeString if we have one. 9875 StringRef TypeString = TSC.lookupStr(ID); 9876 if (!TypeString.empty()) { 9877 Enc += TypeString; 9878 return true; 9879 } 9880 9881 size_t Start = Enc.size(); 9882 Enc += "e("; 9883 if (ID) 9884 Enc += ID->getName(); 9885 Enc += "){"; 9886 9887 // We collect all encoded enumerations and order them alphanumerically. 9888 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9889 SmallVector<FieldEncoding, 16> FE; 9890 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9891 ++I) { 9892 SmallStringEnc EnumEnc; 9893 EnumEnc += "m("; 9894 EnumEnc += I->getName(); 9895 EnumEnc += "){"; 9896 I->getInitVal().toString(EnumEnc); 9897 EnumEnc += '}'; 9898 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9899 } 9900 llvm::sort(FE); 9901 unsigned E = FE.size(); 9902 for (unsigned I = 0; I != E; ++I) { 9903 if (I) 9904 Enc += ','; 9905 Enc += FE[I].str(); 9906 } 9907 } 9908 Enc += '}'; 9909 TSC.addIfComplete(ID, Enc.substr(Start), false); 9910 return true; 9911 } 9912 9913 /// Appends type's qualifier to Enc. 9914 /// This is done prior to appending the type's encoding. 9915 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9916 // Qualifiers are emitted in alphabetical order. 9917 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9918 int Lookup = 0; 9919 if (QT.isConstQualified()) 9920 Lookup += 1<<0; 9921 if (QT.isRestrictQualified()) 9922 Lookup += 1<<1; 9923 if (QT.isVolatileQualified()) 9924 Lookup += 1<<2; 9925 Enc += Table[Lookup]; 9926 } 9927 9928 /// Appends built-in types to Enc. 9929 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9930 const char *EncType; 9931 switch (BT->getKind()) { 9932 case BuiltinType::Void: 9933 EncType = "0"; 9934 break; 9935 case BuiltinType::Bool: 9936 EncType = "b"; 9937 break; 9938 case BuiltinType::Char_U: 9939 EncType = "uc"; 9940 break; 9941 case BuiltinType::UChar: 9942 EncType = "uc"; 9943 break; 9944 case BuiltinType::SChar: 9945 EncType = "sc"; 9946 break; 9947 case BuiltinType::UShort: 9948 EncType = "us"; 9949 break; 9950 case BuiltinType::Short: 9951 EncType = "ss"; 9952 break; 9953 case BuiltinType::UInt: 9954 EncType = "ui"; 9955 break; 9956 case BuiltinType::Int: 9957 EncType = "si"; 9958 break; 9959 case BuiltinType::ULong: 9960 EncType = "ul"; 9961 break; 9962 case BuiltinType::Long: 9963 EncType = "sl"; 9964 break; 9965 case BuiltinType::ULongLong: 9966 EncType = "ull"; 9967 break; 9968 case BuiltinType::LongLong: 9969 EncType = "sll"; 9970 break; 9971 case BuiltinType::Float: 9972 EncType = "ft"; 9973 break; 9974 case BuiltinType::Double: 9975 EncType = "d"; 9976 break; 9977 case BuiltinType::LongDouble: 9978 EncType = "ld"; 9979 break; 9980 default: 9981 return false; 9982 } 9983 Enc += EncType; 9984 return true; 9985 } 9986 9987 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9988 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9989 const CodeGen::CodeGenModule &CGM, 9990 TypeStringCache &TSC) { 9991 Enc += "p("; 9992 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9993 return false; 9994 Enc += ')'; 9995 return true; 9996 } 9997 9998 /// Appends array encoding to Enc before calling appendType for the element. 9999 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10000 const ArrayType *AT, 10001 const CodeGen::CodeGenModule &CGM, 10002 TypeStringCache &TSC, StringRef NoSizeEnc) { 10003 if (AT->getSizeModifier() != ArrayType::Normal) 10004 return false; 10005 Enc += "a("; 10006 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10007 CAT->getSize().toStringUnsigned(Enc); 10008 else 10009 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10010 Enc += ':'; 10011 // The Qualifiers should be attached to the type rather than the array. 10012 appendQualifier(Enc, QT); 10013 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10014 return false; 10015 Enc += ')'; 10016 return true; 10017 } 10018 10019 /// Appends a function encoding to Enc, calling appendType for the return type 10020 /// and the arguments. 10021 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10022 const CodeGen::CodeGenModule &CGM, 10023 TypeStringCache &TSC) { 10024 Enc += "f{"; 10025 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10026 return false; 10027 Enc += "}("; 10028 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10029 // N.B. we are only interested in the adjusted param types. 