1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/CodeGenOptions.h"
24 #include "clang/Basic/DiagnosticFrontend.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace clang;
41 using namespace CodeGen;
42
43 // Helper for coercing an aggregate argument or return value into an integer
44 // array of the same size (including padding) and alignment. This alternate
45 // coercion happens only for the RenderScript ABI and can be removed after
46 // runtimes that rely on it are no longer supported.
47 //
48 // RenderScript assumes that the size of the argument / return value in the IR
49 // is the same as the size of the corresponding qualified type. This helper
50 // coerces the aggregate type into an array of the same size (including
51 // padding). This coercion is used in lieu of expansion of struct members or
52 // other canonical coercions that return a coerced-type of larger size.
53 //
54 // Ty - The argument / return value type
55 // Context - The associated ASTContext
56 // LLVMContext - The associated LLVMContext
coerceToIntArray(QualType Ty,ASTContext & Context,llvm::LLVMContext & LLVMContext)57 static ABIArgInfo coerceToIntArray(QualType Ty,
58 ASTContext &Context,
59 llvm::LLVMContext &LLVMContext) {
60 // Alignment and Size are measured in bits.
61 const uint64_t Size = Context.getTypeSize(Ty);
62 const uint64_t Alignment = Context.getTypeAlign(Ty);
63 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
64 const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
65 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
66 }
67
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)68 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
69 llvm::Value *Array,
70 llvm::Value *Value,
71 unsigned FirstIndex,
72 unsigned LastIndex) {
73 // Alternatively, we could emit this as a loop in the source.
74 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
75 llvm::Value *Cell =
76 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
77 Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
78 }
79 }
80
isAggregateTypeForABI(QualType T)81 static bool isAggregateTypeForABI(QualType T) {
82 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
83 T->isMemberFunctionPointerType();
84 }
85
getNaturalAlignIndirect(QualType Ty,bool ByVal,bool Realign,llvm::Type * Padding) const86 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
87 bool Realign,
88 llvm::Type *Padding) const {
89 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
90 Realign, Padding);
91 }
92
93 ABIArgInfo
getNaturalAlignIndirectInReg(QualType Ty,bool Realign) const94 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
95 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
96 /*ByVal*/ false, Realign);
97 }
98
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const99 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
100 QualType Ty) const {
101 return Address::invalid();
102 }
103
getVAListElementType(CodeGenFunction & CGF)104 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) {
105 return CGF.ConvertTypeForMem(
106 CGF.getContext().getBuiltinVaListType()->getPointeeType());
107 }
108
isPromotableIntegerTypeForABI(QualType Ty) const109 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
110 if (Ty->isPromotableIntegerType())
111 return true;
112
113 if (const auto *EIT = Ty->getAs<BitIntType>())
114 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
115 return true;
116
117 return false;
118 }
119
~ABIInfo()120 ABIInfo::~ABIInfo() {}
121
122 /// Does the given lowering require more than the given number of
123 /// registers when expanded?
124 ///
125 /// This is intended to be the basis of a reasonable basic implementation
126 /// of should{Pass,Return}IndirectlyForSwift.
127 ///
128 /// For most targets, a limit of four total registers is reasonable; this
129 /// limits the amount of code required in order to move around the value
130 /// in case it wasn't produced immediately prior to the call by the caller
131 /// (or wasn't produced in exactly the right registers) or isn't used
132 /// immediately within the callee. But some targets may need to further
133 /// limit the register count due to an inability to support that many
134 /// return registers.
occupiesMoreThan(CodeGenTypes & cgt,ArrayRef<llvm::Type * > scalarTypes,unsigned maxAllRegisters)135 static bool occupiesMoreThan(CodeGenTypes &cgt,
136 ArrayRef<llvm::Type*> scalarTypes,
137 unsigned maxAllRegisters) {
138 unsigned intCount = 0, fpCount = 0;
139 for (llvm::Type *type : scalarTypes) {
140 if (type->isPointerTy()) {
141 intCount++;
142 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
143 auto ptrWidth = cgt.getTarget().getPointerWidth(0);
144 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
145 } else {
146 assert(type->isVectorTy() || type->isFloatingPointTy());
147 fpCount++;
148 }
149 }
150
151 return (intCount + fpCount > maxAllRegisters);
152 }
153
isLegalVectorTypeForSwift(CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts) const154 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
155 llvm::Type *eltTy,
156 unsigned numElts) const {
157 // The default implementation of this assumes that the target guarantees
158 // 128-bit SIMD support but nothing more.
159 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
160 }
161
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)162 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
163 CGCXXABI &CXXABI) {
164 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
165 if (!RD) {
166 if (!RT->getDecl()->canPassInRegisters())
167 return CGCXXABI::RAA_Indirect;
168 return CGCXXABI::RAA_Default;
169 }
170 return CXXABI.getRecordArgABI(RD);
171 }
172
getRecordArgABI(QualType T,CGCXXABI & CXXABI)173 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
174 CGCXXABI &CXXABI) {
175 const RecordType *RT = T->getAs<RecordType>();
176 if (!RT)
177 return CGCXXABI::RAA_Default;
178 return getRecordArgABI(RT, CXXABI);
179 }
180
classifyReturnType(const CGCXXABI & CXXABI,CGFunctionInfo & FI,const ABIInfo & Info)181 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
182 const ABIInfo &Info) {
183 QualType Ty = FI.getReturnType();
184
185 if (const auto *RT = Ty->getAs<RecordType>())
186 if (!isa<CXXRecordDecl>(RT->getDecl()) &&
187 !RT->getDecl()->canPassInRegisters()) {
188 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
189 return true;
190 }
191
192 return CXXABI.classifyReturnType(FI);
193 }
194
195 /// Pass transparent unions as if they were the type of the first element. Sema
196 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)197 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
198 if (const RecordType *UT = Ty->getAsUnionType()) {
199 const RecordDecl *UD = UT->getDecl();
200 if (UD->hasAttr<TransparentUnionAttr>()) {
201 assert(!UD->field_empty() && "sema created an empty transparent union");
202 return UD->field_begin()->getType();
203 }
204 }
205 return Ty;
206 }
207
getCXXABI() const208 CGCXXABI &ABIInfo::getCXXABI() const {
209 return CGT.getCXXABI();
210 }
211
getContext() const212 ASTContext &ABIInfo::getContext() const {
213 return CGT.getContext();
214 }
215
getVMContext() const216 llvm::LLVMContext &ABIInfo::getVMContext() const {
217 return CGT.getLLVMContext();
218 }
219
getDataLayout() const220 const llvm::DataLayout &ABIInfo::getDataLayout() const {
221 return CGT.getDataLayout();
222 }
223
getTarget() const224 const TargetInfo &ABIInfo::getTarget() const {
225 return CGT.getTarget();
226 }
227
getCodeGenOpts() const228 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
229 return CGT.getCodeGenOpts();
230 }
231
isAndroid() const232 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
233
isHomogeneousAggregateBaseType(QualType Ty) const234 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
235 return false;
236 }
237
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const238 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
239 uint64_t Members) const {
240 return false;
241 }
242
isZeroLengthBitfieldPermittedInHomogeneousAggregate() const243 bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
244 // For compatibility with GCC, ignore empty bitfields in C++ mode.
245 return getContext().getLangOpts().CPlusPlus;
246 }
247
dump() const248 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
249 raw_ostream &OS = llvm::errs();
250 OS << "(ABIArgInfo Kind=";
251 switch (TheKind) {
252 case Direct:
253 OS << "Direct Type=";
254 if (llvm::Type *Ty = getCoerceToType())
255 Ty->print(OS);
256 else
257 OS << "null";
258 break;
259 case Extend:
260 OS << "Extend";
261 break;
262 case Ignore:
263 OS << "Ignore";
264 break;
265 case InAlloca:
266 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
267 break;
268 case Indirect:
269 OS << "Indirect Align=" << getIndirectAlign().getQuantity()
270 << " ByVal=" << getIndirectByVal()
271 << " Realign=" << getIndirectRealign();
272 break;
273 case IndirectAliased:
274 OS << "Indirect Align=" << getIndirectAlign().getQuantity()
275 << " AadrSpace=" << getIndirectAddrSpace()
276 << " Realign=" << getIndirectRealign();
277 break;
278 case Expand:
279 OS << "Expand";
280 break;
281 case CoerceAndExpand:
282 OS << "CoerceAndExpand Type=";
283 getCoerceAndExpandType()->print(OS);
284 break;
285 }
286 OS << ")\n";
287 }
288
289 // Dynamically round a pointer up to a multiple of the given alignment.
emitRoundPointerUpToAlignment(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits Align)290 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
291 llvm::Value *Ptr,
292 CharUnits Align) {
293 llvm::Value *PtrAsInt = Ptr;
294 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
295 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
296 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
297 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
298 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
299 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
300 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
301 Ptr->getType(),
302 Ptr->getName() + ".aligned");
303 return PtrAsInt;
304 }
305
306 /// Emit va_arg for a platform using the common void* representation,
307 /// where arguments are simply emitted in an array of slots on the stack.
308 ///
309 /// This version implements the core direct-value passing rules.
310 ///
311 /// \param SlotSize - The size and alignment of a stack slot.
312 /// Each argument will be allocated to a multiple of this number of
313 /// slots, and all the slots will be aligned to this value.
314 /// \param AllowHigherAlign - The slot alignment is not a cap;
315 /// an argument type with an alignment greater than the slot size
316 /// will be emitted on a higher-alignment address, potentially
317 /// leaving one or more empty slots behind as padding. If this
318 /// is false, the returned address might be less-aligned than
319 /// DirectAlign.
emitVoidPtrDirectVAArg(CodeGenFunction & CGF,Address VAListAddr,llvm::Type * DirectTy,CharUnits DirectSize,CharUnits DirectAlign,CharUnits SlotSize,bool AllowHigherAlign)320 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
321 Address VAListAddr,
322 llvm::Type *DirectTy,
323 CharUnits DirectSize,
324 CharUnits DirectAlign,
325 CharUnits SlotSize,
326 bool AllowHigherAlign) {
327 // Cast the element type to i8* if necessary. Some platforms define
328 // va_list as a struct containing an i8* instead of just an i8*.
329 if (VAListAddr.getElementType() != CGF.Int8PtrTy)
330 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
331
332 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
333
334 // If the CC aligns values higher than the slot size, do so if needed.
335 Address Addr = Address::invalid();
336 if (AllowHigherAlign && DirectAlign > SlotSize) {
337 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
338 CGF.Int8Ty, DirectAlign);
339 } else {
340 Addr = Address(Ptr, CGF.Int8Ty, SlotSize);
341 }
342
343 // Advance the pointer past the argument, then store that back.
344 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
345 Address NextPtr =
346 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
347 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
348
349 // If the argument is smaller than a slot, and this is a big-endian
350 // target, the argument will be right-adjusted in its slot.
351 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
352 !DirectTy->isStructTy()) {
353 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
354 }
355
356 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
357 return Addr;
358 }
359
360 /// Emit va_arg for a platform using the common void* representation,
361 /// where arguments are simply emitted in an array of slots on the stack.
362 ///
363 /// \param IsIndirect - Values of this type are passed indirectly.
364 /// \param ValueInfo - The size and alignment of this type, generally
365 /// computed with getContext().getTypeInfoInChars(ValueTy).
366 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
367 /// Each argument will be allocated to a multiple of this number of
368 /// slots, and all the slots will be aligned to this value.
369 /// \param AllowHigherAlign - The slot alignment is not a cap;
370 /// an argument type with an alignment greater than the slot size
371 /// will be emitted on a higher-alignment address, potentially
372 /// leaving one or more empty slots behind as padding.
emitVoidPtrVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType ValueTy,bool IsIndirect,TypeInfoChars ValueInfo,CharUnits SlotSizeAndAlign,bool AllowHigherAlign)373 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
374 QualType ValueTy, bool IsIndirect,
375 TypeInfoChars ValueInfo,
376 CharUnits SlotSizeAndAlign,
377 bool AllowHigherAlign) {
378 // The size and alignment of the value that was passed directly.
379 CharUnits DirectSize, DirectAlign;
380 if (IsIndirect) {
381 DirectSize = CGF.getPointerSize();
382 DirectAlign = CGF.getPointerAlign();
383 } else {
384 DirectSize = ValueInfo.Width;
385 DirectAlign = ValueInfo.Align;
386 }
387
388 // Cast the address we've calculated to the right type.
389 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy;
390 if (IsIndirect)
391 DirectTy = DirectTy->getPointerTo(0);
392
393 Address Addr =
394 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign,
395 SlotSizeAndAlign, AllowHigherAlign);
396
397 if (IsIndirect) {
398 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align);
399 }
400
401 return Addr;
402 }
403
complexTempStructure(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,CharUnits SlotSize,CharUnits EltSize,const ComplexType * CTy)404 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
405 QualType Ty, CharUnits SlotSize,
406 CharUnits EltSize, const ComplexType *CTy) {
407 Address Addr =
408 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
409 SlotSize, SlotSize, /*AllowHigher*/ true);
410
411 Address RealAddr = Addr;
412 Address ImagAddr = RealAddr;
413 if (CGF.CGM.getDataLayout().isBigEndian()) {
414 RealAddr =
415 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
416 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
417 2 * SlotSize - EltSize);
418 } else {
419 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
420 }
421
422 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
423 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
424 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
425 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
426 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
427
428 Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
429 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
430 /*init*/ true);
431 return Temp;
432 }
433
emitMergePHI(CodeGenFunction & CGF,Address Addr1,llvm::BasicBlock * Block1,Address Addr2,llvm::BasicBlock * Block2,const llvm::Twine & Name="")434 static Address emitMergePHI(CodeGenFunction &CGF,
435 Address Addr1, llvm::BasicBlock *Block1,
436 Address Addr2, llvm::BasicBlock *Block2,
437 const llvm::Twine &Name = "") {
438 assert(Addr1.getType() == Addr2.getType());
439 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
440 PHI->addIncoming(Addr1.getPointer(), Block1);
441 PHI->addIncoming(Addr2.getPointer(), Block2);
442 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
443 return Address(PHI, Addr1.getElementType(), Align);
444 }
445
TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info)446 TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info)
447 : Info(std::move(Info)) {}
448
449 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
450
451 // If someone can figure out a general rule for this, that would be great.
452 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const453 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
454 // Verified for:
455 // x86-64 FreeBSD, Linux, Darwin
456 // x86-32 FreeBSD, Linux, Darwin
457 // PowerPC Linux, Darwin
458 // ARM Darwin (*not* EABI)
459 // AArch64 Linux
460 return 32;
461 }
462
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const463 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
464 const FunctionNoProtoType *fnType) const {
465 // The following conventions are known to require this to be false:
466 // x86_stdcall
467 // MIPS
468 // For everything else, we just prefer false unless we opt out.
469 return false;
470 }
471
472 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const473 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
474 llvm::SmallString<24> &Opt) const {
475 // This assumes the user is passing a library name like "rt" instead of a
476 // filename like "librt.a/so", and that they don't care whether it's static or
477 // dynamic.
478 Opt = "-l";
479 Opt += Lib;
480 }
481
getOpenCLKernelCallingConv() const482 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
483 // OpenCL kernels are called via an explicit runtime API with arguments
484 // set with clSetKernelArg(), not as normal sub-functions.
485 // Return SPIR_KERNEL by default as the kernel calling convention to
486 // ensure the fingerprint is fixed such way that each OpenCL argument
487 // gets one matching argument in the produced kernel function argument
488 // list to enable feasible implementation of clSetKernelArg() with
489 // aggregates etc. In case we would use the default C calling conv here,
490 // clSetKernelArg() might break depending on the target-specific
491 // conventions; different targets might split structs passed as values
492 // to multiple function arguments etc.
493 return llvm::CallingConv::SPIR_KERNEL;
494 }
495
getNullPointer(const CodeGen::CodeGenModule & CGM,llvm::PointerType * T,QualType QT) const496 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
497 llvm::PointerType *T, QualType QT) const {
498 return llvm::ConstantPointerNull::get(T);
499 }
500
getGlobalVarAddressSpace(CodeGenModule & CGM,const VarDecl * D) const501 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
502 const VarDecl *D) const {
503 assert(!CGM.getLangOpts().OpenCL &&
504 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
505 "Address space agnostic languages only");
506 return D ? D->getType().getAddressSpace() : LangAS::Default;
507 }
508
performAddrSpaceCast(CodeGen::CodeGenFunction & CGF,llvm::Value * Src,LangAS SrcAddr,LangAS DestAddr,llvm::Type * DestTy,bool isNonNull) const509 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
510 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
511 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
512 // Since target may map different address spaces in AST to the same address
513 // space, an address space conversion may end up as a bitcast.
514 if (auto *C = dyn_cast<llvm::Constant>(Src))
515 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
516 // Try to preserve the source's name to make IR more readable.
517 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
518 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
519 }
520
521 llvm::Constant *
performAddrSpaceCast(CodeGenModule & CGM,llvm::Constant * Src,LangAS SrcAddr,LangAS DestAddr,llvm::Type * DestTy) const522 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
523 LangAS SrcAddr, LangAS DestAddr,
524 llvm::Type *DestTy) const {
525 // Since target may map different address spaces in AST to the same address
526 // space, an address space conversion may end up as a bitcast.
527 return llvm::ConstantExpr::getPointerCast(Src, DestTy);
528 }
529
530 llvm::SyncScope::ID
getLLVMSyncScopeID(const LangOptions & LangOpts,SyncScope Scope,llvm::AtomicOrdering Ordering,llvm::LLVMContext & Ctx) const531 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
532 SyncScope Scope,
533 llvm::AtomicOrdering Ordering,
534 llvm::LLVMContext &Ctx) const {
535 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
536 }
537
538 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
539
540 /// isEmptyField - Return true iff a the field is "empty", that is it
541 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)542 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
543 bool AllowArrays) {
544 if (FD->isUnnamedBitfield())
545 return true;
546
547 QualType FT = FD->getType();
548
549 // Constant arrays of empty records count as empty, strip them off.
550 // Constant arrays of zero length always count as empty.
551 bool WasArray = false;
552 if (AllowArrays)
553 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
554 if (AT->getSize() == 0)
555 return true;
556 FT = AT->getElementType();
557 // The [[no_unique_address]] special case below does not apply to
558 // arrays of C++ empty records, so we need to remember this fact.
559 WasArray = true;
560 }
561
562 const RecordType *RT = FT->getAs<RecordType>();
563 if (!RT)
564 return false;
565
566 // C++ record fields are never empty, at least in the Itanium ABI.
567 //
568 // FIXME: We should use a predicate for whether this behavior is true in the
569 // current ABI.
570 //
571 // The exception to the above rule are fields marked with the
572 // [[no_unique_address]] attribute (since C++20). Those do count as empty
573 // according to the Itanium ABI. The exception applies only to records,
574 // not arrays of records, so we must also check whether we stripped off an
575 // array type above.
576 if (isa<CXXRecordDecl>(RT->getDecl()) &&
577 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
578 return false;
579
580 return isEmptyRecord(Context, FT, AllowArrays);
581 }
582
583 /// isEmptyRecord - Return true iff a structure contains only empty
584 /// fields. Note that a structure with a flexible array member is not
585 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)586 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
587 const RecordType *RT = T->getAs<RecordType>();
588 if (!RT)
589 return false;
590 const RecordDecl *RD = RT->getDecl();
591 if (RD->hasFlexibleArrayMember())
592 return false;
593
594 // If this is a C++ record, check the bases first.
595 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
596 for (const auto &I : CXXRD->bases())
597 if (!isEmptyRecord(Context, I.getType(), true))
598 return false;
599
600 for (const auto *I : RD->fields())
601 if (!isEmptyField(Context, I, AllowArrays))
602 return false;
603 return true;
604 }
605
606 /// isSingleElementStruct - Determine if a structure is a "single
607 /// element struct", i.e. it has exactly one non-empty field or
608 /// exactly one field which is itself a single element
609 /// struct. Structures with flexible array members are never
610 /// considered single element structs.
611 ///
612 /// \return The field declaration for the single non-empty field, if
613 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)614 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
615 const RecordType *RT = T->getAs<RecordType>();
616 if (!RT)
617 return nullptr;
618
619 const RecordDecl *RD = RT->getDecl();
620 if (RD->hasFlexibleArrayMember())
621 return nullptr;
622
623 const Type *Found = nullptr;
624
625 // If this is a C++ record, check the bases first.
626 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
627 for (const auto &I : CXXRD->bases()) {
628 // Ignore empty records.
629 if (isEmptyRecord(Context, I.getType(), true))
630 continue;
631
632 // If we already found an element then this isn't a single-element struct.
633 if (Found)
634 return nullptr;
635
636 // If this is non-empty and not a single element struct, the composite
637 // cannot be a single element struct.
638 Found = isSingleElementStruct(I.getType(), Context);
639 if (!Found)
640 return nullptr;
641 }
642 }
643
644 // Check for single element.
645 for (const auto *FD : RD->fields()) {
646 QualType FT = FD->getType();
647
648 // Ignore empty fields.
649 if (isEmptyField(Context, FD, true))
650 continue;
651
652 // If we already found an element then this isn't a single-element
653 // struct.
654 if (Found)
655 return nullptr;
656
657 // Treat single element arrays as the element.
658 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
659 if (AT->getSize().getZExtValue() != 1)
660 break;
661 FT = AT->getElementType();
662 }
663
664 if (!isAggregateTypeForABI(FT)) {
665 Found = FT.getTypePtr();
666 } else {
667 Found = isSingleElementStruct(FT, Context);
668 if (!Found)
669 return nullptr;
670 }
671 }
672
673 // We don't consider a struct a single-element struct if it has
674 // padding beyond the element type.
675 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
676 return nullptr;
677
678 return Found;
679 }
680
681 namespace {
EmitVAArgInstr(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,const ABIArgInfo & AI)682 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
683 const ABIArgInfo &AI) {
684 // This default implementation defers to the llvm backend's va_arg
685 // instruction. It can handle only passing arguments directly
686 // (typically only handled in the backend for primitive types), or
687 // aggregates passed indirectly by pointer (NOTE: if the "byval"
688 // flag has ABI impact in the callee, this implementation cannot
689 // work.)
690
691 // Only a few cases are covered here at the moment -- those needed
692 // by the default abi.
693 llvm::Value *Val;
694
695 if (AI.isIndirect()) {
696 assert(!AI.getPaddingType() &&
697 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
698 assert(
699 !AI.getIndirectRealign() &&
700 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
701
702 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
703 CharUnits TyAlignForABI = TyInfo.Align;
704
705 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty);
706 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy);
707 llvm::Value *Addr =
708 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
709 return Address(Addr, ElementTy, TyAlignForABI);
710 } else {
711 assert((AI.isDirect() || AI.isExtend()) &&
712 "Unexpected ArgInfo Kind in generic VAArg emitter!");
713
714 assert(!AI.getInReg() &&
715 "Unexpected InReg seen in arginfo in generic VAArg emitter!");
716 assert(!AI.getPaddingType() &&
717 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
718 assert(!AI.getDirectOffset() &&
719 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
720 assert(!AI.getCoerceToType() &&
721 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
722
723 Address Temp = CGF.CreateMemTemp(Ty, "varet");
724 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(),
725 CGF.ConvertTypeForMem(Ty));
726 CGF.Builder.CreateStore(Val, Temp);
727 return Temp;
728 }
729 }
730
731 /// DefaultABIInfo - The default implementation for ABI specific
732 /// details. This implementation provides information which results in
733 /// self-consistent and sensible LLVM IR generation, but does not
734 /// conform to any particular ABI.
735 class DefaultABIInfo : public ABIInfo {
736 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)737 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
738
739 ABIArgInfo classifyReturnType(QualType RetTy) const;
740 ABIArgInfo classifyArgumentType(QualType RetTy) const;
741
computeInfo(CGFunctionInfo & FI) const742 void computeInfo(CGFunctionInfo &FI) const override {
743 if (!getCXXABI().classifyReturnType(FI))
744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
745 for (auto &I : FI.arguments())
746 I.info = classifyArgumentType(I.type);
747 }
748
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const749 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
750 QualType Ty) const override {
751 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
752 }
753 };
754
755 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
756 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)757 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
759 };
760
classifyArgumentType(QualType Ty) const761 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
762 Ty = useFirstFieldIfTransparentUnion(Ty);
763
764 if (isAggregateTypeForABI(Ty)) {
765 // Records with non-trivial destructors/copy-constructors should not be
766 // passed by value.
767 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
768 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
769
770 return getNaturalAlignIndirect(Ty);
771 }
772
773 // Treat an enum type as its underlying type.
774 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
775 Ty = EnumTy->getDecl()->getIntegerType();
776
777 ASTContext &Context = getContext();
778 if (const auto *EIT = Ty->getAs<BitIntType>())
779 if (EIT->getNumBits() >
780 Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
781 ? Context.Int128Ty
782 : Context.LongLongTy))
783 return getNaturalAlignIndirect(Ty);
784
785 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
786 : ABIArgInfo::getDirect());
787 }
788
classifyReturnType(QualType RetTy) const789 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
790 if (RetTy->isVoidType())
791 return ABIArgInfo::getIgnore();
792
793 if (isAggregateTypeForABI(RetTy))
794 return getNaturalAlignIndirect(RetTy);
795
796 // Treat an enum type as its underlying type.
797 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
798 RetTy = EnumTy->getDecl()->getIntegerType();
799
800 if (const auto *EIT = RetTy->getAs<BitIntType>())
801 if (EIT->getNumBits() >
802 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
803 ? getContext().Int128Ty
804 : getContext().LongLongTy))
805 return getNaturalAlignIndirect(RetTy);
806
807 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
808 : ABIArgInfo::getDirect());
809 }
810
811 //===----------------------------------------------------------------------===//
812 // WebAssembly ABI Implementation
813 //
814 // This is a very simple ABI that relies a lot on DefaultABIInfo.
815 //===----------------------------------------------------------------------===//
816
817 class WebAssemblyABIInfo final : public SwiftABIInfo {
818 public:
819 enum ABIKind {
820 MVP = 0,
821 ExperimentalMV = 1,
822 };
823
824 private:
825 DefaultABIInfo defaultInfo;
826 ABIKind Kind;
827
828 public:
WebAssemblyABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind)829 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
830 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
831
832 private:
833 ABIArgInfo classifyReturnType(QualType RetTy) const;
834 ABIArgInfo classifyArgumentType(QualType Ty) const;
835
836 // DefaultABIInfo's classifyReturnType and classifyArgumentType are
837 // non-virtual, but computeInfo and EmitVAArg are virtual, so we
838 // overload them.
computeInfo(CGFunctionInfo & FI) const839 void computeInfo(CGFunctionInfo &FI) const override {
840 if (!getCXXABI().classifyReturnType(FI))
841 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
842 for (auto &Arg : FI.arguments())
843 Arg.info = classifyArgumentType(Arg.type);
844 }
845
846 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
847 QualType Ty) const override;
848
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const849 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
850 bool asReturnValue) const override {
851 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
852 }
853
isSwiftErrorInRegister() const854 bool isSwiftErrorInRegister() const override {
855 return false;
856 }
857 };
858
859 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
860 public:
WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,WebAssemblyABIInfo::ABIKind K)861 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
862 WebAssemblyABIInfo::ABIKind K)
863 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
864
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const865 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
866 CodeGen::CodeGenModule &CGM) const override {
867 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
868 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
869 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
870 llvm::Function *Fn = cast<llvm::Function>(GV);
871 llvm::AttrBuilder B(GV->getContext());
872 B.addAttribute("wasm-import-module", Attr->getImportModule());
873 Fn->addFnAttrs(B);
874 }
875 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
876 llvm::Function *Fn = cast<llvm::Function>(GV);
877 llvm::AttrBuilder B(GV->getContext());
878 B.addAttribute("wasm-import-name", Attr->getImportName());
879 Fn->addFnAttrs(B);
880 }
881 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
882 llvm::Function *Fn = cast<llvm::Function>(GV);
883 llvm::AttrBuilder B(GV->getContext());
884 B.addAttribute("wasm-export-name", Attr->getExportName());
885 Fn->addFnAttrs(B);
886 }
887 }
888
889 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
890 llvm::Function *Fn = cast<llvm::Function>(GV);
891 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
892 Fn->addFnAttr("no-prototype");
893 }
894 }
895 };
896
897 /// Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const898 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
899 Ty = useFirstFieldIfTransparentUnion(Ty);
900
901 if (isAggregateTypeForABI(Ty)) {
902 // Records with non-trivial destructors/copy-constructors should not be
903 // passed by value.
904 if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
905 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
906 // Ignore empty structs/unions.
907 if (isEmptyRecord(getContext(), Ty, true))
908 return ABIArgInfo::getIgnore();
909 // Lower single-element structs to just pass a regular value. TODO: We
910 // could do reasonable-size multiple-element structs too, using getExpand(),
911 // though watch out for things like bitfields.
912 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
913 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
914 // For the experimental multivalue ABI, fully expand all other aggregates
915 if (Kind == ABIKind::ExperimentalMV) {
916 const RecordType *RT = Ty->getAs<RecordType>();
917 assert(RT);
918 bool HasBitField = false;
919 for (auto *Field : RT->getDecl()->fields()) {
920 if (Field->isBitField()) {
921 HasBitField = true;
922 break;
923 }
924 }
925 if (!HasBitField)
926 return ABIArgInfo::getExpand();
927 }
928 }
929
930 // Otherwise just do the default thing.
931 return defaultInfo.classifyArgumentType(Ty);
932 }
933
classifyReturnType(QualType RetTy) const934 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
935 if (isAggregateTypeForABI(RetTy)) {
936 // Records with non-trivial destructors/copy-constructors should not be
937 // returned by value.
938 if (!getRecordArgABI(RetTy, getCXXABI())) {
939 // Ignore empty structs/unions.
940 if (isEmptyRecord(getContext(), RetTy, true))
941 return ABIArgInfo::getIgnore();
942 // Lower single-element structs to just return a regular value. TODO: We
943 // could do reasonable-size multiple-element structs too, using
944 // ABIArgInfo::getDirect().
945 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
946 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
947 // For the experimental multivalue ABI, return all other aggregates
948 if (Kind == ABIKind::ExperimentalMV)
949 return ABIArgInfo::getDirect();
950 }
951 }
952
953 // Otherwise just do the default thing.
954 return defaultInfo.classifyReturnType(RetTy);
955 }
956
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const957 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
958 QualType Ty) const {
959 bool IsIndirect = isAggregateTypeForABI(Ty) &&
960 !isEmptyRecord(getContext(), Ty, true) &&
961 !isSingleElementStruct(Ty, getContext());
962 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
963 getContext().getTypeInfoInChars(Ty),
964 CharUnits::fromQuantity(4),
965 /*AllowHigherAlign=*/true);
966 }
967
968 //===----------------------------------------------------------------------===//
969 // le32/PNaCl bitcode ABI Implementation
970 //
971 // This is a simplified version of the x86_32 ABI. Arguments and return values
972 // are always passed on the stack.
973 //===----------------------------------------------------------------------===//
974
975 class PNaClABIInfo : public ABIInfo {
976 public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)977 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
978
979 ABIArgInfo classifyReturnType(QualType RetTy) const;
980 ABIArgInfo classifyArgumentType(QualType RetTy) const;
981
982 void computeInfo(CGFunctionInfo &FI) const override;
983 Address EmitVAArg(CodeGenFunction &CGF,
984 Address VAListAddr, QualType Ty) const override;
985 };
986
987 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
988 public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)989 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
990 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
991 };
992
computeInfo(CGFunctionInfo & FI) const993 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
994 if (!getCXXABI().classifyReturnType(FI))
995 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
996
997 for (auto &I : FI.arguments())
998 I.info = classifyArgumentType(I.type);
999 }
1000
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const1001 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1002 QualType Ty) const {
1003 // The PNaCL ABI is a bit odd, in that varargs don't use normal
1004 // function classification. Structs get passed directly for varargs
1005 // functions, through a rewriting transform in
1006 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
1007 // this target to actually support a va_arg instructions with an
1008 // aggregate type, unlike other targets.
1009 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
1010 }
1011
1012 /// Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const1013 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
1014 if (isAggregateTypeForABI(Ty)) {
1015 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1016 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
1017 return getNaturalAlignIndirect(Ty);
1018 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
1019 // Treat an enum type as its underlying type.
1020 Ty = EnumTy->getDecl()->getIntegerType();
1021 } else if (Ty->isFloatingType()) {
1022 // Floating-point types don't go inreg.
1023 return ABIArgInfo::getDirect();
1024 } else if (const auto *EIT = Ty->getAs<BitIntType>()) {
1025 // Treat bit-precise integers as integers if <= 64, otherwise pass
1026 // indirectly.
1027 if (EIT->getNumBits() > 64)
1028 return getNaturalAlignIndirect(Ty);
1029 return ABIArgInfo::getDirect();
1030 }
1031
1032 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
1033 : ABIArgInfo::getDirect());
1034 }
1035
classifyReturnType(QualType RetTy) const1036 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
1037 if (RetTy->isVoidType())
1038 return ABIArgInfo::getIgnore();
1039
1040 // In the PNaCl ABI we always return records/structures on the stack.
1041 if (isAggregateTypeForABI(RetTy))
1042 return getNaturalAlignIndirect(RetTy);
1043
1044 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly.
1045 if (const auto *EIT = RetTy->getAs<BitIntType>()) {
1046 if (EIT->getNumBits() > 64)
1047 return getNaturalAlignIndirect(RetTy);
1048 return ABIArgInfo::getDirect();
1049 }
1050
1051 // Treat an enum type as its underlying type.
1052 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1053 RetTy = EnumTy->getDecl()->getIntegerType();
1054
1055 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1056 : ABIArgInfo::getDirect());
1057 }
1058
1059 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)1060 bool IsX86_MMXType(llvm::Type *IRType) {
1061 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1062 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1063 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1064 IRType->getScalarSizeInBits() != 64;
1065 }
1066
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)1067 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1068 StringRef Constraint,
1069 llvm::Type* Ty) {
1070 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1071 .Cases("y", "&y", "^Ym", true)
1072 .Default(false);
1073 if (IsMMXCons && Ty->isVectorTy()) {
1074 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1075 64) {
1076 // Invalid MMX constraint
1077 return nullptr;
1078 }
1079
1080 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1081 }
1082
1083 // No operation needed
1084 return Ty;
1085 }
1086
1087 /// Returns true if this type can be passed in SSE registers with the
1088 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)1089 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1090 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1091 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1092 if (BT->getKind() == BuiltinType::LongDouble) {
1093 if (&Context.getTargetInfo().getLongDoubleFormat() ==
1094 &llvm::APFloat::x87DoubleExtended())
1095 return false;
1096 }
1097 return true;
1098 }
1099 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1100 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1101 // registers specially.
1102 unsigned VecSize = Context.getTypeSize(VT);
1103 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1104 return true;
1105 }
1106 return false;
1107 }
1108
1109 /// Returns true if this aggregate is small enough to be passed in SSE registers
1110 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)1111 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1112 return NumMembers <= 4;
1113 }
1114
1115 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
getDirectX86Hva(llvm::Type * T=nullptr)1116 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1117 auto AI = ABIArgInfo::getDirect(T);
1118 AI.setInReg(true);
1119 AI.setCanBeFlattened(false);
1120 return AI;
1121 }
1122
1123 //===----------------------------------------------------------------------===//
1124 // X86-32 ABI Implementation
1125 //===----------------------------------------------------------------------===//
1126
1127 /// Similar to llvm::CCState, but for Clang.
1128 struct CCState {
CCState__anon8ad051810111::CCState1129 CCState(CGFunctionInfo &FI)
1130 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1131
1132 llvm::SmallBitVector IsPreassigned;
1133 unsigned CC = CallingConv::CC_C;
1134 unsigned FreeRegs = 0;
1135 unsigned FreeSSERegs = 0;
1136 };
1137
1138 /// X86_32ABIInfo - The X86-32 ABI information.
1139 class X86_32ABIInfo : public SwiftABIInfo {
1140 enum Class {
1141 Integer,
1142 Float
1143 };
1144
1145 static const unsigned MinABIStackAlignInBytes = 4;
1146
1147 bool IsDarwinVectorABI;
1148 bool IsRetSmallStructInRegABI;
1149 bool IsWin32StructABI;
1150 bool IsSoftFloatABI;
1151 bool IsMCUABI;
1152 bool IsLinuxABI;
1153 unsigned DefaultNumRegisterParameters;
1154
isRegisterSize(unsigned Size)1155 static bool isRegisterSize(unsigned Size) {
1156 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1157 }
1158
isHomogeneousAggregateBaseType(QualType Ty) const1159 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1160 // FIXME: Assumes vectorcall is in use.
1161 return isX86VectorTypeForVectorCall(getContext(), Ty);
1162 }
1163
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1164 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1165 uint64_t NumMembers) const override {
1166 // FIXME: Assumes vectorcall is in use.
1167 return isX86VectorCallAggregateSmallEnough(NumMembers);
1168 }
1169
1170 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1171
1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173 /// such that the argument will be passed in memory.
1174 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1175
1176 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1177
1178 /// Return the alignment to use for the given type on the stack.
1179 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1180
1181 Class classify(QualType Ty) const;
1182 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1183 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1184
1185 /// Updates the number of available free registers, returns
1186 /// true if any registers were allocated.
1187 bool updateFreeRegs(QualType Ty, CCState &State) const;
1188
1189 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1190 bool &NeedsPadding) const;
1191 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1192
1193 bool canExpandIndirectArgument(QualType Ty) const;
1194
1195 /// Rewrite the function info so that all memory arguments use
1196 /// inalloca.
1197 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1198
1199 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1200 CharUnits &StackOffset, ABIArgInfo &Info,
1201 QualType Type) const;
1202 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1203
1204 public:
1205
1206 void computeInfo(CGFunctionInfo &FI) const override;
1207 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1208 QualType Ty) const override;
1209
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)1210 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1211 bool RetSmallStructInRegABI, bool Win32StructABI,
1212 unsigned NumRegisterParameters, bool SoftFloatABI)
1213 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1214 IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1215 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1216 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1217 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1218 CGT.getTarget().getTriple().isOSCygMing()),
1219 DefaultNumRegisterParameters(NumRegisterParameters) {}
1220
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const1221 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1222 bool asReturnValue) const override {
1223 // LLVM's x86-32 lowering currently only assigns up to three
1224 // integer registers and three fp registers. Oddly, it'll use up to
1225 // four vector registers for vectors, but those can overlap with the
1226 // scalar registers.
1227 return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1228 }
1229
isSwiftErrorInRegister() const1230 bool isSwiftErrorInRegister() const override {
1231 // x86-32 lowering does not support passing swifterror in a register.
1232 return false;
1233 }
1234 };
1235
1236 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1237 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)1238 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1239 bool RetSmallStructInRegABI, bool Win32StructABI,
1240 unsigned NumRegisterParameters, bool SoftFloatABI)
1241 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1242 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1243 NumRegisterParameters, SoftFloatABI)) {}
1244
1245 static bool isStructReturnInRegABI(
1246 const llvm::Triple &Triple, const CodeGenOptions &Opts);
1247
1248 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1249 CodeGen::CodeGenModule &CGM) const override;
1250
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1252 // Darwin uses different dwarf register numbers for EH.
1253 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1254 return 4;
1255 }
1256
1257 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1258 llvm::Value *Address) const override;
1259
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1260 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1261 StringRef Constraint,
1262 llvm::Type* Ty) const override {
1263 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1264 }
1265
1266 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1267 std::string &Constraints,
1268 std::vector<llvm::Type *> &ResultRegTypes,
1269 std::vector<llvm::Type *> &ResultTruncRegTypes,
1270 std::vector<LValue> &ResultRegDests,
1271 std::string &AsmString,
1272 unsigned NumOutputs) const override;
1273
1274 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1275 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1276 unsigned Sig = (0xeb << 0) | // jmp rel8
1277 (0x06 << 8) | // .+0x08
1278 ('v' << 16) |
1279 ('2' << 24);
1280 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1281 }
1282
getARCRetainAutoreleasedReturnValueMarker() const1283 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1284 return "movl\t%ebp, %ebp"
1285 "\t\t// marker for objc_retainAutoreleaseReturnValue";
1286 }
1287 };
1288
1289 }
1290
1291 /// Rewrite input constraint references after adding some output constraints.
1292 /// In the case where there is one output and one input and we add one output,
1293 /// we need to replace all operand references greater than or equal to 1:
1294 /// mov $0, $1
1295 /// mov eax, $1
1296 /// The result will be:
1297 /// mov $0, $2
1298 /// mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)1299 static void rewriteInputConstraintReferences(unsigned FirstIn,
1300 unsigned NumNewOuts,
1301 std::string &AsmString) {
1302 std::string Buf;
1303 llvm::raw_string_ostream OS(Buf);
1304 size_t Pos = 0;
1305 while (Pos < AsmString.size()) {
1306 size_t DollarStart = AsmString.find('$', Pos);
1307 if (DollarStart == std::string::npos)
1308 DollarStart = AsmString.size();
1309 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1310 if (DollarEnd == std::string::npos)
1311 DollarEnd = AsmString.size();
1312 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1313 Pos = DollarEnd;
1314 size_t NumDollars = DollarEnd - DollarStart;
1315 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1316 // We have an operand reference.
1317 size_t DigitStart = Pos;
1318 if (AsmString[DigitStart] == '{') {
1319 OS << '{';
1320 ++DigitStart;
1321 }
1322 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1323 if (DigitEnd == std::string::npos)
1324 DigitEnd = AsmString.size();
1325 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1326 unsigned OperandIndex;
1327 if (!OperandStr.getAsInteger(10, OperandIndex)) {
1328 if (OperandIndex >= FirstIn)
1329 OperandIndex += NumNewOuts;
1330 OS << OperandIndex;
1331 } else {
1332 OS << OperandStr;
1333 }
1334 Pos = DigitEnd;
1335 }
1336 }
1337 AsmString = std::move(OS.str());
1338 }
1339
1340 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const1341 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1342 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1343 std::vector<llvm::Type *> &ResultRegTypes,
1344 std::vector<llvm::Type *> &ResultTruncRegTypes,
1345 std::vector<LValue> &ResultRegDests, std::string &AsmString,
1346 unsigned NumOutputs) const {
1347 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1348
1349 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1350 // larger.
1351 if (!Constraints.empty())
1352 Constraints += ',';
1353 if (RetWidth <= 32) {
1354 Constraints += "={eax}";
1355 ResultRegTypes.push_back(CGF.Int32Ty);
1356 } else {
1357 // Use the 'A' constraint for EAX:EDX.
1358 Constraints += "=A";
1359 ResultRegTypes.push_back(CGF.Int64Ty);
1360 }
1361
1362 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1363 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1364 ResultTruncRegTypes.push_back(CoerceTy);
1365
1366 // Coerce the integer by bitcasting the return slot pointer.
1367 ReturnSlot.setAddress(
1368 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy));
1369 ResultRegDests.push_back(ReturnSlot);
1370
1371 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1372 }
1373
1374 /// shouldReturnTypeInRegister - Determine if the given type should be
1375 /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const1376 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1377 ASTContext &Context) const {
1378 uint64_t Size = Context.getTypeSize(Ty);
1379
1380 // For i386, type must be register sized.
1381 // For the MCU ABI, it only needs to be <= 8-byte
1382 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1383 return false;
1384
1385 if (Ty->isVectorType()) {
1386 // 64- and 128- bit vectors inside structures are not returned in
1387 // registers.
1388 if (Size == 64 || Size == 128)
1389 return false;
1390
1391 return true;
1392 }
1393
1394 // If this is a builtin, pointer, enum, complex type, member pointer, or
1395 // member function pointer it is ok.
1396 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1397 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1398 Ty->isBlockPointerType() || Ty->isMemberPointerType())
1399 return true;
1400
1401 // Arrays are treated like records.
1402 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1403 return shouldReturnTypeInRegister(AT->getElementType(), Context);
1404
1405 // Otherwise, it must be a record type.
1406 const RecordType *RT = Ty->getAs<RecordType>();
1407 if (!RT) return false;
1408
1409 // FIXME: Traverse bases here too.
1410
1411 // Structure types are passed in register if all fields would be
1412 // passed in a register.
1413 for (const auto *FD : RT->getDecl()->fields()) {
1414 // Empty fields are ignored.
1415 if (isEmptyField(Context, FD, true))
1416 continue;
1417
1418 // Check fields recursively.
1419 if (!shouldReturnTypeInRegister(FD->getType(), Context))
1420 return false;
1421 }
1422 return true;
1423 }
1424
is32Or64BitBasicType(QualType Ty,ASTContext & Context)1425 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1426 // Treat complex types as the element type.
1427 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1428 Ty = CTy->getElementType();
1429
1430 // Check for a type which we know has a simple scalar argument-passing
1431 // convention without any padding. (We're specifically looking for 32
1432 // and 64-bit integer and integer-equivalents, float, and double.)
1433 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1434 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1435 return false;
1436
1437 uint64_t Size = Context.getTypeSize(Ty);
1438 return Size == 32 || Size == 64;
1439 }
1440
addFieldSizes(ASTContext & Context,const RecordDecl * RD,uint64_t & Size)1441 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1442 uint64_t &Size) {
1443 for (const auto *FD : RD->fields()) {
1444 // Scalar arguments on the stack get 4 byte alignment on x86. If the
1445 // argument is smaller than 32-bits, expanding the struct will create
1446 // alignment padding.
1447 if (!is32Or64BitBasicType(FD->getType(), Context))
1448 return false;
1449
1450 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1451 // how to expand them yet, and the predicate for telling if a bitfield still
1452 // counts as "basic" is more complicated than what we were doing previously.
1453 if (FD->isBitField())
1454 return false;
1455
1456 Size += Context.getTypeSize(FD->getType());
1457 }
1458 return true;
1459 }
1460
addBaseAndFieldSizes(ASTContext & Context,const CXXRecordDecl * RD,uint64_t & Size)1461 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1462 uint64_t &Size) {
1463 // Don't do this if there are any non-empty bases.
1464 for (const CXXBaseSpecifier &Base : RD->bases()) {
1465 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1466 Size))
1467 return false;
1468 }
1469 if (!addFieldSizes(Context, RD, Size))
1470 return false;
1471 return true;
1472 }
1473
1474 /// Test whether an argument type which is to be passed indirectly (on the
1475 /// stack) would have the equivalent layout if it was expanded into separate
1476 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1477 /// optimizations.
canExpandIndirectArgument(QualType Ty) const1478 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1479 // We can only expand structure types.
1480 const RecordType *RT = Ty->getAs<RecordType>();
1481 if (!RT)
1482 return false;
1483 const RecordDecl *RD = RT->getDecl();
1484 uint64_t Size = 0;
1485 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1486 if (!IsWin32StructABI) {
1487 // On non-Windows, we have to conservatively match our old bitcode
1488 // prototypes in order to be ABI-compatible at the bitcode level.
1489 if (!CXXRD->isCLike())
1490 return false;
1491 } else {
1492 // Don't do this for dynamic classes.
