1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address emitMergePHI(CodeGenFunction &CGF,
396                             Address Addr1, llvm::BasicBlock *Block1,
397                             Address Addr2, llvm::BasicBlock *Block2,
398                             const llvm::Twine &Name = "") {
399   assert(Addr1.getType() == Addr2.getType());
400   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
401   PHI->addIncoming(Addr1.getPointer(), Block1);
402   PHI->addIncoming(Addr2.getPointer(), Block2);
403   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
404   return Address(PHI, Align);
405 }
406 
407 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
408 
409 // If someone can figure out a general rule for this, that would be great.
410 // It's probably just doomed to be platform-dependent, though.
411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
412   // Verified for:
413   //   x86-64     FreeBSD, Linux, Darwin
414   //   x86-32     FreeBSD, Linux, Darwin
415   //   PowerPC    Linux, Darwin
416   //   ARM        Darwin (*not* EABI)
417   //   AArch64    Linux
418   return 32;
419 }
420 
421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
422                                      const FunctionNoProtoType *fnType) const {
423   // The following conventions are known to require this to be false:
424   //   x86_stdcall
425   //   MIPS
426   // For everything else, we just prefer false unless we opt out.
427   return false;
428 }
429 
430 void
431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
432                                              llvm::SmallString<24> &Opt) const {
433   // This assumes the user is passing a library name like "rt" instead of a
434   // filename like "librt.a/so", and that they don't care whether it's static or
435   // dynamic.
436   Opt = "-l";
437   Opt += Lib;
438 }
439 
440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
441   // OpenCL kernels are called via an explicit runtime API with arguments
442   // set with clSetKernelArg(), not as normal sub-functions.
443   // Return SPIR_KERNEL by default as the kernel calling convention to
444   // ensure the fingerprint is fixed such way that each OpenCL argument
445   // gets one matching argument in the produced kernel function argument
446   // list to enable feasible implementation of clSetKernelArg() with
447   // aggregates etc. In case we would use the default C calling conv here,
448   // clSetKernelArg() might break depending on the target-specific
449   // conventions; different targets might split structs passed as values
450   // to multiple function arguments etc.
451   return llvm::CallingConv::SPIR_KERNEL;
452 }
453 
454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
455     llvm::PointerType *T, QualType QT) const {
456   return llvm::ConstantPointerNull::get(T);
457 }
458 
459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
460                                                    const VarDecl *D) const {
461   assert(!CGM.getLangOpts().OpenCL &&
462          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
463          "Address space agnostic languages only");
464   return D ? D->getType().getAddressSpace() : LangAS::Default;
465 }
466 
467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
468     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
469     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
470   // Since target may map different address spaces in AST to the same address
471   // space, an address space conversion may end up as a bitcast.
472   if (auto *C = dyn_cast<llvm::Constant>(Src))
473     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
474   // Try to preserve the source's name to make IR more readable.
475   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
476       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
477 }
478 
479 llvm::Constant *
480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
481                                         LangAS SrcAddr, LangAS DestAddr,
482                                         llvm::Type *DestTy) const {
483   // Since target may map different address spaces in AST to the same address
484   // space, an address space conversion may end up as a bitcast.
485   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
486 }
487 
488 llvm::SyncScope::ID
489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
490                                       SyncScope Scope,
491                                       llvm::AtomicOrdering Ordering,
492                                       llvm::LLVMContext &Ctx) const {
493   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
494 }
495 
496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
497 
498 /// isEmptyField - Return true iff a the field is "empty", that is it
499 /// is an unnamed bit-field or an (array of) empty record(s).
500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
501                          bool AllowArrays) {
502   if (FD->isUnnamedBitfield())
503     return true;
504 
505   QualType FT = FD->getType();
506 
507   // Constant arrays of empty records count as empty, strip them off.
508   // Constant arrays of zero length always count as empty.
509   bool WasArray = false;
510   if (AllowArrays)
511     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
512       if (AT->getSize() == 0)
513         return true;
514       FT = AT->getElementType();
515       // The [[no_unique_address]] special case below does not apply to
516       // arrays of C++ empty records, so we need to remember this fact.
517       WasArray = true;
518     }
519 
520   const RecordType *RT = FT->getAs<RecordType>();
521   if (!RT)
522     return false;
523 
524   // C++ record fields are never empty, at least in the Itanium ABI.
525   //
526   // FIXME: We should use a predicate for whether this behavior is true in the
527   // current ABI.
528   //
529   // The exception to the above rule are fields marked with the
530   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
531   // according to the Itanium ABI.  The exception applies only to records,
532   // not arrays of records, so we must also check whether we stripped off an
533   // array type above.
534   if (isa<CXXRecordDecl>(RT->getDecl()) &&
535       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
536     return false;
537 
538   return isEmptyRecord(Context, FT, AllowArrays);
539 }
540 
541 /// isEmptyRecord - Return true iff a structure contains only empty
542 /// fields. Note that a structure with a flexible array member is not
543 /// considered empty.
544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
545   const RecordType *RT = T->getAs<RecordType>();
546   if (!RT)
547     return false;
548   const RecordDecl *RD = RT->getDecl();
549   if (RD->hasFlexibleArrayMember())
550     return false;
551 
552   // If this is a C++ record, check the bases first.
553   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
554     for (const auto &I : CXXRD->bases())
555       if (!isEmptyRecord(Context, I.getType(), true))
556         return false;
557 
558   for (const auto *I : RD->fields())
559     if (!isEmptyField(Context, I, AllowArrays))
560       return false;
561   return true;
562 }
563 
564 /// isSingleElementStruct - Determine if a structure is a "single
565 /// element struct", i.e. it has exactly one non-empty field or
566 /// exactly one field which is itself a single element
567 /// struct. Structures with flexible array members are never
568 /// considered single element structs.
569 ///
570 /// \return The field declaration for the single non-empty field, if
571 /// it exists.
572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
573   const RecordType *RT = T->getAs<RecordType>();
574   if (!RT)
575     return nullptr;
576 
577   const RecordDecl *RD = RT->getDecl();
578   if (RD->hasFlexibleArrayMember())
579     return nullptr;
580 
581   const Type *Found = nullptr;
582 
583   // If this is a C++ record, check the bases first.
584   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
585     for (const auto &I : CXXRD->bases()) {
586       // Ignore empty records.
587       if (isEmptyRecord(Context, I.getType(), true))
588         continue;
589 
590       // If we already found an element then this isn't a single-element struct.
591       if (Found)
592         return nullptr;
593 
594       // If this is non-empty and not a single element struct, the composite
595       // cannot be a single element struct.
596       Found = isSingleElementStruct(I.getType(), Context);
597       if (!Found)
598         return nullptr;
599     }
600   }
601 
602   // Check for single element.
603   for (const auto *FD : RD->fields()) {
604     QualType FT = FD->getType();
605 
606     // Ignore empty fields.
607     if (isEmptyField(Context, FD, true))
608       continue;
609 
610     // If we already found an element then this isn't a single-element
611     // struct.
612     if (Found)
613       return nullptr;
614 
615     // Treat single element arrays as the element.
616     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
617       if (AT->getSize().getZExtValue() != 1)
618         break;
619       FT = AT->getElementType();
620     }
621 
622     if (!isAggregateTypeForABI(FT)) {
623       Found = FT.getTypePtr();
624     } else {
625       Found = isSingleElementStruct(FT, Context);
626       if (!Found)
627         return nullptr;
628     }
629   }
630 
631   // We don't consider a struct a single-element struct if it has
632   // padding beyond the element type.
633   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
634     return nullptr;
635 
636   return Found;
637 }
638 
639 namespace {
640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
641                        const ABIArgInfo &AI) {
642   // This default implementation defers to the llvm backend's va_arg
643   // instruction. It can handle only passing arguments directly
644   // (typically only handled in the backend for primitive types), or
645   // aggregates passed indirectly by pointer (NOTE: if the "byval"
646   // flag has ABI impact in the callee, this implementation cannot
647   // work.)
648 
649   // Only a few cases are covered here at the moment -- those needed
650   // by the default abi.
651   llvm::Value *Val;
652 
653   if (AI.isIndirect()) {
654     assert(!AI.getPaddingType() &&
655            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
656     assert(
657         !AI.getIndirectRealign() &&
658         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
659 
660     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
661     CharUnits TyAlignForABI = TyInfo.Align;
662 
663     llvm::Type *BaseTy =
664         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
665     llvm::Value *Addr =
666         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
667     return Address(Addr, TyAlignForABI);
668   } else {
669     assert((AI.isDirect() || AI.isExtend()) &&
670            "Unexpected ArgInfo Kind in generic VAArg emitter!");
671 
672     assert(!AI.getInReg() &&
673            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getPaddingType() &&
675            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getDirectOffset() &&
677            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
678     assert(!AI.getCoerceToType() &&
679            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
680 
681     Address Temp = CGF.CreateMemTemp(Ty, "varet");
682     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
683     CGF.Builder.CreateStore(Val, Temp);
684     return Temp;
685   }
686 }
687 
688 /// DefaultABIInfo - The default implementation for ABI specific
689 /// details. This implementation provides information which results in
690 /// self-consistent and sensible LLVM IR generation, but does not
691 /// conform to any particular ABI.
692 class DefaultABIInfo : public ABIInfo {
693 public:
694   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
695 
696   ABIArgInfo classifyReturnType(QualType RetTy) const;
697   ABIArgInfo classifyArgumentType(QualType RetTy) const;
698 
699   void computeInfo(CGFunctionInfo &FI) const override {
700     if (!getCXXABI().classifyReturnType(FI))
701       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
702     for (auto &I : FI.arguments())
703       I.info = classifyArgumentType(I.type);
704   }
705 
706   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
707                     QualType Ty) const override {
708     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
709   }
710 };
711 
712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
713 public:
714   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
715       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
716 };
717 
718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
719   Ty = useFirstFieldIfTransparentUnion(Ty);
720 
721   if (isAggregateTypeForABI(Ty)) {
722     // Records with non-trivial destructors/copy-constructors should not be
723     // passed by value.
724     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
725       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
726 
727     return getNaturalAlignIndirect(Ty);
728   }
729 
730   // Treat an enum type as its underlying type.
731   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732     Ty = EnumTy->getDecl()->getIntegerType();
733 
734   ASTContext &Context = getContext();
735   if (const auto *EIT = Ty->getAs<ExtIntType>())
736     if (EIT->getNumBits() >
737         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
738                                 ? Context.Int128Ty
739                                 : Context.LongLongTy))
740       return getNaturalAlignIndirect(Ty);
741 
742   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
743                                             : ABIArgInfo::getDirect());
744 }
745 
746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
747   if (RetTy->isVoidType())
748     return ABIArgInfo::getIgnore();
749 
750   if (isAggregateTypeForABI(RetTy))
751     return getNaturalAlignIndirect(RetTy);
752 
753   // Treat an enum type as its underlying type.
754   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
755     RetTy = EnumTy->getDecl()->getIntegerType();
756 
757   if (const auto *EIT = RetTy->getAs<ExtIntType>())
758     if (EIT->getNumBits() >
759         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
760                                      ? getContext().Int128Ty
761                                      : getContext().LongLongTy))
762       return getNaturalAlignIndirect(RetTy);
763 
764   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
765                                                : ABIArgInfo::getDirect());
766 }
767 
768 //===----------------------------------------------------------------------===//
769 // WebAssembly ABI Implementation
770 //
771 // This is a very simple ABI that relies a lot on DefaultABIInfo.
772 //===----------------------------------------------------------------------===//
773 
774 class WebAssemblyABIInfo final : public SwiftABIInfo {
775 public:
776   enum ABIKind {
777     MVP = 0,
778     ExperimentalMV = 1,
779   };
780 
781 private:
782   DefaultABIInfo defaultInfo;
783   ABIKind Kind;
784 
785 public:
786   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
787       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
788 
789 private:
790   ABIArgInfo classifyReturnType(QualType RetTy) const;
791   ABIArgInfo classifyArgumentType(QualType Ty) const;
792 
793   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
794   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
795   // overload them.
796   void computeInfo(CGFunctionInfo &FI) const override {
797     if (!getCXXABI().classifyReturnType(FI))
798       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
799     for (auto &Arg : FI.arguments())
800       Arg.info = classifyArgumentType(Arg.type);
801   }
802 
803   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
804                     QualType Ty) const override;
805 
806   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
807                                     bool asReturnValue) const override {
808     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
809   }
810 
811   bool isSwiftErrorInRegister() const override {
812     return false;
813   }
814 };
815 
816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
817 public:
818   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
819                                         WebAssemblyABIInfo::ABIKind K)
820       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
821 
822   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
823                            CodeGen::CodeGenModule &CGM) const override {
824     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
825     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
826       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
827         llvm::Function *Fn = cast<llvm::Function>(GV);
828         llvm::AttrBuilder B;
829         B.addAttribute("wasm-import-module", Attr->getImportModule());
830         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
831       }
832       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
833         llvm::Function *Fn = cast<llvm::Function>(GV);
834         llvm::AttrBuilder B;
835         B.addAttribute("wasm-import-name", Attr->getImportName());
836         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
837       }
838       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
839         llvm::Function *Fn = cast<llvm::Function>(GV);
840         llvm::AttrBuilder B;
841         B.addAttribute("wasm-export-name", Attr->getExportName());
842         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
843       }
844     }
845 
846     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
847       llvm::Function *Fn = cast<llvm::Function>(GV);
848       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
849         Fn->addFnAttr("no-prototype");
850     }
851   }
852 };
853 
854 /// Classify argument of given type \p Ty.
855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
856   Ty = useFirstFieldIfTransparentUnion(Ty);
857 
858   if (isAggregateTypeForABI(Ty)) {
859     // Records with non-trivial destructors/copy-constructors should not be
860     // passed by value.
861     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
862       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
863     // Ignore empty structs/unions.
864     if (isEmptyRecord(getContext(), Ty, true))
865       return ABIArgInfo::getIgnore();
866     // Lower single-element structs to just pass a regular value. TODO: We
867     // could do reasonable-size multiple-element structs too, using getExpand(),
868     // though watch out for things like bitfields.
869     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
870       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
871     // For the experimental multivalue ABI, fully expand all other aggregates
872     if (Kind == ABIKind::ExperimentalMV) {
873       const RecordType *RT = Ty->getAs<RecordType>();
874       assert(RT);
875       bool HasBitField = false;
876       for (auto *Field : RT->getDecl()->fields()) {
877         if (Field->isBitField()) {
878           HasBitField = true;
879           break;
880         }
881       }
882       if (!HasBitField)
883         return ABIArgInfo::getExpand();
884     }
885   }
886 
887   // Otherwise just do the default thing.
888   return defaultInfo.classifyArgumentType(Ty);
889 }
890 
891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
892   if (isAggregateTypeForABI(RetTy)) {
893     // Records with non-trivial destructors/copy-constructors should not be
894     // returned by value.
895     if (!getRecordArgABI(RetTy, getCXXABI())) {
896       // Ignore empty structs/unions.
897       if (isEmptyRecord(getContext(), RetTy, true))
898         return ABIArgInfo::getIgnore();
899       // Lower single-element structs to just return a regular value. TODO: We
900       // could do reasonable-size multiple-element structs too, using
901       // ABIArgInfo::getDirect().
902       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
903         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
904       // For the experimental multivalue ABI, return all other aggregates
905       if (Kind == ABIKind::ExperimentalMV)
906         return ABIArgInfo::getDirect();
907     }
908   }
909 
910   // Otherwise just do the default thing.
911   return defaultInfo.classifyReturnType(RetTy);
912 }
913 
914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
915                                       QualType Ty) const {
916   bool IsIndirect = isAggregateTypeForABI(Ty) &&
917                     !isEmptyRecord(getContext(), Ty, true) &&
918                     !isSingleElementStruct(Ty, getContext());
919   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
920                           getContext().getTypeInfoInChars(Ty),
921                           CharUnits::fromQuantity(4),
922                           /*AllowHigherAlign=*/true);
923 }
924 
925 //===----------------------------------------------------------------------===//
926 // le32/PNaCl bitcode ABI Implementation
927 //
928 // This is a simplified version of the x86_32 ABI.  Arguments and return values
929 // are always passed on the stack.
930 //===----------------------------------------------------------------------===//
931 
932 class PNaClABIInfo : public ABIInfo {
933  public:
934   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
935 
936   ABIArgInfo classifyReturnType(QualType RetTy) const;
937   ABIArgInfo classifyArgumentType(QualType RetTy) const;
938 
939   void computeInfo(CGFunctionInfo &FI) const override;
940   Address EmitVAArg(CodeGenFunction &CGF,
941                     Address VAListAddr, QualType Ty) const override;
942 };
943 
944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
945  public:
946    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
947        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
948 };
949 
950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
951   if (!getCXXABI().classifyReturnType(FI))
952     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
953 
954   for (auto &I : FI.arguments())
955     I.info = classifyArgumentType(I.type);
956 }
957 
958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
959                                 QualType Ty) const {
960   // The PNaCL ABI is a bit odd, in that varargs don't use normal
961   // function classification. Structs get passed directly for varargs
962   // functions, through a rewriting transform in
963   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
964   // this target to actually support a va_arg instructions with an
965   // aggregate type, unlike other targets.
966   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
967 }
968 
969 /// Classify argument of given type \p Ty.
970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
971   if (isAggregateTypeForABI(Ty)) {
972     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
973       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
974     return getNaturalAlignIndirect(Ty);
975   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
976     // Treat an enum type as its underlying type.
977     Ty = EnumTy->getDecl()->getIntegerType();
978   } else if (Ty->isFloatingType()) {
979     // Floating-point types don't go inreg.
980     return ABIArgInfo::getDirect();
981   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
982     // Treat extended integers as integers if <=64, otherwise pass indirectly.
983     if (EIT->getNumBits() > 64)
984       return getNaturalAlignIndirect(Ty);
985     return ABIArgInfo::getDirect();
986   }
987 
988   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
989                                             : ABIArgInfo::getDirect());
990 }
991 
992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
993   if (RetTy->isVoidType())
994     return ABIArgInfo::getIgnore();
995 
996   // In the PNaCl ABI we always return records/structures on the stack.
997   if (isAggregateTypeForABI(RetTy))
998     return getNaturalAlignIndirect(RetTy);
999 
1000   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1001   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1002     if (EIT->getNumBits() > 64)
1003       return getNaturalAlignIndirect(RetTy);
1004     return ABIArgInfo::getDirect();
1005   }
1006 
1007   // Treat an enum type as its underlying type.
1008   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1009     RetTy = EnumTy->getDecl()->getIntegerType();
1010 
1011   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1012                                                : ABIArgInfo::getDirect());
1013 }
1014 
1015 /// IsX86_MMXType - Return true if this is an MMX type.
1016 bool IsX86_MMXType(llvm::Type *IRType) {
1017   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1018   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1019     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1020     IRType->getScalarSizeInBits() != 64;
1021 }
1022 
1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1024                                           StringRef Constraint,
1025                                           llvm::Type* Ty) {
1026   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1027                      .Cases("y", "&y", "^Ym", true)
1028                      .Default(false);
1029   if (IsMMXCons && Ty->isVectorTy()) {
1030     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1031         64) {
1032       // Invalid MMX constraint
1033       return nullptr;
1034     }
1035 
1036     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1037   }
1038 
1039   // No operation needed
1040   return Ty;
1041 }
1042 
1043 /// Returns true if this type can be passed in SSE registers with the
1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1046   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1047     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1048       if (BT->getKind() == BuiltinType::LongDouble) {
1049         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1050             &llvm::APFloat::x87DoubleExtended())
1051           return false;
1052       }
1053       return true;
1054     }
1055   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1056     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1057     // registers specially.