10030 auto I = FPT->param_type_begin(); 10031 auto E = FPT->param_type_end(); 10032 if (I != E) { 10033 do { 10034 if (!appendType(Enc, *I, CGM, TSC)) 10035 return false; 10036 ++I; 10037 if (I != E) 10038 Enc += ','; 10039 } while (I != E); 10040 if (FPT->isVariadic()) 10041 Enc += ",va"; 10042 } else { 10043 if (FPT->isVariadic()) 10044 Enc += "va"; 10045 else 10046 Enc += '0'; 10047 } 10048 } 10049 Enc += ')'; 10050 return true; 10051 } 10052 10053 /// Handles the type's qualifier before dispatching a call to handle specific 10054 /// type encodings. 10055 static bool appendType(SmallStringEnc &Enc, QualType QType, 10056 const CodeGen::CodeGenModule &CGM, 10057 TypeStringCache &TSC) { 10058 10059 QualType QT = QType.getCanonicalType(); 10060 10061 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10062 // The Qualifiers should be attached to the type rather than the array. 10063 // Thus we don't call appendQualifier() here. 10064 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10065 10066 appendQualifier(Enc, QT); 10067 10068 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10069 return appendBuiltinType(Enc, BT); 10070 10071 if (const PointerType *PT = QT->getAs<PointerType>()) 10072 return appendPointerType(Enc, PT, CGM, TSC); 10073 10074 if (const EnumType *ET = QT->getAs<EnumType>()) 10075 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10076 10077 if (const RecordType *RT = QT->getAsStructureType()) 10078 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10079 10080 if (const RecordType *RT = QT->getAsUnionType()) 10081 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10082 10083 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10084 return appendFunctionType(Enc, FT, CGM, TSC); 10085 10086 return false; 10087 } 10088 10089 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10090 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 10091 if (!D) 10092 return false; 10093 10094 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10095 if (FD->getLanguageLinkage() != CLanguageLinkage) 10096 return false; 10097 return appendType(Enc, FD->getType(), CGM, TSC); 10098 } 10099 10100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10101 if (VD->getLanguageLinkage() != CLanguageLinkage) 10102 return false; 10103 QualType QT = VD->getType().getCanonicalType(); 10104 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10105 // Global ArrayTypes are given a size of '*' if the size is unknown. 10106 // The Qualifiers should be attached to the type rather than the array. 10107 // Thus we don't call appendQualifier() here. 10108 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10109 } 10110 return appendType(Enc, QT, CGM, TSC); 10111 } 10112 return false; 10113 } 10114 10115 //===----------------------------------------------------------------------===// 10116 // RISCV ABI Implementation 10117 //===----------------------------------------------------------------------===// 10118 10119 namespace { 10120 class RISCVABIInfo : public DefaultABIInfo { 10121 private: 10122 // Size of the integer ('x') registers in bits. 10123 unsigned XLen; 10124 // Size of the floating point ('f') registers in bits. Note that the target 10125 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10126 // with soft float ABI has FLen==0). 10127 unsigned FLen; 10128 static const int NumArgGPRs = 8; 10129 static const int NumArgFPRs = 8; 10130 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10131 llvm::Type *&Field1Ty, 10132 CharUnits &Field1Off, 10133 llvm::Type *&Field2Ty, 10134 CharUnits &Field2Off) const; 10135 10136 public: 10137 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10138 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10139 10140 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10141 // non-virtual, but computeInfo is virtual, so we overload it. 10142 void computeInfo(CGFunctionInfo &FI) const override; 10143 10144 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10145 int &ArgFPRsLeft) const; 10146 ABIArgInfo classifyReturnType(QualType RetTy) const; 10147 10148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10149 QualType Ty) const override; 10150 10151 ABIArgInfo extendType(QualType Ty) const; 10152 10153 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10154 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10155 CharUnits &Field2Off, int &NeededArgGPRs, 10156 int &NeededArgFPRs) const; 10157 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10158 CharUnits Field1Off, 10159 llvm::Type *Field2Ty, 10160 CharUnits Field2Off) const; 10161 }; 10162 } // end anonymous namespace 10163 10164 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10165 QualType RetTy = FI.getReturnType(); 10166 if (!getCXXABI().classifyReturnType(FI)) 10167 FI.getReturnInfo() = classifyReturnType(RetTy); 10168 10169 // IsRetIndirect is true if classifyArgumentType indicated the value should 10170 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10171 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10172 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10173 // list and pass indirectly on RV32. 