1493 if (CXXRD->isDynamicClass())
1494 return false;
1495 }
1496 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1497 return false;
1498 } else {
1499 if (!addFieldSizes(getContext(), RD, Size))
1500 return false;
1501 }
1502
1503 // We can do this if there was no alignment padding.
1504 return Size == getContext().getTypeSize(Ty);
1505 }
1506
getIndirectReturnResult(QualType RetTy,CCState & State) const1507 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1508 // If the return value is indirect, then the hidden argument is consuming one
1509 // integer register.
1510 if (State.FreeRegs) {
1511 --State.FreeRegs;
1512 if (!IsMCUABI)
1513 return getNaturalAlignIndirectInReg(RetTy);
1514 }
1515 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1516 }
1517
classifyReturnType(QualType RetTy,CCState & State) const1518 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1519 CCState &State) const {
1520 if (RetTy->isVoidType())
1521 return ABIArgInfo::getIgnore();
1522
1523 const Type *Base = nullptr;
1524 uint64_t NumElts = 0;
1525 if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1526 State.CC == llvm::CallingConv::X86_RegCall) &&
1527 isHomogeneousAggregate(RetTy, Base, NumElts)) {
1528 // The LLVM struct type for such an aggregate should lower properly.
1529 return ABIArgInfo::getDirect();
1530 }
1531
1532 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1533 // On Darwin, some vectors are returned in registers.
1534 if (IsDarwinVectorABI) {
1535 uint64_t Size = getContext().getTypeSize(RetTy);
1536
1537 // 128-bit vectors are a special case; they are returned in
1538 // registers and we need to make sure to pick a type the LLVM
1539 // backend will like.
1540 if (Size == 128)
1541 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1542 llvm::Type::getInt64Ty(getVMContext()), 2));
1543
1544 // Always return in register if it fits in a general purpose
1545 // register, or if it is 64 bits and has a single element.
1546 if ((Size == 8 || Size == 16 || Size == 32) ||
1547 (Size == 64 && VT->getNumElements() == 1))
1548 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1549 Size));
1550
1551 return getIndirectReturnResult(RetTy, State);
1552 }
1553
1554 return ABIArgInfo::getDirect();
1555 }
1556
1557 if (isAggregateTypeForABI(RetTy)) {
1558 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1559 // Structures with flexible arrays are always indirect.
1560 if (RT->getDecl()->hasFlexibleArrayMember())
1561 return getIndirectReturnResult(RetTy, State);
1562 }
1563
1564 // If specified, structs and unions are always indirect.
1565 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1566 return getIndirectReturnResult(RetTy, State);
1567
1568 // Ignore empty structs/unions.
1569 if (isEmptyRecord(getContext(), RetTy, true))
1570 return ABIArgInfo::getIgnore();
1571
1572 // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1573 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1574 QualType ET = getContext().getCanonicalType(CT->getElementType());
1575 if (ET->isFloat16Type())
1576 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1577 llvm::Type::getHalfTy(getVMContext()), 2));
1578 }
1579
1580 // Small structures which are register sized are generally returned
1581 // in a register.
1582 if (shouldReturnTypeInRegister(RetTy, getContext())) {
1583 uint64_t Size = getContext().getTypeSize(RetTy);
1584
1585 // As a special-case, if the struct is a "single-element" struct, and
1586 // the field is of type "float" or "double", return it in a
1587 // floating-point register. (MSVC does not apply this special case.)
1588 // We apply a similar transformation for pointer types to improve the
1589 // quality of the generated IR.
1590 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1591 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1592 || SeltTy->hasPointerRepresentation())
1593 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1594
1595 // FIXME: We should be able to narrow this integer in cases with dead
1596 // padding.
1597 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1598 }
1599
1600 return getIndirectReturnResult(RetTy, State);
1601 }
1602
1603 // Treat an enum type as its underlying type.
1604 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1605 RetTy = EnumTy->getDecl()->getIntegerType();
1606
1607 if (const auto *EIT = RetTy->getAs<BitIntType>())
1608 if (EIT->getNumBits() > 64)
1609 return getIndirectReturnResult(RetTy, State);
1610
1611 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1612 : ABIArgInfo::getDirect());
1613 }
1614
isSIMDVectorType(ASTContext & Context,QualType Ty)1615 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1616 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1617 }
1618
isRecordWithSIMDVectorType(ASTContext & Context,QualType Ty)1619 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1620 const RecordType *RT = Ty->getAs<RecordType>();
1621 if (!RT)
1622 return false;
1623 const RecordDecl *RD = RT->getDecl();
1624
1625 // If this is a C++ record, check the bases first.
1626 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1627 for (const auto &I : CXXRD->bases())
1628 if (!isRecordWithSIMDVectorType(Context, I.getType()))
1629 return false;
1630
1631 for (const auto *i : RD->fields()) {
1632 QualType FT = i->getType();
1633
1634 if (isSIMDVectorType(Context, FT))
1635 return true;
1636
1637 if (isRecordWithSIMDVectorType(Context, FT))
1638 return true;
1639 }
1640
1641 return false;
1642 }
1643
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const1644 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1645 unsigned Align) const {
1646 // Otherwise, if the alignment is less than or equal to the minimum ABI
1647 // alignment, just use the default; the backend will handle this.
1648 if (Align <= MinABIStackAlignInBytes)
1649 return 0; // Use default alignment.
1650
1651 if (IsLinuxABI) {
1652 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1653 // want to spend any effort dealing with the ramifications of ABI breaks.
1654 //
1655 // If the vector type is __m128/__m256/__m512, return the default alignment.
1656 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1657 return Align;
1658 }
1659 // On non-Darwin, the stack type alignment is always 4.
1660 if (!IsDarwinVectorABI) {
1661 // Set explicit alignment, since we may need to realign the top.
1662 return MinABIStackAlignInBytes;
1663 }
1664
1665 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1666 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1667 isRecordWithSIMDVectorType(getContext(), Ty)))
1668 return 16;
1669
1670 return MinABIStackAlignInBytes;
1671 }
1672
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const1673 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1674 CCState &State) const {
1675 if (!ByVal) {
1676 if (State.FreeRegs) {
1677 --State.FreeRegs; // Non-byval indirects just use one pointer.
1678 if (!IsMCUABI)
1679 return getNaturalAlignIndirectInReg(Ty);
1680 }
1681 return getNaturalAlignIndirect(Ty, false);
1682 }
1683
1684 // Compute the byval alignment.
1685 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1686 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1687 if (StackAlign == 0)
1688 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1689
1690 // If the stack alignment is less than the type alignment, realign the
1691 // argument.
1692 bool Realign = TypeAlign > StackAlign;
1693 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1694 /*ByVal=*/true, Realign);
1695 }
1696
classify(QualType Ty) const1697 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1698 const Type *T = isSingleElementStruct(Ty, getContext());
1699 if (!T)
1700 T = Ty.getTypePtr();
1701
1702 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1703 BuiltinType::Kind K = BT->getKind();
1704 if (K == BuiltinType::Float || K == BuiltinType::Double)
1705 return Float;
1706 }
1707 return Integer;
1708 }
1709
updateFreeRegs(QualType Ty,CCState & State) const1710 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1711 if (!IsSoftFloatABI) {
1712 Class C = classify(Ty);
1713 if (C == Float)
1714 return false;
1715 }
1716
1717 unsigned Size = getContext().getTypeSize(Ty);
1718 unsigned SizeInRegs = (Size + 31) / 32;
1719
1720 if (SizeInRegs == 0)
1721 return false;
1722
1723 if (!IsMCUABI) {
1724 if (SizeInRegs > State.FreeRegs) {
1725 State.FreeRegs = 0;
1726 return false;
1727 }
1728 } else {
1729 // The MCU psABI allows passing parameters in-reg even if there are
1730 // earlier parameters that are passed on the stack. Also,
1731 // it does not allow passing >8-byte structs in-register,
1732 // even if there are 3 free registers available.
1733 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1734 return false;
1735 }
1736
1737 State.FreeRegs -= SizeInRegs;
1738 return true;
1739 }
1740
shouldAggregateUseDirect(QualType Ty,CCState & State,bool & InReg,bool & NeedsPadding) const1741 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1742 bool &InReg,
1743 bool &NeedsPadding) const {
1744 // On Windows, aggregates other than HFAs are never passed in registers, and
1745 // they do not consume register slots. Homogenous floating-point aggregates
1746 // (HFAs) have already been dealt with at this point.
1747 if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1748 return false;
1749
1750 NeedsPadding = false;
1751 InReg = !IsMCUABI;
1752
1753 if (!updateFreeRegs(Ty, State))
1754 return false;
1755
1756 if (IsMCUABI)
1757 return true;
1758
1759 if (State.CC == llvm::CallingConv::X86_FastCall ||
1760 State.CC == llvm::CallingConv::X86_VectorCall ||
1761 State.CC == llvm::CallingConv::X86_RegCall) {
1762 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1763 NeedsPadding = true;
1764
1765 return false;
1766 }
1767
1768 return true;
1769 }
1770
shouldPrimitiveUseInReg(QualType Ty,CCState & State) const1771 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1772 if (!updateFreeRegs(Ty, State))
1773 return false;
1774
1775 if (IsMCUABI)
1776 return false;
1777
1778 if (State.CC == llvm::CallingConv::X86_FastCall ||
1779 State.CC == llvm::CallingConv::X86_VectorCall ||
1780 State.CC == llvm::CallingConv::X86_RegCall) {
1781 if (getContext().getTypeSize(Ty) > 32)
1782 return false;
1783
1784 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1785 Ty->isReferenceType());
1786 }
1787
1788 return true;
1789 }
1790
runVectorCallFirstPass(CGFunctionInfo & FI,CCState & State) const1791 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1792 // Vectorcall x86 works subtly different than in x64, so the format is
1793 // a bit different than the x64 version. First, all vector types (not HVAs)
1794 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1795 // This differs from the x64 implementation, where the first 6 by INDEX get
1796 // registers.
1797 // In the second pass over the arguments, HVAs are passed in the remaining
1798 // vector registers if possible, or indirectly by address. The address will be
1799 // passed in ECX/EDX if available. Any other arguments are passed according to
1800 // the usual fastcall rules.
1801 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1802 for (int I = 0, E = Args.size(); I < E; ++I) {
1803 const Type *Base = nullptr;
1804 uint64_t NumElts = 0;
1805 const QualType &Ty = Args[I].type;
1806 if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1807 isHomogeneousAggregate(Ty, Base, NumElts)) {
1808 if (State.FreeSSERegs >= NumElts) {
1809 State.FreeSSERegs -= NumElts;
1810 Args[I].info = ABIArgInfo::getDirectInReg();
1811 State.IsPreassigned.set(I);
1812 }
1813 }
1814 }
1815 }
1816
classifyArgumentType(QualType Ty,CCState & State) const1817 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1818 CCState &State) const {
1819 // FIXME: Set alignment on indirect arguments.
1820 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1821 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1822 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1823
1824 Ty = useFirstFieldIfTransparentUnion(Ty);
1825 TypeInfo TI = getContext().getTypeInfo(Ty);
1826
1827 // Check with the C++ ABI first.
1828 const RecordType *RT = Ty->getAs<RecordType>();
1829 if (RT) {
1830 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1831 if (RAA == CGCXXABI::RAA_Indirect) {
1832 return getIndirectResult(Ty, false, State);
1833 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1834 // The field index doesn't matter, we'll fix it up later.
1835 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1836 }
1837 }
1838
1839 // Regcall uses the concept of a homogenous vector aggregate, similar
1840 // to other targets.
1841 const Type *Base = nullptr;
1842 uint64_t NumElts = 0;
1843 if ((IsRegCall || IsVectorCall) &&
1844 isHomogeneousAggregate(Ty, Base, NumElts)) {
1845 if (State.FreeSSERegs >= NumElts) {
1846 State.FreeSSERegs -= NumElts;
1847
1848 // Vectorcall passes HVAs directly and does not flatten them, but regcall
1849 // does.
1850 if (IsVectorCall)
1851 return getDirectX86Hva();
1852
1853 if (Ty->isBuiltinType() || Ty->isVectorType())
1854 return ABIArgInfo::getDirect();
1855 return ABIArgInfo::getExpand();
1856 }
1857 return getIndirectResult(Ty, /*ByVal=*/false, State);
1858 }
1859
1860 if (isAggregateTypeForABI(Ty)) {
1861 // Structures with flexible arrays are always indirect.
1862 // FIXME: This should not be byval!
1863 if (RT && RT->getDecl()->hasFlexibleArrayMember())
1864 return getIndirectResult(Ty, true, State);
1865
1866 // Ignore empty structs/unions on non-Windows.
1867 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1868 return ABIArgInfo::getIgnore();
1869
1870 llvm::LLVMContext &LLVMContext = getVMContext();
1871 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1872 bool NeedsPadding = false;
1873 bool InReg;
1874 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1875 unsigned SizeInRegs = (TI.Width + 31) / 32;
1876 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1877 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1878 if (InReg)
1879 return ABIArgInfo::getDirectInReg(Result);
1880 else
1881 return ABIArgInfo::getDirect(Result);
1882 }
1883 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1884
1885 // Pass over-aligned aggregates on Windows indirectly. This behavior was
1886 // added in MSVC 2015.
1887 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1888 return getIndirectResult(Ty, /*ByVal=*/false, State);
1889
1890 // Expand small (<= 128-bit) record types when we know that the stack layout
1891 // of those arguments will match the struct. This is important because the
1892 // LLVM backend isn't smart enough to remove byval, which inhibits many
1893 // optimizations.
1894 // Don't do this for the MCU if there are still free integer registers
1895 // (see X86_64 ABI for full explanation).
1896 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1897 canExpandIndirectArgument(Ty))
1898 return ABIArgInfo::getExpandWithPadding(
1899 IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1900
1901 return getIndirectResult(Ty, true, State);
1902 }
1903
1904 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1905 // On Windows, vectors are passed directly if registers are available, or
1906 // indirectly if not. This avoids the need to align argument memory. Pass
1907 // user-defined vector types larger than 512 bits indirectly for simplicity.
1908 if (IsWin32StructABI) {
1909 if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1910 --State.FreeSSERegs;
1911 return ABIArgInfo::getDirectInReg();
1912 }
1913 return getIndirectResult(Ty, /*ByVal=*/false, State);
1914 }
1915
1916 // On Darwin, some vectors are passed in memory, we handle this by passing
1917 // it as an i8/i16/i32/i64.
1918 if (IsDarwinVectorABI) {
1919 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1920 (TI.Width == 64 && VT->getNumElements() == 1))
1921 return ABIArgInfo::getDirect(
1922 llvm::IntegerType::get(getVMContext(), TI.Width));
1923 }
1924
1925 if (IsX86_MMXType(CGT.ConvertType(Ty)))
1926 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1927
1928 return ABIArgInfo::getDirect();
1929 }
1930
1931
1932 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1933 Ty = EnumTy->getDecl()->getIntegerType();
1934
1935 bool InReg = shouldPrimitiveUseInReg(Ty, State);
1936
1937 if (isPromotableIntegerTypeForABI(Ty)) {
1938 if (InReg)
1939 return ABIArgInfo::getExtendInReg(Ty);
1940 return ABIArgInfo::getExtend(Ty);
1941 }
1942
1943 if (const auto *EIT = Ty->getAs<BitIntType>()) {
1944 if (EIT->getNumBits() <= 64) {
1945 if (InReg)
1946 return ABIArgInfo::getDirectInReg();
1947 return ABIArgInfo::getDirect();
1948 }
1949 return getIndirectResult(Ty, /*ByVal=*/false, State);
1950 }
1951
1952 if (InReg)
1953 return ABIArgInfo::getDirectInReg();
1954 return ABIArgInfo::getDirect();
1955 }
1956
computeInfo(CGFunctionInfo & FI) const1957 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1958 CCState State(FI);
1959 if (IsMCUABI)
1960 State.FreeRegs = 3;
1961 else if (State.CC == llvm::CallingConv::X86_FastCall) {
1962 State.FreeRegs = 2;
1963 State.FreeSSERegs = 3;
1964 } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1965 State.FreeRegs = 2;
1966 State.FreeSSERegs = 6;
1967 } else if (FI.getHasRegParm())
1968 State.FreeRegs = FI.getRegParm();
1969 else if (State.CC == llvm::CallingConv::X86_RegCall) {
1970 State.FreeRegs = 5;
1971 State.FreeSSERegs = 8;
1972 } else if (IsWin32StructABI) {
1973 // Since MSVC 2015, the first three SSE vectors have been passed in
1974 // registers. The rest are passed indirectly.
1975 State.FreeRegs = DefaultNumRegisterParameters;
1976 State.FreeSSERegs = 3;
1977 } else
1978 State.FreeRegs = DefaultNumRegisterParameters;
1979
1980 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1981 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1982 } else if (FI.getReturnInfo().isIndirect()) {
1983 // The C++ ABI is not aware of register usage, so we have to check if the
1984 // return value was sret and put it in a register ourselves if appropriate.
1985 if (State.FreeRegs) {
1986 --State.FreeRegs; // The sret parameter consumes a register.
1987 if (!IsMCUABI)
1988 FI.getReturnInfo().setInReg(true);
1989 }
1990 }
1991
1992 // The chain argument effectively gives us another free register.
1993 if (FI.isChainCall())
1994 ++State.FreeRegs;
1995
1996 // For vectorcall, do a first pass over the arguments, assigning FP and vector
1997 // arguments to XMM registers as available.
1998 if (State.CC == llvm::CallingConv::X86_VectorCall)
1999 runVectorCallFirstPass(FI, State);
2000
2001 bool UsedInAlloca = false;
2002 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
2003 for (int I = 0, E = Args.size(); I < E; ++I) {
2004 // Skip arguments that have already been assigned.
2005 if (State.IsPreassigned.test(I))
2006 continue;
2007
2008 Args[I].info = classifyArgumentType(Args[I].type, State);
2009 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
2010 }
2011
2012 // If we needed to use inalloca for any argument, do a second pass and rewrite
2013 // all the memory arguments to use inalloca.
2014 if (UsedInAlloca)
2015 rewriteWithInAlloca(FI);
2016 }
2017
2018 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const2019 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
2020 CharUnits &StackOffset, ABIArgInfo &Info,
2021 QualType Type) const {
2022 // Arguments are always 4-byte-aligned.
2023 CharUnits WordSize = CharUnits::fromQuantity(4);
2024 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
2025
2026 // sret pointers and indirect things will require an extra pointer
2027 // indirection, unless they are byval. Most things are byval, and will not
2028 // require this indirection.
2029 bool IsIndirect = false;
2030 if (Info.isIndirect() && !Info.getIndirectByVal())
2031 IsIndirect = true;
2032 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
2033 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
2034 if (IsIndirect)
2035 LLTy = LLTy->getPointerTo(0);
2036 FrameFields.push_back(LLTy);
2037 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
2038
2039 // Insert padding bytes to respect alignment.
2040 CharUnits FieldEnd = StackOffset;
2041 StackOffset = FieldEnd.alignTo(WordSize);
2042 if (StackOffset != FieldEnd) {
2043 CharUnits NumBytes = StackOffset - FieldEnd;
2044 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2045 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2046 FrameFields.push_back(Ty);
2047 }
2048 }
2049
isArgInAlloca(const ABIArgInfo & Info)2050 static bool isArgInAlloca(const ABIArgInfo &Info) {
2051 // Leave ignored and inreg arguments alone.
2052 switch (Info.getKind()) {
2053 case ABIArgInfo::InAlloca:
2054 return true;
2055 case ABIArgInfo::Ignore:
2056 case ABIArgInfo::IndirectAliased:
2057 return false;
2058 case ABIArgInfo::Indirect:
2059 case ABIArgInfo::Direct:
2060 case ABIArgInfo::Extend:
2061 return !Info.getInReg();
2062 case ABIArgInfo::Expand:
2063 case ABIArgInfo::CoerceAndExpand:
2064 // These are aggregate types which are never passed in registers when
2065 // inalloca is involved.
2066 return true;
2067 }
2068 llvm_unreachable("invalid enum");
2069 }
2070
rewriteWithInAlloca(CGFunctionInfo & FI) const2071 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2072 assert(IsWin32StructABI && "inalloca only supported on win32");
2073
2074 // Build a packed struct type for all of the arguments in memory.
2075 SmallVector<llvm::Type *, 6> FrameFields;
2076
2077 // The stack alignment is always 4.
2078 CharUnits StackAlign = CharUnits::fromQuantity(4);
2079
2080 CharUnits StackOffset;
2081 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2082
2083 // Put 'this' into the struct before 'sret', if necessary.
2084 bool IsThisCall =
2085 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2086 ABIArgInfo &Ret = FI.getReturnInfo();
2087 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2088 isArgInAlloca(I->info)) {
2089 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2090 ++I;
2091 }
2092
2093 // Put the sret parameter into the inalloca struct if it's in memory.
2094 if (Ret.isIndirect() && !Ret.getInReg()) {
2095 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2096 // On Windows, the hidden sret parameter is always returned in eax.
2097 Ret.setInAllocaSRet(IsWin32StructABI);
2098 }
2099
2100 // Skip the 'this' parameter in ecx.
2101 if (IsThisCall)
2102 ++I;
2103
2104 // Put arguments passed in memory into the struct.
2105 for (; I != E; ++I) {
2106 if (isArgInAlloca(I->info))
2107 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2108 }
2109
2110 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2111 /*isPacked=*/true),
2112 StackAlign);
2113 }
2114
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const2115 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2116 Address VAListAddr, QualType Ty) const {
2117
2118 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2119
2120 // x86-32 changes the alignment of certain arguments on the stack.
2121 //
2122 // Just messing with TypeInfo like this works because we never pass
2123 // anything indirectly.
2124 TypeInfo.Align = CharUnits::fromQuantity(
2125 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2126
2127 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2128 TypeInfo, CharUnits::fromQuantity(4),
2129 /*AllowHigherAlign*/ true);
2130 }
2131
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)2132 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2133 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2134 assert(Triple.getArch() == llvm::Triple::x86);
2135
2136 switch (Opts.getStructReturnConvention()) {
2137 case CodeGenOptions::SRCK_Default:
2138 break;
2139 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
2140 return false;
2141 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
2142 return true;
2143 }
2144
2145 if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2146 return true;
2147
2148 switch (Triple.getOS()) {
2149 case llvm::Triple::DragonFly:
2150 case llvm::Triple::FreeBSD:
2151 case llvm::Triple::OpenBSD:
2152 case llvm::Triple::Win32:
2153 return true;
2154 default:
2155 return false;
2156 }
2157 }
2158
addX86InterruptAttrs(const FunctionDecl * FD,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)2159 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2160 CodeGen::CodeGenModule &CGM) {
2161 if (!FD->hasAttr<AnyX86InterruptAttr>())
2162 return;
2163
2164 llvm::Function *Fn = cast<llvm::Function>(GV);
2165 Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2166 if (FD->getNumParams() == 0)
2167 return;
2168
2169 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2170 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2171 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2172 Fn->getContext(), ByValTy);
2173 Fn->addParamAttr(0, NewAttr);
2174 }
2175
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2176 void X86_32TargetCodeGenInfo::setTargetAttributes(
2177 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2178 if (GV->isDeclaration())
2179 return;
2180 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2181 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2182 llvm::Function *Fn = cast<llvm::Function>(GV);
2183 Fn->addFnAttr("stackrealign");
2184 }
2185
2186 addX86InterruptAttrs(FD, GV, CGM);
2187 }
2188 }
2189
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2190 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2191 CodeGen::CodeGenFunction &CGF,
2192 llvm::Value *Address) const {
2193 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2194
2195 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2196
2197 // 0-7 are the eight integer registers; the order is different
2198 // on Darwin (for EH), but the range is the same.
2199 // 8 is %eip.
2200 AssignToArrayRange(Builder, Address, Four8, 0, 8);
2201
2202 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2203 // 12-16 are st(0..4). Not sure why we stop at 4.
2204 // These have size 16, which is sizeof(long double) on
2205 // platforms with 8-byte alignment for that type.
2206 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2207 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2208
2209 } else {
2210 // 9 is %eflags, which doesn't get a size on Darwin for some
2211 // reason.
2212 Builder.CreateAlignedStore(
2213 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2214 CharUnits::One());
2215
2216 // 11-16 are st(0..5). Not sure why we stop at 5.
2217 // These have size 12, which is sizeof(long double) on
2218 // platforms with 4-byte alignment for that type.
2219 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2220 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2221 }
2222
2223 return false;
2224 }
2225
2226 //===----------------------------------------------------------------------===//
2227 // X86-64 ABI Implementation
2228 //===----------------------------------------------------------------------===//
2229
2230
2231 namespace {
2232 /// The AVX ABI level for X86 targets.
2233 enum class X86AVXABILevel {
2234 None,
2235 AVX,
2236 AVX512
2237 };
2238
2239 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)2240 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2241 switch (AVXLevel) {
2242 case X86AVXABILevel::AVX512:
2243 return 512;
2244 case X86AVXABILevel::AVX:
2245 return 256;
2246 case X86AVXABILevel::None:
2247 return 128;
2248 }
2249 llvm_unreachable("Unknown AVXLevel");
2250 }
2251
2252 /// X86_64ABIInfo - The X86_64 ABI information.
2253 class X86_64ABIInfo : public SwiftABIInfo {
2254 enum Class {
2255 Integer = 0,
2256 SSE,
2257 SSEUp,
2258 X87,
2259 X87Up,
2260 ComplexX87,
2261 NoClass,
2262 Memory
2263 };
2264
2265 /// merge - Implement the X86_64 ABI merging algorithm.
2266 ///
2267 /// Merge an accumulating classification \arg Accum with a field
2268 /// classification \arg Field.
2269 ///
2270 /// \param Accum - The accumulating classification. This should
2271 /// always be either NoClass or the result of a previous merge
2272 /// call. In addition, this should never be Memory (the caller
2273 /// should just return Memory for the aggregate).
2274 static Class merge(Class Accum, Class Field);
2275
2276 /// postMerge - Implement the X86_64 ABI post merging algorithm.
2277 ///
2278 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2279 /// final MEMORY or SSE classes when necessary.
2280 ///
2281 /// \param AggregateSize - The size of the current aggregate in
2282 /// the classification process.
2283 ///
2284 /// \param Lo - The classification for the parts of the type
2285 /// residing in the low word of the containing object.
2286 ///
2287 /// \param Hi - The classification for the parts of the type
2288 /// residing in the higher words of the containing object.
2289 ///
2290 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2291
2292 /// classify - Determine the x86_64 register classes in which the
2293 /// given type T should be passed.
2294 ///
2295 /// \param Lo - The classification for the parts of the type
2296 /// residing in the low word of the containing object.
2297 ///
2298 /// \param Hi - The classification for the parts of the type
2299 /// residing in the high word of the containing object.
2300 ///
2301 /// \param OffsetBase - The bit offset of this type in the
2302 /// containing object. Some parameters are classified different
2303 /// depending on whether they straddle an eightbyte boundary.
2304 ///
2305 /// \param isNamedArg - Whether the argument in question is a "named"
2306 /// argument, as used in AMD64-ABI 3.5.7.
2307 ///
2308 /// \param IsRegCall - Whether the calling conversion is regcall.
2309 ///
2310 /// If a word is unused its result will be NoClass; if a type should
2311 /// be passed in Memory then at least the classification of \arg Lo
2312 /// will be Memory.
2313 ///
2314 /// The \arg Lo class will be NoClass iff the argument is ignored.
2315 ///
2316 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2317 /// also be ComplexX87.
2318 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2319 bool isNamedArg, bool IsRegCall = false) const;
2320
2321 llvm::Type *GetByteVectorType(QualType Ty) const;
2322 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2323 unsigned IROffset, QualType SourceTy,
2324 unsigned SourceOffset) const;
2325 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2326 unsigned IROffset, QualType SourceTy,
2327 unsigned SourceOffset) const;
2328
2329 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2330 /// such that the argument will be returned in memory.
2331 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2332
2333 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2334 /// such that the argument will be passed in memory.
2335 ///
2336 /// \param freeIntRegs - The number of free integer registers remaining
2337 /// available.
2338 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2339
2340 ABIArgInfo classifyReturnType(QualType RetTy) const;
2341
2342 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2343 unsigned &neededInt, unsigned &neededSSE,
2344 bool isNamedArg,
2345 bool IsRegCall = false) const;
2346
2347 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2348 unsigned &NeededSSE,
2349 unsigned &MaxVectorWidth) const;
2350
2351 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2352 unsigned &NeededSSE,
2353 unsigned &MaxVectorWidth) const;
2354
2355 bool IsIllegalVectorType(QualType Ty) const;
2356
2357 /// The 0.98 ABI revision clarified a lot of ambiguities,
2358 /// unfortunately in ways that were not always consistent with
2359 /// certain previous compilers. In particular, platforms which
2360 /// required strict binary compatibility with older versions of GCC
2361 /// may need to exempt themselves.
honorsRevision0_98() const2362 bool honorsRevision0_98() const {
2363 return !getTarget().getTriple().isOSDarwin();
2364 }
2365
2366 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2367 /// classify it as INTEGER (for compatibility with older clang compilers).
classifyIntegerMMXAsSSE() const2368 bool classifyIntegerMMXAsSSE() const {
2369 // Clang <= 3.8 did not do this.
2370 if (getContext().getLangOpts().getClangABICompat() <=
2371 LangOptions::ClangABI::Ver3_8)
2372 return false;
2373
2374 const llvm::Triple &Triple = getTarget().getTriple();
2375 if (Triple.isOSDarwin() || Triple.isPS())
2376 return false;
2377 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2378 return false;
2379 return true;
2380 }
2381
2382 // GCC classifies vectors of __int128 as memory.
passInt128VectorsInMem() const2383 bool passInt128VectorsInMem() const {
2384 // Clang <= 9.0 did not do this.
2385 if (getContext().getLangOpts().getClangABICompat() <=
2386 LangOptions::ClangABI::Ver9)
2387 return false;
2388
2389 const llvm::Triple &T = getTarget().getTriple();
2390 return T.isOSLinux() || T.isOSNetBSD();
2391 }
2392
2393 X86AVXABILevel AVXLevel;
2394 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2395 // 64-bit hardware.
2396 bool Has64BitPointers;
2397
2398 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2399 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2400 SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2401 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2402 }
2403
isPassedUsingAVXType(QualType type) const2404 bool isPassedUsingAVXType(QualType type) const {
2405 unsigned neededInt, neededSSE;
2406 // The freeIntRegs argument doesn't matter here.
2407 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2408 /*isNamedArg*/true);
2409 if (info.isDirect()) {
2410 llvm::Type *ty = info.getCoerceToType();
2411 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2412 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2413 }
2414 return false;
2415 }
2416
2417 void computeInfo(CGFunctionInfo &FI) const override;
2418
2419 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2420 QualType Ty) const override;
2421 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2422 QualType Ty) const override;
2423
has64BitPointers() const2424 bool has64BitPointers() const {
2425 return Has64BitPointers;
2426 }
2427
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const2428 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2429 bool asReturnValue) const override {
2430 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2431 }
isSwiftErrorInRegister() const2432 bool isSwiftErrorInRegister() const override {
2433 return true;
2434 }
2435 };
2436
2437 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2438 class WinX86_64ABIInfo : public SwiftABIInfo {
2439 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2440 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2441 : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2442 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2443
2444 void computeInfo(CGFunctionInfo &FI) const override;
2445
2446 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2447 QualType Ty) const override;
2448
isHomogeneousAggregateBaseType(QualType Ty) const2449 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2450 // FIXME: Assumes vectorcall is in use.
2451 return isX86VectorTypeForVectorCall(getContext(), Ty);
2452 }
2453
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const2454 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2455 uint64_t NumMembers) const override {
2456 // FIXME: Assumes vectorcall is in use.
2457 return isX86VectorCallAggregateSmallEnough(NumMembers);
2458 }
2459
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const2460 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2461 bool asReturnValue) const override {
2462 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2463 }
2464
isSwiftErrorInRegister() const2465 bool isSwiftErrorInRegister() const override {
2466 return true;
2467 }
2468
2469 private:
2470 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2471 bool IsVectorCall, bool IsRegCall) const;
2472 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2473 const ABIArgInfo ¤t) const;
2474
2475 X86AVXABILevel AVXLevel;
2476
2477 bool IsMingw64;
2478 };
2479
2480 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2481 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2482 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2483 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2484
getABIInfo() const2485 const X86_64ABIInfo &getABIInfo() const {
2486 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2487 }
2488
2489 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2490 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
markARCOptimizedReturnCallsAsNoTail() const2491 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2492
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2493 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2494 return 7;
2495 }
2496
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2497 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2498 llvm::Value *Address) const override {
2499 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2500
2501 // 0-15 are the 16 integer registers.
2502 // 16 is %rip.
2503 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2504 return false;
2505 }
2506
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const2507 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2508 StringRef Constraint,
2509 llvm::Type* Ty) const override {
2510 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2511 }
2512
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const2513 bool isNoProtoCallVariadic(const CallArgList &args,
2514 const FunctionNoProtoType *fnType) const override {
2515 // The default CC on x86-64 sets %al to the number of SSA
2516 // registers used, and GCC sets this when calling an unprototyped
2517 // function, so we override the default behavior. However, don't do
2518 // that when AVX types are involved: the ABI explicitly states it is
2519 // undefined, and it doesn't work in practice because of how the ABI
2520 // defines varargs anyway.
2521 if (fnType->getCallConv() == CC_C) {
2522 bool HasAVXType = false;
2523 for (CallArgList::const_iterator
2524 it = args.begin(), ie = args.end(); it != ie; ++it) {
2525 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2526 HasAVXType = true;
2527 break;
2528 }
2529 }
2530
2531 if (!HasAVXType)
2532 return true;
2533 }
2534
2535 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2536 }
2537
2538 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const2539 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2540 unsigned Sig = (0xeb << 0) | // jmp rel8
2541 (0x06 << 8) | // .+0x08
2542 ('v' << 16) |
2543 ('2' << 24);
2544 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2545 }
2546
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2547 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2548 CodeGen::CodeGenModule &CGM) const override {
2549 if (GV->isDeclaration())
2550 return;
2551 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2552 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2553 llvm::Function *Fn = cast<llvm::Function>(GV);
2554 Fn->addFnAttr("stackrealign");
2555 }
2556
2557 addX86InterruptAttrs(FD, GV, CGM);
2558 }
2559 }
2560
2561 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2562 const FunctionDecl *Caller,
2563 const FunctionDecl *Callee,
2564 const CallArgList &Args) const override;
2565 };
2566
initFeatureMaps(const ASTContext & Ctx,llvm::StringMap<bool> & CallerMap,const FunctionDecl * Caller,llvm::StringMap<bool> & CalleeMap,const FunctionDecl * Callee)2567 static void initFeatureMaps(const ASTContext &Ctx,
2568 llvm::StringMap<bool> &CallerMap,
2569 const FunctionDecl *Caller,
2570 llvm::StringMap<bool> &CalleeMap,
2571 const FunctionDecl *Callee) {
2572 if (CalleeMap.empty() && CallerMap.empty()) {
2573 // The caller is potentially nullptr in the case where the call isn't in a
2574 // function. In this case, the getFunctionFeatureMap ensures we just get
2575 // the TU level setting (since it cannot be modified by 'target'..
2576 Ctx.getFunctionFeatureMap(CallerMap, Caller);
2577 Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2578 }
2579 }
2580
checkAVXParamFeature(DiagnosticsEngine & Diag,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,StringRef Feature,bool IsArgument)2581 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2582 SourceLocation CallLoc,
2583 const llvm::StringMap<bool> &CallerMap,
2584 const llvm::StringMap<bool> &CalleeMap,
2585 QualType Ty, StringRef Feature,
2586 bool IsArgument) {
2587 bool CallerHasFeat = CallerMap.lookup(Feature);
2588 bool CalleeHasFeat = CalleeMap.lookup(Feature);
2589 if (!CallerHasFeat && !CalleeHasFeat)
2590 return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2591 << IsArgument << Ty << Feature;
2592
2593 // Mixing calling conventions here is very clearly an error.
2594 if (!CallerHasFeat || !CalleeHasFeat)
2595 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2596 << IsArgument << Ty << Feature;
2597
2598 // Else, both caller and callee have the required feature, so there is no need
2599 // to diagnose.
2600 return false;
2601 }
2602
checkAVXParam(DiagnosticsEngine & Diag,ASTContext & Ctx,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,bool IsArgument)2603 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2604 SourceLocation CallLoc,
2605 const llvm::StringMap<bool> &CallerMap,
2606 const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2607 bool IsArgument) {
2608 uint64_t Size = Ctx.getTypeSize(Ty);
2609 if (Size > 256)
2610 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2611 "avx512f", IsArgument);
2612
2613 if (Size > 128)
2614 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2615 IsArgument);
2616
2617 return false;
2618 }
2619
checkFunctionCallABI(CodeGenModule & CGM,SourceLocation CallLoc,const FunctionDecl * Caller,const FunctionDecl * Callee,const CallArgList & Args) const2620 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2621 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2622 const FunctionDecl *Callee, const CallArgList &Args) const {
2623 llvm::StringMap<bool> CallerMap;
2624 llvm::StringMap<bool> CalleeMap;
2625 unsigned ArgIndex = 0;
2626
2627 // We need to loop through the actual call arguments rather than the the
2628 // function's parameters, in case this variadic.
2629 for (const CallArg &Arg : Args) {
2630 // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2631 // additionally changes how vectors >256 in size are passed. Like GCC, we
2632 // warn when a function is called with an argument where this will change.
2633 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2634 // the caller and callee features are mismatched.
2635 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2636 // change its ABI with attribute-target after this call.
2637 if (Arg.getType()->isVectorType() &&
2638 CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2639 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2640 QualType Ty = Arg.getType();
2641 // The CallArg seems to have desugared the type already, so for clearer
2642 // diagnostics, replace it with the type in the FunctionDecl if possible.
2643 if (ArgIndex < Callee->getNumParams())
2644 Ty = Callee->getParamDecl(ArgIndex)->getType();
2645
2646 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2647 CalleeMap, Ty, /*IsArgument*/ true))
2648 return;
2649 }
2650 ++ArgIndex;
2651 }
2652
2653 // Check return always, as we don't have a good way of knowing in codegen
2654 // whether this value is used, tail-called, etc.
2655 if (Callee->getReturnType()->isVectorType() &&
2656 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2657 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2658 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2659 CalleeMap, Callee->getReturnType(),
2660 /*IsArgument*/ false);
2661 }
2662 }
2663
qualifyWindowsLibrary(llvm::StringRef Lib)2664 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2665 // If the argument does not end in .lib, automatically add the suffix.
2666 // If the argument contains a space, enclose it in quotes.
2667 // This matches the behavior of MSVC.
2668 bool Quote = Lib.contains(' ');
2669 std::string ArgStr = Quote ? "\"" : "";
2670 ArgStr += Lib;
2671 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2672 ArgStr += ".lib";
2673 ArgStr += Quote ? "\"" : "";
2674 return ArgStr;
2675 }
2676
2677 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2678 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)2679 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2680 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2681 unsigned NumRegisterParameters)
2682 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2683 Win32StructABI, NumRegisterParameters, false) {}
2684
2685 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2686 CodeGen::CodeGenModule &CGM) const override;
2687
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2688 void getDependentLibraryOption(llvm::StringRef Lib,
2689 llvm::SmallString<24> &Opt) const override {
2690 Opt = "/DEFAULTLIB:";
2691 Opt += qualifyWindowsLibrary(Lib);
2692 }
2693
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2694 void getDetectMismatchOption(llvm::StringRef Name,
2695 llvm::StringRef Value,
2696 llvm::SmallString<32> &Opt) const override {
2697 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2698 }
2699 };
2700
addStackProbeTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)2701 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2702 CodeGen::CodeGenModule &CGM) {
2703 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2704
2705 if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2706 Fn->addFnAttr("stack-probe-size",
2707 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2708 if (CGM.getCodeGenOpts().NoStackArgProbe)
2709 Fn->addFnAttr("no-stack-arg-probe");
2710 }
2711 }
2712
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2713 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2714 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2715 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2716 if (GV->isDeclaration())
2717 return;
2718 addStackProbeTargetAttributes(D, GV, CGM);
2719 }
2720
2721 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2722 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2723 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2724 X86AVXABILevel AVXLevel)
2725 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2726
2727 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2728 CodeGen::CodeGenModule &CGM) const override;
2729
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2730 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2731 return 7;
2732 }
2733
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2734 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2735 llvm::Value *Address) const override {
2736 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2737
2738 // 0-15 are the 16 integer registers.
2739 // 16 is %rip.
2740 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2741 return false;
2742 }
2743
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2744 void getDependentLibraryOption(llvm::StringRef Lib,
2745 llvm::SmallString<24> &Opt) const override {
2746 Opt = "/DEFAULTLIB:";
2747 Opt += qualifyWindowsLibrary(Lib);
2748 }
2749
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2750 void getDetectMismatchOption(llvm::StringRef Name,
2751 llvm::StringRef Value,
2752 llvm::SmallString<32> &Opt) const override {
2753 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2754 }
2755 };
2756
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2757 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2758 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2759 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2760 if (GV->isDeclaration())
2761 return;
2762 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2763 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2764 llvm::Function *Fn = cast<llvm::Function>(GV);
2765 Fn->addFnAttr("stackrealign");
2766 }
2767
2768 addX86InterruptAttrs(FD, GV, CGM);
2769 }
2770
2771 addStackProbeTargetAttributes(D, GV, CGM);
2772 }
2773 }
2774
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const2775 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2776 Class &Hi) const {
2777 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2778 //
2779 // (a) If one of the classes is Memory, the whole argument is passed in
2780 // memory.
2781 //
2782 // (b) If X87UP is not preceded by X87, the whole argument is passed in
2783 // memory.
2784 //
2785 // (c) If the size of the aggregate exceeds two eightbytes and the first
2786 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2787 // argument is passed in memory. NOTE: This is necessary to keep the
2788 // ABI working for processors that don't support the __m256 type.
2789 //
2790 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2791 //
2792 // Some of these are enforced by the merging logic. Others can arise
2793 // only with unions; for example:
2794 // union { _Complex double; unsigned; }
2795 //
2796 // Note that clauses (b) and (c) were added in 0.98.
2797 //
2798 if (Hi == Memory)
2799 Lo = Memory;
2800 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2801 Lo = Memory;
2802 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2803 Lo = Memory;
2804 if (Hi == SSEUp && Lo != SSE)
2805 Hi = SSE;
2806 }
2807
merge(Class Accum,Class Field)2808 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2809 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2810 // classified recursively so that always two fields are
2811 // considered. The resulting class is calculated according to
2812 // the classes of the fields in the eightbyte:
2813 //
2814 // (a) If both classes are equal, this is the resulting class.
2815 //
2816 // (b) If one of the classes is NO_CLASS, the resulting class is
2817 // the other class.
2818 //
2819 // (c) If one of the classes is MEMORY, the result is the MEMORY
2820 // class.
2821 //
2822 // (d) If one of the classes is INTEGER, the result is the
2823 // INTEGER.
2824 //
2825 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2826 // MEMORY is used as class.
2827 //
2828 // (f) Otherwise class SSE is used.
2829
2830 // Accum should never be memory (we should have returned) or
2831 // ComplexX87 (because this cannot be passed in a structure).
2832 assert((Accum != Memory && Accum != ComplexX87) &&
2833 "Invalid accumulated classification during merge.");
2834 if (Accum == Field || Field == NoClass)
2835 return Accum;
2836 if (Field == Memory)
2837 return Memory;
2838 if (Accum == NoClass)
2839 return Field;
2840 if (Accum == Integer || Field == Integer)
2841 return Integer;
2842 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2843 Accum == X87 || Accum == X87Up)
2844 return Memory;
2845 return SSE;
2846 }
2847
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg,bool IsRegCall) const2848 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
2849 Class &Hi, bool isNamedArg, bool IsRegCall) const {
2850 // FIXME: This code can be simplified by introducing a simple value class for
2851 // Class pairs with appropriate constructor methods for the various
2852 // situations.
2853
2854 // FIXME: Some of the split computations are wrong; unaligned vectors
2855 // shouldn't be passed in registers for example, so there is no chance they
2856 // can straddle an eightbyte. Verify & simplify.
2857
2858 Lo = Hi = NoClass;
2859
2860 Class &Current = OffsetBase < 64 ? Lo : Hi;
2861 Current = Memory;
2862
2863 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2864 BuiltinType::Kind k = BT->getKind();
2865
2866 if (k == BuiltinType::Void) {
2867 Current = NoClass;
2868 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2869 Lo = Integer;
2870 Hi = Integer;
2871 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2872 Current = Integer;
2873 } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2874 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
2875 Current = SSE;
2876 } else if (k == BuiltinType::LongDouble) {
2877 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2878 if (LDF == &llvm::APFloat::IEEEquad()) {
2879 Lo = SSE;
2880 Hi = SSEUp;
2881 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2882 Lo = X87;
2883 Hi = X87Up;
2884 } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2885 Current = SSE;
2886 } else
2887 llvm_unreachable("unexpected long double representation!");
2888 }
2889 // FIXME: _Decimal32 and _Decimal64 are SSE.
2890 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2891 return;
2892 }
2893
2894 if (const EnumType *ET = Ty->getAs<EnumType>()) {
2895 // Classify the underlying integer type.
2896 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2897 return;
2898 }
2899
2900 if (Ty->hasPointerRepresentation()) {
2901 Current = Integer;
2902 return;
2903 }
2904
2905 if (Ty->isMemberPointerType()) {
2906 if (Ty->isMemberFunctionPointerType()) {
2907 if (Has64BitPointers) {
2908 // If Has64BitPointers, this is an {i64, i64}, so classify both
2909 // Lo and Hi now.
2910 Lo = Hi = Integer;
2911 } else {
2912 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2913 // straddles an eightbyte boundary, Hi should be classified as well.
2914 uint64_t EB_FuncPtr = (OffsetBase) / 64;
2915 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2916 if (EB_FuncPtr != EB_ThisAdj) {
2917 Lo = Hi = Integer;
2918 } else {
2919 Current = Integer;
2920 }
2921 }
2922 } else {
2923 Current = Integer;
2924 }
2925 return;
2926 }
2927
2928 if (const VectorType *VT = Ty->getAs<VectorType>()) {
2929 uint64_t Size = getContext().getTypeSize(VT);
2930 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2931 // gcc passes the following as integer:
2932 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2933 // 2 bytes - <2 x char>, <1 x short>
2934 // 1 byte - <1 x char>
2935 Current = Integer;
2936
2937 // If this type crosses an eightbyte boundary, it should be
2938 // split.