1058     unsigned VecSize = Context.getTypeSize(VT);
1059     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1060       return true;
1061   }
1062   return false;
1063 }
1064 
1065 /// Returns true if this aggregate is small enough to be passed in SSE registers
1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1068   return NumMembers <= 4;
1069 }
1070 
1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1073   auto AI = ABIArgInfo::getDirect(T);
1074   AI.setInReg(true);
1075   AI.setCanBeFlattened(false);
1076   return AI;
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 // X86-32 ABI Implementation
1081 //===----------------------------------------------------------------------===//
1082 
1083 /// Similar to llvm::CCState, but for Clang.
1084 struct CCState {
1085   CCState(CGFunctionInfo &FI)
1086       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1087 
1088   llvm::SmallBitVector IsPreassigned;
1089   unsigned CC = CallingConv::CC_C;
1090   unsigned FreeRegs = 0;
1091   unsigned FreeSSERegs = 0;
1092 };
1093 
1094 /// X86_32ABIInfo - The X86-32 ABI information.
1095 class X86_32ABIInfo : public SwiftABIInfo {
1096   enum Class {
1097     Integer,
1098     Float
1099   };
1100 
1101   static const unsigned MinABIStackAlignInBytes = 4;
1102 
1103   bool IsDarwinVectorABI;
1104   bool IsRetSmallStructInRegABI;
1105   bool IsWin32StructABI;
1106   bool IsSoftFloatABI;
1107   bool IsMCUABI;
1108   bool IsLinuxABI;
1109   unsigned DefaultNumRegisterParameters;
1110 
1111   static bool isRegisterSize(unsigned Size) {
1112     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1113   }
1114 
1115   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1116     // FIXME: Assumes vectorcall is in use.
1117     return isX86VectorTypeForVectorCall(getContext(), Ty);
1118   }
1119 
1120   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1121                                          uint64_t NumMembers) const override {
1122     // FIXME: Assumes vectorcall is in use.
1123     return isX86VectorCallAggregateSmallEnough(NumMembers);
1124   }
1125 
1126   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1127 
1128   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1129   /// such that the argument will be passed in memory.
1130   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1131 
1132   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1133 
1134   /// Return the alignment to use for the given type on the stack.
1135   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1136 
1137   Class classify(QualType Ty) const;
1138   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1139   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1140 
1141   /// Updates the number of available free registers, returns
1142   /// true if any registers were allocated.
1143   bool updateFreeRegs(QualType Ty, CCState &State) const;
1144 
1145   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1146                                 bool &NeedsPadding) const;
1147   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1148 
1149   bool canExpandIndirectArgument(QualType Ty) const;
1150 
1151   /// Rewrite the function info so that all memory arguments use
1152   /// inalloca.
1153   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1154 
1155   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1156                            CharUnits &StackOffset, ABIArgInfo &Info,
1157                            QualType Type) const;
1158   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1159 
1160 public:
1161 
1162   void computeInfo(CGFunctionInfo &FI) const override;
1163   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1164                     QualType Ty) const override;
1165 
1166   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1167                 bool RetSmallStructInRegABI, bool Win32StructABI,
1168                 unsigned NumRegisterParameters, bool SoftFloatABI)
1169     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1170       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1171       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1172       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1173       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()),
1174       DefaultNumRegisterParameters(NumRegisterParameters) {}
1175 
1176   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1177                                     bool asReturnValue) const override {
1178     // LLVM's x86-32 lowering currently only assigns up to three
1179     // integer registers and three fp registers.  Oddly, it'll use up to
1180     // four vector registers for vectors, but those can overlap with the
1181     // scalar registers.
1182     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1183   }
1184 
1185   bool isSwiftErrorInRegister() const override {
1186     // x86-32 lowering does not support passing swifterror in a register.
1187     return false;
1188   }
1189 };
1190 
1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1192 public:
1193   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1194                           bool RetSmallStructInRegABI, bool Win32StructABI,
1195                           unsigned NumRegisterParameters, bool SoftFloatABI)
1196       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1197             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1198             NumRegisterParameters, SoftFloatABI)) {}
1199 
1200   static bool isStructReturnInRegABI(
1201       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1202 
1203   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1204                            CodeGen::CodeGenModule &CGM) const override;
1205 
1206   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1207     // Darwin uses different dwarf register numbers for EH.
1208     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1209     return 4;
1210   }
1211 
1212   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1213                                llvm::Value *Address) const override;
1214 
1215   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1216                                   StringRef Constraint,
1217                                   llvm::Type* Ty) const override {
1218     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1219   }
1220 
1221   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1222                                 std::string &Constraints,
1223                                 std::vector<llvm::Type *> &ResultRegTypes,
1224                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1225                                 std::vector<LValue> &ResultRegDests,
1226                                 std::string &AsmString,
1227                                 unsigned NumOutputs) const override;
1228 
1229   llvm::Constant *
1230   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1231     unsigned Sig = (0xeb << 0) |  // jmp rel8
1232                    (0x06 << 8) |  //           .+0x08
1233                    ('v' << 16) |
1234                    ('2' << 24);
1235     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1236   }
1237 
1238   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1239     return "movl\t%ebp, %ebp"
1240            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1241   }
1242 };
1243 
1244 }
1245 
1246 /// Rewrite input constraint references after adding some output constraints.
1247 /// In the case where there is one output and one input and we add one output,
1248 /// we need to replace all operand references greater than or equal to 1:
1249 ///     mov $0, $1
1250 ///     mov eax, $1
1251 /// The result will be:
1252 ///     mov $0, $2
1253 ///     mov eax, $2
1254 static void rewriteInputConstraintReferences(unsigned FirstIn,
1255                                              unsigned NumNewOuts,
1256                                              std::string &AsmString) {
1257   std::string Buf;
1258   llvm::raw_string_ostream OS(Buf);
1259   size_t Pos = 0;
1260   while (Pos < AsmString.size()) {
1261     size_t DollarStart = AsmString.find('$', Pos);
1262     if (DollarStart == std::string::npos)
1263       DollarStart = AsmString.size();
1264     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1265     if (DollarEnd == std::string::npos)
1266       DollarEnd = AsmString.size();
1267     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1268     Pos = DollarEnd;
1269     size_t NumDollars = DollarEnd - DollarStart;
1270     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1271       // We have an operand reference.
1272       size_t DigitStart = Pos;
1273       if (AsmString[DigitStart] == '{') {
1274         OS << '{';
1275         ++DigitStart;
1276       }
1277       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1278       if (DigitEnd == std::string::npos)
1279         DigitEnd = AsmString.size();
1280       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1281       unsigned OperandIndex;
1282       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1283         if (OperandIndex >= FirstIn)
1284           OperandIndex += NumNewOuts;
1285         OS << OperandIndex;
1286       } else {
1287         OS << OperandStr;
1288       }
1289       Pos = DigitEnd;
1290     }
1291   }
1292   AsmString = std::move(OS.str());
1293 }
1294 
1295 /// Add output constraints for EAX:EDX because they are return registers.
1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1297     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1298     std::vector<llvm::Type *> &ResultRegTypes,
1299     std::vector<llvm::Type *> &ResultTruncRegTypes,
1300     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1301     unsigned NumOutputs) const {
1302   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1303 
1304   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1305   // larger.
1306   if (!Constraints.empty())
1307     Constraints += ',';
1308   if (RetWidth <= 32) {
1309     Constraints += "={eax}";
1310     ResultRegTypes.push_back(CGF.Int32Ty);
1311   } else {
1312     // Use the 'A' constraint for EAX:EDX.
1313     Constraints += "=A";
1314     ResultRegTypes.push_back(CGF.Int64Ty);
1315   }
1316 
1317   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1318   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1319   ResultTruncRegTypes.push_back(CoerceTy);
1320 
1321   // Coerce the integer by bitcasting the return slot pointer.
1322   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1323                                                   CoerceTy->getPointerTo()));
1324   ResultRegDests.push_back(ReturnSlot);
1325 
1326   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1327 }
1328 
1329 /// shouldReturnTypeInRegister - Determine if the given type should be
1330 /// returned in a register (for the Darwin and MCU ABI).
1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1332                                                ASTContext &Context) const {
1333   uint64_t Size = Context.getTypeSize(Ty);
1334 
1335   // For i386, type must be register sized.
1336   // For the MCU ABI, it only needs to be <= 8-byte
1337   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1338    return false;
1339 
1340   if (Ty->isVectorType()) {
1341     // 64- and 128- bit vectors inside structures are not returned in
1342     // registers.
1343     if (Size == 64 || Size == 128)
1344       return false;
1345 
1346     return true;
1347   }
1348 
1349   // If this is a builtin, pointer, enum, complex type, member pointer, or
1350   // member function pointer it is ok.
1351   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1352       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1353       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1354     return true;
1355 
1356   // Arrays are treated like records.
1357   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1358     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1359 
1360   // Otherwise, it must be a record type.
1361   const RecordType *RT = Ty->getAs<RecordType>();
1362   if (!RT) return false;
1363 
1364   // FIXME: Traverse bases here too.
1365 
1366   // Structure types are passed in register if all fields would be
1367   // passed in a register.
1368   for (const auto *FD : RT->getDecl()->fields()) {
1369     // Empty fields are ignored.
1370     if (isEmptyField(Context, FD, true))
1371       continue;
1372 
1373     // Check fields recursively.
1374     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1375       return false;
1376   }
1377   return true;
1378 }
1379 
1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1381   // Treat complex types as the element type.
1382   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1383     Ty = CTy->getElementType();
1384 
1385   // Check for a type which we know has a simple scalar argument-passing
1386   // convention without any padding.  (We're specifically looking for 32
1387   // and 64-bit integer and integer-equivalents, float, and double.)
1388   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1389       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1390     return false;
1391 
1392   uint64_t Size = Context.getTypeSize(Ty);
1393   return Size == 32 || Size == 64;
1394 }
1395 
1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1397                           uint64_t &Size) {
1398   for (const auto *FD : RD->fields()) {
1399     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1400     // argument is smaller than 32-bits, expanding the struct will create
1401     // alignment padding.
1402     if (!is32Or64BitBasicType(FD->getType(), Context))
1403       return false;
1404 
1405     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1406     // how to expand them yet, and the predicate for telling if a bitfield still
1407     // counts as "basic" is more complicated than what we were doing previously.
1408     if (FD->isBitField())
1409       return false;
1410 
1411     Size += Context.getTypeSize(FD->getType());
1412   }
1413   return true;
1414 }
1415 
1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1417                                  uint64_t &Size) {
1418   // Don't do this if there are any non-empty bases.
1419   for (const CXXBaseSpecifier &Base : RD->bases()) {
1420     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1421                               Size))
1422       return false;
1423   }
1424   if (!addFieldSizes(Context, RD, Size))
1425     return false;
1426   return true;
1427 }
1428 
1429 /// Test whether an argument type which is to be passed indirectly (on the
1430 /// stack) would have the equivalent layout if it was expanded into separate
1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1432 /// optimizations.
1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1434   // We can only expand structure types.
1435   const RecordType *RT = Ty->getAs<RecordType>();
1436   if (!RT)
1437     return false;
1438   const RecordDecl *RD = RT->getDecl();
1439   uint64_t Size = 0;
1440   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1441     if (!IsWin32StructABI) {
1442       // On non-Windows, we have to conservatively match our old bitcode
1443       // prototypes in order to be ABI-compatible at the bitcode level.
1444       if (!CXXRD->isCLike())
1445         return false;
1446     } else {
1447       // Don't do this for dynamic classes.
1448       if (CXXRD->isDynamicClass())
1449         return false;
1450     }
1451     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1452       return false;
1453   } else {
1454     if (!addFieldSizes(getContext(), RD, Size))
1455       return false;
1456   }
1457 
1458   // We can do this if there was no alignment padding.
1459   return Size == getContext().getTypeSize(Ty);
1460 }
1461 
1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1463   // If the return value is indirect, then the hidden argument is consuming one
1464   // integer register.
1465   if (State.FreeRegs) {
1466     --State.FreeRegs;
1467     if (!IsMCUABI)
1468       return getNaturalAlignIndirectInReg(RetTy);
1469   }
1470   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1471 }
1472 
1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1474                                              CCState &State) const {
1475   if (RetTy->isVoidType())
1476     return ABIArgInfo::getIgnore();
1477 
1478   const Type *Base = nullptr;
1479   uint64_t NumElts = 0;
1480   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1481        State.CC == llvm::CallingConv::X86_RegCall) &&
1482       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1483     // The LLVM struct type for such an aggregate should lower properly.
1484     return ABIArgInfo::getDirect();
1485   }
1486 
1487   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1488     // On Darwin, some vectors are returned in registers.
1489     if (IsDarwinVectorABI) {
1490       uint64_t Size = getContext().getTypeSize(RetTy);
1491 
1492       // 128-bit vectors are a special case; they are returned in
1493       // registers and we need to make sure to pick a type the LLVM
1494       // backend will like.
1495       if (Size == 128)
1496         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1497             llvm::Type::getInt64Ty(getVMContext()), 2));
1498 
1499       // Always return in register if it fits in a general purpose
1500       // register, or if it is 64 bits and has a single element.
1501       if ((Size == 8 || Size == 16 || Size == 32) ||
1502           (Size == 64 && VT->getNumElements() == 1))
1503         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1504                                                             Size));
1505 
1506       return getIndirectReturnResult(RetTy, State);
1507     }
1508 
1509     return ABIArgInfo::getDirect();
1510   }
1511 
1512   if (isAggregateTypeForABI(RetTy)) {
1513     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1514       // Structures with flexible arrays are always indirect.
1515       if (RT->getDecl()->hasFlexibleArrayMember())
1516         return getIndirectReturnResult(RetTy, State);
1517     }
1518 
1519     // If specified, structs and unions are always indirect.
1520     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1521       return getIndirectReturnResult(RetTy, State);
1522 
1523     // Ignore empty structs/unions.
1524     if (isEmptyRecord(getContext(), RetTy, true))
1525       return ABIArgInfo::getIgnore();
1526 
1527     // Small structures which are register sized are generally returned
1528     // in a register.
1529     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1530       uint64_t Size = getContext().getTypeSize(RetTy);
1531 
1532       // As a special-case, if the struct is a "single-element" struct, and
1533       // the field is of type "float" or "double", return it in a
1534       // floating-point register. (MSVC does not apply this special case.)
1535       // We apply a similar transformation for pointer types to improve the
1536       // quality of the generated IR.
1537       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1538         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1539             || SeltTy->hasPointerRepresentation())
1540           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1541 
1542       // FIXME: We should be able to narrow this integer in cases with dead
1543       // padding.
1544       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1545     }
1546 
1547     return getIndirectReturnResult(RetTy, State);
1548   }
1549 
1550   // Treat an enum type as its underlying type.
1551   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1552     RetTy = EnumTy->getDecl()->getIntegerType();
1553 
1554   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1555     if (EIT->getNumBits() > 64)
1556       return getIndirectReturnResult(RetTy, State);
1557 
1558   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1559                                                : ABIArgInfo::getDirect());
1560 }
1561 
1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1563   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1564 }
1565 
1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1567   const RecordType *RT = Ty->getAs<RecordType>();
1568   if (!RT)
1569     return 0;
1570   const RecordDecl *RD = RT->getDecl();
1571 
1572   // If this is a C++ record, check the bases first.
1573   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1574     for (const auto &I : CXXRD->bases())
1575       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1576         return false;
1577 
1578   for (const auto *i : RD->fields()) {
1579     QualType FT = i->getType();
1580 
1581     if (isSIMDVectorType(Context, FT))
1582       return true;
1583 
1584     if (isRecordWithSIMDVectorType(Context, FT))
1585       return true;
1586   }
1587 
1588   return false;
1589 }
1590 
1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1592                                                  unsigned Align) const {
1593   // Otherwise, if the alignment is less than or equal to the minimum ABI
1594   // alignment, just use the default; the backend will handle this.
1595   if (Align <= MinABIStackAlignInBytes)
1596     return 0; // Use default alignment.
1597 
1598   if (IsLinuxABI) {
1599     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1600     // want to spend any effort dealing with the ramifications of ABI breaks.
1601     //
1602     // If the vector type is __m128/__m256/__m512, return the default alignment.
1603     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1604       return Align;
1605   }
1606   // On non-Darwin, the stack type alignment is always 4.
1607   if (!IsDarwinVectorABI) {
1608     // Set explicit alignment, since we may need to realign the top.
1609     return MinABIStackAlignInBytes;
1610   }
1611 
1612   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1613   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1614                       isRecordWithSIMDVectorType(getContext(), Ty)))
1615     return 16;
1616 
1617   return MinABIStackAlignInBytes;
1618 }
1619 
1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1621                                             CCState &State) const {
1622   if (!ByVal) {
1623     if (State.FreeRegs) {
1624       --State.FreeRegs; // Non-byval indirects just use one pointer.
1625       if (!IsMCUABI)
1626         return getNaturalAlignIndirectInReg(Ty);
1627     }
1628     return getNaturalAlignIndirect(Ty, false);
1629   }
1630 
1631   // Compute the byval alignment.
1632   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1633   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1634   if (StackAlign == 0)
1635     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1636 
1637   // If the stack alignment is less than the type alignment, realign the
1638   // argument.
1639   bool Realign = TypeAlign > StackAlign;
1640   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1641                                  /*ByVal=*/true, Realign);
1642 }
1643 
1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1645   const Type *T = isSingleElementStruct(Ty, getContext());
1646   if (!T)
1647     T = Ty.getTypePtr();
1648 
1649   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1650     BuiltinType::Kind K = BT->getKind();
1651     if (K == BuiltinType::Float || K == BuiltinType::Double)
1652       return Float;
1653   }
1654   return Integer;
1655 }
1656 
1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1658   if (!IsSoftFloatABI) {
1659     Class C = classify(Ty);
1660     if (C == Float)
1661       return false;
1662   }
1663 
1664   unsigned Size = getContext().getTypeSize(Ty);
1665   unsigned SizeInRegs = (Size + 31) / 32;
1666 
1667   if (SizeInRegs == 0)
1668     return false;
1669 
1670   if (!IsMCUABI) {
1671     if (SizeInRegs > State.FreeRegs) {
1672       State.FreeRegs = 0;
1673       return false;
1674     }
1675   } else {
1676     // The MCU psABI allows passing parameters in-reg even if there are
1677     // earlier parameters that are passed on the stack. Also,
1678     // it does not allow passing >8-byte structs in-register,
1679     // even if there are 3 free registers available.
1680     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1681       return false;
1682   }
1683 
1684   State.FreeRegs -= SizeInRegs;
1685   return true;
1686 }
1687 
1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1689                                              bool &InReg,
1690                                              bool &NeedsPadding) const {
1691   // On Windows, aggregates other than HFAs are never passed in registers, and
1692   // they do not consume register slots. Homogenous floating-point aggregates
1693   // (HFAs) have already been dealt with at this point.