10174 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10175 if (!IsRetIndirect && RetTy->isScalarType() && 10176 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10177 if (RetTy->isComplexType() && FLen) { 10178 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10179 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10180 } else { 10181 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10182 IsRetIndirect = true; 10183 } 10184 } 10185 10186 // We must track the number of GPRs used in order to conform to the RISC-V 10187 // ABI, as integer scalars passed in registers should have signext/zeroext 10188 // when promoted, but are anyext if passed on the stack. As GPR usage is 10189 // different for variadic arguments, we must also track whether we are 10190 // examining a vararg or not. 10191 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10192 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10193 int NumFixedArgs = FI.getNumRequiredArgs(); 10194 10195 int ArgNum = 0; 10196 for (auto &ArgInfo : FI.arguments()) { 10197 bool IsFixed = ArgNum < NumFixedArgs; 10198 ArgInfo.info = 10199 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10200 ArgNum++; 10201 } 10202 } 10203 10204 // Returns true if the struct is a potential candidate for the floating point 10205 // calling convention. If this function returns true, the caller is 10206 // responsible for checking that if there is only a single field then that 10207 // field is a float. 10208 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10209 llvm::Type *&Field1Ty, 10210 CharUnits &Field1Off, 10211 llvm::Type *&Field2Ty, 10212 CharUnits &Field2Off) const { 10213 bool IsInt = Ty->isIntegralOrEnumerationType(); 10214 bool IsFloat = Ty->isRealFloatingType(); 10215 10216 if (IsInt || IsFloat) { 10217 uint64_t Size = getContext().getTypeSize(Ty); 10218 if (IsInt && Size > XLen) 10219 return false; 10220 // Can't be eligible if larger than the FP registers. Half precision isn't 10221 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10222 // default to the integer ABI in that case. 10223 if (IsFloat && (Size > FLen || Size < 32)) 10224 return false; 10225 // Can't be eligible if an integer type was already found (int+int pairs 10226 // are not eligible). 10227 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10228 return false; 10229 if (!Field1Ty) { 10230 Field1Ty = CGT.ConvertType(Ty); 10231 Field1Off = CurOff; 10232 return true; 10233 } 10234 if (!Field2Ty) { 10235 Field2Ty = CGT.ConvertType(Ty); 10236 Field2Off = CurOff; 10237 return true; 10238 } 10239 return false; 10240 } 10241 10242 if (auto CTy = Ty->getAs<ComplexType>()) { 10243 if (Field1Ty) 10244 return false; 10245 QualType EltTy = CTy->getElementType(); 10246 if (getContext().getTypeSize(EltTy) > FLen) 10247 return false; 10248 Field1Ty = CGT.ConvertType(EltTy); 10249 Field1Off = CurOff; 10250 assert(CurOff.isZero() && "Unexpected offset for first field"); 10251 Field2Ty = Field1Ty; 10252 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10253 return true; 10254 } 10255 10256 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10257 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10258 QualType EltTy = ATy->getElementType(); 10259 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10260 for (uint64_t i = 0; i < ArraySize; ++i) { 10261 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10262 Field1Off, Field2Ty, Field2Off); 10263 if (!Ret) 10264 return false; 10265 CurOff += EltSize; 10266 } 10267 return true; 10268 } 10269 10270 if (const auto *RTy = Ty->getAs<RecordType>()) { 10271 // Structures with either a non-trivial destructor or a non-trivial 10272 // copy constructor are not eligible for the FP calling convention. 10273 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10274 return false; 10275 if (isEmptyRecord(getContext(), Ty, true)) 10276 return true; 10277 const RecordDecl *RD = RTy->getDecl(); 10278 // Unions aren't eligible unless they're empty (which is caught above). 