1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
187 
188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
189   return false;
190 }
191 
192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
193                                                 uint64_t Members) const {
194   return false;
195 }
196 
197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
198   return false;
199 }
200 
201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
202   raw_ostream &OS = llvm::errs();
203   OS << "(ABIArgInfo Kind=";
204   switch (TheKind) {
205   case Direct:
206     OS << "Direct Type=";
207     if (llvm::Type *Ty = getCoerceToType())
208       Ty->print(OS);
209     else
210       OS << "null";
211     break;
212   case Extend:
213     OS << "Extend";
214     break;
215   case Ignore:
216     OS << "Ignore";
217     break;
218   case InAlloca:
219     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
220     break;
221   case Indirect:
222     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
223        << " ByVal=" << getIndirectByVal()
224        << " Realign=" << getIndirectRealign();
225     break;
226   case Expand:
227     OS << "Expand";
228     break;
229   case CoerceAndExpand:
230     OS << "CoerceAndExpand Type=";
231     getCoerceAndExpandType()->print(OS);
232     break;
233   }
234   OS << ")\n";
235 }
236 
237 // Dynamically round a pointer up to a multiple of the given alignment.
238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
239                                                   llvm::Value *Ptr,
240                                                   CharUnits Align) {
241   llvm::Value *PtrAsInt = Ptr;
242   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
243   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
244   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
245         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
246   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
247            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
248   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
249                                         Ptr->getType(),
250                                         Ptr->getName() + ".aligned");
251   return PtrAsInt;
252 }
253 
254 /// Emit va_arg for a platform using the common void* representation,
255 /// where arguments are simply emitted in an array of slots on the stack.
256 ///
257 /// This version implements the core direct-value passing rules.
258 ///
259 /// \param SlotSize - The size and alignment of a stack slot.
260 ///   Each argument will be allocated to a multiple of this number of
261 ///   slots, and all the slots will be aligned to this value.
262 /// \param AllowHigherAlign - The slot alignment is not a cap;
263 ///   an argument type with an alignment greater than the slot size
264 ///   will be emitted on a higher-alignment address, potentially
265 ///   leaving one or more empty slots behind as padding.  If this
266 ///   is false, the returned address might be less-aligned than
267 ///   DirectAlign.
268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
269                                       Address VAListAddr,
270                                       llvm::Type *DirectTy,
271                                       CharUnits DirectSize,
272                                       CharUnits DirectAlign,
273                                       CharUnits SlotSize,
274                                       bool AllowHigherAlign) {
275   // Cast the element type to i8* if necessary.  Some platforms define
276   // va_list as a struct containing an i8* instead of just an i8*.
277   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
278     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
279 
280   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
281 
282   // If the CC aligns values higher than the slot size, do so if needed.
283   Address Addr = Address::invalid();
284   if (AllowHigherAlign && DirectAlign > SlotSize) {
285     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
286                                                  DirectAlign);
287   } else {
288     Addr = Address(Ptr, SlotSize);
289   }
290 
291   // Advance the pointer past the argument, then store that back.
292   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
293   llvm::Value *NextPtr =
294     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
295                                            "argp.next");
296   CGF.Builder.CreateStore(NextPtr, VAListAddr);
297 
298   // If the argument is smaller than a slot, and this is a big-endian
299   // target, the argument will be right-adjusted in its slot.
300   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
301       !DirectTy->isStructTy()) {
302     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
303   }
304 
305   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
306   return Addr;
307 }
308 
309 /// Emit va_arg for a platform using the common void* representation,
310 /// where arguments are simply emitted in an array of slots on the stack.
311 ///
312 /// \param IsIndirect - Values of this type are passed indirectly.
313 /// \param ValueInfo - The size and alignment of this type, generally
314 ///   computed with getContext().getTypeInfoInChars(ValueTy).
315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
316 ///   Each argument will be allocated to a multiple of this number of
317 ///   slots, and all the slots will be aligned to this value.
318 /// \param AllowHigherAlign - The slot alignment is not a cap;
319 ///   an argument type with an alignment greater than the slot size
320 ///   will be emitted on a higher-alignment address, potentially
321 ///   leaving one or more empty slots behind as padding.
322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
323                                 QualType ValueTy, bool IsIndirect,
324                                 std::pair<CharUnits, CharUnits> ValueInfo,
325                                 CharUnits SlotSizeAndAlign,
326                                 bool AllowHigherAlign) {
327   // The size and alignment of the value that was passed directly.
328   CharUnits DirectSize, DirectAlign;
329   if (IsIndirect) {
330     DirectSize = CGF.getPointerSize();
331     DirectAlign = CGF.getPointerAlign();
332   } else {
333     DirectSize = ValueInfo.first;
334     DirectAlign = ValueInfo.second;
335   }
336 
337   // Cast the address we've calculated to the right type.
338   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
339   if (IsIndirect)
340     DirectTy = DirectTy->getPointerTo(0);
341 
342   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
343                                         DirectSize, DirectAlign,
344                                         SlotSizeAndAlign,
345                                         AllowHigherAlign);
346 
347   if (IsIndirect) {
348     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
349   }
350 
351   return Addr;
352 
353 }
354 
355 static Address emitMergePHI(CodeGenFunction &CGF,
356                             Address Addr1, llvm::BasicBlock *Block1,
357                             Address Addr2, llvm::BasicBlock *Block2,
358                             const llvm::Twine &Name = "") {
359   assert(Addr1.getType() == Addr2.getType());
360   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
361   PHI->addIncoming(Addr1.getPointer(), Block1);
362   PHI->addIncoming(Addr2.getPointer(), Block2);
363   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
364   return Address(PHI, Align);
365 }
366 
367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
368 
369 // If someone can figure out a general rule for this, that would be great.
370 // It's probably just doomed to be platform-dependent, though.
371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
372   // Verified for:
373   //   x86-64     FreeBSD, Linux, Darwin
374   //   x86-32     FreeBSD, Linux, Darwin
375   //   PowerPC    Linux, Darwin
376   //   ARM        Darwin (*not* EABI)
377   //   AArch64    Linux
378   return 32;
379 }
380 
381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
382                                      const FunctionNoProtoType *fnType) const {
383   // The following conventions are known to require this to be false:
384   //   x86_stdcall
385   //   MIPS
386   // For everything else, we just prefer false unless we opt out.
387   return false;
388 }
389 
390 void
391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
392                                              llvm::SmallString<24> &Opt) const {
393   // This assumes the user is passing a library name like "rt" instead of a
394   // filename like "librt.a/so", and that they don't care whether it's static or
395   // dynamic.
396   Opt = "-l";
397   Opt += Lib;
398 }
399 
400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
401   return llvm::CallingConv::C;
402 }
403 
404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
405 
406 /// isEmptyField - Return true iff a the field is "empty", that is it
407 /// is an unnamed bit-field or an (array of) empty record(s).
408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
409                          bool AllowArrays) {
410   if (FD->isUnnamedBitfield())
411     return true;
412 
413   QualType FT = FD->getType();
414 
415   // Constant arrays of empty records count as empty, strip them off.
416   // Constant arrays of zero length always count as empty.
417   if (AllowArrays)
418     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
419       if (AT->getSize() == 0)
420         return true;
421       FT = AT->getElementType();
422     }
423 
424   const RecordType *RT = FT->getAs<RecordType>();
425   if (!RT)
426     return false;
427 
428   // C++ record fields are never empty, at least in the Itanium ABI.
429   //
430   // FIXME: We should use a predicate for whether this behavior is true in the
431   // current ABI.
432   if (isa<CXXRecordDecl>(RT->getDecl()))
433     return false;
434 
435   return isEmptyRecord(Context, FT, AllowArrays);
436 }
437 
438 /// isEmptyRecord - Return true iff a structure contains only empty
439 /// fields. Note that a structure with a flexible array member is not
440 /// considered empty.
441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
442   const RecordType *RT = T->getAs<RecordType>();
443   if (!RT)
444     return false;
445   const RecordDecl *RD = RT->getDecl();
446   if (RD->hasFlexibleArrayMember())
447     return false;
448 
449   // If this is a C++ record, check the bases first.
450   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
451     for (const auto &I : CXXRD->bases())
452       if (!isEmptyRecord(Context, I.getType(), true))
453         return false;
454 
455   for (const auto *I : RD->fields())
456     if (!isEmptyField(Context, I, AllowArrays))
457       return false;
458   return true;
459 }
460 
461 /// isSingleElementStruct - Determine if a structure is a "single
462 /// element struct", i.e. it has exactly one non-empty field or
463 /// exactly one field which is itself a single element
464 /// struct. Structures with flexible array members are never
465 /// considered single element structs.
466 ///
467 /// \return The field declaration for the single non-empty field, if
468 /// it exists.
469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
470   const RecordType *RT = T->getAs<RecordType>();
471   if (!RT)
472     return nullptr;
473 
474   const RecordDecl *RD = RT->getDecl();
475   if (RD->hasFlexibleArrayMember())
476     return nullptr;
477 
478   const Type *Found = nullptr;
479 
480   // If this is a C++ record, check the bases first.
481   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
482     for (const auto &I : CXXRD->bases()) {
483       // Ignore empty records.
484       if (isEmptyRecord(Context, I.getType(), true))
485         continue;
486 
487       // If we already found an element then this isn't a single-element struct.
488       if (Found)
489         return nullptr;
490 
491       // If this is non-empty and not a single element struct, the composite
492       // cannot be a single element struct.
493       Found = isSingleElementStruct(I.getType(), Context);
494       if (!Found)
495         return nullptr;
496     }
497   }
498 
499   // Check for single element.
500   for (const auto *FD : RD->fields()) {
501     QualType FT = FD->getType();
502 
503     // Ignore empty fields.
504     if (isEmptyField(Context, FD, true))
505       continue;
506 
507     // If we already found an element then this isn't a single-element
508     // struct.
509     if (Found)
510       return nullptr;
511 
512     // Treat single element arrays as the element.
513     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
514       if (AT->getSize().getZExtValue() != 1)
515         break;
516       FT = AT->getElementType();
517     }
518 
519     if (!isAggregateTypeForABI(FT)) {
520       Found = FT.getTypePtr();
521     } else {
522       Found = isSingleElementStruct(FT, Context);
523       if (!Found)
524         return nullptr;
525     }
526   }
527 
528   // We don't consider a struct a single-element struct if it has
529   // padding beyond the element type.
530   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
531     return nullptr;
532 
533   return Found;
534 }
535 
536 namespace {
537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
538                        const ABIArgInfo &AI) {
539   // This default implementation defers to the llvm backend's va_arg
540   // instruction. It can handle only passing arguments directly
541   // (typically only handled in the backend for primitive types), or
542   // aggregates passed indirectly by pointer (NOTE: if the "byval"
543   // flag has ABI impact in the callee, this implementation cannot
544   // work.)
545 
546   // Only a few cases are covered here at the moment -- those needed
547   // by the default abi.
548   llvm::Value *Val;
549 
550   if (AI.isIndirect()) {
551     assert(!AI.getPaddingType() &&
552            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
553     assert(
554         !AI.getIndirectRealign() &&
555         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
556 
557     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
558     CharUnits TyAlignForABI = TyInfo.second;
559 
560     llvm::Type *BaseTy =
561         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
562     llvm::Value *Addr =
563         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
564     return Address(Addr, TyAlignForABI);
565   } else {
566     assert((AI.isDirect() || AI.isExtend()) &&
567            "Unexpected ArgInfo Kind in generic VAArg emitter!");
568 
569     assert(!AI.getInReg() &&
570            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
571     assert(!AI.getPaddingType() &&
572            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
573     assert(!AI.getDirectOffset() &&
574            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
575     assert(!AI.getCoerceToType() &&
576            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
577 
578     Address Temp = CGF.CreateMemTemp(Ty, "varet");
579     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
580     CGF.Builder.CreateStore(Val, Temp);
581     return Temp;
582   }
583 }
584 
585 /// DefaultABIInfo - The default implementation for ABI specific
586 /// details. This implementation provides information which results in
587 /// self-consistent and sensible LLVM IR generation, but does not
588 /// conform to any particular ABI.
589 class DefaultABIInfo : public ABIInfo {
590 public:
591   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
592 
593   ABIArgInfo classifyReturnType(QualType RetTy) const;
594   ABIArgInfo classifyArgumentType(QualType RetTy) const;
595 
596   void computeInfo(CGFunctionInfo &FI) const override {
597     if (!getCXXABI().classifyReturnType(FI))
598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
599     for (auto &I : FI.arguments())
600       I.info = classifyArgumentType(I.type);
601   }
602 
603   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
604                     QualType Ty) const override {
605     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
606   }
607 };
608 
609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
610 public:
611   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
613 };
614 
615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
616   Ty = useFirstFieldIfTransparentUnion(Ty);
617 
618   if (isAggregateTypeForABI(Ty)) {
619     // Records with non-trivial destructors/copy-constructors should not be
620     // passed by value.
621     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
622       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
623 
624     return getNaturalAlignIndirect(Ty);
625   }
626 
627   // Treat an enum type as its underlying type.
628   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
629     Ty = EnumTy->getDecl()->getIntegerType();
630 
631   return (Ty->isPromotableIntegerType() ?
632           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
633 }
634 
635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
636   if (RetTy->isVoidType())
637     return ABIArgInfo::getIgnore();
638 
639   if (isAggregateTypeForABI(RetTy))
640     return getNaturalAlignIndirect(RetTy);
641 
642   // Treat an enum type as its underlying type.
643   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
644     RetTy = EnumTy->getDecl()->getIntegerType();
645 
646   return (RetTy->isPromotableIntegerType() ?
647           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // WebAssembly ABI Implementation
652 //
653 // This is a very simple ABI that relies a lot on DefaultABIInfo.
654 //===----------------------------------------------------------------------===//
655 
656 class WebAssemblyABIInfo final : public DefaultABIInfo {
657 public:
658   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
659       : DefaultABIInfo(CGT) {}
660 
661 private:
662   ABIArgInfo classifyReturnType(QualType RetTy) const;
663   ABIArgInfo classifyArgumentType(QualType Ty) const;
664 
665   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
666   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
667   // overload them.
668   void computeInfo(CGFunctionInfo &FI) const override {
669     if (!getCXXABI().classifyReturnType(FI))
670       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
671     for (auto &Arg : FI.arguments())
672       Arg.info = classifyArgumentType(Arg.type);
673   }
674 
675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
676                     QualType Ty) const override;
677 };
678 
679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
680 public:
681   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
683 };
684 
685 /// \brief Classify argument of given type \p Ty.
686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
687   Ty = useFirstFieldIfTransparentUnion(Ty);
688 
689   if (isAggregateTypeForABI(Ty)) {
690     // Records with non-trivial destructors/copy-constructors should not be
691     // passed by value.
692     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
693       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
694     // Ignore empty structs/unions.
695     if (isEmptyRecord(getContext(), Ty, true))
696       return ABIArgInfo::getIgnore();
697     // Lower single-element structs to just pass a regular value. TODO: We
698     // could do reasonable-size multiple-element structs too, using getExpand(),
699     // though watch out for things like bitfields.
700     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
701       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702   }
703 
704   // Otherwise just do the default thing.
705   return DefaultABIInfo::classifyArgumentType(Ty);
706 }
707 
708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
709   if (isAggregateTypeForABI(RetTy)) {
710     // Records with non-trivial destructors/copy-constructors should not be
711     // returned by value.
712     if (!getRecordArgABI(RetTy, getCXXABI())) {
713       // Ignore empty structs/unions.
714       if (isEmptyRecord(getContext(), RetTy, true))
715         return ABIArgInfo::getIgnore();
716       // Lower single-element structs to just return a regular value. TODO: We
717       // could do reasonable-size multiple-element structs too, using
718       // ABIArgInfo::getDirect().
719       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
721     }
722   }
723 
724   // Otherwise just do the default thing.
725   return DefaultABIInfo::classifyReturnType(RetTy);
726 }
727 
728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
729                                       QualType Ty) const {
730   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
731                           getContext().getTypeInfoInChars(Ty),
732                           CharUnits::fromQuantity(4),
733                           /*AllowHigherAlign=*/ true);
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // le32/PNaCl bitcode ABI Implementation
738 //
739 // This is a simplified version of the x86_32 ABI.  Arguments and return values
740 // are always passed on the stack.
741 //===----------------------------------------------------------------------===//
742 
743 class PNaClABIInfo : public ABIInfo {
744  public:
745   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
746 
747   ABIArgInfo classifyReturnType(QualType RetTy) const;
748   ABIArgInfo classifyArgumentType(QualType RetTy) const;
749 
750   void computeInfo(CGFunctionInfo &FI) const override;
751   Address EmitVAArg(CodeGenFunction &CGF,
752                     Address VAListAddr, QualType Ty) const override;
753 };
754 
755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
756  public:
757   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
759 };
760 
761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
762   if (!getCXXABI().classifyReturnType(FI))
763     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
764 
765   for (auto &I : FI.arguments())
766     I.info = classifyArgumentType(I.type);
767 }
768 
769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
770                                 QualType Ty) const {
771   // The PNaCL ABI is a bit odd, in that varargs don't use normal
772   // function classification. Structs get passed directly for varargs
773   // functions, through a rewriting transform in
774   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
775   // this target to actually support a va_arg instructions with an
776   // aggregate type, unlike other targets.
777   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
778 }
779 
780 /// \brief Classify argument of given type \p Ty.
781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
782   if (isAggregateTypeForABI(Ty)) {
783     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
784       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
785     return getNaturalAlignIndirect(Ty);
786   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
787     // Treat an enum type as its underlying type.
788     Ty = EnumTy->getDecl()->getIntegerType();
789   } else if (Ty->isFloatingType()) {
790     // Floating-point types don't go inreg.
791     return ABIArgInfo::getDirect();
792   }
793 
794   return (Ty->isPromotableIntegerType() ?
795           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
796 }
797 
798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
799   if (RetTy->isVoidType())
800     return ABIArgInfo::getIgnore();
801 
802   // In the PNaCl ABI we always return records/structures on the stack.
803   if (isAggregateTypeForABI(RetTy))
804     return getNaturalAlignIndirect(RetTy);
805 
806   // Treat an enum type as its underlying type.
807   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
808     RetTy = EnumTy->getDecl()->getIntegerType();
809 
810   return (RetTy->isPromotableIntegerType() ?
811           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
812 }
813 
814 /// IsX86_MMXType - Return true if this is an MMX type.
815 bool IsX86_MMXType(llvm::Type *IRType) {
816   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
817   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
818     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
819     IRType->getScalarSizeInBits() != 64;
820 }
821 
822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
823                                           StringRef Constraint,
824                                           llvm::Type* Ty) {
825   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
826     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
827       // Invalid MMX constraint
828       return nullptr;
829     }
830 
831     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
832   }
833 
834   // No operation needed
835   return Ty;
836 }
837 
838 /// Returns true if this type can be passed in SSE registers with the
839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
841   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
842     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
843       return true;
844   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
845     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
846     // registers specially.
847     unsigned VecSize = Context.getTypeSize(VT);
848     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
849       return true;
850   }
851   return false;
852 }
853 
854 /// Returns true if this aggregate is small enough to be passed in SSE registers
855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
857   return NumMembers <= 4;
858 }
859 
860 //===----------------------------------------------------------------------===//
861 // X86-32 ABI Implementation
862 //===----------------------------------------------------------------------===//
863 
864 /// \brief Similar to llvm::CCState, but for Clang.
865 struct CCState {
866   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
867 
868   unsigned CC;
869   unsigned FreeRegs;
870   unsigned FreeSSERegs;
871 };
872 
873 /// X86_32ABIInfo - The X86-32 ABI information.
874 class X86_32ABIInfo : public SwiftABIInfo {
875   enum Class {
876     Integer,
877     Float
878   };
879 
880   static const unsigned MinABIStackAlignInBytes = 4;
881 
882   bool IsDarwinVectorABI;
883   bool IsRetSmallStructInRegABI;
884   bool IsWin32StructABI;
885   bool IsSoftFloatABI;
886   bool IsMCUABI;
887   unsigned DefaultNumRegisterParameters;
888 
889   static bool isRegisterSize(unsigned Size) {
890     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
891   }
892 
893   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
894     // FIXME: Assumes vectorcall is in use.
895     return isX86VectorTypeForVectorCall(getContext(), Ty);
896   }
897 
898   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
899                                          uint64_t NumMembers) const override {
900     // FIXME: Assumes vectorcall is in use.
901     return isX86VectorCallAggregateSmallEnough(NumMembers);
902   }
903 
904   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
905 
906   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907   /// such that the argument will be passed in memory.
908   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
909 
910   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
911 
912   /// \brief Return the alignment to use for the given type on the stack.
913   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
914 
915   Class classify(QualType Ty) const;
916   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
917   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
918   /// \brief Updates the number of available free registers, returns
919   /// true if any registers were allocated.
920   bool updateFreeRegs(QualType Ty, CCState &State) const;
921 
922   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
923                                 bool &NeedsPadding) const;
924   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
925 
926   bool canExpandIndirectArgument(QualType Ty) const;
927 
928   /// \brief Rewrite the function info so that all memory arguments use
929   /// inalloca.
930   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
931 
932   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
933                            CharUnits &StackOffset, ABIArgInfo &Info,
934                            QualType Type) const;
935 
936 public:
937 
938   void computeInfo(CGFunctionInfo &FI) const override;
939   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
940                     QualType Ty) const override;
941 
942   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
943                 bool RetSmallStructInRegABI, bool Win32StructABI,
944                 unsigned NumRegisterParameters, bool SoftFloatABI)
945     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
946       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
947       IsWin32StructABI(Win32StructABI),
948       IsSoftFloatABI(SoftFloatABI),
949       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
950       DefaultNumRegisterParameters(NumRegisterParameters) {}
951 
952   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
953                                     ArrayRef<llvm::Type*> scalars,
954                                     bool asReturnValue) const override {
955     // LLVM's x86-32 lowering currently only assigns up to three
956     // integer registers and three fp registers.  Oddly, it'll use up to
957     // four vector registers for vectors, but those can overlap with the
958     // scalar registers.
959     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
960   }
961 };
962 
963 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
964 public:
965   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
966                           bool RetSmallStructInRegABI, bool Win32StructABI,
967                           unsigned NumRegisterParameters, bool SoftFloatABI)
968       : TargetCodeGenInfo(new X86_32ABIInfo(
969             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
970             NumRegisterParameters, SoftFloatABI)) {}
971 
972   static bool isStructReturnInRegABI(
973       const llvm::Triple &Triple, const CodeGenOptions &Opts);
974 
975   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
976                            CodeGen::CodeGenModule &CGM) const override;
977 
978   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
979     // Darwin uses different dwarf register numbers for EH.
980     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
981     return 4;
982   }
983 
984   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
985                                llvm::Value *Address) const override;
986 
987   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
988                                   StringRef Constraint,
989                                   llvm::Type* Ty) const override {
990     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
991   }
992 
993   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
994                                 std::string &Constraints,
995                                 std::vector<llvm::Type *> &ResultRegTypes,
996                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
997                                 std::vector<LValue> &ResultRegDests,
998                                 std::string &AsmString,
999                                 unsigned NumOutputs) const override;
1000 
1001   llvm::Constant *
1002   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1003     unsigned Sig = (0xeb << 0) |  // jmp rel8
1004                    (0x06 << 8) |  //           .+0x08
1005                    ('F' << 16) |
1006                    ('T' << 24);
1007     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1008   }
1009 
1010   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1011     return "movl\t%ebp, %ebp"
1012            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1013   }
1014 };
1015 
1016 }
1017 
1018 /// Rewrite input constraint references after adding some output constraints.
1019 /// In the case where there is one output and one input and we add one output,
1020 /// we need to replace all operand references greater than or equal to 1:
1021 ///     mov $0, $1
1022 ///     mov eax, $1
1023 /// The result will be:
1024 ///     mov $0, $2
1025 ///     mov eax, $2
1026 static void rewriteInputConstraintReferences(unsigned FirstIn,
1027                                              unsigned NumNewOuts,
1028                                              std::string &AsmString) {
1029   std::string Buf;
1030   llvm::raw_string_ostream OS(Buf);
1031   size_t Pos = 0;
1032   while (Pos < AsmString.size()) {
1033     size_t DollarStart = AsmString.find('$', Pos);
1034     if (DollarStart == std::string::npos)
1035       DollarStart = AsmString.size();
1036     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1037     if (DollarEnd == std::string::npos)
1038       DollarEnd = AsmString.size();
1039     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1040     Pos = DollarEnd;
1041     size_t NumDollars = DollarEnd - DollarStart;
1042     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1043       // We have an operand reference.
1044       size_t DigitStart = Pos;
1045       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1046       if (DigitEnd == std::string::npos)
1047         DigitEnd = AsmString.size();
1048       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1049       unsigned OperandIndex;
1050       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1051         if (OperandIndex >= FirstIn)
1052           OperandIndex += NumNewOuts;
1053         OS << OperandIndex;
1054       } else {
1055         OS << OperandStr;
1056       }
1057       Pos = DigitEnd;
1058     }
1059   }
1060   AsmString = std::move(OS.str());
1061 }
1062 
1063 /// Add output constraints for EAX:EDX because they are return registers.
1064 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1065     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1066     std::vector<llvm::Type *> &ResultRegTypes,
1067     std::vector<llvm::Type *> &ResultTruncRegTypes,
1068     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1069     unsigned NumOutputs) const {
1070   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1071 
1072   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1073   // larger.
1074   if (!Constraints.empty())
1075     Constraints += ',';
1076   if (RetWidth <= 32) {
1077     Constraints += "={eax}";
1078     ResultRegTypes.push_back(CGF.Int32Ty);
1079   } else {
1080     // Use the 'A' constraint for EAX:EDX.
1081     Constraints += "=A";
1082     ResultRegTypes.push_back(CGF.Int64Ty);
1083   }
1084 
1085   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1086   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1087   ResultTruncRegTypes.push_back(CoerceTy);
1088 
1089   // Coerce the integer by bitcasting the return slot pointer.
1090   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1091                                                   CoerceTy->getPointerTo()));
1092   ResultRegDests.push_back(ReturnSlot);
1093 
1094   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1095 }
1096 
1097 /// shouldReturnTypeInRegister - Determine if the given type should be
1098 /// returned in a register (for the Darwin and MCU ABI).
1099 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1100                                                ASTContext &Context) const {
1101   uint64_t Size = Context.getTypeSize(Ty);
1102 
1103   // For i386, type must be register sized.
1104   // For the MCU ABI, it only needs to be <= 8-byte
1105   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1106    return false;
1107 
1108   if (Ty->isVectorType()) {
1109     // 64- and 128- bit vectors inside structures are not returned in
1110     // registers.
1111     if (Size == 64 || Size == 128)
1112       return false;
1113 
1114     return true;
1115   }
1116 
1117   // If this is a builtin, pointer, enum, complex type, member pointer, or
1118   // member function pointer it is ok.
1119   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1120       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1121       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1122     return true;
1123 
1124   // Arrays are treated like records.
1125   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1126     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1127 
1128   // Otherwise, it must be a record type.
1129   const RecordType *RT = Ty->getAs<RecordType>();
1130   if (!RT) return false;
1131 
1132   // FIXME: Traverse bases here too.
1133 
1134   // Structure types are passed in register if all fields would be
1135   // passed in a register.
1136   for (const auto *FD : RT->getDecl()->fields()) {
1137     // Empty fields are ignored.
1138     if (isEmptyField(Context, FD, true))
1139       continue;
1140 
1141     // Check fields recursively.
1142     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1143       return false;
1144   }
1145   return true;
1146 }
1147 
1148 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1149   // Treat complex types as the element type.
1150   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1151     Ty = CTy->getElementType();
1152 
1153   // Check for a type which we know has a simple scalar argument-passing
1154   // convention without any padding.  (We're specifically looking for 32
1155   // and 64-bit integer and integer-equivalents, float, and double.)
1156   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1157       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1158     return false;
1159 
1160   uint64_t Size = Context.getTypeSize(Ty);
1161   return Size == 32 || Size == 64;
1162 }
1163 
1164 /// Test whether an argument type which is to be passed indirectly (on the
1165 /// stack) would have the equivalent layout if it was expanded into separate
1166 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1167 /// optimizations.
1168 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1169   // We can only expand structure types.
1170   const RecordType *RT = Ty->getAs<RecordType>();
1171   if (!RT)
1172     return false;
1173   const RecordDecl *RD = RT->getDecl();
1174   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1175     if (!IsWin32StructABI ) {
1176       // On non-Windows, we have to conservatively match our old bitcode
1177       // prototypes in order to be ABI-compatible at the bitcode level.
1178       if (!CXXRD->isCLike())
1179         return false;
1180     } else {
1181       // Don't do this for dynamic classes.
1182       if (CXXRD->isDynamicClass())
1183         return false;
1184       // Don't do this if there are any non-empty bases.