2939 uint64_t EB_Lo = (OffsetBase) / 64;
2940 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2941 if (EB_Lo != EB_Hi)
2942 Hi = Lo;
2943 } else if (Size == 64) {
2944 QualType ElementType = VT->getElementType();
2945
2946 // gcc passes <1 x double> in memory. :(
2947 if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2948 return;
2949
2950 // gcc passes <1 x long long> as SSE but clang used to unconditionally
2951 // pass them as integer. For platforms where clang is the de facto
2952 // platform compiler, we must continue to use integer.
2953 if (!classifyIntegerMMXAsSSE() &&
2954 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2955 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2956 ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2957 ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2958 Current = Integer;
2959 else
2960 Current = SSE;
2961
2962 // If this type crosses an eightbyte boundary, it should be
2963 // split.
2964 if (OffsetBase && OffsetBase != 64)
2965 Hi = Lo;
2966 } else if (Size == 128 ||
2967 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2968 QualType ElementType = VT->getElementType();
2969
2970 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2971 if (passInt128VectorsInMem() && Size != 128 &&
2972 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2973 ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2974 return;
2975
2976 // Arguments of 256-bits are split into four eightbyte chunks. The
2977 // least significant one belongs to class SSE and all the others to class
2978 // SSEUP. The original Lo and Hi design considers that types can't be
2979 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2980 // This design isn't correct for 256-bits, but since there're no cases
2981 // where the upper parts would need to be inspected, avoid adding
2982 // complexity and just consider Hi to match the 64-256 part.
2983 //
2984 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2985 // registers if they are "named", i.e. not part of the "..." of a
2986 // variadic function.
2987 //
2988 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2989 // split into eight eightbyte chunks, one SSE and seven SSEUP.
2990 Lo = SSE;
2991 Hi = SSEUp;
2992 }
2993 return;
2994 }
2995
2996 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2997 QualType ET = getContext().getCanonicalType(CT->getElementType());
2998
2999 uint64_t Size = getContext().getTypeSize(Ty);
3000 if (ET->isIntegralOrEnumerationType()) {
3001 if (Size <= 64)
3002 Current = Integer;
3003 else if (Size <= 128)
3004 Lo = Hi = Integer;
3005 } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
3006 ET->isBFloat16Type()) {
3007 Current = SSE;
3008 } else if (ET == getContext().DoubleTy) {
3009 Lo = Hi = SSE;
3010 } else if (ET == getContext().LongDoubleTy) {
3011 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3012 if (LDF == &llvm::APFloat::IEEEquad())
3013 Current = Memory;
3014 else if (LDF == &llvm::APFloat::x87DoubleExtended())
3015 Current = ComplexX87;
3016 else if (LDF == &llvm::APFloat::IEEEdouble())
3017 Lo = Hi = SSE;
3018 else
3019 llvm_unreachable("unexpected long double representation!");
3020 }
3021
3022 // If this complex type crosses an eightbyte boundary then it
3023 // should be split.
3024 uint64_t EB_Real = (OffsetBase) / 64;
3025 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
3026 if (Hi == NoClass && EB_Real != EB_Imag)
3027 Hi = Lo;
3028
3029 return;
3030 }
3031
3032 if (const auto *EITy = Ty->getAs<BitIntType>()) {
3033 if (EITy->getNumBits() <= 64)
3034 Current = Integer;
3035 else if (EITy->getNumBits() <= 128)
3036 Lo = Hi = Integer;
3037 // Larger values need to get passed in memory.
3038 return;
3039 }
3040
3041 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3042 // Arrays are treated like structures.
3043
3044 uint64_t Size = getContext().getTypeSize(Ty);
3045
3046 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3047 // than eight eightbytes, ..., it has class MEMORY.
3048 // regcall ABI doesn't have limitation to an object. The only limitation
3049 // is the free registers, which will be checked in computeInfo.
3050 if (!IsRegCall && Size > 512)
3051 return;
3052
3053 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3054 // fields, it has class MEMORY.
3055 //
3056 // Only need to check alignment of array base.
3057 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3058 return;
3059
3060 // Otherwise implement simplified merge. We could be smarter about
3061 // this, but it isn't worth it and would be harder to verify.
3062 Current = NoClass;
3063 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3064 uint64_t ArraySize = AT->getSize().getZExtValue();
3065
3066 // The only case a 256-bit wide vector could be used is when the array
3067 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3068 // to work for sizes wider than 128, early check and fallback to memory.
3069 //
3070 if (Size > 128 &&
3071 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3072 return;
3073
3074 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3075 Class FieldLo, FieldHi;
3076 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3077 Lo = merge(Lo, FieldLo);
3078 Hi = merge(Hi, FieldHi);
3079 if (Lo == Memory || Hi == Memory)
3080 break;
3081 }
3082
3083 postMerge(Size, Lo, Hi);
3084 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3085 return;
3086 }
3087
3088 if (const RecordType *RT = Ty->getAs<RecordType>()) {
3089 uint64_t Size = getContext().getTypeSize(Ty);
3090
3091 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3092 // than eight eightbytes, ..., it has class MEMORY.
3093 if (Size > 512)
3094 return;
3095
3096 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3097 // copy constructor or a non-trivial destructor, it is passed by invisible
3098 // reference.
3099 if (getRecordArgABI(RT, getCXXABI()))
3100 return;
3101
3102 const RecordDecl *RD = RT->getDecl();
3103
3104 // Assume variable sized types are passed in memory.
3105 if (RD->hasFlexibleArrayMember())
3106 return;
3107
3108 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3109
3110 // Reset Lo class, this will be recomputed.
3111 Current = NoClass;
3112
3113 // If this is a C++ record, classify the bases first.
3114 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3115 for (const auto &I : CXXRD->bases()) {
3116 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3117 "Unexpected base class!");
3118 const auto *Base =
3119 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3120
3121 // Classify this field.
3122 //
3123 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3124 // single eightbyte, each is classified separately. Each eightbyte gets
3125 // initialized to class NO_CLASS.
3126 Class FieldLo, FieldHi;
3127 uint64_t Offset =
3128 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3129 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3130 Lo = merge(Lo, FieldLo);
3131 Hi = merge(Hi, FieldHi);
3132 if (Lo == Memory || Hi == Memory) {
3133 postMerge(Size, Lo, Hi);
3134 return;
3135 }
3136 }
3137 }
3138
3139 // Classify the fields one at a time, merging the results.
3140 unsigned idx = 0;
3141 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3142 LangOptions::ClangABI::Ver11 ||
3143 getContext().getTargetInfo().getTriple().isPS();
3144 bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3145
3146 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3147 i != e; ++i, ++idx) {
3148 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3149 bool BitField = i->isBitField();
3150
3151 // Ignore padding bit-fields.
3152 if (BitField && i->isUnnamedBitfield())
3153 continue;
3154
3155 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3156 // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3157 //
3158 // The only case a 256-bit or a 512-bit wide vector could be used is when
3159 // the struct contains a single 256-bit or 512-bit element. Early check
3160 // and fallback to memory.
3161 //
3162 // FIXME: Extended the Lo and Hi logic properly to work for size wider
3163 // than 128.
3164 if (Size > 128 &&
3165 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3166 Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3167 Lo = Memory;
3168 postMerge(Size, Lo, Hi);
3169 return;
3170 }
3171 // Note, skip this test for bit-fields, see below.
3172 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3173 Lo = Memory;
3174 postMerge(Size, Lo, Hi);
3175 return;
3176 }
3177
3178 // Classify this field.
3179 //
3180 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3181 // exceeds a single eightbyte, each is classified
3182 // separately. Each eightbyte gets initialized to class
3183 // NO_CLASS.
3184 Class FieldLo, FieldHi;
3185
3186 // Bit-fields require special handling, they do not force the
3187 // structure to be passed in memory even if unaligned, and
3188 // therefore they can straddle an eightbyte.
3189 if (BitField) {
3190 assert(!i->isUnnamedBitfield());
3191 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3192 uint64_t Size = i->getBitWidthValue(getContext());
3193
3194 uint64_t EB_Lo = Offset / 64;
3195 uint64_t EB_Hi = (Offset + Size - 1) / 64;
3196
3197 if (EB_Lo) {
3198 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3199 FieldLo = NoClass;
3200 FieldHi = Integer;
3201 } else {
3202 FieldLo = Integer;
3203 FieldHi = EB_Hi ? Integer : NoClass;
3204 }
3205 } else
3206 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3207 Lo = merge(Lo, FieldLo);
3208 Hi = merge(Hi, FieldHi);
3209 if (Lo == Memory || Hi == Memory)
3210 break;
3211 }
3212
3213 postMerge(Size, Lo, Hi);
3214 }
3215 }
3216
getIndirectReturnResult(QualType Ty) const3217 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3218 // If this is a scalar LLVM value then assume LLVM will pass it in the right
3219 // place naturally.
3220 if (!isAggregateTypeForABI(Ty)) {
3221 // Treat an enum type as its underlying type.
3222 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3223 Ty = EnumTy->getDecl()->getIntegerType();
3224
3225 if (Ty->isBitIntType())
3226 return getNaturalAlignIndirect(Ty);
3227
3228 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3229 : ABIArgInfo::getDirect());
3230 }
3231
3232 return getNaturalAlignIndirect(Ty);
3233 }
3234
IsIllegalVectorType(QualType Ty) const3235 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3236 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3237 uint64_t Size = getContext().getTypeSize(VecTy);
3238 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3239 if (Size <= 64 || Size > LargestVector)
3240 return true;
3241 QualType EltTy = VecTy->getElementType();
3242 if (passInt128VectorsInMem() &&
3243 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3244 EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3245 return true;
3246 }
3247
3248 return false;
3249 }
3250
getIndirectResult(QualType Ty,unsigned freeIntRegs) const3251 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3252 unsigned freeIntRegs) const {
3253 // If this is a scalar LLVM value then assume LLVM will pass it in the right
3254 // place naturally.
3255 //
3256 // This assumption is optimistic, as there could be free registers available
3257 // when we need to pass this argument in memory, and LLVM could try to pass
3258 // the argument in the free register. This does not seem to happen currently,
3259 // but this code would be much safer if we could mark the argument with
3260 // 'onstack'. See PR12193.
3261 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3262 !Ty->isBitIntType()) {
3263 // Treat an enum type as its underlying type.
3264 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3265 Ty = EnumTy->getDecl()->getIntegerType();
3266
3267 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3268 : ABIArgInfo::getDirect());
3269 }
3270
3271 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3272 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3273
3274 // Compute the byval alignment. We specify the alignment of the byval in all
3275 // cases so that the mid-level optimizer knows the alignment of the byval.
3276 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3277
3278 // Attempt to avoid passing indirect results using byval when possible. This
3279 // is important for good codegen.
3280 //
3281 // We do this by coercing the value into a scalar type which the backend can
3282 // handle naturally (i.e., without using byval).
3283 //
3284 // For simplicity, we currently only do this when we have exhausted all of the
3285 // free integer registers. Doing this when there are free integer registers
3286 // would require more care, as we would have to ensure that the coerced value
3287 // did not claim the unused register. That would require either reording the
3288 // arguments to the function (so that any subsequent inreg values came first),
3289 // or only doing this optimization when there were no following arguments that
3290 // might be inreg.
3291 //
3292 // We currently expect it to be rare (particularly in well written code) for
3293 // arguments to be passed on the stack when there are still free integer
3294 // registers available (this would typically imply large structs being passed
3295 // by value), so this seems like a fair tradeoff for now.
3296 //
3297 // We can revisit this if the backend grows support for 'onstack' parameter
3298 // attributes. See PR12193.
3299 if (freeIntRegs == 0) {
3300 uint64_t Size = getContext().getTypeSize(Ty);
3301
3302 // If this type fits in an eightbyte, coerce it into the matching integral
3303 // type, which will end up on the stack (with alignment 8).
3304 if (Align == 8 && Size <= 64)
3305 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3306 Size));
3307 }
3308
3309 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3310 }
3311
3312 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3313 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const3314 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3315 // Wrapper structs/arrays that only contain vectors are passed just like
3316 // vectors; strip them off if present.
3317 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3318 Ty = QualType(InnerTy, 0);
3319
3320 llvm::Type *IRType = CGT.ConvertType(Ty);
3321 if (isa<llvm::VectorType>(IRType)) {
3322 // Don't pass vXi128 vectors in their native type, the backend can't
3323 // legalize them.
3324 if (passInt128VectorsInMem() &&
3325 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3326 // Use a vXi64 vector.
3327 uint64_t Size = getContext().getTypeSize(Ty);
3328 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3329 Size / 64);
3330 }
3331
3332 return IRType;
3333 }
3334
3335 if (IRType->getTypeID() == llvm::Type::FP128TyID)
3336 return IRType;
3337
3338 // We couldn't find the preferred IR vector type for 'Ty'.
3339 uint64_t Size = getContext().getTypeSize(Ty);
3340 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3341
3342
3343 // Return a LLVM IR vector type based on the size of 'Ty'.
3344 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3345 Size / 64);
3346 }
3347
3348 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3349 /// is known to either be off the end of the specified type or being in
3350 /// alignment padding. The user type specified is known to be at most 128 bits
3351 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3352 /// classification that put one of the two halves in the INTEGER class.
3353 ///
3354 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)3355 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3356 unsigned EndBit, ASTContext &Context) {
3357 // If the bytes being queried are off the end of the type, there is no user
3358 // data hiding here. This handles analysis of builtins, vectors and other
3359 // types that don't contain interesting padding.
3360 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3361 if (TySize <= StartBit)
3362 return true;
3363
3364 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3365 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3366 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3367
3368 // Check each element to see if the element overlaps with the queried range.
3369 for (unsigned i = 0; i != NumElts; ++i) {
3370 // If the element is after the span we care about, then we're done..
3371 unsigned EltOffset = i*EltSize;
3372 if (EltOffset >= EndBit) break;
3373
3374 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3375 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3376 EndBit-EltOffset, Context))
3377 return false;
3378 }
3379 // If it overlaps no elements, then it is safe to process as padding.
3380 return true;
3381 }
3382
3383 if (const RecordType *RT = Ty->getAs<RecordType>()) {
3384 const RecordDecl *RD = RT->getDecl();
3385 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3386
3387 // If this is a C++ record, check the bases first.
3388 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3389 for (const auto &I : CXXRD->bases()) {
3390 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3391 "Unexpected base class!");
3392 const auto *Base =
3393 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3394
3395 // If the base is after the span we care about, ignore it.
3396 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3397 if (BaseOffset >= EndBit) continue;
3398
3399 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3400 if (!BitsContainNoUserData(I.getType(), BaseStart,
3401 EndBit-BaseOffset, Context))
3402 return false;
3403 }
3404 }
3405
3406 // Verify that no field has data that overlaps the region of interest. Yes
3407 // this could be sped up a lot by being smarter about queried fields,
3408 // however we're only looking at structs up to 16 bytes, so we don't care
3409 // much.
3410 unsigned idx = 0;
3411 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3412 i != e; ++i, ++idx) {
3413 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3414
3415 // If we found a field after the region we care about, then we're done.
3416 if (FieldOffset >= EndBit) break;
3417
3418 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3419 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3420 Context))
3421 return false;
3422 }
3423
3424 // If nothing in this record overlapped the area of interest, then we're
3425 // clean.
3426 return true;
3427 }
3428
3429 return false;
3430 }
3431
3432 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
getFPTypeAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)3433 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3434 const llvm::DataLayout &TD) {
3435 if (IROffset == 0 && IRType->isFloatingPointTy())
3436 return IRType;
3437
3438 // If this is a struct, recurse into the field at the specified offset.
3439 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3440 if (!STy->getNumContainedTypes())
3441 return nullptr;
3442
3443 const llvm::StructLayout *SL = TD.getStructLayout(STy);
3444 unsigned Elt = SL->getElementContainingOffset(IROffset);
3445 IROffset -= SL->getElementOffset(Elt);
3446 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
3447 }
3448
3449 // If this is an array, recurse into the field at the specified offset.
3450 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3451 llvm::Type *EltTy = ATy->getElementType();
3452 unsigned EltSize = TD.getTypeAllocSize(EltTy);
3453 IROffset -= IROffset / EltSize * EltSize;
3454 return getFPTypeAtOffset(EltTy, IROffset, TD);
3455 }
3456
3457 return nullptr;
3458 }
3459
3460 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3461 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3462 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const3463 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3464 QualType SourceTy, unsigned SourceOffset) const {
3465 const llvm::DataLayout &TD = getDataLayout();
3466 unsigned SourceSize =
3467 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
3468 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
3469 if (!T0 || T0->isDoubleTy())
3470 return llvm::Type::getDoubleTy(getVMContext());
3471
3472 // Get the adjacent FP type.
3473 llvm::Type *T1 = nullptr;
3474 unsigned T0Size = TD.getTypeAllocSize(T0);
3475 if (SourceSize > T0Size)
3476 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
3477 if (T1 == nullptr) {
3478 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
3479 // to its alignment.
3480 if (T0->is16bitFPTy() && SourceSize > 4)
3481 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3482 // If we can't get a second FP type, return a simple half or float.
3483 // avx512fp16-abi.c:pr51813_2 shows it works to return float for
3484 // {float, i8} too.
3485 if (T1 == nullptr)
3486 return T0;
3487 }
3488
3489 if (T0->isFloatTy() && T1->isFloatTy())
3490 return llvm::FixedVectorType::get(T0, 2);
3491
3492 if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
3493 llvm::Type *T2 = nullptr;
3494 if (SourceSize > 4)
3495 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3496 if (T2 == nullptr)
3497 return llvm::FixedVectorType::get(T0, 2);
3498 return llvm::FixedVectorType::get(T0, 4);
3499 }
3500
3501 if (T0->is16bitFPTy() || T1->is16bitFPTy())
3502 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3503
3504 return llvm::Type::getDoubleTy(getVMContext());
3505 }
3506
3507
3508 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3509 /// an 8-byte GPR. This means that we either have a scalar or we are talking
3510 /// about the high or low part of an up-to-16-byte struct. This routine picks
3511 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3512 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3513 /// etc).
3514 ///
3515 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3516 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
3517 /// the 8-byte value references. PrefType may be null.
3518 ///
3519 /// SourceTy is the source-level type for the entire argument. SourceOffset is
3520 /// an offset into this that we're processing (which is always either 0 or 8).
3521 ///
3522 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const3523 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3524 QualType SourceTy, unsigned SourceOffset) const {
3525 // If we're dealing with an un-offset LLVM IR type, then it means that we're
3526 // returning an 8-byte unit starting with it. See if we can safely use it.
3527 if (IROffset == 0) {
3528 // Pointers and int64's always fill the 8-byte unit.
3529 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3530 IRType->isIntegerTy(64))
3531 return IRType;
3532
3533 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3534 // goodness in the source type is just tail padding. This is allowed to
3535 // kick in for struct {double,int} on the int, but not on
3536 // struct{double,int,int} because we wouldn't return the second int. We
3537 // have to do this analysis on the source type because we can't depend on
3538 // unions being lowered a specific way etc.
3539 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3540 IRType->isIntegerTy(32) ||
3541 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3542 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3543 cast<llvm::IntegerType>(IRType)->getBitWidth();
3544
3545 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3546 SourceOffset*8+64, getContext()))
3547 return IRType;
3548 }
3549 }
3550
3551 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3552 // If this is a struct, recurse into the field at the specified offset.
3553 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3554 if (IROffset < SL->getSizeInBytes()) {
3555 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3556 IROffset -= SL->getElementOffset(FieldIdx);
3557
3558 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3559 SourceTy, SourceOffset);
3560 }
3561 }
3562
3563 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3564 llvm::Type *EltTy = ATy->getElementType();
3565 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3566 unsigned EltOffset = IROffset/EltSize*EltSize;
3567 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3568 SourceOffset);
3569 }
3570
3571 // Okay, we don't have any better idea of what to pass, so we pass this in an
3572 // integer register that isn't too big to fit the rest of the struct.
3573 unsigned TySizeInBytes =
3574 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3575
3576 assert(TySizeInBytes != SourceOffset && "Empty field?");
3577
3578 // It is always safe to classify this as an integer type up to i64 that
3579 // isn't larger than the structure.
3580 return llvm::IntegerType::get(getVMContext(),
3581 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3582 }
3583
3584
3585 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3586 /// be used as elements of a two register pair to pass or return, return a
3587 /// first class aggregate to represent them. For example, if the low part of
3588 /// a by-value argument should be passed as i32* and the high part as float,
3589 /// return {i32*, float}.
3590 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)3591 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3592 const llvm::DataLayout &TD) {
3593 // In order to correctly satisfy the ABI, we need to the high part to start
3594 // at offset 8. If the high and low parts we inferred are both 4-byte types
3595 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3596 // the second element at offset 8. Check for this:
3597 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3598 unsigned HiAlign = TD.getABITypeAlignment(Hi);
3599 unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3600 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3601
3602 // To handle this, we have to increase the size of the low part so that the
3603 // second element will start at an 8 byte offset. We can't increase the size
3604 // of the second element because it might make us access off the end of the
3605 // struct.
3606 if (HiStart != 8) {
3607 // There are usually two sorts of types the ABI generation code can produce
3608 // for the low part of a pair that aren't 8 bytes in size: half, float or
3609 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
3610 // NaCl).
3611 // Promote these to a larger type.
3612 if (Lo->isHalfTy() || Lo->isFloatTy())
3613 Lo = llvm::Type::getDoubleTy(Lo->getContext());
3614 else {
3615 assert((Lo->isIntegerTy() || Lo->isPointerTy())
3616 && "Invalid/unknown lo type");
3617 Lo = llvm::Type::getInt64Ty(Lo->getContext());
3618 }
3619 }
3620
3621 llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3622
3623 // Verify that the second element is at an 8-byte offset.
3624 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3625 "Invalid x86-64 argument pair!");
3626 return Result;
3627 }
3628
3629 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const3630 classifyReturnType(QualType RetTy) const {
3631 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3632 // classification algorithm.
3633 X86_64ABIInfo::Class Lo, Hi;
3634 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3635
3636 // Check some invariants.
3637 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3638 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3639
3640 llvm::Type *ResType = nullptr;
3641 switch (Lo) {
3642 case NoClass:
3643 if (Hi == NoClass)
3644 return ABIArgInfo::getIgnore();
3645 // If the low part is just padding, it takes no register, leave ResType
3646 // null.
3647 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3648 "Unknown missing lo part");
3649 break;
3650
3651 case SSEUp:
3652 case X87Up:
3653 llvm_unreachable("Invalid classification for lo word.");
3654
3655 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3656 // hidden argument.
3657 case Memory:
3658 return getIndirectReturnResult(RetTy);
3659
3660 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3661 // available register of the sequence %rax, %rdx is used.
3662 case Integer:
3663 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3664
3665 // If we have a sign or zero extended integer, make sure to return Extend
3666 // so that the parameter gets the right LLVM IR attributes.
3667 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3668 // Treat an enum type as its underlying type.
3669 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3670 RetTy = EnumTy->getDecl()->getIntegerType();
3671
3672 if (RetTy->isIntegralOrEnumerationType() &&
3673 isPromotableIntegerTypeForABI(RetTy))
3674 return ABIArgInfo::getExtend(RetTy);
3675 }
3676 break;
3677
3678 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3679 // available SSE register of the sequence %xmm0, %xmm1 is used.
3680 case SSE:
3681 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3682 break;
3683
3684 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3685 // returned on the X87 stack in %st0 as 80-bit x87 number.
3686 case X87:
3687 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3688 break;
3689
3690 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3691 // part of the value is returned in %st0 and the imaginary part in
3692 // %st1.
3693 case ComplexX87:
3694 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3695 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3696 llvm::Type::getX86_FP80Ty(getVMContext()));
3697 break;
3698 }
3699
3700 llvm::Type *HighPart = nullptr;
3701 switch (Hi) {
3702 // Memory was handled previously and X87 should
3703 // never occur as a hi class.
3704 case Memory:
3705 case X87:
3706 llvm_unreachable("Invalid classification for hi word.");
3707
3708 case ComplexX87: // Previously handled.
3709 case NoClass:
3710 break;
3711
3712 case Integer:
3713 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3714 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
3715 return ABIArgInfo::getDirect(HighPart, 8);
3716 break;
3717 case SSE:
3718 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3719 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
3720 return ABIArgInfo::getDirect(HighPart, 8);
3721 break;
3722
3723 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3724 // is passed in the next available eightbyte chunk if the last used
3725 // vector register.
3726 //
3727 // SSEUP should always be preceded by SSE, just widen.
3728 case SSEUp:
3729 assert(Lo == SSE && "Unexpected SSEUp classification.");
3730 ResType = GetByteVectorType(RetTy);
3731 break;
3732
3733 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3734 // returned together with the previous X87 value in %st0.
3735 case X87Up:
3736 // If X87Up is preceded by X87, we don't need to do
3737 // anything. However, in some cases with unions it may not be
3738 // preceded by X87. In such situations we follow gcc and pass the
3739 // extra bits in an SSE reg.
3740 if (Lo != X87) {
3741 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3742 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
3743 return ABIArgInfo::getDirect(HighPart, 8);
3744 }
3745 break;
3746 }
3747
3748 // If a high part was specified, merge it together with the low part. It is
3749 // known to pass in the high eightbyte of the result. We do this by forming a
3750 // first class struct aggregate with the high and low part: {low, high}
3751 if (HighPart)
3752 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3753
3754 return ABIArgInfo::getDirect(ResType);
3755 }
3756
3757 ABIArgInfo
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg,bool IsRegCall) const3758 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
3759 unsigned &neededInt, unsigned &neededSSE,
3760 bool isNamedArg, bool IsRegCall) const {
3761 Ty = useFirstFieldIfTransparentUnion(Ty);
3762
3763 X86_64ABIInfo::Class Lo, Hi;
3764 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
3765
3766 // Check some invariants.
3767 // FIXME: Enforce these by construction.
3768 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3769 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3770
3771 neededInt = 0;
3772 neededSSE = 0;
3773 llvm::Type *ResType = nullptr;
3774 switch (Lo) {
3775 case NoClass:
3776 if (Hi == NoClass)
3777 return ABIArgInfo::getIgnore();
3778 // If the low part is just padding, it takes no register, leave ResType
3779 // null.
3780 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3781 "Unknown missing lo part");
3782 break;
3783
3784 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3785 // on the stack.
3786 case Memory:
3787
3788 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3789 // COMPLEX_X87, it is passed in memory.
3790 case X87:
3791 case ComplexX87:
3792 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3793 ++neededInt;
3794 return getIndirectResult(Ty, freeIntRegs);
3795
3796 case SSEUp:
3797 case X87Up:
3798 llvm_unreachable("Invalid classification for lo word.");
3799
3800 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3801 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3802 // and %r9 is used.
3803 case Integer:
3804 ++neededInt;
3805
3806 // Pick an 8-byte type based on the preferred type.
3807 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3808
3809 // If we have a sign or zero extended integer, make sure to return Extend
3810 // so that the parameter gets the right LLVM IR attributes.
3811 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3812 // Treat an enum type as its underlying type.
3813 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3814 Ty = EnumTy->getDecl()->getIntegerType();
3815
3816 if (Ty->isIntegralOrEnumerationType() &&
3817 isPromotableIntegerTypeForABI(Ty))
3818 return ABIArgInfo::getExtend(Ty);
3819 }
3820
3821 break;
3822
3823 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3824 // available SSE register is used, the registers are taken in the
3825 // order from %xmm0 to %xmm7.
3826 case SSE: {
3827 llvm::Type *IRType = CGT.ConvertType(Ty);
3828 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3829 ++neededSSE;
3830 break;
3831 }
3832 }
3833
3834 llvm::Type *HighPart = nullptr;
3835 switch (Hi) {
3836 // Memory was handled previously, ComplexX87 and X87 should
3837 // never occur as hi classes, and X87Up must be preceded by X87,
3838 // which is passed in memory.
3839 case Memory:
3840 case X87:
3841 case ComplexX87:
3842 llvm_unreachable("Invalid classification for hi word.");
3843
3844 case NoClass: break;
3845
3846 case Integer:
3847 ++neededInt;
3848 // Pick an 8-byte type based on the preferred type.
3849 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3850
3851 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
3852 return ABIArgInfo::getDirect(HighPart, 8);
3853 break;
3854
3855 // X87Up generally doesn't occur here (long double is passed in
3856 // memory), except in situations involving unions.
3857 case X87Up:
3858 case SSE:
3859 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3860
3861 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
3862 return ABIArgInfo::getDirect(HighPart, 8);
3863
3864 ++neededSSE;
3865 break;
3866
3867 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3868 // eightbyte is passed in the upper half of the last used SSE
3869 // register. This only happens when 128-bit vectors are passed.
3870 case SSEUp:
3871 assert(Lo == SSE && "Unexpected SSEUp classification");
3872 ResType = GetByteVectorType(Ty);
3873 break;
3874 }
3875
3876 // If a high part was specified, merge it together with the low part. It is
3877 // known to pass in the high eightbyte of the result. We do this by forming a
3878 // first class struct aggregate with the high and low part: {low, high}
3879 if (HighPart)
3880 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3881
3882 return ABIArgInfo::getDirect(ResType);
3883 }
3884
3885 ABIArgInfo
classifyRegCallStructTypeImpl(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE,unsigned & MaxVectorWidth) const3886 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3887 unsigned &NeededSSE,
3888 unsigned &MaxVectorWidth) const {
3889 auto RT = Ty->getAs<RecordType>();
3890 assert(RT && "classifyRegCallStructType only valid with struct types");
3891
3892 if (RT->getDecl()->hasFlexibleArrayMember())
3893 return getIndirectReturnResult(Ty);
3894
3895 // Sum up bases
3896 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3897 if (CXXRD->isDynamicClass()) {
3898 NeededInt = NeededSSE = 0;
3899 return getIndirectReturnResult(Ty);
3900 }
3901
3902 for (const auto &I : CXXRD->bases())
3903 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
3904 MaxVectorWidth)
3905 .isIndirect()) {
3906 NeededInt = NeededSSE = 0;
3907 return getIndirectReturnResult(Ty);
3908 }
3909 }
3910
3911 // Sum up members
3912 for (const auto *FD : RT->getDecl()->fields()) {
3913 QualType MTy = FD->getType();
3914 if (MTy->isRecordType() && !MTy->isUnionType()) {
3915 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
3916 MaxVectorWidth)
3917 .isIndirect()) {
3918 NeededInt = NeededSSE = 0;
3919 return getIndirectReturnResult(Ty);
3920 }
3921 } else {
3922 unsigned LocalNeededInt, LocalNeededSSE;
3923 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
3924 true, true)
3925 .isIndirect()) {
3926 NeededInt = NeededSSE = 0;
3927 return getIndirectReturnResult(Ty);
3928 }
3929 if (const auto *AT = getContext().getAsConstantArrayType(MTy))
3930 MTy = AT->getElementType();
3931 if (const auto *VT = MTy->getAs<VectorType>())
3932 if (getContext().getTypeSize(VT) > MaxVectorWidth)
3933 MaxVectorWidth = getContext().getTypeSize(VT);
3934 NeededInt += LocalNeededInt;
3935 NeededSSE += LocalNeededSSE;
3936 }
3937 }
3938
3939 return ABIArgInfo::getDirect();
3940 }
3941
3942 ABIArgInfo
classifyRegCallStructType(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE,unsigned & MaxVectorWidth) const3943 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
3944 unsigned &NeededSSE,
3945 unsigned &MaxVectorWidth) const {
3946
3947 NeededInt = 0;
3948 NeededSSE = 0;
3949 MaxVectorWidth = 0;
3950
3951 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
3952 MaxVectorWidth);
3953 }
3954
computeInfo(CGFunctionInfo & FI) const3955 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3956
3957 const unsigned CallingConv = FI.getCallingConvention();
3958 // It is possible to force Win64 calling convention on any x86_64 target by
3959 // using __attribute__((ms_abi)). In such case to correctly emit Win64
3960 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3961 if (CallingConv == llvm::CallingConv::Win64) {
3962 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3963 Win64ABIInfo.computeInfo(FI);
3964 return;
3965 }
3966
3967 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3968
3969 // Keep track of the number of assigned registers.
3970 unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3971 unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3972 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
3973
3974 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3975 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3976 !FI.getReturnType()->getTypePtr()->isUnionType()) {
3977 FI.getReturnInfo() = classifyRegCallStructType(
3978 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
3979 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3980 FreeIntRegs -= NeededInt;
3981 FreeSSERegs -= NeededSSE;
3982 } else {
3983 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3984 }
3985 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3986 getContext().getCanonicalType(FI.getReturnType()
3987 ->getAs<ComplexType>()
3988 ->getElementType()) ==
3989 getContext().LongDoubleTy)
3990 // Complex Long Double Type is passed in Memory when Regcall
3991 // calling convention is used.
3992 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3993 else
3994 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3995 }
3996
3997 // If the return value is indirect, then the hidden argument is consuming one
3998 // integer register.
3999 if (FI.getReturnInfo().isIndirect())
4000 --FreeIntRegs;
4001 else if (NeededSSE && MaxVectorWidth > 0)
4002 FI.setMaxVectorWidth(MaxVectorWidth);
4003
4004 // The chain argument effectively gives us another free register.
4005 if (FI.isChainCall())
4006 ++FreeIntRegs;
4007
4008 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
4009 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
4010 // get assigned (in left-to-right order) for passing as follows...
4011 unsigned ArgNo = 0;
4012 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4013 it != ie; ++it, ++ArgNo) {
4014 bool IsNamedArg = ArgNo < NumRequiredArgs;
4015
4016 if (IsRegCall && it->type->isStructureOrClassType())
4017 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
4018 MaxVectorWidth);
4019 else
4020 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
4021 NeededSSE, IsNamedArg);
4022
4023 // AMD64-ABI 3.2.3p3: If there are no registers available for any
4024 // eightbyte of an argument, the whole argument is passed on the
4025 // stack. If registers have already been assigned for some
4026 // eightbytes of such an argument, the assignments get reverted.
4027 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
4028 FreeIntRegs -= NeededInt;
4029 FreeSSERegs -= NeededSSE;
4030 if (MaxVectorWidth > FI.getMaxVectorWidth())
4031 FI.setMaxVectorWidth(MaxVectorWidth);
4032 } else {
4033 it->info = getIndirectResult(it->type, FreeIntRegs);
4034 }
4035 }
4036 }
4037
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)4038 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
4039 Address VAListAddr, QualType Ty) {
4040 Address overflow_arg_area_p =
4041 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4042 llvm::Value *overflow_arg_area =
4043 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4044
4045 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4046 // byte boundary if alignment needed by type exceeds 8 byte boundary.
4047 // It isn't stated explicitly in the standard, but in practice we use
4048 // alignment greater than 16 where necessary.
4049 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4050 if (Align > CharUnits::fromQuantity(8)) {
4051 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4052 Align);
4053 }
4054
4055 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4056 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4057 llvm::Value *Res =
4058 CGF.Builder.CreateBitCast(overflow_arg_area,
4059 llvm::PointerType::getUnqual(LTy));
4060
4061 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4062 // l->overflow_arg_area + sizeof(type).
4063 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4064 // an 8 byte boundary.
4065
4066 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4067 llvm::Value *Offset =
4068 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
4069 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4070 Offset, "overflow_arg_area.next");
4071 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4072
4073 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4074 return Address(Res, LTy, Align);
4075 }
4076
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4077 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4078 QualType Ty) const {
4079 // Assume that va_list type is correct; should be pointer to LLVM type:
4080 // struct {
4081 // i32 gp_offset;
4082 // i32 fp_offset;
4083 // i8* overflow_arg_area;
4084 // i8* reg_save_area;
4085 // };
4086 unsigned neededInt, neededSSE;
4087
4088 Ty = getContext().getCanonicalType(Ty);
4089 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4090 /*isNamedArg*/false);
4091
4092 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4093 // in the registers. If not go to step 7.
4094 if (!neededInt && !neededSSE)
4095 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4096
4097 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4098 // general purpose registers needed to pass type and num_fp to hold
4099 // the number of floating point registers needed.
4100
4101 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4102 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4103 // l->fp_offset > 304 - num_fp * 16 go to step 7.
4104 //
4105 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4106 // register save space).
4107
4108 llvm::Value *InRegs = nullptr;
4109 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4110 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4111 if (neededInt) {
4112 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4113 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4114 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4115 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4116 }
4117
4118 if (neededSSE) {
4119 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4120 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4121 llvm::Value *FitsInFP =
4122 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4123 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4124 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4125 }
4126
4127 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4128 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4129 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4130 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4131
4132 // Emit code to load the value if it was passed in registers.
4133
4134 CGF.EmitBlock(InRegBlock);
4135
4136 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4137 // an offset of l->gp_offset and/or l->fp_offset. This may require
4138 // copying to a temporary location in case the parameter is passed
4139 // in different register classes or requires an alignment greater
4140 // than 8 for general purpose registers and 16 for XMM registers.
4141 //
4142 // FIXME: This really results in shameful code when we end up needing to
4143 // collect arguments from different places; often what should result in a
4144 // simple assembling of a structure from scattered addresses has many more
4145 // loads than necessary. Can we clean this up?
4146 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4147 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4148 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4149
4150 Address RegAddr = Address::invalid();
4151 if (neededInt && neededSSE) {
4152 // FIXME: Cleanup.
4153 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4154 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4155 Address Tmp = CGF.CreateMemTemp(Ty);
4156 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4157 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4158 llvm::Type *TyLo = ST->getElementType(0);
4159 llvm::Type *TyHi = ST->getElementType(1);
4160 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4161 "Unexpected ABI info for mixed regs");
4162 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4163 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4164 llvm::Value *GPAddr =
4165 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4166 llvm::Value *FPAddr =
4167 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4168 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4169 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4170
4171 // Copy the first element.
4172 // FIXME: Our choice of alignment here and below is probably pessimistic.
4173 llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4174 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4175 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4176 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4177
4178 // Copy the second element.
4179 V = CGF.Builder.CreateAlignedLoad(
4180 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4181 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4182 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4183
4184 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4185 } else if (neededInt) {
4186 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4187 CGF.Int8Ty, CharUnits::fromQuantity(8));
4188 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4189
4190 // Copy to a temporary if necessary to ensure the appropriate alignment.
4191 auto TInfo = getContext().getTypeInfoInChars(Ty);
4192 uint64_t TySize = TInfo.Width.getQuantity();
4193 CharUnits TyAlign = TInfo.Align;
4194
4195 // Copy into a temporary if the type is more aligned than the
4196 // register save area.
4197 if (TyAlign.getQuantity() > 8) {
4198 Address Tmp = CGF.CreateMemTemp(Ty);
4199 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4200 RegAddr = Tmp;
4201 }
4202
4203 } else if (neededSSE == 1) {
4204 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4205 CGF.Int8Ty, CharUnits::fromQuantity(16));
4206 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4207 } else {
4208 assert(neededSSE == 2 && "Invalid number of needed registers!");
4209 // SSE registers are spaced 16 bytes apart in the register save
4210 // area, we need to collect the two eightbytes together.
4211 // The ABI isn't explicit about this, but it seems reasonable
4212 // to assume that the slots are 16-byte aligned, since the stack is
4213 // naturally 16-byte aligned and the prologue is expected to store
4214 // all the SSE registers to the RSA.
4215 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4216 fp_offset),
4217 CGF.Int8Ty, CharUnits::fromQuantity(16));
4218 Address RegAddrHi =
4219 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4220 CharUnits::fromQuantity(16));
4221 llvm::Type *ST = AI.canHaveCoerceToType()
4222 ? AI.getCoerceToType()
4223 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4224 llvm::Value *V;
4225 Address Tmp = CGF.CreateMemTemp(Ty);
4226 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4227 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4228 RegAddrLo, ST->getStructElementType(0)));
4229 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4230 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4231 RegAddrHi, ST->getStructElementType(1)));
4232 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4233
4234 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4235 }
4236
4237 // AMD64-ABI 3.5.7p5: Step 5. Set:
4238 // l->gp_offset = l->gp_offset + num_gp * 8
4239 // l->fp_offset = l->fp_offset + num_fp * 16.
4240 if (neededInt) {
4241 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4242 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4243 gp_offset_p);
4244 }
4245 if (neededSSE) {
4246 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4247 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4248 fp_offset_p);
4249 }
4250 CGF.EmitBranch(ContBlock);
4251
4252 // Emit code to load the value if it was passed in memory.
4253
4254 CGF.EmitBlock(InMemBlock);
4255 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4256
4257 // Return the appropriate result.
4258
4259 CGF.EmitBlock(ContBlock);
4260 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4261 "vaarg.addr");
4262 return ResAddr;
4263 }
4264
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4265 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4266 QualType Ty) const {
4267 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4268 // not 1, 2, 4, or 8 bytes, must be passed by reference."
4269 uint64_t Width = getContext().getTypeSize(Ty);
4270 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4271
4272 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4273 CGF.getContext().getTypeInfoInChars(Ty),
4274 CharUnits::fromQuantity(8),
4275 /*allowHigherAlign*/ false);
4276 }
4277
reclassifyHvaArgForVectorCall(QualType Ty,unsigned & FreeSSERegs,const ABIArgInfo & current) const4278 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4279 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const {
4280 const Type *Base = nullptr;
4281 uint64_t NumElts = 0;
4282
4283 if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4284 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4285 FreeSSERegs -= NumElts;
4286 return getDirectX86Hva();
4287 }
4288 return current;
4289 }
4290
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType,bool IsVectorCall,bool IsRegCall) const4291 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4292 bool IsReturnType, bool IsVectorCall,
4293 bool IsRegCall) const {
4294
4295 if (Ty->isVoidType())
4296 return ABIArgInfo::getIgnore();
4297
4298 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4299 Ty = EnumTy->getDecl()->getIntegerType();
4300
4301 TypeInfo Info = getContext().getTypeInfo(Ty);
4302 uint64_t Width = Info.Width;
4303 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4304
4305 const RecordType *RT = Ty->getAs<RecordType>();
4306 if (RT) {
4307 if (!IsReturnType) {
4308 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4309 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4310 }
4311
4312 if (RT->getDecl()->hasFlexibleArrayMember())
4313 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4314
4315 }
4316
4317 const Type *Base = nullptr;
4318 uint64_t NumElts = 0;
4319 // vectorcall adds the concept of a homogenous vector aggregate, similar to
4320 // other targets.
4321 if ((IsVectorCall || IsRegCall) &&
4322 isHomogeneousAggregate(Ty, Base, NumElts)) {
4323 if (IsRegCall) {
4324 if (FreeSSERegs >= NumElts) {
4325 FreeSSERegs -= NumElts;
4326 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4327 return ABIArgInfo::getDirect();
4328 return ABIArgInfo::getExpand();
4329 }
4330 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4331 } else if (IsVectorCall) {
4332 if (FreeSSERegs >= NumElts &&
4333 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4334 FreeSSERegs -= NumElts;
4335 return ABIArgInfo::getDirect();
4336 } else if (IsReturnType) {
4337 return ABIArgInfo::getExpand();
4338 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4339 // HVAs are delayed and reclassified in the 2nd step.
4340 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4341 }
4342 }
4343 }
4344
4345 if (Ty->isMemberPointerType()) {
4346 // If the member pointer is represented by an LLVM int or ptr, pass it
4347 // directly.
4348 llvm::Type *LLTy = CGT.ConvertType(Ty);
4349 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4350 return ABIArgInfo::getDirect();
4351 }
4352
4353 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4354 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4355 // not 1, 2, 4, or 8 bytes, must be passed by reference."
4356 if (Width > 64 || !llvm::isPowerOf2_64(Width))
4357 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4358
4359 // Otherwise, coerce it to a small integer.
4360 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4361 }
4362
4363 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4364 switch (BT->getKind()) {
4365 case BuiltinType::Bool:
4366 // Bool type is always extended to the ABI, other builtin types are not
4367 // extended.
4368 return ABIArgInfo::getExtend(Ty);
4369
4370 case BuiltinType::LongDouble:
4371 // Mingw64 GCC uses the old 80 bit extended precision floating point
4372 // unit. It passes them indirectly through memory.
4373 if (IsMingw64) {
4374 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4375 if (LDF == &llvm::APFloat::x87DoubleExtended())
4376 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4377 }
4378 break;
4379
4380 case BuiltinType::Int128:
4381 case BuiltinType::UInt128:
4382 // If it's a parameter type, the normal ABI rule is that arguments larger
4383 // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4384 // even though it isn't particularly efficient.
4385 if (!IsReturnType)
4386 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4387
4388 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4389 // Clang matches them for compatibility.
4390 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4391 llvm::Type::getInt64Ty(getVMContext()), 2));
4392
4393 default:
4394 break;
4395 }
4396 }
4397
4398 if (Ty->isBitIntType()) {
4399 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4400 // not 1, 2, 4, or 8 bytes, must be passed by reference."
4401 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
4402 // or 8 bytes anyway as long is it fits in them, so we don't have to check
4403 // the power of 2.
4404 if (Width <= 64)
4405 return ABIArgInfo::getDirect();
4406 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4407 }
4408
4409 return ABIArgInfo::getDirect();
4410 }
4411
computeInfo(CGFunctionInfo & FI) const4412 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4413 const unsigned CC = FI.getCallingConvention();
4414 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4415 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4416
4417 // If __attribute__((sysv_abi)) is in use, use the SysV argument
4418 // classification rules.
4419 if (CC == llvm::CallingConv::X86_64_SysV) {
4420 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4421 SysVABIInfo.computeInfo(FI);
4422 return;
4423 }
4424
4425 unsigned FreeSSERegs = 0;
4426 if (IsVectorCall) {
4427 // We can use up to 4 SSE return registers with vectorcall.
4428 FreeSSERegs = 4;
4429 } else if (IsRegCall) {
4430 // RegCall gives us 16 SSE registers.
4431 FreeSSERegs = 16;
4432 }
4433
4434 if (!getCXXABI().classifyReturnType(FI))
4435 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4436 IsVectorCall, IsRegCall);
4437
4438 if (IsVectorCall) {
4439 // We can use up to 6 SSE register parameters with vectorcall.
4440 FreeSSERegs = 6;
4441 } else if (IsRegCall) {
4442 // RegCall gives us 16 SSE registers, we can reuse the return registers.
4443 FreeSSERegs = 16;
4444 }
4445
4446 unsigned ArgNum = 0;
4447 unsigned ZeroSSERegs = 0;
4448 for (auto &I : FI.arguments()) {
4449 // Vectorcall in x64 only permits the first 6 arguments to be passed as
4450 // XMM/YMM registers. After the sixth argument, pretend no vector
4451 // registers are left.
4452 unsigned *MaybeFreeSSERegs =
4453 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4454 I.info =
4455 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4456 ++ArgNum;
4457 }
4458
4459 if (IsVectorCall) {
4460 // For vectorcall, assign aggregate HVAs to any free vector registers in a
4461 // second pass.
4462 for (auto &I : FI.arguments())
4463 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4464 }
4465 }
4466
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4467 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4468 QualType Ty) const {
4469 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4470 // not 1, 2, 4, or 8 bytes, must be passed by reference."