10279 if (RD->isUnion()) 10280 return false; 10281 int ZeroWidthBitFieldCount = 0; 10282 for (const FieldDecl *FD : RD->fields()) { 10283 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10284 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10285 QualType QTy = FD->getType(); 10286 if (FD->isBitField()) { 10287 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10288 // Allow a bitfield with a type greater than XLen as long as the 10289 // bitwidth is XLen or less. 10290 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10291 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10292 if (BitWidth == 0) { 10293 ZeroWidthBitFieldCount++; 10294 continue; 10295 } 10296 } 10297 10298 bool Ret = detectFPCCEligibleStructHelper( 10299 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10300 Field1Ty, Field1Off, Field2Ty, Field2Off); 10301 if (!Ret) 10302 return false; 10303 10304 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10305 // or int+fp structs, but are ignored for a struct with an fp field and 10306 // any number of zero-width bitfields. 10307 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10308 return false; 10309 } 10310 return Field1Ty != nullptr; 10311 } 10312 10313 return false; 10314 } 10315 10316 // Determine if a struct is eligible for passing according to the floating 10317 // point calling convention (i.e., when flattened it contains a single fp 10318 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10319 // NeededArgGPRs are incremented appropriately. 10320 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10321 CharUnits &Field1Off, 10322 llvm::Type *&Field2Ty, 10323 CharUnits &Field2Off, 10324 int &NeededArgGPRs, 10325 int &NeededArgFPRs) const { 10326 Field1Ty = nullptr; 10327 Field2Ty = nullptr; 10328 NeededArgGPRs = 0; 10329 NeededArgFPRs = 0; 10330 bool IsCandidate = detectFPCCEligibleStructHelper( 10331 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10332 // Not really a candidate if we have a single int but no float. 10333 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10334 return false; 10335 if (!IsCandidate) 10336 return false; 10337 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10338 NeededArgFPRs++; 10339 else if (Field1Ty) 10340 NeededArgGPRs++; 10341 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10342 NeededArgFPRs++; 10343 else if (Field2Ty) 10344 NeededArgGPRs++; 10345 return IsCandidate; 10346 } 10347 10348 // Call getCoerceAndExpand for the two-element flattened struct described by 10349 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10350 // appropriate coerceToType and unpaddedCoerceToType. 10351 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10352 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10353 CharUnits Field2Off) const { 10354 SmallVector<llvm::Type *, 3> CoerceElts; 10355 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10356 if (!Field1Off.isZero()) 10357 CoerceElts.push_back(llvm::ArrayType::get( 10358 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10359 10360 CoerceElts.push_back(Field1Ty); 10361 UnpaddedCoerceElts.push_back(Field1Ty); 10362 10363 if (!Field2Ty) { 10364 return ABIArgInfo::getCoerceAndExpand( 10365 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10366 UnpaddedCoerceElts[0]); 10367 } 10368 10369 CharUnits Field2Align = 10370 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10371 CharUnits Field1Size = 10372 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10373 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10374 10375 CharUnits Padding = CharUnits::Zero(); 10376 if (Field2Off > Field2OffNoPadNoPack) 10377 Padding = Field2Off - Field2OffNoPadNoPack; 10378 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10379 Padding = Field2Off - Field1Size; 10380 10381 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10382 10383 if (!Padding.isZero()) 10384 CoerceElts.push_back(llvm::ArrayType::get( 10385 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10386 10387 CoerceElts.push_back(Field2Ty); 10388 UnpaddedCoerceElts.push_back(Field2Ty); 10389 10390 auto CoerceToType = 10391 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10392 auto UnpaddedCoerceToType = 10393 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10394 10395 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10396 } 10397 10398 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10399 int &ArgGPRsLeft, 10400 int &ArgFPRsLeft) const { 10401 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10402 Ty = useFirstFieldIfTransparentUnion(Ty); 10403 10404 // Structures with either a non-trivial destructor or a non-trivial 10405 // copy constructor are always passed indirectly. 10406 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10407 if (ArgGPRsLeft) 10408 ArgGPRsLeft -= 1; 10409 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10410 CGCXXABI::RAA_DirectInMemory); 10411 } 10412 10413 // Ignore empty structs/unions. 