1185       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1186         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1187           return false;
1188       }
1189     }
1190   }
1191 
1192   uint64_t Size = 0;
1193 
1194   for (const auto *FD : RD->fields()) {
1195     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1196     // argument is smaller than 32-bits, expanding the struct will create
1197     // alignment padding.
1198     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1199       return false;
1200 
1201     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1202     // how to expand them yet, and the predicate for telling if a bitfield still
1203     // counts as "basic" is more complicated than what we were doing previously.
1204     if (FD->isBitField())
1205       return false;
1206 
1207     Size += getContext().getTypeSize(FD->getType());
1208   }
1209 
1210   // We can do this if there was no alignment padding.
1211   return Size == getContext().getTypeSize(Ty);
1212 }
1213 
1214 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1215   // If the return value is indirect, then the hidden argument is consuming one
1216   // integer register.
1217   if (State.FreeRegs) {
1218     --State.FreeRegs;
1219     if (!IsMCUABI)
1220       return getNaturalAlignIndirectInReg(RetTy);
1221   }
1222   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1223 }
1224 
1225 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1226                                              CCState &State) const {
1227   if (RetTy->isVoidType())
1228     return ABIArgInfo::getIgnore();
1229 
1230   const Type *Base = nullptr;
1231   uint64_t NumElts = 0;
1232   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1233       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1234     // The LLVM struct type for such an aggregate should lower properly.
1235     return ABIArgInfo::getDirect();
1236   }
1237 
1238   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1239     // On Darwin, some vectors are returned in registers.
1240     if (IsDarwinVectorABI) {
1241       uint64_t Size = getContext().getTypeSize(RetTy);
1242 
1243       // 128-bit vectors are a special case; they are returned in
1244       // registers and we need to make sure to pick a type the LLVM
1245       // backend will like.
1246       if (Size == 128)
1247         return ABIArgInfo::getDirect(llvm::VectorType::get(
1248                   llvm::Type::getInt64Ty(getVMContext()), 2));
1249 
1250       // Always return in register if it fits in a general purpose
1251       // register, or if it is 64 bits and has a single element.
1252       if ((Size == 8 || Size == 16 || Size == 32) ||
1253           (Size == 64 && VT->getNumElements() == 1))
1254         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1255                                                             Size));
1256 
1257       return getIndirectReturnResult(RetTy, State);
1258     }
1259 
1260     return ABIArgInfo::getDirect();
1261   }
1262 
1263   if (isAggregateTypeForABI(RetTy)) {
1264     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1265       // Structures with flexible arrays are always indirect.
1266       if (RT->getDecl()->hasFlexibleArrayMember())
1267         return getIndirectReturnResult(RetTy, State);
1268     }
1269 
1270     // If specified, structs and unions are always indirect.
1271     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1272       return getIndirectReturnResult(RetTy, State);
1273 
1274     // Ignore empty structs/unions.
1275     if (isEmptyRecord(getContext(), RetTy, true))
1276       return ABIArgInfo::getIgnore();
1277 
1278     // Small structures which are register sized are generally returned
1279     // in a register.
1280     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1281       uint64_t Size = getContext().getTypeSize(RetTy);
1282 
1283       // As a special-case, if the struct is a "single-element" struct, and
1284       // the field is of type "float" or "double", return it in a
1285       // floating-point register. (MSVC does not apply this special case.)
1286       // We apply a similar transformation for pointer types to improve the
1287       // quality of the generated IR.
1288       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1289         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1290             || SeltTy->hasPointerRepresentation())
1291           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1292 
1293       // FIXME: We should be able to narrow this integer in cases with dead
1294       // padding.
1295       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1296     }
1297 
1298     return getIndirectReturnResult(RetTy, State);
1299   }
1300 
1301   // Treat an enum type as its underlying type.
1302   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1303     RetTy = EnumTy->getDecl()->getIntegerType();
1304 
1305   return (RetTy->isPromotableIntegerType() ?
1306           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1307 }
1308 
1309 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1310   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1311 }
1312 
1313 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1314   const RecordType *RT = Ty->getAs<RecordType>();
1315   if (!RT)
1316     return 0;
1317   const RecordDecl *RD = RT->getDecl();
1318 
1319   // If this is a C++ record, check the bases first.
1320   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1321     for (const auto &I : CXXRD->bases())
1322       if (!isRecordWithSSEVectorType(Context, I.getType()))
1323         return false;
1324 
1325   for (const auto *i : RD->fields()) {
1326     QualType FT = i->getType();
1327 
1328     if (isSSEVectorType(Context, FT))
1329       return true;
1330 
1331     if (isRecordWithSSEVectorType(Context, FT))
1332       return true;
1333   }
1334 
1335   return false;
1336 }
1337 
1338 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1339                                                  unsigned Align) const {
1340   // Otherwise, if the alignment is less than or equal to the minimum ABI
1341   // alignment, just use the default; the backend will handle this.
1342   if (Align <= MinABIStackAlignInBytes)
1343     return 0; // Use default alignment.
1344 
1345   // On non-Darwin, the stack type alignment is always 4.
1346   if (!IsDarwinVectorABI) {
1347     // Set explicit alignment, since we may need to realign the top.
1348     return MinABIStackAlignInBytes;
1349   }
1350 
1351   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1352   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1353                       isRecordWithSSEVectorType(getContext(), Ty)))
1354     return 16;
1355 
1356   return MinABIStackAlignInBytes;
1357 }
1358 
1359 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1360                                             CCState &State) const {
1361   if (!ByVal) {
1362     if (State.FreeRegs) {
1363       --State.FreeRegs; // Non-byval indirects just use one pointer.
1364       if (!IsMCUABI)
1365         return getNaturalAlignIndirectInReg(Ty);
1366     }
1367     return getNaturalAlignIndirect(Ty, false);
1368   }
1369 
1370   // Compute the byval alignment.
1371   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1372   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1373   if (StackAlign == 0)
1374     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1375 
1376   // If the stack alignment is less than the type alignment, realign the
1377   // argument.
1378   bool Realign = TypeAlign > StackAlign;
1379   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1380                                  /*ByVal=*/true, Realign);
1381 }
1382 
1383 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1384   const Type *T = isSingleElementStruct(Ty, getContext());
1385   if (!T)
1386     T = Ty.getTypePtr();
1387 
1388   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1389     BuiltinType::Kind K = BT->getKind();
1390     if (K == BuiltinType::Float || K == BuiltinType::Double)
1391       return Float;
1392   }
1393   return Integer;
1394 }
1395 
1396 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1397   if (!IsSoftFloatABI) {
1398     Class C = classify(Ty);
1399     if (C == Float)
1400       return false;
1401   }
1402 
1403   unsigned Size = getContext().getTypeSize(Ty);
1404   unsigned SizeInRegs = (Size + 31) / 32;
1405 
1406   if (SizeInRegs == 0)
1407     return false;
1408 
1409   if (!IsMCUABI) {
1410     if (SizeInRegs > State.FreeRegs) {
1411       State.FreeRegs = 0;
1412       return false;
1413     }
1414   } else {
1415     // The MCU psABI allows passing parameters in-reg even if there are
1416     // earlier parameters that are passed on the stack. Also,
1417     // it does not allow passing >8-byte structs in-register,
1418     // even if there are 3 free registers available.
1419     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1420       return false;
1421   }
1422 
1423   State.FreeRegs -= SizeInRegs;
1424   return true;
1425 }
1426 
1427 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1428                                              bool &InReg,
1429                                              bool &NeedsPadding) const {
1430   // On Windows, aggregates other than HFAs are never passed in registers, and
1431   // they do not consume register slots. Homogenous floating-point aggregates
1432   // (HFAs) have already been dealt with at this point.
1433   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1434     return false;
1435 
1436   NeedsPadding = false;
1437   InReg = !IsMCUABI;
1438 
1439   if (!updateFreeRegs(Ty, State))
1440     return false;
1441 
1442   if (IsMCUABI)
1443     return true;
1444 
1445   if (State.CC == llvm::CallingConv::X86_FastCall ||
1446       State.CC == llvm::CallingConv::X86_VectorCall) {
1447     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1448       NeedsPadding = true;
1449 
1450     return false;
1451   }
1452 
1453   return true;
1454 }
1455 
1456 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1457   if (!updateFreeRegs(Ty, State))
1458     return false;
1459 
1460   if (IsMCUABI)
1461     return false;
1462 
1463   if (State.CC == llvm::CallingConv::X86_FastCall ||
1464       State.CC == llvm::CallingConv::X86_VectorCall) {
1465     if (getContext().getTypeSize(Ty) > 32)
1466       return false;
1467 
1468     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1469         Ty->isReferenceType());
1470   }
1471 
1472   return true;
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1476                                                CCState &State) const {
1477   // FIXME: Set alignment on indirect arguments.
1478 
1479   Ty = useFirstFieldIfTransparentUnion(Ty);
1480 
1481   // Check with the C++ ABI first.
1482   const RecordType *RT = Ty->getAs<RecordType>();
1483   if (RT) {
1484     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1485     if (RAA == CGCXXABI::RAA_Indirect) {
1486       return getIndirectResult(Ty, false, State);
1487     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1488       // The field index doesn't matter, we'll fix it up later.
1489       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1490     }
1491   }
1492 
1493   // vectorcall adds the concept of a homogenous vector aggregate, similar
1494   // to other targets.
1495   const Type *Base = nullptr;
1496   uint64_t NumElts = 0;
1497   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1498       isHomogeneousAggregate(Ty, Base, NumElts)) {
1499     if (State.FreeSSERegs >= NumElts) {
1500       State.FreeSSERegs -= NumElts;
1501       if (Ty->isBuiltinType() || Ty->isVectorType())
1502         return ABIArgInfo::getDirect();
1503       return ABIArgInfo::getExpand();
1504     }
1505     return getIndirectResult(Ty, /*ByVal=*/false, State);
1506   }
1507 
1508   if (isAggregateTypeForABI(Ty)) {
1509     // Structures with flexible arrays are always indirect.
1510     // FIXME: This should not be byval!
1511     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1512       return getIndirectResult(Ty, true, State);
1513 
1514     // Ignore empty structs/unions on non-Windows.
1515     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1516       return ABIArgInfo::getIgnore();
1517 
1518     llvm::LLVMContext &LLVMContext = getVMContext();
1519     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1520     bool NeedsPadding = false;
1521     bool InReg;
1522     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1523       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1524       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1525       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1526       if (InReg)
1527         return ABIArgInfo::getDirectInReg(Result);
1528       else
1529         return ABIArgInfo::getDirect(Result);
1530     }
1531     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1532 
1533     // Expand small (<= 128-bit) record types when we know that the stack layout
1534     // of those arguments will match the struct. This is important because the
1535     // LLVM backend isn't smart enough to remove byval, which inhibits many
1536     // optimizations.
1537     // Don't do this for the MCU if there are still free integer registers
1538     // (see X86_64 ABI for full explanation).
1539     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1540         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1541       return ABIArgInfo::getExpandWithPadding(
1542           State.CC == llvm::CallingConv::X86_FastCall ||
1543               State.CC == llvm::CallingConv::X86_VectorCall,
1544           PaddingType);
1545 
1546     return getIndirectResult(Ty, true, State);
1547   }
1548 
1549   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1550     // On Darwin, some vectors are passed in memory, we handle this by passing
1551     // it as an i8/i16/i32/i64.
1552     if (IsDarwinVectorABI) {
1553       uint64_t Size = getContext().getTypeSize(Ty);
1554       if ((Size == 8 || Size == 16 || Size == 32) ||
1555           (Size == 64 && VT->getNumElements() == 1))
1556         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1557                                                             Size));
1558     }
1559 
1560     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1561       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1562 
1563     return ABIArgInfo::getDirect();
1564   }
1565 
1566 
1567   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1568     Ty = EnumTy->getDecl()->getIntegerType();
1569 
1570   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1571 
1572   if (Ty->isPromotableIntegerType()) {
1573     if (InReg)
1574       return ABIArgInfo::getExtendInReg();
1575     return ABIArgInfo::getExtend();
1576   }
1577 
1578   if (InReg)
1579     return ABIArgInfo::getDirectInReg();
1580   return ABIArgInfo::getDirect();
1581 }
1582 
1583 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1584   CCState State(FI.getCallingConvention());
1585   if (IsMCUABI)
1586     State.FreeRegs = 3;
1587   else if (State.CC == llvm::CallingConv::X86_FastCall)
1588     State.FreeRegs = 2;
1589   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1590     State.FreeRegs = 2;
1591     State.FreeSSERegs = 6;
1592   } else if (FI.getHasRegParm())
1593     State.FreeRegs = FI.getRegParm();
1594   else
1595     State.FreeRegs = DefaultNumRegisterParameters;
1596 
1597   if (!getCXXABI().classifyReturnType(FI)) {
1598     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1599   } else if (FI.getReturnInfo().isIndirect()) {
1600     // The C++ ABI is not aware of register usage, so we have to check if the
1601     // return value was sret and put it in a register ourselves if appropriate.
1602     if (State.FreeRegs) {
1603       --State.FreeRegs;  // The sret parameter consumes a register.
1604       if (!IsMCUABI)
1605         FI.getReturnInfo().setInReg(true);
1606     }
1607   }
1608 
1609   // The chain argument effectively gives us another free register.
1610   if (FI.isChainCall())
1611     ++State.FreeRegs;
1612 
1613   bool UsedInAlloca = false;
1614   for (auto &I : FI.arguments()) {
1615     I.info = classifyArgumentType(I.type, State);
1616     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1617   }
1618 
1619   // If we needed to use inalloca for any argument, do a second pass and rewrite
1620   // all the memory arguments to use inalloca.
1621   if (UsedInAlloca)
1622     rewriteWithInAlloca(FI);
1623 }
1624 
1625 void
1626 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1627                                    CharUnits &StackOffset, ABIArgInfo &Info,
1628                                    QualType Type) const {
1629   // Arguments are always 4-byte-aligned.
1630   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1631 
1632   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1633   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1634   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1635   StackOffset += getContext().getTypeSizeInChars(Type);
1636 
1637   // Insert padding bytes to respect alignment.
1638   CharUnits FieldEnd = StackOffset;
1639   StackOffset = FieldEnd.alignTo(FieldAlign);
1640   if (StackOffset != FieldEnd) {
1641     CharUnits NumBytes = StackOffset - FieldEnd;
1642     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1643     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1644     FrameFields.push_back(Ty);
1645   }
1646 }
1647 
1648 static bool isArgInAlloca(const ABIArgInfo &Info) {
1649   // Leave ignored and inreg arguments alone.
1650   switch (Info.getKind()) {
1651   case ABIArgInfo::InAlloca:
1652     return true;
1653   case ABIArgInfo::Indirect:
1654     assert(Info.getIndirectByVal());
1655     return true;
1656   case ABIArgInfo::Ignore:
1657     return false;
1658   case ABIArgInfo::Direct:
1659   case ABIArgInfo::Extend:
1660     if (Info.getInReg())
1661       return false;
1662     return true;
1663   case ABIArgInfo::Expand:
1664   case ABIArgInfo::CoerceAndExpand:
1665     // These are aggregate types which are never passed in registers when
1666     // inalloca is involved.
1667     return true;
1668   }
1669   llvm_unreachable("invalid enum");
1670 }
1671 
1672 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1673   assert(IsWin32StructABI && "inalloca only supported on win32");
1674 
1675   // Build a packed struct type for all of the arguments in memory.
1676   SmallVector<llvm::Type *, 6> FrameFields;
1677 
1678   // The stack alignment is always 4.
1679   CharUnits StackAlign = CharUnits::fromQuantity(4);
1680 
1681   CharUnits StackOffset;
1682   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1683 
1684   // Put 'this' into the struct before 'sret', if necessary.
1685   bool IsThisCall =
1686       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1687   ABIArgInfo &Ret = FI.getReturnInfo();
1688   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1689       isArgInAlloca(I->info)) {
1690     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1691     ++I;
1692   }
1693 
1694   // Put the sret parameter into the inalloca struct if it's in memory.
1695   if (Ret.isIndirect() && !Ret.getInReg()) {
1696     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1697     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1698     // On Windows, the hidden sret parameter is always returned in eax.
1699     Ret.setInAllocaSRet(IsWin32StructABI);
1700   }
1701 
1702   // Skip the 'this' parameter in ecx.
1703   if (IsThisCall)
1704     ++I;
1705 
1706   // Put arguments passed in memory into the struct.
1707   for (; I != E; ++I) {
1708     if (isArgInAlloca(I->info))
1709       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1710   }
1711 
1712   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1713                                         /*isPacked=*/true),
1714                   StackAlign);
1715 }
1716 
1717 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1718                                  Address VAListAddr, QualType Ty) const {
1719 
1720   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1721 
1722   // x86-32 changes the alignment of certain arguments on the stack.
1723   //
1724   // Just messing with TypeInfo like this works because we never pass
1725   // anything indirectly.
1726   TypeInfo.second = CharUnits::fromQuantity(
1727                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1728 
1729   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1730                           TypeInfo, CharUnits::fromQuantity(4),
1731                           /*AllowHigherAlign*/ true);
1732 }
1733 
1734 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1735     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1736   assert(Triple.getArch() == llvm::Triple::x86);
1737 
1738   switch (Opts.getStructReturnConvention()) {
1739   case CodeGenOptions::SRCK_Default:
1740     break;
1741   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1742     return false;
1743   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1744     return true;
1745   }
1746 
1747   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1748     return true;
1749 
1750   switch (Triple.getOS()) {
1751   case llvm::Triple::DragonFly:
1752   case llvm::Triple::FreeBSD:
1753   case llvm::Triple::OpenBSD:
1754   case llvm::Triple::Bitrig:
1755   case llvm::Triple::Win32:
1756     return true;
1757   default:
1758     return false;
1759   }
1760 }
1761 
1762 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1763                                                   llvm::GlobalValue *GV,
1764                                             CodeGen::CodeGenModule &CGM) const {
1765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1766     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1767       // Get the LLVM function.
1768       llvm::Function *Fn = cast<llvm::Function>(GV);
1769 
1770       // Now add the 'alignstack' attribute with a value of 16.
1771       llvm::AttrBuilder B;
1772       B.addStackAlignmentAttr(16);
1773       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1774                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1775                                               llvm::AttributeSet::FunctionIndex,
1776                                               B));
1777     }
1778     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1779       llvm::Function *Fn = cast<llvm::Function>(GV);
1780       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1781     }
1782   }
1783 }
1784 
1785 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1786                                                CodeGen::CodeGenFunction &CGF,
1787                                                llvm::Value *Address) const {
1788   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1789 
1790   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1791 
1792   // 0-7 are the eight integer registers;  the order is different
1793   //   on Darwin (for EH), but the range is the same.
1794   // 8 is %eip.
1795   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1796 
1797   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1798     // 12-16 are st(0..4).  Not sure why we stop at 4.
1799     // These have size 16, which is sizeof(long double) on
1800     // platforms with 8-byte alignment for that type.
1801     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1802     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1803 
1804   } else {
1805     // 9 is %eflags, which doesn't get a size on Darwin for some
1806     // reason.
1807     Builder.CreateAlignedStore(
1808         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1809                                CharUnits::One());
1810 
1811     // 11-16 are st(0..5).  Not sure why we stop at 5.
1812     // These have size 12, which is sizeof(long double) on
1813     // platforms with 4-byte alignment for that type.
1814     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1815     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1816   }
1817 
1818   return false;
1819 }
1820 
1821 //===----------------------------------------------------------------------===//
1822 // X86-64 ABI Implementation
1823 //===----------------------------------------------------------------------===//
1824 
1825 
1826 namespace {
1827 /// The AVX ABI level for X86 targets.
1828 enum class X86AVXABILevel {
1829   None,
1830   AVX,
1831   AVX512
1832 };
1833 
1834 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1835 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1836   switch (AVXLevel) {
1837   case X86AVXABILevel::AVX512:
1838     return 512;
1839   case X86AVXABILevel::AVX:
1840     return 256;
1841   case X86AVXABILevel::None:
1842     return 128;
1843   }
1844   llvm_unreachable("Unknown AVXLevel");
1845 }
1846 
1847 /// X86_64ABIInfo - The X86_64 ABI information.
1848 class X86_64ABIInfo : public SwiftABIInfo {
1849   enum Class {
1850     Integer = 0,
1851     SSE,
1852     SSEUp,
1853     X87,
1854     X87Up,
1855     ComplexX87,
1856     NoClass,
1857     Memory
1858   };
1859 
1860   /// merge - Implement the X86_64 ABI merging algorithm.
1861   ///
1862   /// Merge an accumulating classification \arg Accum with a field
1863   /// classification \arg Field.
1864   ///
1865   /// \param Accum - The accumulating classification. This should
1866   /// always be either NoClass or the result of a previous merge
1867   /// call. In addition, this should never be Memory (the caller
1868   /// should just return Memory for the aggregate).
1869   static Class merge(Class Accum, Class Field);
1870 
1871   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1872   ///
1873   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1874   /// final MEMORY or SSE classes when necessary.
1875   ///
1876   /// \param AggregateSize - The size of the current aggregate in
1877   /// the classification process.
1878   ///
1879   /// \param Lo - The classification for the parts of the type
1880   /// residing in the low word of the containing object.
1881   ///
1882   /// \param Hi - The classification for the parts of the type
1883   /// residing in the higher words of the containing object.
1884   ///
1885   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1886 
1887   /// classify - Determine the x86_64 register classes in which the
1888   /// given type T should be passed.
1889   ///
1890   /// \param Lo - The classification for the parts of the type
1891   /// residing in the low word of the containing object.
1892   ///
1893   /// \param Hi - The classification for the parts of the type
1894   /// residing in the high word of the containing object.
1895   ///
1896   /// \param OffsetBase - The bit offset of this type in the
1897   /// containing object.  Some parameters are classified different
1898   /// depending on whether they straddle an eightbyte boundary.
1899   ///
1900   /// \param isNamedArg - Whether the argument in question is a "named"
1901   /// argument, as used in AMD64-ABI 3.5.7.
1902   ///
1903   /// If a word is unused its result will be NoClass; if a type should
1904   /// be passed in Memory then at least the classification of \arg Lo
1905   /// will be Memory.
1906   ///
1907   /// The \arg Lo class will be NoClass iff the argument is ignored.
1908   ///
1909   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1910   /// also be ComplexX87.
1911   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1912                 bool isNamedArg) const;
1913 
1914   llvm::Type *GetByteVectorType(QualType Ty) const;
1915   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1916                                  unsigned IROffset, QualType SourceTy,
1917                                  unsigned SourceOffset) const;
1918   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1919                                      unsigned IROffset, QualType SourceTy,
1920                                      unsigned SourceOffset) const;
1921 
1922   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1923   /// such that the argument will be returned in memory.
1924   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1925 
1926   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1927   /// such that the argument will be passed in memory.
1928   ///
1929   /// \param freeIntRegs - The number of free integer registers remaining
1930   /// available.
1931   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1932 
1933   ABIArgInfo classifyReturnType(QualType RetTy) const;
1934 
1935   ABIArgInfo classifyArgumentType(QualType Ty,
1936                                   unsigned freeIntRegs,
1937                                   unsigned &neededInt,
1938                                   unsigned &neededSSE,
1939                                   bool isNamedArg) const;
1940 
1941   bool IsIllegalVectorType(QualType Ty) const;
1942 
1943   /// The 0.98 ABI revision clarified a lot of ambiguities,
1944   /// unfortunately in ways that were not always consistent with
1945   /// certain previous compilers.  In particular, platforms which
1946   /// required strict binary compatibility with older versions of GCC
1947   /// may need to exempt themselves.
1948   bool honorsRevision0_98() const {
1949     return !getTarget().getTriple().isOSDarwin();
1950   }
1951 
1952   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1953   // compilers require us to classify it as INTEGER.
1954   bool classifyIntegerMMXAsSSE() const {
1955     const llvm::Triple &Triple = getTarget().getTriple();
1956     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1957       return false;
1958     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1959       return false;
1960     return true;
1961   }
1962 
1963   X86AVXABILevel AVXLevel;
1964   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1965   // 64-bit hardware.
1966   bool Has64BitPointers;
1967 
1968 public:
1969   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1970       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1971       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1972   }
1973 
1974   bool isPassedUsingAVXType(QualType type) const {
1975     unsigned neededInt, neededSSE;
1976     // The freeIntRegs argument doesn't matter here.
1977     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1978                                            /*isNamedArg*/true);
1979     if (info.isDirect()) {
1980       llvm::Type *ty = info.getCoerceToType();
1981       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1982         return (vectorTy->getBitWidth() > 128);
1983     }
1984     return false;
1985   }
1986 
1987   void computeInfo(CGFunctionInfo &FI) const override;
1988 
1989   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1990                     QualType Ty) const override;
1991   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1992                       QualType Ty) const override;
1993 
1994   bool has64BitPointers() const {
1995     return Has64BitPointers;
1996   }
1997 
1998   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1999                                     ArrayRef<llvm::Type*> scalars,
2000                                     bool asReturnValue) const override {
2001     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2002   }
2003 };
2004 
2005 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2006 class WinX86_64ABIInfo : public ABIInfo {
2007 public:
2008   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2009       : ABIInfo(CGT),
2010         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2011 
2012   void computeInfo(CGFunctionInfo &FI) const override;
2013 
2014   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2015                     QualType Ty) const override;
2016 
2017   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2018     // FIXME: Assumes vectorcall is in use.
2019     return isX86VectorTypeForVectorCall(getContext(), Ty);
2020   }
2021 
2022   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2023                                          uint64_t NumMembers) const override {
2024     // FIXME: Assumes vectorcall is in use.
2025     return isX86VectorCallAggregateSmallEnough(NumMembers);
2026   }
2027 
2028 private:
2029   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2030                       bool IsReturnType) const;
2031 
2032   bool IsMingw64;
2033 };
2034 
2035 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2036 public:
2037   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2038       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2039 
2040   const X86_64ABIInfo &getABIInfo() const {
2041     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2042   }
2043 
2044   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2045     return 7;
2046   }
2047 
2048   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2049                                llvm::Value *Address) const override {
2050     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2051 
2052     // 0-15 are the 16 integer registers.
2053     // 16 is %rip.
2054     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2055     return false;
2056   }
2057 
2058   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2059                                   StringRef Constraint,
2060                                   llvm::Type* Ty) const override {
2061     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2062   }
2063 
2064   bool isNoProtoCallVariadic(const CallArgList &args,
2065                              const FunctionNoProtoType *fnType) const override {
2066     // The default CC on x86-64 sets %al to the number of SSA
2067     // registers used, and GCC sets this when calling an unprototyped
2068     // function, so we override the default behavior.  However, don't do
2069     // that when AVX types are involved: the ABI explicitly states it is
2070     // undefined, and it doesn't work in practice because of how the ABI
2071     // defines varargs anyway.
2072     if (fnType->getCallConv() == CC_C) {
2073       bool HasAVXType = false;
2074       for (CallArgList::const_iterator
2075              it = args.begin(), ie = args.end(); it != ie; ++it) {
2076         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2077           HasAVXType = true;
2078           break;
2079         }
2080       }
2081 
2082       if (!HasAVXType)
2083         return true;
2084     }
2085 
2086     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2087   }
2088 
2089   llvm::Constant *
2090   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2091     unsigned Sig;
2092     if (getABIInfo().has64BitPointers())
2093       Sig = (0xeb << 0) |  // jmp rel8
2094             (0x0a << 8) |  //           .+0x0c
2095             ('F' << 16) |
2096             ('T' << 24);
2097     else
2098       Sig = (0xeb << 0) |  // jmp rel8
2099             (0x06 << 8) |  //           .+0x08
2100             ('F' << 16) |
2101             ('T' << 24);
2102     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2103   }
2104 
2105   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2106                            CodeGen::CodeGenModule &CGM) const override {
2107     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2108       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2109         llvm::Function *Fn = cast<llvm::Function>(GV);
2110         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2111       }
2112     }
2113   }
2114 };
2115 
2116 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2117 public:
2118   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2119     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2120 
2121   void getDependentLibraryOption(llvm::StringRef Lib,
2122                                  llvm::SmallString<24> &Opt) const override {
2123     Opt = "\01";
2124     // If the argument contains a space, enclose it in quotes.
2125     if (Lib.find(" ") != StringRef::npos)
2126       Opt += "\"" + Lib.str() + "\"";
2127     else
2128       Opt += Lib;
2129   }
2130 };
2131 
2132 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2133   // If the argument does not end in .lib, automatically add the suffix.
2134   // If the argument contains a space, enclose it in quotes.
2135   // This matches the behavior of MSVC.