4471 uint64_t Width = getContext().getTypeSize(Ty);
4472 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4473
4474 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4475 CGF.getContext().getTypeInfoInChars(Ty),
4476 CharUnits::fromQuantity(8),
4477 /*allowHigherAlign*/ false);
4478 }
4479
PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address,bool Is64Bit,bool IsAIX)4480 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4481 llvm::Value *Address, bool Is64Bit,
4482 bool IsAIX) {
4483 // This is calculated from the LLVM and GCC tables and verified
4484 // against gcc output. AFAIK all PPC ABIs use the same encoding.
4485
4486 CodeGen::CGBuilderTy &Builder = CGF.Builder;
4487
4488 llvm::IntegerType *i8 = CGF.Int8Ty;
4489 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4490 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4491 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4492
4493 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4494 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4495
4496 // 32-63: fp0-31, the 8-byte floating-point registers
4497 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4498
4499 // 64-67 are various 4-byte or 8-byte special-purpose registers:
4500 // 64: mq
4501 // 65: lr
4502 // 66: ctr
4503 // 67: ap
4504 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4505
4506 // 68-76 are various 4-byte special-purpose registers:
4507 // 68-75 cr0-7
4508 // 76: xer
4509 AssignToArrayRange(Builder, Address, Four8, 68, 76);
4510
4511 // 77-108: v0-31, the 16-byte vector registers
4512 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4513
4514 // 109: vrsave
4515 // 110: vscr
4516 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4517
4518 // AIX does not utilize the rest of the registers.
4519 if (IsAIX)
4520 return false;
4521
4522 // 111: spe_acc
4523 // 112: spefscr
4524 // 113: sfp
4525 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4526
4527 if (!Is64Bit)
4528 return false;
4529
4530 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4531 // or above CPU.
4532 // 64-bit only registers:
4533 // 114: tfhar
4534 // 115: tfiar
4535 // 116: texasr
4536 AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4537
4538 return false;
4539 }
4540
4541 // AIX
4542 namespace {
4543 /// AIXABIInfo - The AIX XCOFF ABI information.
4544 class AIXABIInfo : public ABIInfo {
4545 const bool Is64Bit;
4546 const unsigned PtrByteSize;
4547 CharUnits getParamTypeAlignment(QualType Ty) const;
4548
4549 public:
AIXABIInfo(CodeGen::CodeGenTypes & CGT,bool Is64Bit)4550 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4551 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4552
4553 bool isPromotableTypeForABI(QualType Ty) const;
4554
4555 ABIArgInfo classifyReturnType(QualType RetTy) const;
4556 ABIArgInfo classifyArgumentType(QualType Ty) const;
4557
computeInfo(CGFunctionInfo & FI) const4558 void computeInfo(CGFunctionInfo &FI) const override {
4559 if (!getCXXABI().classifyReturnType(FI))
4560 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4561
4562 for (auto &I : FI.arguments())
4563 I.info = classifyArgumentType(I.type);
4564 }
4565
4566 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4567 QualType Ty) const override;
4568 };
4569
4570 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4571 const bool Is64Bit;
4572
4573 public:
AIXTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool Is64Bit)4574 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4575 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4576 Is64Bit(Is64Bit) {}
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4577 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4578 return 1; // r1 is the dedicated stack pointer
4579 }
4580
4581 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4582 llvm::Value *Address) const override;
4583 };
4584 } // namespace
4585
4586 // Return true if the ABI requires Ty to be passed sign- or zero-
4587 // extended to 32/64 bits.
isPromotableTypeForABI(QualType Ty) const4588 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4589 // Treat an enum type as its underlying type.
4590 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4591 Ty = EnumTy->getDecl()->getIntegerType();
4592
4593 // Promotable integer types are required to be promoted by the ABI.
4594 if (Ty->isPromotableIntegerType())
4595 return true;
4596
4597 if (!Is64Bit)
4598 return false;
4599
4600 // For 64 bit mode, in addition to the usual promotable integer types, we also
4601 // need to extend all 32-bit types, since the ABI requires promotion to 64
4602 // bits.
4603 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4604 switch (BT->getKind()) {
4605 case BuiltinType::Int:
4606 case BuiltinType::UInt:
4607 return true;
4608 default:
4609 break;
4610 }
4611
4612 return false;
4613 }
4614
classifyReturnType(QualType RetTy) const4615 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4616 if (RetTy->isAnyComplexType())
4617 return ABIArgInfo::getDirect();
4618
4619 if (RetTy->isVectorType())
4620 return ABIArgInfo::getDirect();
4621
4622 if (RetTy->isVoidType())
4623 return ABIArgInfo::getIgnore();
4624
4625 if (isAggregateTypeForABI(RetTy))
4626 return getNaturalAlignIndirect(RetTy);
4627
4628 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4629 : ABIArgInfo::getDirect());
4630 }
4631
classifyArgumentType(QualType Ty) const4632 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4633 Ty = useFirstFieldIfTransparentUnion(Ty);
4634
4635 if (Ty->isAnyComplexType())
4636 return ABIArgInfo::getDirect();
4637
4638 if (Ty->isVectorType())
4639 return ABIArgInfo::getDirect();
4640
4641 if (isAggregateTypeForABI(Ty)) {
4642 // Records with non-trivial destructors/copy-constructors should not be
4643 // passed by value.
4644 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4645 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4646
4647 CharUnits CCAlign = getParamTypeAlignment(Ty);
4648 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4649
4650 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4651 /*Realign*/ TyAlign > CCAlign);
4652 }
4653
4654 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4655 : ABIArgInfo::getDirect());
4656 }
4657
getParamTypeAlignment(QualType Ty) const4658 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4659 // Complex types are passed just like their elements.
4660 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4661 Ty = CTy->getElementType();
4662
4663 if (Ty->isVectorType())
4664 return CharUnits::fromQuantity(16);
4665
4666 // If the structure contains a vector type, the alignment is 16.
4667 if (isRecordWithSIMDVectorType(getContext(), Ty))
4668 return CharUnits::fromQuantity(16);
4669
4670 return CharUnits::fromQuantity(PtrByteSize);
4671 }
4672
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4673 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4674 QualType Ty) const {
4675
4676 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4677 TypeInfo.Align = getParamTypeAlignment(Ty);
4678
4679 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4680
4681 // If we have a complex type and the base type is smaller than the register
4682 // size, the ABI calls for the real and imaginary parts to be right-adjusted
4683 // in separate words in 32bit mode or doublewords in 64bit mode. However,
4684 // Clang expects us to produce a pointer to a structure with the two parts
4685 // packed tightly. So generate loads of the real and imaginary parts relative
4686 // to the va_list pointer, and store them to a temporary structure. We do the
4687 // same as the PPC64ABI here.
4688 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4689 CharUnits EltSize = TypeInfo.Width / 2;
4690 if (EltSize < SlotSize)
4691 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
4692 }
4693
4694 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4695 SlotSize, /*AllowHigher*/ true);
4696 }
4697
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4698 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4699 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4700 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4701 }
4702
4703 // PowerPC-32
4704 namespace {
4705 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4706 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4707 bool IsSoftFloatABI;
4708 bool IsRetSmallStructInRegABI;
4709
4710 CharUnits getParamTypeAlignment(QualType Ty) const;
4711
4712 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,bool SoftFloatABI,bool RetSmallStructInRegABI)4713 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4714 bool RetSmallStructInRegABI)
4715 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4716 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4717
4718 ABIArgInfo classifyReturnType(QualType RetTy) const;
4719
computeInfo(CGFunctionInfo & FI) const4720 void computeInfo(CGFunctionInfo &FI) const override {
4721 if (!getCXXABI().classifyReturnType(FI))
4722 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4723 for (auto &I : FI.arguments())
4724 I.info = classifyArgumentType(I.type);
4725 }
4726
4727 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4728 QualType Ty) const override;
4729 };
4730
4731 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4732 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT,bool SoftFloatABI,bool RetSmallStructInRegABI)4733 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4734 bool RetSmallStructInRegABI)
4735 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4736 CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4737
4738 static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4739 const CodeGenOptions &Opts);
4740
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4741 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4742 // This is recovered from gcc output.
4743 return 1; // r1 is the dedicated stack pointer
4744 }
4745
4746 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4747 llvm::Value *Address) const override;
4748 };
4749 }
4750
getParamTypeAlignment(QualType Ty) const4751 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4752 // Complex types are passed just like their elements.
4753 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4754 Ty = CTy->getElementType();
4755
4756 if (Ty->isVectorType())
4757 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4758 : 4);
4759
4760 // For single-element float/vector structs, we consider the whole type
4761 // to have the same alignment requirements as its single element.
4762 const Type *AlignTy = nullptr;
4763 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4764 const BuiltinType *BT = EltType->getAs<BuiltinType>();
4765 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4766 (BT && BT->isFloatingPoint()))
4767 AlignTy = EltType;
4768 }
4769
4770 if (AlignTy)
4771 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4772 return CharUnits::fromQuantity(4);
4773 }
4774
classifyReturnType(QualType RetTy) const4775 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4776 uint64_t Size;
4777
4778 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4779 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4780 (Size = getContext().getTypeSize(RetTy)) <= 64) {
4781 // System V ABI (1995), page 3-22, specified:
4782 // > A structure or union whose size is less than or equal to 8 bytes
4783 // > shall be returned in r3 and r4, as if it were first stored in the
4784 // > 8-byte aligned memory area and then the low addressed word were
4785 // > loaded into r3 and the high-addressed word into r4. Bits beyond
4786 // > the last member of the structure or union are not defined.
4787 //
4788 // GCC for big-endian PPC32 inserts the pad before the first member,
4789 // not "beyond the last member" of the struct. To stay compatible
4790 // with GCC, we coerce the struct to an integer of the same size.
4791 // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4792 if (Size == 0)
4793 return ABIArgInfo::getIgnore();
4794 else {
4795 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4796 return ABIArgInfo::getDirect(CoerceTy);
4797 }
4798 }
4799
4800 return DefaultABIInfo::classifyReturnType(RetTy);
4801 }
4802
4803 // TODO: this implementation is now likely redundant with
4804 // DefaultABIInfo::EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAList,QualType Ty) const4805 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4806 QualType Ty) const {
4807 if (getTarget().getTriple().isOSDarwin()) {
4808 auto TI = getContext().getTypeInfoInChars(Ty);
4809 TI.Align = getParamTypeAlignment(Ty);
4810
4811 CharUnits SlotSize = CharUnits::fromQuantity(4);
4812 return emitVoidPtrVAArg(CGF, VAList, Ty,
4813 classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4814 /*AllowHigherAlign=*/true);
4815 }
4816
4817 const unsigned OverflowLimit = 8;
4818 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4819 // TODO: Implement this. For now ignore.
4820 (void)CTy;
4821 return Address::invalid(); // FIXME?
4822 }
4823
4824 // struct __va_list_tag {
4825 // unsigned char gpr;
4826 // unsigned char fpr;
4827 // unsigned short reserved;
4828 // void *overflow_arg_area;
4829 // void *reg_save_area;
4830 // };
4831
4832 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4833 bool isInt = !Ty->isFloatingType();
4834 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4835
4836 // All aggregates are passed indirectly? That doesn't seem consistent
4837 // with the argument-lowering code.
4838 bool isIndirect = isAggregateTypeForABI(Ty);
4839
4840 CGBuilderTy &Builder = CGF.Builder;
4841
4842 // The calling convention either uses 1-2 GPRs or 1 FPR.
4843 Address NumRegsAddr = Address::invalid();
4844 if (isInt || IsSoftFloatABI) {
4845 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4846 } else {
4847 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4848 }
4849
4850 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4851
4852 // "Align" the register count when TY is i64.
4853 if (isI64 || (isF64 && IsSoftFloatABI)) {
4854 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4855 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4856 }
4857
4858 llvm::Value *CC =
4859 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4860
4861 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4862 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4863 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4864
4865 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4866
4867 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy;
4868 if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4869
4870 // Case 1: consume registers.
4871 Address RegAddr = Address::invalid();
4872 {
4873 CGF.EmitBlock(UsingRegs);
4874
4875 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4876 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty,
4877 CharUnits::fromQuantity(8));
4878 assert(RegAddr.getElementType() == CGF.Int8Ty);
4879
4880 // Floating-point registers start after the general-purpose registers.
4881 if (!(isInt || IsSoftFloatABI)) {
4882 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4883 CharUnits::fromQuantity(32));
4884 }
4885
4886 // Get the address of the saved value by scaling the number of
4887 // registers we've used by the number of
4888 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4889 llvm::Value *RegOffset =
4890 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4891 RegAddr = Address(
4892 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset),
4893 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4894 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4895
4896 // Increase the used-register count.
4897 NumRegs =
4898 Builder.CreateAdd(NumRegs,
4899 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4900 Builder.CreateStore(NumRegs, NumRegsAddr);
4901
4902 CGF.EmitBranch(Cont);
4903 }
4904
4905 // Case 2: consume space in the overflow area.
4906 Address MemAddr = Address::invalid();
4907 {
4908 CGF.EmitBlock(UsingOverflow);
4909
4910 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4911
4912 // Everything in the overflow area is rounded up to a size of at least 4.
4913 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4914
4915 CharUnits Size;
4916 if (!isIndirect) {
4917 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4918 Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4919 } else {
4920 Size = CGF.getPointerSize();
4921 }
4922
4923 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4924 Address OverflowArea =
4925 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty,
4926 OverflowAreaAlign);
4927 // Round up address of argument to alignment
4928 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4929 if (Align > OverflowAreaAlign) {
4930 llvm::Value *Ptr = OverflowArea.getPointer();
4931 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4932 OverflowArea.getElementType(), Align);
4933 }
4934
4935 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4936
4937 // Increase the overflow area.
4938 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4939 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4940 CGF.EmitBranch(Cont);
4941 }
4942
4943 CGF.EmitBlock(Cont);
4944
4945 // Merge the cases with a phi.
4946 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4947 "vaarg.addr");
4948
4949 // Load the pointer if the argument was passed indirectly.
4950 if (isIndirect) {
4951 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy,
4952 getContext().getTypeAlignInChars(Ty));
4953 }
4954
4955 return Result;
4956 }
4957
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)4958 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4959 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4960 assert(Triple.isPPC32());
4961
4962 switch (Opts.getStructReturnConvention()) {
4963 case CodeGenOptions::SRCK_Default:
4964 break;
4965 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4966 return false;
4967 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4968 return true;
4969 }
4970
4971 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4972 return true;
4973
4974 return false;
4975 }
4976
4977 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4978 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4979 llvm::Value *Address) const {
4980 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4981 /*IsAIX*/ false);
4982 }
4983
4984 // PowerPC-64
4985
4986 namespace {
4987 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4988 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4989 public:
4990 enum ABIKind {
4991 ELFv1 = 0,
4992 ELFv2
4993 };
4994
4995 private:
4996 static const unsigned GPRBits = 64;
4997 ABIKind Kind;
4998 bool IsSoftFloatABI;
4999
5000 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool SoftFloatABI)5001 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
5002 bool SoftFloatABI)
5003 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
5004
5005 bool isPromotableTypeForABI(QualType Ty) const;
5006 CharUnits getParamTypeAlignment(QualType Ty) const;
5007
5008 ABIArgInfo classifyReturnType(QualType RetTy) const;
5009 ABIArgInfo classifyArgumentType(QualType Ty) const;
5010
5011 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5012 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5013 uint64_t Members) const override;
5014
5015 // TODO: We can add more logic to computeInfo to improve performance.
5016 // Example: For aggregate arguments that fit in a register, we could
5017 // use getDirectInReg (as is done below for structs containing a single
5018 // floating-point value) to avoid pushing them to memory on function
5019 // entry. This would require changing the logic in PPCISelLowering
5020 // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const5021 void computeInfo(CGFunctionInfo &FI) const override {
5022 if (!getCXXABI().classifyReturnType(FI))
5023 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5024 for (auto &I : FI.arguments()) {
5025 // We rely on the default argument classification for the most part.
5026 // One exception: An aggregate containing a single floating-point
5027 // or vector item must be passed in a register if one is available.
5028 const Type *T = isSingleElementStruct(I.type, getContext());
5029 if (T) {
5030 const BuiltinType *BT = T->getAs<BuiltinType>();
5031 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
5032 (BT && BT->isFloatingPoint())) {
5033 QualType QT(T, 0);
5034 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
5035 continue;
5036 }
5037 }
5038 I.info = classifyArgumentType(I.type);
5039 }
5040 }
5041
5042 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5043 QualType Ty) const override;
5044
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const5045 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5046 bool asReturnValue) const override {
5047 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5048 }
5049
isSwiftErrorInRegister() const5050 bool isSwiftErrorInRegister() const override {
5051 return false;
5052 }
5053 };
5054
5055 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5056
5057 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool SoftFloatABI)5058 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5059 PPC64_SVR4_ABIInfo::ABIKind Kind,
5060 bool SoftFloatABI)
5061 : TargetCodeGenInfo(
5062 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5063
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5064 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5065 // This is recovered from gcc output.
5066 return 1; // r1 is the dedicated stack pointer
5067 }
5068
5069 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5070 llvm::Value *Address) const override;
5071 };
5072
5073 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5074 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)5075 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5076
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5077 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5078 // This is recovered from gcc output.
5079 return 1; // r1 is the dedicated stack pointer
5080 }
5081
5082 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5083 llvm::Value *Address) const override;
5084 };
5085
5086 }
5087
5088 // Return true if the ABI requires Ty to be passed sign- or zero-
5089 // extended to 64 bits.
5090 bool
isPromotableTypeForABI(QualType Ty) const5091 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5092 // Treat an enum type as its underlying type.
5093 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5094 Ty = EnumTy->getDecl()->getIntegerType();
5095
5096 // Promotable integer types are required to be promoted by the ABI.
5097 if (isPromotableIntegerTypeForABI(Ty))
5098 return true;
5099
5100 // In addition to the usual promotable integer types, we also need to
5101 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5102 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5103 switch (BT->getKind()) {
5104 case BuiltinType::Int:
5105 case BuiltinType::UInt:
5106 return true;
5107 default:
5108 break;
5109 }
5110
5111 if (const auto *EIT = Ty->getAs<BitIntType>())
5112 if (EIT->getNumBits() < 64)
5113 return true;
5114
5115 return false;
5116 }
5117
5118 /// isAlignedParamType - Determine whether a type requires 16-byte or
5119 /// higher alignment in the parameter area. Always returns at least 8.
getParamTypeAlignment(QualType Ty) const5120 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5121 // Complex types are passed just like their elements.
5122 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5123 Ty = CTy->getElementType();
5124
5125 auto FloatUsesVector = [this](QualType Ty){
5126 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics(
5127 Ty) == &llvm::APFloat::IEEEquad();
5128 };
5129
5130 // Only vector types of size 16 bytes need alignment (larger types are
5131 // passed via reference, smaller types are not aligned).
5132 if (Ty->isVectorType()) {
5133 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5134 } else if (FloatUsesVector(Ty)) {
5135 // According to ABI document section 'Optional Save Areas': If extended
5136 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5137 // format are supported, map them to a single quadword, quadword aligned.
5138 return CharUnits::fromQuantity(16);
5139 }
5140
5141 // For single-element float/vector structs, we consider the whole type
5142 // to have the same alignment requirements as its single element.
5143 const Type *AlignAsType = nullptr;
5144 const Type *EltType = isSingleElementStruct(Ty, getContext());
5145 if (EltType) {
5146 const BuiltinType *BT = EltType->getAs<BuiltinType>();
5147 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5148 (BT && BT->isFloatingPoint()))
5149 AlignAsType = EltType;
5150 }
5151
5152 // Likewise for ELFv2 homogeneous aggregates.
5153 const Type *Base = nullptr;
5154 uint64_t Members = 0;
5155 if (!AlignAsType && Kind == ELFv2 &&
5156 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5157 AlignAsType = Base;
5158
5159 // With special case aggregates, only vector base types need alignment.
5160 if (AlignAsType) {
5161 bool UsesVector = AlignAsType->isVectorType() ||
5162 FloatUsesVector(QualType(AlignAsType, 0));
5163 return CharUnits::fromQuantity(UsesVector ? 16 : 8);
5164 }
5165
5166 // Otherwise, we only need alignment for any aggregate type that
5167 // has an alignment requirement of >= 16 bytes.
5168 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5169 return CharUnits::fromQuantity(16);
5170 }
5171
5172 return CharUnits::fromQuantity(8);
5173 }
5174
5175 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5176 /// aggregate. Base is set to the base element type, and Members is set
5177 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const5178 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5179 uint64_t &Members) const {
5180 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5181 uint64_t NElements = AT->getSize().getZExtValue();
5182 if (NElements == 0)
5183 return false;
5184 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5185 return false;
5186 Members *= NElements;
5187 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5188 const RecordDecl *RD = RT->getDecl();
5189 if (RD->hasFlexibleArrayMember())
5190 return false;
5191
5192 Members = 0;
5193
5194 // If this is a C++ record, check the properties of the record such as
5195 // bases and ABI specific restrictions
5196 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5197 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5198 return false;
5199
5200 for (const auto &I : CXXRD->bases()) {
5201 // Ignore empty records.
5202 if (isEmptyRecord(getContext(), I.getType(), true))
5203 continue;
5204
5205 uint64_t FldMembers;
5206 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5207 return false;
5208
5209 Members += FldMembers;
5210 }
5211 }
5212
5213 for (const auto *FD : RD->fields()) {
5214 // Ignore (non-zero arrays of) empty records.
5215 QualType FT = FD->getType();
5216 while (const ConstantArrayType *AT =
5217 getContext().getAsConstantArrayType(FT)) {
5218 if (AT->getSize().getZExtValue() == 0)
5219 return false;
5220 FT = AT->getElementType();
5221 }
5222 if (isEmptyRecord(getContext(), FT, true))
5223 continue;
5224
5225 if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
5226 FD->isZeroLengthBitField(getContext()))
5227 continue;
5228
5229 uint64_t FldMembers;
5230 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5231 return false;
5232
5233 Members = (RD->isUnion() ?
5234 std::max(Members, FldMembers) : Members + FldMembers);
5235 }
5236
5237 if (!Base)
5238 return false;
5239
5240 // Ensure there is no padding.
5241 if (getContext().getTypeSize(Base) * Members !=
5242 getContext().getTypeSize(Ty))
5243 return false;
5244 } else {
5245 Members = 1;
5246 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5247 Members = 2;
5248 Ty = CT->getElementType();
5249 }
5250
5251 // Most ABIs only support float, double, and some vector type widths.
5252 if (!isHomogeneousAggregateBaseType(Ty))
5253 return false;
5254
5255 // The base type must be the same for all members. Types that
5256 // agree in both total size and mode (float vs. vector) are
5257 // treated as being equivalent here.
5258 const Type *TyPtr = Ty.getTypePtr();
5259 if (!Base) {
5260 Base = TyPtr;
5261 // If it's a non-power-of-2 vector, its size is already a power-of-2,
5262 // so make sure to widen it explicitly.
5263 if (const VectorType *VT = Base->getAs<VectorType>()) {
5264 QualType EltTy = VT->getElementType();
5265 unsigned NumElements =
5266 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5267 Base = getContext()
5268 .getVectorType(EltTy, NumElements, VT->getVectorKind())
5269 .getTypePtr();
5270 }
5271 }
5272
5273 if (Base->isVectorType() != TyPtr->isVectorType() ||
5274 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5275 return false;
5276 }
5277 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5278 }
5279
isHomogeneousAggregateBaseType(QualType Ty) const5280 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5281 // Homogeneous aggregates for ELFv2 must have base types of float,
5282 // double, long double, or 128-bit vectors.
5283 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5284 if (BT->getKind() == BuiltinType::Float ||
5285 BT->getKind() == BuiltinType::Double ||
5286 BT->getKind() == BuiltinType::LongDouble ||
5287 BT->getKind() == BuiltinType::Ibm128 ||
5288 (getContext().getTargetInfo().hasFloat128Type() &&
5289 (BT->getKind() == BuiltinType::Float128))) {
5290 if (IsSoftFloatABI)
5291 return false;
5292 return true;
5293 }
5294 }
5295 if (const VectorType *VT = Ty->getAs<VectorType>()) {
5296 if (getContext().getTypeSize(VT) == 128)
5297 return true;
5298 }
5299 return false;
5300 }
5301
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5302 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5303 const Type *Base, uint64_t Members) const {
5304 // Vector and fp128 types require one register, other floating point types
5305 // require one or two registers depending on their size.
5306 uint32_t NumRegs =
5307 ((getContext().getTargetInfo().hasFloat128Type() &&
5308 Base->isFloat128Type()) ||
5309 Base->isVectorType()) ? 1
5310 : (getContext().getTypeSize(Base) + 63) / 64;
5311
5312 // Homogeneous Aggregates may occupy at most 8 registers.
5313 return Members * NumRegs <= 8;
5314 }
5315
5316 ABIArgInfo
classifyArgumentType(QualType Ty) const5317 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5318 Ty = useFirstFieldIfTransparentUnion(Ty);
5319
5320 if (Ty->isAnyComplexType())
5321 return ABIArgInfo::getDirect();
5322
5323 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5324 // or via reference (larger than 16 bytes).
5325 if (Ty->isVectorType()) {
5326 uint64_t Size = getContext().getTypeSize(Ty);
5327 if (Size > 128)
5328 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5329 else if (Size < 128) {
5330 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5331 return ABIArgInfo::getDirect(CoerceTy);
5332 }
5333 }
5334
5335 if (const auto *EIT = Ty->getAs<BitIntType>())
5336 if (EIT->getNumBits() > 128)
5337 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5338
5339 if (isAggregateTypeForABI(Ty)) {
5340 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5341 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5342
5343 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5344 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5345
5346 // ELFv2 homogeneous aggregates are passed as array types.
5347 const Type *Base = nullptr;
5348 uint64_t Members = 0;
5349 if (Kind == ELFv2 &&
5350 isHomogeneousAggregate(Ty, Base, Members)) {
5351 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5352 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5353 return ABIArgInfo::getDirect(CoerceTy);
5354 }
5355
5356 // If an aggregate may end up fully in registers, we do not
5357 // use the ByVal method, but pass the aggregate as array.
5358 // This is usually beneficial since we avoid forcing the
5359 // back-end to store the argument to memory.
5360 uint64_t Bits = getContext().getTypeSize(Ty);
5361 if (Bits > 0 && Bits <= 8 * GPRBits) {
5362 llvm::Type *CoerceTy;
5363
5364 // Types up to 8 bytes are passed as integer type (which will be
5365 // properly aligned in the argument save area doubleword).
5366 if (Bits <= GPRBits)
5367 CoerceTy =
5368 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5369 // Larger types are passed as arrays, with the base type selected
5370 // according to the required alignment in the save area.
5371 else {
5372 uint64_t RegBits = ABIAlign * 8;
5373 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5374 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5375 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5376 }
5377
5378 return ABIArgInfo::getDirect(CoerceTy);
5379 }
5380
5381 // All other aggregates are passed ByVal.
5382 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5383 /*ByVal=*/true,
5384 /*Realign=*/TyAlign > ABIAlign);
5385 }
5386
5387 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5388 : ABIArgInfo::getDirect());
5389 }
5390
5391 ABIArgInfo
classifyReturnType(QualType RetTy) const5392 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5393 if (RetTy->isVoidType())
5394 return ABIArgInfo::getIgnore();
5395
5396 if (RetTy->isAnyComplexType())
5397 return ABIArgInfo::getDirect();
5398
5399 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5400 // or via reference (larger than 16 bytes).
5401 if (RetTy->isVectorType()) {
5402 uint64_t Size = getContext().getTypeSize(RetTy);
5403 if (Size > 128)
5404 return getNaturalAlignIndirect(RetTy);
5405 else if (Size < 128) {
5406 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5407 return ABIArgInfo::getDirect(CoerceTy);
5408 }
5409 }
5410
5411 if (const auto *EIT = RetTy->getAs<BitIntType>())
5412 if (EIT->getNumBits() > 128)
5413 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5414
5415 if (isAggregateTypeForABI(RetTy)) {
5416 // ELFv2 homogeneous aggregates are returned as array types.
5417 const Type *Base = nullptr;
5418 uint64_t Members = 0;
5419 if (Kind == ELFv2 &&
5420 isHomogeneousAggregate(RetTy, Base, Members)) {
5421 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5422 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5423 return ABIArgInfo::getDirect(CoerceTy);
5424 }
5425
5426 // ELFv2 small aggregates are returned in up to two registers.
5427 uint64_t Bits = getContext().getTypeSize(RetTy);
5428 if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5429 if (Bits == 0)
5430 return ABIArgInfo::getIgnore();
5431
5432 llvm::Type *CoerceTy;
5433 if (Bits > GPRBits) {
5434 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5435 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5436 } else
5437 CoerceTy =
5438 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5439 return ABIArgInfo::getDirect(CoerceTy);
5440 }
5441
5442 // All other aggregates are returned indirectly.
5443 return getNaturalAlignIndirect(RetTy);
5444 }
5445
5446 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5447 : ABIArgInfo::getDirect());
5448 }
5449
5450 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5451 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5452 QualType Ty) const {
5453 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5454 TypeInfo.Align = getParamTypeAlignment(Ty);
5455
5456 CharUnits SlotSize = CharUnits::fromQuantity(8);
5457
5458 // If we have a complex type and the base type is smaller than 8 bytes,
5459 // the ABI calls for the real and imaginary parts to be right-adjusted
5460 // in separate doublewords. However, Clang expects us to produce a
5461 // pointer to a structure with the two parts packed tightly. So generate
5462 // loads of the real and imaginary parts relative to the va_list pointer,
5463 // and store them to a temporary structure.
5464 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5465 CharUnits EltSize = TypeInfo.Width / 2;
5466 if (EltSize < SlotSize)
5467 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
5468 }
5469
5470 // Otherwise, just use the general rule.
5471 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5472 TypeInfo, SlotSize, /*AllowHigher*/ true);
5473 }
5474
5475 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5476 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5477 CodeGen::CodeGenFunction &CGF,
5478 llvm::Value *Address) const {
5479 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5480 /*IsAIX*/ false);
5481 }
5482
5483 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5484 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5485 llvm::Value *Address) const {
5486 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5487 /*IsAIX*/ false);
5488 }
5489
5490 //===----------------------------------------------------------------------===//
5491 // AArch64 ABI Implementation
5492 //===----------------------------------------------------------------------===//
5493
5494 namespace {
5495
5496 class AArch64ABIInfo : public SwiftABIInfo {
5497 public:
5498 enum ABIKind {
5499 AAPCS = 0,
5500 DarwinPCS,
5501 Win64
5502 };
5503
5504 private:
5505 ABIKind Kind;
5506
5507 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)5508 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5509 : SwiftABIInfo(CGT), Kind(Kind) {}
5510
5511 private:
getABIKind() const5512 ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const5513 bool isDarwinPCS() const { return Kind == DarwinPCS; }
5514
5515 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5516 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5517 unsigned CallingConvention) const;
5518 ABIArgInfo coerceIllegalVector(QualType Ty) const;
5519 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5520 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5521 uint64_t Members) const override;
5522 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
5523
5524 bool isIllegalVectorType(QualType Ty) const;
5525
computeInfo(CGFunctionInfo & FI) const5526 void computeInfo(CGFunctionInfo &FI) const override {
5527 if (!::classifyReturnType(getCXXABI(), FI, *this))
5528 FI.getReturnInfo() =
5529 classifyReturnType(FI.getReturnType(), FI.isVariadic());
5530
5531 for (auto &it : FI.arguments())
5532 it.info = classifyArgumentType(it.type, FI.isVariadic(),
5533 FI.getCallingConvention());
5534 }
5535
5536 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5537 CodeGenFunction &CGF) const;
5538
5539 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5540 CodeGenFunction &CGF) const;
5541
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5542 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5543 QualType Ty) const override {
5544 llvm::Type *BaseTy = CGF.ConvertType(Ty);
5545 if (isa<llvm::ScalableVectorType>(BaseTy))
5546 llvm::report_fatal_error("Passing SVE types to variadic functions is "
5547 "currently not supported");
5548
5549 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5550 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5551 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5552 }
5553
5554 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5555 QualType Ty) const override;
5556
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const5557 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5558 bool asReturnValue) const override {
5559 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5560 }
isSwiftErrorInRegister() const5561 bool isSwiftErrorInRegister() const override {
5562 return true;
5563 }
5564
5565 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5566 unsigned elts) const override;
5567
allowBFloatArgsAndRet() const5568 bool allowBFloatArgsAndRet() const override {
5569 return getTarget().hasBFloat16Type();
5570 }
5571 };
5572
5573 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5574 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)5575 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5576 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5577
getARCRetainAutoreleasedReturnValueMarker() const5578 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5579 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5580 }
5581
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5582 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5583 return 31;
5584 }
5585
doesReturnSlotInterfereWithArgs() const5586 bool doesReturnSlotInterfereWithArgs() const override { return false; }
5587
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5588 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5589 CodeGen::CodeGenModule &CGM) const override {
5590 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5591 if (!FD)
5592 return;
5593
5594 const auto *TA = FD->getAttr<TargetAttr>();
5595 if (TA == nullptr)
5596 return;
5597
5598 ParsedTargetAttr Attr = TA->parse();
5599 if (Attr.BranchProtection.empty())
5600 return;
5601
5602 TargetInfo::BranchProtectionInfo BPI;
5603 StringRef Error;
5604 (void)CGM.getTarget().validateBranchProtection(
5605 Attr.BranchProtection, Attr.Architecture, BPI, Error);
5606 assert(Error.empty());
5607
5608 auto *Fn = cast<llvm::Function>(GV);
5609 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5610 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5611
5612 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5613 Fn->addFnAttr("sign-return-address-key",
5614 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5615 ? "a_key"
5616 : "b_key");
5617 }
5618
5619 Fn->addFnAttr("branch-target-enforcement",
5620 BPI.BranchTargetEnforcement ? "true" : "false");
5621 }
5622
isScalarizableAsmOperand(CodeGen::CodeGenFunction & CGF,llvm::Type * Ty) const5623 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5624 llvm::Type *Ty) const override {
5625 if (CGF.getTarget().hasFeature("ls64")) {
5626 auto *ST = dyn_cast<llvm::StructType>(Ty);
5627 if (ST && ST->getNumElements() == 1) {
5628 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5629 if (AT && AT->getNumElements() == 8 &&
5630 AT->getElementType()->isIntegerTy(64))
5631 return true;
5632 }
5633 }
5634 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5635 }
5636 };
5637
5638 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5639 public:
WindowsAArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind K)5640 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5641 : AArch64TargetCodeGenInfo(CGT, K) {}
5642
5643 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5644 CodeGen::CodeGenModule &CGM) const override;
5645
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const5646 void getDependentLibraryOption(llvm::StringRef Lib,
5647 llvm::SmallString<24> &Opt) const override {
5648 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5649 }
5650
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const5651 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5652 llvm::SmallString<32> &Opt) const override {
5653 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5654 }
5655 };
5656
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5657 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5658 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5659 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5660 if (GV->isDeclaration())
5661 return;
5662 addStackProbeTargetAttributes(D, GV, CGM);
5663 }
5664 }
5665
coerceIllegalVector(QualType Ty) const5666 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5667 assert(Ty->isVectorType() && "expected vector type!");
5668
5669 const auto *VT = Ty->castAs<VectorType>();
5670 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5671 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5672 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5673 BuiltinType::UChar &&
5674 "unexpected builtin type for SVE predicate!");
5675 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5676 llvm::Type::getInt1Ty(getVMContext()), 16));
5677 }
5678
5679 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5680 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5681
5682 const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5683 llvm::ScalableVectorType *ResType = nullptr;
5684 switch (BT->getKind()) {
5685 default:
5686 llvm_unreachable("unexpected builtin type for SVE vector!");
5687 case BuiltinType::SChar:
5688 case BuiltinType::UChar:
5689 ResType = llvm::ScalableVectorType::get(
5690 llvm::Type::getInt8Ty(getVMContext()), 16);
5691 break;
5692 case BuiltinType::Short:
5693 case BuiltinType::UShort:
5694 ResType = llvm::ScalableVectorType::get(
5695 llvm::Type::getInt16Ty(getVMContext()), 8);
5696 break;
5697 case BuiltinType::Int:
5698 case BuiltinType::UInt:
5699 ResType = llvm::ScalableVectorType::get(
5700 llvm::Type::getInt32Ty(getVMContext()), 4);
5701 break;
5702 case BuiltinType::Long:
5703 case BuiltinType::ULong:
5704 ResType = llvm::ScalableVectorType::get(
5705 llvm::Type::getInt64Ty(getVMContext()), 2);
5706 break;
5707 case BuiltinType::Half:
5708 ResType = llvm::ScalableVectorType::get(
5709 llvm::Type::getHalfTy(getVMContext()), 8);
5710 break;
5711 case BuiltinType::Float:
5712 ResType = llvm::ScalableVectorType::get(
5713 llvm::Type::getFloatTy(getVMContext()), 4);
5714 break;
5715 case BuiltinType::Double:
5716 ResType = llvm::ScalableVectorType::get(
5717 llvm::Type::getDoubleTy(getVMContext()), 2);
5718 break;
5719 case BuiltinType::BFloat16:
5720 ResType = llvm::ScalableVectorType::get(
5721 llvm::Type::getBFloatTy(getVMContext()), 8);
5722 break;
5723 }
5724 return ABIArgInfo::getDirect(ResType);
5725 }
5726
5727 uint64_t Size = getContext().getTypeSize(Ty);
5728 // Android promotes <2 x i8> to i16, not i32
5729 if (isAndroid() && (Size <= 16)) {
5730 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5731 return ABIArgInfo::getDirect(ResType);
5732 }
5733 if (Size <= 32) {
5734 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5735 return ABIArgInfo::getDirect(ResType);
5736 }
5737 if (Size == 64) {
5738 auto *ResType =
5739 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5740 return ABIArgInfo::getDirect(ResType);
5741 }
5742 if (Size == 128) {
5743 auto *ResType =
5744 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5745 return ABIArgInfo::getDirect(ResType);
5746 }
5747 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5748 }
5749
5750 ABIArgInfo
classifyArgumentType(QualType Ty,bool IsVariadic,unsigned CallingConvention) const5751 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5752 unsigned CallingConvention) const {
5753 Ty = useFirstFieldIfTransparentUnion(Ty);
5754
5755 // Handle illegal vector types here.
5756 if (isIllegalVectorType(Ty))
5757 return coerceIllegalVector(Ty);
5758
5759 if (!isAggregateTypeForABI(Ty)) {
5760 // Treat an enum type as its underlying type.
5761 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5762 Ty = EnumTy->getDecl()->getIntegerType();
5763
5764 if (const auto *EIT = Ty->getAs<BitIntType>())
5765 if (EIT->getNumBits() > 128)
5766 return getNaturalAlignIndirect(Ty);
5767
5768 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5769 ? ABIArgInfo::getExtend(Ty)
5770 : ABIArgInfo::getDirect());
5771 }
5772
5773 // Structures with either a non-trivial destructor or a non-trivial
5774 // copy constructor are always indirect.
5775 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5776 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5777 CGCXXABI::RAA_DirectInMemory);
5778 }
5779
5780 // Empty records are always ignored on Darwin, but actually passed in C++ mode
5781 // elsewhere for GNU compatibility.
5782 uint64_t Size = getContext().getTypeSize(Ty);
5783 bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5784 if (IsEmpty || Size == 0) {
5785 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5786 return ABIArgInfo::getIgnore();
5787
5788 // GNU C mode. The only argument that gets ignored is an empty one with size
5789 // 0.
5790 if (IsEmpty && Size == 0)
5791 return ABIArgInfo::getIgnore();
5792 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5793 }
5794
5795 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5796 const Type *Base = nullptr;
5797 uint64_t Members = 0;
5798 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5799 bool IsWinVariadic = IsWin64 && IsVariadic;
5800 // In variadic functions on Windows, all composite types are treated alike,
5801 // no special handling of HFAs/HVAs.
5802 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5803 if (Kind != AArch64ABIInfo::AAPCS)
5804 return ABIArgInfo::getDirect(
5805 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5806
5807 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5808 // default otherwise.
5809 unsigned Align =
5810 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5811 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5812 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5813 return ABIArgInfo::getDirect(
5814 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5815 nullptr, true, Align);
5816 }
5817
5818 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5819 if (Size <= 128) {
5820 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5821 // same size and alignment.
5822 if (getTarget().isRenderScriptTarget()) {
5823 return coerceToIntArray(Ty, getContext(), getVMContext());
5824 }
5825 unsigned Alignment;
5826 if (Kind == AArch64ABIInfo::AAPCS) {
5827 Alignment = getContext().getTypeUnadjustedAlign(Ty);
5828 Alignment = Alignment < 128 ? 64 : 128;
5829 } else {
5830 Alignment = std::max(getContext().getTypeAlign(Ty),
5831 (unsigned)getTarget().getPointerWidth(0));
5832 }
5833 Size = llvm::alignTo(Size, Alignment);
5834
5835 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5836 // For aggregates with 16-byte alignment, we use i128.
5837 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5838 return ABIArgInfo::getDirect(
5839 Size == Alignment ? BaseTy
5840 : llvm::ArrayType::get(BaseTy, Size / Alignment));
5841 }
5842
5843 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5844 }
5845
classifyReturnType(QualType RetTy,bool IsVariadic) const5846 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5847 bool IsVariadic) const {
5848 if (RetTy->isVoidType())
5849 return ABIArgInfo::getIgnore();
5850
5851 if (const auto *VT = RetTy->getAs<VectorType>()) {
5852 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5853 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5854 return coerceIllegalVector(RetTy);
5855 }
5856
5857 // Large vector types should be returned via memory.
5858 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5859 return getNaturalAlignIndirect(RetTy);
5860
5861 if (!isAggregateTypeForABI(RetTy)) {
5862 // Treat an enum type as its underlying type.
5863 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5864 RetTy = EnumTy->getDecl()->getIntegerType();
5865
5866 if (const auto *EIT = RetTy->getAs<BitIntType>())
5867 if (EIT->getNumBits() > 128)
5868 return getNaturalAlignIndirect(RetTy);
5869
5870 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5871 ? ABIArgInfo::getExtend(RetTy)
5872 : ABIArgInfo::getDirect());
5873 }
5874
5875 uint64_t Size = getContext().getTypeSize(RetTy);
5876 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5877 return ABIArgInfo::getIgnore();
5878
5879 const Type *Base = nullptr;
5880 uint64_t Members = 0;
5881 if (isHomogeneousAggregate(RetTy, Base, Members) &&
5882 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5883 IsVariadic))
5884 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5885 return ABIArgInfo::getDirect();
5886
5887 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5888 if (Size <= 128) {
5889 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5890 // same size and alignment.
5891 if (getTarget().isRenderScriptTarget()) {
5892 return coerceToIntArray(RetTy, getContext(), getVMContext());
5893 }
5894
5895 if (Size <= 64 && getDataLayout().isLittleEndian()) {
5896 // Composite types are returned in lower bits of a 64-bit register for LE,
5897 // and in higher bits for BE. However, integer types are always returned
5898 // in lower bits for both LE and BE, and they are not rounded up to
5899 // 64-bits. We can skip rounding up of composite types for LE, but not for
5900 // BE, otherwise composite types will be indistinguishable from integer
5901 // types.
5902 return ABIArgInfo::getDirect(
5903 llvm::IntegerType::get(getVMContext(), Size));
5904 }
5905
5906 unsigned Alignment = getContext().getTypeAlign(RetTy);
5907 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5908
5909 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5910 // For aggregates with 16-byte alignment, we use i128.
5911 if (Alignment < 128 && Size == 128) {
5912 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5913 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5914 }
5915 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5916 }
5917
5918 return getNaturalAlignIndirect(RetTy);
5919 }
5920
5921 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const5922 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5923 if (const VectorType *VT = Ty->getAs<VectorType>()) {
5924 // Check whether VT is a fixed-length SVE vector. These types are
5925 // represented as scalable vectors in function args/return and must be
5926 // coerced from fixed vectors.
5927 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5928 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5929 return true;
5930
5931 // Check whether VT is legal.
5932 unsigned NumElements = VT->getNumElements();
5933 uint64_t Size = getContext().getTypeSize(VT);
5934 // NumElements should be power of 2.
5935 if (!llvm::isPowerOf2_32(NumElements))
5936 return true;
5937
5938 // arm64_32 has to be compatible with the ARM logic here, which allows huge
5939 // vectors for some reason.
5940 llvm::Triple Triple = getTarget().getTriple();
5941 if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5942 Triple.isOSBinFormatMachO())
5943 return Size <= 32;
5944
5945 return Size != 64 && (Size != 128 || NumElements == 1);
5946 }
5947 return false;
5948 }
5949
isLegalVectorTypeForSwift(CharUnits totalSize,llvm::Type * eltTy,unsigned elts) const5950 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5951 llvm::Type *eltTy,
5952 unsigned elts) const {
5953 if (!llvm::isPowerOf2_32(elts))
5954 return false;
5955 if (totalSize.getQuantity() != 8 &&
5956 (totalSize.getQuantity() != 16 || elts == 1))
5957 return false;
5958 return true;
5959 }
5960
isHomogeneousAggregateBaseType(QualType Ty) const5961 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5962 // Homogeneous aggregates for AAPCS64 must have base types of a floating
5963 // point type or a short-vector type. This is the same as the 32-bit ABI,
5964 // but with the difference that any floating-point type is allowed,
5965 // including __fp16.
5966 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5967 if (BT->isFloatingPoint())
5968 return true;
5969 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5970 unsigned VecSize = getContext().getTypeSize(VT);
5971 if (VecSize == 64 || VecSize == 128)
5972 return true;
5973 }
5974 return false;
5975 }
5976
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5977 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5978 uint64_t Members) const {
5979 return Members <= 4;
5980 }
5981
isZeroLengthBitfieldPermittedInHomogeneousAggregate() const5982 bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
5983 const {
5984 // AAPCS64 says that the rule for whether something is a homogeneous
5985 // aggregate is applied to the output of the data layout decision. So
5986 // anything that doesn't affect the data layout also does not affect
5987 // homogeneity. In particular, zero-length bitfields don't stop a struct
5988 // being homogeneous.
5989 return true;
5990 }
5991
EmitAAPCSVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const5992 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5993 CodeGenFunction &CGF) const {
5994 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5995 CGF.CurFnInfo->getCallingConvention());
5996 bool IsIndirect = AI.isIndirect();
5997
5998 llvm::Type *BaseTy = CGF.ConvertType(Ty);
5999 if (IsIndirect)
6000 BaseTy = llvm::PointerType::getUnqual(BaseTy);
6001 else if (AI.getCoerceToType())
6002 BaseTy = AI.getCoerceToType();
6003
6004 unsigned NumRegs = 1;
6005 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
6006 BaseTy = ArrTy->getElementType();
6007 NumRegs = ArrTy->getNumElements();
6008 }
6009 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
6010
6011 // The AArch64 va_list type and handling is specified in the Procedure Call
6012 // Standard, section B.4:
6013 //
6014 // struct {
6015 // void *__stack;
6016 // void *__gr_top;
6017 // void *__vr_top;
6018 // int __gr_offs;
6019 // int __vr_offs;
6020 // };
6021
6022 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
6023 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6024 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
6025 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6026
6027 CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6028 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
6029
6030 Address reg_offs_p = Address::invalid();
6031 llvm::Value *reg_offs = nullptr;
6032 int reg_top_index;
6033 int RegSize = IsIndirect ? 8 : TySize.getQuantity();
6034 if (!IsFPR) {
6035 // 3 is the field number of __gr_offs
6036 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
6037 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
6038 reg_top_index = 1; // field number for __gr_top
6039 RegSize = llvm::alignTo(RegSize, 8);
6040 } else {
6041 // 4 is the field number of __vr_offs.