1694   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1695     return false;
1696 
1697   NeedsPadding = false;
1698   InReg = !IsMCUABI;
1699 
1700   if (!updateFreeRegs(Ty, State))
1701     return false;
1702 
1703   if (IsMCUABI)
1704     return true;
1705 
1706   if (State.CC == llvm::CallingConv::X86_FastCall ||
1707       State.CC == llvm::CallingConv::X86_VectorCall ||
1708       State.CC == llvm::CallingConv::X86_RegCall) {
1709     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1710       NeedsPadding = true;
1711 
1712     return false;
1713   }
1714 
1715   return true;
1716 }
1717 
1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1719   if (!updateFreeRegs(Ty, State))
1720     return false;
1721 
1722   if (IsMCUABI)
1723     return false;
1724 
1725   if (State.CC == llvm::CallingConv::X86_FastCall ||
1726       State.CC == llvm::CallingConv::X86_VectorCall ||
1727       State.CC == llvm::CallingConv::X86_RegCall) {
1728     if (getContext().getTypeSize(Ty) > 32)
1729       return false;
1730 
1731     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1732         Ty->isReferenceType());
1733   }
1734 
1735   return true;
1736 }
1737 
1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1739   // Vectorcall x86 works subtly different than in x64, so the format is
1740   // a bit different than the x64 version.  First, all vector types (not HVAs)
1741   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1742   // This differs from the x64 implementation, where the first 6 by INDEX get
1743   // registers.
1744   // In the second pass over the arguments, HVAs are passed in the remaining
1745   // vector registers if possible, or indirectly by address. The address will be
1746   // passed in ECX/EDX if available. Any other arguments are passed according to
1747   // the usual fastcall rules.
1748   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1749   for (int I = 0, E = Args.size(); I < E; ++I) {
1750     const Type *Base = nullptr;
1751     uint64_t NumElts = 0;
1752     const QualType &Ty = Args[I].type;
1753     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1754         isHomogeneousAggregate(Ty, Base, NumElts)) {
1755       if (State.FreeSSERegs >= NumElts) {
1756         State.FreeSSERegs -= NumElts;
1757         Args[I].info = ABIArgInfo::getDirectInReg();
1758         State.IsPreassigned.set(I);
1759       }
1760     }
1761   }
1762 }
1763 
1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1765                                                CCState &State) const {
1766   // FIXME: Set alignment on indirect arguments.
1767   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1768   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1769   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1770 
1771   Ty = useFirstFieldIfTransparentUnion(Ty);
1772   TypeInfo TI = getContext().getTypeInfo(Ty);
1773 
1774   // Check with the C++ ABI first.
1775   const RecordType *RT = Ty->getAs<RecordType>();
1776   if (RT) {
1777     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1778     if (RAA == CGCXXABI::RAA_Indirect) {
1779       return getIndirectResult(Ty, false, State);
1780     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1781       // The field index doesn't matter, we'll fix it up later.
1782       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1783     }
1784   }
1785 
1786   // Regcall uses the concept of a homogenous vector aggregate, similar
1787   // to other targets.
1788   const Type *Base = nullptr;
1789   uint64_t NumElts = 0;
1790   if ((IsRegCall || IsVectorCall) &&
1791       isHomogeneousAggregate(Ty, Base, NumElts)) {
1792     if (State.FreeSSERegs >= NumElts) {
1793       State.FreeSSERegs -= NumElts;
1794 
1795       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1796       // does.
1797       if (IsVectorCall)
1798         return getDirectX86Hva();
1799 
1800       if (Ty->isBuiltinType() || Ty->isVectorType())
1801         return ABIArgInfo::getDirect();
1802       return ABIArgInfo::getExpand();
1803     }
1804     return getIndirectResult(Ty, /*ByVal=*/false, State);
1805   }
1806 
1807   if (isAggregateTypeForABI(Ty)) {
1808     // Structures with flexible arrays are always indirect.
1809     // FIXME: This should not be byval!
1810     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1811       return getIndirectResult(Ty, true, State);
1812 
1813     // Ignore empty structs/unions on non-Windows.
1814     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1815       return ABIArgInfo::getIgnore();
1816 
1817     llvm::LLVMContext &LLVMContext = getVMContext();
1818     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1819     bool NeedsPadding = false;
1820     bool InReg;
1821     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1822       unsigned SizeInRegs = (TI.Width + 31) / 32;
1823       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1824       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1825       if (InReg)
1826         return ABIArgInfo::getDirectInReg(Result);
1827       else
1828         return ABIArgInfo::getDirect(Result);
1829     }
1830     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1831 
1832     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1833     // added in MSVC 2015.
1834     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1835       return getIndirectResult(Ty, /*ByVal=*/false, State);
1836 
1837     // Expand small (<= 128-bit) record types when we know that the stack layout
1838     // of those arguments will match the struct. This is important because the
1839     // LLVM backend isn't smart enough to remove byval, which inhibits many
1840     // optimizations.
1841     // Don't do this for the MCU if there are still free integer registers
1842     // (see X86_64 ABI for full explanation).
1843     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1844         canExpandIndirectArgument(Ty))
1845       return ABIArgInfo::getExpandWithPadding(
1846           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1847 
1848     return getIndirectResult(Ty, true, State);
1849   }
1850 
1851   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1852     // On Windows, vectors are passed directly if registers are available, or
1853     // indirectly if not. This avoids the need to align argument memory. Pass
1854     // user-defined vector types larger than 512 bits indirectly for simplicity.
1855     if (IsWin32StructABI) {
1856       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1857         --State.FreeSSERegs;
1858         return ABIArgInfo::getDirectInReg();
1859       }
1860       return getIndirectResult(Ty, /*ByVal=*/false, State);
1861     }
1862 
1863     // On Darwin, some vectors are passed in memory, we handle this by passing
1864     // it as an i8/i16/i32/i64.
1865     if (IsDarwinVectorABI) {
1866       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1867           (TI.Width == 64 && VT->getNumElements() == 1))
1868         return ABIArgInfo::getDirect(
1869             llvm::IntegerType::get(getVMContext(), TI.Width));
1870     }
1871 
1872     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1873       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1874 
1875     return ABIArgInfo::getDirect();
1876   }
1877 
1878 
1879   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1880     Ty = EnumTy->getDecl()->getIntegerType();
1881 
1882   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1883 
1884   if (isPromotableIntegerTypeForABI(Ty)) {
1885     if (InReg)
1886       return ABIArgInfo::getExtendInReg(Ty);
1887     return ABIArgInfo::getExtend(Ty);
1888   }
1889 
1890   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1891     if (EIT->getNumBits() <= 64) {
1892       if (InReg)
1893         return ABIArgInfo::getDirectInReg();
1894       return ABIArgInfo::getDirect();
1895     }
1896     return getIndirectResult(Ty, /*ByVal=*/false, State);
1897   }
1898 
1899   if (InReg)
1900     return ABIArgInfo::getDirectInReg();
1901   return ABIArgInfo::getDirect();
1902 }
1903 
1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1905   CCState State(FI);
1906   if (IsMCUABI)
1907     State.FreeRegs = 3;
1908   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1909     State.FreeRegs = 2;
1910     State.FreeSSERegs = 3;
1911   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1912     State.FreeRegs = 2;
1913     State.FreeSSERegs = 6;
1914   } else if (FI.getHasRegParm())
1915     State.FreeRegs = FI.getRegParm();
1916   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1917     State.FreeRegs = 5;
1918     State.FreeSSERegs = 8;
1919   } else if (IsWin32StructABI) {
1920     // Since MSVC 2015, the first three SSE vectors have been passed in
1921     // registers. The rest are passed indirectly.
1922     State.FreeRegs = DefaultNumRegisterParameters;
1923     State.FreeSSERegs = 3;
1924   } else
1925     State.FreeRegs = DefaultNumRegisterParameters;
1926 
1927   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1928     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1929   } else if (FI.getReturnInfo().isIndirect()) {
1930     // The C++ ABI is not aware of register usage, so we have to check if the
1931     // return value was sret and put it in a register ourselves if appropriate.
1932     if (State.FreeRegs) {
1933       --State.FreeRegs;  // The sret parameter consumes a register.
1934       if (!IsMCUABI)
1935         FI.getReturnInfo().setInReg(true);
1936     }
1937   }
1938 
1939   // The chain argument effectively gives us another free register.
1940   if (FI.isChainCall())
1941     ++State.FreeRegs;
1942 
1943   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1944   // arguments to XMM registers as available.
1945   if (State.CC == llvm::CallingConv::X86_VectorCall)
1946     runVectorCallFirstPass(FI, State);
1947 
1948   bool UsedInAlloca = false;
1949   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1950   for (int I = 0, E = Args.size(); I < E; ++I) {
1951     // Skip arguments that have already been assigned.
1952     if (State.IsPreassigned.test(I))
1953       continue;
1954 
1955     Args[I].info = classifyArgumentType(Args[I].type, State);
1956     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1957   }
1958 
1959   // If we needed to use inalloca for any argument, do a second pass and rewrite
1960   // all the memory arguments to use inalloca.
1961   if (UsedInAlloca)
1962     rewriteWithInAlloca(FI);
1963 }
1964 
1965 void
1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1967                                    CharUnits &StackOffset, ABIArgInfo &Info,
1968                                    QualType Type) const {
1969   // Arguments are always 4-byte-aligned.
1970   CharUnits WordSize = CharUnits::fromQuantity(4);
1971   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1972 
1973   // sret pointers and indirect things will require an extra pointer
1974   // indirection, unless they are byval. Most things are byval, and will not
1975   // require this indirection.
1976   bool IsIndirect = false;
1977   if (Info.isIndirect() && !Info.getIndirectByVal())
1978     IsIndirect = true;
1979   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1980   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1981   if (IsIndirect)
1982     LLTy = LLTy->getPointerTo(0);
1983   FrameFields.push_back(LLTy);
1984   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1985 
1986   // Insert padding bytes to respect alignment.
1987   CharUnits FieldEnd = StackOffset;
1988   StackOffset = FieldEnd.alignTo(WordSize);
1989   if (StackOffset != FieldEnd) {
1990     CharUnits NumBytes = StackOffset - FieldEnd;
1991     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1992     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1993     FrameFields.push_back(Ty);
1994   }
1995 }
1996 
1997 static bool isArgInAlloca(const ABIArgInfo &Info) {
1998   // Leave ignored and inreg arguments alone.
1999   switch (Info.getKind()) {
2000   case ABIArgInfo::InAlloca:
2001     return true;
2002   case ABIArgInfo::Ignore:
2003   case ABIArgInfo::IndirectAliased:
2004     return false;
2005   case ABIArgInfo::Indirect:
2006   case ABIArgInfo::Direct:
2007   case ABIArgInfo::Extend:
2008     return !Info.getInReg();
2009   case ABIArgInfo::Expand:
2010   case ABIArgInfo::CoerceAndExpand:
2011     // These are aggregate types which are never passed in registers when
2012     // inalloca is involved.
2013     return true;
2014   }
2015   llvm_unreachable("invalid enum");
2016 }
2017 
2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2019   assert(IsWin32StructABI && "inalloca only supported on win32");
2020 
2021   // Build a packed struct type for all of the arguments in memory.
2022   SmallVector<llvm::Type *, 6> FrameFields;
2023 
2024   // The stack alignment is always 4.
2025   CharUnits StackAlign = CharUnits::fromQuantity(4);
2026 
2027   CharUnits StackOffset;
2028   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2029 
2030   // Put 'this' into the struct before 'sret', if necessary.
2031   bool IsThisCall =
2032       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2033   ABIArgInfo &Ret = FI.getReturnInfo();
2034   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2035       isArgInAlloca(I->info)) {
2036     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2037     ++I;
2038   }
2039 
2040   // Put the sret parameter into the inalloca struct if it's in memory.
2041   if (Ret.isIndirect() && !Ret.getInReg()) {
2042     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2043     // On Windows, the hidden sret parameter is always returned in eax.
2044     Ret.setInAllocaSRet(IsWin32StructABI);
2045   }
2046 
2047   // Skip the 'this' parameter in ecx.
2048   if (IsThisCall)
2049     ++I;
2050 
2051   // Put arguments passed in memory into the struct.
2052   for (; I != E; ++I) {
2053     if (isArgInAlloca(I->info))
2054       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2055   }
2056 
2057   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2058                                         /*isPacked=*/true),
2059                   StackAlign);
2060 }
2061 
2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2063                                  Address VAListAddr, QualType Ty) const {
2064 
2065   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2066 
2067   // x86-32 changes the alignment of certain arguments on the stack.
2068   //
2069   // Just messing with TypeInfo like this works because we never pass
2070   // anything indirectly.
2071   TypeInfo.Align = CharUnits::fromQuantity(
2072                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2073 
2074   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2075                           TypeInfo, CharUnits::fromQuantity(4),
2076                           /*AllowHigherAlign*/ true);
2077 }
2078 
2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2080     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2081   assert(Triple.getArch() == llvm::Triple::x86);
2082 
2083   switch (Opts.getStructReturnConvention()) {
2084   case CodeGenOptions::SRCK_Default:
2085     break;
2086   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2087     return false;
2088   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2089     return true;
2090   }
2091 
2092   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2093     return true;
2094 
2095   switch (Triple.getOS()) {
2096   case llvm::Triple::DragonFly:
2097   case llvm::Triple::FreeBSD:
2098   case llvm::Triple::OpenBSD:
2099   case llvm::Triple::Win32:
2100     return true;
2101   default:
2102     return false;
2103   }
2104 }
2105 
2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2107                                  CodeGen::CodeGenModule &CGM) {
2108   if (!FD->hasAttr<AnyX86InterruptAttr>())
2109     return;
2110 
2111   llvm::Function *Fn = cast<llvm::Function>(GV);
2112   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2113   if (FD->getNumParams() == 0)
2114     return;
2115 
2116   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2117   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2118   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2119     Fn->getContext(), ByValTy);
2120   Fn->addParamAttr(0, NewAttr);
2121 }
2122 
2123 void X86_32TargetCodeGenInfo::setTargetAttributes(
2124     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2125   if (GV->isDeclaration())
2126     return;
2127   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2128     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2129       llvm::Function *Fn = cast<llvm::Function>(GV);
2130       Fn->addFnAttr("stackrealign");
2131     }
2132 
2133     addX86InterruptAttrs(FD, GV, CGM);
2134   }
2135 }
2136 
2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2138                                                CodeGen::CodeGenFunction &CGF,
2139                                                llvm::Value *Address) const {
2140   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2141 
2142   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2143 
2144   // 0-7 are the eight integer registers;  the order is different
2145   //   on Darwin (for EH), but the range is the same.
2146   // 8 is %eip.
2147   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2148 
2149   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2150     // 12-16 are st(0..4).  Not sure why we stop at 4.
2151     // These have size 16, which is sizeof(long double) on
2152     // platforms with 8-byte alignment for that type.
2153     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2154     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2155 
2156   } else {
2157     // 9 is %eflags, which doesn't get a size on Darwin for some
2158     // reason.
2159     Builder.CreateAlignedStore(
2160         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2161                                CharUnits::One());
2162 
2163     // 11-16 are st(0..5).  Not sure why we stop at 5.
2164     // These have size 12, which is sizeof(long double) on
2165     // platforms with 4-byte alignment for that type.
2166     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2167     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2168   }
2169 
2170   return false;
2171 }
2172 
2173 //===----------------------------------------------------------------------===//
2174 // X86-64 ABI Implementation
2175 //===----------------------------------------------------------------------===//
2176 
2177 
2178 namespace {
2179 /// The AVX ABI level for X86 targets.
2180 enum class X86AVXABILevel {
2181   None,
2182   AVX,
2183   AVX512
2184 };
2185 
2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2188   switch (AVXLevel) {
2189   case X86AVXABILevel::AVX512:
2190     return 512;
2191   case X86AVXABILevel::AVX:
2192     return 256;
2193   case X86AVXABILevel::None:
2194     return 128;
2195   }
2196   llvm_unreachable("Unknown AVXLevel");
2197 }
2198 
2199 /// X86_64ABIInfo - The X86_64 ABI information.
2200 class X86_64ABIInfo : public SwiftABIInfo {
2201   enum Class {
2202     Integer = 0,
2203     SSE,
2204     SSEUp,
2205     X87,
2206     X87Up,
2207     ComplexX87,
2208     NoClass,
2209     Memory
2210   };
2211 
2212   /// merge - Implement the X86_64 ABI merging algorithm.
2213   ///
2214   /// Merge an accumulating classification \arg Accum with a field
2215   /// classification \arg Field.
2216   ///
2217   /// \param Accum - The accumulating classification. This should
2218   /// always be either NoClass or the result of a previous merge
2219   /// call. In addition, this should never be Memory (the caller
2220   /// should just return Memory for the aggregate).
2221   static Class merge(Class Accum, Class Field);
2222 
2223   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2224   ///
2225   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2226   /// final MEMORY or SSE classes when necessary.
2227   ///
2228   /// \param AggregateSize - The size of the current aggregate in
2229   /// the classification process.
2230   ///
2231   /// \param Lo - The classification for the parts of the type
2232   /// residing in the low word of the containing object.
2233   ///
2234   /// \param Hi - The classification for the parts of the type
2235   /// residing in the higher words of the containing object.
2236   ///
2237   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2238 
2239   /// classify - Determine the x86_64 register classes in which the
2240   /// given type T should be passed.
2241   ///
2242   /// \param Lo - The classification for the parts of the type
2243   /// residing in the low word of the containing object.
2244   ///
2245   /// \param Hi - The classification for the parts of the type
2246   /// residing in the high word of the containing object.
2247   ///
2248   /// \param OffsetBase - The bit offset of this type in the
2249   /// containing object.  Some parameters are classified different
2250   /// depending on whether they straddle an eightbyte boundary.
2251   ///
2252   /// \param isNamedArg - Whether the argument in question is a "named"
2253   /// argument, as used in AMD64-ABI 3.5.7.
2254   ///
2255   /// If a word is unused its result will be NoClass; if a type should
2256   /// be passed in Memory then at least the classification of \arg Lo
2257   /// will be Memory.
2258   ///
2259   /// The \arg Lo class will be NoClass iff the argument is ignored.
2260   ///
2261   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2262   /// also be ComplexX87.
2263   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2264                 bool isNamedArg) const;
2265 
2266   llvm::Type *GetByteVectorType(QualType Ty) const;
2267   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2268                                  unsigned IROffset, QualType SourceTy,
2269                                  unsigned SourceOffset) const;
2270   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2271                                      unsigned IROffset, QualType SourceTy,
2272                                      unsigned SourceOffset) const;
2273 
2274   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2275   /// such that the argument will be returned in memory.
2276   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2277 
2278   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2279   /// such that the argument will be passed in memory.
2280   ///
2281   /// \param freeIntRegs - The number of free integer registers remaining
2282   /// available.
2283   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2284 
2285   ABIArgInfo classifyReturnType(QualType RetTy) const;
2286 
2287   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2288                                   unsigned &neededInt, unsigned &neededSSE,
2289                                   bool isNamedArg) const;
2290 
2291   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2292                                        unsigned &NeededSSE) const;
2293 
2294   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2295                                            unsigned &NeededSSE) const;
2296 
2297   bool IsIllegalVectorType(QualType Ty) const;
2298 
2299   /// The 0.98 ABI revision clarified a lot of ambiguities,
2300   /// unfortunately in ways that were not always consistent with
2301   /// certain previous compilers.  In particular, platforms which
2302   /// required strict binary compatibility with older versions of GCC
2303   /// may need to exempt themselves.
2304   bool honorsRevision0_98() const {
2305     return !getTarget().getTriple().isOSDarwin();
2306   }
2307 
2308   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2309   /// classify it as INTEGER (for compatibility with older clang compilers).
2310   bool classifyIntegerMMXAsSSE() const {
2311     // Clang <= 3.8 did not do this.
2312     if (getContext().getLangOpts().getClangABICompat() <=
2313         LangOptions::ClangABI::Ver3_8)
2314       return false;
2315 
2316     const llvm::Triple &Triple = getTarget().getTriple();
2317     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2318       return false;
2319     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2320       return false;
2321     return true;
2322   }
2323 
2324   // GCC classifies vectors of __int128 as memory.