2136   bool Quote = (Lib.find(" ") != StringRef::npos);
2137   std::string ArgStr = Quote ? "\"" : "";
2138   ArgStr += Lib;
2139   if (!Lib.endswith_lower(".lib"))
2140     ArgStr += ".lib";
2141   ArgStr += Quote ? "\"" : "";
2142   return ArgStr;
2143 }
2144 
2145 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2146 public:
2147   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2148         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2149         unsigned NumRegisterParameters)
2150     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2151         Win32StructABI, NumRegisterParameters, false) {}
2152 
2153   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2154                            CodeGen::CodeGenModule &CGM) const override;
2155 
2156   void getDependentLibraryOption(llvm::StringRef Lib,
2157                                  llvm::SmallString<24> &Opt) const override {
2158     Opt = "/DEFAULTLIB:";
2159     Opt += qualifyWindowsLibrary(Lib);
2160   }
2161 
2162   void getDetectMismatchOption(llvm::StringRef Name,
2163                                llvm::StringRef Value,
2164                                llvm::SmallString<32> &Opt) const override {
2165     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2166   }
2167 };
2168 
2169 static void addStackProbeSizeTargetAttribute(const Decl *D,
2170                                              llvm::GlobalValue *GV,
2171                                              CodeGen::CodeGenModule &CGM) {
2172   if (D && isa<FunctionDecl>(D)) {
2173     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2174       llvm::Function *Fn = cast<llvm::Function>(GV);
2175 
2176       Fn->addFnAttr("stack-probe-size",
2177                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2178     }
2179   }
2180 }
2181 
2182 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2183                                                      llvm::GlobalValue *GV,
2184                                             CodeGen::CodeGenModule &CGM) const {
2185   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2186 
2187   addStackProbeSizeTargetAttribute(D, GV, CGM);
2188 }
2189 
2190 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2191 public:
2192   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2193                              X86AVXABILevel AVXLevel)
2194       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2195 
2196   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2197                            CodeGen::CodeGenModule &CGM) const override;
2198 
2199   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2200     return 7;
2201   }
2202 
2203   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2204                                llvm::Value *Address) const override {
2205     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2206 
2207     // 0-15 are the 16 integer registers.
2208     // 16 is %rip.
2209     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2210     return false;
2211   }
2212 
2213   void getDependentLibraryOption(llvm::StringRef Lib,
2214                                  llvm::SmallString<24> &Opt) const override {
2215     Opt = "/DEFAULTLIB:";
2216     Opt += qualifyWindowsLibrary(Lib);
2217   }
2218 
2219   void getDetectMismatchOption(llvm::StringRef Name,
2220                                llvm::StringRef Value,
2221                                llvm::SmallString<32> &Opt) const override {
2222     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2223   }
2224 };
2225 
2226 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2227                                                      llvm::GlobalValue *GV,
2228                                             CodeGen::CodeGenModule &CGM) const {
2229   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2230 
2231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2232     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2233       llvm::Function *Fn = cast<llvm::Function>(GV);
2234       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2235     }
2236   }
2237 
2238   addStackProbeSizeTargetAttribute(D, GV, CGM);
2239 }
2240 }
2241 
2242 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2243                               Class &Hi) const {
2244   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2245   //
2246   // (a) If one of the classes is Memory, the whole argument is passed in
2247   //     memory.
2248   //
2249   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2250   //     memory.
2251   //
2252   // (c) If the size of the aggregate exceeds two eightbytes and the first
2253   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2254   //     argument is passed in memory. NOTE: This is necessary to keep the
2255   //     ABI working for processors that don't support the __m256 type.
2256   //
2257   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2258   //
2259   // Some of these are enforced by the merging logic.  Others can arise
2260   // only with unions; for example:
2261   //   union { _Complex double; unsigned; }
2262   //
2263   // Note that clauses (b) and (c) were added in 0.98.
2264   //
2265   if (Hi == Memory)
2266     Lo = Memory;
2267   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2268     Lo = Memory;
2269   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2270     Lo = Memory;
2271   if (Hi == SSEUp && Lo != SSE)
2272     Hi = SSE;
2273 }
2274 
2275 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2276   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2277   // classified recursively so that always two fields are
2278   // considered. The resulting class is calculated according to
2279   // the classes of the fields in the eightbyte:
2280   //
2281   // (a) If both classes are equal, this is the resulting class.
2282   //
2283   // (b) If one of the classes is NO_CLASS, the resulting class is
2284   // the other class.
2285   //
2286   // (c) If one of the classes is MEMORY, the result is the MEMORY
2287   // class.
2288   //
2289   // (d) If one of the classes is INTEGER, the result is the
2290   // INTEGER.
2291   //
2292   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2293   // MEMORY is used as class.
2294   //
2295   // (f) Otherwise class SSE is used.
2296 
2297   // Accum should never be memory (we should have returned) or
2298   // ComplexX87 (because this cannot be passed in a structure).
2299   assert((Accum != Memory && Accum != ComplexX87) &&
2300          "Invalid accumulated classification during merge.");
2301   if (Accum == Field || Field == NoClass)
2302     return Accum;
2303   if (Field == Memory)
2304     return Memory;
2305   if (Accum == NoClass)
2306     return Field;
2307   if (Accum == Integer || Field == Integer)
2308     return Integer;
2309   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2310       Accum == X87 || Accum == X87Up)
2311     return Memory;
2312   return SSE;
2313 }
2314 
2315 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2316                              Class &Lo, Class &Hi, bool isNamedArg) const {
2317   // FIXME: This code can be simplified by introducing a simple value class for
2318   // Class pairs with appropriate constructor methods for the various
2319   // situations.
2320 
2321   // FIXME: Some of the split computations are wrong; unaligned vectors
2322   // shouldn't be passed in registers for example, so there is no chance they
2323   // can straddle an eightbyte. Verify & simplify.
2324 
2325   Lo = Hi = NoClass;
2326 
2327   Class &Current = OffsetBase < 64 ? Lo : Hi;
2328   Current = Memory;
2329 
2330   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2331     BuiltinType::Kind k = BT->getKind();
2332 
2333     if (k == BuiltinType::Void) {
2334       Current = NoClass;
2335     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2336       Lo = Integer;
2337       Hi = Integer;
2338     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2339       Current = Integer;
2340     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2341       Current = SSE;
2342     } else if (k == BuiltinType::LongDouble) {
2343       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2344       if (LDF == &llvm::APFloat::IEEEquad) {
2345         Lo = SSE;
2346         Hi = SSEUp;
2347       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2348         Lo = X87;
2349         Hi = X87Up;
2350       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2351         Current = SSE;
2352       } else
2353         llvm_unreachable("unexpected long double representation!");
2354     }
2355     // FIXME: _Decimal32 and _Decimal64 are SSE.
2356     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2357     return;
2358   }
2359 
2360   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2361     // Classify the underlying integer type.
2362     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2363     return;
2364   }
2365 
2366   if (Ty->hasPointerRepresentation()) {
2367     Current = Integer;
2368     return;
2369   }
2370 
2371   if (Ty->isMemberPointerType()) {
2372     if (Ty->isMemberFunctionPointerType()) {
2373       if (Has64BitPointers) {
2374         // If Has64BitPointers, this is an {i64, i64}, so classify both
2375         // Lo and Hi now.
2376         Lo = Hi = Integer;
2377       } else {
2378         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2379         // straddles an eightbyte boundary, Hi should be classified as well.
2380         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2381         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2382         if (EB_FuncPtr != EB_ThisAdj) {
2383           Lo = Hi = Integer;
2384         } else {
2385           Current = Integer;
2386         }
2387       }
2388     } else {
2389       Current = Integer;
2390     }
2391     return;
2392   }
2393 
2394   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2395     uint64_t Size = getContext().getTypeSize(VT);
2396     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2397       // gcc passes the following as integer:
2398       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2399       // 2 bytes - <2 x char>, <1 x short>
2400       // 1 byte  - <1 x char>
2401       Current = Integer;
2402 
2403       // If this type crosses an eightbyte boundary, it should be
2404       // split.
2405       uint64_t EB_Lo = (OffsetBase) / 64;
2406       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2407       if (EB_Lo != EB_Hi)
2408         Hi = Lo;
2409     } else if (Size == 64) {
2410       QualType ElementType = VT->getElementType();
2411 
2412       // gcc passes <1 x double> in memory. :(
2413       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2414         return;
2415 
2416       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2417       // pass them as integer.  For platforms where clang is the de facto
2418       // platform compiler, we must continue to use integer.
2419       if (!classifyIntegerMMXAsSSE() &&
2420           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2421            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2422            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2423            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2424         Current = Integer;
2425       else
2426         Current = SSE;
2427 
2428       // If this type crosses an eightbyte boundary, it should be
2429       // split.
2430       if (OffsetBase && OffsetBase != 64)
2431         Hi = Lo;
2432     } else if (Size == 128 ||
2433                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2434       // Arguments of 256-bits are split into four eightbyte chunks. The
2435       // least significant one belongs to class SSE and all the others to class
2436       // SSEUP. The original Lo and Hi design considers that types can't be
2437       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2438       // This design isn't correct for 256-bits, but since there're no cases
2439       // where the upper parts would need to be inspected, avoid adding
2440       // complexity and just consider Hi to match the 64-256 part.
2441       //
2442       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2443       // registers if they are "named", i.e. not part of the "..." of a
2444       // variadic function.
2445       //
2446       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2447       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2448       Lo = SSE;
2449       Hi = SSEUp;
2450     }
2451     return;
2452   }
2453 
2454   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2455     QualType ET = getContext().getCanonicalType(CT->getElementType());
2456 
2457     uint64_t Size = getContext().getTypeSize(Ty);
2458     if (ET->isIntegralOrEnumerationType()) {
2459       if (Size <= 64)
2460         Current = Integer;
2461       else if (Size <= 128)
2462         Lo = Hi = Integer;
2463     } else if (ET == getContext().FloatTy) {
2464       Current = SSE;
2465     } else if (ET == getContext().DoubleTy) {
2466       Lo = Hi = SSE;
2467     } else if (ET == getContext().LongDoubleTy) {
2468       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2469       if (LDF == &llvm::APFloat::IEEEquad)
2470         Current = Memory;
2471       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2472         Current = ComplexX87;
2473       else if (LDF == &llvm::APFloat::IEEEdouble)
2474         Lo = Hi = SSE;
2475       else
2476         llvm_unreachable("unexpected long double representation!");
2477     }
2478 
2479     // If this complex type crosses an eightbyte boundary then it
2480     // should be split.
2481     uint64_t EB_Real = (OffsetBase) / 64;
2482     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2483     if (Hi == NoClass && EB_Real != EB_Imag)
2484       Hi = Lo;
2485 
2486     return;
2487   }
2488 
2489   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2490     // Arrays are treated like structures.
2491 
2492     uint64_t Size = getContext().getTypeSize(Ty);
2493 
2494     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2495     // than eight eightbytes, ..., it has class MEMORY.
2496     if (Size > 512)
2497       return;
2498 
2499     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2500     // fields, it has class MEMORY.
2501     //
2502     // Only need to check alignment of array base.
2503     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2504       return;
2505 
2506     // Otherwise implement simplified merge. We could be smarter about
2507     // this, but it isn't worth it and would be harder to verify.
2508     Current = NoClass;
2509     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2510     uint64_t ArraySize = AT->getSize().getZExtValue();
2511 
2512     // The only case a 256-bit wide vector could be used is when the array
2513     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2514     // to work for sizes wider than 128, early check and fallback to memory.
2515     //
2516     if (Size > 128 &&
2517         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2518       return;
2519 
2520     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2521       Class FieldLo, FieldHi;
2522       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2523       Lo = merge(Lo, FieldLo);
2524       Hi = merge(Hi, FieldHi);
2525       if (Lo == Memory || Hi == Memory)
2526         break;
2527     }
2528 
2529     postMerge(Size, Lo, Hi);
2530     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2531     return;
2532   }
2533 
2534   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2535     uint64_t Size = getContext().getTypeSize(Ty);
2536 
2537     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2538     // than eight eightbytes, ..., it has class MEMORY.
2539     if (Size > 512)
2540       return;
2541 
2542     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2543     // copy constructor or a non-trivial destructor, it is passed by invisible
2544     // reference.
2545     if (getRecordArgABI(RT, getCXXABI()))
2546       return;
2547 
2548     const RecordDecl *RD = RT->getDecl();
2549 
2550     // Assume variable sized types are passed in memory.
2551     if (RD->hasFlexibleArrayMember())
2552       return;
2553 
2554     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2555 
2556     // Reset Lo class, this will be recomputed.
2557     Current = NoClass;
2558 
2559     // If this is a C++ record, classify the bases first.
2560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2561       for (const auto &I : CXXRD->bases()) {
2562         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2563                "Unexpected base class!");
2564         const CXXRecordDecl *Base =
2565           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2566 
2567         // Classify this field.
2568         //
2569         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2570         // single eightbyte, each is classified separately. Each eightbyte gets
2571         // initialized to class NO_CLASS.
2572         Class FieldLo, FieldHi;
2573         uint64_t Offset =
2574           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2575         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2576         Lo = merge(Lo, FieldLo);
2577         Hi = merge(Hi, FieldHi);
2578         if (Lo == Memory || Hi == Memory) {
2579           postMerge(Size, Lo, Hi);
2580           return;
2581         }
2582       }
2583     }
2584 
2585     // Classify the fields one at a time, merging the results.
2586     unsigned idx = 0;
2587     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2588            i != e; ++i, ++idx) {
2589       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2590       bool BitField = i->isBitField();
2591 
2592       // Ignore padding bit-fields.
2593       if (BitField && i->isUnnamedBitfield())
2594         continue;
2595 
2596       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2597       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2598       //
2599       // The only case a 256-bit wide vector could be used is when the struct
2600       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2601       // to work for sizes wider than 128, early check and fallback to memory.
2602       //
2603       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2604                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2605         Lo = Memory;
2606         postMerge(Size, Lo, Hi);
2607         return;
2608       }
2609       // Note, skip this test for bit-fields, see below.
2610       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2611         Lo = Memory;
2612         postMerge(Size, Lo, Hi);
2613         return;
2614       }
2615 
2616       // Classify this field.
2617       //
2618       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2619       // exceeds a single eightbyte, each is classified
2620       // separately. Each eightbyte gets initialized to class
2621       // NO_CLASS.
2622       Class FieldLo, FieldHi;
2623 
2624       // Bit-fields require special handling, they do not force the
2625       // structure to be passed in memory even if unaligned, and
2626       // therefore they can straddle an eightbyte.
2627       if (BitField) {
2628         assert(!i->isUnnamedBitfield());
2629         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2630         uint64_t Size = i->getBitWidthValue(getContext());
2631 
2632         uint64_t EB_Lo = Offset / 64;
2633         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2634 
2635         if (EB_Lo) {
2636           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2637           FieldLo = NoClass;
2638           FieldHi = Integer;
2639         } else {
2640           FieldLo = Integer;
2641           FieldHi = EB_Hi ? Integer : NoClass;
2642         }
2643       } else
2644         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2645       Lo = merge(Lo, FieldLo);
2646       Hi = merge(Hi, FieldHi);
2647       if (Lo == Memory || Hi == Memory)
2648         break;
2649     }
2650 
2651     postMerge(Size, Lo, Hi);
2652   }
2653 }
2654 
2655 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2656   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2657   // place naturally.
2658   if (!isAggregateTypeForABI(Ty)) {
2659     // Treat an enum type as its underlying type.
2660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661       Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663     return (Ty->isPromotableIntegerType() ?
2664             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2665   }
2666 
2667   return getNaturalAlignIndirect(Ty);
2668 }
2669 
2670 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2671   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2672     uint64_t Size = getContext().getTypeSize(VecTy);
2673     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2674     if (Size <= 64 || Size > LargestVector)
2675       return true;
2676   }
2677 
2678   return false;
2679 }
2680 
2681 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2682                                             unsigned freeIntRegs) const {
2683   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2684   // place naturally.
2685   //
2686   // This assumption is optimistic, as there could be free registers available
2687   // when we need to pass this argument in memory, and LLVM could try to pass
2688   // the argument in the free register. This does not seem to happen currently,
2689   // but this code would be much safer if we could mark the argument with
2690   // 'onstack'. See PR12193.
2691   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2692     // Treat an enum type as its underlying type.
2693     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2694       Ty = EnumTy->getDecl()->getIntegerType();
2695 
2696     return (Ty->isPromotableIntegerType() ?
2697             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2698   }
2699 
2700   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2701     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2702 
2703   // Compute the byval alignment. We specify the alignment of the byval in all
2704   // cases so that the mid-level optimizer knows the alignment of the byval.
2705   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2706 
2707   // Attempt to avoid passing indirect results using byval when possible. This
2708   // is important for good codegen.
2709   //
2710   // We do this by coercing the value into a scalar type which the backend can
2711   // handle naturally (i.e., without using byval).
2712   //
2713   // For simplicity, we currently only do this when we have exhausted all of the
2714   // free integer registers. Doing this when there are free integer registers
2715   // would require more care, as we would have to ensure that the coerced value
2716   // did not claim the unused register. That would require either reording the
2717   // arguments to the function (so that any subsequent inreg values came first),
2718   // or only doing this optimization when there were no following arguments that
2719   // might be inreg.
2720   //
2721   // We currently expect it to be rare (particularly in well written code) for
2722   // arguments to be passed on the stack when there are still free integer
2723   // registers available (this would typically imply large structs being passed
2724   // by value), so this seems like a fair tradeoff for now.
2725   //
2726   // We can revisit this if the backend grows support for 'onstack' parameter
2727   // attributes. See PR12193.
2728   if (freeIntRegs == 0) {
2729     uint64_t Size = getContext().getTypeSize(Ty);
2730 
2731     // If this type fits in an eightbyte, coerce it into the matching integral
2732     // type, which will end up on the stack (with alignment 8).
2733     if (Align == 8 && Size <= 64)
2734       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2735                                                           Size));
2736   }
2737 
2738   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2739 }
2740 
2741 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2742 /// register. Pick an LLVM IR type that will be passed as a vector register.
2743 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2744   // Wrapper structs/arrays that only contain vectors are passed just like
2745   // vectors; strip them off if present.
2746   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2747     Ty = QualType(InnerTy, 0);
2748 
2749   llvm::Type *IRType = CGT.ConvertType(Ty);
2750   if (isa<llvm::VectorType>(IRType) ||
2751       IRType->getTypeID() == llvm::Type::FP128TyID)
2752     return IRType;
2753 
2754   // We couldn't find the preferred IR vector type for 'Ty'.
2755   uint64_t Size = getContext().getTypeSize(Ty);
2756   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2757 
2758   // Return a LLVM IR vector type based on the size of 'Ty'.
2759   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2760                                Size / 64);
2761 }
2762 
2763 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2764 /// is known to either be off the end of the specified type or being in
2765 /// alignment padding.  The user type specified is known to be at most 128 bits
2766 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2767 /// classification that put one of the two halves in the INTEGER class.
2768 ///
2769 /// It is conservatively correct to return false.
2770 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2771                                   unsigned EndBit, ASTContext &Context) {
2772   // If the bytes being queried are off the end of the type, there is no user
2773   // data hiding here.  This handles analysis of builtins, vectors and other
2774   // types that don't contain interesting padding.
2775   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2776   if (TySize <= StartBit)
2777     return true;
2778 
2779   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2780     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2781     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2782 
2783     // Check each element to see if the element overlaps with the queried range.
2784     for (unsigned i = 0; i != NumElts; ++i) {
2785       // If the element is after the span we care about, then we're done..
2786       unsigned EltOffset = i*EltSize;
2787       if (EltOffset >= EndBit) break;
2788 
2789       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2790       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2791                                  EndBit-EltOffset, Context))
2792         return false;
2793     }
2794     // If it overlaps no elements, then it is safe to process as padding.
2795     return true;
2796   }
2797 
2798   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2799     const RecordDecl *RD = RT->getDecl();
2800     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2801 
2802     // If this is a C++ record, check the bases first.
2803     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2804       for (const auto &I : CXXRD->bases()) {
2805         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2806                "Unexpected base class!");
2807         const CXXRecordDecl *Base =
2808           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2809 
2810         // If the base is after the span we care about, ignore it.
2811         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2812         if (BaseOffset >= EndBit) continue;
2813 
2814         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2815         if (!BitsContainNoUserData(I.getType(), BaseStart,
2816                                    EndBit-BaseOffset, Context))
2817           return false;
2818       }
2819     }
2820 
2821     // Verify that no field has data that overlaps the region of interest.  Yes
2822     // this could be sped up a lot by being smarter about queried fields,
2823     // however we're only looking at structs up to 16 bytes, so we don't care
2824     // much.
2825     unsigned idx = 0;
2826     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2827          i != e; ++i, ++idx) {
2828       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2829 
2830       // If we found a field after the region we care about, then we're done.
2831       if (FieldOffset >= EndBit) break;
2832 
2833       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2834       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2835                                  Context))
2836         return false;
2837     }
2838 
2839     // If nothing in this record overlapped the area of interest, then we're
2840     // clean.
2841     return true;
2842   }
2843 
2844   return false;
2845 }
2846 
2847 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2848 /// float member at the specified offset.  For example, {int,{float}} has a
2849 /// float at offset 4.  It is conservatively correct for this routine to return
2850 /// false.
2851 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2852                                   const llvm::DataLayout &TD) {
2853   // Base case if we find a float.
2854   if (IROffset == 0 && IRType->isFloatTy())
2855     return true;
2856 
2857   // If this is a struct, recurse into the field at the specified offset.
2858   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2859     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2860     unsigned Elt = SL->getElementContainingOffset(IROffset);
2861     IROffset -= SL->getElementOffset(Elt);
2862     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2863   }
2864 
2865   // If this is an array, recurse into the field at the specified offset.
2866   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2867     llvm::Type *EltTy = ATy->getElementType();
2868     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2869     IROffset -= IROffset/EltSize*EltSize;
2870     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2871   }
2872 
2873   return false;
2874 }
2875 
2876 
2877 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2878 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2879 llvm::Type *X86_64ABIInfo::
2880 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2881                    QualType SourceTy, unsigned SourceOffset) const {
2882   // The only three choices we have are either double, <2 x float>, or float. We
2883   // pass as float if the last 4 bytes is just padding.  This happens for
2884   // structs that contain 3 floats.
2885   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2886                             SourceOffset*8+64, getContext()))
2887     return llvm::Type::getFloatTy(getVMContext());
2888 
2889   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2890   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2891   // case.
2892   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2893       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2894     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2895 
2896   return llvm::Type::getDoubleTy(getVMContext());
2897 }
2898 
2899 
2900 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2901 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2902 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2903 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2904 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2905 /// etc).
2906 ///
2907 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2908 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2909 /// the 8-byte value references.  PrefType may be null.
2910 ///
2911 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2912 /// an offset into this that we're processing (which is always either 0 or 8).
2913 ///
2914 llvm::Type *X86_64ABIInfo::
2915 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2916                        QualType SourceTy, unsigned SourceOffset) const {
2917   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2918   // returning an 8-byte unit starting with it.  See if we can safely use it.
2919   if (IROffset == 0) {
2920     // Pointers and int64's always fill the 8-byte unit.
2921     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2922         IRType->isIntegerTy(64))
2923       return IRType;
2924 
2925     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2926     // goodness in the source type is just tail padding.  This is allowed to
2927     // kick in for struct {double,int} on the int, but not on
2928     // struct{double,int,int} because we wouldn't return the second int.  We
2929     // have to do this analysis on the source type because we can't depend on
2930     // unions being lowered a specific way etc.
2931     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2932         IRType->isIntegerTy(32) ||
2933         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2934       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2935           cast<llvm::IntegerType>(IRType)->getBitWidth();
2936 
2937       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2938                                 SourceOffset*8+64, getContext()))
2939         return IRType;
2940     }
2941   }
2942 
2943   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2944     // If this is a struct, recurse into the field at the specified offset.
2945     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2946     if (IROffset < SL->getSizeInBytes()) {
2947       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2948       IROffset -= SL->getElementOffset(FieldIdx);
2949 
2950       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2951                                     SourceTy, SourceOffset);
2952     }
2953   }
2954 
2955   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2956     llvm::Type *EltTy = ATy->getElementType();
2957     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2958     unsigned EltOffset = IROffset/EltSize*EltSize;
2959     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2960                                   SourceOffset);
2961   }
2962 
2963   // Okay, we don't have any better idea of what to pass, so we pass this in an
2964   // integer register that isn't too big to fit the rest of the struct.
2965   unsigned TySizeInBytes =
2966     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2967 
2968   assert(TySizeInBytes != SourceOffset && "Empty field?");
2969 
2970   // It is always safe to classify this as an integer type up to i64 that
2971   // isn't larger than the structure.
2972   return llvm::IntegerType::get(getVMContext(),
2973                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2974 }
2975 
2976 
2977 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2978 /// be used as elements of a two register pair to pass or return, return a
2979 /// first class aggregate to represent them.  For example, if the low part of
2980 /// a by-value argument should be passed as i32* and the high part as float,
2981 /// return {i32*, float}.
2982 static llvm::Type *
2983 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2984                            const llvm::DataLayout &TD) {
2985   // In order to correctly satisfy the ABI, we need to the high part to start
2986   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2987   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2988   // the second element at offset 8.  Check for this:
2989   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2990   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2991   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2992   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2993 
2994   // To handle this, we have to increase the size of the low part so that the
2995   // second element will start at an 8 byte offset.  We can't increase the size
2996   // of the second element because it might make us access off the end of the
2997   // struct.
2998   if (HiStart != 8) {
2999     // There are usually two sorts of types the ABI generation code can produce
3000     // for the low part of a pair that aren't 8 bytes in size: float or
3001     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3002     // NaCl).
3003     // Promote these to a larger type.
3004     if (Lo->isFloatTy())
3005       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3006     else {
3007       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3008              && "Invalid/unknown lo type");
3009       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3010     }
3011   }
3012 
3013   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
3014 
3015 
3016   // Verify that the second element is at an 8-byte offset.
3017   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3018          "Invalid x86-64 argument pair!");
3019   return Result;
3020 }
3021 
3022 ABIArgInfo X86_64ABIInfo::
3023 classifyReturnType(QualType RetTy) const {
3024   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3025   // classification algorithm.
3026   X86_64ABIInfo::Class Lo, Hi;
3027   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3028 
3029   // Check some invariants.
3030   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3031   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3032 
3033   llvm::Type *ResType = nullptr;
3034   switch (Lo) {
3035   case NoClass:
3036     if (Hi == NoClass)
3037       return ABIArgInfo::getIgnore();
3038     // If the low part is just padding, it takes no register, leave ResType
3039     // null.
3040     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3041            "Unknown missing lo part");
3042     break;
3043 
3044   case SSEUp:
3045   case X87Up:
3046     llvm_unreachable("Invalid classification for lo word.");
3047 
3048     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3049     // hidden argument.
3050   case Memory:
3051     return getIndirectReturnResult(RetTy);
3052 
3053     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3054     // available register of the sequence %rax, %rdx is used.
3055   case Integer:
3056     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3057 
3058     // If we have a sign or zero extended integer, make sure to return Extend
3059     // so that the parameter gets the right LLVM IR attributes.
3060     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3061       // Treat an enum type as its underlying type.
3062       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3063         RetTy = EnumTy->getDecl()->getIntegerType();
3064 
3065       if (RetTy->isIntegralOrEnumerationType() &&
3066           RetTy->isPromotableIntegerType())
3067         return ABIArgInfo::getExtend();
3068     }
3069     break;
3070 
3071     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3072     // available SSE register of the sequence %xmm0, %xmm1 is used.
3073   case SSE:
3074     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3075     break;
3076 
3077     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3078     // returned on the X87 stack in %st0 as 80-bit x87 number.
3079   case X87:
3080     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3081     break;
3082 
3083     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3084     // part of the value is returned in %st0 and the imaginary part in
3085     // %st1.
3086   case ComplexX87:
3087     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3088     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3089                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3090                                     nullptr);
3091     break;
3092   }
3093 
3094   llvm::Type *HighPart = nullptr;
3095   switch (Hi) {
3096     // Memory was handled previously and X87 should
3097     // never occur as a hi class.
3098   case Memory:
3099   case X87:
3100     llvm_unreachable("Invalid classification for hi word.");
3101 
3102   case ComplexX87: // Previously handled.
3103   case NoClass:
3104     break;
3105 
3106   case Integer:
3107     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3108     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3109       return ABIArgInfo::getDirect(HighPart, 8);
3110     break;
3111   case SSE:
3112     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3113     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3114       return ABIArgInfo::getDirect(HighPart, 8);
3115     break;
3116 
3117     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3118     // is passed in the next available eightbyte chunk if the last used
3119     // vector register.
3120     //
3121     // SSEUP should always be preceded by SSE, just widen.
3122   case SSEUp:
3123     assert(Lo == SSE && "Unexpected SSEUp classification.");
3124     ResType = GetByteVectorType(RetTy);
3125     break;
3126 
3127     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3128     // returned together with the previous X87 value in %st0.
3129   case X87Up:
3130     // If X87Up is preceded by X87, we don't need to do
3131     // anything. However, in some cases with unions it may not be
3132     // preceded by X87. In such situations we follow gcc and pass the
3133     // extra bits in an SSE reg.