6042 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
6043 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
6044 reg_top_index = 2; // field number for __vr_top
6045 RegSize = 16 * NumRegs;
6046 }
6047
6048 //=======================================
6049 // Find out where argument was passed
6050 //=======================================
6051
6052 // If reg_offs >= 0 we're already using the stack for this type of
6053 // argument. We don't want to keep updating reg_offs (in case it overflows,
6054 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
6055 // whatever they get).
6056 llvm::Value *UsingStack = nullptr;
6057 UsingStack = CGF.Builder.CreateICmpSGE(
6058 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6059
6060 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6061
6062 // Otherwise, at least some kind of argument could go in these registers, the
6063 // question is whether this particular type is too big.
6064 CGF.EmitBlock(MaybeRegBlock);
6065
6066 // Integer arguments may need to correct register alignment (for example a
6067 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6068 // align __gr_offs to calculate the potential address.
6069 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6070 int Align = TyAlign.getQuantity();
6071
6072 reg_offs = CGF.Builder.CreateAdd(
6073 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6074 "align_regoffs");
6075 reg_offs = CGF.Builder.CreateAnd(
6076 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6077 "aligned_regoffs");
6078 }
6079
6080 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6081 // The fact that this is done unconditionally reflects the fact that
6082 // allocating an argument to the stack also uses up all the remaining
6083 // registers of the appropriate kind.
6084 llvm::Value *NewOffset = nullptr;
6085 NewOffset = CGF.Builder.CreateAdd(
6086 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6087 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6088
6089 // Now we're in a position to decide whether this argument really was in
6090 // registers or not.
6091 llvm::Value *InRegs = nullptr;
6092 InRegs = CGF.Builder.CreateICmpSLE(
6093 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6094
6095 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6096
6097 //=======================================
6098 // Argument was in registers
6099 //=======================================
6100
6101 // Now we emit the code for if the argument was originally passed in
6102 // registers. First start the appropriate block:
6103 CGF.EmitBlock(InRegBlock);
6104
6105 llvm::Value *reg_top = nullptr;
6106 Address reg_top_p =
6107 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6108 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6109 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6110 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
6111 Address RegAddr = Address::invalid();
6112 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
6113
6114 if (IsIndirect) {
6115 // If it's been passed indirectly (actually a struct), whatever we find from
6116 // stored registers or on the stack will actually be a struct **.
6117 MemTy = llvm::PointerType::getUnqual(MemTy);
6118 }
6119
6120 const Type *Base = nullptr;
6121 uint64_t NumMembers = 0;
6122 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6123 if (IsHFA && NumMembers > 1) {
6124 // Homogeneous aggregates passed in registers will have their elements split
6125 // and stored 16-bytes apart regardless of size (they're notionally in qN,
6126 // qN+1, ...). We reload and store into a temporary local variable
6127 // contiguously.
6128 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6129 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6130 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6131 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6132 Address Tmp = CGF.CreateTempAlloca(HFATy,
6133 std::max(TyAlign, BaseTyInfo.Align));
6134
6135 // On big-endian platforms, the value will be right-aligned in its slot.
6136 int Offset = 0;
6137 if (CGF.CGM.getDataLayout().isBigEndian() &&
6138 BaseTyInfo.Width.getQuantity() < 16)
6139 Offset = 16 - BaseTyInfo.Width.getQuantity();
6140
6141 for (unsigned i = 0; i < NumMembers; ++i) {
6142 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6143 Address LoadAddr =
6144 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6145 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6146
6147 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6148
6149 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6150 CGF.Builder.CreateStore(Elem, StoreAddr);
6151 }
6152
6153 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6154 } else {
6155 // Otherwise the object is contiguous in memory.
6156
6157 // It might be right-aligned in its slot.
6158 CharUnits SlotSize = BaseAddr.getAlignment();
6159 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6160 (IsHFA || !isAggregateTypeForABI(Ty)) &&
6161 TySize < SlotSize) {
6162 CharUnits Offset = SlotSize - TySize;
6163 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6164 }
6165
6166 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6167 }
6168
6169 CGF.EmitBranch(ContBlock);
6170
6171 //=======================================
6172 // Argument was on the stack
6173 //=======================================
6174 CGF.EmitBlock(OnStackBlock);
6175
6176 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6177 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6178
6179 // Again, stack arguments may need realignment. In this case both integer and
6180 // floating-point ones might be affected.
6181 if (!IsIndirect && TyAlign.getQuantity() > 8) {
6182 int Align = TyAlign.getQuantity();
6183
6184 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6185
6186 OnStackPtr = CGF.Builder.CreateAdd(
6187 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6188 "align_stack");
6189 OnStackPtr = CGF.Builder.CreateAnd(
6190 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6191 "align_stack");
6192
6193 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6194 }
6195 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
6196 std::max(CharUnits::fromQuantity(8), TyAlign));
6197
6198 // All stack slots are multiples of 8 bytes.
6199 CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6200 CharUnits StackSize;
6201 if (IsIndirect)
6202 StackSize = StackSlotSize;
6203 else
6204 StackSize = TySize.alignTo(StackSlotSize);
6205
6206 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6207 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6208 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6209
6210 // Write the new value of __stack for the next call to va_arg
6211 CGF.Builder.CreateStore(NewStack, stack_p);
6212
6213 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6214 TySize < StackSlotSize) {
6215 CharUnits Offset = StackSlotSize - TySize;
6216 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6217 }
6218
6219 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6220
6221 CGF.EmitBranch(ContBlock);
6222
6223 //=======================================
6224 // Tidy up
6225 //=======================================
6226 CGF.EmitBlock(ContBlock);
6227
6228 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
6229 OnStackBlock, "vaargs.addr");
6230
6231 if (IsIndirect)
6232 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
6233 TyAlign);
6234
6235 return ResAddr;
6236 }
6237
EmitDarwinVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const6238 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6239 CodeGenFunction &CGF) const {
6240 // The backend's lowering doesn't support va_arg for aggregates or
6241 // illegal vector types. Lower VAArg here for these cases and use
6242 // the LLVM va_arg instruction for everything else.
6243 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6244 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6245
6246 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6247 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6248
6249 // Empty records are ignored for parameter passing purposes.
6250 if (isEmptyRecord(getContext(), Ty, true)) {
6251 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"),
6252 getVAListElementType(CGF), SlotSize);
6253 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6254 return Addr;
6255 }
6256
6257 // The size of the actual thing passed, which might end up just
6258 // being a pointer for indirect types.
6259 auto TyInfo = getContext().getTypeInfoInChars(Ty);
6260
6261 // Arguments bigger than 16 bytes which aren't homogeneous
6262 // aggregates should be passed indirectly.
6263 bool IsIndirect = false;
6264 if (TyInfo.Width.getQuantity() > 16) {
6265 const Type *Base = nullptr;
6266 uint64_t Members = 0;
6267 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6268 }
6269
6270 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6271 TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6272 }
6273
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6274 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6275 QualType Ty) const {
6276 bool IsIndirect = false;
6277
6278 // Composites larger than 16 bytes are passed by reference.
6279 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6280 IsIndirect = true;
6281
6282 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6283 CGF.getContext().getTypeInfoInChars(Ty),
6284 CharUnits::fromQuantity(8),
6285 /*allowHigherAlign*/ false);
6286 }
6287
6288 //===----------------------------------------------------------------------===//
6289 // ARM ABI Implementation
6290 //===----------------------------------------------------------------------===//
6291
6292 namespace {
6293
6294 class ARMABIInfo : public SwiftABIInfo {
6295 public:
6296 enum ABIKind {
6297 APCS = 0,
6298 AAPCS = 1,
6299 AAPCS_VFP = 2,
6300 AAPCS16_VFP = 3,
6301 };
6302
6303 private:
6304 ABIKind Kind;
6305 bool IsFloatABISoftFP;
6306
6307 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)6308 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6309 : SwiftABIInfo(CGT), Kind(_Kind) {
6310 setCCs();
6311 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6312 CGT.getCodeGenOpts().FloatABI == ""; // default
6313 }
6314
isEABI() const6315 bool isEABI() const {
6316 switch (getTarget().getTriple().getEnvironment()) {
6317 case llvm::Triple::Android:
6318 case llvm::Triple::EABI:
6319 case llvm::Triple::EABIHF:
6320 case llvm::Triple::GNUEABI:
6321 case llvm::Triple::GNUEABIHF:
6322 case llvm::Triple::MuslEABI:
6323 case llvm::Triple::MuslEABIHF:
6324 return true;
6325 default:
6326 return false;
6327 }
6328 }
6329
isEABIHF() const6330 bool isEABIHF() const {
6331 switch (getTarget().getTriple().getEnvironment()) {
6332 case llvm::Triple::EABIHF:
6333 case llvm::Triple::GNUEABIHF:
6334 case llvm::Triple::MuslEABIHF:
6335 return true;
6336 default:
6337 return false;
6338 }
6339 }
6340
getABIKind() const6341 ABIKind getABIKind() const { return Kind; }
6342
allowBFloatArgsAndRet() const6343 bool allowBFloatArgsAndRet() const override {
6344 return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6345 }
6346
6347 private:
6348 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6349 unsigned functionCallConv) const;
6350 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6351 unsigned functionCallConv) const;
6352 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6353 uint64_t Members) const;
6354 ABIArgInfo coerceIllegalVector(QualType Ty) const;
6355 bool isIllegalVectorType(QualType Ty) const;
6356 bool containsAnyFP16Vectors(QualType Ty) const;
6357
6358 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6359 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6360 uint64_t Members) const override;
6361 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
6362
6363 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6364
6365 void computeInfo(CGFunctionInfo &FI) const override;
6366
6367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6368 QualType Ty) const override;
6369
6370 llvm::CallingConv::ID getLLVMDefaultCC() const;
6371 llvm::CallingConv::ID getABIDefaultCC() const;
6372 void setCCs();
6373
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const6374 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6375 bool asReturnValue) const override {
6376 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6377 }
isSwiftErrorInRegister() const6378 bool isSwiftErrorInRegister() const override {
6379 return true;
6380 }
6381 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6382 unsigned elts) const override;
6383 };
6384
6385 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6386 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)6387 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6388 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6389
getABIInfo() const6390 const ARMABIInfo &getABIInfo() const {
6391 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6392 }
6393
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6394 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6395 return 13;
6396 }
6397
getARCRetainAutoreleasedReturnValueMarker() const6398 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6399 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6400 }
6401
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6402 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6403 llvm::Value *Address) const override {
6404 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6405
6406 // 0-15 are the 16 integer registers.
6407 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6408 return false;
6409 }
6410
getSizeOfUnwindException() const6411 unsigned getSizeOfUnwindException() const override {
6412 if (getABIInfo().isEABI()) return 88;
6413 return TargetCodeGenInfo::getSizeOfUnwindException();
6414 }
6415
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6416 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6417 CodeGen::CodeGenModule &CGM) const override {
6418 if (GV->isDeclaration())
6419 return;
6420 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6421 if (!FD)
6422 return;
6423 auto *Fn = cast<llvm::Function>(GV);
6424
6425 if (const auto *TA = FD->getAttr<TargetAttr>()) {
6426 ParsedTargetAttr Attr = TA->parse();
6427 if (!Attr.BranchProtection.empty()) {
6428 TargetInfo::BranchProtectionInfo BPI;
6429 StringRef DiagMsg;
6430 StringRef Arch = Attr.Architecture.empty()
6431 ? CGM.getTarget().getTargetOpts().CPU
6432 : Attr.Architecture;
6433 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
6434 Arch, BPI, DiagMsg)) {
6435 CGM.getDiags().Report(
6436 D->getLocation(),
6437 diag::warn_target_unsupported_branch_protection_attribute)
6438 << Arch;
6439 } else {
6440 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
6441 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 &&
6442 "Unexpected SignReturnAddressScopeKind");
6443 Fn->addFnAttr(
6444 "sign-return-address",
6445 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
6446
6447 Fn->addFnAttr("branch-target-enforcement",
6448 BPI.BranchTargetEnforcement ? "true" : "false");
6449 }
6450 } else if (CGM.getLangOpts().BranchTargetEnforcement ||
6451 CGM.getLangOpts().hasSignReturnAddress()) {
6452 // If the Branch Protection attribute is missing, validate the target
6453 // Architecture attribute against Branch Protection command line
6454 // settings.
6455 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture))
6456 CGM.getDiags().Report(
6457 D->getLocation(),
6458 diag::warn_target_unsupported_branch_protection_attribute)
6459 << Attr.Architecture;
6460 }
6461 }
6462
6463 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6464 if (!Attr)
6465 return;
6466
6467 const char *Kind;
6468 switch (Attr->getInterrupt()) {
6469 case ARMInterruptAttr::Generic: Kind = ""; break;
6470 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
6471 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
6472 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
6473 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
6474 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
6475 }
6476
6477 Fn->addFnAttr("interrupt", Kind);
6478
6479 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6480 if (ABI == ARMABIInfo::APCS)
6481 return;
6482
6483 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6484 // however this is not necessarily true on taking any interrupt. Instruct
6485 // the backend to perform a realignment as part of the function prologue.
6486 llvm::AttrBuilder B(Fn->getContext());
6487 B.addStackAlignmentAttr(8);
6488 Fn->addFnAttrs(B);
6489 }
6490 };
6491
6492 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6493 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)6494 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6495 : ARMTargetCodeGenInfo(CGT, K) {}
6496
6497 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6498 CodeGen::CodeGenModule &CGM) const override;
6499
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const6500 void getDependentLibraryOption(llvm::StringRef Lib,
6501 llvm::SmallString<24> &Opt) const override {
6502 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6503 }
6504
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const6505 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6506 llvm::SmallString<32> &Opt) const override {
6507 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6508 }
6509 };
6510
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6511 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6512 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6513 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6514 if (GV->isDeclaration())
6515 return;
6516 addStackProbeTargetAttributes(D, GV, CGM);
6517 }
6518 }
6519
computeInfo(CGFunctionInfo & FI) const6520 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6521 if (!::classifyReturnType(getCXXABI(), FI, *this))
6522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6523 FI.getCallingConvention());
6524
6525 for (auto &I : FI.arguments())
6526 I.info = classifyArgumentType(I.type, FI.isVariadic(),
6527 FI.getCallingConvention());
6528
6529
6530 // Always honor user-specified calling convention.
6531 if (FI.getCallingConvention() != llvm::CallingConv::C)
6532 return;
6533
6534 llvm::CallingConv::ID cc = getRuntimeCC();
6535 if (cc != llvm::CallingConv::C)
6536 FI.setEffectiveCallingConvention(cc);
6537 }
6538
6539 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const6540 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6541 // The default calling convention that LLVM will infer.
6542 if (isEABIHF() || getTarget().getTriple().isWatchABI())
6543 return llvm::CallingConv::ARM_AAPCS_VFP;
6544 else if (isEABI())
6545 return llvm::CallingConv::ARM_AAPCS;
6546 else
6547 return llvm::CallingConv::ARM_APCS;
6548 }
6549
6550 /// Return the calling convention that our ABI would like us to use
6551 /// as the C calling convention.
getABIDefaultCC() const6552 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6553 switch (getABIKind()) {
6554 case APCS: return llvm::CallingConv::ARM_APCS;
6555 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6556 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6557 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6558 }
6559 llvm_unreachable("bad ABI kind");
6560 }
6561
setCCs()6562 void ARMABIInfo::setCCs() {
6563 assert(getRuntimeCC() == llvm::CallingConv::C);
6564
6565 // Don't muddy up the IR with a ton of explicit annotations if
6566 // they'd just match what LLVM will infer from the triple.
6567 llvm::CallingConv::ID abiCC = getABIDefaultCC();
6568 if (abiCC != getLLVMDefaultCC())
6569 RuntimeCC = abiCC;
6570 }
6571
coerceIllegalVector(QualType Ty) const6572 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6573 uint64_t Size = getContext().getTypeSize(Ty);
6574 if (Size <= 32) {
6575 llvm::Type *ResType =
6576 llvm::Type::getInt32Ty(getVMContext());
6577 return ABIArgInfo::getDirect(ResType);
6578 }
6579 if (Size == 64 || Size == 128) {
6580 auto *ResType = llvm::FixedVectorType::get(
6581 llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6582 return ABIArgInfo::getDirect(ResType);
6583 }
6584 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6585 }
6586
classifyHomogeneousAggregate(QualType Ty,const Type * Base,uint64_t Members) const6587 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6588 const Type *Base,
6589 uint64_t Members) const {
6590 assert(Base && "Base class should be set for homogeneous aggregate");
6591 // Base can be a floating-point or a vector.
6592 if (const VectorType *VT = Base->getAs<VectorType>()) {
6593 // FP16 vectors should be converted to integer vectors
6594 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6595 uint64_t Size = getContext().getTypeSize(VT);
6596 auto *NewVecTy = llvm::FixedVectorType::get(
6597 llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6598 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6599 return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6600 }
6601 }
6602 unsigned Align = 0;
6603 if (getABIKind() == ARMABIInfo::AAPCS ||
6604 getABIKind() == ARMABIInfo::AAPCS_VFP) {
6605 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6606 // default otherwise.
6607 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6608 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6609 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6610 }
6611 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6612 }
6613
classifyArgumentType(QualType Ty,bool isVariadic,unsigned functionCallConv) const6614 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6615 unsigned functionCallConv) const {
6616 // 6.1.2.1 The following argument types are VFP CPRCs:
6617 // A single-precision floating-point type (including promoted
6618 // half-precision types); A double-precision floating-point type;
6619 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6620 // with a Base Type of a single- or double-precision floating-point type,
6621 // 64-bit containerized vectors or 128-bit containerized vectors with one
6622 // to four Elements.
6623 // Variadic functions should always marshal to the base standard.
6624 bool IsAAPCS_VFP =
6625 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6626
6627 Ty = useFirstFieldIfTransparentUnion(Ty);
6628
6629 // Handle illegal vector types here.
6630 if (isIllegalVectorType(Ty))
6631 return coerceIllegalVector(Ty);
6632
6633 if (!isAggregateTypeForABI(Ty)) {
6634 // Treat an enum type as its underlying type.
6635 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6636 Ty = EnumTy->getDecl()->getIntegerType();
6637 }
6638
6639 if (const auto *EIT = Ty->getAs<BitIntType>())
6640 if (EIT->getNumBits() > 64)
6641 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6642
6643 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6644 : ABIArgInfo::getDirect());
6645 }
6646
6647 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6648 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6649 }
6650
6651 // Ignore empty records.
6652 if (isEmptyRecord(getContext(), Ty, true))
6653 return ABIArgInfo::getIgnore();
6654
6655 if (IsAAPCS_VFP) {
6656 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6657 // into VFP registers.
6658 const Type *Base = nullptr;
6659 uint64_t Members = 0;
6660 if (isHomogeneousAggregate(Ty, Base, Members))
6661 return classifyHomogeneousAggregate(Ty, Base, Members);
6662 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6663 // WatchOS does have homogeneous aggregates. Note that we intentionally use
6664 // this convention even for a variadic function: the backend will use GPRs
6665 // if needed.
6666 const Type *Base = nullptr;
6667 uint64_t Members = 0;
6668 if (isHomogeneousAggregate(Ty, Base, Members)) {
6669 assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6670 llvm::Type *Ty =
6671 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6672 return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6673 }
6674 }
6675
6676 if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6677 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6678 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6679 // bigger than 128-bits, they get placed in space allocated by the caller,
6680 // and a pointer is passed.
6681 return ABIArgInfo::getIndirect(
6682 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6683 }
6684
6685 // Support byval for ARM.
6686 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6687 // most 8-byte. We realign the indirect argument if type alignment is bigger
6688 // than ABI alignment.
6689 uint64_t ABIAlign = 4;
6690 uint64_t TyAlign;
6691 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6692 getABIKind() == ARMABIInfo::AAPCS) {
6693 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6694 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6695 } else {
6696 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6697 }
6698 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6699 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6700 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6701 /*ByVal=*/true,
6702 /*Realign=*/TyAlign > ABIAlign);
6703 }
6704
6705 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6706 // same size and alignment.
6707 if (getTarget().isRenderScriptTarget()) {
6708 return coerceToIntArray(Ty, getContext(), getVMContext());
6709 }
6710
6711 // Otherwise, pass by coercing to a structure of the appropriate size.
6712 llvm::Type* ElemTy;
6713 unsigned SizeRegs;
6714 // FIXME: Try to match the types of the arguments more accurately where
6715 // we can.
6716 if (TyAlign <= 4) {
6717 ElemTy = llvm::Type::getInt32Ty(getVMContext());
6718 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6719 } else {
6720 ElemTy = llvm::Type::getInt64Ty(getVMContext());
6721 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6722 }
6723
6724 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6725 }
6726
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)6727 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6728 llvm::LLVMContext &VMContext) {
6729 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6730 // is called integer-like if its size is less than or equal to one word, and
6731 // the offset of each of its addressable sub-fields is zero.
6732
6733 uint64_t Size = Context.getTypeSize(Ty);
6734
6735 // Check that the type fits in a word.
6736 if (Size > 32)
6737 return false;
6738
6739 // FIXME: Handle vector types!
6740 if (Ty->isVectorType())
6741 return false;
6742
6743 // Float types are never treated as "integer like".
6744 if (Ty->isRealFloatingType())
6745 return false;
6746
6747 // If this is a builtin or pointer type then it is ok.
6748 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6749 return true;
6750
6751 // Small complex integer types are "integer like".
6752 if (const ComplexType *CT = Ty->getAs<ComplexType>())
6753 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6754
6755 // Single element and zero sized arrays should be allowed, by the definition
6756 // above, but they are not.
6757
6758 // Otherwise, it must be a record type.
6759 const RecordType *RT = Ty->getAs<RecordType>();
6760 if (!RT) return false;
6761
6762 // Ignore records with flexible arrays.
6763 const RecordDecl *RD = RT->getDecl();
6764 if (RD->hasFlexibleArrayMember())
6765 return false;
6766
6767 // Check that all sub-fields are at offset 0, and are themselves "integer
6768 // like".
6769 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6770
6771 bool HadField = false;
6772 unsigned idx = 0;
6773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6774 i != e; ++i, ++idx) {
6775 const FieldDecl *FD = *i;
6776
6777 // Bit-fields are not addressable, we only need to verify they are "integer
6778 // like". We still have to disallow a subsequent non-bitfield, for example:
6779 // struct { int : 0; int x }
6780 // is non-integer like according to gcc.
6781 if (FD->isBitField()) {
6782 if (!RD->isUnion())
6783 HadField = true;
6784
6785 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6786 return false;
6787
6788 continue;
6789 }
6790
6791 // Check if this field is at offset 0.
6792 if (Layout.getFieldOffset(idx) != 0)
6793 return false;
6794
6795 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6796 return false;
6797
6798 // Only allow at most one field in a structure. This doesn't match the
6799 // wording above, but follows gcc in situations with a field following an
6800 // empty structure.
6801 if (!RD->isUnion()) {
6802 if (HadField)
6803 return false;
6804
6805 HadField = true;
6806 }
6807 }
6808
6809 return true;
6810 }
6811
classifyReturnType(QualType RetTy,bool isVariadic,unsigned functionCallConv) const6812 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6813 unsigned functionCallConv) const {
6814
6815 // Variadic functions should always marshal to the base standard.
6816 bool IsAAPCS_VFP =
6817 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6818
6819 if (RetTy->isVoidType())
6820 return ABIArgInfo::getIgnore();
6821
6822 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6823 // Large vector types should be returned via memory.
6824 if (getContext().getTypeSize(RetTy) > 128)
6825 return getNaturalAlignIndirect(RetTy);
6826 // TODO: FP16/BF16 vectors should be converted to integer vectors
6827 // This check is similar to isIllegalVectorType - refactor?
6828 if ((!getTarget().hasLegalHalfType() &&
6829 (VT->getElementType()->isFloat16Type() ||
6830 VT->getElementType()->isHalfType())) ||
6831 (IsFloatABISoftFP &&
6832 VT->getElementType()->isBFloat16Type()))
6833 return coerceIllegalVector(RetTy);
6834 }
6835
6836 if (!isAggregateTypeForABI(RetTy)) {
6837 // Treat an enum type as its underlying type.
6838 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6839 RetTy = EnumTy->getDecl()->getIntegerType();
6840
6841 if (const auto *EIT = RetTy->getAs<BitIntType>())
6842 if (EIT->getNumBits() > 64)
6843 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6844
6845 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6846 : ABIArgInfo::getDirect();
6847 }
6848
6849 // Are we following APCS?
6850 if (getABIKind() == APCS) {
6851 if (isEmptyRecord(getContext(), RetTy, false))
6852 return ABIArgInfo::getIgnore();
6853
6854 // Complex types are all returned as packed integers.
6855 //
6856 // FIXME: Consider using 2 x vector types if the back end handles them
6857 // correctly.
6858 if (RetTy->isAnyComplexType())
6859 return ABIArgInfo::getDirect(llvm::IntegerType::get(
6860 getVMContext(), getContext().getTypeSize(RetTy)));
6861
6862 // Integer like structures are returned in r0.
6863 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6864 // Return in the smallest viable integer type.
6865 uint64_t Size = getContext().getTypeSize(RetTy);
6866 if (Size <= 8)
6867 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6868 if (Size <= 16)
6869 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6870 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6871 }
6872
6873 // Otherwise return in memory.
6874 return getNaturalAlignIndirect(RetTy);
6875 }
6876
6877 // Otherwise this is an AAPCS variant.
6878
6879 if (isEmptyRecord(getContext(), RetTy, true))
6880 return ABIArgInfo::getIgnore();
6881
6882 // Check for homogeneous aggregates with AAPCS-VFP.
6883 if (IsAAPCS_VFP) {
6884 const Type *Base = nullptr;
6885 uint64_t Members = 0;
6886 if (isHomogeneousAggregate(RetTy, Base, Members))
6887 return classifyHomogeneousAggregate(RetTy, Base, Members);
6888 }
6889
6890 // Aggregates <= 4 bytes are returned in r0; other aggregates
6891 // are returned indirectly.
6892 uint64_t Size = getContext().getTypeSize(RetTy);
6893 if (Size <= 32) {
6894 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6895 // same size and alignment.
6896 if (getTarget().isRenderScriptTarget()) {
6897 return coerceToIntArray(RetTy, getContext(), getVMContext());
6898 }
6899 if (getDataLayout().isBigEndian())
6900 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6901 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6902
6903 // Return in the smallest viable integer type.
6904 if (Size <= 8)
6905 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6906 if (Size <= 16)
6907 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6908 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6909 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6910 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6911 llvm::Type *CoerceTy =
6912 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6913 return ABIArgInfo::getDirect(CoerceTy);
6914 }
6915
6916 return getNaturalAlignIndirect(RetTy);
6917 }
6918
6919 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const6920 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6921 if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6922 // On targets that don't support half, fp16 or bfloat, they are expanded
6923 // into float, and we don't want the ABI to depend on whether or not they
6924 // are supported in hardware. Thus return false to coerce vectors of these
6925 // types into integer vectors.
6926 // We do not depend on hasLegalHalfType for bfloat as it is a
6927 // separate IR type.
6928 if ((!getTarget().hasLegalHalfType() &&
6929 (VT->getElementType()->isFloat16Type() ||
6930 VT->getElementType()->isHalfType())) ||
6931 (IsFloatABISoftFP &&
6932 VT->getElementType()->isBFloat16Type()))
6933 return true;
6934 if (isAndroid()) {
6935 // Android shipped using Clang 3.1, which supported a slightly different
6936 // vector ABI. The primary differences were that 3-element vector types
6937 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6938 // accepts that legacy behavior for Android only.
6939 // Check whether VT is legal.
6940 unsigned NumElements = VT->getNumElements();
6941 // NumElements should be power of 2 or equal to 3.
6942 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6943 return true;
6944 } else {
6945 // Check whether VT is legal.
6946 unsigned NumElements = VT->getNumElements();
6947 uint64_t Size = getContext().getTypeSize(VT);
6948 // NumElements should be power of 2.
6949 if (!llvm::isPowerOf2_32(NumElements))
6950 return true;
6951 // Size should be greater than 32 bits.
6952 return Size <= 32;
6953 }
6954 }
6955 return false;
6956 }
6957
6958 /// Return true if a type contains any 16-bit floating point vectors
containsAnyFP16Vectors(QualType Ty) const6959 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6960 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6961 uint64_t NElements = AT->getSize().getZExtValue();
6962 if (NElements == 0)
6963 return false;
6964 return containsAnyFP16Vectors(AT->getElementType());
6965 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6966 const RecordDecl *RD = RT->getDecl();
6967
6968 // If this is a C++ record, check the bases first.
6969 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6970 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6971 return containsAnyFP16Vectors(B.getType());
6972 }))
6973 return true;
6974
6975 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6976 return FD && containsAnyFP16Vectors(FD->getType());
6977 }))
6978 return true;
6979
6980 return false;
6981 } else {
6982 if (const VectorType *VT = Ty->getAs<VectorType>())
6983 return (VT->getElementType()->isFloat16Type() ||
6984 VT->getElementType()->isBFloat16Type() ||
6985 VT->getElementType()->isHalfType());
6986 return false;
6987 }
6988 }
6989
isLegalVectorTypeForSwift(CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts) const6990 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6991 llvm::Type *eltTy,
6992 unsigned numElts) const {
6993 if (!llvm::isPowerOf2_32(numElts))
6994 return false;
6995 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6996 if (size > 64)
6997 return false;
6998 if (vectorSize.getQuantity() != 8 &&
6999 (vectorSize.getQuantity() != 16 || numElts == 1))
7000 return false;
7001 return true;
7002 }
7003
isHomogeneousAggregateBaseType(QualType Ty) const7004 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7005 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
7006 // double, or 64-bit or 128-bit vectors.
7007 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
7008 if (BT->getKind() == BuiltinType::Float ||
7009 BT->getKind() == BuiltinType::Double ||
7010 BT->getKind() == BuiltinType::LongDouble)
7011 return true;
7012 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
7013 unsigned VecSize = getContext().getTypeSize(VT);
7014 if (VecSize == 64 || VecSize == 128)
7015 return true;
7016 }
7017 return false;
7018 }
7019
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const7020 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
7021 uint64_t Members) const {
7022 return Members <= 4;
7023 }
7024
isZeroLengthBitfieldPermittedInHomogeneousAggregate() const7025 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
7026 // AAPCS32 says that the rule for whether something is a homogeneous
7027 // aggregate is applied to the output of the data layout decision. So
7028 // anything that doesn't affect the data layout also does not affect
7029 // homogeneity. In particular, zero-length bitfields don't stop a struct
7030 // being homogeneous.
7031 return true;
7032 }
7033
isEffectivelyAAPCS_VFP(unsigned callConvention,bool acceptHalf) const7034 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
7035 bool acceptHalf) const {
7036 // Give precedence to user-specified calling conventions.
7037 if (callConvention != llvm::CallingConv::C)
7038 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
7039 else
7040 return (getABIKind() == AAPCS_VFP) ||
7041 (acceptHalf && (getABIKind() == AAPCS16_VFP));
7042 }
7043
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7044 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7045 QualType Ty) const {
7046 CharUnits SlotSize = CharUnits::fromQuantity(4);
7047
7048 // Empty records are ignored for parameter passing purposes.
7049 if (isEmptyRecord(getContext(), Ty, true)) {
7050 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
7051 auto *Load = CGF.Builder.CreateLoad(VAListAddr);
7052 Address Addr = Address(Load, CGF.Int8Ty, SlotSize);
7053 return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
7054 }
7055
7056 CharUnits TySize = getContext().getTypeSizeInChars(Ty);
7057 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
7058
7059 // Use indirect if size of the illegal vector is bigger than 16 bytes.
7060 bool IsIndirect = false;
7061 const Type *Base = nullptr;
7062 uint64_t Members = 0;
7063 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
7064 IsIndirect = true;
7065
7066 // ARMv7k passes structs bigger than 16 bytes indirectly, in space
7067 // allocated by the caller.
7068 } else if (TySize > CharUnits::fromQuantity(16) &&
7069 getABIKind() == ARMABIInfo::AAPCS16_VFP &&
7070 !isHomogeneousAggregate(Ty, Base, Members)) {
7071 IsIndirect = true;
7072
7073 // Otherwise, bound the type's ABI alignment.
7074 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
7075 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
7076 // Our callers should be prepared to handle an under-aligned address.
7077 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
7078 getABIKind() == ARMABIInfo::AAPCS) {
7079 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
7080 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
7081 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
7082 // ARMv7k allows type alignment up to 16 bytes.
7083 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
7084 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
7085 } else {
7086 TyAlignForABI = CharUnits::fromQuantity(4);
7087 }
7088
7089 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
7090 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
7091 SlotSize, /*AllowHigherAlign*/ true);
7092 }
7093
7094 //===----------------------------------------------------------------------===//
7095 // NVPTX ABI Implementation
7096 //===----------------------------------------------------------------------===//
7097
7098 namespace {
7099
7100 class NVPTXTargetCodeGenInfo;
7101
7102 class NVPTXABIInfo : public ABIInfo {
7103 NVPTXTargetCodeGenInfo &CGInfo;
7104
7105 public:
NVPTXABIInfo(CodeGenTypes & CGT,NVPTXTargetCodeGenInfo & Info)7106 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7107 : ABIInfo(CGT), CGInfo(Info) {}
7108
7109 ABIArgInfo classifyReturnType(QualType RetTy) const;
7110 ABIArgInfo classifyArgumentType(QualType Ty) const;
7111
7112 void computeInfo(CGFunctionInfo &FI) const override;
7113 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7114 QualType Ty) const override;
7115 bool isUnsupportedType(QualType T) const;
7116 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7117 };
7118
7119 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7120 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)7121 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7122 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7123
7124 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7125 CodeGen::CodeGenModule &M) const override;
7126 bool shouldEmitStaticExternCAliases() const override;
7127
getCUDADeviceBuiltinSurfaceDeviceType() const7128 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7129 // On the device side, surface reference is represented as an object handle
7130 // in 64-bit integer.
7131 return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7132 }
7133
getCUDADeviceBuiltinTextureDeviceType() const7134 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7135 // On the device side, texture reference is represented as an object handle
7136 // in 64-bit integer.
7137 return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7138 }
7139
emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src) const7140 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7141 LValue Src) const override {
7142 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7143 return true;
7144 }
7145
emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src) const7146 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7147 LValue Src) const override {
7148 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7149 return true;
7150 }
7151
7152 private:
7153 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7154 // resulting MDNode to the nvvm.annotations MDNode.
7155 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7156 int Operand);
7157
emitBuiltinSurfTexDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src)7158 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7159 LValue Src) {
7160 llvm::Value *Handle = nullptr;
7161 llvm::Constant *C =
7162 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7163 // Lookup `addrspacecast` through the constant pointer if any.
7164 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7165 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7166 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7167 // Load the handle from the specific global variable using
7168 // `nvvm.texsurf.handle.internal` intrinsic.
7169 Handle = CGF.EmitRuntimeCall(
7170 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7171 {GV->getType()}),
7172 {GV}, "texsurf_handle");
7173 } else
7174 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7175 CGF.EmitStoreOfScalar(Handle, Dst);
7176 }
7177 };
7178
7179 /// Checks if the type is unsupported directly by the current target.
isUnsupportedType(QualType T) const7180 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7181 ASTContext &Context = getContext();
7182 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7183 return true;
7184 if (!Context.getTargetInfo().hasFloat128Type() &&
7185 (T->isFloat128Type() ||
7186 (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7187 return true;
7188 if (const auto *EIT = T->getAs<BitIntType>())
7189 return EIT->getNumBits() >
7190 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7191 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7192 Context.getTypeSize(T) > 64U)
7193 return true;
7194 if (const auto *AT = T->getAsArrayTypeUnsafe())
7195 return isUnsupportedType(AT->getElementType());
7196 const auto *RT = T->getAs<RecordType>();
7197 if (!RT)
7198 return false;
7199 const RecordDecl *RD = RT->getDecl();
7200
7201 // If this is a C++ record, check the bases first.
7202 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7203 for (const CXXBaseSpecifier &I : CXXRD->bases())
7204 if (isUnsupportedType(I.getType()))
7205 return true;
7206
7207 for (const FieldDecl *I : RD->fields())
7208 if (isUnsupportedType(I->getType()))
7209 return true;
7210 return false;
7211 }
7212
7213 /// Coerce the given type into an array with maximum allowed size of elements.
coerceToIntArrayWithLimit(QualType Ty,unsigned MaxSize) const7214 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7215 unsigned MaxSize) const {
7216 // Alignment and Size are measured in bits.
7217 const uint64_t Size = getContext().getTypeSize(Ty);
7218 const uint64_t Alignment = getContext().getTypeAlign(Ty);
7219 const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7220 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7221 const uint64_t NumElements = (Size + Div - 1) / Div;
7222 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7223 }
7224
classifyReturnType(QualType RetTy) const7225 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7226 if (RetTy->isVoidType())
7227 return ABIArgInfo::getIgnore();
7228
7229 if (getContext().getLangOpts().OpenMP &&
7230 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7231 return coerceToIntArrayWithLimit(RetTy, 64);
7232
7233 // note: this is different from default ABI
7234 if (!RetTy->isScalarType())
7235 return ABIArgInfo::getDirect();
7236
7237 // Treat an enum type as its underlying type.
7238 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7239 RetTy = EnumTy->getDecl()->getIntegerType();
7240
7241 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7242 : ABIArgInfo::getDirect());
7243 }
7244
classifyArgumentType(QualType Ty) const7245 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7246 // Treat an enum type as its underlying type.
7247 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7248 Ty = EnumTy->getDecl()->getIntegerType();
7249
7250 // Return aggregates type as indirect by value
7251 if (isAggregateTypeForABI(Ty)) {
7252 // Under CUDA device compilation, tex/surf builtin types are replaced with
7253 // object types and passed directly.
7254 if (getContext().getLangOpts().CUDAIsDevice) {
7255 if (Ty->isCUDADeviceBuiltinSurfaceType())
7256 return ABIArgInfo::getDirect(
7257 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7258 if (Ty->isCUDADeviceBuiltinTextureType())
7259 return ABIArgInfo::getDirect(
7260 CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7261 }
7262 return getNaturalAlignIndirect(Ty, /* byval */ true);
7263 }
7264
7265 if (const auto *EIT = Ty->getAs<BitIntType>()) {
7266 if ((EIT->getNumBits() > 128) ||
7267 (!getContext().getTargetInfo().hasInt128Type() &&
7268 EIT->getNumBits() > 64))
7269 return getNaturalAlignIndirect(Ty, /* byval */ true);
7270 }
7271
7272 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7273 : ABIArgInfo::getDirect());
7274 }
7275
computeInfo(CGFunctionInfo & FI) const7276 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7277 if (!getCXXABI().classifyReturnType(FI))
7278 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7279 for (auto &I : FI.arguments())
7280 I.info = classifyArgumentType(I.type);
7281
7282 // Always honor user-specified calling convention.
7283 if (FI.getCallingConvention() != llvm::CallingConv::C)
7284 return;
7285
7286 FI.setEffectiveCallingConvention(getRuntimeCC());
7287 }
7288
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7289 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7290 QualType Ty) const {
7291 llvm_unreachable("NVPTX does not support varargs");
7292 }
7293
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const7294 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7295 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7296 if (GV->isDeclaration())
7297 return;
7298 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7299 if (VD) {
7300 if (M.getLangOpts().CUDA) {
7301 if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7302 addNVVMMetadata(GV, "surface", 1);
7303 else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7304 addNVVMMetadata(GV, "texture", 1);
7305 return;
7306 }
7307 }
7308
7309 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7310 if (!FD) return;
7311
7312 llvm::Function *F = cast<llvm::Function>(GV);
7313
7314 // Perform special handling in OpenCL mode
7315 if (M.getLangOpts().OpenCL) {
7316 // Use OpenCL function attributes to check for kernel functions
7317 // By default, all functions are device functions
7318 if (FD->hasAttr<OpenCLKernelAttr>()) {
7319 // OpenCL __kernel functions get kernel metadata
7320 // Create !{<func-ref>, metadata !"kernel", i32 1} node
7321 addNVVMMetadata(F, "kernel", 1);
7322 // And kernel functions are not subject to inlining
7323 F->addFnAttr(llvm::Attribute::NoInline);
7324 }
7325 }
7326
7327 // Perform special handling in CUDA mode.
7328 if (M.getLangOpts().CUDA) {
7329 // CUDA __global__ functions get a kernel metadata entry. Since
7330 // __global__ functions cannot be called from the device, we do not
7331 // need to set the noinline attribute.
7332 if (FD->hasAttr<CUDAGlobalAttr>()) {
7333 // Create !{<func-ref>, metadata !"kernel", i32 1} node
7334 addNVVMMetadata(F, "kernel", 1);
7335 }
7336 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7337 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7338 llvm::APSInt MaxThreads(32);
7339 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7340 if (MaxThreads > 0)
7341 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7342
7343 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7344 // not specified in __launch_bounds__ or if the user specified a 0 value,
7345 // we don't have to add a PTX directive.
7346 if (Attr->getMinBlocks()) {
7347 llvm::APSInt MinBlocks(32);
7348 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7349 if (MinBlocks > 0)
7350 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7351 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7352 }
7353 }
7354 }
7355 }
7356
addNVVMMetadata(llvm::GlobalValue * GV,StringRef Name,int Operand)7357 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7358 StringRef Name, int Operand) {
7359 llvm::Module *M = GV->getParent();
7360 llvm::LLVMContext &Ctx = M->getContext();
7361
7362 // Get "nvvm.annotations" metadata node
7363 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7364
7365 llvm::Metadata *MDVals[] = {
7366 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7367 llvm::ConstantAsMetadata::get(
7368 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7369 // Append metadata to nvvm.annotations
7370 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7371 }
7372
shouldEmitStaticExternCAliases() const7373 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7374 return false;
7375 }
7376 }
7377
7378 //===----------------------------------------------------------------------===//
7379 // SystemZ ABI Implementation
7380 //===----------------------------------------------------------------------===//
7381
7382 namespace {
7383
7384 class SystemZABIInfo : public SwiftABIInfo {
7385 bool HasVector;
7386 bool IsSoftFloatABI;
7387
7388 public:
SystemZABIInfo(CodeGenTypes & CGT,bool HV,bool SF)7389 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7390 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7391
7392 bool isPromotableIntegerTypeForABI(QualType Ty) const;
7393 bool isCompoundType(QualType Ty) const;
7394 bool isVectorArgumentType(QualType Ty) const;
7395 bool isFPArgumentType(QualType Ty) const;
7396 QualType GetSingleElementType(QualType Ty) const;
7397
7398 ABIArgInfo classifyReturnType(QualType RetTy) const;
7399 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7400
computeInfo(CGFunctionInfo & FI) const7401 void computeInfo(CGFunctionInfo &FI) const override {
7402 if (!getCXXABI().classifyReturnType(FI))
7403 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7404 for (auto &I : FI.arguments())
7405 I.info = classifyArgumentType(I.type);
7406 }
7407
7408 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7409 QualType Ty) const override;
7410
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const7411 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7412 bool asReturnValue) const override {
7413 return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7414 }
isSwiftErrorInRegister() const7415 bool isSwiftErrorInRegister() const override {
7416 return false;
7417 }
7418 };
7419
7420 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7421 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT,bool HasVector,bool SoftFloatABI)7422 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7423 : TargetCodeGenInfo(
7424 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7425
testFPKind(llvm::Value * V,unsigned BuiltinID,CGBuilderTy & Builder,CodeGenModule & CGM) const7426 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7427 CGBuilderTy &Builder,
7428 CodeGenModule &CGM) const override {
7429 assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7430 // Only use TDC in constrained FP mode.
7431 if (!Builder.getIsFPConstrained())
7432 return nullptr;
7433
7434 llvm::Type *Ty = V->getType();
7435 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7436 llvm::Module &M = CGM.getModule();
7437 auto &Ctx = M.getContext();
7438 llvm::Function *TDCFunc =
7439 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7440 unsigned TDCBits = 0;
7441 switch (BuiltinID) {
7442 case Builtin::BI__builtin_isnan:
7443 TDCBits = 0xf;
7444 break;
7445 case Builtin::BIfinite:
7446 case Builtin::BI__finite:
7447 case Builtin::BIfinitef:
7448 case Builtin::BI__finitef:
7449 case Builtin::BIfinitel:
7450 case Builtin::BI__finitel:
7451 case Builtin::BI__builtin_isfinite:
7452 TDCBits = 0xfc0;
7453 break;
7454 case Builtin::BI__builtin_isinf:
7455 TDCBits = 0x30;
7456 break;
7457 default:
7458 break;
7459 }
7460 if (TDCBits)
7461 return Builder.CreateCall(
7462 TDCFunc,
7463 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7464 }
7465 return nullptr;
7466 }
7467 };
7468 }
7469
isPromotableIntegerTypeForABI(QualType Ty) const7470 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7471 // Treat an enum type as its underlying type.
7472 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7473 Ty = EnumTy->getDecl()->getIntegerType();
7474
7475 // Promotable integer types are required to be promoted by the ABI.
7476 if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7477 return true;
7478
7479 if (const auto *EIT = Ty->getAs<BitIntType>())
7480 if (EIT->getNumBits() < 64)
7481 return true;
7482
7483 // 32-bit values must also be promoted.
7484 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7485 switch (BT->getKind()) {
7486 case BuiltinType::Int:
7487 case BuiltinType::UInt:
7488 return true;
7489 default:
7490 return false;
7491 }
7492 return false;
7493 }
7494
isCompoundType(QualType Ty) const7495 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7496 return (Ty->isAnyComplexType() ||
7497 Ty->isVectorType() ||
7498 isAggregateTypeForABI(Ty));
7499 }
7500
isVectorArgumentType(QualType Ty) const7501 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7502 return (HasVector &&
7503 Ty->isVectorType() &&
7504 getContext().getTypeSize(Ty) <= 128);
7505 }
7506
isFPArgumentType(QualType Ty) const7507 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7508 if (IsSoftFloatABI)
7509 return false;
7510
7511 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7512 switch (BT->getKind()) {
7513 case BuiltinType::Float:
7514 case BuiltinType::Double:
7515 return true;
7516 default:
7517 return false;
7518 }
7519
7520 return false;
7521 }
7522
GetSingleElementType(QualType Ty) const7523 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7524 const RecordType *RT = Ty->getAs<RecordType>();
7525
7526 if (RT && RT->isStructureOrClassType()) {
7527 const RecordDecl *RD = RT->getDecl();
7528 QualType Found;
7529
7530 // If this is a C++ record, check the bases first.