10414 if (isEmptyRecord(getContext(), Ty, true)) 10415 return ABIArgInfo::getIgnore(); 10416 10417 uint64_t Size = getContext().getTypeSize(Ty); 10418 10419 // Pass floating point values via FPRs if possible. 10420 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10421 FLen >= Size && ArgFPRsLeft) { 10422 ArgFPRsLeft--; 10423 return ABIArgInfo::getDirect(); 10424 } 10425 10426 // Complex types for the hard float ABI must be passed direct rather than 10427 // using CoerceAndExpand. 10428 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10429 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10430 if (getContext().getTypeSize(EltTy) <= FLen) { 10431 ArgFPRsLeft -= 2; 10432 return ABIArgInfo::getDirect(); 10433 } 10434 } 10435 10436 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10437 llvm::Type *Field1Ty = nullptr; 10438 llvm::Type *Field2Ty = nullptr; 10439 CharUnits Field1Off = CharUnits::Zero(); 10440 CharUnits Field2Off = CharUnits::Zero(); 10441 int NeededArgGPRs; 10442 int NeededArgFPRs; 10443 bool IsCandidate = 10444 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10445 NeededArgGPRs, NeededArgFPRs); 10446 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10447 NeededArgFPRs <= ArgFPRsLeft) { 10448 ArgGPRsLeft -= NeededArgGPRs; 10449 ArgFPRsLeft -= NeededArgFPRs; 10450 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10451 Field2Off); 10452 } 10453 } 10454 10455 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10456 bool MustUseStack = false; 10457 // Determine the number of GPRs needed to pass the current argument 10458 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10459 // register pairs, so may consume 3 registers. 10460 int NeededArgGPRs = 1; 10461 if (!IsFixed && NeededAlign == 2 * XLen) 10462 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10463 else if (Size > XLen && Size <= 2 * XLen) 10464 NeededArgGPRs = 2; 10465 10466 if (NeededArgGPRs > ArgGPRsLeft) { 10467 MustUseStack = true; 10468 NeededArgGPRs = ArgGPRsLeft; 10469 } 10470 10471 ArgGPRsLeft -= NeededArgGPRs; 10472 10473 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10474 // Treat an enum type as its underlying type. 10475 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10476 Ty = EnumTy->getDecl()->getIntegerType(); 10477 10478 // All integral types are promoted to XLen width, unless passed on the 10479 // stack. 10480 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10481 return extendType(Ty); 10482 } 10483 10484 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10485 if (EIT->getNumBits() < XLen && !MustUseStack) 10486 return extendType(Ty); 10487 if (EIT->getNumBits() > 128 || 10488 (!getContext().getTargetInfo().hasInt128Type() && 10489 EIT->getNumBits() > 64)) 10490 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10491 } 10492 10493 return ABIArgInfo::getDirect(); 10494 } 10495 10496 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10497 // so coerce to integers. 10498 if (Size <= 2 * XLen) { 10499 unsigned Alignment = getContext().getTypeAlign(Ty); 10500 10501 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10502 // required, and a 2-element XLen array if only XLen alignment is required. 10503 if (Size <= XLen) { 10504 return ABIArgInfo::getDirect( 10505 llvm::IntegerType::get(getVMContext(), XLen)); 10506 } else if (Alignment == 2 * XLen) { 10507 return ABIArgInfo::getDirect( 10508 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10509 } else { 10510 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10511 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10512 } 10513 } 10514 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10515 } 10516 10517 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10518 if (RetTy->isVoidType()) 10519 return ABIArgInfo::getIgnore(); 10520 10521 int ArgGPRsLeft = 2; 10522 int ArgFPRsLeft = FLen ? 2 : 0; 10523 10524 // The rules for return and argument types are the same, so defer to 10525 // classifyArgumentType. 10526 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10527 ArgFPRsLeft); 10528 } 10529 10530 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10531 QualType Ty) const { 10532 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10533 10534 // Empty records are ignored for parameter passing purposes. 