3134     if (Lo != X87) {
3135       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3136       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3137         return ABIArgInfo::getDirect(HighPart, 8);
3138     }
3139     break;
3140   }
3141 
3142   // If a high part was specified, merge it together with the low part.  It is
3143   // known to pass in the high eightbyte of the result.  We do this by forming a
3144   // first class struct aggregate with the high and low part: {low, high}
3145   if (HighPart)
3146     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3147 
3148   return ABIArgInfo::getDirect(ResType);
3149 }
3150 
3151 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3152   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3153   bool isNamedArg)
3154   const
3155 {
3156   Ty = useFirstFieldIfTransparentUnion(Ty);
3157 
3158   X86_64ABIInfo::Class Lo, Hi;
3159   classify(Ty, 0, Lo, Hi, isNamedArg);
3160 
3161   // Check some invariants.
3162   // FIXME: Enforce these by construction.
3163   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3164   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3165 
3166   neededInt = 0;
3167   neededSSE = 0;
3168   llvm::Type *ResType = nullptr;
3169   switch (Lo) {
3170   case NoClass:
3171     if (Hi == NoClass)
3172       return ABIArgInfo::getIgnore();
3173     // If the low part is just padding, it takes no register, leave ResType
3174     // null.
3175     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3176            "Unknown missing lo part");
3177     break;
3178 
3179     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3180     // on the stack.
3181   case Memory:
3182 
3183     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3184     // COMPLEX_X87, it is passed in memory.
3185   case X87:
3186   case ComplexX87:
3187     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3188       ++neededInt;
3189     return getIndirectResult(Ty, freeIntRegs);
3190 
3191   case SSEUp:
3192   case X87Up:
3193     llvm_unreachable("Invalid classification for lo word.");
3194 
3195     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3196     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3197     // and %r9 is used.
3198   case Integer:
3199     ++neededInt;
3200 
3201     // Pick an 8-byte type based on the preferred type.
3202     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3203 
3204     // If we have a sign or zero extended integer, make sure to return Extend
3205     // so that the parameter gets the right LLVM IR attributes.
3206     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3207       // Treat an enum type as its underlying type.
3208       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3209         Ty = EnumTy->getDecl()->getIntegerType();
3210 
3211       if (Ty->isIntegralOrEnumerationType() &&
3212           Ty->isPromotableIntegerType())
3213         return ABIArgInfo::getExtend();
3214     }
3215 
3216     break;
3217 
3218     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3219     // available SSE register is used, the registers are taken in the
3220     // order from %xmm0 to %xmm7.
3221   case SSE: {
3222     llvm::Type *IRType = CGT.ConvertType(Ty);
3223     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3224     ++neededSSE;
3225     break;
3226   }
3227   }
3228 
3229   llvm::Type *HighPart = nullptr;
3230   switch (Hi) {
3231     // Memory was handled previously, ComplexX87 and X87 should
3232     // never occur as hi classes, and X87Up must be preceded by X87,
3233     // which is passed in memory.
3234   case Memory:
3235   case X87:
3236   case ComplexX87:
3237     llvm_unreachable("Invalid classification for hi word.");
3238 
3239   case NoClass: break;
3240 
3241   case Integer:
3242     ++neededInt;
3243     // Pick an 8-byte type based on the preferred type.
3244     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3245 
3246     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3247       return ABIArgInfo::getDirect(HighPart, 8);
3248     break;
3249 
3250     // X87Up generally doesn't occur here (long double is passed in
3251     // memory), except in situations involving unions.
3252   case X87Up:
3253   case SSE:
3254     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3255 
3256     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3257       return ABIArgInfo::getDirect(HighPart, 8);
3258 
3259     ++neededSSE;
3260     break;
3261 
3262     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3263     // eightbyte is passed in the upper half of the last used SSE
3264     // register.  This only happens when 128-bit vectors are passed.
3265   case SSEUp:
3266     assert(Lo == SSE && "Unexpected SSEUp classification");
3267     ResType = GetByteVectorType(Ty);
3268     break;
3269   }
3270 
3271   // If a high part was specified, merge it together with the low part.  It is
3272   // known to pass in the high eightbyte of the result.  We do this by forming a
3273   // first class struct aggregate with the high and low part: {low, high}
3274   if (HighPart)
3275     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3276 
3277   return ABIArgInfo::getDirect(ResType);
3278 }
3279 
3280 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3281 
3282   if (!getCXXABI().classifyReturnType(FI))
3283     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3284 
3285   // Keep track of the number of assigned registers.
3286   unsigned freeIntRegs = 6, freeSSERegs = 8;
3287 
3288   // If the return value is indirect, then the hidden argument is consuming one
3289   // integer register.
3290   if (FI.getReturnInfo().isIndirect())
3291     --freeIntRegs;
3292 
3293   // The chain argument effectively gives us another free register.
3294   if (FI.isChainCall())
3295     ++freeIntRegs;
3296 
3297   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3298   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3299   // get assigned (in left-to-right order) for passing as follows...
3300   unsigned ArgNo = 0;
3301   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3302        it != ie; ++it, ++ArgNo) {
3303     bool IsNamedArg = ArgNo < NumRequiredArgs;
3304 
3305     unsigned neededInt, neededSSE;
3306     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3307                                     neededSSE, IsNamedArg);
3308 
3309     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3310     // eightbyte of an argument, the whole argument is passed on the
3311     // stack. If registers have already been assigned for some
3312     // eightbytes of such an argument, the assignments get reverted.
3313     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3314       freeIntRegs -= neededInt;
3315       freeSSERegs -= neededSSE;
3316     } else {
3317       it->info = getIndirectResult(it->type, freeIntRegs);
3318     }
3319   }
3320 }
3321 
3322 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3323                                          Address VAListAddr, QualType Ty) {
3324   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3325       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3326   llvm::Value *overflow_arg_area =
3327     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3328 
3329   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3330   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3331   // It isn't stated explicitly in the standard, but in practice we use
3332   // alignment greater than 16 where necessary.
3333   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3334   if (Align > CharUnits::fromQuantity(8)) {
3335     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3336                                                       Align);
3337   }
3338 
3339   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3340   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3341   llvm::Value *Res =
3342     CGF.Builder.CreateBitCast(overflow_arg_area,
3343                               llvm::PointerType::getUnqual(LTy));
3344 
3345   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3346   // l->overflow_arg_area + sizeof(type).
3347   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3348   // an 8 byte boundary.
3349 
3350   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3351   llvm::Value *Offset =
3352       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3353   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3354                                             "overflow_arg_area.next");
3355   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3356 
3357   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3358   return Address(Res, Align);
3359 }
3360 
3361 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3362                                  QualType Ty) const {
3363   // Assume that va_list type is correct; should be pointer to LLVM type:
3364   // struct {
3365   //   i32 gp_offset;
3366   //   i32 fp_offset;
3367   //   i8* overflow_arg_area;
3368   //   i8* reg_save_area;
3369   // };
3370   unsigned neededInt, neededSSE;
3371 
3372   Ty = getContext().getCanonicalType(Ty);
3373   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3374                                        /*isNamedArg*/false);
3375 
3376   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3377   // in the registers. If not go to step 7.
3378   if (!neededInt && !neededSSE)
3379     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3380 
3381   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3382   // general purpose registers needed to pass type and num_fp to hold
3383   // the number of floating point registers needed.
3384 
3385   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3386   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3387   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3388   //
3389   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3390   // register save space).
3391 
3392   llvm::Value *InRegs = nullptr;
3393   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3394   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3395   if (neededInt) {
3396     gp_offset_p =
3397         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3398                                     "gp_offset_p");
3399     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3400     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3401     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3402   }
3403 
3404   if (neededSSE) {
3405     fp_offset_p =
3406         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3407                                     "fp_offset_p");
3408     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3409     llvm::Value *FitsInFP =
3410       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3411     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3412     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3413   }
3414 
3415   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3416   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3417   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3418   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3419 
3420   // Emit code to load the value if it was passed in registers.
3421 
3422   CGF.EmitBlock(InRegBlock);
3423 
3424   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3425   // an offset of l->gp_offset and/or l->fp_offset. This may require
3426   // copying to a temporary location in case the parameter is passed
3427   // in different register classes or requires an alignment greater
3428   // than 8 for general purpose registers and 16 for XMM registers.
3429   //
3430   // FIXME: This really results in shameful code when we end up needing to
3431   // collect arguments from different places; often what should result in a
3432   // simple assembling of a structure from scattered addresses has many more
3433   // loads than necessary. Can we clean this up?
3434   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3435   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3436       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3437                                   "reg_save_area");
3438 
3439   Address RegAddr = Address::invalid();
3440   if (neededInt && neededSSE) {
3441     // FIXME: Cleanup.
3442     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3443     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3444     Address Tmp = CGF.CreateMemTemp(Ty);
3445     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3446     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3447     llvm::Type *TyLo = ST->getElementType(0);
3448     llvm::Type *TyHi = ST->getElementType(1);
3449     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3450            "Unexpected ABI info for mixed regs");
3451     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3452     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3453     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3454     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3455     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3456     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3457 
3458     // Copy the first element.
3459     llvm::Value *V =
3460       CGF.Builder.CreateDefaultAlignedLoad(
3461                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3462     CGF.Builder.CreateStore(V,
3463                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3464 
3465     // Copy the second element.
3466     V = CGF.Builder.CreateDefaultAlignedLoad(
3467                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3468     CharUnits Offset = CharUnits::fromQuantity(
3469                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3470     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3471 
3472     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3473   } else if (neededInt) {
3474     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3475                       CharUnits::fromQuantity(8));
3476     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3477 
3478     // Copy to a temporary if necessary to ensure the appropriate alignment.
3479     std::pair<CharUnits, CharUnits> SizeAlign =
3480         getContext().getTypeInfoInChars(Ty);
3481     uint64_t TySize = SizeAlign.first.getQuantity();
3482     CharUnits TyAlign = SizeAlign.second;
3483 
3484     // Copy into a temporary if the type is more aligned than the
3485     // register save area.
3486     if (TyAlign.getQuantity() > 8) {
3487       Address Tmp = CGF.CreateMemTemp(Ty);
3488       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3489       RegAddr = Tmp;
3490     }
3491 
3492   } else if (neededSSE == 1) {
3493     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3494                       CharUnits::fromQuantity(16));
3495     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3496   } else {
3497     assert(neededSSE == 2 && "Invalid number of needed registers!");
3498     // SSE registers are spaced 16 bytes apart in the register save
3499     // area, we need to collect the two eightbytes together.
3500     // The ABI isn't explicit about this, but it seems reasonable
3501     // to assume that the slots are 16-byte aligned, since the stack is
3502     // naturally 16-byte aligned and the prologue is expected to store
3503     // all the SSE registers to the RSA.
3504     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3505                                 CharUnits::fromQuantity(16));
3506     Address RegAddrHi =
3507       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3508                                              CharUnits::fromQuantity(16));
3509     llvm::Type *DoubleTy = CGF.DoubleTy;
3510     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3511     llvm::Value *V;
3512     Address Tmp = CGF.CreateMemTemp(Ty);
3513     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3514     V = CGF.Builder.CreateLoad(
3515                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3516     CGF.Builder.CreateStore(V,
3517                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3518     V = CGF.Builder.CreateLoad(
3519                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3520     CGF.Builder.CreateStore(V,
3521           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3522 
3523     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3524   }
3525 
3526   // AMD64-ABI 3.5.7p5: Step 5. Set:
3527   // l->gp_offset = l->gp_offset + num_gp * 8
3528   // l->fp_offset = l->fp_offset + num_fp * 16.
3529   if (neededInt) {
3530     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3531     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3532                             gp_offset_p);
3533   }
3534   if (neededSSE) {
3535     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3536     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3537                             fp_offset_p);
3538   }
3539   CGF.EmitBranch(ContBlock);
3540 
3541   // Emit code to load the value if it was passed in memory.
3542 
3543   CGF.EmitBlock(InMemBlock);
3544   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3545 
3546   // Return the appropriate result.
3547 
3548   CGF.EmitBlock(ContBlock);
3549   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3550                                  "vaarg.addr");
3551   return ResAddr;
3552 }
3553 
3554 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3555                                    QualType Ty) const {
3556   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3557                           CGF.getContext().getTypeInfoInChars(Ty),
3558                           CharUnits::fromQuantity(8),
3559                           /*allowHigherAlign*/ false);
3560 }
3561 
3562 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3563                                       bool IsReturnType) const {
3564 
3565   if (Ty->isVoidType())
3566     return ABIArgInfo::getIgnore();
3567 
3568   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3569     Ty = EnumTy->getDecl()->getIntegerType();
3570 
3571   TypeInfo Info = getContext().getTypeInfo(Ty);
3572   uint64_t Width = Info.Width;
3573   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3574 
3575   const RecordType *RT = Ty->getAs<RecordType>();
3576   if (RT) {
3577     if (!IsReturnType) {
3578       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3579         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3580     }
3581 
3582     if (RT->getDecl()->hasFlexibleArrayMember())
3583       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3584 
3585   }
3586 
3587   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3588   // other targets.
3589   const Type *Base = nullptr;
3590   uint64_t NumElts = 0;
3591   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3592     if (FreeSSERegs >= NumElts) {
3593       FreeSSERegs -= NumElts;
3594       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3595         return ABIArgInfo::getDirect();
3596       return ABIArgInfo::getExpand();
3597     }
3598     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3599   }
3600 
3601 
3602   if (Ty->isMemberPointerType()) {
3603     // If the member pointer is represented by an LLVM int or ptr, pass it
3604     // directly.
3605     llvm::Type *LLTy = CGT.ConvertType(Ty);
3606     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3607       return ABIArgInfo::getDirect();
3608   }
3609 
3610   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3611     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3612     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3613     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3614       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3615 
3616     // Otherwise, coerce it to a small integer.
3617     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3618   }
3619 
3620   // Bool type is always extended to the ABI, other builtin types are not
3621   // extended.
3622   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3623   if (BT && BT->getKind() == BuiltinType::Bool)
3624     return ABIArgInfo::getExtend();
3625 
3626   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3627   // passes them indirectly through memory.
3628   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3629     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3630     if (LDF == &llvm::APFloat::x87DoubleExtended)
3631       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3632   }
3633 
3634   return ABIArgInfo::getDirect();
3635 }
3636 
3637 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3638   bool IsVectorCall =
3639       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3640 
3641   // We can use up to 4 SSE return registers with vectorcall.
3642   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3643   if (!getCXXABI().classifyReturnType(FI))
3644     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3645 
3646   // We can use up to 6 SSE register parameters with vectorcall.
3647   FreeSSERegs = IsVectorCall ? 6 : 0;
3648   for (auto &I : FI.arguments())
3649     I.info = classify(I.type, FreeSSERegs, false);
3650 }
3651 
3652 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3653                                     QualType Ty) const {
3654 
3655   bool IsIndirect = false;
3656 
3657   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3658   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3659   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
3660     uint64_t Width = getContext().getTypeSize(Ty);
3661     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3662   }
3663 
3664   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3665                           CGF.getContext().getTypeInfoInChars(Ty),
3666                           CharUnits::fromQuantity(8),
3667                           /*allowHigherAlign*/ false);
3668 }
3669 
3670 // PowerPC-32
3671 namespace {
3672 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3673 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3674 bool IsSoftFloatABI;
3675 public:
3676   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3677       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3678 
3679   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3680                     QualType Ty) const override;
3681 };
3682 
3683 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3684 public:
3685   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3686       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3687 
3688   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3689     // This is recovered from gcc output.
3690     return 1; // r1 is the dedicated stack pointer
3691   }
3692 
3693   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3694                                llvm::Value *Address) const override;
3695 };
3696 
3697 }
3698 
3699 // TODO: this implementation is now likely redundant with
3700 // DefaultABIInfo::EmitVAArg.
3701 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3702                                       QualType Ty) const {
3703   const unsigned OverflowLimit = 8;
3704   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3705     // TODO: Implement this. For now ignore.
3706     (void)CTy;
3707     return Address::invalid(); // FIXME?
3708   }
3709 
3710   // struct __va_list_tag {
3711   //   unsigned char gpr;
3712   //   unsigned char fpr;
3713   //   unsigned short reserved;
3714   //   void *overflow_arg_area;
3715   //   void *reg_save_area;
3716   // };
3717 
3718   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3719   bool isInt =
3720       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3721   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3722 
3723   // All aggregates are passed indirectly?  That doesn't seem consistent
3724   // with the argument-lowering code.
3725   bool isIndirect = Ty->isAggregateType();
3726 
3727   CGBuilderTy &Builder = CGF.Builder;
3728 
3729   // The calling convention either uses 1-2 GPRs or 1 FPR.
3730   Address NumRegsAddr = Address::invalid();
3731   if (isInt || IsSoftFloatABI) {
3732     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3733   } else {
3734     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3735   }
3736 
3737   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3738 
3739   // "Align" the register count when TY is i64.
3740   if (isI64 || (isF64 && IsSoftFloatABI)) {
3741     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3742     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3743   }
3744 
3745   llvm::Value *CC =
3746       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3747 
3748   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3749   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3750   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3751 
3752   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3753 
3754   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3755   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3756 
3757   // Case 1: consume registers.
3758   Address RegAddr = Address::invalid();
3759   {
3760     CGF.EmitBlock(UsingRegs);
3761 
3762     Address RegSaveAreaPtr =
3763       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3764     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3765                       CharUnits::fromQuantity(8));
3766     assert(RegAddr.getElementType() == CGF.Int8Ty);
3767 
3768     // Floating-point registers start after the general-purpose registers.
3769     if (!(isInt || IsSoftFloatABI)) {
3770       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3771                                                    CharUnits::fromQuantity(32));
3772     }
3773 
3774     // Get the address of the saved value by scaling the number of
3775     // registers we've used by the number of
3776     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3777     llvm::Value *RegOffset =
3778       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3779     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3780                                             RegAddr.getPointer(), RegOffset),
3781                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3782     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3783 
3784     // Increase the used-register count.
3785     NumRegs =
3786       Builder.CreateAdd(NumRegs,
3787                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3788     Builder.CreateStore(NumRegs, NumRegsAddr);
3789 
3790     CGF.EmitBranch(Cont);
3791   }
3792 
3793   // Case 2: consume space in the overflow area.
3794   Address MemAddr = Address::invalid();
3795   {
3796     CGF.EmitBlock(UsingOverflow);
3797 
3798     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3799 
3800     // Everything in the overflow area is rounded up to a size of at least 4.
3801     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3802 
3803     CharUnits Size;
3804     if (!isIndirect) {
3805       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3806       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3807     } else {
3808       Size = CGF.getPointerSize();
3809     }
3810 
3811     Address OverflowAreaAddr =
3812       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3813     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3814                          OverflowAreaAlign);
3815     // Round up address of argument to alignment
3816     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3817     if (Align > OverflowAreaAlign) {
3818       llvm::Value *Ptr = OverflowArea.getPointer();
3819       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3820                                                            Align);
3821     }
3822 
3823     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3824 
3825     // Increase the overflow area.
3826     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3827     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3828     CGF.EmitBranch(Cont);
3829   }
3830 
3831   CGF.EmitBlock(Cont);
3832 
3833   // Merge the cases with a phi.
3834   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3835                                 "vaarg.addr");
3836 
3837   // Load the pointer if the argument was passed indirectly.
3838   if (isIndirect) {
3839     Result = Address(Builder.CreateLoad(Result, "aggr"),
3840                      getContext().getTypeAlignInChars(Ty));
3841   }
3842 
3843   return Result;
3844 }
3845 
3846 bool
3847 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3848                                                 llvm::Value *Address) const {
3849   // This is calculated from the LLVM and GCC tables and verified
3850   // against gcc output.  AFAIK all ABIs use the same encoding.
3851 
3852   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3853 
3854   llvm::IntegerType *i8 = CGF.Int8Ty;
3855   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3856   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3857   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3858 
3859   // 0-31: r0-31, the 4-byte general-purpose registers
3860   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3861 
3862   // 32-63: fp0-31, the 8-byte floating-point registers
3863   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3864 
3865   // 64-76 are various 4-byte special-purpose registers:
3866   // 64: mq
3867   // 65: lr
3868   // 66: ctr
3869   // 67: ap
3870   // 68-75 cr0-7
3871   // 76: xer
3872   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3873 
3874   // 77-108: v0-31, the 16-byte vector registers
3875   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3876 
3877   // 109: vrsave
3878   // 110: vscr
3879   // 111: spe_acc
3880   // 112: spefscr
3881   // 113: sfp
3882   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3883 
3884   return false;
3885 }
3886 
3887 // PowerPC-64
3888 
3889 namespace {
3890 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3891 class PPC64_SVR4_ABIInfo : public ABIInfo {
3892 public:
3893   enum ABIKind {
3894     ELFv1 = 0,
3895     ELFv2
3896   };
3897 
3898 private:
3899   static const unsigned GPRBits = 64;
3900   ABIKind Kind;
3901   bool HasQPX;
3902 
3903   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3904   // will be passed in a QPX register.
3905   bool IsQPXVectorTy(const Type *Ty) const {
3906     if (!HasQPX)
3907       return false;
3908 
3909     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3910       unsigned NumElements = VT->getNumElements();
3911       if (NumElements == 1)
3912         return false;
3913 
3914       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3915         if (getContext().getTypeSize(Ty) <= 256)
3916           return true;
3917       } else if (VT->getElementType()->
3918                    isSpecificBuiltinType(BuiltinType::Float)) {
3919         if (getContext().getTypeSize(Ty) <= 128)
3920           return true;
3921       }
3922     }
3923 
3924     return false;
3925   }
3926 
3927   bool IsQPXVectorTy(QualType Ty) const {
3928     return IsQPXVectorTy(Ty.getTypePtr());
3929   }
3930 
3931 public:
3932   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3933       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3934 
3935   bool isPromotableTypeForABI(QualType Ty) const;
3936   CharUnits getParamTypeAlignment(QualType Ty) const;
3937 
3938   ABIArgInfo classifyReturnType(QualType RetTy) const;
3939   ABIArgInfo classifyArgumentType(QualType Ty) const;
3940 
3941   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3942   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3943                                          uint64_t Members) const override;
3944 
3945   // TODO: We can add more logic to computeInfo to improve performance.
3946   // Example: For aggregate arguments that fit in a register, we could
3947   // use getDirectInReg (as is done below for structs containing a single
3948   // floating-point value) to avoid pushing them to memory on function
3949   // entry.  This would require changing the logic in PPCISelLowering
3950   // when lowering the parameters in the caller and args in the callee.
3951   void computeInfo(CGFunctionInfo &FI) const override {
3952     if (!getCXXABI().classifyReturnType(FI))
3953       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3954     for (auto &I : FI.arguments()) {
3955       // We rely on the default argument classification for the most part.
3956       // One exception:  An aggregate containing a single floating-point
3957       // or vector item must be passed in a register if one is available.
3958       const Type *T = isSingleElementStruct(I.type, getContext());
3959       if (T) {
3960         const BuiltinType *BT = T->getAs<BuiltinType>();
3961         if (IsQPXVectorTy(T) ||
3962             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3963             (BT && BT->isFloatingPoint())) {
3964           QualType QT(T, 0);
3965           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3966           continue;
3967         }
3968       }
3969       I.info = classifyArgumentType(I.type);
3970     }
3971   }
3972 
3973   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3974                     QualType Ty) const override;
3975 };
3976 
3977 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3978 
3979 public:
3980   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3981                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3982       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3983 
3984   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3985     // This is recovered from gcc output.
3986     return 1; // r1 is the dedicated stack pointer
3987   }
3988 
3989   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3990                                llvm::Value *Address) const override;
3991 };
3992 
3993 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3994 public:
3995   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3996 
3997   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3998     // This is recovered from gcc output.
3999     return 1; // r1 is the dedicated stack pointer
4000   }
4001 
4002   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4003                                llvm::Value *Address) const override;
4004 };
4005 
4006 }
4007 
4008 // Return true if the ABI requires Ty to be passed sign- or zero-
4009 // extended to 64 bits.
4010 bool
4011 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4012   // Treat an enum type as its underlying type.
4013   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4014     Ty = EnumTy->getDecl()->getIntegerType();
4015 
4016   // Promotable integer types are required to be promoted by the ABI.
4017   if (Ty->isPromotableIntegerType())
4018     return true;
4019 
4020   // In addition to the usual promotable integer types, we also need to
4021   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4022   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4023     switch (BT->getKind()) {
4024     case BuiltinType::Int:
4025     case BuiltinType::UInt:
4026       return true;
4027     default:
4028       break;
4029     }
4030 
4031   return false;
4032 }
4033 
4034 /// isAlignedParamType - Determine whether a type requires 16-byte or
4035 /// higher alignment in the parameter area.  Always returns at least 8.
4036 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4037   // Complex types are passed just like their elements.
4038   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4039     Ty = CTy->getElementType();
4040 
4041   // Only vector types of size 16 bytes need alignment (larger types are
4042   // passed via reference, smaller types are not aligned).
4043   if (IsQPXVectorTy(Ty)) {
4044     if (getContext().getTypeSize(Ty) > 128)
4045       return CharUnits::fromQuantity(32);
4046 
4047     return CharUnits::fromQuantity(16);
4048   } else if (Ty->isVectorType()) {
4049     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4050   }
4051 
4052   // For single-element float/vector structs, we consider the whole type
4053   // to have the same alignment requirements as its single element.
4054   const Type *AlignAsType = nullptr;
4055   const Type *EltType = isSingleElementStruct(Ty, getContext());
4056   if (EltType) {
4057     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4058     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4059          getContext().getTypeSize(EltType) == 128) ||
4060         (BT && BT->isFloatingPoint()))
4061       AlignAsType = EltType;
4062   }
4063 
4064   // Likewise for ELFv2 homogeneous aggregates.
4065   const Type *Base = nullptr;
4066   uint64_t Members = 0;
4067   if (!AlignAsType && Kind == ELFv2 &&
4068       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4069     AlignAsType = Base;
4070 
4071   // With special case aggregates, only vector base types need alignment.
4072   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4073     if (getContext().getTypeSize(AlignAsType) > 128)
4074       return CharUnits::fromQuantity(32);
4075 
4076     return CharUnits::fromQuantity(16);
4077   } else if (AlignAsType) {
4078     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4079   }
4080 
4081   // Otherwise, we only need alignment for any aggregate type that
4082   // has an alignment requirement of >= 16 bytes.
4083   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4084     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4085       return CharUnits::fromQuantity(32);
4086     return CharUnits::fromQuantity(16);
4087   }
4088 
4089   return CharUnits::fromQuantity(8);
4090 }
4091 
4092 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4093 /// aggregate.  Base is set to the base element type, and Members is set
4094 /// to the number of base elements.
4095 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4096                                      uint64_t &Members) const {
4097   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4098     uint64_t NElements = AT->getSize().getZExtValue();
4099     if (NElements == 0)
4100       return false;
4101     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4102       return false;
4103     Members *= NElements;
4104   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4105     const RecordDecl *RD = RT->getDecl();
4106     if (RD->hasFlexibleArrayMember())
4107       return false;
4108 
4109     Members = 0;
4110 
4111     // If this is a C++ record, check the bases first.
4112     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4113       for (const auto &I : CXXRD->bases()) {
4114         // Ignore empty records.
4115         if (isEmptyRecord(getContext(), I.getType(), true))
4116           continue;
4117 
4118         uint64_t FldMembers;
4119         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4120           return false;
4121 
4122         Members += FldMembers;
4123       }
4124     }
4125 
4126     for (const auto *FD : RD->fields()) {
4127       // Ignore (non-zero arrays of) empty records.
4128       QualType FT = FD->getType();
4129       while (const ConstantArrayType *AT =
4130              getContext().getAsConstantArrayType(FT)) {
4131         if (AT->getSize().getZExtValue() == 0)
4132           return false;
4133         FT = AT->getElementType();
4134       }
4135       if (isEmptyRecord(getContext(), FT, true))
4136         continue;
4137 
4138       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4139       if (getContext().getLangOpts().CPlusPlus &&
4140           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4141         continue;
4142 
4143       uint64_t FldMembers;
4144       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4145         return false;
4146 
4147       Members = (RD->isUnion() ?
4148                  std::max(Members, FldMembers) : Members + FldMembers);
4149     }
4150 
4151     if (!Base)
4152       return false;
4153 
4154     // Ensure there is no padding.
4155     if (getContext().getTypeSize(Base) * Members !=
4156         getContext().getTypeSize(Ty))
4157       return false;
4158   } else {
4159     Members = 1;
4160     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4161       Members = 2;
4162       Ty = CT->getElementType();
4163     }
4164 
4165     // Most ABIs only support float, double, and some vector type widths.
4166     if (!isHomogeneousAggregateBaseType(Ty))
4167       return false;
4168 
4169     // The base type must be the same for all members.  Types that
4170     // agree in both total size and mode (float vs. vector) are
4171     // treated as being equivalent here.
4172     const Type *TyPtr = Ty.getTypePtr();
4173     if (!Base) {
4174       Base = TyPtr;
4175       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4176       // so make sure to widen it explicitly.