2325   bool passInt128VectorsInMem() const {
2326     // Clang <= 9.0 did not do this.
2327     if (getContext().getLangOpts().getClangABICompat() <=
2328         LangOptions::ClangABI::Ver9)
2329       return false;
2330 
2331     const llvm::Triple &T = getTarget().getTriple();
2332     return T.isOSLinux() || T.isOSNetBSD();
2333   }
2334 
2335   X86AVXABILevel AVXLevel;
2336   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2337   // 64-bit hardware.
2338   bool Has64BitPointers;
2339 
2340 public:
2341   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2342       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2343       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2344   }
2345 
2346   bool isPassedUsingAVXType(QualType type) const {
2347     unsigned neededInt, neededSSE;
2348     // The freeIntRegs argument doesn't matter here.
2349     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2350                                            /*isNamedArg*/true);
2351     if (info.isDirect()) {
2352       llvm::Type *ty = info.getCoerceToType();
2353       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2354         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2355     }
2356     return false;
2357   }
2358 
2359   void computeInfo(CGFunctionInfo &FI) const override;
2360 
2361   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2362                     QualType Ty) const override;
2363   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2364                       QualType Ty) const override;
2365 
2366   bool has64BitPointers() const {
2367     return Has64BitPointers;
2368   }
2369 
2370   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2371                                     bool asReturnValue) const override {
2372     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2373   }
2374   bool isSwiftErrorInRegister() const override {
2375     return true;
2376   }
2377 };
2378 
2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2380 class WinX86_64ABIInfo : public SwiftABIInfo {
2381 public:
2382   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2383       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2384         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2385 
2386   void computeInfo(CGFunctionInfo &FI) const override;
2387 
2388   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2389                     QualType Ty) const override;
2390 
2391   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2392     // FIXME: Assumes vectorcall is in use.
2393     return isX86VectorTypeForVectorCall(getContext(), Ty);
2394   }
2395 
2396   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2397                                          uint64_t NumMembers) const override {
2398     // FIXME: Assumes vectorcall is in use.
2399     return isX86VectorCallAggregateSmallEnough(NumMembers);
2400   }
2401 
2402   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2403                                     bool asReturnValue) const override {
2404     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2405   }
2406 
2407   bool isSwiftErrorInRegister() const override {
2408     return true;
2409   }
2410 
2411 private:
2412   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2413                       bool IsVectorCall, bool IsRegCall) const;
2414   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2415                                            const ABIArgInfo &current) const;
2416 
2417   X86AVXABILevel AVXLevel;
2418 
2419   bool IsMingw64;
2420 };
2421 
2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2423 public:
2424   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2425       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2426 
2427   const X86_64ABIInfo &getABIInfo() const {
2428     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2429   }
2430 
2431   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2432   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2433   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2434 
2435   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2436     return 7;
2437   }
2438 
2439   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2440                                llvm::Value *Address) const override {
2441     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2442 
2443     // 0-15 are the 16 integer registers.
2444     // 16 is %rip.
2445     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2446     return false;
2447   }
2448 
2449   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2450                                   StringRef Constraint,
2451                                   llvm::Type* Ty) const override {
2452     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2453   }
2454 
2455   bool isNoProtoCallVariadic(const CallArgList &args,
2456                              const FunctionNoProtoType *fnType) const override {
2457     // The default CC on x86-64 sets %al to the number of SSA
2458     // registers used, and GCC sets this when calling an unprototyped
2459     // function, so we override the default behavior.  However, don't do
2460     // that when AVX types are involved: the ABI explicitly states it is
2461     // undefined, and it doesn't work in practice because of how the ABI
2462     // defines varargs anyway.
2463     if (fnType->getCallConv() == CC_C) {
2464       bool HasAVXType = false;
2465       for (CallArgList::const_iterator
2466              it = args.begin(), ie = args.end(); it != ie; ++it) {
2467         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2468           HasAVXType = true;
2469           break;
2470         }
2471       }
2472 
2473       if (!HasAVXType)
2474         return true;
2475     }
2476 
2477     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2478   }
2479 
2480   llvm::Constant *
2481   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2482     unsigned Sig = (0xeb << 0) | // jmp rel8
2483                    (0x06 << 8) | //           .+0x08
2484                    ('v' << 16) |
2485                    ('2' << 24);
2486     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2487   }
2488 
2489   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2490                            CodeGen::CodeGenModule &CGM) const override {
2491     if (GV->isDeclaration())
2492       return;
2493     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2494       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2495         llvm::Function *Fn = cast<llvm::Function>(GV);
2496         Fn->addFnAttr("stackrealign");
2497       }
2498 
2499       addX86InterruptAttrs(FD, GV, CGM);
2500     }
2501   }
2502 
2503   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2504                             const FunctionDecl *Caller,
2505                             const FunctionDecl *Callee,
2506                             const CallArgList &Args) const override;
2507 };
2508 
2509 static void initFeatureMaps(const ASTContext &Ctx,
2510                             llvm::StringMap<bool> &CallerMap,
2511                             const FunctionDecl *Caller,
2512                             llvm::StringMap<bool> &CalleeMap,
2513                             const FunctionDecl *Callee) {
2514   if (CalleeMap.empty() && CallerMap.empty()) {
2515     // The caller is potentially nullptr in the case where the call isn't in a
2516     // function.  In this case, the getFunctionFeatureMap ensures we just get
2517     // the TU level setting (since it cannot be modified by 'target'..
2518     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2519     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2520   }
2521 }
2522 
2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2524                                  SourceLocation CallLoc,
2525                                  const llvm::StringMap<bool> &CallerMap,
2526                                  const llvm::StringMap<bool> &CalleeMap,
2527                                  QualType Ty, StringRef Feature,
2528                                  bool IsArgument) {
2529   bool CallerHasFeat = CallerMap.lookup(Feature);
2530   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2531   if (!CallerHasFeat && !CalleeHasFeat)
2532     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2533            << IsArgument << Ty << Feature;
2534 
2535   // Mixing calling conventions here is very clearly an error.
2536   if (!CallerHasFeat || !CalleeHasFeat)
2537     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2538            << IsArgument << Ty << Feature;
2539 
2540   // Else, both caller and callee have the required feature, so there is no need
2541   // to diagnose.
2542   return false;
2543 }
2544 
2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2546                           SourceLocation CallLoc,
2547                           const llvm::StringMap<bool> &CallerMap,
2548                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2549                           bool IsArgument) {
2550   uint64_t Size = Ctx.getTypeSize(Ty);
2551   if (Size > 256)
2552     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2553                                 "avx512f", IsArgument);
2554 
2555   if (Size > 128)
2556     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2557                                 IsArgument);
2558 
2559   return false;
2560 }
2561 
2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2563     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2564     const FunctionDecl *Callee, const CallArgList &Args) const {
2565   llvm::StringMap<bool> CallerMap;
2566   llvm::StringMap<bool> CalleeMap;
2567   unsigned ArgIndex = 0;
2568 
2569   // We need to loop through the actual call arguments rather than the the
2570   // function's parameters, in case this variadic.
2571   for (const CallArg &Arg : Args) {
2572     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2573     // additionally changes how vectors >256 in size are passed. Like GCC, we
2574     // warn when a function is called with an argument where this will change.
2575     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2576     // the caller and callee features are mismatched.
2577     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2578     // change its ABI with attribute-target after this call.
2579     if (Arg.getType()->isVectorType() &&
2580         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2581       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2582       QualType Ty = Arg.getType();
2583       // The CallArg seems to have desugared the type already, so for clearer
2584       // diagnostics, replace it with the type in the FunctionDecl if possible.
2585       if (ArgIndex < Callee->getNumParams())
2586         Ty = Callee->getParamDecl(ArgIndex)->getType();
2587 
2588       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2589                         CalleeMap, Ty, /*IsArgument*/ true))
2590         return;
2591     }
2592     ++ArgIndex;
2593   }
2594 
2595   // Check return always, as we don't have a good way of knowing in codegen
2596   // whether this value is used, tail-called, etc.
2597   if (Callee->getReturnType()->isVectorType() &&
2598       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2599     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2600     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2601                   CalleeMap, Callee->getReturnType(),
2602                   /*IsArgument*/ false);
2603   }
2604 }
2605 
2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2607   // If the argument does not end in .lib, automatically add the suffix.
2608   // If the argument contains a space, enclose it in quotes.
2609   // This matches the behavior of MSVC.
2610   bool Quote = (Lib.find(' ') != StringRef::npos);
2611   std::string ArgStr = Quote ? "\"" : "";
2612   ArgStr += Lib;
2613   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2614     ArgStr += ".lib";
2615   ArgStr += Quote ? "\"" : "";
2616   return ArgStr;
2617 }
2618 
2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2620 public:
2621   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2622         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2623         unsigned NumRegisterParameters)
2624     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2625         Win32StructABI, NumRegisterParameters, false) {}
2626 
2627   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2628                            CodeGen::CodeGenModule &CGM) const override;
2629 
2630   void getDependentLibraryOption(llvm::StringRef Lib,
2631                                  llvm::SmallString<24> &Opt) const override {
2632     Opt = "/DEFAULTLIB:";
2633     Opt += qualifyWindowsLibrary(Lib);
2634   }
2635 
2636   void getDetectMismatchOption(llvm::StringRef Name,
2637                                llvm::StringRef Value,
2638                                llvm::SmallString<32> &Opt) const override {
2639     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2640   }
2641 };
2642 
2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2644                                           CodeGen::CodeGenModule &CGM) {
2645   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2646 
2647     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2648       Fn->addFnAttr("stack-probe-size",
2649                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2650     if (CGM.getCodeGenOpts().NoStackArgProbe)
2651       Fn->addFnAttr("no-stack-arg-probe");
2652   }
2653 }
2654 
2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2656     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2657   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2658   if (GV->isDeclaration())
2659     return;
2660   addStackProbeTargetAttributes(D, GV, CGM);
2661 }
2662 
2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2664 public:
2665   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2666                              X86AVXABILevel AVXLevel)
2667       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2668 
2669   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2670                            CodeGen::CodeGenModule &CGM) const override;
2671 
2672   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2673     return 7;
2674   }
2675 
2676   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2677                                llvm::Value *Address) const override {
2678     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2679 
2680     // 0-15 are the 16 integer registers.
2681     // 16 is %rip.
2682     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2683     return false;
2684   }
2685 
2686   void getDependentLibraryOption(llvm::StringRef Lib,
2687                                  llvm::SmallString<24> &Opt) const override {
2688     Opt = "/DEFAULTLIB:";
2689     Opt += qualifyWindowsLibrary(Lib);
2690   }
2691 
2692   void getDetectMismatchOption(llvm::StringRef Name,
2693                                llvm::StringRef Value,
2694                                llvm::SmallString<32> &Opt) const override {
2695     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2696   }
2697 };
2698 
2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2700     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2701   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2702   if (GV->isDeclaration())
2703     return;
2704   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2705     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2706       llvm::Function *Fn = cast<llvm::Function>(GV);
2707       Fn->addFnAttr("stackrealign");
2708     }
2709 
2710     addX86InterruptAttrs(FD, GV, CGM);
2711   }
2712 
2713   addStackProbeTargetAttributes(D, GV, CGM);
2714 }
2715 }
2716 
2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2718                               Class &Hi) const {
2719   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2720   //
2721   // (a) If one of the classes is Memory, the whole argument is passed in
2722   //     memory.
2723   //
2724   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2725   //     memory.
2726   //
2727   // (c) If the size of the aggregate exceeds two eightbytes and the first
2728   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2729   //     argument is passed in memory. NOTE: This is necessary to keep the
2730   //     ABI working for processors that don't support the __m256 type.
2731   //
2732   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2733   //
2734   // Some of these are enforced by the merging logic.  Others can arise
2735   // only with unions; for example:
2736   //   union { _Complex double; unsigned; }
2737   //
2738   // Note that clauses (b) and (c) were added in 0.98.
2739   //
2740   if (Hi == Memory)
2741     Lo = Memory;
2742   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2743     Lo = Memory;
2744   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2745     Lo = Memory;
2746   if (Hi == SSEUp && Lo != SSE)
2747     Hi = SSE;
2748 }
2749 
2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2751   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2752   // classified recursively so that always two fields are
2753   // considered. The resulting class is calculated according to
2754   // the classes of the fields in the eightbyte:
2755   //
2756   // (a) If both classes are equal, this is the resulting class.
2757   //
2758   // (b) If one of the classes is NO_CLASS, the resulting class is
2759   // the other class.
2760   //
2761   // (c) If one of the classes is MEMORY, the result is the MEMORY
2762   // class.
2763   //
2764   // (d) If one of the classes is INTEGER, the result is the
2765   // INTEGER.
2766   //
2767   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2768   // MEMORY is used as class.
2769   //
2770   // (f) Otherwise class SSE is used.
2771 
2772   // Accum should never be memory (we should have returned) or
2773   // ComplexX87 (because this cannot be passed in a structure).
2774   assert((Accum != Memory && Accum != ComplexX87) &&
2775          "Invalid accumulated classification during merge.");
2776   if (Accum == Field || Field == NoClass)
2777     return Accum;
2778   if (Field == Memory)
2779     return Memory;
2780   if (Accum == NoClass)
2781     return Field;
2782   if (Accum == Integer || Field == Integer)
2783     return Integer;
2784   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2785       Accum == X87 || Accum == X87Up)
2786     return Memory;
2787   return SSE;
2788 }
2789 
2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2791                              Class &Lo, Class &Hi, bool isNamedArg) const {
2792   // FIXME: This code can be simplified by introducing a simple value class for
2793   // Class pairs with appropriate constructor methods for the various
2794   // situations.
2795 
2796   // FIXME: Some of the split computations are wrong; unaligned vectors
2797   // shouldn't be passed in registers for example, so there is no chance they
2798   // can straddle an eightbyte. Verify & simplify.
2799 
2800   Lo = Hi = NoClass;
2801 
2802   Class &Current = OffsetBase < 64 ? Lo : Hi;
2803   Current = Memory;
2804 
2805   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2806     BuiltinType::Kind k = BT->getKind();
2807 
2808     if (k == BuiltinType::Void) {
2809       Current = NoClass;
2810     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2811       Lo = Integer;
2812       Hi = Integer;
2813     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2814       Current = Integer;
2815     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2816       Current = SSE;
2817     } else if (k == BuiltinType::LongDouble) {
2818       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2819       if (LDF == &llvm::APFloat::IEEEquad()) {
2820         Lo = SSE;
2821         Hi = SSEUp;
2822       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2823         Lo = X87;
2824         Hi = X87Up;
2825       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2826         Current = SSE;
2827       } else
2828         llvm_unreachable("unexpected long double representation!");
2829     }
2830     // FIXME: _Decimal32 and _Decimal64 are SSE.
2831     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2832     return;
2833   }
2834 
2835   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2836     // Classify the underlying integer type.
2837     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2838     return;
2839   }
2840 
2841   if (Ty->hasPointerRepresentation()) {
2842     Current = Integer;
2843     return;
2844   }
2845 
2846   if (Ty->isMemberPointerType()) {
2847     if (Ty->isMemberFunctionPointerType()) {
2848       if (Has64BitPointers) {
2849         // If Has64BitPointers, this is an {i64, i64}, so classify both
2850         // Lo and Hi now.
2851         Lo = Hi = Integer;
2852       } else {
2853         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2854         // straddles an eightbyte boundary, Hi should be classified as well.
2855         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2856         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2857         if (EB_FuncPtr != EB_ThisAdj) {
2858           Lo = Hi = Integer;
2859         } else {
2860           Current = Integer;
2861         }
2862       }
2863     } else {
2864       Current = Integer;
2865     }
2866     return;
2867   }
2868 
2869   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2870     uint64_t Size = getContext().getTypeSize(VT);
2871     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2872       // gcc passes the following as integer:
2873       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2874       // 2 bytes - <2 x char>, <1 x short>
2875       // 1 byte  - <1 x char>
2876       Current = Integer;
2877 
2878       // If this type crosses an eightbyte boundary, it should be
2879       // split.
2880       uint64_t EB_Lo = (OffsetBase) / 64;
2881       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2882       if (EB_Lo != EB_Hi)
2883         Hi = Lo;
2884     } else if (Size == 64) {
2885       QualType ElementType = VT->getElementType();
2886 
2887       // gcc passes <1 x double> in memory. :(
2888       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2889         return;
2890 
2891       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2892       // pass them as integer.  For platforms where clang is the de facto
2893       // platform compiler, we must continue to use integer.
2894       if (!classifyIntegerMMXAsSSE() &&
2895           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2896            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2897            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2898            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2899         Current = Integer;
2900       else
2901         Current = SSE;
2902 
2903       // If this type crosses an eightbyte boundary, it should be
2904       // split.
2905       if (OffsetBase && OffsetBase != 64)
2906         Hi = Lo;
2907     } else if (Size == 128 ||
2908                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2909       QualType ElementType = VT->getElementType();
2910 
2911       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2912       if (passInt128VectorsInMem() && Size != 128 &&
2913           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2914            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2915         return;
2916 
2917       // Arguments of 256-bits are split into four eightbyte chunks. The
2918       // least significant one belongs to class SSE and all the others to class
2919       // SSEUP. The original Lo and Hi design considers that types can't be
2920       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2921       // This design isn't correct for 256-bits, but since there're no cases
2922       // where the upper parts would need to be inspected, avoid adding
2923       // complexity and just consider Hi to match the 64-256 part.
2924       //
2925       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2926       // registers if they are "named", i.e. not part of the "..." of a
2927       // variadic function.
2928       //
2929       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2930       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2931       Lo = SSE;
2932       Hi = SSEUp;
2933     }
2934     return;
2935   }
2936 
2937   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2938     QualType ET = getContext().getCanonicalType(CT->getElementType());
2939 
2940     uint64_t Size = getContext().getTypeSize(Ty);
2941     if (ET->isIntegralOrEnumerationType()) {
2942       if (Size <= 64)
2943         Current = Integer;
2944       else if (Size <= 128)
2945         Lo = Hi = Integer;
2946     } else if (ET == getContext().FloatTy) {
2947       Current = SSE;
2948     } else if (ET == getContext().DoubleTy) {
2949       Lo = Hi = SSE;
2950     } else if (ET == getContext().LongDoubleTy) {
2951       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2952       if (LDF == &llvm::APFloat::IEEEquad())
2953         Current = Memory;
2954       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2955         Current = ComplexX87;
2956       else if (LDF == &llvm::APFloat::IEEEdouble())
2957         Lo = Hi = SSE;
2958       else
2959         llvm_unreachable("unexpected long double representation!");
2960     }
2961 
2962     // If this complex type crosses an eightbyte boundary then it
2963     // should be split.
2964     uint64_t EB_Real = (OffsetBase) / 64;
2965     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2966     if (Hi == NoClass && EB_Real != EB_Imag)
2967       Hi = Lo;
2968 
2969     return;
2970   }
2971 
2972   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2973     if (EITy->getNumBits() <= 64)
2974       Current = Integer;
2975     else if (EITy->getNumBits() <= 128)
2976       Lo = Hi = Integer;
2977     // Larger values need to get passed in memory.
2978     return;
2979   }
2980 
2981   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2982     // Arrays are treated like structures.
2983 
2984     uint64_t Size = getContext().getTypeSize(Ty);
2985 
2986     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2987     // than eight eightbytes, ..., it has class MEMORY.