7531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7532 for (const auto &I : CXXRD->bases()) {
7533 QualType Base = I.getType();
7534
7535 // Empty bases don't affect things either way.
7536 if (isEmptyRecord(getContext(), Base, true))
7537 continue;
7538
7539 if (!Found.isNull())
7540 return Ty;
7541 Found = GetSingleElementType(Base);
7542 }
7543
7544 // Check the fields.
7545 for (const auto *FD : RD->fields()) {
7546 // Unlike isSingleElementStruct(), empty structure and array fields
7547 // do count. So do anonymous bitfields that aren't zero-sized.
7548
7549 // Like isSingleElementStruct(), ignore C++20 empty data members.
7550 if (FD->hasAttr<NoUniqueAddressAttr>() &&
7551 isEmptyRecord(getContext(), FD->getType(), true))
7552 continue;
7553
7554 // Unlike isSingleElementStruct(), arrays do not count.
7555 // Nested structures still do though.
7556 if (!Found.isNull())
7557 return Ty;
7558 Found = GetSingleElementType(FD->getType());
7559 }
7560
7561 // Unlike isSingleElementStruct(), trailing padding is allowed.
7562 // An 8-byte aligned struct s { float f; } is passed as a double.
7563 if (!Found.isNull())
7564 return Found;
7565 }
7566
7567 return Ty;
7568 }
7569
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7570 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7571 QualType Ty) const {
7572 // Assume that va_list type is correct; should be pointer to LLVM type:
7573 // struct {
7574 // i64 __gpr;
7575 // i64 __fpr;
7576 // i8 *__overflow_arg_area;
7577 // i8 *__reg_save_area;
7578 // };
7579
7580 // Every non-vector argument occupies 8 bytes and is passed by preference
7581 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
7582 // always passed on the stack.
7583 Ty = getContext().getCanonicalType(Ty);
7584 auto TyInfo = getContext().getTypeInfoInChars(Ty);
7585 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7586 llvm::Type *DirectTy = ArgTy;
7587 ABIArgInfo AI = classifyArgumentType(Ty);
7588 bool IsIndirect = AI.isIndirect();
7589 bool InFPRs = false;
7590 bool IsVector = false;
7591 CharUnits UnpaddedSize;
7592 CharUnits DirectAlign;
7593 if (IsIndirect) {
7594 DirectTy = llvm::PointerType::getUnqual(DirectTy);
7595 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7596 } else {
7597 if (AI.getCoerceToType())
7598 ArgTy = AI.getCoerceToType();
7599 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7600 IsVector = ArgTy->isVectorTy();
7601 UnpaddedSize = TyInfo.Width;
7602 DirectAlign = TyInfo.Align;
7603 }
7604 CharUnits PaddedSize = CharUnits::fromQuantity(8);
7605 if (IsVector && UnpaddedSize > PaddedSize)
7606 PaddedSize = CharUnits::fromQuantity(16);
7607 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7608
7609 CharUnits Padding = (PaddedSize - UnpaddedSize);
7610
7611 llvm::Type *IndexTy = CGF.Int64Ty;
7612 llvm::Value *PaddedSizeV =
7613 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7614
7615 if (IsVector) {
7616 // Work out the address of a vector argument on the stack.
7617 // Vector arguments are always passed in the high bits of a
7618 // single (8 byte) or double (16 byte) stack slot.
7619 Address OverflowArgAreaPtr =
7620 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7621 Address OverflowArgArea =
7622 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7623 CGF.Int8Ty, TyInfo.Align);
7624 Address MemAddr =
7625 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7626
7627 // Update overflow_arg_area_ptr pointer
7628 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
7629 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(),
7630 PaddedSizeV, "overflow_arg_area");
7631 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7632
7633 return MemAddr;
7634 }
7635
7636 assert(PaddedSize.getQuantity() == 8);
7637
7638 unsigned MaxRegs, RegCountField, RegSaveIndex;
7639 CharUnits RegPadding;
7640 if (InFPRs) {
7641 MaxRegs = 4; // Maximum of 4 FPR arguments
7642 RegCountField = 1; // __fpr
7643 RegSaveIndex = 16; // save offset for f0
7644 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7645 } else {
7646 MaxRegs = 5; // Maximum of 5 GPR arguments
7647 RegCountField = 0; // __gpr
7648 RegSaveIndex = 2; // save offset for r2
7649 RegPadding = Padding; // values are passed in the low bits of a GPR
7650 }
7651
7652 Address RegCountPtr =
7653 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7654 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7655 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7656 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7657 "fits_in_regs");
7658
7659 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7660 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7661 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7662 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7663
7664 // Emit code to load the value if it was passed in registers.
7665 CGF.EmitBlock(InRegBlock);
7666
7667 // Work out the address of an argument register.
7668 llvm::Value *ScaledRegCount =
7669 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7670 llvm::Value *RegBase =
7671 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7672 + RegPadding.getQuantity());
7673 llvm::Value *RegOffset =
7674 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7675 Address RegSaveAreaPtr =
7676 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7677 llvm::Value *RegSaveArea =
7678 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7679 Address RawRegAddr(
7680 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
7681 CGF.Int8Ty, PaddedSize);
7682 Address RegAddr =
7683 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7684
7685 // Update the register count
7686 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7687 llvm::Value *NewRegCount =
7688 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7689 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7690 CGF.EmitBranch(ContBlock);
7691
7692 // Emit code to load the value if it was passed in memory.
7693 CGF.EmitBlock(InMemBlock);
7694
7695 // Work out the address of a stack argument.
7696 Address OverflowArgAreaPtr =
7697 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7698 Address OverflowArgArea =
7699 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7700 CGF.Int8Ty, PaddedSize);
7701 Address RawMemAddr =
7702 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7703 Address MemAddr =
7704 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7705
7706 // Update overflow_arg_area_ptr pointer
7707 llvm::Value *NewOverflowArgArea =
7708 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7709 OverflowArgArea.getPointer(), PaddedSizeV,
7710 "overflow_arg_area");
7711 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7712 CGF.EmitBranch(ContBlock);
7713
7714 // Return the appropriate result.
7715 CGF.EmitBlock(ContBlock);
7716 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
7717 "va_arg.addr");
7718
7719 if (IsIndirect)
7720 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
7721 TyInfo.Align);
7722
7723 return ResAddr;
7724 }
7725
classifyReturnType(QualType RetTy) const7726 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7727 if (RetTy->isVoidType())
7728 return ABIArgInfo::getIgnore();
7729 if (isVectorArgumentType(RetTy))
7730 return ABIArgInfo::getDirect();
7731 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7732 return getNaturalAlignIndirect(RetTy);
7733 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7734 : ABIArgInfo::getDirect());
7735 }
7736
classifyArgumentType(QualType Ty) const7737 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7738 // Handle the generic C++ ABI.
7739 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7740 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7741
7742 // Integers and enums are extended to full register width.
7743 if (isPromotableIntegerTypeForABI(Ty))
7744 return ABIArgInfo::getExtend(Ty);
7745
7746 // Handle vector types and vector-like structure types. Note that
7747 // as opposed to float-like structure types, we do not allow any
7748 // padding for vector-like structures, so verify the sizes match.
7749 uint64_t Size = getContext().getTypeSize(Ty);
7750 QualType SingleElementTy = GetSingleElementType(Ty);
7751 if (isVectorArgumentType(SingleElementTy) &&
7752 getContext().getTypeSize(SingleElementTy) == Size)
7753 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7754
7755 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7756 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7757 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7758
7759 // Handle small structures.
7760 if (const RecordType *RT = Ty->getAs<RecordType>()) {
7761 // Structures with flexible arrays have variable length, so really
7762 // fail the size test above.
7763 const RecordDecl *RD = RT->getDecl();
7764 if (RD->hasFlexibleArrayMember())
7765 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7766
7767 // The structure is passed as an unextended integer, a float, or a double.
7768 llvm::Type *PassTy;
7769 if (isFPArgumentType(SingleElementTy)) {
7770 assert(Size == 32 || Size == 64);
7771 if (Size == 32)
7772 PassTy = llvm::Type::getFloatTy(getVMContext());
7773 else
7774 PassTy = llvm::Type::getDoubleTy(getVMContext());
7775 } else
7776 PassTy = llvm::IntegerType::get(getVMContext(), Size);
7777 return ABIArgInfo::getDirect(PassTy);
7778 }
7779
7780 // Non-structure compounds are passed indirectly.
7781 if (isCompoundType(Ty))
7782 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7783
7784 return ABIArgInfo::getDirect(nullptr);
7785 }
7786
7787 //===----------------------------------------------------------------------===//
7788 // MSP430 ABI Implementation
7789 //===----------------------------------------------------------------------===//
7790
7791 namespace {
7792
7793 class MSP430ABIInfo : public DefaultABIInfo {
complexArgInfo()7794 static ABIArgInfo complexArgInfo() {
7795 ABIArgInfo Info = ABIArgInfo::getDirect();
7796 Info.setCanBeFlattened(false);
7797 return Info;
7798 }
7799
7800 public:
MSP430ABIInfo(CodeGenTypes & CGT)7801 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7802
classifyReturnType(QualType RetTy) const7803 ABIArgInfo classifyReturnType(QualType RetTy) const {
7804 if (RetTy->isAnyComplexType())
7805 return complexArgInfo();
7806
7807 return DefaultABIInfo::classifyReturnType(RetTy);
7808 }
7809
classifyArgumentType(QualType RetTy) const7810 ABIArgInfo classifyArgumentType(QualType RetTy) const {
7811 if (RetTy->isAnyComplexType())
7812 return complexArgInfo();
7813
7814 return DefaultABIInfo::classifyArgumentType(RetTy);
7815 }
7816
7817 // Just copy the original implementations because
7818 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
computeInfo(CGFunctionInfo & FI) const7819 void computeInfo(CGFunctionInfo &FI) const override {
7820 if (!getCXXABI().classifyReturnType(FI))
7821 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7822 for (auto &I : FI.arguments())
7823 I.info = classifyArgumentType(I.type);
7824 }
7825
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7826 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7827 QualType Ty) const override {
7828 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7829 }
7830 };
7831
7832 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7833 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)7834 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7835 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7836 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7837 CodeGen::CodeGenModule &M) const override;
7838 };
7839
7840 }
7841
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const7842 void MSP430TargetCodeGenInfo::setTargetAttributes(
7843 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7844 if (GV->isDeclaration())
7845 return;
7846 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7847 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7848 if (!InterruptAttr)
7849 return;
7850
7851 // Handle 'interrupt' attribute:
7852 llvm::Function *F = cast<llvm::Function>(GV);
7853
7854 // Step 1: Set ISR calling convention.
7855 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7856
7857 // Step 2: Add attributes goodness.
7858 F->addFnAttr(llvm::Attribute::NoInline);
7859 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7860 }
7861 }
7862
7863 //===----------------------------------------------------------------------===//
7864 // MIPS ABI Implementation. This works for both little-endian and
7865 // big-endian variants.
7866 //===----------------------------------------------------------------------===//
7867
7868 namespace {
7869 class MipsABIInfo : public ABIInfo {
7870 bool IsO32;
7871 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7872 void CoerceToIntArgs(uint64_t TySize,
7873 SmallVectorImpl<llvm::Type *> &ArgList) const;
7874 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7875 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7876 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7877 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)7878 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7879 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7880 StackAlignInBytes(IsO32 ? 8 : 16) {}
7881
7882 ABIArgInfo classifyReturnType(QualType RetTy) const;
7883 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7884 void computeInfo(CGFunctionInfo &FI) const override;
7885 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7886 QualType Ty) const override;
7887 ABIArgInfo extendType(QualType Ty) const;
7888 };
7889
7890 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7891 unsigned SizeOfUnwindException;
7892 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)7893 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7894 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7895 SizeOfUnwindException(IsO32 ? 24 : 32) {}
7896
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const7897 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7898 return 29;
7899 }
7900
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7901 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7902 CodeGen::CodeGenModule &CGM) const override {
7903 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7904 if (!FD) return;
7905 llvm::Function *Fn = cast<llvm::Function>(GV);
7906
7907 if (FD->hasAttr<MipsLongCallAttr>())
7908 Fn->addFnAttr("long-call");
7909 else if (FD->hasAttr<MipsShortCallAttr>())
7910 Fn->addFnAttr("short-call");
7911
7912 // Other attributes do not have a meaning for declarations.
7913 if (GV->isDeclaration())
7914 return;
7915
7916 if (FD->hasAttr<Mips16Attr>()) {
7917 Fn->addFnAttr("mips16");
7918 }
7919 else if (FD->hasAttr<NoMips16Attr>()) {
7920 Fn->addFnAttr("nomips16");
7921 }
7922
7923 if (FD->hasAttr<MicroMipsAttr>())
7924 Fn->addFnAttr("micromips");
7925 else if (FD->hasAttr<NoMicroMipsAttr>())
7926 Fn->addFnAttr("nomicromips");
7927
7928 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7929 if (!Attr)
7930 return;
7931
7932 const char *Kind;
7933 switch (Attr->getInterrupt()) {
7934 case MipsInterruptAttr::eic: Kind = "eic"; break;
7935 case MipsInterruptAttr::sw0: Kind = "sw0"; break;
7936 case MipsInterruptAttr::sw1: Kind = "sw1"; break;
7937 case MipsInterruptAttr::hw0: Kind = "hw0"; break;
7938 case MipsInterruptAttr::hw1: Kind = "hw1"; break;
7939 case MipsInterruptAttr::hw2: Kind = "hw2"; break;
7940 case MipsInterruptAttr::hw3: Kind = "hw3"; break;
7941 case MipsInterruptAttr::hw4: Kind = "hw4"; break;
7942 case MipsInterruptAttr::hw5: Kind = "hw5"; break;
7943 }
7944
7945 Fn->addFnAttr("interrupt", Kind);
7946
7947 }
7948
7949 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7950 llvm::Value *Address) const override;
7951
getSizeOfUnwindException() const7952 unsigned getSizeOfUnwindException() const override {
7953 return SizeOfUnwindException;
7954 }
7955 };
7956 }
7957
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const7958 void MipsABIInfo::CoerceToIntArgs(
7959 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7960 llvm::IntegerType *IntTy =
7961 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7962
7963 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7964 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7965 ArgList.push_back(IntTy);
7966
7967 // If necessary, add one more integer type to ArgList.
7968 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7969
7970 if (R)
7971 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7972 }
7973
7974 // In N32/64, an aligned double precision floating point field is passed in
7975 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const7976 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7977 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7978
7979 if (IsO32) {
7980 CoerceToIntArgs(TySize, ArgList);
7981 return llvm::StructType::get(getVMContext(), ArgList);
7982 }
7983
7984 if (Ty->isComplexType())
7985 return CGT.ConvertType(Ty);
7986
7987 const RecordType *RT = Ty->getAs<RecordType>();
7988
7989 // Unions/vectors are passed in integer registers.
7990 if (!RT || !RT->isStructureOrClassType()) {
7991 CoerceToIntArgs(TySize, ArgList);
7992 return llvm::StructType::get(getVMContext(), ArgList);
7993 }
7994
7995 const RecordDecl *RD = RT->getDecl();
7996 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7997 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7998
7999 uint64_t LastOffset = 0;
8000 unsigned idx = 0;
8001 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
8002
8003 // Iterate over fields in the struct/class and check if there are any aligned
8004 // double fields.
8005 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
8006 i != e; ++i, ++idx) {
8007 const QualType Ty = i->getType();
8008 const BuiltinType *BT = Ty->getAs<BuiltinType>();
8009
8010 if (!BT || BT->getKind() != BuiltinType::Double)
8011 continue;
8012
8013 uint64_t Offset = Layout.getFieldOffset(idx);
8014 if (Offset % 64) // Ignore doubles that are not aligned.
8015 continue;
8016
8017 // Add ((Offset - LastOffset) / 64) args of type i64.
8018 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
8019 ArgList.push_back(I64);
8020
8021 // Add double type.
8022 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
8023 LastOffset = Offset + 64;
8024 }
8025
8026 CoerceToIntArgs(TySize - LastOffset, IntArgList);
8027 ArgList.append(IntArgList.begin(), IntArgList.end());
8028
8029 return llvm::StructType::get(getVMContext(), ArgList);
8030 }
8031
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const8032 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
8033 uint64_t Offset) const {
8034 if (OrigOffset + MinABIStackAlignInBytes > Offset)
8035 return nullptr;
8036
8037 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
8038 }
8039
8040 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const8041 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
8042 Ty = useFirstFieldIfTransparentUnion(Ty);
8043
8044 uint64_t OrigOffset = Offset;
8045 uint64_t TySize = getContext().getTypeSize(Ty);
8046 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
8047
8048 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
8049 (uint64_t)StackAlignInBytes);
8050 unsigned CurrOffset = llvm::alignTo(Offset, Align);
8051 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
8052
8053 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
8054 // Ignore empty aggregates.
8055 if (TySize == 0)
8056 return ABIArgInfo::getIgnore();
8057
8058 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
8059 Offset = OrigOffset + MinABIStackAlignInBytes;
8060 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8061 }
8062
8063 // If we have reached here, aggregates are passed directly by coercing to
8064 // another structure type. Padding is inserted if the offset of the
8065 // aggregate is unaligned.
8066 ABIArgInfo ArgInfo =
8067 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
8068 getPaddingType(OrigOffset, CurrOffset));
8069 ArgInfo.setInReg(true);
8070 return ArgInfo;
8071 }
8072
8073 // Treat an enum type as its underlying type.
8074 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8075 Ty = EnumTy->getDecl()->getIntegerType();
8076
8077 // Make sure we pass indirectly things that are too large.
8078 if (const auto *EIT = Ty->getAs<BitIntType>())
8079 if (EIT->getNumBits() > 128 ||
8080 (EIT->getNumBits() > 64 &&
8081 !getContext().getTargetInfo().hasInt128Type()))
8082 return getNaturalAlignIndirect(Ty);
8083
8084 // All integral types are promoted to the GPR width.
8085 if (Ty->isIntegralOrEnumerationType())
8086 return extendType(Ty);
8087
8088 return ABIArgInfo::getDirect(
8089 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
8090 }
8091
8092 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const8093 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
8094 const RecordType *RT = RetTy->getAs<RecordType>();
8095 SmallVector<llvm::Type*, 8> RTList;
8096
8097 if (RT && RT->isStructureOrClassType()) {
8098 const RecordDecl *RD = RT->getDecl();
8099 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
8100 unsigned FieldCnt = Layout.getFieldCount();
8101
8102 // N32/64 returns struct/classes in floating point registers if the
8103 // following conditions are met:
8104 // 1. The size of the struct/class is no larger than 128-bit.
8105 // 2. The struct/class has one or two fields all of which are floating
8106 // point types.
8107 // 3. The offset of the first field is zero (this follows what gcc does).
8108 //
8109 // Any other composite results are returned in integer registers.
8110 //
8111 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8112 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8113 for (; b != e; ++b) {
8114 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8115
8116 if (!BT || !BT->isFloatingPoint())
8117 break;
8118
8119 RTList.push_back(CGT.ConvertType(b->getType()));
8120 }
8121
8122 if (b == e)
8123 return llvm::StructType::get(getVMContext(), RTList,
8124 RD->hasAttr<PackedAttr>());
8125
8126 RTList.clear();
8127 }
8128 }
8129
8130 CoerceToIntArgs(Size, RTList);
8131 return llvm::StructType::get(getVMContext(), RTList);
8132 }
8133
classifyReturnType(QualType RetTy) const8134 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8135 uint64_t Size = getContext().getTypeSize(RetTy);
8136
8137 if (RetTy->isVoidType())
8138 return ABIArgInfo::getIgnore();
8139
8140 // O32 doesn't treat zero-sized structs differently from other structs.
8141 // However, N32/N64 ignores zero sized return values.
8142 if (!IsO32 && Size == 0)
8143 return ABIArgInfo::getIgnore();
8144
8145 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8146 if (Size <= 128) {
8147 if (RetTy->isAnyComplexType())
8148 return ABIArgInfo::getDirect();
8149
8150 // O32 returns integer vectors in registers and N32/N64 returns all small
8151 // aggregates in registers.
8152 if (!IsO32 ||
8153 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8154 ABIArgInfo ArgInfo =
8155 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8156 ArgInfo.setInReg(true);
8157 return ArgInfo;
8158 }
8159 }
8160
8161 return getNaturalAlignIndirect(RetTy);
8162 }
8163
8164 // Treat an enum type as its underlying type.
8165 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8166 RetTy = EnumTy->getDecl()->getIntegerType();
8167
8168 // Make sure we pass indirectly things that are too large.
8169 if (const auto *EIT = RetTy->getAs<BitIntType>())
8170 if (EIT->getNumBits() > 128 ||
8171 (EIT->getNumBits() > 64 &&
8172 !getContext().getTargetInfo().hasInt128Type()))
8173 return getNaturalAlignIndirect(RetTy);
8174
8175 if (isPromotableIntegerTypeForABI(RetTy))
8176 return ABIArgInfo::getExtend(RetTy);
8177
8178 if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8179 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8180 return ABIArgInfo::getSignExtend(RetTy);
8181
8182 return ABIArgInfo::getDirect();
8183 }
8184
computeInfo(CGFunctionInfo & FI) const8185 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8186 ABIArgInfo &RetInfo = FI.getReturnInfo();
8187 if (!getCXXABI().classifyReturnType(FI))
8188 RetInfo = classifyReturnType(FI.getReturnType());
8189
8190 // Check if a pointer to an aggregate is passed as a hidden argument.
8191 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8192
8193 for (auto &I : FI.arguments())
8194 I.info = classifyArgumentType(I.type, Offset);
8195 }
8196
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType OrigTy) const8197 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8198 QualType OrigTy) const {
8199 QualType Ty = OrigTy;
8200
8201 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8202 // Pointers are also promoted in the same way but this only matters for N32.
8203 unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8204 unsigned PtrWidth = getTarget().getPointerWidth(0);
8205 bool DidPromote = false;
8206 if ((Ty->isIntegerType() &&
8207 getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8208 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8209 DidPromote = true;
8210 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8211 Ty->isSignedIntegerType());
8212 }
8213
8214 auto TyInfo = getContext().getTypeInfoInChars(Ty);
8215
8216 // The alignment of things in the argument area is never larger than
8217 // StackAlignInBytes.
8218 TyInfo.Align =
8219 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8220
8221 // MinABIStackAlignInBytes is the size of argument slots on the stack.
8222 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8223
8224 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8225 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8226
8227
8228 // If there was a promotion, "unpromote" into a temporary.
8229 // TODO: can we just use a pointer into a subset of the original slot?
8230 if (DidPromote) {
8231 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8232 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8233
8234 // Truncate down to the right width.
8235 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8236 : CGF.IntPtrTy);
8237 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8238 if (OrigTy->isPointerType())
8239 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8240
8241 CGF.Builder.CreateStore(V, Temp);
8242 Addr = Temp;
8243 }
8244
8245 return Addr;
8246 }
8247
extendType(QualType Ty) const8248 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8249 int TySize = getContext().getTypeSize(Ty);
8250
8251 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8252 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8253 return ABIArgInfo::getSignExtend(Ty);
8254
8255 return ABIArgInfo::getExtend(Ty);
8256 }
8257
8258 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const8259 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8260 llvm::Value *Address) const {
8261 // This information comes from gcc's implementation, which seems to
8262 // as canonical as it gets.
8263
8264 // Everything on MIPS is 4 bytes. Double-precision FP registers
8265 // are aliased to pairs of single-precision FP registers.
8266 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8267
8268 // 0-31 are the general purpose registers, $0 - $31.
8269 // 32-63 are the floating-point registers, $f0 - $f31.
8270 // 64 and 65 are the multiply/divide registers, $hi and $lo.
8271 // 66 is the (notional, I think) register for signal-handler return.
8272 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8273
8274 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8275 // They are one bit wide and ignored here.
8276
8277 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8278 // (coprocessor 1 is the FP unit)
8279 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8280 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8281 // 176-181 are the DSP accumulator registers.
8282 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8283 return false;
8284 }
8285
8286 //===----------------------------------------------------------------------===//
8287 // M68k ABI Implementation
8288 //===----------------------------------------------------------------------===//
8289
8290 namespace {
8291
8292 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8293 public:
M68kTargetCodeGenInfo(CodeGenTypes & CGT)8294 M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8295 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8296 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8297 CodeGen::CodeGenModule &M) const override;
8298 };
8299
8300 } // namespace
8301
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const8302 void M68kTargetCodeGenInfo::setTargetAttributes(
8303 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8304 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8305 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8306 // Handle 'interrupt' attribute:
8307 llvm::Function *F = cast<llvm::Function>(GV);
8308
8309 // Step 1: Set ISR calling convention.
8310 F->setCallingConv(llvm::CallingConv::M68k_INTR);
8311
8312 // Step 2: Add attributes goodness.
8313 F->addFnAttr(llvm::Attribute::NoInline);
8314
8315 // Step 3: Emit ISR vector alias.
8316 unsigned Num = attr->getNumber() / 2;
8317 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8318 "__isr_" + Twine(Num), F);
8319 }
8320 }
8321 }
8322
8323 //===----------------------------------------------------------------------===//
8324 // AVR ABI Implementation. Documented at
8325 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8326 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8327 //===----------------------------------------------------------------------===//
8328
8329 namespace {
8330 class AVRABIInfo : public DefaultABIInfo {
8331 private:
8332 // The total amount of registers can be used to pass parameters. It is 18 on
8333 // AVR, or 6 on AVRTiny.
8334 const unsigned ParamRegs;
8335 // The total amount of registers can be used to pass return value. It is 8 on
8336 // AVR, or 4 on AVRTiny.
8337 const unsigned RetRegs;
8338
8339 public:
AVRABIInfo(CodeGenTypes & CGT,unsigned NPR,unsigned NRR)8340 AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
8341 : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {}
8342
classifyReturnType(QualType Ty,bool & LargeRet) const8343 ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const {
8344 if (isAggregateTypeForABI(Ty)) {
8345 // On AVR, a return struct with size less than or equals to 8 bytes is
8346 // returned directly via registers R18-R25. On AVRTiny, a return struct
8347 // with size less than or equals to 4 bytes is returned directly via
8348 // registers R22-R25.
8349 if (getContext().getTypeSize(Ty) <= RetRegs * 8)
8350 return ABIArgInfo::getDirect();
8351 // A return struct with larger size is returned via a stack
8352 // slot, along with a pointer to it as the function's implicit argument.
8353 LargeRet = true;
8354 return getNaturalAlignIndirect(Ty);
8355 }
8356 // Otherwise we follow the default way which is compatible.
8357 return DefaultABIInfo::classifyReturnType(Ty);
8358 }
8359
classifyArgumentType(QualType Ty,unsigned & NumRegs) const8360 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const {
8361 unsigned TySize = getContext().getTypeSize(Ty);
8362
8363 // An int8 type argument always costs two registers like an int16.
8364 if (TySize == 8 && NumRegs >= 2) {
8365 NumRegs -= 2;
8366 return ABIArgInfo::getExtend(Ty);
8367 }
8368
8369 // If the argument size is an odd number of bytes, round up the size
8370 // to the next even number.
8371 TySize = llvm::alignTo(TySize, 16);
8372
8373 // Any type including an array/struct type can be passed in rgisters,
8374 // if there are enough registers left.
8375 if (TySize <= NumRegs * 8) {
8376 NumRegs -= TySize / 8;
8377 return ABIArgInfo::getDirect();
8378 }
8379
8380 // An argument is passed either completely in registers or completely in
8381 // memory. Since there are not enough registers left, current argument
8382 // and all other unprocessed arguments should be passed in memory.
8383 // However we still need to return `ABIArgInfo::getDirect()` other than
8384 // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot
8385 // will be allocated, so the stack frame layout will be incompatible with
8386 // avr-gcc.
8387 NumRegs = 0;
8388 return ABIArgInfo::getDirect();
8389 }
8390
computeInfo(CGFunctionInfo & FI) const8391 void computeInfo(CGFunctionInfo &FI) const override {
8392 // Decide the return type.
8393 bool LargeRet = false;
8394 if (!getCXXABI().classifyReturnType(FI))
8395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet);
8396
8397 // Decide each argument type. The total number of registers can be used for
8398 // arguments depends on several factors:
8399 // 1. Arguments of varargs functions are passed on the stack. This applies
8400 // even to the named arguments. So no register can be used.
8401 // 2. Total 18 registers can be used on avr and 6 ones on avrtiny.
8402 // 3. If the return type is a struct with too large size, two registers
8403 // (out of 18/6) will be cost as an implicit pointer argument.
8404 unsigned NumRegs = ParamRegs;
8405 if (FI.isVariadic())
8406 NumRegs = 0;
8407 else if (LargeRet)
8408 NumRegs -= 2;
8409 for (auto &I : FI.arguments())
8410 I.info = classifyArgumentType(I.type, NumRegs);
8411 }
8412 };
8413
8414 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8415 public:
AVRTargetCodeGenInfo(CodeGenTypes & CGT,unsigned NPR,unsigned NRR)8416 AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
8417 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {}
8418
getGlobalVarAddressSpace(CodeGenModule & CGM,const VarDecl * D) const8419 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8420 const VarDecl *D) const override {
8421 // Check if global/static variable is defined in address space
8422 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5)
8423 // but not constant.
8424 if (D) {
8425 LangAS AS = D->getType().getAddressSpace();
8426 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) &&
8427 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified())
8428 CGM.getDiags().Report(D->getLocation(),
8429 diag::err_verify_nonconst_addrspace)
8430 << "__flash*";
8431 }
8432 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8433 }
8434
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const8435 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8436 CodeGen::CodeGenModule &CGM) const override {
8437 if (GV->isDeclaration())
8438 return;
8439 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8440 if (!FD) return;
8441 auto *Fn = cast<llvm::Function>(GV);
8442
8443 if (FD->getAttr<AVRInterruptAttr>())
8444 Fn->addFnAttr("interrupt");
8445
8446 if (FD->getAttr<AVRSignalAttr>())
8447 Fn->addFnAttr("signal");
8448 }
8449 };
8450 }
8451
8452 //===----------------------------------------------------------------------===//
8453 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8454 // Currently subclassed only to implement custom OpenCL C function attribute
8455 // handling.
8456 //===----------------------------------------------------------------------===//
8457
8458 namespace {
8459
8460 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8461 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)8462 TCETargetCodeGenInfo(CodeGenTypes &CGT)
8463 : DefaultTargetCodeGenInfo(CGT) {}
8464
8465 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8466 CodeGen::CodeGenModule &M) const override;
8467 };
8468
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const8469 void TCETargetCodeGenInfo::setTargetAttributes(
8470 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8471 if (GV->isDeclaration())
8472 return;
8473 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8474 if (!FD) return;
8475
8476 llvm::Function *F = cast<llvm::Function>(GV);
8477
8478 if (M.getLangOpts().OpenCL) {
8479 if (FD->hasAttr<OpenCLKernelAttr>()) {
8480 // OpenCL C Kernel functions are not subject to inlining
8481 F->addFnAttr(llvm::Attribute::NoInline);
8482 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8483 if (Attr) {
8484 // Convert the reqd_work_group_size() attributes to metadata.
8485 llvm::LLVMContext &Context = F->getContext();
8486 llvm::NamedMDNode *OpenCLMetadata =
8487 M.getModule().getOrInsertNamedMetadata(
8488 "opencl.kernel_wg_size_info");
8489
8490 SmallVector<llvm::Metadata *, 5> Operands;
8491 Operands.push_back(llvm::ConstantAsMetadata::get(F));
8492
8493 Operands.push_back(
8494 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8495 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8496 Operands.push_back(
8497 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8498 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8499 Operands.push_back(
8500 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8501 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8502
8503 // Add a boolean constant operand for "required" (true) or "hint"
8504 // (false) for implementing the work_group_size_hint attr later.
8505 // Currently always true as the hint is not yet implemented.
8506 Operands.push_back(
8507 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8508 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8509 }
8510 }
8511 }
8512 }
8513
8514 }
8515
8516 //===----------------------------------------------------------------------===//
8517 // Hexagon ABI Implementation
8518 //===----------------------------------------------------------------------===//
8519
8520 namespace {
8521
8522 class HexagonABIInfo : public DefaultABIInfo {
8523 public:
HexagonABIInfo(CodeGenTypes & CGT)8524 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8525
8526 private:
8527 ABIArgInfo classifyReturnType(QualType RetTy) const;
8528 ABIArgInfo classifyArgumentType(QualType RetTy) const;
8529 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8530
8531 void computeInfo(CGFunctionInfo &FI) const override;
8532
8533 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8534 QualType Ty) const override;
8535 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8536 QualType Ty) const;
8537 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8538 QualType Ty) const;
8539 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8540 QualType Ty) const;
8541 };
8542
8543 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8544 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)8545 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8546 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8547
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const8548 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8549 return 29;
8550 }
8551
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & GCM) const8552 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8553 CodeGen::CodeGenModule &GCM) const override {
8554 if (GV->isDeclaration())
8555 return;
8556 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8557 if (!FD)
8558 return;
8559 }
8560 };
8561
8562 } // namespace
8563
computeInfo(CGFunctionInfo & FI) const8564 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8565 unsigned RegsLeft = 6;
8566 if (!getCXXABI().classifyReturnType(FI))
8567 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8568 for (auto &I : FI.arguments())
8569 I.info = classifyArgumentType(I.type, &RegsLeft);
8570 }
8571
HexagonAdjustRegsLeft(uint64_t Size,unsigned * RegsLeft)8572 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8573 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8574 " through registers");
8575
8576 if (*RegsLeft == 0)
8577 return false;
8578
8579 if (Size <= 32) {
8580 (*RegsLeft)--;
8581 return true;
8582 }
8583
8584 if (2 <= (*RegsLeft & (~1U))) {
8585 *RegsLeft = (*RegsLeft & (~1U)) - 2;
8586 return true;
8587 }
8588
8589 // Next available register was r5 but candidate was greater than 32-bits so it
8590 // has to go on the stack. However we still consume r5
8591 if (*RegsLeft == 1)
8592 *RegsLeft = 0;
8593
8594 return false;
8595 }
8596
classifyArgumentType(QualType Ty,unsigned * RegsLeft) const8597 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8598 unsigned *RegsLeft) const {
8599 if (!isAggregateTypeForABI(Ty)) {
8600 // Treat an enum type as its underlying type.
8601 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8602 Ty = EnumTy->getDecl()->getIntegerType();
8603
8604 uint64_t Size = getContext().getTypeSize(Ty);
8605 if (Size <= 64)
8606 HexagonAdjustRegsLeft(Size, RegsLeft);
8607
8608 if (Size > 64 && Ty->isBitIntType())
8609 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8610
8611 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8612 : ABIArgInfo::getDirect();
8613 }
8614
8615 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8616 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8617
8618 // Ignore empty records.
8619 if (isEmptyRecord(getContext(), Ty, true))
8620 return ABIArgInfo::getIgnore();
8621
8622 uint64_t Size = getContext().getTypeSize(Ty);
8623 unsigned Align = getContext().getTypeAlign(Ty);
8624
8625 if (Size > 64)
8626 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8627
8628 if (HexagonAdjustRegsLeft(Size, RegsLeft))
8629 Align = Size <= 32 ? 32 : 64;
8630 if (Size <= Align) {
8631 // Pass in the smallest viable integer type.
8632 if (!llvm::isPowerOf2_64(Size))
8633 Size = llvm::NextPowerOf2(Size);
8634 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8635 }
8636 return DefaultABIInfo::classifyArgumentType(Ty);
8637 }
8638
classifyReturnType(QualType RetTy) const8639 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8640 if (RetTy->isVoidType())
8641 return ABIArgInfo::getIgnore();
8642
8643 const TargetInfo &T = CGT.getTarget();
8644 uint64_t Size = getContext().getTypeSize(RetTy);
8645
8646 if (RetTy->getAs<VectorType>()) {
8647 // HVX vectors are returned in vector registers or register pairs.
8648 if (T.hasFeature("hvx")) {
8649 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8650 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8651 if (Size == VecSize || Size == 2*VecSize)
8652 return ABIArgInfo::getDirectInReg();
8653 }
8654 // Large vector types should be returned via memory.
8655 if (Size > 64)
8656 return getNaturalAlignIndirect(RetTy);
8657 }
8658
8659 if (!isAggregateTypeForABI(RetTy)) {
8660 // Treat an enum type as its underlying type.
8661 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8662 RetTy = EnumTy->getDecl()->getIntegerType();
8663
8664 if (Size > 64 && RetTy->isBitIntType())
8665 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8666
8667 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8668 : ABIArgInfo::getDirect();
8669 }
8670
8671 if (isEmptyRecord(getContext(), RetTy, true))
8672 return ABIArgInfo::getIgnore();
8673
8674 // Aggregates <= 8 bytes are returned in registers, other aggregates
8675 // are returned indirectly.
8676 if (Size <= 64) {
8677 // Return in the smallest viable integer type.
8678 if (!llvm::isPowerOf2_64(Size))
8679 Size = llvm::NextPowerOf2(Size);
8680 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8681 }
8682 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8683 }
8684
EmitVAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8685 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8686 Address VAListAddr,
8687 QualType Ty) const {
8688 // Load the overflow area pointer.
8689 Address __overflow_area_pointer_p =
8690 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8691 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8692 __overflow_area_pointer_p, "__overflow_area_pointer");
8693
8694 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8695 if (Align > 4) {
8696 // Alignment should be a power of 2.
8697 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8698
8699 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8700 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8701
8702 // Add offset to the current pointer to access the argument.
8703 __overflow_area_pointer =
8704 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8705 llvm::Value *AsInt =
8706 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8707
8708 // Create a mask which should be "AND"ed
8709 // with (overflow_arg_area + align - 1)
8710 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8711 __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8712 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8713 "__overflow_area_pointer.align");
8714 }
8715
8716 // Get the type of the argument from memory and bitcast
8717 // overflow area pointer to the argument type.
8718 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8719 Address AddrTyped = CGF.Builder.CreateElementBitCast(
8720 Address(__overflow_area_pointer, CGF.Int8Ty,
8721 CharUnits::fromQuantity(Align)),
8722 PTy);
8723
8724 // Round up to the minimum stack alignment for varargs which is 4 bytes.
8725 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8726
8727 __overflow_area_pointer = CGF.Builder.CreateGEP(
8728 CGF.Int8Ty, __overflow_area_pointer,
8729 llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8730 "__overflow_area_pointer.next");
8731 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8732
8733 return AddrTyped;
8734 }
8735
EmitVAArgForHexagon(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8736 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8737 Address VAListAddr,
8738 QualType Ty) const {
8739 // FIXME: Need to handle alignment
8740 llvm::Type *BP = CGF.Int8PtrTy;
8741 CGBuilderTy &Builder = CGF.Builder;
8742 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap");
8743 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8744 // Handle address alignment for type alignment > 32 bits
8745 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8746 if (TyAlign > 4) {
8747 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8748 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8749 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8750 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8751 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8752 }
8753 Address AddrTyped = Builder.CreateElementBitCast(
8754 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)),
8755 CGF.ConvertType(Ty));
8756
8757 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8758 llvm::Value *NextAddr = Builder.CreateGEP(
8759 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8760 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8761
8762 return AddrTyped;
8763 }
8764
EmitVAArgForHexagonLinux(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8765 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8766 Address VAListAddr,
8767 QualType Ty) const {
8768 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8769
8770 if (ArgSize > 8)
8771 return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8772
8773 // Here we have check if the argument is in register area or
8774 // in overflow area.
8775 // If the saved register area pointer + argsize rounded up to alignment >
8776 // saved register area end pointer, argument is in overflow area.
8777 unsigned RegsLeft = 6;
8778 Ty = CGF.getContext().getCanonicalType(Ty);
8779 (void)classifyArgumentType(Ty, &RegsLeft);
8780
8781 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8782 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8783 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8784 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8785
8786 // Get rounded size of the argument.GCC does not allow vararg of
8787 // size < 4 bytes. We follow the same logic here.
8788 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8789 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8790
8791 // Argument may be in saved register area
8792 CGF.EmitBlock(MaybeRegBlock);
8793
8794 // Load the current saved register area pointer.
8795 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8796 VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8797 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8798 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8799
8800 // Load the saved register area end pointer.
8801 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8802 VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8803 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8804 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8805
8806 // If the size of argument is > 4 bytes, check if the stack
8807 // location is aligned to 8 bytes
8808 if (ArgAlign > 4) {
8809
8810 llvm::Value *__current_saved_reg_area_pointer_int =
8811 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8812 CGF.Int32Ty);
8813
8814 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8815 __current_saved_reg_area_pointer_int,
8816 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8817 "align_current_saved_reg_area_pointer");
8818
8819 __current_saved_reg_area_pointer_int =
8820 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8821 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8822 "align_current_saved_reg_area_pointer");
8823
8824 __current_saved_reg_area_pointer =
8825 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8826 __current_saved_reg_area_pointer->getType(),
8827 "align_current_saved_reg_area_pointer");
8828 }
8829
8830 llvm::Value *__new_saved_reg_area_pointer =
8831 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8832 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8833 "__new_saved_reg_area_pointer");
8834
8835 llvm::Value *UsingStack = nullptr;
8836 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8837 __saved_reg_area_end_pointer);
8838
8839 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8840
8841 // Argument in saved register area
8842 // Implement the block where argument is in register saved area
8843 CGF.EmitBlock(InRegBlock);
8844
8845 llvm::Type *PTy = CGF.ConvertType(Ty);
8846 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8847 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8848
8849 CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8850 __current_saved_reg_area_pointer_p);
8851
8852 CGF.EmitBranch(ContBlock);
8853
8854 // Argument in overflow area
8855 // Implement the block where the argument is in overflow area.
8856 CGF.EmitBlock(OnStackBlock);
8857
8858 // Load the overflow area pointer
8859 Address __overflow_area_pointer_p =
8860 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8861 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8862 __overflow_area_pointer_p, "__overflow_area_pointer");
8863
8864 // Align the overflow area pointer according to the alignment of the argument
8865 if (ArgAlign > 4) {
8866 llvm::Value *__overflow_area_pointer_int =
8867 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8868
8869 __overflow_area_pointer_int =
8870 CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8871 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8872 "align_overflow_area_pointer");
8873
8874 __overflow_area_pointer_int =
8875 CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8876 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8877 "align_overflow_area_pointer");
8878
8879 __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8880 __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8881 "align_overflow_area_pointer");
8882 }
8883
8884 // Get the pointer for next argument in overflow area and store it
8885 // to overflow area pointer.
8886 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8887 CGF.Int8Ty, __overflow_area_pointer,
8888 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8889 "__overflow_area_pointer.next");
8890
8891 CGF.Builder.CreateStore(__new_overflow_area_pointer,
8892 __overflow_area_pointer_p);
8893
8894 CGF.Builder.CreateStore(__new_overflow_area_pointer,
8895 __current_saved_reg_area_pointer_p);
8896
8897 // Bitcast the overflow area pointer to the type of argument.
8898 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8899 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8900 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8901
8902 CGF.EmitBranch(ContBlock);
8903
8904 // Get the correct pointer to load the variable argument
8905 // Implement the ContBlock
8906 CGF.EmitBlock(ContBlock);
8907
8908 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
8909 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy);
8910 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8911 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8912 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8913
8914 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign));
8915 }
8916
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8917 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8918 QualType Ty) const {
8919
8920 if (getTarget().getTriple().isMusl())
8921 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8922
8923 return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8924 }
8925
8926 //===----------------------------------------------------------------------===//
8927 // Lanai ABI Implementation
8928 //===----------------------------------------------------------------------===//
8929
8930 namespace {
8931 class LanaiABIInfo : public DefaultABIInfo {
8932 public:
LanaiABIInfo(CodeGen::CodeGenTypes & CGT)8933 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8934
8935 bool shouldUseInReg(QualType Ty, CCState &State) const;
8936
computeInfo(CGFunctionInfo & FI) const8937 void computeInfo(CGFunctionInfo &FI) const override {
8938 CCState State(FI);
8939 // Lanai uses 4 registers to pass arguments unless the function has the
8940 // regparm attribute set.
8941 if (FI.getHasRegParm()) {
8942 State.FreeRegs = FI.getRegParm();
8943 } else {
8944 State.FreeRegs = 4;
8945 }
8946
8947 if (!getCXXABI().classifyReturnType(FI))
8948 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8949 for (auto &I : FI.arguments())
8950 I.info = classifyArgumentType(I.type, State);
8951 }
8952
8953 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8954 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8955 };
8956 } // end anonymous namespace
8957
shouldUseInReg(QualType Ty,CCState & State) const8958 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8959 unsigned Size = getContext().getTypeSize(Ty);
8960 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8961
8962 if (SizeInRegs == 0)
8963 return false;
8964
8965 if (SizeInRegs > State.FreeRegs) {
8966 State.FreeRegs = 0;
8967 return false;
8968 }
8969
8970 State.FreeRegs -= SizeInRegs;
8971
8972 return true;
8973 }
8974
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const8975 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8976 CCState &State) const {
8977 if (!ByVal) {
8978 if (State.FreeRegs) {
8979 --State.FreeRegs; // Non-byval indirects just use one pointer.
8980 return getNaturalAlignIndirectInReg(Ty);
8981 }
8982 return getNaturalAlignIndirect(Ty, false);
8983 }
8984
8985 // Compute the byval alignment.
8986 const unsigned MinABIStackAlignInBytes = 4;
8987 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8988 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8989 /*Realign=*/TypeAlign >
8990 MinABIStackAlignInBytes);
8991 }
8992
classifyArgumentType(QualType Ty,CCState & State) const8993 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8994 CCState &State) const {
8995 // Check with the C++ ABI first.
8996 const RecordType *RT = Ty->getAs<RecordType>();
8997 if (RT) {
8998 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8999 if (RAA == CGCXXABI::RAA_Indirect) {
9000 return getIndirectResult(Ty, /*ByVal=*/false, State);
9001 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
9002 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
9003 }
9004 }
9005
9006 if (isAggregateTypeForABI(Ty)) {
9007 // Structures with flexible arrays are always indirect.
9008 if (RT && RT->getDecl()->hasFlexibleArrayMember())
9009 return getIndirectResult(Ty, /*ByVal=*/true, State);
9010
9011 // Ignore empty structs/unions.
9012 if (isEmptyRecord(getContext(), Ty, true))
9013 return ABIArgInfo::getIgnore();
9014
9015 llvm::LLVMContext &LLVMContext = getVMContext();
9016 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
9017 if (SizeInRegs <= State.FreeRegs) {
9018 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9019 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9020 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9021 State.FreeRegs -= SizeInRegs;
9022 return ABIArgInfo::getDirectInReg(Result);
9023 } else {
9024 State.FreeRegs = 0;
9025 }
9026 return getIndirectResult(Ty, true, State);
9027 }
9028
9029 // Treat an enum type as its underlying type.