4177       if (const VectorType *VT = Base->getAs<VectorType>()) {
4178         QualType EltTy = VT->getElementType();
4179         unsigned NumElements =
4180             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4181         Base = getContext()
4182                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4183                    .getTypePtr();
4184       }
4185     }
4186 
4187     if (Base->isVectorType() != TyPtr->isVectorType() ||
4188         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4189       return false;
4190   }
4191   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4192 }
4193 
4194 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4195   // Homogeneous aggregates for ELFv2 must have base types of float,
4196   // double, long double, or 128-bit vectors.
4197   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4198     if (BT->getKind() == BuiltinType::Float ||
4199         BT->getKind() == BuiltinType::Double ||
4200         BT->getKind() == BuiltinType::LongDouble)
4201       return true;
4202   }
4203   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4204     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4205       return true;
4206   }
4207   return false;
4208 }
4209 
4210 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4211     const Type *Base, uint64_t Members) const {
4212   // Vector types require one register, floating point types require one
4213   // or two registers depending on their size.
4214   uint32_t NumRegs =
4215       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4216 
4217   // Homogeneous Aggregates may occupy at most 8 registers.
4218   return Members * NumRegs <= 8;
4219 }
4220 
4221 ABIArgInfo
4222 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4223   Ty = useFirstFieldIfTransparentUnion(Ty);
4224 
4225   if (Ty->isAnyComplexType())
4226     return ABIArgInfo::getDirect();
4227 
4228   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4229   // or via reference (larger than 16 bytes).
4230   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4231     uint64_t Size = getContext().getTypeSize(Ty);
4232     if (Size > 128)
4233       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4234     else if (Size < 128) {
4235       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4236       return ABIArgInfo::getDirect(CoerceTy);
4237     }
4238   }
4239 
4240   if (isAggregateTypeForABI(Ty)) {
4241     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4242       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4243 
4244     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4245     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4246 
4247     // ELFv2 homogeneous aggregates are passed as array types.
4248     const Type *Base = nullptr;
4249     uint64_t Members = 0;
4250     if (Kind == ELFv2 &&
4251         isHomogeneousAggregate(Ty, Base, Members)) {
4252       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4253       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4254       return ABIArgInfo::getDirect(CoerceTy);
4255     }
4256 
4257     // If an aggregate may end up fully in registers, we do not
4258     // use the ByVal method, but pass the aggregate as array.
4259     // This is usually beneficial since we avoid forcing the
4260     // back-end to store the argument to memory.
4261     uint64_t Bits = getContext().getTypeSize(Ty);
4262     if (Bits > 0 && Bits <= 8 * GPRBits) {
4263       llvm::Type *CoerceTy;
4264 
4265       // Types up to 8 bytes are passed as integer type (which will be
4266       // properly aligned in the argument save area doubleword).
4267       if (Bits <= GPRBits)
4268         CoerceTy =
4269             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4270       // Larger types are passed as arrays, with the base type selected
4271       // according to the required alignment in the save area.
4272       else {
4273         uint64_t RegBits = ABIAlign * 8;
4274         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4275         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4276         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4277       }
4278 
4279       return ABIArgInfo::getDirect(CoerceTy);
4280     }
4281 
4282     // All other aggregates are passed ByVal.
4283     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4284                                    /*ByVal=*/true,
4285                                    /*Realign=*/TyAlign > ABIAlign);
4286   }
4287 
4288   return (isPromotableTypeForABI(Ty) ?
4289           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4290 }
4291 
4292 ABIArgInfo
4293 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4294   if (RetTy->isVoidType())
4295     return ABIArgInfo::getIgnore();
4296 
4297   if (RetTy->isAnyComplexType())
4298     return ABIArgInfo::getDirect();
4299 
4300   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4301   // or via reference (larger than 16 bytes).
4302   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4303     uint64_t Size = getContext().getTypeSize(RetTy);
4304     if (Size > 128)
4305       return getNaturalAlignIndirect(RetTy);
4306     else if (Size < 128) {
4307       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4308       return ABIArgInfo::getDirect(CoerceTy);
4309     }
4310   }
4311 
4312   if (isAggregateTypeForABI(RetTy)) {
4313     // ELFv2 homogeneous aggregates are returned as array types.
4314     const Type *Base = nullptr;
4315     uint64_t Members = 0;
4316     if (Kind == ELFv2 &&
4317         isHomogeneousAggregate(RetTy, Base, Members)) {
4318       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4319       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4320       return ABIArgInfo::getDirect(CoerceTy);
4321     }
4322 
4323     // ELFv2 small aggregates are returned in up to two registers.
4324     uint64_t Bits = getContext().getTypeSize(RetTy);
4325     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4326       if (Bits == 0)
4327         return ABIArgInfo::getIgnore();
4328 
4329       llvm::Type *CoerceTy;
4330       if (Bits > GPRBits) {
4331         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4332         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4333       } else
4334         CoerceTy =
4335             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4336       return ABIArgInfo::getDirect(CoerceTy);
4337     }
4338 
4339     // All other aggregates are returned indirectly.
4340     return getNaturalAlignIndirect(RetTy);
4341   }
4342 
4343   return (isPromotableTypeForABI(RetTy) ?
4344           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4345 }
4346 
4347 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4348 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4349                                       QualType Ty) const {
4350   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4351   TypeInfo.second = getParamTypeAlignment(Ty);
4352 
4353   CharUnits SlotSize = CharUnits::fromQuantity(8);
4354 
4355   // If we have a complex type and the base type is smaller than 8 bytes,
4356   // the ABI calls for the real and imaginary parts to be right-adjusted
4357   // in separate doublewords.  However, Clang expects us to produce a
4358   // pointer to a structure with the two parts packed tightly.  So generate
4359   // loads of the real and imaginary parts relative to the va_list pointer,
4360   // and store them to a temporary structure.
4361   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4362     CharUnits EltSize = TypeInfo.first / 2;
4363     if (EltSize < SlotSize) {
4364       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4365                                             SlotSize * 2, SlotSize,
4366                                             SlotSize, /*AllowHigher*/ true);
4367 
4368       Address RealAddr = Addr;
4369       Address ImagAddr = RealAddr;
4370       if (CGF.CGM.getDataLayout().isBigEndian()) {
4371         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4372                                                           SlotSize - EltSize);
4373         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4374                                                       2 * SlotSize - EltSize);
4375       } else {
4376         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4377       }
4378 
4379       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4380       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4381       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4382       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4383       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4384 
4385       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4386       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4387                              /*init*/ true);
4388       return Temp;
4389     }
4390   }
4391 
4392   // Otherwise, just use the general rule.
4393   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4394                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4395 }
4396 
4397 static bool
4398 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4399                               llvm::Value *Address) {
4400   // This is calculated from the LLVM and GCC tables and verified
4401   // against gcc output.  AFAIK all ABIs use the same encoding.
4402 
4403   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4404 
4405   llvm::IntegerType *i8 = CGF.Int8Ty;
4406   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4407   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4408   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4409 
4410   // 0-31: r0-31, the 8-byte general-purpose registers
4411   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4412 
4413   // 32-63: fp0-31, the 8-byte floating-point registers
4414   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4415 
4416   // 64-67 are various 8-byte special-purpose registers:
4417   // 64: mq
4418   // 65: lr
4419   // 66: ctr
4420   // 67: ap
4421   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4422 
4423   // 68-76 are various 4-byte special-purpose registers:
4424   // 68-75 cr0-7
4425   // 76: xer
4426   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4427 
4428   // 77-108: v0-31, the 16-byte vector registers
4429   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4430 
4431   // 109: vrsave
4432   // 110: vscr
4433   // 111: spe_acc
4434   // 112: spefscr
4435   // 113: sfp
4436   // 114: tfhar
4437   // 115: tfiar
4438   // 116: texasr
4439   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4440 
4441   return false;
4442 }
4443 
4444 bool
4445 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4446   CodeGen::CodeGenFunction &CGF,
4447   llvm::Value *Address) const {
4448 
4449   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4450 }
4451 
4452 bool
4453 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4454                                                 llvm::Value *Address) const {
4455 
4456   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4457 }
4458 
4459 //===----------------------------------------------------------------------===//
4460 // AArch64 ABI Implementation
4461 //===----------------------------------------------------------------------===//
4462 
4463 namespace {
4464 
4465 class AArch64ABIInfo : public SwiftABIInfo {
4466 public:
4467   enum ABIKind {
4468     AAPCS = 0,
4469     DarwinPCS
4470   };
4471 
4472 private:
4473   ABIKind Kind;
4474 
4475 public:
4476   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4477     : SwiftABIInfo(CGT), Kind(Kind) {}
4478 
4479 private:
4480   ABIKind getABIKind() const { return Kind; }
4481   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4482 
4483   ABIArgInfo classifyReturnType(QualType RetTy) const;
4484   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4485   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4486   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4487                                          uint64_t Members) const override;
4488 
4489   bool isIllegalVectorType(QualType Ty) const;
4490 
4491   void computeInfo(CGFunctionInfo &FI) const override {
4492     if (!getCXXABI().classifyReturnType(FI))
4493       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4494 
4495     for (auto &it : FI.arguments())
4496       it.info = classifyArgumentType(it.type);
4497   }
4498 
4499   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4500                           CodeGenFunction &CGF) const;
4501 
4502   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4503                          CodeGenFunction &CGF) const;
4504 
4505   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4506                     QualType Ty) const override {
4507     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4508                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4509   }
4510 
4511   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4512                                     ArrayRef<llvm::Type*> scalars,
4513                                     bool asReturnValue) const override {
4514     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4515   }
4516 };
4517 
4518 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4519 public:
4520   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4521       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4522 
4523   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4524     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4525   }
4526 
4527   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4528     return 31;
4529   }
4530 
4531   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4532 };
4533 }
4534 
4535 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4536   Ty = useFirstFieldIfTransparentUnion(Ty);
4537 
4538   // Handle illegal vector types here.
4539   if (isIllegalVectorType(Ty)) {
4540     uint64_t Size = getContext().getTypeSize(Ty);
4541     // Android promotes <2 x i8> to i16, not i32
4542     if (isAndroid() && (Size <= 16)) {
4543       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4544       return ABIArgInfo::getDirect(ResType);
4545     }
4546     if (Size <= 32) {
4547       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4548       return ABIArgInfo::getDirect(ResType);
4549     }
4550     if (Size == 64) {
4551       llvm::Type *ResType =
4552           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4553       return ABIArgInfo::getDirect(ResType);
4554     }
4555     if (Size == 128) {
4556       llvm::Type *ResType =
4557           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4558       return ABIArgInfo::getDirect(ResType);
4559     }
4560     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4561   }
4562 
4563   if (!isAggregateTypeForABI(Ty)) {
4564     // Treat an enum type as its underlying type.
4565     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4566       Ty = EnumTy->getDecl()->getIntegerType();
4567 
4568     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4569                 ? ABIArgInfo::getExtend()
4570                 : ABIArgInfo::getDirect());
4571   }
4572 
4573   // Structures with either a non-trivial destructor or a non-trivial
4574   // copy constructor are always indirect.
4575   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4576     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4577                                      CGCXXABI::RAA_DirectInMemory);
4578   }
4579 
4580   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4581   // elsewhere for GNU compatibility.
4582   if (isEmptyRecord(getContext(), Ty, true)) {
4583     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4584       return ABIArgInfo::getIgnore();
4585 
4586     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4587   }
4588 
4589   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4590   const Type *Base = nullptr;
4591   uint64_t Members = 0;
4592   if (isHomogeneousAggregate(Ty, Base, Members)) {
4593     return ABIArgInfo::getDirect(
4594         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4595   }
4596 
4597   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4598   uint64_t Size = getContext().getTypeSize(Ty);
4599   if (Size <= 128) {
4600     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4601     // same size and alignment.
4602     if (getTarget().isRenderScriptTarget()) {
4603       return coerceToIntArray(Ty, getContext(), getVMContext());
4604     }
4605     unsigned Alignment = getContext().getTypeAlign(Ty);
4606     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4607 
4608     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4609     // For aggregates with 16-byte alignment, we use i128.
4610     if (Alignment < 128 && Size == 128) {
4611       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4612       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4613     }
4614     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4615   }
4616 
4617   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4618 }
4619 
4620 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4621   if (RetTy->isVoidType())
4622     return ABIArgInfo::getIgnore();
4623 
4624   // Large vector types should be returned via memory.
4625   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4626     return getNaturalAlignIndirect(RetTy);
4627 
4628   if (!isAggregateTypeForABI(RetTy)) {
4629     // Treat an enum type as its underlying type.
4630     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4631       RetTy = EnumTy->getDecl()->getIntegerType();
4632 
4633     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4634                 ? ABIArgInfo::getExtend()
4635                 : ABIArgInfo::getDirect());
4636   }
4637 
4638   if (isEmptyRecord(getContext(), RetTy, true))
4639     return ABIArgInfo::getIgnore();
4640 
4641   const Type *Base = nullptr;
4642   uint64_t Members = 0;
4643   if (isHomogeneousAggregate(RetTy, Base, Members))
4644     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4645     return ABIArgInfo::getDirect();
4646 
4647   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4648   uint64_t Size = getContext().getTypeSize(RetTy);
4649   if (Size <= 128) {
4650     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4651     // same size and alignment.
4652     if (getTarget().isRenderScriptTarget()) {
4653       return coerceToIntArray(RetTy, getContext(), getVMContext());
4654     }
4655     unsigned Alignment = getContext().getTypeAlign(RetTy);
4656     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4657 
4658     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4659     // For aggregates with 16-byte alignment, we use i128.
4660     if (Alignment < 128 && Size == 128) {
4661       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4662       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4663     }
4664     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4665   }
4666 
4667   return getNaturalAlignIndirect(RetTy);
4668 }
4669 
4670 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4671 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4672   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4673     // Check whether VT is legal.
4674     unsigned NumElements = VT->getNumElements();
4675     uint64_t Size = getContext().getTypeSize(VT);
4676     // NumElements should be power of 2.
4677     if (!llvm::isPowerOf2_32(NumElements))
4678       return true;
4679     return Size != 64 && (Size != 128 || NumElements == 1);
4680   }
4681   return false;
4682 }
4683 
4684 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4685   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4686   // point type or a short-vector type. This is the same as the 32-bit ABI,
4687   // but with the difference that any floating-point type is allowed,
4688   // including __fp16.
4689   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4690     if (BT->isFloatingPoint())
4691       return true;
4692   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4693     unsigned VecSize = getContext().getTypeSize(VT);
4694     if (VecSize == 64 || VecSize == 128)
4695       return true;
4696   }
4697   return false;
4698 }
4699 
4700 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4701                                                        uint64_t Members) const {
4702   return Members <= 4;
4703 }
4704 
4705 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4706                                             QualType Ty,
4707                                             CodeGenFunction &CGF) const {
4708   ABIArgInfo AI = classifyArgumentType(Ty);
4709   bool IsIndirect = AI.isIndirect();
4710 
4711   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4712   if (IsIndirect)
4713     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4714   else if (AI.getCoerceToType())
4715     BaseTy = AI.getCoerceToType();
4716 
4717   unsigned NumRegs = 1;
4718   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4719     BaseTy = ArrTy->getElementType();
4720     NumRegs = ArrTy->getNumElements();
4721   }
4722   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4723 
4724   // The AArch64 va_list type and handling is specified in the Procedure Call
4725   // Standard, section B.4:
4726   //
4727   // struct {
4728   //   void *__stack;
4729   //   void *__gr_top;
4730   //   void *__vr_top;
4731   //   int __gr_offs;
4732   //   int __vr_offs;
4733   // };
4734 
4735   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4736   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4737   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4738   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4739 
4740   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4741   CharUnits TyAlign = TyInfo.second;
4742 
4743   Address reg_offs_p = Address::invalid();
4744   llvm::Value *reg_offs = nullptr;
4745   int reg_top_index;
4746   CharUnits reg_top_offset;
4747   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4748   if (!IsFPR) {
4749     // 3 is the field number of __gr_offs
4750     reg_offs_p =
4751         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4752                                     "gr_offs_p");
4753     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4754     reg_top_index = 1; // field number for __gr_top
4755     reg_top_offset = CharUnits::fromQuantity(8);
4756     RegSize = llvm::alignTo(RegSize, 8);
4757   } else {
4758     // 4 is the field number of __vr_offs.
4759     reg_offs_p =
4760         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4761                                     "vr_offs_p");
4762     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4763     reg_top_index = 2; // field number for __vr_top
4764     reg_top_offset = CharUnits::fromQuantity(16);
4765     RegSize = 16 * NumRegs;
4766   }
4767 
4768   //=======================================
4769   // Find out where argument was passed
4770   //=======================================
4771 
4772   // If reg_offs >= 0 we're already using the stack for this type of
4773   // argument. We don't want to keep updating reg_offs (in case it overflows,
4774   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4775   // whatever they get).
4776   llvm::Value *UsingStack = nullptr;
4777   UsingStack = CGF.Builder.CreateICmpSGE(
4778       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4779 
4780   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4781 
4782   // Otherwise, at least some kind of argument could go in these registers, the
4783   // question is whether this particular type is too big.
4784   CGF.EmitBlock(MaybeRegBlock);
4785 
4786   // Integer arguments may need to correct register alignment (for example a
4787   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4788   // align __gr_offs to calculate the potential address.
4789   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4790     int Align = TyAlign.getQuantity();
4791 
4792     reg_offs = CGF.Builder.CreateAdd(
4793         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4794         "align_regoffs");
4795     reg_offs = CGF.Builder.CreateAnd(
4796         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4797         "aligned_regoffs");
4798   }
4799 
4800   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4801   // The fact that this is done unconditionally reflects the fact that
4802   // allocating an argument to the stack also uses up all the remaining
4803   // registers of the appropriate kind.
4804   llvm::Value *NewOffset = nullptr;
4805   NewOffset = CGF.Builder.CreateAdd(
4806       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4807   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4808 
4809   // Now we're in a position to decide whether this argument really was in
4810   // registers or not.
4811   llvm::Value *InRegs = nullptr;
4812   InRegs = CGF.Builder.CreateICmpSLE(
4813       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4814 
4815   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4816 
4817   //=======================================
4818   // Argument was in registers
4819   //=======================================
4820 
4821   // Now we emit the code for if the argument was originally passed in
4822   // registers. First start the appropriate block:
4823   CGF.EmitBlock(InRegBlock);
4824 
4825   llvm::Value *reg_top = nullptr;
4826   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4827                                                   reg_top_offset, "reg_top_p");
4828   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4829   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4830                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4831   Address RegAddr = Address::invalid();
4832   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4833 
4834   if (IsIndirect) {
4835     // If it's been passed indirectly (actually a struct), whatever we find from
4836     // stored registers or on the stack will actually be a struct **.
4837     MemTy = llvm::PointerType::getUnqual(MemTy);
4838   }
4839 
4840   const Type *Base = nullptr;
4841   uint64_t NumMembers = 0;
4842   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4843   if (IsHFA && NumMembers > 1) {
4844     // Homogeneous aggregates passed in registers will have their elements split
4845     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4846     // qN+1, ...). We reload and store into a temporary local variable
4847     // contiguously.
4848     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4849     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4850     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4851     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4852     Address Tmp = CGF.CreateTempAlloca(HFATy,
4853                                        std::max(TyAlign, BaseTyInfo.second));
4854 
4855     // On big-endian platforms, the value will be right-aligned in its slot.
4856     int Offset = 0;
4857     if (CGF.CGM.getDataLayout().isBigEndian() &&
4858         BaseTyInfo.first.getQuantity() < 16)
4859       Offset = 16 - BaseTyInfo.first.getQuantity();
4860 
4861     for (unsigned i = 0; i < NumMembers; ++i) {
4862       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4863       Address LoadAddr =
4864         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4865       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4866 
4867       Address StoreAddr =
4868         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4869 
4870       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4871       CGF.Builder.CreateStore(Elem, StoreAddr);
4872     }
4873 
4874     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4875   } else {
4876     // Otherwise the object is contiguous in memory.
4877 
4878     // It might be right-aligned in its slot.
4879     CharUnits SlotSize = BaseAddr.getAlignment();
4880     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4881         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4882         TyInfo.first < SlotSize) {
4883       CharUnits Offset = SlotSize - TyInfo.first;
4884       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4885     }
4886 
4887     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4888   }
4889 
4890   CGF.EmitBranch(ContBlock);
4891 
4892   //=======================================
4893   // Argument was on the stack
4894   //=======================================
4895   CGF.EmitBlock(OnStackBlock);
4896 
4897   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4898                                                 CharUnits::Zero(), "stack_p");
4899   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4900 
4901   // Again, stack arguments may need realignment. In this case both integer and
4902   // floating-point ones might be affected.
4903   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4904     int Align = TyAlign.getQuantity();
4905 
4906     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4907 
4908     OnStackPtr = CGF.Builder.CreateAdd(
4909         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4910         "align_stack");
4911     OnStackPtr = CGF.Builder.CreateAnd(
4912         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4913         "align_stack");
4914 
4915     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4916   }
4917   Address OnStackAddr(OnStackPtr,
4918                       std::max(CharUnits::fromQuantity(8), TyAlign));
4919 
4920   // All stack slots are multiples of 8 bytes.
4921   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4922   CharUnits StackSize;
4923   if (IsIndirect)
4924     StackSize = StackSlotSize;
4925   else
4926     StackSize = TyInfo.first.alignTo(StackSlotSize);
4927 
4928   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4929   llvm::Value *NewStack =
4930       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4931 
4932   // Write the new value of __stack for the next call to va_arg
4933   CGF.Builder.CreateStore(NewStack, stack_p);
4934 
4935   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4936       TyInfo.first < StackSlotSize) {
4937     CharUnits Offset = StackSlotSize - TyInfo.first;
4938     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4939   }
4940 
4941   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4942 
4943   CGF.EmitBranch(ContBlock);
4944 
4945   //=======================================
4946   // Tidy up
4947   //=======================================
4948   CGF.EmitBlock(ContBlock);
4949 
4950   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4951                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4952 
4953   if (IsIndirect)
4954     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4955                    TyInfo.second);
4956 
4957   return ResAddr;
4958 }
4959 
4960 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4961                                         CodeGenFunction &CGF) const {
4962   // The backend's lowering doesn't support va_arg for aggregates or
4963   // illegal vector types.  Lower VAArg here for these cases and use
4964   // the LLVM va_arg instruction for everything else.
4965   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4966     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4967 
4968   CharUnits SlotSize = CharUnits::fromQuantity(8);
4969 
4970   // Empty records are ignored for parameter passing purposes.
4971   if (isEmptyRecord(getContext(), Ty, true)) {
4972     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4973     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4974     return Addr;
4975   }
4976 
4977   // The size of the actual thing passed, which might end up just
4978   // being a pointer for indirect types.
4979   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4980 
4981   // Arguments bigger than 16 bytes which aren't homogeneous
4982   // aggregates should be passed indirectly.
4983   bool IsIndirect = false;
4984   if (TyInfo.first.getQuantity() > 16) {
4985     const Type *Base = nullptr;
4986     uint64_t Members = 0;
4987     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4988   }
4989 
4990   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4991                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4992 }
4993 
4994 //===----------------------------------------------------------------------===//
4995 // ARM ABI Implementation
4996 //===----------------------------------------------------------------------===//
4997 
4998 namespace {
4999 
5000 class ARMABIInfo : public SwiftABIInfo {
5001 public:
5002   enum ABIKind {
5003     APCS = 0,
5004     AAPCS = 1,
5005     AAPCS_VFP = 2,
5006     AAPCS16_VFP = 3,
5007   };
5008 
5009 private:
5010   ABIKind Kind;
5011 
5012 public:
5013   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5014       : SwiftABIInfo(CGT), Kind(_Kind) {
5015     setCCs();
5016   }
5017 
5018   bool isEABI() const {
5019     switch (getTarget().getTriple().getEnvironment()) {
5020     case llvm::Triple::Android:
5021     case llvm::Triple::EABI:
5022     case llvm::Triple::EABIHF:
5023     case llvm::Triple::GNUEABI:
5024     case llvm::Triple::GNUEABIHF:
5025     case llvm::Triple::MuslEABI:
5026     case llvm::Triple::MuslEABIHF:
5027       return true;
5028     default:
5029       return false;
5030     }
5031   }
5032 
5033   bool isEABIHF() const {
5034     switch (getTarget().getTriple().getEnvironment()) {
5035     case llvm::Triple::EABIHF:
5036     case llvm::Triple::GNUEABIHF:
5037     case llvm::Triple::MuslEABIHF:
5038       return true;
5039     default:
5040       return false;
5041     }
5042   }
5043 
5044   ABIKind getABIKind() const { return Kind; }
5045 
5046 private:
5047   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5048   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5049   bool isIllegalVectorType(QualType Ty) const;
5050 
5051   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5052   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5053                                          uint64_t Members) const override;
5054 
5055   void computeInfo(CGFunctionInfo &FI) const override;
5056 
5057   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5058                     QualType Ty) const override;
5059 
5060   llvm::CallingConv::ID getLLVMDefaultCC() const;
5061   llvm::CallingConv::ID getABIDefaultCC() const;
5062   void setCCs();
5063 
5064   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5065                                     ArrayRef<llvm::Type*> scalars,
5066                                     bool asReturnValue) const override {
5067     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5068   }
5069 };
5070 
5071 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5072 public:
5073   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5074     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5075 
5076   const ARMABIInfo &getABIInfo() const {
5077     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5078   }
5079 
5080   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5081     return 13;
5082   }
5083 
5084   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5085     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5086   }
5087 
5088   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5089                                llvm::Value *Address) const override {
5090     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5091 
5092     // 0-15 are the 16 integer registers.
5093     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5094     return false;
5095   }
5096 
5097   unsigned getSizeOfUnwindException() const override {
5098     if (getABIInfo().isEABI()) return 88;
5099     return TargetCodeGenInfo::getSizeOfUnwindException();
5100   }
5101 
5102   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5103                            CodeGen::CodeGenModule &CGM) const override {
5104     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5105     if (!FD)
5106       return;
5107 
5108     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5109     if (!Attr)
5110       return;
5111 
5112     const char *Kind;
5113     switch (Attr->getInterrupt()) {
5114     case ARMInterruptAttr::Generic: Kind = ""; break;
5115     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5116     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5117     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5118     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5119     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5120     }
5121 
5122     llvm::Function *Fn = cast<llvm::Function>(GV);
5123 
5124     Fn->addFnAttr("interrupt", Kind);
5125 
5126     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5127     if (ABI == ARMABIInfo::APCS)
5128       return;
5129 
5130     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5131     // however this is not necessarily true on taking any interrupt. Instruct
5132     // the backend to perform a realignment as part of the function prologue.
5133     llvm::AttrBuilder B;
5134     B.addStackAlignmentAttr(8);
5135     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5136                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5137                                               llvm::AttributeSet::FunctionIndex,
5138                                               B));
5139   }
5140 };
5141 
5142 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5143 public:
5144   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5145       : ARMTargetCodeGenInfo(CGT, K) {}
5146 
5147   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5148                            CodeGen::CodeGenModule &CGM) const override;
5149 
5150   void getDependentLibraryOption(llvm::StringRef Lib,
5151                                  llvm::SmallString<24> &Opt) const override {
5152     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5153   }
5154 
5155   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5156                                llvm::SmallString<32> &Opt) const override {
5157     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5158   }
5159 };
5160 
5161 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5162     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5163   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5164   addStackProbeSizeTargetAttribute(D, GV, CGM);
5165 }
5166 }
5167 
5168 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5169   if (!getCXXABI().classifyReturnType(FI))
5170     FI.getReturnInfo() =
5171         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5172 
5173   for (auto &I : FI.arguments())
5174     I.info = classifyArgumentType(I.type, FI.isVariadic());
5175 
5176   // Always honor user-specified calling convention.
5177   if (FI.getCallingConvention() != llvm::CallingConv::C)
5178     return;
5179 
5180   llvm::CallingConv::ID cc = getRuntimeCC();
5181   if (cc != llvm::CallingConv::C)
5182     FI.setEffectiveCallingConvention(cc);
5183 }
5184 
5185 /// Return the default calling convention that LLVM will use.
5186 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5187   // The default calling convention that LLVM will infer.
5188   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5189     return llvm::CallingConv::ARM_AAPCS_VFP;
5190   else if (isEABI())
5191     return llvm::CallingConv::ARM_AAPCS;
5192   else
5193     return llvm::CallingConv::ARM_APCS;
5194 }
5195 
5196 /// Return the calling convention that our ABI would like us to use
5197 /// as the C calling convention.
5198 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5199   switch (getABIKind()) {
5200   case APCS: return llvm::CallingConv::ARM_APCS;
5201   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5202   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5203   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5204   }
5205   llvm_unreachable("bad ABI kind");
5206 }
5207 
5208 void ARMABIInfo::setCCs() {
5209   assert(getRuntimeCC() == llvm::CallingConv::C);
5210 
5211   // Don't muddy up the IR with a ton of explicit annotations if
5212   // they'd just match what LLVM will infer from the triple.