2988     if (Size > 512)
2989       return;
2990 
2991     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2992     // fields, it has class MEMORY.
2993     //
2994     // Only need to check alignment of array base.
2995     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2996       return;
2997 
2998     // Otherwise implement simplified merge. We could be smarter about
2999     // this, but it isn't worth it and would be harder to verify.
3000     Current = NoClass;
3001     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3002     uint64_t ArraySize = AT->getSize().getZExtValue();
3003 
3004     // The only case a 256-bit wide vector could be used is when the array
3005     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3006     // to work for sizes wider than 128, early check and fallback to memory.
3007     //
3008     if (Size > 128 &&
3009         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3010       return;
3011 
3012     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3013       Class FieldLo, FieldHi;
3014       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3015       Lo = merge(Lo, FieldLo);
3016       Hi = merge(Hi, FieldHi);
3017       if (Lo == Memory || Hi == Memory)
3018         break;
3019     }
3020 
3021     postMerge(Size, Lo, Hi);
3022     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3023     return;
3024   }
3025 
3026   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3027     uint64_t Size = getContext().getTypeSize(Ty);
3028 
3029     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3030     // than eight eightbytes, ..., it has class MEMORY.
3031     if (Size > 512)
3032       return;
3033 
3034     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3035     // copy constructor or a non-trivial destructor, it is passed by invisible
3036     // reference.
3037     if (getRecordArgABI(RT, getCXXABI()))
3038       return;
3039 
3040     const RecordDecl *RD = RT->getDecl();
3041 
3042     // Assume variable sized types are passed in memory.
3043     if (RD->hasFlexibleArrayMember())
3044       return;
3045 
3046     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3047 
3048     // Reset Lo class, this will be recomputed.
3049     Current = NoClass;
3050 
3051     // If this is a C++ record, classify the bases first.
3052     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3053       for (const auto &I : CXXRD->bases()) {
3054         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3055                "Unexpected base class!");
3056         const auto *Base =
3057             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3058 
3059         // Classify this field.
3060         //
3061         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3062         // single eightbyte, each is classified separately. Each eightbyte gets
3063         // initialized to class NO_CLASS.
3064         Class FieldLo, FieldHi;
3065         uint64_t Offset =
3066           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3067         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3068         Lo = merge(Lo, FieldLo);
3069         Hi = merge(Hi, FieldHi);
3070         if (Lo == Memory || Hi == Memory) {
3071           postMerge(Size, Lo, Hi);
3072           return;
3073         }
3074       }
3075     }
3076 
3077     // Classify the fields one at a time, merging the results.
3078     unsigned idx = 0;
3079     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3080                                 LangOptions::ClangABI::Ver11 ||
3081                             getContext().getTargetInfo().getTriple().isPS4();
3082     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3083 
3084     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3085            i != e; ++i, ++idx) {
3086       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3087       bool BitField = i->isBitField();
3088 
3089       // Ignore padding bit-fields.
3090       if (BitField && i->isUnnamedBitfield())
3091         continue;
3092 
3093       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3094       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3095       //
3096       // The only case a 256-bit or a 512-bit wide vector could be used is when
3097       // the struct contains a single 256-bit or 512-bit element. Early check
3098       // and fallback to memory.
3099       //
3100       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3101       // than 128.
3102       if (Size > 128 &&
3103           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3104            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3105         Lo = Memory;
3106         postMerge(Size, Lo, Hi);
3107         return;
3108       }
3109       // Note, skip this test for bit-fields, see below.
3110       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3111         Lo = Memory;
3112         postMerge(Size, Lo, Hi);
3113         return;
3114       }
3115 
3116       // Classify this field.
3117       //
3118       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3119       // exceeds a single eightbyte, each is classified
3120       // separately. Each eightbyte gets initialized to class
3121       // NO_CLASS.
3122       Class FieldLo, FieldHi;
3123 
3124       // Bit-fields require special handling, they do not force the
3125       // structure to be passed in memory even if unaligned, and
3126       // therefore they can straddle an eightbyte.
3127       if (BitField) {
3128         assert(!i->isUnnamedBitfield());
3129         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3130         uint64_t Size = i->getBitWidthValue(getContext());
3131 
3132         uint64_t EB_Lo = Offset / 64;
3133         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3134 
3135         if (EB_Lo) {
3136           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3137           FieldLo = NoClass;
3138           FieldHi = Integer;
3139         } else {
3140           FieldLo = Integer;
3141           FieldHi = EB_Hi ? Integer : NoClass;
3142         }
3143       } else
3144         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3145       Lo = merge(Lo, FieldLo);
3146       Hi = merge(Hi, FieldHi);
3147       if (Lo == Memory || Hi == Memory)
3148         break;
3149     }
3150 
3151     postMerge(Size, Lo, Hi);
3152   }
3153 }
3154 
3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3156   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3157   // place naturally.
3158   if (!isAggregateTypeForABI(Ty)) {
3159     // Treat an enum type as its underlying type.
3160     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3161       Ty = EnumTy->getDecl()->getIntegerType();
3162 
3163     if (Ty->isExtIntType())
3164       return getNaturalAlignIndirect(Ty);
3165 
3166     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3167                                               : ABIArgInfo::getDirect());
3168   }
3169 
3170   return getNaturalAlignIndirect(Ty);
3171 }
3172 
3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3174   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3175     uint64_t Size = getContext().getTypeSize(VecTy);
3176     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3177     if (Size <= 64 || Size > LargestVector)
3178       return true;
3179     QualType EltTy = VecTy->getElementType();
3180     if (passInt128VectorsInMem() &&
3181         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3182          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3183       return true;
3184   }
3185 
3186   return false;
3187 }
3188 
3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3190                                             unsigned freeIntRegs) const {
3191   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3192   // place naturally.
3193   //
3194   // This assumption is optimistic, as there could be free registers available
3195   // when we need to pass this argument in memory, and LLVM could try to pass
3196   // the argument in the free register. This does not seem to happen currently,
3197   // but this code would be much safer if we could mark the argument with
3198   // 'onstack'. See PR12193.
3199   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3200       !Ty->isExtIntType()) {
3201     // Treat an enum type as its underlying type.
3202     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3203       Ty = EnumTy->getDecl()->getIntegerType();
3204 
3205     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3206                                               : ABIArgInfo::getDirect());
3207   }
3208 
3209   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3210     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3211 
3212   // Compute the byval alignment. We specify the alignment of the byval in all
3213   // cases so that the mid-level optimizer knows the alignment of the byval.
3214   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3215 
3216   // Attempt to avoid passing indirect results using byval when possible. This
3217   // is important for good codegen.
3218   //
3219   // We do this by coercing the value into a scalar type which the backend can
3220   // handle naturally (i.e., without using byval).
3221   //
3222   // For simplicity, we currently only do this when we have exhausted all of the
3223   // free integer registers. Doing this when there are free integer registers
3224   // would require more care, as we would have to ensure that the coerced value
3225   // did not claim the unused register. That would require either reording the
3226   // arguments to the function (so that any subsequent inreg values came first),
3227   // or only doing this optimization when there were no following arguments that
3228   // might be inreg.
3229   //
3230   // We currently expect it to be rare (particularly in well written code) for
3231   // arguments to be passed on the stack when there are still free integer
3232   // registers available (this would typically imply large structs being passed
3233   // by value), so this seems like a fair tradeoff for now.
3234   //
3235   // We can revisit this if the backend grows support for 'onstack' parameter
3236   // attributes. See PR12193.
3237   if (freeIntRegs == 0) {
3238     uint64_t Size = getContext().getTypeSize(Ty);
3239 
3240     // If this type fits in an eightbyte, coerce it into the matching integral
3241     // type, which will end up on the stack (with alignment 8).
3242     if (Align == 8 && Size <= 64)
3243       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3244                                                           Size));
3245   }
3246 
3247   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3248 }
3249 
3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3251 /// register. Pick an LLVM IR type that will be passed as a vector register.
3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3253   // Wrapper structs/arrays that only contain vectors are passed just like
3254   // vectors; strip them off if present.
3255   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3256     Ty = QualType(InnerTy, 0);
3257 
3258   llvm::Type *IRType = CGT.ConvertType(Ty);
3259   if (isa<llvm::VectorType>(IRType)) {
3260     // Don't pass vXi128 vectors in their native type, the backend can't
3261     // legalize them.
3262     if (passInt128VectorsInMem() &&
3263         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3264       // Use a vXi64 vector.
3265       uint64_t Size = getContext().getTypeSize(Ty);
3266       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3267                                         Size / 64);
3268     }
3269 
3270     return IRType;
3271   }
3272 
3273   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3274     return IRType;
3275 
3276   // We couldn't find the preferred IR vector type for 'Ty'.
3277   uint64_t Size = getContext().getTypeSize(Ty);
3278   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3279 
3280 
3281   // Return a LLVM IR vector type based on the size of 'Ty'.
3282   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3283                                     Size / 64);
3284 }
3285 
3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3287 /// is known to either be off the end of the specified type or being in
3288 /// alignment padding.  The user type specified is known to be at most 128 bits
3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3290 /// classification that put one of the two halves in the INTEGER class.
3291 ///
3292 /// It is conservatively correct to return false.
3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3294                                   unsigned EndBit, ASTContext &Context) {
3295   // If the bytes being queried are off the end of the type, there is no user
3296   // data hiding here.  This handles analysis of builtins, vectors and other
3297   // types that don't contain interesting padding.
3298   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3299   if (TySize <= StartBit)
3300     return true;
3301 
3302   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3303     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3304     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3305 
3306     // Check each element to see if the element overlaps with the queried range.
3307     for (unsigned i = 0; i != NumElts; ++i) {
3308       // If the element is after the span we care about, then we're done..
3309       unsigned EltOffset = i*EltSize;
3310       if (EltOffset >= EndBit) break;
3311 
3312       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3313       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3314                                  EndBit-EltOffset, Context))
3315         return false;
3316     }
3317     // If it overlaps no elements, then it is safe to process as padding.
3318     return true;
3319   }
3320 
3321   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3322     const RecordDecl *RD = RT->getDecl();
3323     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3324 
3325     // If this is a C++ record, check the bases first.
3326     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3327       for (const auto &I : CXXRD->bases()) {
3328         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3329                "Unexpected base class!");
3330         const auto *Base =
3331             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3332 
3333         // If the base is after the span we care about, ignore it.
3334         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3335         if (BaseOffset >= EndBit) continue;
3336 
3337         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3338         if (!BitsContainNoUserData(I.getType(), BaseStart,
3339                                    EndBit-BaseOffset, Context))
3340           return false;
3341       }
3342     }
3343 
3344     // Verify that no field has data that overlaps the region of interest.  Yes
3345     // this could be sped up a lot by being smarter about queried fields,
3346     // however we're only looking at structs up to 16 bytes, so we don't care
3347     // much.
3348     unsigned idx = 0;
3349     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3350          i != e; ++i, ++idx) {
3351       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3352 
3353       // If we found a field after the region we care about, then we're done.
3354       if (FieldOffset >= EndBit) break;
3355 
3356       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3357       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3358                                  Context))
3359         return false;
3360     }
3361 
3362     // If nothing in this record overlapped the area of interest, then we're
3363     // clean.
3364     return true;
3365   }
3366 
3367   return false;
3368 }
3369 
3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3371 /// float member at the specified offset.  For example, {int,{float}} has a
3372 /// float at offset 4.  It is conservatively correct for this routine to return
3373 /// false.
3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3375                                   const llvm::DataLayout &TD) {
3376   // Base case if we find a float.
3377   if (IROffset == 0 && IRType->isFloatTy())
3378     return true;
3379 
3380   // If this is a struct, recurse into the field at the specified offset.
3381   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3382     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3383     unsigned Elt = SL->getElementContainingOffset(IROffset);
3384     IROffset -= SL->getElementOffset(Elt);
3385     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3386   }
3387 
3388   // If this is an array, recurse into the field at the specified offset.
3389   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3390     llvm::Type *EltTy = ATy->getElementType();
3391     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3392     IROffset -= IROffset/EltSize*EltSize;
3393     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3394   }
3395 
3396   return false;
3397 }
3398 
3399 
3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3401 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3402 llvm::Type *X86_64ABIInfo::
3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3404                    QualType SourceTy, unsigned SourceOffset) const {
3405   // The only three choices we have are either double, <2 x float>, or float. We
3406   // pass as float if the last 4 bytes is just padding.  This happens for
3407   // structs that contain 3 floats.
3408   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3409                             SourceOffset*8+64, getContext()))
3410     return llvm::Type::getFloatTy(getVMContext());
3411 
3412   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3413   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3414   // case.
3415   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3416       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3417     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3418                                       2);
3419 
3420   return llvm::Type::getDoubleTy(getVMContext());
3421 }
3422 
3423 
3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3425 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3426 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3429 /// etc).
3430 ///
3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3432 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3433 /// the 8-byte value references.  PrefType may be null.
3434 ///
3435 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3436 /// an offset into this that we're processing (which is always either 0 or 8).
3437 ///
3438 llvm::Type *X86_64ABIInfo::
3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3440                        QualType SourceTy, unsigned SourceOffset) const {
3441   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3442   // returning an 8-byte unit starting with it.  See if we can safely use it.
3443   if (IROffset == 0) {
3444     // Pointers and int64's always fill the 8-byte unit.
3445     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3446         IRType->isIntegerTy(64))
3447       return IRType;
3448 
3449     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3450     // goodness in the source type is just tail padding.  This is allowed to
3451     // kick in for struct {double,int} on the int, but not on
3452     // struct{double,int,int} because we wouldn't return the second int.  We
3453     // have to do this analysis on the source type because we can't depend on
3454     // unions being lowered a specific way etc.
3455     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3456         IRType->isIntegerTy(32) ||
3457         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3458       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3459           cast<llvm::IntegerType>(IRType)->getBitWidth();
3460 
3461       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3462                                 SourceOffset*8+64, getContext()))
3463         return IRType;
3464     }
3465   }
3466 
3467   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3468     // If this is a struct, recurse into the field at the specified offset.
3469     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3470     if (IROffset < SL->getSizeInBytes()) {
3471       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3472       IROffset -= SL->getElementOffset(FieldIdx);
3473 
3474       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3475                                     SourceTy, SourceOffset);
3476     }
3477   }
3478 
3479   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3480     llvm::Type *EltTy = ATy->getElementType();
3481     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3482     unsigned EltOffset = IROffset/EltSize*EltSize;
3483     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3484                                   SourceOffset);
3485   }
3486 
3487   // Okay, we don't have any better idea of what to pass, so we pass this in an
3488   // integer register that isn't too big to fit the rest of the struct.
3489   unsigned TySizeInBytes =
3490     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3491 
3492   assert(TySizeInBytes != SourceOffset && "Empty field?");
3493 
3494   // It is always safe to classify this as an integer type up to i64 that
3495   // isn't larger than the structure.
3496   return llvm::IntegerType::get(getVMContext(),
3497                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3498 }
3499 
3500 
3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3502 /// be used as elements of a two register pair to pass or return, return a
3503 /// first class aggregate to represent them.  For example, if the low part of
3504 /// a by-value argument should be passed as i32* and the high part as float,
3505 /// return {i32*, float}.
3506 static llvm::Type *
3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3508                            const llvm::DataLayout &TD) {
3509   // In order to correctly satisfy the ABI, we need to the high part to start
3510   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3511   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3512   // the second element at offset 8.  Check for this:
3513   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3514   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3515   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3516   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3517 
3518   // To handle this, we have to increase the size of the low part so that the
3519   // second element will start at an 8 byte offset.  We can't increase the size
3520   // of the second element because it might make us access off the end of the
3521   // struct.
3522   if (HiStart != 8) {
3523     // There are usually two sorts of types the ABI generation code can produce
3524     // for the low part of a pair that aren't 8 bytes in size: float or
3525     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3526     // NaCl).
3527     // Promote these to a larger type.
3528     if (Lo->isFloatTy())
3529       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3530     else {
3531       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3532              && "Invalid/unknown lo type");
3533       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3534     }
3535   }
3536 
3537   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3538 
3539   // Verify that the second element is at an 8-byte offset.
3540   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3541          "Invalid x86-64 argument pair!");
3542   return Result;
3543 }
3544 
3545 ABIArgInfo X86_64ABIInfo::
3546 classifyReturnType(QualType RetTy) const {
3547   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3548   // classification algorithm.
3549   X86_64ABIInfo::Class Lo, Hi;
3550   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3551 
3552   // Check some invariants.
3553   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3554   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3555 
3556   llvm::Type *ResType = nullptr;
3557   switch (Lo) {
3558   case NoClass:
3559     if (Hi == NoClass)
3560       return ABIArgInfo::getIgnore();
3561     // If the low part is just padding, it takes no register, leave ResType
3562     // null.
3563     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3564            "Unknown missing lo part");
3565     break;
3566 
3567   case SSEUp:
3568   case X87Up:
3569     llvm_unreachable("Invalid classification for lo word.");
3570 
3571     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3572     // hidden argument.
3573   case Memory:
3574     return getIndirectReturnResult(RetTy);
3575 
3576     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3577     // available register of the sequence %rax, %rdx is used.
3578   case Integer:
3579     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3580 
3581     // If we have a sign or zero extended integer, make sure to return Extend
3582     // so that the parameter gets the right LLVM IR attributes.
3583     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3584       // Treat an enum type as its underlying type.
3585       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3586         RetTy = EnumTy->getDecl()->getIntegerType();
3587 
3588       if (RetTy->isIntegralOrEnumerationType() &&
3589           isPromotableIntegerTypeForABI(RetTy))
3590         return ABIArgInfo::getExtend(RetTy);
3591     }
3592     break;
3593 
3594     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3595     // available SSE register of the sequence %xmm0, %xmm1 is used.
3596   case SSE:
3597     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3598     break;
3599 
3600     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3601     // returned on the X87 stack in %st0 as 80-bit x87 number.
3602   case X87:
3603     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3604     break;
3605 
3606     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3607     // part of the value is returned in %st0 and the imaginary part in
3608     // %st1.
3609   case ComplexX87:
3610     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3611     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3612                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3613     break;
3614   }
3615 
3616   llvm::Type *HighPart = nullptr;
3617   switch (Hi) {
3618     // Memory was handled previously and X87 should
3619     // never occur as a hi class.
3620   case Memory:
3621   case X87:
3622     llvm_unreachable("Invalid classification for hi word.");
3623 
3624   case ComplexX87: // Previously handled.
3625   case NoClass:
3626     break;
3627 
3628   case Integer:
3629     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3630     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3631       return ABIArgInfo::getDirect(HighPart, 8);
3632     break;
3633   case SSE:
3634     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3635     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3636       return ABIArgInfo::getDirect(HighPart, 8);
3637     break;
3638 
3639     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3640     // is passed in the next available eightbyte chunk if the last used
3641     // vector register.
3642     //
3643     // SSEUP should always be preceded by SSE, just widen.
3644   case SSEUp:
3645     assert(Lo == SSE && "Unexpected SSEUp classification.");
3646     ResType = GetByteVectorType(RetTy);
3647     break;
3648 
3649     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3650     // returned together with the previous X87 value in %st0.
3651   case X87Up:
3652     // If X87Up is preceded by X87, we don't need to do
3653     // anything. However, in some cases with unions it may not be
3654     // preceded by X87. In such situations we follow gcc and pass the
3655     // extra bits in an SSE reg.