10535 if (isEmptyRecord(getContext(), Ty, true)) { 10536 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10537 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10538 return Addr; 10539 } 10540 10541 std::pair<CharUnits, CharUnits> SizeAndAlign = 10542 getContext().getTypeInfoInChars(Ty); 10543 10544 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10545 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10546 10547 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10548 SlotSize, /*AllowHigherAlign=*/true); 10549 } 10550 10551 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10552 int TySize = getContext().getTypeSize(Ty); 10553 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10554 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10555 return ABIArgInfo::getSignExtend(Ty); 10556 return ABIArgInfo::getExtend(Ty); 10557 } 10558 10559 namespace { 10560 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10561 public: 10562 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10563 unsigned FLen) 10564 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10565 10566 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10567 CodeGen::CodeGenModule &CGM) const override { 10568 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10569 if (!FD) return; 10570 10571 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10572 if (!Attr) 10573 return; 10574 10575 const char *Kind; 10576 switch (Attr->getInterrupt()) { 10577 case RISCVInterruptAttr::user: Kind = "user"; break; 10578 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10579 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10580 } 10581 10582 auto *Fn = cast<llvm::Function>(GV); 10583 10584 Fn->addFnAttr("interrupt", Kind); 10585 } 10586 }; 10587 } // namespace 10588 10589 //===----------------------------------------------------------------------===// 10590 // Driver code 10591 //===----------------------------------------------------------------------===// 10592 10593 bool CodeGenModule::supportsCOMDAT() const { 10594 return getTriple().supportsCOMDAT(); 10595 } 10596 10597 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10598 if (TheTargetCodeGenInfo) 10599 return *TheTargetCodeGenInfo; 10600 10601 // Helper to set the unique_ptr while still keeping the return value. 10602 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10603 this->TheTargetCodeGenInfo.reset(P); 10604 return *P; 10605 }; 10606 10607 const llvm::Triple &Triple = getTarget().getTriple(); 10608 switch (Triple.getArch()) { 10609 default: 10610 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10611 10612 case llvm::Triple::le32: 10613 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10614 case llvm::Triple::mips: 10615 case llvm::Triple::mipsel: 10616 if (Triple.getOS() == llvm::Triple::NaCl) 10617 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10618 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10619 10620 case llvm::Triple::mips64: 10621 case llvm::Triple::mips64el: 10622 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10623 10624 case llvm::Triple::avr: 10625 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10626 10627 case llvm::Triple::aarch64: 10628 case llvm::Triple::aarch64_32: 10629 case llvm::Triple::aarch64_be: { 10630 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10631 if (getTarget().getABI() == "darwinpcs") 10632 Kind = AArch64ABIInfo::DarwinPCS; 10633 else if (Triple.isOSWindows()) 10634 return SetCGInfo( 10635 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10636 10637 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10638 } 10639 10640 case llvm::Triple::wasm32: 10641 case llvm::Triple::wasm64: { 10642 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10643 if (getTarget().getABI() == "experimental-mv") 10644 Kind = WebAssemblyABIInfo::ExperimentalMV; 10645 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10646 } 10647 10648 case llvm::Triple::arm: 10649 case llvm::Triple::armeb: 10650 case llvm::Triple::thumb: 10651 case llvm::Triple::thumbeb: { 10652 if (Triple.getOS() == llvm::Triple::Win32) { 10653 return SetCGInfo( 10654 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10655 } 10656 10657 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10658 StringRef ABIStr = getTarget().getABI(); 10659 if (ABIStr == "apcs-gnu") 10660 Kind = ARMABIInfo::APCS; 10661 else if (ABIStr == "aapcs16") 10662 Kind = ARMABIInfo::AAPCS16_VFP; 10663 else if (CodeGenOpts.FloatABI == "hard" || 10664 (CodeGenOpts.FloatABI != "soft" && 10665 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10666 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10667 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10668 Kind = ARMABIInfo::AAPCS_VFP; 10669 10670 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10671 } 10672 10673 case llvm::Triple::ppc: { 10674 if (Triple.isOSAIX()) 10675 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10676 