5213   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5214   if (abiCC != getLLVMDefaultCC())
5215     RuntimeCC = abiCC;
5216 
5217   // AAPCS apparently requires runtime support functions to be soft-float, but
5218   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5219   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5220   switch (getABIKind()) {
5221   case APCS:
5222   case AAPCS16_VFP:
5223     if (abiCC != getLLVMDefaultCC())
5224       BuiltinCC = abiCC;
5225     break;
5226   case AAPCS:
5227   case AAPCS_VFP:
5228     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5229     break;
5230   }
5231 }
5232 
5233 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5234                                             bool isVariadic) const {
5235   // 6.1.2.1 The following argument types are VFP CPRCs:
5236   //   A single-precision floating-point type (including promoted
5237   //   half-precision types); A double-precision floating-point type;
5238   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5239   //   with a Base Type of a single- or double-precision floating-point type,
5240   //   64-bit containerized vectors or 128-bit containerized vectors with one
5241   //   to four Elements.
5242   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5243 
5244   Ty = useFirstFieldIfTransparentUnion(Ty);
5245 
5246   // Handle illegal vector types here.
5247   if (isIllegalVectorType(Ty)) {
5248     uint64_t Size = getContext().getTypeSize(Ty);
5249     if (Size <= 32) {
5250       llvm::Type *ResType =
5251           llvm::Type::getInt32Ty(getVMContext());
5252       return ABIArgInfo::getDirect(ResType);
5253     }
5254     if (Size == 64) {
5255       llvm::Type *ResType = llvm::VectorType::get(
5256           llvm::Type::getInt32Ty(getVMContext()), 2);
5257       return ABIArgInfo::getDirect(ResType);
5258     }
5259     if (Size == 128) {
5260       llvm::Type *ResType = llvm::VectorType::get(
5261           llvm::Type::getInt32Ty(getVMContext()), 4);
5262       return ABIArgInfo::getDirect(ResType);
5263     }
5264     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5265   }
5266 
5267   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5268   // unspecified. This is not done for OpenCL as it handles the half type
5269   // natively, and does not need to interwork with AAPCS code.
5270   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5271     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5272       llvm::Type::getFloatTy(getVMContext()) :
5273       llvm::Type::getInt32Ty(getVMContext());
5274     return ABIArgInfo::getDirect(ResType);
5275   }
5276 
5277   if (!isAggregateTypeForABI(Ty)) {
5278     // Treat an enum type as its underlying type.
5279     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5280       Ty = EnumTy->getDecl()->getIntegerType();
5281     }
5282 
5283     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5284                                           : ABIArgInfo::getDirect());
5285   }
5286 
5287   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5288     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5289   }
5290 
5291   // Ignore empty records.
5292   if (isEmptyRecord(getContext(), Ty, true))
5293     return ABIArgInfo::getIgnore();
5294 
5295   if (IsEffectivelyAAPCS_VFP) {
5296     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5297     // into VFP registers.
5298     const Type *Base = nullptr;
5299     uint64_t Members = 0;
5300     if (isHomogeneousAggregate(Ty, Base, Members)) {
5301       assert(Base && "Base class should be set for homogeneous aggregate");
5302       // Base can be a floating-point or a vector.
5303       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5304     }
5305   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5306     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5307     // this convention even for a variadic function: the backend will use GPRs
5308     // if needed.
5309     const Type *Base = nullptr;
5310     uint64_t Members = 0;
5311     if (isHomogeneousAggregate(Ty, Base, Members)) {
5312       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5313       llvm::Type *Ty =
5314         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5315       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5316     }
5317   }
5318 
5319   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5320       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5321     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5322     // bigger than 128-bits, they get placed in space allocated by the caller,
5323     // and a pointer is passed.
5324     return ABIArgInfo::getIndirect(
5325         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5326   }
5327 
5328   // Support byval for ARM.
5329   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5330   // most 8-byte. We realign the indirect argument if type alignment is bigger
5331   // than ABI alignment.
5332   uint64_t ABIAlign = 4;
5333   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5334   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5335        getABIKind() == ARMABIInfo::AAPCS)
5336     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5337 
5338   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5339     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5340     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5341                                    /*ByVal=*/true,
5342                                    /*Realign=*/TyAlign > ABIAlign);
5343   }
5344 
5345   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5346   // same size and alignment.
5347   if (getTarget().isRenderScriptTarget()) {
5348     return coerceToIntArray(Ty, getContext(), getVMContext());
5349   }
5350 
5351   // Otherwise, pass by coercing to a structure of the appropriate size.
5352   llvm::Type* ElemTy;
5353   unsigned SizeRegs;
5354   // FIXME: Try to match the types of the arguments more accurately where
5355   // we can.
5356   if (getContext().getTypeAlign(Ty) <= 32) {
5357     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5358     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5359   } else {
5360     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5361     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5362   }
5363 
5364   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5365 }
5366 
5367 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5368                               llvm::LLVMContext &VMContext) {
5369   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5370   // is called integer-like if its size is less than or equal to one word, and
5371   // the offset of each of its addressable sub-fields is zero.
5372 
5373   uint64_t Size = Context.getTypeSize(Ty);
5374 
5375   // Check that the type fits in a word.
5376   if (Size > 32)
5377     return false;
5378 
5379   // FIXME: Handle vector types!
5380   if (Ty->isVectorType())
5381     return false;
5382 
5383   // Float types are never treated as "integer like".
5384   if (Ty->isRealFloatingType())
5385     return false;
5386 
5387   // If this is a builtin or pointer type then it is ok.
5388   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5389     return true;
5390 
5391   // Small complex integer types are "integer like".
5392   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5393     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5394 
5395   // Single element and zero sized arrays should be allowed, by the definition
5396   // above, but they are not.
5397 
5398   // Otherwise, it must be a record type.
5399   const RecordType *RT = Ty->getAs<RecordType>();
5400   if (!RT) return false;
5401 
5402   // Ignore records with flexible arrays.
5403   const RecordDecl *RD = RT->getDecl();
5404   if (RD->hasFlexibleArrayMember())
5405     return false;
5406 
5407   // Check that all sub-fields are at offset 0, and are themselves "integer
5408   // like".
5409   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5410 
5411   bool HadField = false;
5412   unsigned idx = 0;
5413   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5414        i != e; ++i, ++idx) {
5415     const FieldDecl *FD = *i;
5416 
5417     // Bit-fields are not addressable, we only need to verify they are "integer
5418     // like". We still have to disallow a subsequent non-bitfield, for example:
5419     //   struct { int : 0; int x }
5420     // is non-integer like according to gcc.
5421     if (FD->isBitField()) {
5422       if (!RD->isUnion())
5423         HadField = true;
5424 
5425       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5426         return false;
5427 
5428       continue;
5429     }
5430 
5431     // Check if this field is at offset 0.
5432     if (Layout.getFieldOffset(idx) != 0)
5433       return false;
5434 
5435     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5436       return false;
5437 
5438     // Only allow at most one field in a structure. This doesn't match the
5439     // wording above, but follows gcc in situations with a field following an
5440     // empty structure.
5441     if (!RD->isUnion()) {
5442       if (HadField)
5443         return false;
5444 
5445       HadField = true;
5446     }
5447   }
5448 
5449   return true;
5450 }
5451 
5452 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5453                                           bool isVariadic) const {
5454   bool IsEffectivelyAAPCS_VFP =
5455       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5456 
5457   if (RetTy->isVoidType())
5458     return ABIArgInfo::getIgnore();
5459 
5460   // Large vector types should be returned via memory.
5461   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5462     return getNaturalAlignIndirect(RetTy);
5463   }
5464 
5465   // __fp16 gets returned as if it were an int or float, but with the top 16
5466   // bits unspecified. This is not done for OpenCL as it handles the half type
5467   // natively, and does not need to interwork with AAPCS code.
5468   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5469     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5470       llvm::Type::getFloatTy(getVMContext()) :
5471       llvm::Type::getInt32Ty(getVMContext());
5472     return ABIArgInfo::getDirect(ResType);
5473   }
5474 
5475   if (!isAggregateTypeForABI(RetTy)) {
5476     // Treat an enum type as its underlying type.
5477     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5478       RetTy = EnumTy->getDecl()->getIntegerType();
5479 
5480     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5481                                             : ABIArgInfo::getDirect();
5482   }
5483 
5484   // Are we following APCS?
5485   if (getABIKind() == APCS) {
5486     if (isEmptyRecord(getContext(), RetTy, false))
5487       return ABIArgInfo::getIgnore();
5488 
5489     // Complex types are all returned as packed integers.
5490     //
5491     // FIXME: Consider using 2 x vector types if the back end handles them
5492     // correctly.
5493     if (RetTy->isAnyComplexType())
5494       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5495           getVMContext(), getContext().getTypeSize(RetTy)));
5496 
5497     // Integer like structures are returned in r0.
5498     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5499       // Return in the smallest viable integer type.
5500       uint64_t Size = getContext().getTypeSize(RetTy);
5501       if (Size <= 8)
5502         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5503       if (Size <= 16)
5504         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5505       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5506     }
5507 
5508     // Otherwise return in memory.
5509     return getNaturalAlignIndirect(RetTy);
5510   }
5511 
5512   // Otherwise this is an AAPCS variant.
5513 
5514   if (isEmptyRecord(getContext(), RetTy, true))
5515     return ABIArgInfo::getIgnore();
5516 
5517   // Check for homogeneous aggregates with AAPCS-VFP.
5518   if (IsEffectivelyAAPCS_VFP) {
5519     const Type *Base = nullptr;
5520     uint64_t Members = 0;
5521     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5522       assert(Base && "Base class should be set for homogeneous aggregate");
5523       // Homogeneous Aggregates are returned directly.
5524       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5525     }
5526   }
5527 
5528   // Aggregates <= 4 bytes are returned in r0; other aggregates
5529   // are returned indirectly.
5530   uint64_t Size = getContext().getTypeSize(RetTy);
5531   if (Size <= 32) {
5532     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5533     // same size and alignment.
5534     if (getTarget().isRenderScriptTarget()) {
5535       return coerceToIntArray(RetTy, getContext(), getVMContext());
5536     }
5537     if (getDataLayout().isBigEndian())
5538       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5539       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5540 
5541     // Return in the smallest viable integer type.
5542     if (Size <= 8)
5543       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5544     if (Size <= 16)
5545       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5546     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5547   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5548     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5549     llvm::Type *CoerceTy =
5550         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5551     return ABIArgInfo::getDirect(CoerceTy);
5552   }
5553 
5554   return getNaturalAlignIndirect(RetTy);
5555 }
5556 
5557 /// isIllegalVector - check whether Ty is an illegal vector type.
5558 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5559   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5560     if (isAndroid()) {
5561       // Android shipped using Clang 3.1, which supported a slightly different
5562       // vector ABI. The primary differences were that 3-element vector types
5563       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5564       // accepts that legacy behavior for Android only.
5565       // Check whether VT is legal.
5566       unsigned NumElements = VT->getNumElements();
5567       // NumElements should be power of 2 or equal to 3.
5568       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5569         return true;
5570     } else {
5571       // Check whether VT is legal.
5572       unsigned NumElements = VT->getNumElements();
5573       uint64_t Size = getContext().getTypeSize(VT);
5574       // NumElements should be power of 2.
5575       if (!llvm::isPowerOf2_32(NumElements))
5576         return true;
5577       // Size should be greater than 32 bits.
5578       return Size <= 32;
5579     }
5580   }
5581   return false;
5582 }
5583 
5584 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5585   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5586   // double, or 64-bit or 128-bit vectors.
5587   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5588     if (BT->getKind() == BuiltinType::Float ||
5589         BT->getKind() == BuiltinType::Double ||
5590         BT->getKind() == BuiltinType::LongDouble)
5591       return true;
5592   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5593     unsigned VecSize = getContext().getTypeSize(VT);
5594     if (VecSize == 64 || VecSize == 128)
5595       return true;
5596   }
5597   return false;
5598 }
5599 
5600 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5601                                                    uint64_t Members) const {
5602   return Members <= 4;
5603 }
5604 
5605 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5606                               QualType Ty) const {
5607   CharUnits SlotSize = CharUnits::fromQuantity(4);
5608 
5609   // Empty records are ignored for parameter passing purposes.
5610   if (isEmptyRecord(getContext(), Ty, true)) {
5611     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5612     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5613     return Addr;
5614   }
5615 
5616   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5617   CharUnits TyAlignForABI = TyInfo.second;
5618 
5619   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5620   bool IsIndirect = false;
5621   const Type *Base = nullptr;
5622   uint64_t Members = 0;
5623   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5624     IsIndirect = true;
5625 
5626   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5627   // allocated by the caller.
5628   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5629              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5630              !isHomogeneousAggregate(Ty, Base, Members)) {
5631     IsIndirect = true;
5632 
5633   // Otherwise, bound the type's ABI alignment.
5634   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5635   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5636   // Our callers should be prepared to handle an under-aligned address.
5637   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5638              getABIKind() == ARMABIInfo::AAPCS) {
5639     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5640     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5641   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5642     // ARMv7k allows type alignment up to 16 bytes.
5643     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5644     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5645   } else {
5646     TyAlignForABI = CharUnits::fromQuantity(4);
5647   }
5648   TyInfo.second = TyAlignForABI;
5649 
5650   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5651                           SlotSize, /*AllowHigherAlign*/ true);
5652 }
5653 
5654 //===----------------------------------------------------------------------===//
5655 // NVPTX ABI Implementation
5656 //===----------------------------------------------------------------------===//
5657 
5658 namespace {
5659 
5660 class NVPTXABIInfo : public ABIInfo {
5661 public:
5662   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5663 
5664   ABIArgInfo classifyReturnType(QualType RetTy) const;
5665   ABIArgInfo classifyArgumentType(QualType Ty) const;
5666 
5667   void computeInfo(CGFunctionInfo &FI) const override;
5668   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5669                     QualType Ty) const override;
5670 };
5671 
5672 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5673 public:
5674   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5675     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5676 
5677   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5678                            CodeGen::CodeGenModule &M) const override;
5679 private:
5680   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5681   // resulting MDNode to the nvvm.annotations MDNode.
5682   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5683 };
5684 
5685 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5686   if (RetTy->isVoidType())
5687     return ABIArgInfo::getIgnore();
5688 
5689   // note: this is different from default ABI
5690   if (!RetTy->isScalarType())
5691     return ABIArgInfo::getDirect();
5692 
5693   // Treat an enum type as its underlying type.
5694   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5695     RetTy = EnumTy->getDecl()->getIntegerType();
5696 
5697   return (RetTy->isPromotableIntegerType() ?
5698           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5699 }
5700 
5701 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5702   // Treat an enum type as its underlying type.
5703   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5704     Ty = EnumTy->getDecl()->getIntegerType();
5705 
5706   // Return aggregates type as indirect by value
5707   if (isAggregateTypeForABI(Ty))
5708     return getNaturalAlignIndirect(Ty, /* byval */ true);
5709 
5710   return (Ty->isPromotableIntegerType() ?
5711           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5712 }
5713 
5714 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5715   if (!getCXXABI().classifyReturnType(FI))
5716     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5717   for (auto &I : FI.arguments())
5718     I.info = classifyArgumentType(I.type);
5719 
5720   // Always honor user-specified calling convention.
5721   if (FI.getCallingConvention() != llvm::CallingConv::C)
5722     return;
5723 
5724   FI.setEffectiveCallingConvention(getRuntimeCC());
5725 }
5726 
5727 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5728                                 QualType Ty) const {
5729   llvm_unreachable("NVPTX does not support varargs");
5730 }
5731 
5732 void NVPTXTargetCodeGenInfo::
5733 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5734                     CodeGen::CodeGenModule &M) const{
5735   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5736   if (!FD) return;
5737 
5738   llvm::Function *F = cast<llvm::Function>(GV);
5739 
5740   // Perform special handling in OpenCL mode
5741   if (M.getLangOpts().OpenCL) {
5742     // Use OpenCL function attributes to check for kernel functions
5743     // By default, all functions are device functions
5744     if (FD->hasAttr<OpenCLKernelAttr>()) {
5745       // OpenCL __kernel functions get kernel metadata
5746       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5747       addNVVMMetadata(F, "kernel", 1);
5748       // And kernel functions are not subject to inlining
5749       F->addFnAttr(llvm::Attribute::NoInline);
5750     }
5751   }
5752 
5753   // Perform special handling in CUDA mode.
5754   if (M.getLangOpts().CUDA) {
5755     // CUDA __global__ functions get a kernel metadata entry.  Since
5756     // __global__ functions cannot be called from the device, we do not
5757     // need to set the noinline attribute.
5758     if (FD->hasAttr<CUDAGlobalAttr>()) {
5759       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5760       addNVVMMetadata(F, "kernel", 1);
5761     }
5762     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5763       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5764       llvm::APSInt MaxThreads(32);
5765       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5766       if (MaxThreads > 0)
5767         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5768 
5769       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5770       // not specified in __launch_bounds__ or if the user specified a 0 value,
5771       // we don't have to add a PTX directive.
5772       if (Attr->getMinBlocks()) {
5773         llvm::APSInt MinBlocks(32);
5774         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5775         if (MinBlocks > 0)
5776           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5777           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5778       }
5779     }
5780   }
5781 }
5782 
5783 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5784                                              int Operand) {
5785   llvm::Module *M = F->getParent();
5786   llvm::LLVMContext &Ctx = M->getContext();
5787 
5788   // Get "nvvm.annotations" metadata node
5789   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5790 
5791   llvm::Metadata *MDVals[] = {
5792       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5793       llvm::ConstantAsMetadata::get(
5794           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5795   // Append metadata to nvvm.annotations
5796   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5797 }
5798 }
5799 
5800 //===----------------------------------------------------------------------===//
5801 // SystemZ ABI Implementation
5802 //===----------------------------------------------------------------------===//
5803 
5804 namespace {
5805 
5806 class SystemZABIInfo : public SwiftABIInfo {
5807   bool HasVector;
5808 
5809 public:
5810   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5811     : SwiftABIInfo(CGT), HasVector(HV) {}
5812 
5813   bool isPromotableIntegerType(QualType Ty) const;
5814   bool isCompoundType(QualType Ty) const;
5815   bool isVectorArgumentType(QualType Ty) const;
5816   bool isFPArgumentType(QualType Ty) const;
5817   QualType GetSingleElementType(QualType Ty) const;
5818 
5819   ABIArgInfo classifyReturnType(QualType RetTy) const;
5820   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5821 
5822   void computeInfo(CGFunctionInfo &FI) const override {
5823     if (!getCXXABI().classifyReturnType(FI))
5824       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5825     for (auto &I : FI.arguments())
5826       I.info = classifyArgumentType(I.type);
5827   }
5828 
5829   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5830                     QualType Ty) const override;
5831 
5832   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5833                                     ArrayRef<llvm::Type*> scalars,
5834                                     bool asReturnValue) const override {
5835     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5836   }
5837 };
5838 
5839 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5840 public:
5841   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5842     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5843 };
5844 
5845 }
5846 
5847 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5848   // Treat an enum type as its underlying type.
5849   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5850     Ty = EnumTy->getDecl()->getIntegerType();
5851 
5852   // Promotable integer types are required to be promoted by the ABI.
5853   if (Ty->isPromotableIntegerType())
5854     return true;
5855 
5856   // 32-bit values must also be promoted.
5857   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5858     switch (BT->getKind()) {
5859     case BuiltinType::Int:
5860     case BuiltinType::UInt:
5861       return true;
5862     default:
5863       return false;
5864     }
5865   return false;
5866 }
5867 
5868 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5869   return (Ty->isAnyComplexType() ||
5870           Ty->isVectorType() ||
5871           isAggregateTypeForABI(Ty));
5872 }
5873 
5874 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5875   return (HasVector &&
5876           Ty->isVectorType() &&
5877           getContext().getTypeSize(Ty) <= 128);
5878 }
5879 
5880 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5881   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5882     switch (BT->getKind()) {
5883     case BuiltinType::Float:
5884     case BuiltinType::Double:
5885       return true;
5886     default:
5887       return false;
5888     }
5889 
5890   return false;
5891 }
5892 
5893 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5894   if (const RecordType *RT = Ty->getAsStructureType()) {
5895     const RecordDecl *RD = RT->getDecl();
5896     QualType Found;
5897 
5898     // If this is a C++ record, check the bases first.
5899     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5900       for (const auto &I : CXXRD->bases()) {
5901         QualType Base = I.getType();
5902 
5903         // Empty bases don't affect things either way.
5904         if (isEmptyRecord(getContext(), Base, true))
5905           continue;
5906 
5907         if (!Found.isNull())
5908           return Ty;
5909         Found = GetSingleElementType(Base);
5910       }
5911 
5912     // Check the fields.
5913     for (const auto *FD : RD->fields()) {
5914       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5915       // Unlike isSingleElementStruct(), empty structure and array fields
5916       // do count.  So do anonymous bitfields that aren't zero-sized.
5917       if (getContext().getLangOpts().CPlusPlus &&
5918           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5919         continue;
5920 
5921       // Unlike isSingleElementStruct(), arrays do not count.
5922       // Nested structures still do though.
5923       if (!Found.isNull())
5924         return Ty;
5925       Found = GetSingleElementType(FD->getType());
5926     }
5927 
5928     // Unlike isSingleElementStruct(), trailing padding is allowed.
5929     // An 8-byte aligned struct s { float f; } is passed as a double.
5930     if (!Found.isNull())
5931       return Found;
5932   }
5933 
5934   return Ty;
5935 }
5936 
5937 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5938                                   QualType Ty) const {
5939   // Assume that va_list type is correct; should be pointer to LLVM type:
5940   // struct {
5941   //   i64 __gpr;
5942   //   i64 __fpr;
5943   //   i8 *__overflow_arg_area;
5944   //   i8 *__reg_save_area;
5945   // };
5946 
5947   // Every non-vector argument occupies 8 bytes and is passed by preference
5948   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5949   // always passed on the stack.
5950   Ty = getContext().getCanonicalType(Ty);
5951   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5952   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5953   llvm::Type *DirectTy = ArgTy;
5954   ABIArgInfo AI = classifyArgumentType(Ty);
5955   bool IsIndirect = AI.isIndirect();
5956   bool InFPRs = false;
5957   bool IsVector = false;
5958   CharUnits UnpaddedSize;
5959   CharUnits DirectAlign;
5960   if (IsIndirect) {
5961     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5962     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5963   } else {
5964     if (AI.getCoerceToType())
5965       ArgTy = AI.getCoerceToType();
5966     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5967     IsVector = ArgTy->isVectorTy();
5968     UnpaddedSize = TyInfo.first;
5969     DirectAlign = TyInfo.second;
5970   }
5971   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5972   if (IsVector && UnpaddedSize > PaddedSize)
5973     PaddedSize = CharUnits::fromQuantity(16);
5974   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5975 
5976   CharUnits Padding = (PaddedSize - UnpaddedSize);
5977 
5978   llvm::Type *IndexTy = CGF.Int64Ty;
5979   llvm::Value *PaddedSizeV =
5980     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5981 
5982   if (IsVector) {
5983     // Work out the address of a vector argument on the stack.
5984     // Vector arguments are always passed in the high bits of a
5985     // single (8 byte) or double (16 byte) stack slot.
5986     Address OverflowArgAreaPtr =
5987       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5988                                   "overflow_arg_area_ptr");
5989     Address OverflowArgArea =
5990       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5991               TyInfo.second);
5992     Address MemAddr =
5993       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5994 
5995     // Update overflow_arg_area_ptr pointer
5996     llvm::Value *NewOverflowArgArea =
5997       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5998                             "overflow_arg_area");
5999     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6000 
6001     return MemAddr;
6002   }
6003 
6004   assert(PaddedSize.getQuantity() == 8);
6005 
6006   unsigned MaxRegs, RegCountField, RegSaveIndex;
6007   CharUnits RegPadding;
6008   if (InFPRs) {
6009     MaxRegs = 4; // Maximum of 4 FPR arguments
6010     RegCountField = 1; // __fpr
6011     RegSaveIndex = 16; // save offset for f0
6012     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6013   } else {
6014     MaxRegs = 5; // Maximum of 5 GPR arguments
6015     RegCountField = 0; // __gpr
6016     RegSaveIndex = 2; // save offset for r2
6017     RegPadding = Padding; // values are passed in the low bits of a GPR
6018   }
6019 
6020   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6021       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6022       "reg_count_ptr");
6023   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6024   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6025   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6026                                                  "fits_in_regs");
6027 
6028   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6029   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6030   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6031   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6032 
6033   // Emit code to load the value if it was passed in registers.
6034   CGF.EmitBlock(InRegBlock);
6035 
6036   // Work out the address of an argument register.
6037   llvm::Value *ScaledRegCount =
6038     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6039   llvm::Value *RegBase =
6040     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6041                                       + RegPadding.getQuantity());
6042   llvm::Value *RegOffset =
6043     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6044   Address RegSaveAreaPtr =
6045       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6046                                   "reg_save_area_ptr");
6047   llvm::Value *RegSaveArea =
6048     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6049   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6050                                            "raw_reg_addr"),
6051                      PaddedSize);
6052   Address RegAddr =
6053     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6054 
6055   // Update the register count
6056   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6057   llvm::Value *NewRegCount =
6058     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6059   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6060   CGF.EmitBranch(ContBlock);
6061 
6062   // Emit code to load the value if it was passed in memory.
6063   CGF.EmitBlock(InMemBlock);
6064 
6065   // Work out the address of a stack argument.
6066   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6067       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6068   Address OverflowArgArea =
6069     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6070             PaddedSize);
6071   Address RawMemAddr =
6072     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6073   Address MemAddr =
6074     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6075 
6076   // Update overflow_arg_area_ptr pointer
6077   llvm::Value *NewOverflowArgArea =
6078     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6079                           "overflow_arg_area");
6080   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6081   CGF.EmitBranch(ContBlock);
6082 
6083   // Return the appropriate result.
6084   CGF.EmitBlock(ContBlock);
6085   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6086                                  MemAddr, InMemBlock, "va_arg.addr");
6087 
6088   if (IsIndirect)
6089     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6090                       TyInfo.second);
6091 
6092   return ResAddr;
6093 }
6094 
6095 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6096   if (RetTy->isVoidType())
6097     return ABIArgInfo::getIgnore();
6098   if (isVectorArgumentType(RetTy))
6099     return ABIArgInfo::getDirect();
6100   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6101     return getNaturalAlignIndirect(RetTy);
6102   return (isPromotableIntegerType(RetTy) ?
6103           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6104 }
6105 
6106 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6107   // Handle the generic C++ ABI.
6108   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6109     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6110 
6111   // Integers and enums are extended to full register width.
6112   if (isPromotableIntegerType(Ty))
6113     return ABIArgInfo::getExtend();
6114 
6115   // Handle vector types and vector-like structure types.  Note that
6116   // as opposed to float-like structure types, we do not allow any
6117   // padding for vector-like structures, so verify the sizes match.
6118   uint64_t Size = getContext().getTypeSize(Ty);
6119   QualType SingleElementTy = GetSingleElementType(Ty);
6120   if (isVectorArgumentType(SingleElementTy) &&
6121       getContext().getTypeSize(SingleElementTy) == Size)
6122     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6123 
6124   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6125   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6126     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6127 
6128   // Handle small structures.
6129   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6130     // Structures with flexible arrays have variable length, so really
6131     // fail the size test above.
6132     const RecordDecl *RD = RT->getDecl();
6133     if (RD->hasFlexibleArrayMember())
6134       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6135 
6136     // The structure is passed as an unextended integer, a float, or a double.
6137     llvm::Type *PassTy;
6138     if (isFPArgumentType(SingleElementTy)) {
6139       assert(Size == 32 || Size == 64);
6140       if (Size == 32)
6141         PassTy = llvm::Type::getFloatTy(getVMContext());
6142       else
6143         PassTy = llvm::Type::getDoubleTy(getVMContext());
6144     } else
6145       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6146     return ABIArgInfo::getDirect(PassTy);
6147   }
6148 
6149   // Non-structure compounds are passed indirectly.
6150   if (isCompoundType(Ty))
6151     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6152 
6153   return ABIArgInfo::getDirect(nullptr);
6154 }
6155 
6156 //===----------------------------------------------------------------------===//
6157 // MSP430 ABI Implementation
6158 //===----------------------------------------------------------------------===//
6159 
6160 namespace {
6161 
6162 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6163 public:
6164   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6165     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6166   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6167                            CodeGen::CodeGenModule &M) const override;
6168 };
6169 
6170 }
6171 
6172 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6173                                                   llvm::GlobalValue *GV,
6174                                              CodeGen::CodeGenModule &M) const {
6175   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6176     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6177       // Handle 'interrupt' attribute:
6178       llvm::Function *F = cast<llvm::Function>(GV);
6179 
6180       // Step 1: Set ISR calling convention.
6181       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6182 
6183       // Step 2: Add attributes goodness.