3656     if (Lo != X87) {
3657       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3658       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3659         return ABIArgInfo::getDirect(HighPart, 8);
3660     }
3661     break;
3662   }
3663 
3664   // If a high part was specified, merge it together with the low part.  It is
3665   // known to pass in the high eightbyte of the result.  We do this by forming a
3666   // first class struct aggregate with the high and low part: {low, high}
3667   if (HighPart)
3668     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3669 
3670   return ABIArgInfo::getDirect(ResType);
3671 }
3672 
3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3674   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3675   bool isNamedArg)
3676   const
3677 {
3678   Ty = useFirstFieldIfTransparentUnion(Ty);
3679 
3680   X86_64ABIInfo::Class Lo, Hi;
3681   classify(Ty, 0, Lo, Hi, isNamedArg);
3682 
3683   // Check some invariants.
3684   // FIXME: Enforce these by construction.
3685   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3686   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3687 
3688   neededInt = 0;
3689   neededSSE = 0;
3690   llvm::Type *ResType = nullptr;
3691   switch (Lo) {
3692   case NoClass:
3693     if (Hi == NoClass)
3694       return ABIArgInfo::getIgnore();
3695     // If the low part is just padding, it takes no register, leave ResType
3696     // null.
3697     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3698            "Unknown missing lo part");
3699     break;
3700 
3701     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3702     // on the stack.
3703   case Memory:
3704 
3705     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3706     // COMPLEX_X87, it is passed in memory.
3707   case X87:
3708   case ComplexX87:
3709     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3710       ++neededInt;
3711     return getIndirectResult(Ty, freeIntRegs);
3712 
3713   case SSEUp:
3714   case X87Up:
3715     llvm_unreachable("Invalid classification for lo word.");
3716 
3717     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3718     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3719     // and %r9 is used.
3720   case Integer:
3721     ++neededInt;
3722 
3723     // Pick an 8-byte type based on the preferred type.
3724     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3725 
3726     // If we have a sign or zero extended integer, make sure to return Extend
3727     // so that the parameter gets the right LLVM IR attributes.
3728     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3729       // Treat an enum type as its underlying type.
3730       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3731         Ty = EnumTy->getDecl()->getIntegerType();
3732 
3733       if (Ty->isIntegralOrEnumerationType() &&
3734           isPromotableIntegerTypeForABI(Ty))
3735         return ABIArgInfo::getExtend(Ty);
3736     }
3737 
3738     break;
3739 
3740     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3741     // available SSE register is used, the registers are taken in the
3742     // order from %xmm0 to %xmm7.
3743   case SSE: {
3744     llvm::Type *IRType = CGT.ConvertType(Ty);
3745     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3746     ++neededSSE;
3747     break;
3748   }
3749   }
3750 
3751   llvm::Type *HighPart = nullptr;
3752   switch (Hi) {
3753     // Memory was handled previously, ComplexX87 and X87 should
3754     // never occur as hi classes, and X87Up must be preceded by X87,
3755     // which is passed in memory.
3756   case Memory:
3757   case X87:
3758   case ComplexX87:
3759     llvm_unreachable("Invalid classification for hi word.");
3760 
3761   case NoClass: break;
3762 
3763   case Integer:
3764     ++neededInt;
3765     // Pick an 8-byte type based on the preferred type.
3766     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3767 
3768     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3769       return ABIArgInfo::getDirect(HighPart, 8);
3770     break;
3771 
3772     // X87Up generally doesn't occur here (long double is passed in
3773     // memory), except in situations involving unions.
3774   case X87Up:
3775   case SSE:
3776     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3777 
3778     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3779       return ABIArgInfo::getDirect(HighPart, 8);
3780 
3781     ++neededSSE;
3782     break;
3783 
3784     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3785     // eightbyte is passed in the upper half of the last used SSE
3786     // register.  This only happens when 128-bit vectors are passed.
3787   case SSEUp:
3788     assert(Lo == SSE && "Unexpected SSEUp classification");
3789     ResType = GetByteVectorType(Ty);
3790     break;
3791   }
3792 
3793   // If a high part was specified, merge it together with the low part.  It is
3794   // known to pass in the high eightbyte of the result.  We do this by forming a
3795   // first class struct aggregate with the high and low part: {low, high}
3796   if (HighPart)
3797     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3798 
3799   return ABIArgInfo::getDirect(ResType);
3800 }
3801 
3802 ABIArgInfo
3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3804                                              unsigned &NeededSSE) const {
3805   auto RT = Ty->getAs<RecordType>();
3806   assert(RT && "classifyRegCallStructType only valid with struct types");
3807 
3808   if (RT->getDecl()->hasFlexibleArrayMember())
3809     return getIndirectReturnResult(Ty);
3810 
3811   // Sum up bases
3812   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3813     if (CXXRD->isDynamicClass()) {
3814       NeededInt = NeededSSE = 0;
3815       return getIndirectReturnResult(Ty);
3816     }
3817 
3818     for (const auto &I : CXXRD->bases())
3819       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3820               .isIndirect()) {
3821         NeededInt = NeededSSE = 0;
3822         return getIndirectReturnResult(Ty);
3823       }
3824   }
3825 
3826   // Sum up members
3827   for (const auto *FD : RT->getDecl()->fields()) {
3828     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3829       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3830               .isIndirect()) {
3831         NeededInt = NeededSSE = 0;
3832         return getIndirectReturnResult(Ty);
3833       }
3834     } else {
3835       unsigned LocalNeededInt, LocalNeededSSE;
3836       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3837                                LocalNeededSSE, true)
3838               .isIndirect()) {
3839         NeededInt = NeededSSE = 0;
3840         return getIndirectReturnResult(Ty);
3841       }
3842       NeededInt += LocalNeededInt;
3843       NeededSSE += LocalNeededSSE;
3844     }
3845   }
3846 
3847   return ABIArgInfo::getDirect();
3848 }
3849 
3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3851                                                     unsigned &NeededInt,
3852                                                     unsigned &NeededSSE) const {
3853 
3854   NeededInt = 0;
3855   NeededSSE = 0;
3856 
3857   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3858 }
3859 
3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3861 
3862   const unsigned CallingConv = FI.getCallingConvention();
3863   // It is possible to force Win64 calling convention on any x86_64 target by
3864   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3865   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3866   if (CallingConv == llvm::CallingConv::Win64) {
3867     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3868     Win64ABIInfo.computeInfo(FI);
3869     return;
3870   }
3871 
3872   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3873 
3874   // Keep track of the number of assigned registers.
3875   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3876   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3877   unsigned NeededInt, NeededSSE;
3878 
3879   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3880     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3881         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3882       FI.getReturnInfo() =
3883           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3884       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3885         FreeIntRegs -= NeededInt;
3886         FreeSSERegs -= NeededSSE;
3887       } else {
3888         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3889       }
3890     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3891                getContext().getCanonicalType(FI.getReturnType()
3892                                                  ->getAs<ComplexType>()
3893                                                  ->getElementType()) ==
3894                    getContext().LongDoubleTy)
3895       // Complex Long Double Type is passed in Memory when Regcall
3896       // calling convention is used.
3897       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3898     else
3899       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3900   }
3901 
3902   // If the return value is indirect, then the hidden argument is consuming one
3903   // integer register.
3904   if (FI.getReturnInfo().isIndirect())
3905     --FreeIntRegs;
3906 
3907   // The chain argument effectively gives us another free register.
3908   if (FI.isChainCall())
3909     ++FreeIntRegs;
3910 
3911   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3912   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3913   // get assigned (in left-to-right order) for passing as follows...
3914   unsigned ArgNo = 0;
3915   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3916        it != ie; ++it, ++ArgNo) {
3917     bool IsNamedArg = ArgNo < NumRequiredArgs;
3918 
3919     if (IsRegCall && it->type->isStructureOrClassType())
3920       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3921     else
3922       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3923                                       NeededSSE, IsNamedArg);
3924 
3925     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3926     // eightbyte of an argument, the whole argument is passed on the
3927     // stack. If registers have already been assigned for some
3928     // eightbytes of such an argument, the assignments get reverted.
3929     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3930       FreeIntRegs -= NeededInt;
3931       FreeSSERegs -= NeededSSE;
3932     } else {
3933       it->info = getIndirectResult(it->type, FreeIntRegs);
3934     }
3935   }
3936 }
3937 
3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3939                                          Address VAListAddr, QualType Ty) {
3940   Address overflow_arg_area_p =
3941       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3942   llvm::Value *overflow_arg_area =
3943     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3944 
3945   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3946   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3947   // It isn't stated explicitly in the standard, but in practice we use
3948   // alignment greater than 16 where necessary.
3949   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3950   if (Align > CharUnits::fromQuantity(8)) {
3951     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3952                                                       Align);
3953   }
3954 
3955   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3956   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3957   llvm::Value *Res =
3958     CGF.Builder.CreateBitCast(overflow_arg_area,
3959                               llvm::PointerType::getUnqual(LTy));
3960 
3961   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3962   // l->overflow_arg_area + sizeof(type).
3963   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3964   // an 8 byte boundary.
3965 
3966   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3967   llvm::Value *Offset =
3968       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3969   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
3970                                             Offset, "overflow_arg_area.next");
3971   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3972 
3973   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3974   return Address(Res, Align);
3975 }
3976 
3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3978                                  QualType Ty) const {
3979   // Assume that va_list type is correct; should be pointer to LLVM type:
3980   // struct {
3981   //   i32 gp_offset;
3982   //   i32 fp_offset;
3983   //   i8* overflow_arg_area;
3984   //   i8* reg_save_area;
3985   // };
3986   unsigned neededInt, neededSSE;
3987 
3988   Ty = getContext().getCanonicalType(Ty);
3989   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3990                                        /*isNamedArg*/false);
3991 
3992   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3993   // in the registers. If not go to step 7.
3994   if (!neededInt && !neededSSE)
3995     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3996 
3997   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3998   // general purpose registers needed to pass type and num_fp to hold
3999   // the number of floating point registers needed.
4000 
4001   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4002   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4003   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4004   //
4005   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4006   // register save space).
4007 
4008   llvm::Value *InRegs = nullptr;
4009   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4010   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4011   if (neededInt) {
4012     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4013     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4014     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4015     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4016   }
4017 
4018   if (neededSSE) {
4019     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4020     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4021     llvm::Value *FitsInFP =
4022       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4023     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4024     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4025   }
4026 
4027   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4028   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4029   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4030   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4031 
4032   // Emit code to load the value if it was passed in registers.
4033 
4034   CGF.EmitBlock(InRegBlock);
4035 
4036   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4037   // an offset of l->gp_offset and/or l->fp_offset. This may require
4038   // copying to a temporary location in case the parameter is passed
4039   // in different register classes or requires an alignment greater
4040   // than 8 for general purpose registers and 16 for XMM registers.
4041   //
4042   // FIXME: This really results in shameful code when we end up needing to
4043   // collect arguments from different places; often what should result in a
4044   // simple assembling of a structure from scattered addresses has many more
4045   // loads than necessary. Can we clean this up?
4046   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4047   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4048       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4049 
4050   Address RegAddr = Address::invalid();
4051   if (neededInt && neededSSE) {
4052     // FIXME: Cleanup.
4053     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4054     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4055     Address Tmp = CGF.CreateMemTemp(Ty);
4056     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4057     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4058     llvm::Type *TyLo = ST->getElementType(0);
4059     llvm::Type *TyHi = ST->getElementType(1);
4060     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4061            "Unexpected ABI info for mixed regs");
4062     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4063     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4064     llvm::Value *GPAddr =
4065         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4066     llvm::Value *FPAddr =
4067         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4068     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4069     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4070 
4071     // Copy the first element.
4072     // FIXME: Our choice of alignment here and below is probably pessimistic.
4073     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4074         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4075         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4076     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4077 
4078     // Copy the second element.
4079     V = CGF.Builder.CreateAlignedLoad(
4080         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4081         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4082     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4083 
4084     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4085   } else if (neededInt) {
4086     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4087                       CharUnits::fromQuantity(8));
4088     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4089 
4090     // Copy to a temporary if necessary to ensure the appropriate alignment.
4091     auto TInfo = getContext().getTypeInfoInChars(Ty);
4092     uint64_t TySize = TInfo.Width.getQuantity();
4093     CharUnits TyAlign = TInfo.Align;
4094 
4095     // Copy into a temporary if the type is more aligned than the
4096     // register save area.
4097     if (TyAlign.getQuantity() > 8) {
4098       Address Tmp = CGF.CreateMemTemp(Ty);
4099       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4100       RegAddr = Tmp;
4101     }
4102 
4103   } else if (neededSSE == 1) {
4104     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4105                       CharUnits::fromQuantity(16));
4106     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4107   } else {
4108     assert(neededSSE == 2 && "Invalid number of needed registers!");
4109     // SSE registers are spaced 16 bytes apart in the register save
4110     // area, we need to collect the two eightbytes together.
4111     // The ABI isn't explicit about this, but it seems reasonable
4112     // to assume that the slots are 16-byte aligned, since the stack is
4113     // naturally 16-byte aligned and the prologue is expected to store
4114     // all the SSE registers to the RSA.
4115     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4116                                                       fp_offset),
4117                                 CharUnits::fromQuantity(16));
4118     Address RegAddrHi =
4119       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4120                                              CharUnits::fromQuantity(16));
4121     llvm::Type *ST = AI.canHaveCoerceToType()
4122                          ? AI.getCoerceToType()
4123                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4124     llvm::Value *V;
4125     Address Tmp = CGF.CreateMemTemp(Ty);
4126     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4127     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4128         RegAddrLo, ST->getStructElementType(0)));
4129     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4130     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4131         RegAddrHi, ST->getStructElementType(1)));
4132     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4133 
4134     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4135   }
4136 
4137   // AMD64-ABI 3.5.7p5: Step 5. Set:
4138   // l->gp_offset = l->gp_offset + num_gp * 8
4139   // l->fp_offset = l->fp_offset + num_fp * 16.
4140   if (neededInt) {
4141     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4142     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4143                             gp_offset_p);
4144   }
4145   if (neededSSE) {
4146     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4147     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4148                             fp_offset_p);
4149   }
4150   CGF.EmitBranch(ContBlock);
4151 
4152   // Emit code to load the value if it was passed in memory.
4153 
4154   CGF.EmitBlock(InMemBlock);
4155   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4156 
4157   // Return the appropriate result.
4158 
4159   CGF.EmitBlock(ContBlock);
4160   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4161                                  "vaarg.addr");
4162   return ResAddr;
4163 }
4164 
4165 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4166                                    QualType Ty) const {
4167   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4168   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4169   uint64_t Width = getContext().getTypeSize(Ty);
4170   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4171 
4172   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4173                           CGF.getContext().getTypeInfoInChars(Ty),
4174                           CharUnits::fromQuantity(8),
4175                           /*allowHigherAlign*/ false);
4176 }
4177 
4178 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4179     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4180   const Type *Base = nullptr;
4181   uint64_t NumElts = 0;
4182 
4183   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4184       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4185     FreeSSERegs -= NumElts;
4186     return getDirectX86Hva();
4187   }
4188   return current;
4189 }
4190 
4191 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4192                                       bool IsReturnType, bool IsVectorCall,
4193                                       bool IsRegCall) const {
4194 
4195   if (Ty->isVoidType())
4196     return ABIArgInfo::getIgnore();
4197 
4198   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4199     Ty = EnumTy->getDecl()->getIntegerType();
4200 
4201   TypeInfo Info = getContext().getTypeInfo(Ty);
4202   uint64_t Width = Info.Width;
4203   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4204 
4205   const RecordType *RT = Ty->getAs<RecordType>();
4206   if (RT) {
4207     if (!IsReturnType) {
4208       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4209         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4210     }
4211 
4212     if (RT->getDecl()->hasFlexibleArrayMember())
4213       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4214 
4215   }
4216 
4217   const Type *Base = nullptr;
4218   uint64_t NumElts = 0;
4219   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4220   // other targets.
4221   if ((IsVectorCall || IsRegCall) &&
4222       isHomogeneousAggregate(Ty, Base, NumElts)) {
4223     if (IsRegCall) {
4224       if (FreeSSERegs >= NumElts) {
4225         FreeSSERegs -= NumElts;
4226         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4227           return ABIArgInfo::getDirect();
4228         return ABIArgInfo::getExpand();
4229       }
4230       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4231     } else if (IsVectorCall) {
4232       if (FreeSSERegs >= NumElts &&
4233           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4234         FreeSSERegs -= NumElts;
4235         return ABIArgInfo::getDirect();
4236       } else if (IsReturnType) {
4237         return ABIArgInfo::getExpand();
4238       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4239         // HVAs are delayed and reclassified in the 2nd step.
4240         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4241       }
4242     }
4243   }
4244 
4245   if (Ty->isMemberPointerType()) {
4246     // If the member pointer is represented by an LLVM int or ptr, pass it
4247     // directly.
4248     llvm::Type *LLTy = CGT.ConvertType(Ty);
4249     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4250       return ABIArgInfo::getDirect();
4251   }
4252 
4253   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4254     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4255     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4256     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4257       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4258 
4259     // Otherwise, coerce it to a small integer.
4260     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4261   }
4262 
4263   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4264     switch (BT->getKind()) {
4265     case BuiltinType::Bool:
4266       // Bool type is always extended to the ABI, other builtin types are not
4267       // extended.
4268       return ABIArgInfo::getExtend(Ty);
4269 
4270     case BuiltinType::LongDouble:
4271       // Mingw64 GCC uses the old 80 bit extended precision floating point
4272       // unit. It passes them indirectly through memory.
4273       if (IsMingw64) {
4274         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4275         if (LDF == &llvm::APFloat::x87DoubleExtended())
4276           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4277       }
4278       break;
4279 
4280     case BuiltinType::Int128:
4281     case BuiltinType::UInt128:
4282       // If it's a parameter type, the normal ABI rule is that arguments larger
4283       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4284       // even though it isn't particularly efficient.
4285       if (!IsReturnType)
4286         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4287 
4288       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4289       // Clang matches them for compatibility.
4290       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4291           llvm::Type::getInt64Ty(getVMContext()), 2));
4292 
4293     default:
4294       break;
4295     }
4296   }
4297 
4298   if (Ty->isExtIntType()) {
4299     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4300     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4301     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4302     // anyway as long is it fits in them, so we don't have to check the power of
4303     // 2.
4304     if (Width <= 64)
4305       return ABIArgInfo::getDirect();
4306     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4307   }
4308 
4309   return ABIArgInfo::getDirect();
4310 }
4311 
4312 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4313   const unsigned CC = FI.getCallingConvention();
4314   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4315   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4316 
4317   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4318   // classification rules.
4319   if (CC == llvm::CallingConv::X86_64_SysV) {
4320     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4321     SysVABIInfo.computeInfo(FI);
4322     return;
4323   }
4324 
4325   unsigned FreeSSERegs = 0;
4326   if (IsVectorCall) {
4327     // We can use up to 4 SSE return registers with vectorcall.
4328     FreeSSERegs = 4;
4329   } else if (IsRegCall) {
4330     // RegCall gives us 16 SSE registers.
4331     FreeSSERegs = 16;
4332   }
4333 
4334   if (!getCXXABI().classifyReturnType(FI))
4335     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4336                                   IsVectorCall, IsRegCall);
4337 
4338   if (IsVectorCall) {
4339     // We can use up to 6 SSE register parameters with vectorcall.
4340     FreeSSERegs = 6;
4341   } else if (IsRegCall) {
4342     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4343     FreeSSERegs = 16;
4344   }
4345 
4346   unsigned ArgNum = 0;
4347   unsigned ZeroSSERegs = 0;
4348   for (auto &I : FI.arguments()) {
4349     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4350     // XMM/YMM registers. After the sixth argument, pretend no vector
4351     // registers are left.