10677 bool IsSoftFloat = 10678 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10679 bool RetSmallStructInRegABI = 10680 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10681 return SetCGInfo( 10682 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10683 } 10684 case llvm::Triple::ppc64: 10685 if (Triple.isOSAIX()) 10686 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10687 10688 if (Triple.isOSBinFormatELF()) { 10689 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10690 if (getTarget().getABI() == "elfv2") 10691 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10692 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10693 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10694 10695 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10696 IsSoftFloat)); 10697 } 10698 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10699 case llvm::Triple::ppc64le: { 10700 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10701 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10702 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10703 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10704 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10705 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10706 10707 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10708 IsSoftFloat)); 10709 } 10710 10711 case llvm::Triple::nvptx: 10712 case llvm::Triple::nvptx64: 10713 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10714 10715 case llvm::Triple::msp430: 10716 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10717 10718 case llvm::Triple::riscv32: 10719 case llvm::Triple::riscv64: { 10720 StringRef ABIStr = getTarget().getABI(); 10721 unsigned XLen = getTarget().getPointerWidth(0); 10722 unsigned ABIFLen = 0; 10723 if (ABIStr.endswith("f")) 10724 ABIFLen = 32; 10725 else if (ABIStr.endswith("d")) 10726 ABIFLen = 64; 10727 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10728 } 10729 10730 case llvm::Triple::systemz: { 10731 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10732 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10733 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10734 } 10735 10736 case llvm::Triple::tce: 10737 case llvm::Triple::tcele: 10738 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10739 10740 case llvm::Triple::x86: { 10741 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10742 bool RetSmallStructInRegABI = 10743 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10744 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10745 10746 if (Triple.getOS() == llvm::Triple::Win32) { 10747 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10748 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10749 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10750 } else { 10751 return SetCGInfo(new X86_32TargetCodeGenInfo( 10752 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10753 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10754 CodeGenOpts.FloatABI == "soft")); 10755 } 10756 } 10757 10758 case llvm::Triple::x86_64: { 10759 StringRef ABI = getTarget().getABI(); 10760 X86AVXABILevel AVXLevel = 10761 (ABI == "avx512" 10762 ? X86AVXABILevel::AVX512 10763 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10764 10765 switch (Triple.getOS()) { 10766 case llvm::Triple::Win32: 10767 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10768 default: 10769 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10770 } 10771 } 10772 case llvm::Triple::hexagon: 10773 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10774 case llvm::Triple::lanai: 10775 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10776 case llvm::Triple::r600: 10777 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10778 case llvm::Triple::amdgcn: 10779 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10780 case llvm::Triple::sparc: 10781 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10782 case llvm::Triple::sparcv9: 10783 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10784 case llvm::Triple::xcore: 10785 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10786 case llvm::Triple::arc: 10787 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10788 case llvm::Triple::spir: 10789 case llvm::Triple::spir64: 10790 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10791 } 10792 } 10793 10794 /// Create an OpenCL kernel for an enqueued block. 10795 /// 10796 /// The kernel has the same function type as the block invoke function. Its 10797 /// name is the name of the block invoke function postfixed with "_kernel". 