6184       F->addFnAttr(llvm::Attribute::NoInline);
6185 
6186       // Step 3: Emit ISR vector alias.
6187       unsigned Num = attr->getNumber() / 2;
6188       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6189                                 "__isr_" + Twine(Num), F);
6190     }
6191   }
6192 }
6193 
6194 //===----------------------------------------------------------------------===//
6195 // MIPS ABI Implementation.  This works for both little-endian and
6196 // big-endian variants.
6197 //===----------------------------------------------------------------------===//
6198 
6199 namespace {
6200 class MipsABIInfo : public ABIInfo {
6201   bool IsO32;
6202   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6203   void CoerceToIntArgs(uint64_t TySize,
6204                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6205   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6206   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6207   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6208 public:
6209   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6210     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6211     StackAlignInBytes(IsO32 ? 8 : 16) {}
6212 
6213   ABIArgInfo classifyReturnType(QualType RetTy) const;
6214   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6215   void computeInfo(CGFunctionInfo &FI) const override;
6216   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6217                     QualType Ty) const override;
6218   bool shouldSignExtUnsignedType(QualType Ty) const override;
6219 };
6220 
6221 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6222   unsigned SizeOfUnwindException;
6223 public:
6224   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6225     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6226       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6227 
6228   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6229     return 29;
6230   }
6231 
6232   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6233                            CodeGen::CodeGenModule &CGM) const override {
6234     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6235     if (!FD) return;
6236     llvm::Function *Fn = cast<llvm::Function>(GV);
6237     if (FD->hasAttr<Mips16Attr>()) {
6238       Fn->addFnAttr("mips16");
6239     }
6240     else if (FD->hasAttr<NoMips16Attr>()) {
6241       Fn->addFnAttr("nomips16");
6242     }
6243 
6244     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6245     if (!Attr)
6246       return;
6247 
6248     const char *Kind;
6249     switch (Attr->getInterrupt()) {
6250     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6251     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6252     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6253     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6254     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6255     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6256     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6257     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6258     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6259     }
6260 
6261     Fn->addFnAttr("interrupt", Kind);
6262 
6263   }
6264 
6265   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6266                                llvm::Value *Address) const override;
6267 
6268   unsigned getSizeOfUnwindException() const override {
6269     return SizeOfUnwindException;
6270   }
6271 };
6272 }
6273 
6274 void MipsABIInfo::CoerceToIntArgs(
6275     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6276   llvm::IntegerType *IntTy =
6277     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6278 
6279   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6280   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6281     ArgList.push_back(IntTy);
6282 
6283   // If necessary, add one more integer type to ArgList.
6284   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6285 
6286   if (R)
6287     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6288 }
6289 
6290 // In N32/64, an aligned double precision floating point field is passed in
6291 // a register.
6292 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6293   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6294 
6295   if (IsO32) {
6296     CoerceToIntArgs(TySize, ArgList);
6297     return llvm::StructType::get(getVMContext(), ArgList);
6298   }
6299 
6300   if (Ty->isComplexType())
6301     return CGT.ConvertType(Ty);
6302 
6303   const RecordType *RT = Ty->getAs<RecordType>();
6304 
6305   // Unions/vectors are passed in integer registers.
6306   if (!RT || !RT->isStructureOrClassType()) {
6307     CoerceToIntArgs(TySize, ArgList);
6308     return llvm::StructType::get(getVMContext(), ArgList);
6309   }
6310 
6311   const RecordDecl *RD = RT->getDecl();
6312   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6313   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6314 
6315   uint64_t LastOffset = 0;
6316   unsigned idx = 0;
6317   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6318 
6319   // Iterate over fields in the struct/class and check if there are any aligned
6320   // double fields.
6321   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6322        i != e; ++i, ++idx) {
6323     const QualType Ty = i->getType();
6324     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6325 
6326     if (!BT || BT->getKind() != BuiltinType::Double)
6327       continue;
6328 
6329     uint64_t Offset = Layout.getFieldOffset(idx);
6330     if (Offset % 64) // Ignore doubles that are not aligned.
6331       continue;
6332 
6333     // Add ((Offset - LastOffset) / 64) args of type i64.
6334     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6335       ArgList.push_back(I64);
6336 
6337     // Add double type.
6338     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6339     LastOffset = Offset + 64;
6340   }
6341 
6342   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6343   ArgList.append(IntArgList.begin(), IntArgList.end());
6344 
6345   return llvm::StructType::get(getVMContext(), ArgList);
6346 }
6347 
6348 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6349                                         uint64_t Offset) const {
6350   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6351     return nullptr;
6352 
6353   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6354 }
6355 
6356 ABIArgInfo
6357 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6358   Ty = useFirstFieldIfTransparentUnion(Ty);
6359 
6360   uint64_t OrigOffset = Offset;
6361   uint64_t TySize = getContext().getTypeSize(Ty);
6362   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6363 
6364   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6365                    (uint64_t)StackAlignInBytes);
6366   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6367   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6368 
6369   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6370     // Ignore empty aggregates.
6371     if (TySize == 0)
6372       return ABIArgInfo::getIgnore();
6373 
6374     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6375       Offset = OrigOffset + MinABIStackAlignInBytes;
6376       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6377     }
6378 
6379     // If we have reached here, aggregates are passed directly by coercing to
6380     // another structure type. Padding is inserted if the offset of the
6381     // aggregate is unaligned.
6382     ABIArgInfo ArgInfo =
6383         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6384                               getPaddingType(OrigOffset, CurrOffset));
6385     ArgInfo.setInReg(true);
6386     return ArgInfo;
6387   }
6388 
6389   // Treat an enum type as its underlying type.
6390   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6391     Ty = EnumTy->getDecl()->getIntegerType();
6392 
6393   // All integral types are promoted to the GPR width.
6394   if (Ty->isIntegralOrEnumerationType())
6395     return ABIArgInfo::getExtend();
6396 
6397   return ABIArgInfo::getDirect(
6398       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6399 }
6400 
6401 llvm::Type*
6402 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6403   const RecordType *RT = RetTy->getAs<RecordType>();
6404   SmallVector<llvm::Type*, 8> RTList;
6405 
6406   if (RT && RT->isStructureOrClassType()) {
6407     const RecordDecl *RD = RT->getDecl();
6408     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6409     unsigned FieldCnt = Layout.getFieldCount();
6410 
6411     // N32/64 returns struct/classes in floating point registers if the
6412     // following conditions are met:
6413     // 1. The size of the struct/class is no larger than 128-bit.
6414     // 2. The struct/class has one or two fields all of which are floating
6415     //    point types.
6416     // 3. The offset of the first field is zero (this follows what gcc does).
6417     //
6418     // Any other composite results are returned in integer registers.
6419     //
6420     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6421       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6422       for (; b != e; ++b) {
6423         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6424 
6425         if (!BT || !BT->isFloatingPoint())
6426           break;
6427 
6428         RTList.push_back(CGT.ConvertType(b->getType()));
6429       }
6430 
6431       if (b == e)
6432         return llvm::StructType::get(getVMContext(), RTList,
6433                                      RD->hasAttr<PackedAttr>());
6434 
6435       RTList.clear();
6436     }
6437   }
6438 
6439   CoerceToIntArgs(Size, RTList);
6440   return llvm::StructType::get(getVMContext(), RTList);
6441 }
6442 
6443 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6444   uint64_t Size = getContext().getTypeSize(RetTy);
6445 
6446   if (RetTy->isVoidType())
6447     return ABIArgInfo::getIgnore();
6448 
6449   // O32 doesn't treat zero-sized structs differently from other structs.
6450   // However, N32/N64 ignores zero sized return values.
6451   if (!IsO32 && Size == 0)
6452     return ABIArgInfo::getIgnore();
6453 
6454   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6455     if (Size <= 128) {
6456       if (RetTy->isAnyComplexType())
6457         return ABIArgInfo::getDirect();
6458 
6459       // O32 returns integer vectors in registers and N32/N64 returns all small
6460       // aggregates in registers.
6461       if (!IsO32 ||
6462           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6463         ABIArgInfo ArgInfo =
6464             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6465         ArgInfo.setInReg(true);
6466         return ArgInfo;
6467       }
6468     }
6469 
6470     return getNaturalAlignIndirect(RetTy);
6471   }
6472 
6473   // Treat an enum type as its underlying type.
6474   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6475     RetTy = EnumTy->getDecl()->getIntegerType();
6476 
6477   return (RetTy->isPromotableIntegerType() ?
6478           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6479 }
6480 
6481 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6482   ABIArgInfo &RetInfo = FI.getReturnInfo();
6483   if (!getCXXABI().classifyReturnType(FI))
6484     RetInfo = classifyReturnType(FI.getReturnType());
6485 
6486   // Check if a pointer to an aggregate is passed as a hidden argument.
6487   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6488 
6489   for (auto &I : FI.arguments())
6490     I.info = classifyArgumentType(I.type, Offset);
6491 }
6492 
6493 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6494                                QualType OrigTy) const {
6495   QualType Ty = OrigTy;
6496 
6497   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6498   // Pointers are also promoted in the same way but this only matters for N32.
6499   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6500   unsigned PtrWidth = getTarget().getPointerWidth(0);
6501   bool DidPromote = false;
6502   if ((Ty->isIntegerType() &&
6503           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6504       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6505     DidPromote = true;
6506     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6507                                             Ty->isSignedIntegerType());
6508   }
6509 
6510   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6511 
6512   // The alignment of things in the argument area is never larger than
6513   // StackAlignInBytes.
6514   TyInfo.second =
6515     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6516 
6517   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6518   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6519 
6520   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6521                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6522 
6523 
6524   // If there was a promotion, "unpromote" into a temporary.
6525   // TODO: can we just use a pointer into a subset of the original slot?
6526   if (DidPromote) {
6527     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6528     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6529 
6530     // Truncate down to the right width.
6531     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6532                                                  : CGF.IntPtrTy);
6533     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6534     if (OrigTy->isPointerType())
6535       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6536 
6537     CGF.Builder.CreateStore(V, Temp);
6538     Addr = Temp;
6539   }
6540 
6541   return Addr;
6542 }
6543 
6544 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6545   int TySize = getContext().getTypeSize(Ty);
6546 
6547   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6548   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6549     return true;
6550 
6551   return false;
6552 }
6553 
6554 bool
6555 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6556                                                llvm::Value *Address) const {
6557   // This information comes from gcc's implementation, which seems to
6558   // as canonical as it gets.
6559 
6560   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6561   // are aliased to pairs of single-precision FP registers.
6562   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6563 
6564   // 0-31 are the general purpose registers, $0 - $31.
6565   // 32-63 are the floating-point registers, $f0 - $f31.
6566   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6567   // 66 is the (notional, I think) register for signal-handler return.
6568   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6569 
6570   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6571   // They are one bit wide and ignored here.
6572 
6573   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6574   // (coprocessor 1 is the FP unit)
6575   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6576   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6577   // 176-181 are the DSP accumulator registers.
6578   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6579   return false;
6580 }
6581 
6582 //===----------------------------------------------------------------------===//
6583 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6584 // Currently subclassed only to implement custom OpenCL C function attribute
6585 // handling.
6586 //===----------------------------------------------------------------------===//
6587 
6588 namespace {
6589 
6590 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6591 public:
6592   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6593     : DefaultTargetCodeGenInfo(CGT) {}
6594 
6595   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6596                            CodeGen::CodeGenModule &M) const override;
6597 };
6598 
6599 void TCETargetCodeGenInfo::setTargetAttributes(
6600     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6601   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6602   if (!FD) return;
6603 
6604   llvm::Function *F = cast<llvm::Function>(GV);
6605 
6606   if (M.getLangOpts().OpenCL) {
6607     if (FD->hasAttr<OpenCLKernelAttr>()) {
6608       // OpenCL C Kernel functions are not subject to inlining
6609       F->addFnAttr(llvm::Attribute::NoInline);
6610       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6611       if (Attr) {
6612         // Convert the reqd_work_group_size() attributes to metadata.
6613         llvm::LLVMContext &Context = F->getContext();
6614         llvm::NamedMDNode *OpenCLMetadata =
6615             M.getModule().getOrInsertNamedMetadata(
6616                 "opencl.kernel_wg_size_info");
6617 
6618         SmallVector<llvm::Metadata *, 5> Operands;
6619         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6620 
6621         Operands.push_back(
6622             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6623                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6624         Operands.push_back(
6625             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6626                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6627         Operands.push_back(
6628             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6629                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6630 
6631         // Add a boolean constant operand for "required" (true) or "hint"
6632         // (false) for implementing the work_group_size_hint attr later.
6633         // Currently always true as the hint is not yet implemented.
6634         Operands.push_back(
6635             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6636         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6637       }
6638     }
6639   }
6640 }
6641 
6642 }
6643 
6644 //===----------------------------------------------------------------------===//
6645 // Hexagon ABI Implementation
6646 //===----------------------------------------------------------------------===//
6647 
6648 namespace {
6649 
6650 class HexagonABIInfo : public ABIInfo {
6651 
6652 
6653 public:
6654   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6655 
6656 private:
6657 
6658   ABIArgInfo classifyReturnType(QualType RetTy) const;
6659   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6660 
6661   void computeInfo(CGFunctionInfo &FI) const override;
6662 
6663   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6664                     QualType Ty) const override;
6665 };
6666 
6667 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6668 public:
6669   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6670     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6671 
6672   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6673     return 29;
6674   }
6675 };
6676 
6677 }
6678 
6679 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6680   if (!getCXXABI().classifyReturnType(FI))
6681     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6682   for (auto &I : FI.arguments())
6683     I.info = classifyArgumentType(I.type);
6684 }
6685 
6686 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6687   if (!isAggregateTypeForABI(Ty)) {
6688     // Treat an enum type as its underlying type.
6689     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6690       Ty = EnumTy->getDecl()->getIntegerType();
6691 
6692     return (Ty->isPromotableIntegerType() ?
6693             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6694   }
6695 
6696   // Ignore empty records.
6697   if (isEmptyRecord(getContext(), Ty, true))
6698     return ABIArgInfo::getIgnore();
6699 
6700   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6701     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6702 
6703   uint64_t Size = getContext().getTypeSize(Ty);
6704   if (Size > 64)
6705     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6706     // Pass in the smallest viable integer type.
6707   else if (Size > 32)
6708       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6709   else if (Size > 16)
6710       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6711   else if (Size > 8)
6712       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6713   else
6714       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6715 }
6716 
6717 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6718   if (RetTy->isVoidType())
6719     return ABIArgInfo::getIgnore();
6720 
6721   // Large vector types should be returned via memory.
6722   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6723     return getNaturalAlignIndirect(RetTy);
6724 
6725   if (!isAggregateTypeForABI(RetTy)) {
6726     // Treat an enum type as its underlying type.
6727     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6728       RetTy = EnumTy->getDecl()->getIntegerType();
6729 
6730     return (RetTy->isPromotableIntegerType() ?
6731             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6732   }
6733 
6734   if (isEmptyRecord(getContext(), RetTy, true))
6735     return ABIArgInfo::getIgnore();
6736 
6737   // Aggregates <= 8 bytes are returned in r0; other aggregates
6738   // are returned indirectly.
6739   uint64_t Size = getContext().getTypeSize(RetTy);
6740   if (Size <= 64) {
6741     // Return in the smallest viable integer type.
6742     if (Size <= 8)
6743       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6744     if (Size <= 16)
6745       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6746     if (Size <= 32)
6747       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6748     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6749   }
6750 
6751   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6752 }
6753 
6754 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6755                                   QualType Ty) const {
6756   // FIXME: Someone needs to audit that this handle alignment correctly.
6757   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6758                           getContext().getTypeInfoInChars(Ty),
6759                           CharUnits::fromQuantity(4),
6760                           /*AllowHigherAlign*/ true);
6761 }
6762 
6763 //===----------------------------------------------------------------------===//
6764 // Lanai ABI Implementation
6765 //===----------------------------------------------------------------------===//
6766 
6767 namespace {
6768 class LanaiABIInfo : public DefaultABIInfo {
6769 public:
6770   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6771 
6772   bool shouldUseInReg(QualType Ty, CCState &State) const;
6773 
6774   void computeInfo(CGFunctionInfo &FI) const override {
6775     CCState State(FI.getCallingConvention());
6776     // Lanai uses 4 registers to pass arguments unless the function has the
6777     // regparm attribute set.
6778     if (FI.getHasRegParm()) {
6779       State.FreeRegs = FI.getRegParm();
6780     } else {
6781       State.FreeRegs = 4;
6782     }
6783 
6784     if (!getCXXABI().classifyReturnType(FI))
6785       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6786     for (auto &I : FI.arguments())
6787       I.info = classifyArgumentType(I.type, State);
6788   }
6789 
6790   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6791   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6792 };
6793 } // end anonymous namespace
6794 
6795 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6796   unsigned Size = getContext().getTypeSize(Ty);
6797   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6798 
6799   if (SizeInRegs == 0)
6800     return false;
6801 
6802   if (SizeInRegs > State.FreeRegs) {
6803     State.FreeRegs = 0;
6804     return false;
6805   }
6806 
6807   State.FreeRegs -= SizeInRegs;
6808 
6809   return true;
6810 }
6811 
6812 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6813                                            CCState &State) const {
6814   if (!ByVal) {
6815     if (State.FreeRegs) {
6816       --State.FreeRegs; // Non-byval indirects just use one pointer.
6817       return getNaturalAlignIndirectInReg(Ty);
6818     }
6819     return getNaturalAlignIndirect(Ty, false);
6820   }
6821 
6822   // Compute the byval alignment.
6823   const unsigned MinABIStackAlignInBytes = 4;
6824   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6825   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6826                                  /*Realign=*/TypeAlign >
6827                                      MinABIStackAlignInBytes);
6828 }
6829 
6830 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6831                                               CCState &State) const {
6832   // Check with the C++ ABI first.
6833   const RecordType *RT = Ty->getAs<RecordType>();
6834   if (RT) {
6835     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6836     if (RAA == CGCXXABI::RAA_Indirect) {
6837       return getIndirectResult(Ty, /*ByVal=*/false, State);
6838     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6839       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6840     }
6841   }
6842 
6843   if (isAggregateTypeForABI(Ty)) {
6844     // Structures with flexible arrays are always indirect.
6845     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6846       return getIndirectResult(Ty, /*ByVal=*/true, State);
6847 
6848     // Ignore empty structs/unions.
6849     if (isEmptyRecord(getContext(), Ty, true))
6850       return ABIArgInfo::getIgnore();
6851 
6852     llvm::LLVMContext &LLVMContext = getVMContext();
6853     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6854     if (SizeInRegs <= State.FreeRegs) {
6855       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6856       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6857       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6858       State.FreeRegs -= SizeInRegs;
6859       return ABIArgInfo::getDirectInReg(Result);
6860     } else {
6861       State.FreeRegs = 0;
6862     }
6863     return getIndirectResult(Ty, true, State);
6864   }
6865 
6866   // Treat an enum type as its underlying type.
6867   if (const auto *EnumTy = Ty->getAs<EnumType>())
6868     Ty = EnumTy->getDecl()->getIntegerType();
6869 
6870   bool InReg = shouldUseInReg(Ty, State);
6871   if (Ty->isPromotableIntegerType()) {
6872     if (InReg)
6873       return ABIArgInfo::getDirectInReg();
6874     return ABIArgInfo::getExtend();
6875   }
6876   if (InReg)
6877     return ABIArgInfo::getDirectInReg();
6878   return ABIArgInfo::getDirect();
6879 }
6880 
6881 namespace {
6882 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6883 public:
6884   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6885       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6886 };
6887 }
6888 
6889 //===----------------------------------------------------------------------===//
6890 // AMDGPU ABI Implementation
6891 //===----------------------------------------------------------------------===//
6892 
6893 namespace {
6894 
6895 class AMDGPUABIInfo final : public DefaultABIInfo {
6896 public:
6897   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6898 
6899 private:
6900   ABIArgInfo classifyArgumentType(QualType Ty) const;
6901 
6902   void computeInfo(CGFunctionInfo &FI) const override;
6903 };
6904 
6905 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
6906   if (!getCXXABI().classifyReturnType(FI))
6907     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6908 
6909   unsigned CC = FI.getCallingConvention();
6910   for (auto &Arg : FI.arguments())
6911     if (CC == llvm::CallingConv::AMDGPU_KERNEL)
6912       Arg.info = classifyArgumentType(Arg.type);
6913     else
6914       Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type);
6915 }
6916 
6917 /// \brief Classify argument of given type \p Ty.
6918 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const {
6919   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6920   if (!StrTy) {
6921     return DefaultABIInfo::classifyArgumentType(Ty);
6922   }
6923 
6924   // Coerce single element structs to its element.
6925   if (StrTy->getNumElements() == 1) {
6926     return ABIArgInfo::getDirect();
6927   }
6928 
6929   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
6930   // individual elements, which confuses the Clover OpenCL backend; therefore we
6931   // have to set it to false here. Other args of getDirect() are just defaults.
6932   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6933 }
6934 
6935 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6936 public:
6937   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6938     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
6939   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6940                            CodeGen::CodeGenModule &M) const override;
6941   unsigned getOpenCLKernelCallingConv() const override;
6942 };
6943 
6944 }
6945 
6946 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM);
6947 
6948 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6949   const Decl *D,
6950   llvm::GlobalValue *GV,
6951   CodeGen::CodeGenModule &M) const {
6952   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6953   if (!FD)
6954     return;
6955 
6956   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6957     llvm::Function *F = cast<llvm::Function>(GV);
6958     uint32_t NumVGPR = Attr->getNumVGPR();
6959     if (NumVGPR != 0)
6960       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6961   }
6962 
6963   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6964     llvm::Function *F = cast<llvm::Function>(GV);
6965     unsigned NumSGPR = Attr->getNumSGPR();
6966     if (NumSGPR != 0)
6967       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6968   }
6969 
6970   appendOpenCLVersionMD(M);
6971 }
6972 
6973 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
6974   return llvm::CallingConv::AMDGPU_KERNEL;
6975 }
6976 
6977 //===----------------------------------------------------------------------===//
6978 // SPARC v8 ABI Implementation.
6979 // Based on the SPARC Compliance Definition version 2.4.1.
6980 //
6981 // Ensures that complex values are passed in registers.
6982 //
6983 namespace {
6984 class SparcV8ABIInfo : public DefaultABIInfo {
6985 public:
6986   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6987 
6988 private:
6989   ABIArgInfo classifyReturnType(QualType RetTy) const;
6990   void computeInfo(CGFunctionInfo &FI) const override;
6991 };
6992 } // end anonymous namespace
6993 
6994 
6995 ABIArgInfo
6996 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
6997   if (Ty->isAnyComplexType()) {
6998     return ABIArgInfo::getDirect();
6999   }
7000   else {
7001     return DefaultABIInfo::classifyReturnType(Ty);
7002   }
7003 }
7004 
7005 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7006 
7007   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7008   for (auto &Arg : FI.arguments())
7009     Arg.info = classifyArgumentType(Arg.type);
7010 }
7011 
7012 namespace {
7013 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7014 public:
7015   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7016     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7017 };
7018 } // end anonymous namespace
7019 
7020 //===----------------------------------------------------------------------===//
7021 // SPARC v9 ABI Implementation.
7022 // Based on the SPARC Compliance Definition version 2.4.1.
7023 //
7024 // Function arguments a mapped to a nominal "parameter array" and promoted to
7025 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7026 // the array, structs larger than 16 bytes are passed indirectly.
7027 //
7028 // One case requires special care:
7029 //
7030 //   struct mixed {
7031 //     int i;
7032 //     float f;
7033 //   };
7034 //
7035 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7036 // parameter array, but the int is passed in an integer register, and the float
7037 // is passed in a floating point register. This is represented as two arguments
7038 // with the LLVM IR inreg attribute:
7039 //
7040 //   declare void f(i32 inreg %i, float inreg %f)
7041 //
7042 // The code generator will only allocate 4 bytes from the parameter array for
7043 // the inreg arguments. All other arguments are allocated a multiple of 8
7044 // bytes.
7045 //
7046 namespace {
7047 class SparcV9ABIInfo : public ABIInfo {
7048 public:
7049   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7050 
7051 private:
7052   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7053   void computeInfo(CGFunctionInfo &FI) const override;
7054   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7055                     QualType Ty) const override;
7056 
7057   // Coercion type builder for structs passed in registers. The coercion type
7058   // serves two purposes:
7059   //
7060   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7061   //    in registers.
7062   // 2. Expose aligned floating point elements as first-level elements, so the
7063   //    code generator knows to pass them in floating point registers.
7064   //
7065   // We also compute the InReg flag which indicates that the struct contains
7066   // aligned 32-bit floats.
7067   //
7068   struct CoerceBuilder {
7069     llvm::LLVMContext &Context;
7070     const llvm::DataLayout &DL;
7071     SmallVector<llvm::Type*, 8> Elems;
7072     uint64_t Size;
7073     bool InReg;
7074 
7075     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7076       : Context(c), DL(dl), Size(0), InReg(false) {}
7077 
7078     // Pad Elems with integers until Size is ToSize.
7079     void pad(uint64_t ToSize) {
7080       assert(ToSize >= Size && "Cannot remove elements");
7081       if (ToSize == Size)
7082         return;
7083 
7084       // Finish the current 64-bit word.
7085       uint64_t Aligned = llvm::alignTo(Size, 64);
7086       if (Aligned > Size && Aligned <= ToSize) {
7087         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7088         Size = Aligned;
7089       }
7090 
7091       // Add whole 64-bit words.
7092       while (Size + 64 <= ToSize) {
7093         Elems.push_back(llvm::Type::getInt64Ty(Context));
7094         Size += 64;
7095       }
7096 
7097       // Final in-word padding.
7098       if (Size < ToSize) {
7099         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7100         Size = ToSize;
7101       }
7102     }
7103 
7104     // Add a floating point element at Offset.
7105     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7106       // Unaligned floats are treated as integers.
7107       if (Offset % Bits)
7108         return;
7109       // The InReg flag is only required if there are any floats < 64 bits.
7110       if (Bits < 64)
7111         InReg = true;
7112       pad(Offset);
7113       Elems.push_back(Ty);
7114       Size = Offset + Bits;
7115     }
7116 
7117     // Add a struct type to the coercion type, starting at Offset (in bits).
7118     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7119       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7120       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7121         llvm::Type *ElemTy = StrTy->getElementType(i);
7122         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7123         switch (ElemTy->getTypeID()) {
7124         case llvm::Type::StructTyID:
7125           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7126           break;
7127         case llvm::Type::FloatTyID:
7128           addFloat(ElemOffset, ElemTy, 32);
7129           break;
7130         case llvm::Type::DoubleTyID:
7131           addFloat(ElemOffset, ElemTy, 64);
7132           break;
7133         case llvm::Type::FP128TyID:
7134           addFloat(ElemOffset, ElemTy, 128);
7135           break;
7136         case llvm::Type::PointerTyID:
7137           if (ElemOffset % 64 == 0) {
7138             pad(ElemOffset);
7139             Elems.push_back(ElemTy);
7140             Size += 64;
7141           }
7142           break;
7143         default:
7144           break;
7145         }
7146       }
7147     }
7148 
7149     // Check if Ty is a usable substitute for the coercion type.
7150     bool isUsableType(llvm::StructType *Ty) const {
7151       return llvm::makeArrayRef(Elems) == Ty->elements();
7152     }
7153 
7154     // Get the coercion type as a literal struct type.
7155     llvm::Type *getType() const {
7156       if (Elems.size() == 1)
7157         return Elems.front();
7158       else
7159         return llvm::StructType::get(Context, Elems);
7160     }
7161   };
7162 };
7163 } // end anonymous namespace
7164 
7165 ABIArgInfo
7166 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7167   if (Ty->isVoidType())
7168     return ABIArgInfo::getIgnore();
7169 
7170   uint64_t Size = getContext().getTypeSize(Ty);
7171 
7172   // Anything too big to fit in registers is passed with an explicit indirect
7173   // pointer / sret pointer.
7174   if (Size > SizeLimit)
7175     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7176 
7177   // Treat an enum type as its underlying type.
7178   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7179     Ty = EnumTy->getDecl()->getIntegerType();
7180 
7181   // Integer types smaller than a register are extended.
7182   if (Size < 64 && Ty->isIntegerType())
7183     return ABIArgInfo::getExtend();
7184 
7185   // Other non-aggregates go in registers.
7186   if (!isAggregateTypeForABI(Ty))
7187     return ABIArgInfo::getDirect();
7188 
7189   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7190   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7191   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7192     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7193 
7194   // This is a small aggregate type that should be passed in registers.
7195   // Build a coercion type from the LLVM struct type.
7196   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7197   if (!StrTy)
7198     return ABIArgInfo::getDirect();
7199 
7200   CoerceBuilder CB(getVMContext(), getDataLayout());
7201   CB.addStruct(0, StrTy);
7202   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7203 
7204   // Try to use the original type for coercion.