4352     unsigned *MaybeFreeSSERegs =
4353         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4354     I.info =
4355         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4356     ++ArgNum;
4357   }
4358 
4359   if (IsVectorCall) {
4360     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4361     // second pass.
4362     for (auto &I : FI.arguments())
4363       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4364   }
4365 }
4366 
4367 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4368                                     QualType Ty) const {
4369   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4370   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4371   uint64_t Width = getContext().getTypeSize(Ty);
4372   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4373 
4374   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4375                           CGF.getContext().getTypeInfoInChars(Ty),
4376                           CharUnits::fromQuantity(8),
4377                           /*allowHigherAlign*/ false);
4378 }
4379 
4380 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4381                                         llvm::Value *Address, bool Is64Bit,
4382                                         bool IsAIX) {
4383   // This is calculated from the LLVM and GCC tables and verified
4384   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4385 
4386   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4387 
4388   llvm::IntegerType *i8 = CGF.Int8Ty;
4389   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4390   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4391   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4392 
4393   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4394   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4395 
4396   // 32-63: fp0-31, the 8-byte floating-point registers
4397   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4398 
4399   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4400   // 64: mq
4401   // 65: lr
4402   // 66: ctr
4403   // 67: ap
4404   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4405 
4406   // 68-76 are various 4-byte special-purpose registers:
4407   // 68-75 cr0-7
4408   // 76: xer
4409   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4410 
4411   // 77-108: v0-31, the 16-byte vector registers
4412   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4413 
4414   // 109: vrsave
4415   // 110: vscr
4416   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4417 
4418   // AIX does not utilize the rest of the registers.
4419   if (IsAIX)
4420     return false;
4421 
4422   // 111: spe_acc
4423   // 112: spefscr
4424   // 113: sfp
4425   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4426 
4427   if (!Is64Bit)
4428     return false;
4429 
4430   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4431   // or above CPU.
4432   // 64-bit only registers:
4433   // 114: tfhar
4434   // 115: tfiar
4435   // 116: texasr
4436   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4437 
4438   return false;
4439 }
4440 
4441 // AIX
4442 namespace {
4443 /// AIXABIInfo - The AIX XCOFF ABI information.
4444 class AIXABIInfo : public ABIInfo {
4445   const bool Is64Bit;
4446   const unsigned PtrByteSize;
4447   CharUnits getParamTypeAlignment(QualType Ty) const;
4448 
4449 public:
4450   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4451       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4452 
4453   bool isPromotableTypeForABI(QualType Ty) const;
4454 
4455   ABIArgInfo classifyReturnType(QualType RetTy) const;
4456   ABIArgInfo classifyArgumentType(QualType Ty) const;
4457 
4458   void computeInfo(CGFunctionInfo &FI) const override {
4459     if (!getCXXABI().classifyReturnType(FI))
4460       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4461 
4462     for (auto &I : FI.arguments())
4463       I.info = classifyArgumentType(I.type);
4464   }
4465 
4466   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4467                     QualType Ty) const override;
4468 };
4469 
4470 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4471   const bool Is64Bit;
4472 
4473 public:
4474   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4475       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4476         Is64Bit(Is64Bit) {}
4477   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4478     return 1; // r1 is the dedicated stack pointer
4479   }
4480 
4481   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4482                                llvm::Value *Address) const override;
4483 };
4484 } // namespace
4485 
4486 // Return true if the ABI requires Ty to be passed sign- or zero-
4487 // extended to 32/64 bits.
4488 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4489   // Treat an enum type as its underlying type.
4490   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4491     Ty = EnumTy->getDecl()->getIntegerType();
4492 
4493   // Promotable integer types are required to be promoted by the ABI.
4494   if (Ty->isPromotableIntegerType())
4495     return true;
4496 
4497   if (!Is64Bit)
4498     return false;
4499 
4500   // For 64 bit mode, in addition to the usual promotable integer types, we also
4501   // need to extend all 32-bit types, since the ABI requires promotion to 64
4502   // bits.
4503   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4504     switch (BT->getKind()) {
4505     case BuiltinType::Int:
4506     case BuiltinType::UInt:
4507       return true;
4508     default:
4509       break;
4510     }
4511 
4512   return false;
4513 }
4514 
4515 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4516   if (RetTy->isAnyComplexType())
4517     return ABIArgInfo::getDirect();
4518 
4519   if (RetTy->isVectorType())
4520     return ABIArgInfo::getDirect();
4521 
4522   if (RetTy->isVoidType())
4523     return ABIArgInfo::getIgnore();
4524 
4525   if (isAggregateTypeForABI(RetTy))
4526     return getNaturalAlignIndirect(RetTy);
4527 
4528   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4529                                         : ABIArgInfo::getDirect());
4530 }
4531 
4532 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4533   Ty = useFirstFieldIfTransparentUnion(Ty);
4534 
4535   if (Ty->isAnyComplexType())
4536     return ABIArgInfo::getDirect();
4537 
4538   if (Ty->isVectorType())
4539     return ABIArgInfo::getDirect();
4540 
4541   if (isAggregateTypeForABI(Ty)) {
4542     // Records with non-trivial destructors/copy-constructors should not be
4543     // passed by value.
4544     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4545       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4546 
4547     CharUnits CCAlign = getParamTypeAlignment(Ty);
4548     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4549 
4550     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4551                                    /*Realign*/ TyAlign > CCAlign);
4552   }
4553 
4554   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4555                                      : ABIArgInfo::getDirect());
4556 }
4557 
4558 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4559   // Complex types are passed just like their elements.
4560   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4561     Ty = CTy->getElementType();
4562 
4563   if (Ty->isVectorType())
4564     return CharUnits::fromQuantity(16);
4565 
4566   // If the structure contains a vector type, the alignment is 16.
4567   if (isRecordWithSIMDVectorType(getContext(), Ty))
4568     return CharUnits::fromQuantity(16);
4569 
4570   return CharUnits::fromQuantity(PtrByteSize);
4571 }
4572 
4573 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4574                               QualType Ty) const {
4575   if (Ty->isAnyComplexType())
4576     llvm::report_fatal_error("complex type is not supported on AIX yet");
4577 
4578   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4579   TypeInfo.Align = getParamTypeAlignment(Ty);
4580 
4581   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4582 
4583   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4584                           SlotSize, /*AllowHigher*/ true);
4585 }
4586 
4587 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4588     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4589   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4590 }
4591 
4592 // PowerPC-32
4593 namespace {
4594 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4595 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4596   bool IsSoftFloatABI;
4597   bool IsRetSmallStructInRegABI;
4598 
4599   CharUnits getParamTypeAlignment(QualType Ty) const;
4600 
4601 public:
4602   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4603                      bool RetSmallStructInRegABI)
4604       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4605         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4606 
4607   ABIArgInfo classifyReturnType(QualType RetTy) const;
4608 
4609   void computeInfo(CGFunctionInfo &FI) const override {
4610     if (!getCXXABI().classifyReturnType(FI))
4611       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4612     for (auto &I : FI.arguments())
4613       I.info = classifyArgumentType(I.type);
4614   }
4615 
4616   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4617                     QualType Ty) const override;
4618 };
4619 
4620 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4621 public:
4622   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4623                          bool RetSmallStructInRegABI)
4624       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4625             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4626 
4627   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4628                                      const CodeGenOptions &Opts);
4629 
4630   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4631     // This is recovered from gcc output.
4632     return 1; // r1 is the dedicated stack pointer
4633   }
4634 
4635   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4636                                llvm::Value *Address) const override;
4637 };
4638 }
4639 
4640 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4641   // Complex types are passed just like their elements.
4642   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4643     Ty = CTy->getElementType();
4644 
4645   if (Ty->isVectorType())
4646     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4647                                                                        : 4);
4648 
4649   // For single-element float/vector structs, we consider the whole type
4650   // to have the same alignment requirements as its single element.
4651   const Type *AlignTy = nullptr;
4652   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4653     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4654     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4655         (BT && BT->isFloatingPoint()))
4656       AlignTy = EltType;
4657   }
4658 
4659   if (AlignTy)
4660     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4661   return CharUnits::fromQuantity(4);
4662 }
4663 
4664 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4665   uint64_t Size;
4666 
4667   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4668   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4669       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4670     // System V ABI (1995), page 3-22, specified:
4671     // > A structure or union whose size is less than or equal to 8 bytes
4672     // > shall be returned in r3 and r4, as if it were first stored in the
4673     // > 8-byte aligned memory area and then the low addressed word were
4674     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4675     // > the last member of the structure or union are not defined.
4676     //
4677     // GCC for big-endian PPC32 inserts the pad before the first member,
4678     // not "beyond the last member" of the struct.  To stay compatible
4679     // with GCC, we coerce the struct to an integer of the same size.
4680     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4681     if (Size == 0)
4682       return ABIArgInfo::getIgnore();
4683     else {
4684       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4685       return ABIArgInfo::getDirect(CoerceTy);
4686     }
4687   }
4688 
4689   return DefaultABIInfo::classifyReturnType(RetTy);
4690 }
4691 
4692 // TODO: this implementation is now likely redundant with
4693 // DefaultABIInfo::EmitVAArg.
4694 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4695                                       QualType Ty) const {
4696   if (getTarget().getTriple().isOSDarwin()) {
4697     auto TI = getContext().getTypeInfoInChars(Ty);
4698     TI.Align = getParamTypeAlignment(Ty);
4699 
4700     CharUnits SlotSize = CharUnits::fromQuantity(4);
4701     return emitVoidPtrVAArg(CGF, VAList, Ty,
4702                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4703                             /*AllowHigherAlign=*/true);
4704   }
4705 
4706   const unsigned OverflowLimit = 8;
4707   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4708     // TODO: Implement this. For now ignore.
4709     (void)CTy;
4710     return Address::invalid(); // FIXME?
4711   }
4712 
4713   // struct __va_list_tag {
4714   //   unsigned char gpr;
4715   //   unsigned char fpr;
4716   //   unsigned short reserved;
4717   //   void *overflow_arg_area;
4718   //   void *reg_save_area;
4719   // };
4720 
4721   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4722   bool isInt = !Ty->isFloatingType();
4723   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4724 
4725   // All aggregates are passed indirectly?  That doesn't seem consistent
4726   // with the argument-lowering code.
4727   bool isIndirect = isAggregateTypeForABI(Ty);
4728 
4729   CGBuilderTy &Builder = CGF.Builder;
4730 
4731   // The calling convention either uses 1-2 GPRs or 1 FPR.
4732   Address NumRegsAddr = Address::invalid();
4733   if (isInt || IsSoftFloatABI) {
4734     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4735   } else {
4736     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4737   }
4738 
4739   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4740 
4741   // "Align" the register count when TY is i64.
4742   if (isI64 || (isF64 && IsSoftFloatABI)) {
4743     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4744     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4745   }
4746 
4747   llvm::Value *CC =
4748       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4749 
4750   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4751   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4752   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4753 
4754   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4755 
4756   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4757   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4758 
4759   // Case 1: consume registers.
4760   Address RegAddr = Address::invalid();
4761   {
4762     CGF.EmitBlock(UsingRegs);
4763 
4764     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4765     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4766                       CharUnits::fromQuantity(8));
4767     assert(RegAddr.getElementType() == CGF.Int8Ty);
4768 
4769     // Floating-point registers start after the general-purpose registers.
4770     if (!(isInt || IsSoftFloatABI)) {
4771       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4772                                                    CharUnits::fromQuantity(32));
4773     }
4774 
4775     // Get the address of the saved value by scaling the number of
4776     // registers we've used by the number of
4777     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4778     llvm::Value *RegOffset =
4779       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4780     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4781                                             RegAddr.getPointer(), RegOffset),
4782                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4783     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4784 
4785     // Increase the used-register count.
4786     NumRegs =
4787       Builder.CreateAdd(NumRegs,
4788                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4789     Builder.CreateStore(NumRegs, NumRegsAddr);
4790 
4791     CGF.EmitBranch(Cont);
4792   }
4793 
4794   // Case 2: consume space in the overflow area.
4795   Address MemAddr = Address::invalid();
4796   {
4797     CGF.EmitBlock(UsingOverflow);
4798 
4799     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4800 
4801     // Everything in the overflow area is rounded up to a size of at least 4.
4802     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4803 
4804     CharUnits Size;
4805     if (!isIndirect) {
4806       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4807       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4808     } else {
4809       Size = CGF.getPointerSize();
4810     }
4811 
4812     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4813     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4814                          OverflowAreaAlign);
4815     // Round up address of argument to alignment
4816     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4817     if (Align > OverflowAreaAlign) {
4818       llvm::Value *Ptr = OverflowArea.getPointer();
4819       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4820                                                            Align);
4821     }
4822 
4823     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4824 
4825     // Increase the overflow area.
4826     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4827     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4828     CGF.EmitBranch(Cont);
4829   }
4830 
4831   CGF.EmitBlock(Cont);
4832 
4833   // Merge the cases with a phi.
4834   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4835                                 "vaarg.addr");
4836 
4837   // Load the pointer if the argument was passed indirectly.
4838   if (isIndirect) {
4839     Result = Address(Builder.CreateLoad(Result, "aggr"),
4840                      getContext().getTypeAlignInChars(Ty));
4841   }
4842 
4843   return Result;
4844 }
4845 
4846 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4847     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4848   assert(Triple.isPPC32());
4849 
4850   switch (Opts.getStructReturnConvention()) {
4851   case CodeGenOptions::SRCK_Default:
4852     break;
4853   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4854     return false;
4855   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4856     return true;
4857   }
4858 
4859   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4860     return true;
4861 
4862   return false;
4863 }
4864 
4865 bool
4866 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4867                                                 llvm::Value *Address) const {
4868   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4869                                      /*IsAIX*/ false);
4870 }
4871 
4872 // PowerPC-64
4873 
4874 namespace {
4875 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4876 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4877 public:
4878   enum ABIKind {
4879     ELFv1 = 0,
4880     ELFv2
4881   };
4882 
4883 private:
4884   static const unsigned GPRBits = 64;
4885   ABIKind Kind;
4886   bool IsSoftFloatABI;
4887 
4888 public:
4889   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4890                      bool SoftFloatABI)
4891       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4892 
4893   bool isPromotableTypeForABI(QualType Ty) const;
4894   CharUnits getParamTypeAlignment(QualType Ty) const;
4895 
4896   ABIArgInfo classifyReturnType(QualType RetTy) const;
4897   ABIArgInfo classifyArgumentType(QualType Ty) const;
4898 
4899   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4900   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4901                                          uint64_t Members) const override;
4902 
4903   // TODO: We can add more logic to computeInfo to improve performance.
4904   // Example: For aggregate arguments that fit in a register, we could
4905   // use getDirectInReg (as is done below for structs containing a single
4906   // floating-point value) to avoid pushing them to memory on function
4907   // entry.  This would require changing the logic in PPCISelLowering
4908   // when lowering the parameters in the caller and args in the callee.
4909   void computeInfo(CGFunctionInfo &FI) const override {
4910     if (!getCXXABI().classifyReturnType(FI))
4911       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4912     for (auto &I : FI.arguments()) {
4913       // We rely on the default argument classification for the most part.
4914       // One exception:  An aggregate containing a single floating-point
4915       // or vector item must be passed in a register if one is available.
4916       const Type *T = isSingleElementStruct(I.type, getContext());
4917       if (T) {
4918         const BuiltinType *BT = T->getAs<BuiltinType>();
4919         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4920             (BT && BT->isFloatingPoint())) {
4921           QualType QT(T, 0);
4922           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4923           continue;
4924         }
4925       }
4926       I.info = classifyArgumentType(I.type);
4927     }
4928   }
4929 
4930   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4931                     QualType Ty) const override;
4932 
4933   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4934                                     bool asReturnValue) const override {
4935     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4936   }
4937 
4938   bool isSwiftErrorInRegister() const override {
4939     return false;
4940   }
4941 };
4942 
4943 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4944 
4945 public:
4946   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4947                                PPC64_SVR4_ABIInfo::ABIKind Kind,
4948                                bool SoftFloatABI)
4949       : TargetCodeGenInfo(
4950             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
4951 
4952   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4953     // This is recovered from gcc output.
4954     return 1; // r1 is the dedicated stack pointer
4955   }
4956 
4957   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4958                                llvm::Value *Address) const override;
4959 };
4960 
4961 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4962 public:
4963   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4964 
4965   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4966     // This is recovered from gcc output.
4967     return 1; // r1 is the dedicated stack pointer
4968   }
4969 
4970   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4971                                llvm::Value *Address) const override;
4972 };
4973 
4974 }
4975 
4976 // Return true if the ABI requires Ty to be passed sign- or zero-
4977 // extended to 64 bits.
4978 bool
4979 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4980   // Treat an enum type as its underlying type.
4981   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4982     Ty = EnumTy->getDecl()->getIntegerType();
4983 
4984   // Promotable integer types are required to be promoted by the ABI.
4985   if (isPromotableIntegerTypeForABI(Ty))
4986     return true;
4987 
4988   // In addition to the usual promotable integer types, we also need to
4989   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4990   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4991     switch (BT->getKind()) {
4992     case BuiltinType::Int:
4993     case BuiltinType::UInt:
4994       return true;
4995     default:
4996       break;
4997     }
4998 
4999   if (const auto *EIT = Ty->getAs<ExtIntType>())
5000     if (EIT->getNumBits() < 64)
5001       return true;
5002 
5003   return false;
5004 }
5005 
5006 /// isAlignedParamType - Determine whether a type requires 16-byte or
5007 /// higher alignment in the parameter area.  Always returns at least 8.
5008 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5009   // Complex types are passed just like their elements.
5010   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5011     Ty = CTy->getElementType();
5012 
5013   // Only vector types of size 16 bytes need alignment (larger types are
5014   // passed via reference, smaller types are not aligned).
5015   if (Ty->isVectorType()) {
5016     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5017   } else if (Ty->isRealFloatingType() &&
5018              &getContext().getFloatTypeSemantics(Ty) ==
5019                  &llvm::APFloat::IEEEquad()) {
5020     // According to ABI document section 'Optional Save Areas': If extended
5021     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5022     // format are supported, map them to a single quadword, quadword aligned.
5023     return CharUnits::fromQuantity(16);
5024   }
5025 
5026   // For single-element float/vector structs, we consider the whole type
5027   // to have the same alignment requirements as its single element.
5028   const Type *AlignAsType = nullptr;
5029   const Type *EltType = isSingleElementStruct(Ty, getContext());
5030   if (EltType) {
5031     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5032     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5033         (BT && BT->isFloatingPoint()))
5034       AlignAsType = EltType;
5035   }
5036 
5037   // Likewise for ELFv2 homogeneous aggregates.
5038   const Type *Base = nullptr;
5039   uint64_t Members = 0;
5040   if (!AlignAsType && Kind == ELFv2 &&
5041       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5042     AlignAsType = Base;
5043 
5044   // With special case aggregates, only vector base types need alignment.
5045   if (AlignAsType) {
5046     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5047   }
5048 
5049   // Otherwise, we only need alignment for any aggregate type that
5050   // has an alignment requirement of >= 16 bytes.
5051   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5052     return CharUnits::fromQuantity(16);
5053   }
5054 
5055   return CharUnits::fromQuantity(8);
5056 }
5057 
5058 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5059 /// aggregate.  Base is set to the base element type, and Members is set
5060 /// to the number of base elements.