9030 if (const auto *EnumTy = Ty->getAs<EnumType>())
9031 Ty = EnumTy->getDecl()->getIntegerType();
9032
9033 bool InReg = shouldUseInReg(Ty, State);
9034
9035 // Don't pass >64 bit integers in registers.
9036 if (const auto *EIT = Ty->getAs<BitIntType>())
9037 if (EIT->getNumBits() > 64)
9038 return getIndirectResult(Ty, /*ByVal=*/true, State);
9039
9040 if (isPromotableIntegerTypeForABI(Ty)) {
9041 if (InReg)
9042 return ABIArgInfo::getDirectInReg();
9043 return ABIArgInfo::getExtend(Ty);
9044 }
9045 if (InReg)
9046 return ABIArgInfo::getDirectInReg();
9047 return ABIArgInfo::getDirect();
9048 }
9049
9050 namespace {
9051 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
9052 public:
LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)9053 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9054 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
9055 };
9056 }
9057
9058 //===----------------------------------------------------------------------===//
9059 // AMDGPU ABI Implementation
9060 //===----------------------------------------------------------------------===//
9061
9062 namespace {
9063
9064 class AMDGPUABIInfo final : public DefaultABIInfo {
9065 private:
9066 static const unsigned MaxNumRegsForArgsRet = 16;
9067
9068 unsigned numRegsForType(QualType Ty) const;
9069
9070 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
9071 bool isHomogeneousAggregateSmallEnough(const Type *Base,
9072 uint64_t Members) const override;
9073
9074 // Coerce HIP scalar pointer arguments from generic pointers to global ones.
coerceKernelArgumentType(llvm::Type * Ty,unsigned FromAS,unsigned ToAS) const9075 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
9076 unsigned ToAS) const {
9077 // Single value types.
9078 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
9079 if (PtrTy && PtrTy->getAddressSpace() == FromAS)
9080 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS);
9081 return Ty;
9082 }
9083
9084 public:
AMDGPUABIInfo(CodeGen::CodeGenTypes & CGT)9085 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
9086 DefaultABIInfo(CGT) {}
9087
9088 ABIArgInfo classifyReturnType(QualType RetTy) const;
9089 ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
9090 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
9091
9092 void computeInfo(CGFunctionInfo &FI) const override;
9093 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9094 QualType Ty) const override;
9095 };
9096
isHomogeneousAggregateBaseType(QualType Ty) const9097 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
9098 return true;
9099 }
9100
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const9101 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
9102 const Type *Base, uint64_t Members) const {
9103 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
9104
9105 // Homogeneous Aggregates may occupy at most 16 registers.
9106 return Members * NumRegs <= MaxNumRegsForArgsRet;
9107 }
9108
9109 /// Estimate number of registers the type will use when passed in registers.
numRegsForType(QualType Ty) const9110 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
9111 unsigned NumRegs = 0;
9112
9113 if (const VectorType *VT = Ty->getAs<VectorType>()) {
9114 // Compute from the number of elements. The reported size is based on the
9115 // in-memory size, which includes the padding 4th element for 3-vectors.
9116 QualType EltTy = VT->getElementType();
9117 unsigned EltSize = getContext().getTypeSize(EltTy);
9118
9119 // 16-bit element vectors should be passed as packed.
9120 if (EltSize == 16)
9121 return (VT->getNumElements() + 1) / 2;
9122
9123 unsigned EltNumRegs = (EltSize + 31) / 32;
9124 return EltNumRegs * VT->getNumElements();
9125 }
9126
9127 if (const RecordType *RT = Ty->getAs<RecordType>()) {
9128 const RecordDecl *RD = RT->getDecl();
9129 assert(!RD->hasFlexibleArrayMember());
9130
9131 for (const FieldDecl *Field : RD->fields()) {
9132 QualType FieldTy = Field->getType();
9133 NumRegs += numRegsForType(FieldTy);
9134 }
9135
9136 return NumRegs;
9137 }
9138
9139 return (getContext().getTypeSize(Ty) + 31) / 32;
9140 }
9141
computeInfo(CGFunctionInfo & FI) const9142 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
9143 llvm::CallingConv::ID CC = FI.getCallingConvention();
9144
9145 if (!getCXXABI().classifyReturnType(FI))
9146 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9147
9148 unsigned NumRegsLeft = MaxNumRegsForArgsRet;
9149 for (auto &Arg : FI.arguments()) {
9150 if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
9151 Arg.info = classifyKernelArgumentType(Arg.type);
9152 } else {
9153 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
9154 }
9155 }
9156 }
9157
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const9158 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9159 QualType Ty) const {
9160 llvm_unreachable("AMDGPU does not support varargs");
9161 }
9162
classifyReturnType(QualType RetTy) const9163 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
9164 if (isAggregateTypeForABI(RetTy)) {
9165 // Records with non-trivial destructors/copy-constructors should not be
9166 // returned by value.
9167 if (!getRecordArgABI(RetTy, getCXXABI())) {
9168 // Ignore empty structs/unions.
9169 if (isEmptyRecord(getContext(), RetTy, true))
9170 return ABIArgInfo::getIgnore();
9171
9172 // Lower single-element structs to just return a regular value.
9173 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9174 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9175
9176 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9177 const RecordDecl *RD = RT->getDecl();
9178 if (RD->hasFlexibleArrayMember())
9179 return DefaultABIInfo::classifyReturnType(RetTy);
9180 }
9181
9182 // Pack aggregates <= 4 bytes into single VGPR or pair.
9183 uint64_t Size = getContext().getTypeSize(RetTy);
9184 if (Size <= 16)
9185 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9186
9187 if (Size <= 32)
9188 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9189
9190 if (Size <= 64) {
9191 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9192 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9193 }
9194
9195 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9196 return ABIArgInfo::getDirect();
9197 }
9198 }
9199
9200 // Otherwise just do the default thing.
9201 return DefaultABIInfo::classifyReturnType(RetTy);
9202 }
9203
9204 /// For kernels all parameters are really passed in a special buffer. It doesn't
9205 /// make sense to pass anything byval, so everything must be direct.
classifyKernelArgumentType(QualType Ty) const9206 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9207 Ty = useFirstFieldIfTransparentUnion(Ty);
9208
9209 // TODO: Can we omit empty structs?
9210
9211 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9212 Ty = QualType(SeltTy, 0);
9213
9214 llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9215 llvm::Type *LTy = OrigLTy;
9216 if (getContext().getLangOpts().HIP) {
9217 LTy = coerceKernelArgumentType(
9218 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9219 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9220 }
9221
9222 // FIXME: Should also use this for OpenCL, but it requires addressing the
9223 // problem of kernels being called.
9224 //
9225 // FIXME: This doesn't apply the optimization of coercing pointers in structs
9226 // to global address space when using byref. This would require implementing a
9227 // new kind of coercion of the in-memory type when for indirect arguments.
9228 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9229 isAggregateTypeForABI(Ty)) {
9230 return ABIArgInfo::getIndirectAliased(
9231 getContext().getTypeAlignInChars(Ty),
9232 getContext().getTargetAddressSpace(LangAS::opencl_constant),
9233 false /*Realign*/, nullptr /*Padding*/);
9234 }
9235
9236 // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9237 // individual elements, which confuses the Clover OpenCL backend; therefore we
9238 // have to set it to false here. Other args of getDirect() are just defaults.
9239 return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9240 }
9241
classifyArgumentType(QualType Ty,unsigned & NumRegsLeft) const9242 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9243 unsigned &NumRegsLeft) const {
9244 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9245
9246 Ty = useFirstFieldIfTransparentUnion(Ty);
9247
9248 if (isAggregateTypeForABI(Ty)) {
9249 // Records with non-trivial destructors/copy-constructors should not be
9250 // passed by value.
9251 if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9252 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9253
9254 // Ignore empty structs/unions.
9255 if (isEmptyRecord(getContext(), Ty, true))
9256 return ABIArgInfo::getIgnore();
9257
9258 // Lower single-element structs to just pass a regular value. TODO: We
9259 // could do reasonable-size multiple-element structs too, using getExpand(),
9260 // though watch out for things like bitfields.
9261 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9262 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9263
9264 if (const RecordType *RT = Ty->getAs<RecordType>()) {
9265 const RecordDecl *RD = RT->getDecl();
9266 if (RD->hasFlexibleArrayMember())
9267 return DefaultABIInfo::classifyArgumentType(Ty);
9268 }
9269
9270 // Pack aggregates <= 8 bytes into single VGPR or pair.
9271 uint64_t Size = getContext().getTypeSize(Ty);
9272 if (Size <= 64) {
9273 unsigned NumRegs = (Size + 31) / 32;
9274 NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9275
9276 if (Size <= 16)
9277 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9278
9279 if (Size <= 32)
9280 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9281
9282 // XXX: Should this be i64 instead, and should the limit increase?
9283 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9284 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9285 }
9286
9287 if (NumRegsLeft > 0) {
9288 unsigned NumRegs = numRegsForType(Ty);
9289 if (NumRegsLeft >= NumRegs) {
9290 NumRegsLeft -= NumRegs;
9291 return ABIArgInfo::getDirect();
9292 }
9293 }
9294 }
9295
9296 // Otherwise just do the default thing.
9297 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9298 if (!ArgInfo.isIndirect()) {
9299 unsigned NumRegs = numRegsForType(Ty);
9300 NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9301 }
9302
9303 return ArgInfo;
9304 }
9305
9306 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9307 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)9308 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9309 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9310
9311 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
9312 CodeGenModule &CGM) const;
9313
9314 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9315 CodeGen::CodeGenModule &M) const override;
9316 unsigned getOpenCLKernelCallingConv() const override;
9317
9318 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9319 llvm::PointerType *T, QualType QT) const override;
9320
getASTAllocaAddressSpace() const9321 LangAS getASTAllocaAddressSpace() const override {
9322 return getLangASFromTargetAS(
9323 getABIInfo().getDataLayout().getAllocaAddrSpace());
9324 }
9325 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9326 const VarDecl *D) const override;
9327 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9328 SyncScope Scope,
9329 llvm::AtomicOrdering Ordering,
9330 llvm::LLVMContext &Ctx) const override;
9331 llvm::Function *
9332 createEnqueuedBlockKernel(CodeGenFunction &CGF,
9333 llvm::Function *BlockInvokeFunc,
9334 llvm::Type *BlockTy) const override;
9335 bool shouldEmitStaticExternCAliases() const override;
9336 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9337 };
9338 }
9339
requiresAMDGPUProtectedVisibility(const Decl * D,llvm::GlobalValue * GV)9340 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9341 llvm::GlobalValue *GV) {
9342 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9343 return false;
9344
9345 return D->hasAttr<OpenCLKernelAttr>() ||
9346 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9347 (isa<VarDecl>(D) &&
9348 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9349 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9350 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9351 }
9352
setFunctionDeclAttributes(const FunctionDecl * FD,llvm::Function * F,CodeGenModule & M) const9353 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
9354 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
9355 const auto *ReqdWGS =
9356 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9357 const bool IsOpenCLKernel =
9358 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
9359 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
9360
9361 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9362 if (ReqdWGS || FlatWGS) {
9363 unsigned Min = 0;
9364 unsigned Max = 0;
9365 if (FlatWGS) {
9366 Min = FlatWGS->getMin()
9367 ->EvaluateKnownConstInt(M.getContext())
9368 .getExtValue();
9369 Max = FlatWGS->getMax()
9370 ->EvaluateKnownConstInt(M.getContext())
9371 .getExtValue();
9372 }
9373 if (ReqdWGS && Min == 0 && Max == 0)
9374 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9375
9376 if (Min != 0) {
9377 assert(Min <= Max && "Min must be less than or equal Max");
9378
9379 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9380 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9381 } else
9382 assert(Max == 0 && "Max must be zero");
9383 } else if (IsOpenCLKernel || IsHIPKernel) {
9384 // By default, restrict the maximum size to a value specified by
9385 // --gpu-max-threads-per-block=n or its default value for HIP.
9386 const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9387 const unsigned DefaultMaxWorkGroupSize =
9388 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9389 : M.getLangOpts().GPUMaxThreadsPerBlock;
9390 std::string AttrVal =
9391 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9392 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9393 }
9394
9395 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9396 unsigned Min =
9397 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9398 unsigned Max = Attr->getMax() ? Attr->getMax()
9399 ->EvaluateKnownConstInt(M.getContext())
9400 .getExtValue()
9401 : 0;
9402
9403 if (Min != 0) {
9404 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9405
9406 std::string AttrVal = llvm::utostr(Min);
9407 if (Max != 0)
9408 AttrVal = AttrVal + "," + llvm::utostr(Max);
9409 F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9410 } else
9411 assert(Max == 0 && "Max must be zero");
9412 }
9413
9414 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9415 unsigned NumSGPR = Attr->getNumSGPR();
9416
9417 if (NumSGPR != 0)
9418 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9419 }
9420
9421 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9422 uint32_t NumVGPR = Attr->getNumVGPR();
9423
9424 if (NumVGPR != 0)
9425 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9426 }
9427 }
9428
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const9429 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9430 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9431 if (requiresAMDGPUProtectedVisibility(D, GV)) {
9432 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9433 GV->setDSOLocal(true);
9434 }
9435
9436 if (GV->isDeclaration())
9437 return;
9438
9439 llvm::Function *F = dyn_cast<llvm::Function>(GV);
9440 if (!F)
9441 return;
9442
9443 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9444 if (FD)
9445 setFunctionDeclAttributes(FD, F, M);
9446
9447 const bool IsHIPKernel =
9448 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>();
9449
9450 if (IsHIPKernel)
9451 F->addFnAttr("uniform-work-group-size", "true");
9452
9453 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9454 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9455
9456 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9457 F->addFnAttr("amdgpu-ieee", "false");
9458 }
9459
getOpenCLKernelCallingConv() const9460 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9461 return llvm::CallingConv::AMDGPU_KERNEL;
9462 }
9463
9464 // Currently LLVM assumes null pointers always have value 0,
9465 // which results in incorrectly transformed IR. Therefore, instead of
9466 // emitting null pointers in private and local address spaces, a null
9467 // pointer in generic address space is emitted which is casted to a
9468 // pointer in local or private address space.
getNullPointer(const CodeGen::CodeGenModule & CGM,llvm::PointerType * PT,QualType QT) const9469 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9470 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9471 QualType QT) const {
9472 if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9473 return llvm::ConstantPointerNull::get(PT);
9474
9475 auto &Ctx = CGM.getContext();
9476 auto NPT = llvm::PointerType::getWithSamePointeeType(
9477 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9478 return llvm::ConstantExpr::getAddrSpaceCast(
9479 llvm::ConstantPointerNull::get(NPT), PT);
9480 }
9481
9482 LangAS
getGlobalVarAddressSpace(CodeGenModule & CGM,const VarDecl * D) const9483 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9484 const VarDecl *D) const {
9485 assert(!CGM.getLangOpts().OpenCL &&
9486 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9487 "Address space agnostic languages only");
9488 LangAS DefaultGlobalAS = getLangASFromTargetAS(
9489 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9490 if (!D)
9491 return DefaultGlobalAS;
9492
9493 LangAS AddrSpace = D->getType().getAddressSpace();
9494 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9495 if (AddrSpace != LangAS::Default)
9496 return AddrSpace;
9497
9498 // Only promote to address space 4 if VarDecl has constant initialization.
9499 if (CGM.isTypeConstant(D->getType(), false) &&
9500 D->hasConstantInitialization()) {
9501 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9502 return *ConstAS;
9503 }
9504 return DefaultGlobalAS;
9505 }
9506
9507 llvm::SyncScope::ID
getLLVMSyncScopeID(const LangOptions & LangOpts,SyncScope Scope,llvm::AtomicOrdering Ordering,llvm::LLVMContext & Ctx) const9508 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9509 SyncScope Scope,
9510 llvm::AtomicOrdering Ordering,
9511 llvm::LLVMContext &Ctx) const {
9512 std::string Name;
9513 switch (Scope) {
9514 case SyncScope::HIPSingleThread:
9515 Name = "singlethread";
9516 break;
9517 case SyncScope::HIPWavefront:
9518 case SyncScope::OpenCLSubGroup:
9519 Name = "wavefront";
9520 break;
9521 case SyncScope::HIPWorkgroup:
9522 case SyncScope::OpenCLWorkGroup:
9523 Name = "workgroup";
9524 break;
9525 case SyncScope::HIPAgent:
9526 case SyncScope::OpenCLDevice:
9527 Name = "agent";
9528 break;
9529 case SyncScope::HIPSystem:
9530 case SyncScope::OpenCLAllSVMDevices:
9531 Name = "";
9532 break;
9533 }
9534
9535 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9536 if (!Name.empty())
9537 Name = Twine(Twine(Name) + Twine("-")).str();
9538
9539 Name = Twine(Twine(Name) + Twine("one-as")).str();
9540 }
9541
9542 return Ctx.getOrInsertSyncScopeID(Name);
9543 }
9544
shouldEmitStaticExternCAliases() const9545 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9546 return false;
9547 }
9548
setCUDAKernelCallingConvention(const FunctionType * & FT) const9549 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9550 const FunctionType *&FT) const {
9551 FT = getABIInfo().getContext().adjustFunctionType(
9552 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9553 }
9554
9555 //===----------------------------------------------------------------------===//
9556 // SPARC v8 ABI Implementation.
9557 // Based on the SPARC Compliance Definition version 2.4.1.
9558 //
9559 // Ensures that complex values are passed in registers.
9560 //
9561 namespace {
9562 class SparcV8ABIInfo : public DefaultABIInfo {
9563 public:
SparcV8ABIInfo(CodeGenTypes & CGT)9564 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9565
9566 private:
9567 ABIArgInfo classifyReturnType(QualType RetTy) const;
9568 void computeInfo(CGFunctionInfo &FI) const override;
9569 };
9570 } // end anonymous namespace
9571
9572
9573 ABIArgInfo
classifyReturnType(QualType Ty) const9574 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9575 if (Ty->isAnyComplexType()) {
9576 return ABIArgInfo::getDirect();
9577 }
9578 else {
9579 return DefaultABIInfo::classifyReturnType(Ty);
9580 }
9581 }
9582
computeInfo(CGFunctionInfo & FI) const9583 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9584
9585 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9586 for (auto &Arg : FI.arguments())
9587 Arg.info = classifyArgumentType(Arg.type);
9588 }
9589
9590 namespace {
9591 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9592 public:
SparcV8TargetCodeGenInfo(CodeGenTypes & CGT)9593 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9594 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9595
decodeReturnAddress(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9596 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9597 llvm::Value *Address) const override {
9598 int Offset;
9599 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
9600 Offset = 12;
9601 else
9602 Offset = 8;
9603 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9604 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
9605 }
9606
encodeReturnAddress(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9607 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9608 llvm::Value *Address) const override {
9609 int Offset;
9610 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
9611 Offset = -12;
9612 else
9613 Offset = -8;
9614 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9615 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
9616 }
9617 };
9618 } // end anonymous namespace
9619
9620 //===----------------------------------------------------------------------===//
9621 // SPARC v9 ABI Implementation.
9622 // Based on the SPARC Compliance Definition version 2.4.1.
9623 //
9624 // Function arguments a mapped to a nominal "parameter array" and promoted to
9625 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9626 // the array, structs larger than 16 bytes are passed indirectly.
9627 //
9628 // One case requires special care:
9629 //
9630 // struct mixed {
9631 // int i;
9632 // float f;
9633 // };
9634 //
9635 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9636 // parameter array, but the int is passed in an integer register, and the float
9637 // is passed in a floating point register. This is represented as two arguments
9638 // with the LLVM IR inreg attribute:
9639 //
9640 // declare void f(i32 inreg %i, float inreg %f)
9641 //
9642 // The code generator will only allocate 4 bytes from the parameter array for
9643 // the inreg arguments. All other arguments are allocated a multiple of 8
9644 // bytes.
9645 //
9646 namespace {
9647 class SparcV9ABIInfo : public ABIInfo {
9648 public:
SparcV9ABIInfo(CodeGenTypes & CGT)9649 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9650
9651 private:
9652 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9653 void computeInfo(CGFunctionInfo &FI) const override;
9654 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9655 QualType Ty) const override;
9656
9657 // Coercion type builder for structs passed in registers. The coercion type
9658 // serves two purposes:
9659 //
9660 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9661 // in registers.
9662 // 2. Expose aligned floating point elements as first-level elements, so the
9663 // code generator knows to pass them in floating point registers.
9664 //
9665 // We also compute the InReg flag which indicates that the struct contains
9666 // aligned 32-bit floats.
9667 //
9668 struct CoerceBuilder {
9669 llvm::LLVMContext &Context;
9670 const llvm::DataLayout &DL;
9671 SmallVector<llvm::Type*, 8> Elems;
9672 uint64_t Size;
9673 bool InReg;
9674
CoerceBuilder__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9675 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9676 : Context(c), DL(dl), Size(0), InReg(false) {}
9677
9678 // Pad Elems with integers until Size is ToSize.
pad__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9679 void pad(uint64_t ToSize) {
9680 assert(ToSize >= Size && "Cannot remove elements");
9681 if (ToSize == Size)
9682 return;
9683
9684 // Finish the current 64-bit word.
9685 uint64_t Aligned = llvm::alignTo(Size, 64);
9686 if (Aligned > Size && Aligned <= ToSize) {
9687 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9688 Size = Aligned;
9689 }
9690
9691 // Add whole 64-bit words.
9692 while (Size + 64 <= ToSize) {
9693 Elems.push_back(llvm::Type::getInt64Ty(Context));
9694 Size += 64;
9695 }
9696
9697 // Final in-word padding.
9698 if (Size < ToSize) {
9699 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9700 Size = ToSize;
9701 }
9702 }
9703
9704 // Add a floating point element at Offset.
addFloat__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9705 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9706 // Unaligned floats are treated as integers.
9707 if (Offset % Bits)
9708 return;
9709 // The InReg flag is only required if there are any floats < 64 bits.
9710 if (Bits < 64)
9711 InReg = true;
9712 pad(Offset);
9713 Elems.push_back(Ty);
9714 Size = Offset + Bits;
9715 }
9716
9717 // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9718 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9719 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9720 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9721 llvm::Type *ElemTy = StrTy->getElementType(i);
9722 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9723 switch (ElemTy->getTypeID()) {
9724 case llvm::Type::StructTyID:
9725 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9726 break;
9727 case llvm::Type::FloatTyID:
9728 addFloat(ElemOffset, ElemTy, 32);
9729 break;
9730 case llvm::Type::DoubleTyID:
9731 addFloat(ElemOffset, ElemTy, 64);
9732 break;
9733 case llvm::Type::FP128TyID:
9734 addFloat(ElemOffset, ElemTy, 128);
9735 break;
9736 case llvm::Type::PointerTyID:
9737 if (ElemOffset % 64 == 0) {
9738 pad(ElemOffset);
9739 Elems.push_back(ElemTy);
9740 Size += 64;
9741 }
9742 break;
9743 default:
9744 break;
9745 }
9746 }
9747 }
9748
9749 // Check if Ty is a usable substitute for the coercion type.
isUsableType__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9750 bool isUsableType(llvm::StructType *Ty) const {
9751 return llvm::makeArrayRef(Elems) == Ty->elements();
9752 }
9753
9754 // Get the coercion type as a literal struct type.
getType__anon8ad051811811::SparcV9ABIInfo::CoerceBuilder9755 llvm::Type *getType() const {
9756 if (Elems.size() == 1)
9757 return Elems.front();
9758 else
9759 return llvm::StructType::get(Context, Elems);
9760 }
9761 };
9762 };
9763 } // end anonymous namespace
9764
9765 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const9766 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9767 if (Ty->isVoidType())
9768 return ABIArgInfo::getIgnore();
9769
9770 uint64_t Size = getContext().getTypeSize(Ty);
9771
9772 // Anything too big to fit in registers is passed with an explicit indirect
9773 // pointer / sret pointer.
9774 if (Size > SizeLimit)
9775 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9776
9777 // Treat an enum type as its underlying type.
9778 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9779 Ty = EnumTy->getDecl()->getIntegerType();
9780
9781 // Integer types smaller than a register are extended.
9782 if (Size < 64 && Ty->isIntegerType())
9783 return ABIArgInfo::getExtend(Ty);
9784
9785 if (const auto *EIT = Ty->getAs<BitIntType>())
9786 if (EIT->getNumBits() < 64)
9787 return ABIArgInfo::getExtend(Ty);
9788
9789 // Other non-aggregates go in registers.
9790 if (!isAggregateTypeForABI(Ty))
9791 return ABIArgInfo::getDirect();
9792
9793 // If a C++ object has either a non-trivial copy constructor or a non-trivial
9794 // destructor, it is passed with an explicit indirect pointer / sret pointer.
9795 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9796 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9797
9798 // This is a small aggregate type that should be passed in registers.
9799 // Build a coercion type from the LLVM struct type.
9800 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9801 if (!StrTy)
9802 return ABIArgInfo::getDirect();
9803
9804 CoerceBuilder CB(getVMContext(), getDataLayout());
9805 CB.addStruct(0, StrTy);
9806 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9807
9808 // Try to use the original type for coercion.
9809 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9810
9811 if (CB.InReg)
9812 return ABIArgInfo::getDirectInReg(CoerceTy);
9813 else
9814 return ABIArgInfo::getDirect(CoerceTy);
9815 }
9816
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const9817 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9818 QualType Ty) const {
9819 ABIArgInfo AI = classifyType(Ty, 16 * 8);
9820 llvm::Type *ArgTy = CGT.ConvertType(Ty);
9821 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9822 AI.setCoerceToType(ArgTy);
9823
9824 CharUnits SlotSize = CharUnits::fromQuantity(8);
9825
9826 CGBuilderTy &Builder = CGF.Builder;
9827 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
9828 getVAListElementType(CGF), SlotSize);
9829 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9830
9831 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9832
9833 Address ArgAddr = Address::invalid();
9834 CharUnits Stride;
9835 switch (AI.getKind()) {
9836 case ABIArgInfo::Expand:
9837 case ABIArgInfo::CoerceAndExpand:
9838 case ABIArgInfo::InAlloca:
9839 llvm_unreachable("Unsupported ABI kind for va_arg");
9840
9841 case ABIArgInfo::Extend: {
9842 Stride = SlotSize;
9843 CharUnits Offset = SlotSize - TypeInfo.Width;
9844 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9845 break;
9846 }
9847
9848 case ABIArgInfo::Direct: {
9849 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9850 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9851 ArgAddr = Addr;
9852 break;
9853 }
9854
9855 case ABIArgInfo::Indirect:
9856 case ABIArgInfo::IndirectAliased:
9857 Stride = SlotSize;
9858 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9859 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
9860 TypeInfo.Align);
9861 break;
9862
9863 case ABIArgInfo::Ignore:
9864 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align);
9865 }
9866
9867 // Update VAList.
9868 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9869 Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9870
9871 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr");
9872 }
9873
computeInfo(CGFunctionInfo & FI) const9874 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9875 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9876 for (auto &I : FI.arguments())
9877 I.info = classifyType(I.type, 16 * 8);
9878 }
9879
9880 namespace {
9881 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9882 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)9883 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9884 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9885
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const9886 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9887 return 14;
9888 }
9889
9890 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9891 llvm::Value *Address) const override;
9892
decodeReturnAddress(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9893 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9894 llvm::Value *Address) const override {
9895 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9896 llvm::ConstantInt::get(CGF.Int32Ty, 8));
9897 }
9898
encodeReturnAddress(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9899 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9900 llvm::Value *Address) const override {
9901 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9902 llvm::ConstantInt::get(CGF.Int32Ty, -8));
9903 }
9904 };
9905 } // end anonymous namespace
9906
9907 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9908 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9909 llvm::Value *Address) const {
9910 // This is calculated from the LLVM and GCC tables and verified
9911 // against gcc output. AFAIK all ABIs use the same encoding.
9912
9913 CodeGen::CGBuilderTy &Builder = CGF.Builder;
9914
9915 llvm::IntegerType *i8 = CGF.Int8Ty;
9916 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9917 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9918
9919 // 0-31: the 8-byte general-purpose registers
9920 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9921
9922 // 32-63: f0-31, the 4-byte floating-point registers
9923 AssignToArrayRange(Builder, Address, Four8, 32, 63);
9924
9925 // Y = 64
9926 // PSR = 65
9927 // WIM = 66
9928 // TBR = 67
9929 // PC = 68
9930 // NPC = 69
9931 // FSR = 70
9932 // CSR = 71
9933 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9934
9935 // 72-87: d0-15, the 8-byte floating-point registers
9936 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9937
9938 return false;
9939 }
9940
9941 // ARC ABI implementation.
9942 namespace {
9943
9944 class ARCABIInfo : public DefaultABIInfo {
9945 public:
9946 using DefaultABIInfo::DefaultABIInfo;
9947
9948 private:
9949 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9950 QualType Ty) const override;
9951
updateState(const ABIArgInfo & Info,QualType Ty,CCState & State) const9952 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9953 if (!State.FreeRegs)
9954 return;
9955 if (Info.isIndirect() && Info.getInReg())
9956 State.FreeRegs--;
9957 else if (Info.isDirect() && Info.getInReg()) {
9958 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9959 if (sz < State.FreeRegs)
9960 State.FreeRegs -= sz;
9961 else
9962 State.FreeRegs = 0;
9963 }
9964 }
9965
computeInfo(CGFunctionInfo & FI) const9966 void computeInfo(CGFunctionInfo &FI) const override {
9967 CCState State(FI);
9968 // ARC uses 8 registers to pass arguments.
9969 State.FreeRegs = 8;
9970
9971 if (!getCXXABI().classifyReturnType(FI))
9972 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9973 updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9974 for (auto &I : FI.arguments()) {
9975 I.info = classifyArgumentType(I.type, State.FreeRegs);
9976 updateState(I.info, I.type, State);
9977 }
9978 }
9979
9980 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9981 ABIArgInfo getIndirectByValue(QualType Ty) const;
9982 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9983 ABIArgInfo classifyReturnType(QualType RetTy) const;
9984 };
9985
9986 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9987 public:
ARCTargetCodeGenInfo(CodeGenTypes & CGT)9988 ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9989 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9990 };
9991
9992
getIndirectByRef(QualType Ty,bool HasFreeRegs) const9993 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9994 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9995 getNaturalAlignIndirect(Ty, false);
9996 }
9997
getIndirectByValue(QualType Ty) const9998 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9999 // Compute the byval alignment.
10000 const unsigned MinABIStackAlignInBytes = 4;
10001 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
10002 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
10003 TypeAlign > MinABIStackAlignInBytes);
10004 }
10005
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const10006 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10007 QualType Ty) const {
10008 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
10009 getContext().getTypeInfoInChars(Ty),
10010 CharUnits::fromQuantity(4), true);
10011 }
10012
classifyArgumentType(QualType Ty,uint8_t FreeRegs) const10013 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
10014 uint8_t FreeRegs) const {
10015 // Handle the generic C++ ABI.
10016 const RecordType *RT = Ty->getAs<RecordType>();
10017 if (RT) {
10018 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
10019 if (RAA == CGCXXABI::RAA_Indirect)
10020 return getIndirectByRef(Ty, FreeRegs > 0);
10021
10022 if (RAA == CGCXXABI::RAA_DirectInMemory)
10023 return getIndirectByValue(Ty);
10024 }
10025
10026 // Treat an enum type as its underlying type.
10027 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10028 Ty = EnumTy->getDecl()->getIntegerType();
10029
10030 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
10031
10032 if (isAggregateTypeForABI(Ty)) {
10033 // Structures with flexible arrays are always indirect.
10034 if (RT && RT->getDecl()->hasFlexibleArrayMember())
10035 return getIndirectByValue(Ty);
10036
10037 // Ignore empty structs/unions.
10038 if (isEmptyRecord(getContext(), Ty, true))
10039 return ABIArgInfo::getIgnore();
10040
10041 llvm::LLVMContext &LLVMContext = getVMContext();
10042
10043 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
10044 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
10045 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
10046
10047 return FreeRegs >= SizeInRegs ?
10048 ABIArgInfo::getDirectInReg(Result) :
10049 ABIArgInfo::getDirect(Result, 0, nullptr, false);
10050 }
10051
10052 if (const auto *EIT = Ty->getAs<BitIntType>())
10053 if (EIT->getNumBits() > 64)
10054 return getIndirectByValue(Ty);
10055
10056 return isPromotableIntegerTypeForABI(Ty)
10057 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
10058 : ABIArgInfo::getExtend(Ty))
10059 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
10060 : ABIArgInfo::getDirect());
10061 }
10062
classifyReturnType(QualType RetTy) const10063 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
10064 if (RetTy->isAnyComplexType())
10065 return ABIArgInfo::getDirectInReg();
10066
10067 // Arguments of size > 4 registers are indirect.
10068 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
10069 if (RetSize > 4)
10070 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
10071
10072 return DefaultABIInfo::classifyReturnType(RetTy);
10073 }
10074
10075 } // End anonymous namespace.
10076
10077 //===----------------------------------------------------------------------===//
10078 // XCore ABI Implementation
10079 //===----------------------------------------------------------------------===//
10080
10081 namespace {
10082
10083 /// A SmallStringEnc instance is used to build up the TypeString by passing
10084 /// it by reference between functions that append to it.
10085 typedef llvm::SmallString<128> SmallStringEnc;
10086
10087 /// TypeStringCache caches the meta encodings of Types.
10088 ///
10089 /// The reason for caching TypeStrings is two fold:
10090 /// 1. To cache a type's encoding for later uses;
10091 /// 2. As a means to break recursive member type inclusion.
10092 ///
10093 /// A cache Entry can have a Status of:
10094 /// NonRecursive: The type encoding is not recursive;
10095 /// Recursive: The type encoding is recursive;
10096 /// Incomplete: An incomplete TypeString;
10097 /// IncompleteUsed: An incomplete TypeString that has been used in a
10098 /// Recursive type encoding.
10099 ///
10100 /// A NonRecursive entry will have all of its sub-members expanded as fully
10101 /// as possible. Whilst it may contain types which are recursive, the type
10102 /// itself is not recursive and thus its encoding may be safely used whenever
10103 /// the type is encountered.
10104 ///
10105 /// A Recursive entry will have all of its sub-members expanded as fully as
10106 /// possible. The type itself is recursive and it may contain other types which
10107 /// are recursive. The Recursive encoding must not be used during the expansion
10108 /// of a recursive type's recursive branch. For simplicity the code uses
10109 /// IncompleteCount to reject all usage of Recursive encodings for member types.
10110 ///
10111 /// An Incomplete entry is always a RecordType and only encodes its
10112 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
10113 /// are placed into the cache during type expansion as a means to identify and
10114 /// handle recursive inclusion of types as sub-members. If there is recursion
10115 /// the entry becomes IncompleteUsed.
10116 ///
10117 /// During the expansion of a RecordType's members:
10118 ///
10119 /// If the cache contains a NonRecursive encoding for the member type, the
10120 /// cached encoding is used;
10121 ///
10122 /// If the cache contains a Recursive encoding for the member type, the
10123 /// cached encoding is 'Swapped' out, as it may be incorrect, and...
10124 ///
10125 /// If the member is a RecordType, an Incomplete encoding is placed into the
10126 /// cache to break potential recursive inclusion of itself as a sub-member;
10127 ///
10128 /// Once a member RecordType has been expanded, its temporary incomplete
10129 /// entry is removed from the cache. If a Recursive encoding was swapped out
10130 /// it is swapped back in;
10131 ///
10132 /// If an incomplete entry is used to expand a sub-member, the incomplete
10133 /// entry is marked as IncompleteUsed. The cache keeps count of how many
10134 /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
10135 ///
10136 /// If a member's encoding is found to be a NonRecursive or Recursive viz:
10137 /// IncompleteUsedCount==0, the member's encoding is added to the cache.
10138 /// Else the member is part of a recursive type and thus the recursion has
10139 /// been exited too soon for the encoding to be correct for the member.
10140 ///
10141 class TypeStringCache {
10142 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
10143 struct Entry {
10144 std::string Str; // The encoded TypeString for the type.
10145 enum Status State; // Information about the encoding in 'Str'.
10146 std::string Swapped; // A temporary place holder for a Recursive encoding
10147 // during the expansion of RecordType's members.
10148 };
10149 std::map<const IdentifierInfo *, struct Entry> Map;
10150 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
10151 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
10152 public:
TypeStringCache()10153 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
10154 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
10155 bool removeIncomplete(const IdentifierInfo *ID);
10156 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
10157 bool IsRecursive);
10158 StringRef lookupStr(const IdentifierInfo *ID);
10159 };
10160
10161 /// TypeString encodings for enum & union fields must be order.
10162 /// FieldEncoding is a helper for this ordering process.
10163 class FieldEncoding {
10164 bool HasName;
10165 std::string Enc;
10166 public:
FieldEncoding(bool b,SmallStringEnc & e)10167 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
str()10168 StringRef str() { return Enc; }
operator <(const FieldEncoding & rhs) const10169 bool operator<(const FieldEncoding &rhs) const {
10170 if (HasName != rhs.HasName) return HasName;
10171 return Enc < rhs.Enc;
10172 }
10173 };
10174
10175 class XCoreABIInfo : public DefaultABIInfo {
10176 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)10177 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10178 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10179 QualType Ty) const override;
10180 };
10181
10182 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
10183 mutable TypeStringCache TSC;
10184 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
10185 const CodeGen::CodeGenModule &M) const;
10186
10187 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)10188 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
10189 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
10190 void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
10191 const llvm::MapVector<GlobalDecl, StringRef>
10192 &MangledDeclNames) const override;
10193 };
10194
10195 } // End anonymous namespace.
10196
10197 // TODO: this implementation is likely now redundant with the default
10198 // EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const10199 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10200 QualType Ty) const {
10201 CGBuilderTy &Builder = CGF.Builder;
10202
10203 // Get the VAList.
10204 CharUnits SlotSize = CharUnits::fromQuantity(4);
10205 Address AP = Address(Builder.CreateLoad(VAListAddr),
10206 getVAListElementType(CGF), SlotSize);
10207
10208 // Handle the argument.
10209 ABIArgInfo AI = classifyArgumentType(Ty);
10210 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
10211 llvm::Type *ArgTy = CGT.ConvertType(Ty);
10212 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
10213 AI.setCoerceToType(ArgTy);
10214 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
10215
10216 Address Val = Address::invalid();
10217 CharUnits ArgSize = CharUnits::Zero();
10218 switch (AI.getKind()) {
10219 case ABIArgInfo::Expand:
10220 case ABIArgInfo::CoerceAndExpand:
10221 case ABIArgInfo::InAlloca:
10222 llvm_unreachable("Unsupported ABI kind for va_arg");
10223 case ABIArgInfo::Ignore:
10224 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
10225 ArgSize = CharUnits::Zero();
10226 break;
10227 case ABIArgInfo::Extend:
10228 case ABIArgInfo::Direct:
10229 Val = Builder.CreateElementBitCast(AP, ArgTy);
10230 ArgSize = CharUnits::fromQuantity(
10231 getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10232 ArgSize = ArgSize.alignTo(SlotSize);
10233 break;
10234 case ABIArgInfo::Indirect:
10235 case ABIArgInfo::IndirectAliased:
10236 Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10237 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
10238 ArgSize = SlotSize;
10239 break;
10240 }
10241
10242 // Increment the VAList.
10243 if (!ArgSize.isZero()) {
10244 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10245 Builder.CreateStore(APN.getPointer(), VAListAddr);
10246 }
10247
10248 return Val;
10249 }
10250
10251 /// During the expansion of a RecordType, an incomplete TypeString is placed
10252 /// into the cache as a means to identify and break recursion.
10253 /// If there is a Recursive encoding in the cache, it is swapped out and will
10254 /// be reinserted by removeIncomplete().
10255 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)10256 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10257 std::string StubEnc) {
10258 if (!ID)
10259 return;
10260 Entry &E = Map[ID];
10261 assert( (E.Str.empty() || E.State == Recursive) &&
10262 "Incorrectly use of addIncomplete");
10263 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10264 E.Swapped.swap(E.Str); // swap out the Recursive
10265 E.Str.swap(StubEnc);
10266 E.State = Incomplete;
10267 ++IncompleteCount;
10268 }
10269
10270 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10271 /// must be removed from the cache.
10272 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10273 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)10274 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10275 if (!ID)
10276 return false;
10277 auto I = Map.find(ID);
10278 assert(I != Map.end() && "Entry not present");
10279 Entry &E = I->second;
10280 assert( (E.State == Incomplete ||
10281 E.State == IncompleteUsed) &&
10282 "Entry must be an incomplete type");
10283 bool IsRecursive = false;
10284 if (E.State == IncompleteUsed) {
10285 // We made use of our Incomplete encoding, thus we are recursive.
10286 IsRecursive = true;
10287 --IncompleteUsedCount;
10288 }
10289 if (E.Swapped.empty())
10290 Map.erase(I);
10291 else {
10292 // Swap the Recursive back.
10293 E.Swapped.swap(E.Str);
10294 E.Swapped.clear();
10295 E.State = Recursive;
10296 }
10297 --IncompleteCount;
10298 return IsRecursive;
10299 }
10300
10301 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10302 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)10303 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10304 bool IsRecursive) {
10305 if (!ID || IncompleteUsedCount)
10306 return; // No key or it is is an incomplete sub-type so don't add.
10307 Entry &E = Map[ID];
10308 if (IsRecursive && !E.Str.empty()) {
10309 assert(E.State==Recursive && E.Str.size() == Str.size() &&
10310 "This is not the same Recursive entry");
10311 // The parent container was not recursive after all, so we could have used
10312 // this Recursive sub-member entry after all, but we assumed the worse when
10313 // we started viz: IncompleteCount!=0.
10314 return;
10315 }
10316 assert(E.Str.empty() && "Entry already present");
10317 E.Str = Str.str();
10318 E.State = IsRecursive? Recursive : NonRecursive;
10319 }
10320
10321 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10322 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10323 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)10324 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10325 if (!ID)
10326 return StringRef(); // We have no key.
10327 auto I = Map.find(ID);
10328 if (I == Map.end())
10329 return StringRef(); // We have no encoding.
10330 Entry &E = I->second;
10331 if (E.State == Recursive && IncompleteCount)
10332 return StringRef(); // We don't use Recursive encodings for member types.
10333
10334 if (E.State == Incomplete) {
10335 // The incomplete type is being used to break out of recursion.
10336 E.State = IncompleteUsed;
10337 ++IncompleteUsedCount;
10338 }
10339 return E.Str;
10340 }
10341
10342 /// The XCore ABI includes a type information section that communicates symbol
10343 /// type information to the linker. The linker uses this information to verify
10344 /// safety/correctness of things such as array bound and pointers et al.
10345 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10346 /// This type information (TypeString) is emitted into meta data for all global
10347 /// symbols: definitions, declarations, functions & variables.
10348 ///
10349 /// The TypeString carries type, qualifier, name, size & value details.
10350 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10351 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10352 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10353 ///
10354 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10355 const CodeGen::CodeGenModule &CGM,
10356 TypeStringCache &TSC);
10357
10358 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,const CodeGen::CodeGenModule & CGM) const10359 void XCoreTargetCodeGenInfo::emitTargetMD(
10360 const Decl *D, llvm::GlobalValue *GV,
10361 const CodeGen::CodeGenModule &CGM) const {
10362 SmallStringEnc Enc;
10363 if (getTypeString(Enc, D, CGM, TSC)) {
10364 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10365 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10366 llvm::MDString::get(Ctx, Enc.str())};
10367 llvm::NamedMDNode *MD =
10368 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10369 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10370 }
10371 }
10372
emitTargetMetadata(CodeGen::CodeGenModule & CGM,const llvm::MapVector<GlobalDecl,StringRef> & MangledDeclNames) const10373 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10374 CodeGen::CodeGenModule &CGM,
10375 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10376 // Warning, new MangledDeclNames may be appended within this loop.
10377 // We rely on MapVector insertions adding new elements to the end
10378 // of the container.
10379 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10380 auto Val = *(MangledDeclNames.begin() + I);
10381 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10382 if (GV) {
10383 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10384 emitTargetMD(D, GV, CGM);
10385 }
10386 }
10387 }
10388
10389 //===----------------------------------------------------------------------===//
10390 // Base ABI and target codegen info implementation common between SPIR and
10391 // SPIR-V.
10392 //===----------------------------------------------------------------------===//
10393
10394 namespace {
10395 class CommonSPIRABIInfo : public DefaultABIInfo {
10396 public:
CommonSPIRABIInfo(CodeGenTypes & CGT)10397 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10398
10399 private:
10400 void setCCs();
10401 };
10402
10403 class SPIRVABIInfo : public CommonSPIRABIInfo {
10404 public:
SPIRVABIInfo(CodeGenTypes & CGT)10405 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
10406 void computeInfo(CGFunctionInfo &FI) const override;
10407
10408 private:
10409 ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
10410 };
10411 } // end anonymous namespace
10412 namespace {
10413 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10414 public:
CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)10415 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10416 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)10417 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
10418 : TargetCodeGenInfo(std::move(ABIInfo)) {}
10419
getASTAllocaAddressSpace() const10420 LangAS getASTAllocaAddressSpace() const override {
10421 return getLangASFromTargetAS(
10422 getABIInfo().getDataLayout().getAllocaAddrSpace());
10423 }
10424
10425 unsigned getOpenCLKernelCallingConv() const override;
10426 };
10427 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
10428 public:
SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)10429 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10430 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
10431 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
10432 };
10433 } // End anonymous namespace.
10434
setCCs()10435 void CommonSPIRABIInfo::setCCs() {
10436 assert(getRuntimeCC() == llvm::CallingConv::C);
10437 RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10438 }
10439
classifyKernelArgumentType(QualType Ty) const10440 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
10441 if (getContext().getLangOpts().CUDAIsDevice) {
10442 // Coerce pointer arguments with default address space to CrossWorkGroup
10443 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
10444 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
10445 llvm::Type *LTy = CGT.ConvertType(Ty);
10446 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
10447 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
10448 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
10449 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
10450 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS);
10451 return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
10452 }
10453
10454 // Force copying aggregate type in kernel arguments by value when
10455 // compiling CUDA targeting SPIR-V. This is required for the object
10456 // copied to be valid on the device.
10457 // This behavior follows the CUDA spec
10458 // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
10459 // and matches the NVPTX implementation.
10460 if (isAggregateTypeForABI(Ty))
10461 return getNaturalAlignIndirect(Ty, /* byval */ true);
10462 }
10463 return classifyArgumentType(Ty);
10464 }
10465
computeInfo(CGFunctionInfo & FI) const10466 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10467 // The logic is same as in DefaultABIInfo with an exception on the kernel
10468 // arguments handling.