7205   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7206 
7207   if (CB.InReg)
7208     return ABIArgInfo::getDirectInReg(CoerceTy);
7209   else
7210     return ABIArgInfo::getDirect(CoerceTy);
7211 }
7212 
7213 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7214                                   QualType Ty) const {
7215   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7216   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7217   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7218     AI.setCoerceToType(ArgTy);
7219 
7220   CharUnits SlotSize = CharUnits::fromQuantity(8);
7221 
7222   CGBuilderTy &Builder = CGF.Builder;
7223   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7224   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7225 
7226   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7227 
7228   Address ArgAddr = Address::invalid();
7229   CharUnits Stride;
7230   switch (AI.getKind()) {
7231   case ABIArgInfo::Expand:
7232   case ABIArgInfo::CoerceAndExpand:
7233   case ABIArgInfo::InAlloca:
7234     llvm_unreachable("Unsupported ABI kind for va_arg");
7235 
7236   case ABIArgInfo::Extend: {
7237     Stride = SlotSize;
7238     CharUnits Offset = SlotSize - TypeInfo.first;
7239     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7240     break;
7241   }
7242 
7243   case ABIArgInfo::Direct: {
7244     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7245     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7246     ArgAddr = Addr;
7247     break;
7248   }
7249 
7250   case ABIArgInfo::Indirect:
7251     Stride = SlotSize;
7252     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7253     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7254                       TypeInfo.second);
7255     break;
7256 
7257   case ABIArgInfo::Ignore:
7258     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7259   }
7260 
7261   // Update VAList.
7262   llvm::Value *NextPtr =
7263     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7264   Builder.CreateStore(NextPtr, VAListAddr);
7265 
7266   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7267 }
7268 
7269 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7270   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7271   for (auto &I : FI.arguments())
7272     I.info = classifyType(I.type, 16 * 8);
7273 }
7274 
7275 namespace {
7276 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7277 public:
7278   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7279     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7280 
7281   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7282     return 14;
7283   }
7284 
7285   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7286                                llvm::Value *Address) const override;
7287 };
7288 } // end anonymous namespace
7289 
7290 bool
7291 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7292                                                 llvm::Value *Address) const {
7293   // This is calculated from the LLVM and GCC tables and verified
7294   // against gcc output.  AFAIK all ABIs use the same encoding.
7295 
7296   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7297 
7298   llvm::IntegerType *i8 = CGF.Int8Ty;
7299   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7300   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7301 
7302   // 0-31: the 8-byte general-purpose registers
7303   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7304 
7305   // 32-63: f0-31, the 4-byte floating-point registers
7306   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7307 
7308   //   Y   = 64
7309   //   PSR = 65
7310   //   WIM = 66
7311   //   TBR = 67
7312   //   PC  = 68
7313   //   NPC = 69
7314   //   FSR = 70
7315   //   CSR = 71
7316   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7317 
7318   // 72-87: d0-15, the 8-byte floating-point registers
7319   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7320 
7321   return false;
7322 }
7323 
7324 
7325 //===----------------------------------------------------------------------===//
7326 // XCore ABI Implementation
7327 //===----------------------------------------------------------------------===//
7328 
7329 namespace {
7330 
7331 /// A SmallStringEnc instance is used to build up the TypeString by passing
7332 /// it by reference between functions that append to it.
7333 typedef llvm::SmallString<128> SmallStringEnc;
7334 
7335 /// TypeStringCache caches the meta encodings of Types.
7336 ///
7337 /// The reason for caching TypeStrings is two fold:
7338 ///   1. To cache a type's encoding for later uses;
7339 ///   2. As a means to break recursive member type inclusion.
7340 ///
7341 /// A cache Entry can have a Status of:
7342 ///   NonRecursive:   The type encoding is not recursive;
7343 ///   Recursive:      The type encoding is recursive;
7344 ///   Incomplete:     An incomplete TypeString;
7345 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7346 ///                   Recursive type encoding.
7347 ///
7348 /// A NonRecursive entry will have all of its sub-members expanded as fully
7349 /// as possible. Whilst it may contain types which are recursive, the type
7350 /// itself is not recursive and thus its encoding may be safely used whenever
7351 /// the type is encountered.
7352 ///
7353 /// A Recursive entry will have all of its sub-members expanded as fully as
7354 /// possible. The type itself is recursive and it may contain other types which
7355 /// are recursive. The Recursive encoding must not be used during the expansion
7356 /// of a recursive type's recursive branch. For simplicity the code uses
7357 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7358 ///
7359 /// An Incomplete entry is always a RecordType and only encodes its
7360 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7361 /// are placed into the cache during type expansion as a means to identify and
7362 /// handle recursive inclusion of types as sub-members. If there is recursion
7363 /// the entry becomes IncompleteUsed.
7364 ///
7365 /// During the expansion of a RecordType's members:
7366 ///
7367 ///   If the cache contains a NonRecursive encoding for the member type, the
7368 ///   cached encoding is used;
7369 ///
7370 ///   If the cache contains a Recursive encoding for the member type, the
7371 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7372 ///
7373 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7374 ///   cache to break potential recursive inclusion of itself as a sub-member;
7375 ///
7376 ///   Once a member RecordType has been expanded, its temporary incomplete
7377 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7378 ///   it is swapped back in;
7379 ///
7380 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7381 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7382 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7383 ///
7384 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7385 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7386 ///   Else the member is part of a recursive type and thus the recursion has
7387 ///   been exited too soon for the encoding to be correct for the member.
7388 ///
7389 class TypeStringCache {
7390   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7391   struct Entry {
7392     std::string Str;     // The encoded TypeString for the type.
7393     enum Status State;   // Information about the encoding in 'Str'.
7394     std::string Swapped; // A temporary place holder for a Recursive encoding
7395                          // during the expansion of RecordType's members.
7396   };
7397   std::map<const IdentifierInfo *, struct Entry> Map;
7398   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7399   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7400 public:
7401   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7402   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7403   bool removeIncomplete(const IdentifierInfo *ID);
7404   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7405                      bool IsRecursive);
7406   StringRef lookupStr(const IdentifierInfo *ID);
7407 };
7408 
7409 /// TypeString encodings for enum & union fields must be order.
7410 /// FieldEncoding is a helper for this ordering process.
7411 class FieldEncoding {
7412   bool HasName;
7413   std::string Enc;
7414 public:
7415   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7416   StringRef str() {return Enc.c_str();}
7417   bool operator<(const FieldEncoding &rhs) const {
7418     if (HasName != rhs.HasName) return HasName;
7419     return Enc < rhs.Enc;
7420   }
7421 };
7422 
7423 class XCoreABIInfo : public DefaultABIInfo {
7424 public:
7425   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7426   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7427                     QualType Ty) const override;
7428 };
7429 
7430 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7431   mutable TypeStringCache TSC;
7432 public:
7433   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7434     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7435   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7436                     CodeGen::CodeGenModule &M) const override;
7437 };
7438 
7439 } // End anonymous namespace.
7440 
7441 // TODO: this implementation is likely now redundant with the default
7442 // EmitVAArg.
7443 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7444                                 QualType Ty) const {
7445   CGBuilderTy &Builder = CGF.Builder;
7446 
7447   // Get the VAList.
7448   CharUnits SlotSize = CharUnits::fromQuantity(4);
7449   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7450 
7451   // Handle the argument.
7452   ABIArgInfo AI = classifyArgumentType(Ty);
7453   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7454   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7455   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7456     AI.setCoerceToType(ArgTy);
7457   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7458 
7459   Address Val = Address::invalid();
7460   CharUnits ArgSize = CharUnits::Zero();
7461   switch (AI.getKind()) {
7462   case ABIArgInfo::Expand:
7463   case ABIArgInfo::CoerceAndExpand:
7464   case ABIArgInfo::InAlloca:
7465     llvm_unreachable("Unsupported ABI kind for va_arg");
7466   case ABIArgInfo::Ignore:
7467     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7468     ArgSize = CharUnits::Zero();
7469     break;
7470   case ABIArgInfo::Extend:
7471   case ABIArgInfo::Direct:
7472     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7473     ArgSize = CharUnits::fromQuantity(
7474                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7475     ArgSize = ArgSize.alignTo(SlotSize);
7476     break;
7477   case ABIArgInfo::Indirect:
7478     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7479     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7480     ArgSize = SlotSize;
7481     break;
7482   }
7483 
7484   // Increment the VAList.
7485   if (!ArgSize.isZero()) {
7486     llvm::Value *APN =
7487       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7488     Builder.CreateStore(APN, VAListAddr);
7489   }
7490 
7491   return Val;
7492 }
7493 
7494 /// During the expansion of a RecordType, an incomplete TypeString is placed
7495 /// into the cache as a means to identify and break recursion.
7496 /// If there is a Recursive encoding in the cache, it is swapped out and will
7497 /// be reinserted by removeIncomplete().
7498 /// All other types of encoding should have been used rather than arriving here.
7499 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7500                                     std::string StubEnc) {
7501   if (!ID)
7502     return;
7503   Entry &E = Map[ID];
7504   assert( (E.Str.empty() || E.State == Recursive) &&
7505          "Incorrectly use of addIncomplete");
7506   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7507   E.Swapped.swap(E.Str); // swap out the Recursive
7508   E.Str.swap(StubEnc);
7509   E.State = Incomplete;
7510   ++IncompleteCount;
7511 }
7512 
7513 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7514 /// must be removed from the cache.
7515 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7516 /// Returns true if the RecordType was defined recursively.
7517 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7518   if (!ID)
7519     return false;
7520   auto I = Map.find(ID);
7521   assert(I != Map.end() && "Entry not present");
7522   Entry &E = I->second;
7523   assert( (E.State == Incomplete ||
7524            E.State == IncompleteUsed) &&
7525          "Entry must be an incomplete type");
7526   bool IsRecursive = false;
7527   if (E.State == IncompleteUsed) {
7528     // We made use of our Incomplete encoding, thus we are recursive.
7529     IsRecursive = true;
7530     --IncompleteUsedCount;
7531   }
7532   if (E.Swapped.empty())
7533     Map.erase(I);
7534   else {
7535     // Swap the Recursive back.
7536     E.Swapped.swap(E.Str);
7537     E.Swapped.clear();
7538     E.State = Recursive;
7539   }
7540   --IncompleteCount;
7541   return IsRecursive;
7542 }
7543 
7544 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7545 /// Recursive (viz: all sub-members were expanded as fully as possible).
7546 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7547                                     bool IsRecursive) {
7548   if (!ID || IncompleteUsedCount)
7549     return; // No key or it is is an incomplete sub-type so don't add.
7550   Entry &E = Map[ID];
7551   if (IsRecursive && !E.Str.empty()) {
7552     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7553            "This is not the same Recursive entry");
7554     // The parent container was not recursive after all, so we could have used
7555     // this Recursive sub-member entry after all, but we assumed the worse when
7556     // we started viz: IncompleteCount!=0.
7557     return;
7558   }
7559   assert(E.Str.empty() && "Entry already present");
7560   E.Str = Str.str();
7561   E.State = IsRecursive? Recursive : NonRecursive;
7562 }
7563 
7564 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7565 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7566 /// encoding is Recursive, return an empty StringRef.
7567 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7568   if (!ID)
7569     return StringRef();   // We have no key.
7570   auto I = Map.find(ID);
7571   if (I == Map.end())
7572     return StringRef();   // We have no encoding.
7573   Entry &E = I->second;
7574   if (E.State == Recursive && IncompleteCount)
7575     return StringRef();   // We don't use Recursive encodings for member types.
7576 
7577   if (E.State == Incomplete) {
7578     // The incomplete type is being used to break out of recursion.
7579     E.State = IncompleteUsed;
7580     ++IncompleteUsedCount;
7581   }
7582   return E.Str.c_str();
7583 }
7584 
7585 /// The XCore ABI includes a type information section that communicates symbol
7586 /// type information to the linker. The linker uses this information to verify
7587 /// safety/correctness of things such as array bound and pointers et al.
7588 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7589 /// This type information (TypeString) is emitted into meta data for all global
7590 /// symbols: definitions, declarations, functions & variables.
7591 ///
7592 /// The TypeString carries type, qualifier, name, size & value details.
7593 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7594 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7595 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7596 ///
7597 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7598                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7599 
7600 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7601 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7602                                           CodeGen::CodeGenModule &CGM) const {
7603   SmallStringEnc Enc;
7604   if (getTypeString(Enc, D, CGM, TSC)) {
7605     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7606     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
7607                                 llvm::MDString::get(Ctx, Enc.str())};
7608     llvm::NamedMDNode *MD =
7609       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7610     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7611   }
7612 }
7613 
7614 //===----------------------------------------------------------------------===//
7615 // SPIR ABI Implementation
7616 //===----------------------------------------------------------------------===//
7617 
7618 namespace {
7619 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7620 public:
7621   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7622     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7623   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7624                     CodeGen::CodeGenModule &M) const override;
7625   unsigned getOpenCLKernelCallingConv() const override;
7626 };
7627 } // End anonymous namespace.
7628 
7629 /// Emit SPIR specific metadata: OpenCL and SPIR version.
7630 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7631                                          CodeGen::CodeGenModule &CGM) const {
7632   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7633   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7634   llvm::Module &M = CGM.getModule();
7635   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7636   // opencl.spir.version named metadata.
7637   llvm::Metadata *SPIRVerElts[] = {
7638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7639       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7640   llvm::NamedMDNode *SPIRVerMD =
7641       M.getOrInsertNamedMetadata("opencl.spir.version");
7642   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7643   appendOpenCLVersionMD(CGM);
7644 }
7645 
7646 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) {
7647   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7648   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7649   llvm::Module &M = CGM.getModule();
7650   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7651   // opencl.ocl.version named metadata node.
7652   llvm::Metadata *OCLVerElts[] = {
7653       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7654           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7655       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7656           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7657   llvm::NamedMDNode *OCLVerMD =
7658       M.getOrInsertNamedMetadata("opencl.ocl.version");
7659   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7660 }
7661 
7662 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7663   return llvm::CallingConv::SPIR_KERNEL;
7664 }
7665 
7666 static bool appendType(SmallStringEnc &Enc, QualType QType,
7667                        const CodeGen::CodeGenModule &CGM,
7668                        TypeStringCache &TSC);
7669 
7670 /// Helper function for appendRecordType().
7671 /// Builds a SmallVector containing the encoded field types in declaration
7672 /// order.
7673 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7674                              const RecordDecl *RD,
7675                              const CodeGen::CodeGenModule &CGM,
7676                              TypeStringCache &TSC) {
7677   for (const auto *Field : RD->fields()) {
7678     SmallStringEnc Enc;
7679     Enc += "m(";
7680     Enc += Field->getName();
7681     Enc += "){";
7682     if (Field->isBitField()) {
7683       Enc += "b(";
7684       llvm::raw_svector_ostream OS(Enc);
7685       OS << Field->getBitWidthValue(CGM.getContext());
7686       Enc += ':';
7687     }
7688     if (!appendType(Enc, Field->getType(), CGM, TSC))
7689       return false;
7690     if (Field->isBitField())
7691       Enc += ')';
7692     Enc += '}';
7693     FE.emplace_back(!Field->getName().empty(), Enc);
7694   }
7695   return true;
7696 }
7697 
7698 /// Appends structure and union types to Enc and adds encoding to cache.
7699 /// Recursively calls appendType (via extractFieldType) for each field.
7700 /// Union types have their fields ordered according to the ABI.
7701 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7702                              const CodeGen::CodeGenModule &CGM,
7703                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7704   // Append the cached TypeString if we have one.
7705   StringRef TypeString = TSC.lookupStr(ID);
7706   if (!TypeString.empty()) {
7707     Enc += TypeString;
7708     return true;
7709   }
7710 
7711   // Start to emit an incomplete TypeString.
7712   size_t Start = Enc.size();
7713   Enc += (RT->isUnionType()? 'u' : 's');
7714   Enc += '(';
7715   if (ID)
7716     Enc += ID->getName();
7717   Enc += "){";
7718 
7719   // We collect all encoded fields and order as necessary.
7720   bool IsRecursive = false;
7721   const RecordDecl *RD = RT->getDecl()->getDefinition();
7722   if (RD && !RD->field_empty()) {
7723     // An incomplete TypeString stub is placed in the cache for this RecordType
7724     // so that recursive calls to this RecordType will use it whilst building a
7725     // complete TypeString for this RecordType.
7726     SmallVector<FieldEncoding, 16> FE;
7727     std::string StubEnc(Enc.substr(Start).str());
7728     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7729     TSC.addIncomplete(ID, std::move(StubEnc));
7730     if (!extractFieldType(FE, RD, CGM, TSC)) {
7731       (void) TSC.removeIncomplete(ID);
7732       return false;
7733     }
7734     IsRecursive = TSC.removeIncomplete(ID);
7735     // The ABI requires unions to be sorted but not structures.
7736     // See FieldEncoding::operator< for sort algorithm.
7737     if (RT->isUnionType())
7738       std::sort(FE.begin(), FE.end());
7739     // We can now complete the TypeString.
7740     unsigned E = FE.size();
7741     for (unsigned I = 0; I != E; ++I) {
7742       if (I)
7743         Enc += ',';
7744       Enc += FE[I].str();
7745     }
7746   }
7747   Enc += '}';
7748   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7749   return true;
7750 }
7751 
7752 /// Appends enum types to Enc and adds the encoding to the cache.
7753 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7754                            TypeStringCache &TSC,
7755                            const IdentifierInfo *ID) {
7756   // Append the cached TypeString if we have one.
7757   StringRef TypeString = TSC.lookupStr(ID);
7758   if (!TypeString.empty()) {
7759     Enc += TypeString;
7760     return true;
7761   }
7762 
7763   size_t Start = Enc.size();
7764   Enc += "e(";
7765   if (ID)
7766     Enc += ID->getName();
7767   Enc += "){";
7768 
7769   // We collect all encoded enumerations and order them alphanumerically.
7770   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7771     SmallVector<FieldEncoding, 16> FE;
7772     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7773          ++I) {
7774       SmallStringEnc EnumEnc;
7775       EnumEnc += "m(";
7776       EnumEnc += I->getName();
7777       EnumEnc += "){";
7778       I->getInitVal().toString(EnumEnc);
7779       EnumEnc += '}';
7780       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7781     }
7782     std::sort(FE.begin(), FE.end());
7783     unsigned E = FE.size();
7784     for (unsigned I = 0; I != E; ++I) {
7785       if (I)
7786         Enc += ',';
7787       Enc += FE[I].str();
7788     }
7789   }
7790   Enc += '}';
7791   TSC.addIfComplete(ID, Enc.substr(Start), false);
7792   return true;
7793 }
7794 
7795 /// Appends type's qualifier to Enc.
7796 /// This is done prior to appending the type's encoding.
7797 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7798   // Qualifiers are emitted in alphabetical order.
7799   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7800   int Lookup = 0;
7801   if (QT.isConstQualified())
7802     Lookup += 1<<0;
7803   if (QT.isRestrictQualified())
7804     Lookup += 1<<1;
7805   if (QT.isVolatileQualified())
7806     Lookup += 1<<2;
7807   Enc += Table[Lookup];
7808 }
7809 
7810 /// Appends built-in types to Enc.
7811 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7812   const char *EncType;
7813   switch (BT->getKind()) {
7814     case BuiltinType::Void:
7815       EncType = "0";
7816       break;
7817     case BuiltinType::Bool:
7818       EncType = "b";
7819       break;
7820     case BuiltinType::Char_U:
7821       EncType = "uc";
7822       break;
7823     case BuiltinType::UChar:
7824       EncType = "uc";
7825       break;
7826     case BuiltinType::SChar:
7827       EncType = "sc";
7828       break;
7829     case BuiltinType::UShort:
7830       EncType = "us";
7831       break;
7832     case BuiltinType::Short:
7833       EncType = "ss";
7834       break;
7835     case BuiltinType::UInt:
7836       EncType = "ui";
7837       break;
7838     case BuiltinType::Int:
7839       EncType = "si";
7840       break;
7841     case BuiltinType::ULong:
7842       EncType = "ul";
7843       break;
7844     case BuiltinType::Long:
7845       EncType = "sl";
7846       break;
7847     case BuiltinType::ULongLong:
7848       EncType = "ull";
7849       break;
7850     case BuiltinType::LongLong:
7851       EncType = "sll";
7852       break;
7853     case BuiltinType::Float:
7854       EncType = "ft";
7855       break;
7856     case BuiltinType::Double:
7857       EncType = "d";
7858       break;
7859     case BuiltinType::LongDouble:
7860       EncType = "ld";
7861       break;
7862     default:
7863       return false;
7864   }
7865   Enc += EncType;
7866   return true;
7867 }
7868 
7869 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7870 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7871                               const CodeGen::CodeGenModule &CGM,
7872                               TypeStringCache &TSC) {
7873   Enc += "p(";
7874   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7875     return false;
7876   Enc += ')';
7877   return true;
7878 }
7879 
7880 /// Appends array encoding to Enc before calling appendType for the element.
7881 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7882                             const ArrayType *AT,
7883                             const CodeGen::CodeGenModule &CGM,
7884                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7885   if (AT->getSizeModifier() != ArrayType::Normal)
7886     return false;
7887   Enc += "a(";
7888   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7889     CAT->getSize().toStringUnsigned(Enc);
7890   else
7891     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7892   Enc += ':';
7893   // The Qualifiers should be attached to the type rather than the array.
7894   appendQualifier(Enc, QT);
7895   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7896     return false;
7897   Enc += ')';
7898   return true;
7899 }
7900 
7901 /// Appends a function encoding to Enc, calling appendType for the return type
7902 /// and the arguments.
7903 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7904                              const CodeGen::CodeGenModule &CGM,
7905                              TypeStringCache &TSC) {
7906   Enc += "f{";
7907   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7908     return false;
7909   Enc += "}(";
7910   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7911     // N.B. we are only interested in the adjusted param types.
7912     auto I = FPT->param_type_begin();
7913     auto E = FPT->param_type_end();
7914     if (I != E) {
7915       do {
7916         if (!appendType(Enc, *I, CGM, TSC))
7917           return false;
7918         ++I;
7919         if (I != E)
7920           Enc += ',';
7921       } while (I != E);
7922       if (FPT->isVariadic())
7923         Enc += ",va";
7924     } else {
7925       if (FPT->isVariadic())
7926         Enc += "va";
7927       else
7928         Enc += '0';
7929     }
7930   }
7931   Enc += ')';
7932   return true;
7933 }
7934 
7935 /// Handles the type's qualifier before dispatching a call to handle specific
7936 /// type encodings.
7937 static bool appendType(SmallStringEnc &Enc, QualType QType,
7938                        const CodeGen::CodeGenModule &CGM,
7939                        TypeStringCache &TSC) {
7940 
7941   QualType QT = QType.getCanonicalType();
7942 
7943   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7944     // The Qualifiers should be attached to the type rather than the array.
7945     // Thus we don't call appendQualifier() here.
7946     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7947 
7948   appendQualifier(Enc, QT);
7949 
7950   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7951     return appendBuiltinType(Enc, BT);
7952 
7953   if (const PointerType *PT = QT->getAs<PointerType>())
7954     return appendPointerType(Enc, PT, CGM, TSC);
7955 
7956   if (const EnumType *ET = QT->getAs<EnumType>())
7957     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7958 
7959   if (const RecordType *RT = QT->getAsStructureType())
7960     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7961 
7962   if (const RecordType *RT = QT->getAsUnionType())
7963     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7964 
7965   if (const FunctionType *FT = QT->getAs<FunctionType>())
7966     return appendFunctionType(Enc, FT, CGM, TSC);
7967 
7968   return false;
7969 }
7970 
7971 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7972                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7973   if (!D)
7974     return false;
7975 
7976   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7977     if (FD->getLanguageLinkage() != CLanguageLinkage)
7978       return false;
7979     return appendType(Enc, FD->getType(), CGM, TSC);
7980   }
7981 
7982   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7983     if (VD->getLanguageLinkage() != CLanguageLinkage)
7984       return false;
7985     QualType QT = VD->getType().getCanonicalType();
7986     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7987       // Global ArrayTypes are given a size of '*' if the size is unknown.
7988       // The Qualifiers should be attached to the type rather than the array.
7989       // Thus we don't call appendQualifier() here.
7990       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7991     }
7992     return appendType(Enc, QT, CGM, TSC);
7993   }
7994   return false;
7995 }
7996 
7997 
7998 //===----------------------------------------------------------------------===//
7999 // Driver code
8000 //===----------------------------------------------------------------------===//
8001 
8002 const llvm::Triple &CodeGenModule::getTriple() const {
8003   return getTarget().getTriple();
8004 }
8005 
8006 bool CodeGenModule::supportsCOMDAT() const {
8007   return getTriple().supportsCOMDAT();
8008 }
8009 
8010 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8011   if (TheTargetCodeGenInfo)
8012     return *TheTargetCodeGenInfo;
8013 
8014   // Helper to set the unique_ptr while still keeping the return value.
8015   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8016     this->TheTargetCodeGenInfo.reset(P);
8017     return *P;
8018   };
8019 
8020   const llvm::Triple &Triple = getTarget().getTriple();
8021   switch (Triple.getArch()) {
8022   default:
8023     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8024 
8025   case llvm::Triple::le32:
8026     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8027   case llvm::Triple::mips:
8028   case llvm::Triple::mipsel:
8029     if (Triple.getOS() == llvm::Triple::NaCl)
8030       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8031     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8032 
8033   case llvm::Triple::mips64:
8034   case llvm::Triple::mips64el:
8035     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8036 
8037   case llvm::Triple::aarch64:
8038   case llvm::Triple::aarch64_be: {
8039     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8040     if (getTarget().getABI() == "darwinpcs")
8041       Kind = AArch64ABIInfo::DarwinPCS;
8042 
8043     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8044   }
8045 
8046   case llvm::Triple::wasm32:
8047   case llvm::Triple::wasm64:
8048     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8049 
8050   case llvm::Triple::arm:
8051   case llvm::Triple::armeb:
8052   case llvm::Triple::thumb:
8053   case llvm::Triple::thumbeb: {
8054     if (Triple.getOS() == llvm::Triple::Win32) {
8055       return SetCGInfo(
8056           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8057     }
8058 
8059     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8060     StringRef ABIStr = getTarget().getABI();
8061     if (ABIStr == "apcs-gnu")
8062       Kind = ARMABIInfo::APCS;
8063     else if (ABIStr == "aapcs16")
8064       Kind = ARMABIInfo::AAPCS16_VFP;
8065     else if (CodeGenOpts.FloatABI == "hard" ||
8066              (CodeGenOpts.FloatABI != "soft" &&
8067               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8068                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8069                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8070       Kind = ARMABIInfo::AAPCS_VFP;
8071 
8072     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8073   }
8074 
8075   case llvm::Triple::ppc:
8076     return SetCGInfo(
8077         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8078   case llvm::Triple::ppc64:
8079     if (Triple.isOSBinFormatELF()) {
8080       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8081       if (getTarget().getABI() == "elfv2")
8082         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8083       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8084 
8085       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8086     } else
8087       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8088   case llvm::Triple::ppc64le: {
8089     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8090     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8091     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8092       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8093     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8094 
8095     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8096   }
8097 
8098   case llvm::Triple::nvptx:
8099   case llvm::Triple::nvptx64:
8100     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8101 
8102   case llvm::Triple::msp430:
8103     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8104 
8105   case llvm::Triple::systemz: {
8106     bool HasVector = getTarget().getABI() == "vector";
8107     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8108   }
8109 
8110   case llvm::Triple::tce:
8111     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8112 
8113   case llvm::Triple::x86: {
8114     bool IsDarwinVectorABI = Triple.isOSDarwin();
8115     bool RetSmallStructInRegABI =
8116         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8117     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8118 
8119     if (Triple.getOS() == llvm::Triple::Win32) {
8120       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8121           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8122           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8123     } else {
8124       return SetCGInfo(new X86_32TargetCodeGenInfo(
8125           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8126           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8127           CodeGenOpts.FloatABI == "soft"));
8128     }
8129   }
8130 
8131   case llvm::Triple::x86_64: {
8132     StringRef ABI = getTarget().getABI();
8133     X86AVXABILevel AVXLevel =
8134         (ABI == "avx512"
8135              ? X86AVXABILevel::AVX512
8136              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8137 
8138     switch (Triple.getOS()) {
8139     case llvm::Triple::Win32:
8140       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8141     case llvm::Triple::PS4:
8142       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8143     default:
8144       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8145     }
8146   }
8147   case llvm::Triple::hexagon:
8148     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8149   case llvm::Triple::lanai:
8150     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8151   case llvm::Triple::r600:
8152     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8153   case llvm::Triple::amdgcn:
8154     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8155   case llvm::Triple::sparc:
8156     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8157   case llvm::Triple::sparcv9:
8158     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8159   case llvm::Triple::xcore:
8160     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8161   case llvm::Triple::spir:
8162   case llvm::Triple::spir64:
8163     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8164   }
8165 }
8166