10798 /// It simply calls the block invoke function then returns. 10799 llvm::Function * 10800 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10801 llvm::Function *Invoke, 10802 llvm::Value *BlockLiteral) const { 10803 auto *InvokeFT = Invoke->getFunctionType(); 10804 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10805 for (auto &P : InvokeFT->params()) 10806 ArgTys.push_back(P); 10807 auto &C = CGF.getLLVMContext(); 10808 std::string Name = Invoke->getName().str() + "_kernel"; 10809 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10810 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10811 &CGF.CGM.getModule()); 10812 auto IP = CGF.Builder.saveIP(); 10813 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10814 auto &Builder = CGF.Builder; 10815 Builder.SetInsertPoint(BB); 10816 llvm::SmallVector<llvm::Value *, 2> Args; 10817 for (auto &A : F->args()) 10818 Args.push_back(&A); 10819 Builder.CreateCall(Invoke, Args); 10820 Builder.CreateRetVoid(); 10821 Builder.restoreIP(IP); 10822 return F; 10823 } 10824 10825 /// Create an OpenCL kernel for an enqueued block. 10826 /// 10827 /// The type of the first argument (the block literal) is the struct type 10828 /// of the block literal instead of a pointer type. The first argument 10829 /// (block literal) is passed directly by value to the kernel. The kernel 10830 /// allocates the same type of struct on stack and stores the block literal 10831 /// to it and passes its pointer to the block invoke function. The kernel 10832 /// has "enqueued-block" function attribute and kernel argument metadata. 10833 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10834 CodeGenFunction &CGF, llvm::Function *Invoke, 10835 llvm::Value *BlockLiteral) const { 10836 auto &Builder = CGF.Builder; 10837 auto &C = CGF.getLLVMContext(); 10838 10839 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10840 auto *InvokeFT = Invoke->getFunctionType(); 10841 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10842 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10843 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10844 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10845 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10846 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10847 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10848 10849 ArgTys.push_back(BlockTy); 10850 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10851 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10852 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10853 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10854 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10855 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10856 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10857 ArgTys.push_back(InvokeFT->getParamType(I)); 10858 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10859 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10860 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10861 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10862 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10863 ArgNames.push_back( 10864 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10865 } 10866 std::string Name = Invoke->getName().str() + "_kernel"; 10867 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10868 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10869 &CGF.CGM.getModule()); 10870 F->addFnAttr("enqueued-block"); 10871 auto IP = CGF.Builder.saveIP(); 10872 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10873 Builder.SetInsertPoint(BB); 10874 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10875 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10876 BlockPtr->setAlignment(BlockAlign); 10877 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10878 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10879 llvm::SmallVector<llvm::Value *, 2> Args; 10880 Args.push_back(Cast); 10881 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10882 Args.push_back(I); 10883 Builder.CreateCall(Invoke, Args); 10884 Builder.CreateRetVoid(); 10885 Builder.restoreIP(IP); 10886 10887 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10888 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10889 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10890 F->setMetadata("kernel_arg_base_type", 10891 llvm::MDNode::get(C, ArgBaseTypeNames)); 10892 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10893 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10894 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10895 10896 return F; 10897 } 10898