10469 llvm::CallingConv::ID CC = FI.getCallingConvention();
10470
10471 if (!getCXXABI().classifyReturnType(FI))
10472 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10473
10474 for (auto &I : FI.arguments()) {
10475 if (CC == llvm::CallingConv::SPIR_KERNEL) {
10476 I.info = classifyKernelArgumentType(I.type);
10477 } else {
10478 I.info = classifyArgumentType(I.type);
10479 }
10480 }
10481 }
10482
10483 namespace clang {
10484 namespace CodeGen {
computeSPIRKernelABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)10485 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10486 if (CGM.getTarget().getTriple().isSPIRV())
10487 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
10488 else
10489 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
10490 }
10491 }
10492 }
10493
getOpenCLKernelCallingConv() const10494 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10495 return llvm::CallingConv::SPIR_KERNEL;
10496 }
10497
setCUDAKernelCallingConvention(const FunctionType * & FT) const10498 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
10499 const FunctionType *&FT) const {
10500 // Convert HIP kernels to SPIR-V kernels.
10501 if (getABIInfo().getContext().getLangOpts().HIP) {
10502 FT = getABIInfo().getContext().adjustFunctionType(
10503 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
10504 return;
10505 }
10506 }
10507
10508 static bool appendType(SmallStringEnc &Enc, QualType QType,
10509 const CodeGen::CodeGenModule &CGM,
10510 TypeStringCache &TSC);
10511
10512 /// Helper function for appendRecordType().
10513 /// Builds a SmallVector containing the encoded field types in declaration
10514 /// order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10515 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10516 const RecordDecl *RD,
10517 const CodeGen::CodeGenModule &CGM,
10518 TypeStringCache &TSC) {
10519 for (const auto *Field : RD->fields()) {
10520 SmallStringEnc Enc;
10521 Enc += "m(";
10522 Enc += Field->getName();
10523 Enc += "){";
10524 if (Field->isBitField()) {
10525 Enc += "b(";
10526 llvm::raw_svector_ostream OS(Enc);
10527 OS << Field->getBitWidthValue(CGM.getContext());
10528 Enc += ':';
10529 }
10530 if (!appendType(Enc, Field->getType(), CGM, TSC))
10531 return false;
10532 if (Field->isBitField())
10533 Enc += ')';
10534 Enc += '}';
10535 FE.emplace_back(!Field->getName().empty(), Enc);
10536 }
10537 return true;
10538 }
10539
10540 /// Appends structure and union types to Enc and adds encoding to cache.
10541 /// Recursively calls appendType (via extractFieldType) for each field.
10542 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)10543 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10544 const CodeGen::CodeGenModule &CGM,
10545 TypeStringCache &TSC, const IdentifierInfo *ID) {
10546 // Append the cached TypeString if we have one.
10547 StringRef TypeString = TSC.lookupStr(ID);
10548 if (!TypeString.empty()) {
10549 Enc += TypeString;
10550 return true;
10551 }
10552
10553 // Start to emit an incomplete TypeString.
10554 size_t Start = Enc.size();
10555 Enc += (RT->isUnionType()? 'u' : 's');
10556 Enc += '(';
10557 if (ID)
10558 Enc += ID->getName();
10559 Enc += "){";
10560
10561 // We collect all encoded fields and order as necessary.
10562 bool IsRecursive = false;
10563 const RecordDecl *RD = RT->getDecl()->getDefinition();
10564 if (RD && !RD->field_empty()) {
10565 // An incomplete TypeString stub is placed in the cache for this RecordType
10566 // so that recursive calls to this RecordType will use it whilst building a
10567 // complete TypeString for this RecordType.
10568 SmallVector<FieldEncoding, 16> FE;
10569 std::string StubEnc(Enc.substr(Start).str());
10570 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
10571 TSC.addIncomplete(ID, std::move(StubEnc));
10572 if (!extractFieldType(FE, RD, CGM, TSC)) {
10573 (void) TSC.removeIncomplete(ID);
10574 return false;
10575 }
10576 IsRecursive = TSC.removeIncomplete(ID);
10577 // The ABI requires unions to be sorted but not structures.
10578 // See FieldEncoding::operator< for sort algorithm.
10579 if (RT->isUnionType())
10580 llvm::sort(FE);
10581 // We can now complete the TypeString.
10582 unsigned E = FE.size();
10583 for (unsigned I = 0; I != E; ++I) {
10584 if (I)
10585 Enc += ',';
10586 Enc += FE[I].str();
10587 }
10588 }
10589 Enc += '}';
10590 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10591 return true;
10592 }
10593
10594 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)10595 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10596 TypeStringCache &TSC,
10597 const IdentifierInfo *ID) {
10598 // Append the cached TypeString if we have one.
10599 StringRef TypeString = TSC.lookupStr(ID);
10600 if (!TypeString.empty()) {
10601 Enc += TypeString;
10602 return true;
10603 }
10604
10605 size_t Start = Enc.size();
10606 Enc += "e(";
10607 if (ID)
10608 Enc += ID->getName();
10609 Enc += "){";
10610
10611 // We collect all encoded enumerations and order them alphanumerically.
10612 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10613 SmallVector<FieldEncoding, 16> FE;
10614 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10615 ++I) {
10616 SmallStringEnc EnumEnc;
10617 EnumEnc += "m(";
10618 EnumEnc += I->getName();
10619 EnumEnc += "){";
10620 I->getInitVal().toString(EnumEnc);
10621 EnumEnc += '}';
10622 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10623 }
10624 llvm::sort(FE);
10625 unsigned E = FE.size();
10626 for (unsigned I = 0; I != E; ++I) {
10627 if (I)
10628 Enc += ',';
10629 Enc += FE[I].str();
10630 }
10631 }
10632 Enc += '}';
10633 TSC.addIfComplete(ID, Enc.substr(Start), false);
10634 return true;
10635 }
10636
10637 /// Appends type's qualifier to Enc.
10638 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)10639 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10640 // Qualifiers are emitted in alphabetical order.
10641 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10642 int Lookup = 0;
10643 if (QT.isConstQualified())
10644 Lookup += 1<<0;
10645 if (QT.isRestrictQualified())
10646 Lookup += 1<<1;
10647 if (QT.isVolatileQualified())
10648 Lookup += 1<<2;
10649 Enc += Table[Lookup];
10650 }
10651
10652 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)10653 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10654 const char *EncType;
10655 switch (BT->getKind()) {
10656 case BuiltinType::Void:
10657 EncType = "0";
10658 break;
10659 case BuiltinType::Bool:
10660 EncType = "b";
10661 break;
10662 case BuiltinType::Char_U:
10663 EncType = "uc";
10664 break;
10665 case BuiltinType::UChar:
10666 EncType = "uc";
10667 break;
10668 case BuiltinType::SChar:
10669 EncType = "sc";
10670 break;
10671 case BuiltinType::UShort:
10672 EncType = "us";
10673 break;
10674 case BuiltinType::Short:
10675 EncType = "ss";
10676 break;
10677 case BuiltinType::UInt:
10678 EncType = "ui";
10679 break;
10680 case BuiltinType::Int:
10681 EncType = "si";
10682 break;
10683 case BuiltinType::ULong:
10684 EncType = "ul";
10685 break;
10686 case BuiltinType::Long:
10687 EncType = "sl";
10688 break;
10689 case BuiltinType::ULongLong:
10690 EncType = "ull";
10691 break;
10692 case BuiltinType::LongLong:
10693 EncType = "sll";
10694 break;
10695 case BuiltinType::Float:
10696 EncType = "ft";
10697 break;
10698 case BuiltinType::Double:
10699 EncType = "d";
10700 break;
10701 case BuiltinType::LongDouble:
10702 EncType = "ld";
10703 break;
10704 default:
10705 return false;
10706 }
10707 Enc += EncType;
10708 return true;
10709 }
10710
10711 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10712 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10713 const CodeGen::CodeGenModule &CGM,
10714 TypeStringCache &TSC) {
10715 Enc += "p(";
10716 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10717 return false;
10718 Enc += ')';
10719 return true;
10720 }
10721
10722 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)10723 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10724 const ArrayType *AT,
10725 const CodeGen::CodeGenModule &CGM,
10726 TypeStringCache &TSC, StringRef NoSizeEnc) {
10727 if (AT->getSizeModifier() != ArrayType::Normal)
10728 return false;
10729 Enc += "a(";
10730 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10731 CAT->getSize().toStringUnsigned(Enc);
10732 else
10733 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10734 Enc += ':';
10735 // The Qualifiers should be attached to the type rather than the array.
10736 appendQualifier(Enc, QT);
10737 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10738 return false;
10739 Enc += ')';
10740 return true;
10741 }
10742
10743 /// Appends a function encoding to Enc, calling appendType for the return type
10744 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10745 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10746 const CodeGen::CodeGenModule &CGM,
10747 TypeStringCache &TSC) {
10748 Enc += "f{";
10749 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10750 return false;
10751 Enc += "}(";
10752 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10753 // N.B. we are only interested in the adjusted param types.
10754 auto I = FPT->param_type_begin();
10755 auto E = FPT->param_type_end();
10756 if (I != E) {
10757 do {
10758 if (!appendType(Enc, *I, CGM, TSC))
10759 return false;
10760 ++I;
10761 if (I != E)
10762 Enc += ',';
10763 } while (I != E);
10764 if (FPT->isVariadic())
10765 Enc += ",va";
10766 } else {
10767 if (FPT->isVariadic())
10768 Enc += "va";
10769 else
10770 Enc += '0';
10771 }
10772 }
10773 Enc += ')';
10774 return true;
10775 }
10776
10777 /// Handles the type's qualifier before dispatching a call to handle specific
10778 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10779 static bool appendType(SmallStringEnc &Enc, QualType QType,
10780 const CodeGen::CodeGenModule &CGM,
10781 TypeStringCache &TSC) {
10782
10783 QualType QT = QType.getCanonicalType();
10784
10785 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10786 // The Qualifiers should be attached to the type rather than the array.
10787 // Thus we don't call appendQualifier() here.
10788 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10789
10790 appendQualifier(Enc, QT);
10791
10792 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10793 return appendBuiltinType(Enc, BT);
10794
10795 if (const PointerType *PT = QT->getAs<PointerType>())
10796 return appendPointerType(Enc, PT, CGM, TSC);
10797
10798 if (const EnumType *ET = QT->getAs<EnumType>())
10799 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10800
10801 if (const RecordType *RT = QT->getAsStructureType())
10802 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10803
10804 if (const RecordType *RT = QT->getAsUnionType())
10805 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10806
10807 if (const FunctionType *FT = QT->getAs<FunctionType>())
10808 return appendFunctionType(Enc, FT, CGM, TSC);
10809
10810 return false;
10811 }
10812
getTypeString(SmallStringEnc & Enc,const Decl * D,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10813 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10814 const CodeGen::CodeGenModule &CGM,
10815 TypeStringCache &TSC) {
10816 if (!D)
10817 return false;
10818
10819 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10820 if (FD->getLanguageLinkage() != CLanguageLinkage)
10821 return false;
10822 return appendType(Enc, FD->getType(), CGM, TSC);
10823 }
10824
10825 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10826 if (VD->getLanguageLinkage() != CLanguageLinkage)
10827 return false;
10828 QualType QT = VD->getType().getCanonicalType();
10829 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10830 // Global ArrayTypes are given a size of '*' if the size is unknown.
10831 // The Qualifiers should be attached to the type rather than the array.
10832 // Thus we don't call appendQualifier() here.
10833 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10834 }
10835 return appendType(Enc, QT, CGM, TSC);
10836 }
10837 return false;
10838 }
10839
10840 //===----------------------------------------------------------------------===//
10841 // RISCV ABI Implementation
10842 //===----------------------------------------------------------------------===//
10843
10844 namespace {
10845 class RISCVABIInfo : public DefaultABIInfo {
10846 private:
10847 // Size of the integer ('x') registers in bits.
10848 unsigned XLen;
10849 // Size of the floating point ('f') registers in bits. Note that the target
10850 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10851 // with soft float ABI has FLen==0).
10852 unsigned FLen;
10853 static const int NumArgGPRs = 8;
10854 static const int NumArgFPRs = 8;
10855 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10856 llvm::Type *&Field1Ty,
10857 CharUnits &Field1Off,
10858 llvm::Type *&Field2Ty,
10859 CharUnits &Field2Off) const;
10860
10861 public:
RISCVABIInfo(CodeGen::CodeGenTypes & CGT,unsigned XLen,unsigned FLen)10862 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10863 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10864
10865 // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10866 // non-virtual, but computeInfo is virtual, so we overload it.
10867 void computeInfo(CGFunctionInfo &FI) const override;
10868
10869 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10870 int &ArgFPRsLeft) const;
10871 ABIArgInfo classifyReturnType(QualType RetTy) const;
10872
10873 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10874 QualType Ty) const override;
10875
10876 ABIArgInfo extendType(QualType Ty) const;
10877
10878 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10879 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10880 CharUnits &Field2Off, int &NeededArgGPRs,
10881 int &NeededArgFPRs) const;
10882 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10883 CharUnits Field1Off,
10884 llvm::Type *Field2Ty,
10885 CharUnits Field2Off) const;
10886 };
10887 } // end anonymous namespace
10888
computeInfo(CGFunctionInfo & FI) const10889 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10890 QualType RetTy = FI.getReturnType();
10891 if (!getCXXABI().classifyReturnType(FI))
10892 FI.getReturnInfo() = classifyReturnType(RetTy);
10893
10894 // IsRetIndirect is true if classifyArgumentType indicated the value should
10895 // be passed indirect, or if the type size is a scalar greater than 2*XLen
10896 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10897 // in LLVM IR, relying on the backend lowering code to rewrite the argument
10898 // list and pass indirectly on RV32.
10899 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10900 if (!IsRetIndirect && RetTy->isScalarType() &&
10901 getContext().getTypeSize(RetTy) > (2 * XLen)) {
10902 if (RetTy->isComplexType() && FLen) {
10903 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10904 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10905 } else {
10906 // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10907 IsRetIndirect = true;
10908 }
10909 }
10910
10911 // We must track the number of GPRs used in order to conform to the RISC-V
10912 // ABI, as integer scalars passed in registers should have signext/zeroext
10913 // when promoted, but are anyext if passed on the stack. As GPR usage is
10914 // different for variadic arguments, we must also track whether we are
10915 // examining a vararg or not.
10916 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10917 int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10918 int NumFixedArgs = FI.getNumRequiredArgs();
10919
10920 int ArgNum = 0;
10921 for (auto &ArgInfo : FI.arguments()) {
10922 bool IsFixed = ArgNum < NumFixedArgs;
10923 ArgInfo.info =
10924 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10925 ArgNum++;
10926 }
10927 }
10928
10929 // Returns true if the struct is a potential candidate for the floating point
10930 // calling convention. If this function returns true, the caller is
10931 // responsible for checking that if there is only a single field then that
10932 // field is a float.
detectFPCCEligibleStructHelper(QualType Ty,CharUnits CurOff,llvm::Type * & Field1Ty,CharUnits & Field1Off,llvm::Type * & Field2Ty,CharUnits & Field2Off) const10933 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10934 llvm::Type *&Field1Ty,
10935 CharUnits &Field1Off,
10936 llvm::Type *&Field2Ty,
10937 CharUnits &Field2Off) const {
10938 bool IsInt = Ty->isIntegralOrEnumerationType();
10939 bool IsFloat = Ty->isRealFloatingType();
10940
10941 if (IsInt || IsFloat) {
10942 uint64_t Size = getContext().getTypeSize(Ty);
10943 if (IsInt && Size > XLen)
10944 return false;
10945 // Can't be eligible if larger than the FP registers. Half precision isn't
10946 // currently supported on RISC-V and the ABI hasn't been confirmed, so
10947 // default to the integer ABI in that case.
10948 if (IsFloat && (Size > FLen || Size < 32))
10949 return false;
10950 // Can't be eligible if an integer type was already found (int+int pairs
10951 // are not eligible).
10952 if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10953 return false;
10954 if (!Field1Ty) {
10955 Field1Ty = CGT.ConvertType(Ty);
10956 Field1Off = CurOff;
10957 return true;
10958 }
10959 if (!Field2Ty) {
10960 Field2Ty = CGT.ConvertType(Ty);
10961 Field2Off = CurOff;
10962 return true;
10963 }
10964 return false;
10965 }
10966
10967 if (auto CTy = Ty->getAs<ComplexType>()) {
10968 if (Field1Ty)
10969 return false;
10970 QualType EltTy = CTy->getElementType();
10971 if (getContext().getTypeSize(EltTy) > FLen)
10972 return false;
10973 Field1Ty = CGT.ConvertType(EltTy);
10974 Field1Off = CurOff;
10975 Field2Ty = Field1Ty;
10976 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10977 return true;
10978 }
10979
10980 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10981 uint64_t ArraySize = ATy->getSize().getZExtValue();
10982 QualType EltTy = ATy->getElementType();
10983 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10984 for (uint64_t i = 0; i < ArraySize; ++i) {
10985 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10986 Field1Off, Field2Ty, Field2Off);
10987 if (!Ret)
10988 return false;
10989 CurOff += EltSize;
10990 }
10991 return true;
10992 }
10993
10994 if (const auto *RTy = Ty->getAs<RecordType>()) {
10995 // Structures with either a non-trivial destructor or a non-trivial
10996 // copy constructor are not eligible for the FP calling convention.
10997 if (getRecordArgABI(Ty, CGT.getCXXABI()))
10998 return false;
10999 if (isEmptyRecord(getContext(), Ty, true))
11000 return true;
11001 const RecordDecl *RD = RTy->getDecl();
11002 // Unions aren't eligible unless they're empty (which is caught above).
11003 if (RD->isUnion())
11004 return false;
11005 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
11006 // If this is a C++ record, check the bases first.
11007 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
11008 for (const CXXBaseSpecifier &B : CXXRD->bases()) {
11009 const auto *BDecl =
11010 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
11011 CharUnits BaseOff = Layout.getBaseClassOffset(BDecl);
11012 bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff,
11013 Field1Ty, Field1Off, Field2Ty,
11014 Field2Off);
11015 if (!Ret)
11016 return false;
11017 }
11018 }
11019 int ZeroWidthBitFieldCount = 0;
11020 for (const FieldDecl *FD : RD->fields()) {
11021 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
11022 QualType QTy = FD->getType();
11023 if (FD->isBitField()) {
11024 unsigned BitWidth = FD->getBitWidthValue(getContext());
11025 // Allow a bitfield with a type greater than XLen as long as the
11026 // bitwidth is XLen or less.
11027 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
11028 QTy = getContext().getIntTypeForBitwidth(XLen, false);
11029 if (BitWidth == 0) {
11030 ZeroWidthBitFieldCount++;
11031 continue;
11032 }
11033 }
11034
11035 bool Ret = detectFPCCEligibleStructHelper(
11036 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
11037 Field1Ty, Field1Off, Field2Ty, Field2Off);
11038 if (!Ret)
11039 return false;
11040
11041 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
11042 // or int+fp structs, but are ignored for a struct with an fp field and
11043 // any number of zero-width bitfields.
11044 if (Field2Ty && ZeroWidthBitFieldCount > 0)
11045 return false;
11046 }
11047 return Field1Ty != nullptr;
11048 }
11049
11050 return false;
11051 }
11052
11053 // Determine if a struct is eligible for passing according to the floating
11054 // point calling convention (i.e., when flattened it contains a single fp
11055 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
11056 // NeededArgGPRs are incremented appropriately.
detectFPCCEligibleStruct(QualType Ty,llvm::Type * & Field1Ty,CharUnits & Field1Off,llvm::Type * & Field2Ty,CharUnits & Field2Off,int & NeededArgGPRs,int & NeededArgFPRs) const11057 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
11058 CharUnits &Field1Off,
11059 llvm::Type *&Field2Ty,
11060 CharUnits &Field2Off,
11061 int &NeededArgGPRs,
11062 int &NeededArgFPRs) const {
11063 Field1Ty = nullptr;
11064 Field2Ty = nullptr;
11065 NeededArgGPRs = 0;
11066 NeededArgFPRs = 0;
11067 bool IsCandidate = detectFPCCEligibleStructHelper(
11068 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
11069 // Not really a candidate if we have a single int but no float.
11070 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
11071 return false;
11072 if (!IsCandidate)
11073 return false;
11074 if (Field1Ty && Field1Ty->isFloatingPointTy())
11075 NeededArgFPRs++;
11076 else if (Field1Ty)
11077 NeededArgGPRs++;
11078 if (Field2Ty && Field2Ty->isFloatingPointTy())
11079 NeededArgFPRs++;
11080 else if (Field2Ty)
11081 NeededArgGPRs++;
11082 return true;
11083 }
11084
11085 // Call getCoerceAndExpand for the two-element flattened struct described by
11086 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
11087 // appropriate coerceToType and unpaddedCoerceToType.
coerceAndExpandFPCCEligibleStruct(llvm::Type * Field1Ty,CharUnits Field1Off,llvm::Type * Field2Ty,CharUnits Field2Off) const11088 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
11089 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
11090 CharUnits Field2Off) const {
11091 SmallVector<llvm::Type *, 3> CoerceElts;
11092 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
11093 if (!Field1Off.isZero())
11094 CoerceElts.push_back(llvm::ArrayType::get(
11095 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
11096
11097 CoerceElts.push_back(Field1Ty);
11098 UnpaddedCoerceElts.push_back(Field1Ty);
11099
11100 if (!Field2Ty) {
11101 return ABIArgInfo::getCoerceAndExpand(
11102 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
11103 UnpaddedCoerceElts[0]);
11104 }
11105
11106 CharUnits Field2Align =
11107 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
11108 CharUnits Field1End = Field1Off +
11109 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
11110 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
11111
11112 CharUnits Padding = CharUnits::Zero();
11113 if (Field2Off > Field2OffNoPadNoPack)
11114 Padding = Field2Off - Field2OffNoPadNoPack;
11115 else if (Field2Off != Field2Align && Field2Off > Field1End)
11116 Padding = Field2Off - Field1End;
11117
11118 bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
11119
11120 if (!Padding.isZero())
11121 CoerceElts.push_back(llvm::ArrayType::get(
11122 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
11123
11124 CoerceElts.push_back(Field2Ty);
11125 UnpaddedCoerceElts.push_back(Field2Ty);
11126
11127 auto CoerceToType =
11128 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
11129 auto UnpaddedCoerceToType =
11130 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
11131
11132 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
11133 }
11134
classifyArgumentType(QualType Ty,bool IsFixed,int & ArgGPRsLeft,int & ArgFPRsLeft) const11135 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
11136 int &ArgGPRsLeft,
11137 int &ArgFPRsLeft) const {
11138 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
11139 Ty = useFirstFieldIfTransparentUnion(Ty);
11140
11141 // Structures with either a non-trivial destructor or a non-trivial
11142 // copy constructor are always passed indirectly.
11143 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
11144 if (ArgGPRsLeft)
11145 ArgGPRsLeft -= 1;
11146 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
11147 CGCXXABI::RAA_DirectInMemory);
11148 }
11149
11150 // Ignore empty structs/unions.
11151 if (isEmptyRecord(getContext(), Ty, true))
11152 return ABIArgInfo::getIgnore();
11153
11154 uint64_t Size = getContext().getTypeSize(Ty);
11155
11156 // Pass floating point values via FPRs if possible.
11157 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
11158 FLen >= Size && ArgFPRsLeft) {
11159 ArgFPRsLeft--;
11160 return ABIArgInfo::getDirect();
11161 }
11162
11163 // Complex types for the hard float ABI must be passed direct rather than
11164 // using CoerceAndExpand.
11165 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
11166 QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
11167 if (getContext().getTypeSize(EltTy) <= FLen) {
11168 ArgFPRsLeft -= 2;
11169 return ABIArgInfo::getDirect();
11170 }
11171 }
11172
11173 if (IsFixed && FLen && Ty->isStructureOrClassType()) {
11174 llvm::Type *Field1Ty = nullptr;
11175 llvm::Type *Field2Ty = nullptr;
11176 CharUnits Field1Off = CharUnits::Zero();
11177 CharUnits Field2Off = CharUnits::Zero();
11178 int NeededArgGPRs = 0;
11179 int NeededArgFPRs = 0;
11180 bool IsCandidate =
11181 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
11182 NeededArgGPRs, NeededArgFPRs);
11183 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
11184 NeededArgFPRs <= ArgFPRsLeft) {
11185 ArgGPRsLeft -= NeededArgGPRs;
11186 ArgFPRsLeft -= NeededArgFPRs;
11187 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
11188 Field2Off);
11189 }
11190 }
11191
11192 uint64_t NeededAlign = getContext().getTypeAlign(Ty);
11193 bool MustUseStack = false;
11194 // Determine the number of GPRs needed to pass the current argument
11195 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
11196 // register pairs, so may consume 3 registers.
11197 int NeededArgGPRs = 1;
11198 if (!IsFixed && NeededAlign == 2 * XLen)
11199 NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
11200 else if (Size > XLen && Size <= 2 * XLen)
11201 NeededArgGPRs = 2;
11202
11203 if (NeededArgGPRs > ArgGPRsLeft) {
11204 MustUseStack = true;
11205 NeededArgGPRs = ArgGPRsLeft;
11206 }
11207
11208 ArgGPRsLeft -= NeededArgGPRs;
11209
11210 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
11211 // Treat an enum type as its underlying type.
11212 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
11213 Ty = EnumTy->getDecl()->getIntegerType();
11214
11215 // All integral types are promoted to XLen width, unless passed on the
11216 // stack.
11217 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
11218 return extendType(Ty);
11219 }
11220
11221 if (const auto *EIT = Ty->getAs<BitIntType>()) {
11222 if (EIT->getNumBits() < XLen && !MustUseStack)
11223 return extendType(Ty);
11224 if (EIT->getNumBits() > 128 ||
11225 (!getContext().getTargetInfo().hasInt128Type() &&
11226 EIT->getNumBits() > 64))
11227 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11228 }
11229
11230 return ABIArgInfo::getDirect();
11231 }
11232
11233 // Aggregates which are <= 2*XLen will be passed in registers if possible,
11234 // so coerce to integers.
11235 if (Size <= 2 * XLen) {
11236 unsigned Alignment = getContext().getTypeAlign(Ty);
11237
11238 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
11239 // required, and a 2-element XLen array if only XLen alignment is required.
11240 if (Size <= XLen) {
11241 return ABIArgInfo::getDirect(
11242 llvm::IntegerType::get(getVMContext(), XLen));
11243 } else if (Alignment == 2 * XLen) {
11244 return ABIArgInfo::getDirect(
11245 llvm::IntegerType::get(getVMContext(), 2 * XLen));
11246 } else {
11247 return ABIArgInfo::getDirect(llvm::ArrayType::get(
11248 llvm::IntegerType::get(getVMContext(), XLen), 2));
11249 }
11250 }
11251 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11252 }
11253
classifyReturnType(QualType RetTy) const11254 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
11255 if (RetTy->isVoidType())
11256 return ABIArgInfo::getIgnore();
11257
11258 int ArgGPRsLeft = 2;
11259 int ArgFPRsLeft = FLen ? 2 : 0;
11260
11261 // The rules for return and argument types are the same, so defer to
11262 // classifyArgumentType.
11263 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
11264 ArgFPRsLeft);
11265 }
11266
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const11267 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11268 QualType Ty) const {
11269 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
11270
11271 // Empty records are ignored for parameter passing purposes.
11272 if (isEmptyRecord(getContext(), Ty, true)) {
11273 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
11274 getVAListElementType(CGF), SlotSize);
11275 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
11276 return Addr;
11277 }
11278
11279 auto TInfo = getContext().getTypeInfoInChars(Ty);
11280
11281 // Arguments bigger than 2*Xlen bytes are passed indirectly.
11282 bool IsIndirect = TInfo.Width > 2 * SlotSize;
11283
11284 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
11285 SlotSize, /*AllowHigherAlign=*/true);
11286 }
11287
extendType(QualType Ty) const11288 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
11289 int TySize = getContext().getTypeSize(Ty);
11290 // RV64 ABI requires unsigned 32 bit integers to be sign extended.
11291 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
11292 return ABIArgInfo::getSignExtend(Ty);
11293 return ABIArgInfo::getExtend(Ty);
11294 }
11295
11296 namespace {
11297 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
11298 public:
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,unsigned XLen,unsigned FLen)11299 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
11300 unsigned FLen)
11301 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
11302
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const11303 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
11304 CodeGen::CodeGenModule &CGM) const override {
11305 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
11306 if (!FD) return;
11307
11308 const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11309 if (!Attr)
11310 return;
11311
11312 const char *Kind;
11313 switch (Attr->getInterrupt()) {
11314 case RISCVInterruptAttr::user: Kind = "user"; break;
11315 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11316 case RISCVInterruptAttr::machine: Kind = "machine"; break;
11317 }
11318
11319 auto *Fn = cast<llvm::Function>(GV);
11320
11321 Fn->addFnAttr("interrupt", Kind);
11322 }
11323 };
11324 } // namespace
11325
11326 //===----------------------------------------------------------------------===//
11327 // VE ABI Implementation.
11328 //
11329 namespace {
11330 class VEABIInfo : public DefaultABIInfo {
11331 public:
VEABIInfo(CodeGenTypes & CGT)11332 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11333
11334 private:
11335 ABIArgInfo classifyReturnType(QualType RetTy) const;
11336 ABIArgInfo classifyArgumentType(QualType RetTy) const;
11337 void computeInfo(CGFunctionInfo &FI) const override;
11338 };
11339 } // end anonymous namespace
11340
classifyReturnType(QualType Ty) const11341 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11342 if (Ty->isAnyComplexType())
11343 return ABIArgInfo::getDirect();
11344 uint64_t Size = getContext().getTypeSize(Ty);
11345 if (Size < 64 && Ty->isIntegerType())
11346 return ABIArgInfo::getExtend(Ty);
11347 return DefaultABIInfo::classifyReturnType(Ty);
11348 }
11349
classifyArgumentType(QualType Ty) const11350 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11351 if (Ty->isAnyComplexType())
11352 return ABIArgInfo::getDirect();
11353 uint64_t Size = getContext().getTypeSize(Ty);
11354 if (Size < 64 && Ty->isIntegerType())
11355 return ABIArgInfo::getExtend(Ty);
11356 return DefaultABIInfo::classifyArgumentType(Ty);
11357 }
11358
computeInfo(CGFunctionInfo & FI) const11359 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11360 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11361 for (auto &Arg : FI.arguments())
11362 Arg.info = classifyArgumentType(Arg.type);
11363 }
11364
11365 namespace {
11366 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11367 public:
VETargetCodeGenInfo(CodeGenTypes & CGT)11368 VETargetCodeGenInfo(CodeGenTypes &CGT)
11369 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11370 // VE ABI requires the arguments of variadic and prototype-less functions
11371 // are passed in both registers and memory.
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const11372 bool isNoProtoCallVariadic(const CallArgList &args,
11373 const FunctionNoProtoType *fnType) const override {
11374 return true;
11375 }
11376 };
11377 } // end anonymous namespace
11378
11379 //===----------------------------------------------------------------------===//
11380 // CSKY ABI Implementation
11381 //===----------------------------------------------------------------------===//
11382 namespace {
11383 class CSKYABIInfo : public DefaultABIInfo {
11384 static const int NumArgGPRs = 4;
11385 static const int NumArgFPRs = 4;
11386
11387 static const unsigned XLen = 32;
11388 unsigned FLen;
11389
11390 public:
CSKYABIInfo(CodeGen::CodeGenTypes & CGT,unsigned FLen)11391 CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
11392 : DefaultABIInfo(CGT), FLen(FLen) {}
11393
11394 void computeInfo(CGFunctionInfo &FI) const override;
11395 ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
11396 int &ArgFPRsLeft,
11397 bool isReturnType = false) const;
11398 ABIArgInfo classifyReturnType(QualType RetTy) const;
11399
11400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11401 QualType Ty) const override;
11402 };
11403
11404 } // end anonymous namespace
11405
computeInfo(CGFunctionInfo & FI) const11406 void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const {
11407 QualType RetTy = FI.getReturnType();
11408 if (!getCXXABI().classifyReturnType(FI))
11409 FI.getReturnInfo() = classifyReturnType(RetTy);
11410
11411 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
11412
11413 // We must track the number of GPRs used in order to conform to the CSKY
11414 // ABI, as integer scalars passed in registers should have signext/zeroext
11415 // when promoted.
11416 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
11417 int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
11418
11419 for (auto &ArgInfo : FI.arguments()) {
11420 ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft);
11421 }
11422 }
11423
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const11424 Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11425 QualType Ty) const {
11426 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
11427
11428 // Empty records are ignored for parameter passing purposes.
11429 if (isEmptyRecord(getContext(), Ty, true)) {
11430 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
11431 getVAListElementType(CGF), SlotSize);
11432 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
11433 return Addr;
11434 }
11435
11436 auto TInfo = getContext().getTypeInfoInChars(Ty);
11437
11438 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize,
11439 /*AllowHigherAlign=*/true);
11440 }
11441
classifyArgumentType(QualType Ty,int & ArgGPRsLeft,int & ArgFPRsLeft,bool isReturnType) const11442 ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
11443 int &ArgFPRsLeft,
11444 bool isReturnType) const {
11445 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
11446 Ty = useFirstFieldIfTransparentUnion(Ty);
11447
11448 // Structures with either a non-trivial destructor or a non-trivial
11449 // copy constructor are always passed indirectly.
11450 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
11451 if (ArgGPRsLeft)
11452 ArgGPRsLeft -= 1;
11453 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
11454 CGCXXABI::RAA_DirectInMemory);
11455 }
11456
11457 // Ignore empty structs/unions.
11458 if (isEmptyRecord(getContext(), Ty, true))
11459 return ABIArgInfo::getIgnore();
11460
11461 if (!Ty->getAsUnionType())
11462 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
11463 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
11464
11465 uint64_t Size = getContext().getTypeSize(Ty);
11466 // Pass floating point values via FPRs if possible.
11467 if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size &&
11468 ArgFPRsLeft) {
11469 ArgFPRsLeft--;
11470 return ABIArgInfo::getDirect();
11471 }
11472
11473 // Complex types for the hard float ABI must be passed direct rather than
11474 // using CoerceAndExpand.
11475 if (Ty->isComplexType() && FLen && !isReturnType) {
11476 QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
11477 if (getContext().getTypeSize(EltTy) <= FLen) {
11478 ArgFPRsLeft -= 2;
11479 return ABIArgInfo::getDirect();
11480 }
11481 }
11482
11483 if (!isAggregateTypeForABI(Ty)) {
11484 // Treat an enum type as its underlying type.
11485 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
11486 Ty = EnumTy->getDecl()->getIntegerType();
11487
11488 // All integral types are promoted to XLen width, unless passed on the
11489 // stack.
11490 if (Size < XLen && Ty->isIntegralOrEnumerationType())
11491 return ABIArgInfo::getExtend(Ty);
11492
11493 if (const auto *EIT = Ty->getAs<BitIntType>()) {
11494 if (EIT->getNumBits() < XLen)
11495 return ABIArgInfo::getExtend(Ty);
11496 }
11497
11498 return ABIArgInfo::getDirect();
11499 }
11500
11501 // For argument type, the first 4*XLen parts of aggregate will be passed
11502 // in registers, and the rest will be passed in stack.
11503 // So we can coerce to integers directly and let backend handle it correctly.
11504 // For return type, aggregate which <= 2*XLen will be returned in registers.
11505 // Otherwise, aggregate will be returned indirectly.
11506 if (!isReturnType || (isReturnType && Size <= 2 * XLen)) {
11507 if (Size <= XLen) {
11508 return ABIArgInfo::getDirect(
11509 llvm::IntegerType::get(getVMContext(), XLen));
11510 } else {
11511 return ABIArgInfo::getDirect(llvm::ArrayType::get(
11512 llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen));
11513 }
11514 }
11515 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11516 }
11517
classifyReturnType(QualType RetTy) const11518 ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const {
11519 if (RetTy->isVoidType())
11520 return ABIArgInfo::getIgnore();
11521
11522 int ArgGPRsLeft = 2;
11523 int ArgFPRsLeft = FLen ? 1 : 0;
11524
11525 // The rules for return and argument types are the same, so defer to
11526 // classifyArgumentType.
11527 return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true);
11528 }
11529
11530 namespace {
11531 class CSKYTargetCodeGenInfo : public TargetCodeGenInfo {
11532 public:
CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,unsigned FLen)11533 CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
11534 : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {}
11535 };
11536 } // end anonymous namespace
11537
11538 //===----------------------------------------------------------------------===//
11539 // Driver code
11540 //===----------------------------------------------------------------------===//
11541
supportsCOMDAT() const11542 bool CodeGenModule::supportsCOMDAT() const {
11543 return getTriple().supportsCOMDAT();
11544 }
11545
getTargetCodeGenInfo()11546 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11547 if (TheTargetCodeGenInfo)
11548 return *TheTargetCodeGenInfo;
11549
11550 // Helper to set the unique_ptr while still keeping the return value.
11551 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11552 this->TheTargetCodeGenInfo.reset(P);
11553 return *P;
11554 };
11555
11556 const llvm::Triple &Triple = getTarget().getTriple();
11557 switch (Triple.getArch()) {
11558 default:
11559 return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11560
11561 case llvm::Triple::le32:
11562 return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11563 case llvm::Triple::m68k:
11564 return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11565 case llvm::Triple::mips:
11566 case llvm::Triple::mipsel:
11567 if (Triple.getOS() == llvm::Triple::NaCl)
11568 return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11569 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11570
11571 case llvm::Triple::mips64:
11572 case llvm::Triple::mips64el:
11573 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11574
11575 case llvm::Triple::avr: {
11576 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
11577 // on avrtiny. For passing return value, R18~R25 are used on avr, and
11578 // R22~R25 are used on avrtiny.
11579 unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18;
11580 unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8;
11581 return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR));
11582 }
11583
11584 case llvm::Triple::aarch64:
11585 case llvm::Triple::aarch64_32:
11586 case llvm::Triple::aarch64_be: {
11587 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11588 if (getTarget().getABI() == "darwinpcs")
11589 Kind = AArch64ABIInfo::DarwinPCS;
11590 else if (Triple.isOSWindows())
11591 return SetCGInfo(
11592 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11593
11594 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11595 }
11596
11597 case llvm::Triple::wasm32:
11598 case llvm::Triple::wasm64: {
11599 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11600 if (getTarget().getABI() == "experimental-mv")
11601 Kind = WebAssemblyABIInfo::ExperimentalMV;
11602 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11603 }
11604
11605 case llvm::Triple::arm:
11606 case llvm::Triple::armeb:
11607 case llvm::Triple::thumb:
11608 case llvm::Triple::thumbeb: {
11609 if (Triple.getOS() == llvm::Triple::Win32) {
11610 return SetCGInfo(
11611 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11612 }
11613
11614 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11615 StringRef ABIStr = getTarget().getABI();
11616 if (ABIStr == "apcs-gnu")
11617 Kind = ARMABIInfo::APCS;
11618 else if (ABIStr == "aapcs16")
11619 Kind = ARMABIInfo::AAPCS16_VFP;
11620 else if (CodeGenOpts.FloatABI == "hard" ||
11621 (CodeGenOpts.FloatABI != "soft" &&
11622 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11623 Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11624 Triple.getEnvironment() == llvm::Triple::EABIHF)))
11625 Kind = ARMABIInfo::AAPCS_VFP;
11626
11627 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11628 }
11629
11630 case llvm::Triple::ppc: {
11631 if (Triple.isOSAIX())
11632 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11633
11634 bool IsSoftFloat =
11635 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11636 bool RetSmallStructInRegABI =
11637 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11638 return SetCGInfo(
11639 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11640 }
11641 case llvm::Triple::ppcle: {
11642 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11643 bool RetSmallStructInRegABI =
11644 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11645 return SetCGInfo(
11646 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11647 }
11648 case llvm::Triple::ppc64:
11649 if (Triple.isOSAIX())
11650 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11651
11652 if (Triple.isOSBinFormatELF()) {
11653 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11654 if (getTarget().getABI() == "elfv2")
11655 Kind = PPC64_SVR4_ABIInfo::ELFv2;
11656 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11657
11658 return SetCGInfo(
11659 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11660 }
11661 return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11662 case llvm::Triple::ppc64le: {
11663 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11664 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11665 if (getTarget().getABI() == "elfv1")
11666 Kind = PPC64_SVR4_ABIInfo::ELFv1;
11667 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11668
11669 return SetCGInfo(
11670 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11671 }
11672
11673 case llvm::Triple::nvptx:
11674 case llvm::Triple::nvptx64:
11675 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11676
11677 case llvm::Triple::msp430:
11678 return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11679
11680 case llvm::Triple::riscv32:
11681 case llvm::Triple::riscv64: {
11682 StringRef ABIStr = getTarget().getABI();
11683 unsigned XLen = getTarget().getPointerWidth(0);
11684 unsigned ABIFLen = 0;
11685 if (ABIStr.endswith("f"))
11686 ABIFLen = 32;
11687 else if (ABIStr.endswith("d"))
11688 ABIFLen = 64;
11689 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11690 }
11691
11692 case llvm::Triple::systemz: {
11693 bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11694 bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11695 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11696 }
11697
11698 case llvm::Triple::tce:
11699 case llvm::Triple::tcele:
11700 return SetCGInfo(new TCETargetCodeGenInfo(Types));
11701
11702 case llvm::Triple::x86: {
11703 bool IsDarwinVectorABI = Triple.isOSDarwin();
11704 bool RetSmallStructInRegABI =
11705 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11706 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11707
11708 if (Triple.getOS() == llvm::Triple::Win32) {
11709 return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11710 Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11711 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11712 } else {
11713 return SetCGInfo(new X86_32TargetCodeGenInfo(
11714 Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11715 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11716 CodeGenOpts.FloatABI == "soft"));
11717 }
11718 }
11719
11720 case llvm::Triple::x86_64: {
11721 StringRef ABI = getTarget().getABI();
11722 X86AVXABILevel AVXLevel =
11723 (ABI == "avx512"
11724 ? X86AVXABILevel::AVX512
11725 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11726
11727 switch (Triple.getOS()) {
11728 case llvm::Triple::Win32:
11729 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11730 default:
11731 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11732 }
11733 }
11734 case llvm::Triple::hexagon:
11735 return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11736 case llvm::Triple::lanai:
11737 return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11738 case llvm::Triple::r600:
11739 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11740 case llvm::Triple::amdgcn:
11741 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11742 case llvm::Triple::sparc:
11743 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11744 case llvm::Triple::sparcv9:
11745 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11746 case llvm::Triple::xcore:
11747 return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11748 case llvm::Triple::arc:
11749 return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11750 case llvm::Triple::spir:
11751 case llvm::Triple::spir64:
11752 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types));
11753 case llvm::Triple::spirv32:
11754 case llvm::Triple::spirv64:
11755 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types));
11756 case llvm::Triple::ve:
11757 return SetCGInfo(new VETargetCodeGenInfo(Types));
11758 case llvm::Triple::csky: {
11759 bool IsSoftFloat = !getTarget().hasFeature("hard-float-abi");
11760 bool hasFP64 = getTarget().hasFeature("fpuv2_df") ||
11761 getTarget().hasFeature("fpuv3_df");
11762 return SetCGInfo(new CSKYTargetCodeGenInfo(Types, IsSoftFloat ? 0
11763 : hasFP64 ? 64
11764 : 32));
11765 }
11766 }
11767 }
11768
11769 /// Create an OpenCL kernel for an enqueued block.
11770 ///
11771 /// The kernel has the same function type as the block invoke function. Its
11772 /// name is the name of the block invoke function postfixed with "_kernel".
11773 /// It simply calls the block invoke function then returns.
11774 llvm::Function *
createEnqueuedBlockKernel(CodeGenFunction & CGF,llvm::Function * Invoke,llvm::Type * BlockTy) const11775 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11776 llvm::Function *Invoke,
11777 llvm::Type *BlockTy) const {
11778 auto *InvokeFT = Invoke->getFunctionType();
11779 auto &C = CGF.getLLVMContext();
11780 std::string Name = Invoke->getName().str() + "_kernel";
11781 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C),
11782 InvokeFT->params(), false);
11783 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name,
11784 &CGF.CGM.getModule());
11785 auto IP = CGF.Builder.saveIP();
11786 auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11787 auto &Builder = CGF.Builder;
11788 Builder.SetInsertPoint(BB);
11789 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args()));
11790 llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11791 call->setCallingConv(Invoke->getCallingConv());
11792 Builder.CreateRetVoid();
11793 Builder.restoreIP(IP);
11794 return F;
11795 }
11796
11797 /// Create an OpenCL kernel for an enqueued block.
11798 ///
11799 /// The type of the first argument (the block literal) is the struct type
11800 /// of the block literal instead of a pointer type. The first argument
11801 /// (block literal) is passed directly by value to the kernel. The kernel
11802 /// allocates the same type of struct on stack and stores the block literal
11803 /// to it and passes its pointer to the block invoke function. The kernel
11804 /// has "enqueued-block" function attribute and kernel argument metadata.
createEnqueuedBlockKernel(CodeGenFunction & CGF,llvm::Function * Invoke,llvm::Type * BlockTy) const11805 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11806 CodeGenFunction &CGF, llvm::Function *Invoke,
11807 llvm::Type *BlockTy) const {
11808 auto &Builder = CGF.Builder;
11809 auto &C = CGF.getLLVMContext();
11810
11811 auto *InvokeFT = Invoke->getFunctionType();
11812 llvm::SmallVector<llvm::Type *, 2> ArgTys;
11813 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11814 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11815 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11816 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11817 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11818 llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11819
11820 ArgTys.push_back(BlockTy);
11821 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11822 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11823 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11824 ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11825 AccessQuals.push_back(llvm::MDString::get(C, "none"));
11826 ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11827 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11828 ArgTys.push_back(InvokeFT->getParamType(I));
11829 ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11830 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11831 AccessQuals.push_back(llvm::MDString::get(C, "none"));
11832 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11833 ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11834 ArgNames.push_back(
11835 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11836 }
11837 std::string Name = Invoke->getName().str() + "_kernel";
11838 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11839 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11840 &CGF.CGM.getModule());
11841 F->addFnAttr("enqueued-block");
11842 auto IP = CGF.Builder.saveIP();
11843 auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11844 Builder.SetInsertPoint(BB);
11845 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11846 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11847 BlockPtr->setAlignment(BlockAlign);
11848 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11849 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11850 llvm::SmallVector<llvm::Value *, 2> Args;
11851 Args.push_back(Cast);
11852 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11853 Args.push_back(I);
11854 llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11855 call->setCallingConv(Invoke->getCallingConv());
11856 Builder.CreateRetVoid();
11857 Builder.restoreIP(IP);
11858
11859 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11860 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11861 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11862 F->setMetadata("kernel_arg_base_type",
11863 llvm::MDNode::get(C, ArgBaseTypeNames));
11864 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11865 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11866 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11867
11868 return F;
11869 }
11870