5061 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5062                                      uint64_t &Members) const {
5063   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5064     uint64_t NElements = AT->getSize().getZExtValue();
5065     if (NElements == 0)
5066       return false;
5067     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5068       return false;
5069     Members *= NElements;
5070   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5071     const RecordDecl *RD = RT->getDecl();
5072     if (RD->hasFlexibleArrayMember())
5073       return false;
5074 
5075     Members = 0;
5076 
5077     // If this is a C++ record, check the properties of the record such as
5078     // bases and ABI specific restrictions
5079     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5080       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5081         return false;
5082 
5083       for (const auto &I : CXXRD->bases()) {
5084         // Ignore empty records.
5085         if (isEmptyRecord(getContext(), I.getType(), true))
5086           continue;
5087 
5088         uint64_t FldMembers;
5089         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5090           return false;
5091 
5092         Members += FldMembers;
5093       }
5094     }
5095 
5096     for (const auto *FD : RD->fields()) {
5097       // Ignore (non-zero arrays of) empty records.
5098       QualType FT = FD->getType();
5099       while (const ConstantArrayType *AT =
5100              getContext().getAsConstantArrayType(FT)) {
5101         if (AT->getSize().getZExtValue() == 0)
5102           return false;
5103         FT = AT->getElementType();
5104       }
5105       if (isEmptyRecord(getContext(), FT, true))
5106         continue;
5107 
5108       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5109       if (getContext().getLangOpts().CPlusPlus &&
5110           FD->isZeroLengthBitField(getContext()))
5111         continue;
5112 
5113       uint64_t FldMembers;
5114       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5115         return false;
5116 
5117       Members = (RD->isUnion() ?
5118                  std::max(Members, FldMembers) : Members + FldMembers);
5119     }
5120 
5121     if (!Base)
5122       return false;
5123 
5124     // Ensure there is no padding.
5125     if (getContext().getTypeSize(Base) * Members !=
5126         getContext().getTypeSize(Ty))
5127       return false;
5128   } else {
5129     Members = 1;
5130     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5131       Members = 2;
5132       Ty = CT->getElementType();
5133     }
5134 
5135     // Most ABIs only support float, double, and some vector type widths.
5136     if (!isHomogeneousAggregateBaseType(Ty))
5137       return false;
5138 
5139     // The base type must be the same for all members.  Types that
5140     // agree in both total size and mode (float vs. vector) are
5141     // treated as being equivalent here.
5142     const Type *TyPtr = Ty.getTypePtr();
5143     if (!Base) {
5144       Base = TyPtr;
5145       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5146       // so make sure to widen it explicitly.
5147       if (const VectorType *VT = Base->getAs<VectorType>()) {
5148         QualType EltTy = VT->getElementType();
5149         unsigned NumElements =
5150             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5151         Base = getContext()
5152                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5153                    .getTypePtr();
5154       }
5155     }
5156 
5157     if (Base->isVectorType() != TyPtr->isVectorType() ||
5158         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5159       return false;
5160   }
5161   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5162 }
5163 
5164 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5165   // Homogeneous aggregates for ELFv2 must have base types of float,
5166   // double, long double, or 128-bit vectors.
5167   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5168     if (BT->getKind() == BuiltinType::Float ||
5169         BT->getKind() == BuiltinType::Double ||
5170         BT->getKind() == BuiltinType::LongDouble ||
5171         (getContext().getTargetInfo().hasFloat128Type() &&
5172           (BT->getKind() == BuiltinType::Float128))) {
5173       if (IsSoftFloatABI)
5174         return false;
5175       return true;
5176     }
5177   }
5178   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5179     if (getContext().getTypeSize(VT) == 128)
5180       return true;
5181   }
5182   return false;
5183 }
5184 
5185 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5186     const Type *Base, uint64_t Members) const {
5187   // Vector and fp128 types require one register, other floating point types
5188   // require one or two registers depending on their size.
5189   uint32_t NumRegs =
5190       ((getContext().getTargetInfo().hasFloat128Type() &&
5191           Base->isFloat128Type()) ||
5192         Base->isVectorType()) ? 1
5193                               : (getContext().getTypeSize(Base) + 63) / 64;
5194 
5195   // Homogeneous Aggregates may occupy at most 8 registers.
5196   return Members * NumRegs <= 8;
5197 }
5198 
5199 ABIArgInfo
5200 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5201   Ty = useFirstFieldIfTransparentUnion(Ty);
5202 
5203   if (Ty->isAnyComplexType())
5204     return ABIArgInfo::getDirect();
5205 
5206   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5207   // or via reference (larger than 16 bytes).
5208   if (Ty->isVectorType()) {
5209     uint64_t Size = getContext().getTypeSize(Ty);
5210     if (Size > 128)
5211       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5212     else if (Size < 128) {
5213       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5214       return ABIArgInfo::getDirect(CoerceTy);
5215     }
5216   }
5217 
5218   if (const auto *EIT = Ty->getAs<ExtIntType>())
5219     if (EIT->getNumBits() > 128)
5220       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5221 
5222   if (isAggregateTypeForABI(Ty)) {
5223     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5224       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5225 
5226     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5227     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5228 
5229     // ELFv2 homogeneous aggregates are passed as array types.
5230     const Type *Base = nullptr;
5231     uint64_t Members = 0;
5232     if (Kind == ELFv2 &&
5233         isHomogeneousAggregate(Ty, Base, Members)) {
5234       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5235       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5236       return ABIArgInfo::getDirect(CoerceTy);
5237     }
5238 
5239     // If an aggregate may end up fully in registers, we do not
5240     // use the ByVal method, but pass the aggregate as array.
5241     // This is usually beneficial since we avoid forcing the
5242     // back-end to store the argument to memory.
5243     uint64_t Bits = getContext().getTypeSize(Ty);
5244     if (Bits > 0 && Bits <= 8 * GPRBits) {
5245       llvm::Type *CoerceTy;
5246 
5247       // Types up to 8 bytes are passed as integer type (which will be
5248       // properly aligned in the argument save area doubleword).
5249       if (Bits <= GPRBits)
5250         CoerceTy =
5251             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5252       // Larger types are passed as arrays, with the base type selected
5253       // according to the required alignment in the save area.
5254       else {
5255         uint64_t RegBits = ABIAlign * 8;
5256         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5257         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5258         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5259       }
5260 
5261       return ABIArgInfo::getDirect(CoerceTy);
5262     }
5263 
5264     // All other aggregates are passed ByVal.
5265     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5266                                    /*ByVal=*/true,
5267                                    /*Realign=*/TyAlign > ABIAlign);
5268   }
5269 
5270   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5271                                      : ABIArgInfo::getDirect());
5272 }
5273 
5274 ABIArgInfo
5275 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5276   if (RetTy->isVoidType())
5277     return ABIArgInfo::getIgnore();
5278 
5279   if (RetTy->isAnyComplexType())
5280     return ABIArgInfo::getDirect();
5281 
5282   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5283   // or via reference (larger than 16 bytes).
5284   if (RetTy->isVectorType()) {
5285     uint64_t Size = getContext().getTypeSize(RetTy);
5286     if (Size > 128)
5287       return getNaturalAlignIndirect(RetTy);
5288     else if (Size < 128) {
5289       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5290       return ABIArgInfo::getDirect(CoerceTy);
5291     }
5292   }
5293 
5294   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5295     if (EIT->getNumBits() > 128)
5296       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5297 
5298   if (isAggregateTypeForABI(RetTy)) {
5299     // ELFv2 homogeneous aggregates are returned as array types.
5300     const Type *Base = nullptr;
5301     uint64_t Members = 0;
5302     if (Kind == ELFv2 &&
5303         isHomogeneousAggregate(RetTy, Base, Members)) {
5304       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5305       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5306       return ABIArgInfo::getDirect(CoerceTy);
5307     }
5308 
5309     // ELFv2 small aggregates are returned in up to two registers.
5310     uint64_t Bits = getContext().getTypeSize(RetTy);
5311     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5312       if (Bits == 0)
5313         return ABIArgInfo::getIgnore();
5314 
5315       llvm::Type *CoerceTy;
5316       if (Bits > GPRBits) {
5317         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5318         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5319       } else
5320         CoerceTy =
5321             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5322       return ABIArgInfo::getDirect(CoerceTy);
5323     }
5324 
5325     // All other aggregates are returned indirectly.
5326     return getNaturalAlignIndirect(RetTy);
5327   }
5328 
5329   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5330                                         : ABIArgInfo::getDirect());
5331 }
5332 
5333 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5334 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5335                                       QualType Ty) const {
5336   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5337   TypeInfo.Align = getParamTypeAlignment(Ty);
5338 
5339   CharUnits SlotSize = CharUnits::fromQuantity(8);
5340 
5341   // If we have a complex type and the base type is smaller than 8 bytes,
5342   // the ABI calls for the real and imaginary parts to be right-adjusted
5343   // in separate doublewords.  However, Clang expects us to produce a
5344   // pointer to a structure with the two parts packed tightly.  So generate
5345   // loads of the real and imaginary parts relative to the va_list pointer,
5346   // and store them to a temporary structure.
5347   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5348     CharUnits EltSize = TypeInfo.Width / 2;
5349     if (EltSize < SlotSize) {
5350       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5351                                             SlotSize * 2, SlotSize,
5352                                             SlotSize, /*AllowHigher*/ true);
5353 
5354       Address RealAddr = Addr;
5355       Address ImagAddr = RealAddr;
5356       if (CGF.CGM.getDataLayout().isBigEndian()) {
5357         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5358                                                           SlotSize - EltSize);
5359         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5360                                                       2 * SlotSize - EltSize);
5361       } else {
5362         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5363       }
5364 
5365       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5366       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5367       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5368       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5369       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5370 
5371       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5372       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5373                              /*init*/ true);
5374       return Temp;
5375     }
5376   }
5377 
5378   // Otherwise, just use the general rule.
5379   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5380                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5381 }
5382 
5383 bool
5384 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5385   CodeGen::CodeGenFunction &CGF,
5386   llvm::Value *Address) const {
5387   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5388                                      /*IsAIX*/ false);
5389 }
5390 
5391 bool
5392 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5393                                                 llvm::Value *Address) const {
5394   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5395                                      /*IsAIX*/ false);
5396 }
5397 
5398 //===----------------------------------------------------------------------===//
5399 // AArch64 ABI Implementation
5400 //===----------------------------------------------------------------------===//
5401 
5402 namespace {
5403 
5404 class AArch64ABIInfo : public SwiftABIInfo {
5405 public:
5406   enum ABIKind {
5407     AAPCS = 0,
5408     DarwinPCS,
5409     Win64
5410   };
5411 
5412 private:
5413   ABIKind Kind;
5414 
5415 public:
5416   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5417     : SwiftABIInfo(CGT), Kind(Kind) {}
5418 
5419 private:
5420   ABIKind getABIKind() const { return Kind; }
5421   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5422 
5423   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5424   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5425                                   unsigned CallingConvention) const;
5426   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5427   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5428   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5429                                          uint64_t Members) const override;
5430 
5431   bool isIllegalVectorType(QualType Ty) const;
5432 
5433   void computeInfo(CGFunctionInfo &FI) const override {
5434     if (!::classifyReturnType(getCXXABI(), FI, *this))
5435       FI.getReturnInfo() =
5436           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5437 
5438     for (auto &it : FI.arguments())
5439       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5440                                      FI.getCallingConvention());
5441   }
5442 
5443   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5444                           CodeGenFunction &CGF) const;
5445 
5446   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5447                          CodeGenFunction &CGF) const;
5448 
5449   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5450                     QualType Ty) const override {
5451     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5452     if (isa<llvm::ScalableVectorType>(BaseTy))
5453       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5454                                "currently not supported");
5455 
5456     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5457                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5458                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5459   }
5460 
5461   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5462                       QualType Ty) const override;
5463 
5464   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5465                                     bool asReturnValue) const override {
5466     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5467   }
5468   bool isSwiftErrorInRegister() const override {
5469     return true;
5470   }
5471 
5472   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5473                                  unsigned elts) const override;
5474 
5475   bool allowBFloatArgsAndRet() const override {
5476     return getTarget().hasBFloat16Type();
5477   }
5478 };
5479 
5480 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5481 public:
5482   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5483       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5484 
5485   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5486     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5487   }
5488 
5489   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5490     return 31;
5491   }
5492 
5493   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5494 
5495   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5496                            CodeGen::CodeGenModule &CGM) const override {
5497     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5498     if (!FD)
5499       return;
5500 
5501     const auto *TA = FD->getAttr<TargetAttr>();
5502     if (TA == nullptr)
5503       return;
5504 
5505     ParsedTargetAttr Attr = TA->parse();
5506     if (Attr.BranchProtection.empty())
5507       return;
5508 
5509     TargetInfo::BranchProtectionInfo BPI;
5510     StringRef Error;
5511     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5512                                                    BPI, Error);
5513     assert(Error.empty());
5514 
5515     auto *Fn = cast<llvm::Function>(GV);
5516     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5517     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5518 
5519     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5520       Fn->addFnAttr("sign-return-address-key",
5521                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5522                         ? "a_key"
5523                         : "b_key");
5524     }
5525 
5526     Fn->addFnAttr("branch-target-enforcement",
5527                   BPI.BranchTargetEnforcement ? "true" : "false");
5528   }
5529 };
5530 
5531 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5532 public:
5533   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5534       : AArch64TargetCodeGenInfo(CGT, K) {}
5535 
5536   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5537                            CodeGen::CodeGenModule &CGM) const override;
5538 
5539   void getDependentLibraryOption(llvm::StringRef Lib,
5540                                  llvm::SmallString<24> &Opt) const override {
5541     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5542   }
5543 
5544   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5545                                llvm::SmallString<32> &Opt) const override {
5546     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5547   }
5548 };
5549 
5550 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5551     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5552   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5553   if (GV->isDeclaration())
5554     return;
5555   addStackProbeTargetAttributes(D, GV, CGM);
5556 }
5557 }
5558 
5559 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5560   assert(Ty->isVectorType() && "expected vector type!");
5561 
5562   const auto *VT = Ty->castAs<VectorType>();
5563   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5564     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5565     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5566                BuiltinType::UChar &&
5567            "unexpected builtin type for SVE predicate!");
5568     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5569         llvm::Type::getInt1Ty(getVMContext()), 16));
5570   }
5571 
5572   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5573     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5574 
5575     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5576     llvm::ScalableVectorType *ResType = nullptr;
5577     switch (BT->getKind()) {
5578     default:
5579       llvm_unreachable("unexpected builtin type for SVE vector!");
5580     case BuiltinType::SChar:
5581     case BuiltinType::UChar:
5582       ResType = llvm::ScalableVectorType::get(
5583           llvm::Type::getInt8Ty(getVMContext()), 16);
5584       break;
5585     case BuiltinType::Short:
5586     case BuiltinType::UShort:
5587       ResType = llvm::ScalableVectorType::get(
5588           llvm::Type::getInt16Ty(getVMContext()), 8);
5589       break;
5590     case BuiltinType::Int:
5591     case BuiltinType::UInt:
5592       ResType = llvm::ScalableVectorType::get(
5593           llvm::Type::getInt32Ty(getVMContext()), 4);
5594       break;
5595     case BuiltinType::Long:
5596     case BuiltinType::ULong:
5597       ResType = llvm::ScalableVectorType::get(
5598           llvm::Type::getInt64Ty(getVMContext()), 2);
5599       break;
5600     case BuiltinType::Half:
5601       ResType = llvm::ScalableVectorType::get(
5602           llvm::Type::getHalfTy(getVMContext()), 8);
5603       break;
5604     case BuiltinType::Float:
5605       ResType = llvm::ScalableVectorType::get(
5606           llvm::Type::getFloatTy(getVMContext()), 4);
5607       break;
5608     case BuiltinType::Double:
5609       ResType = llvm::ScalableVectorType::get(
5610           llvm::Type::getDoubleTy(getVMContext()), 2);
5611       break;
5612     case BuiltinType::BFloat16:
5613       ResType = llvm::ScalableVectorType::get(
5614           llvm::Type::getBFloatTy(getVMContext()), 8);
5615       break;
5616     }
5617     return ABIArgInfo::getDirect(ResType);
5618   }
5619 
5620   uint64_t Size = getContext().getTypeSize(Ty);
5621   // Android promotes <2 x i8> to i16, not i32
5622   if (isAndroid() && (Size <= 16)) {
5623     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5624     return ABIArgInfo::getDirect(ResType);
5625   }
5626   if (Size <= 32) {
5627     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5628     return ABIArgInfo::getDirect(ResType);
5629   }
5630   if (Size == 64) {
5631     auto *ResType =
5632         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5633     return ABIArgInfo::getDirect(ResType);
5634   }
5635   if (Size == 128) {
5636     auto *ResType =
5637         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5638     return ABIArgInfo::getDirect(ResType);
5639   }
5640   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5641 }
5642 
5643 ABIArgInfo
5644 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5645                                      unsigned CallingConvention) const {
5646   Ty = useFirstFieldIfTransparentUnion(Ty);
5647 
5648   // Handle illegal vector types here.
5649   if (isIllegalVectorType(Ty))
5650     return coerceIllegalVector(Ty);
5651 
5652   if (!isAggregateTypeForABI(Ty)) {
5653     // Treat an enum type as its underlying type.
5654     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5655       Ty = EnumTy->getDecl()->getIntegerType();
5656 
5657     if (const auto *EIT = Ty->getAs<ExtIntType>())
5658       if (EIT->getNumBits() > 128)
5659         return getNaturalAlignIndirect(Ty);
5660 
5661     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5662                 ? ABIArgInfo::getExtend(Ty)
5663                 : ABIArgInfo::getDirect());
5664   }
5665 
5666   // Structures with either a non-trivial destructor or a non-trivial
5667   // copy constructor are always indirect.
5668   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5669     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5670                                      CGCXXABI::RAA_DirectInMemory);
5671   }
5672 
5673   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5674   // elsewhere for GNU compatibility.
5675   uint64_t Size = getContext().getTypeSize(Ty);
5676   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5677   if (IsEmpty || Size == 0) {
5678     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5679       return ABIArgInfo::getIgnore();
5680 
5681     // GNU C mode. The only argument that gets ignored is an empty one with size
5682     // 0.
5683     if (IsEmpty && Size == 0)
5684       return ABIArgInfo::getIgnore();
5685     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5686   }
5687 
5688   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5689   const Type *Base = nullptr;
5690   uint64_t Members = 0;
5691   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5692   bool IsWinVariadic = IsWin64 && IsVariadic;
5693   // In variadic functions on Windows, all composite types are treated alike,
5694   // no special handling of HFAs/HVAs.
5695   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5696     if (Kind != AArch64ABIInfo::AAPCS)
5697       return ABIArgInfo::getDirect(
5698           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5699 
5700     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5701     // default otherwise.
5702     unsigned Align =
5703         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5704     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5705     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5706     return ABIArgInfo::getDirect(
5707         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5708         nullptr, true, Align);
5709   }
5710 
5711   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5712   if (Size <= 128) {
5713     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5714     // same size and alignment.
5715     if (getTarget().isRenderScriptTarget()) {
5716       return coerceToIntArray(Ty, getContext(), getVMContext());
5717     }
5718     unsigned Alignment;
5719     if (Kind == AArch64ABIInfo::AAPCS) {
5720       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5721       Alignment = Alignment < 128 ? 64 : 128;
5722     } else {
5723       Alignment = std::max(getContext().getTypeAlign(Ty),
5724                            (unsigned)getTarget().getPointerWidth(0));
5725     }
5726     Size = llvm::alignTo(Size, Alignment);
5727 
5728     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5729     // For aggregates with 16-byte alignment, we use i128.
5730     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5731     return ABIArgInfo::getDirect(
5732         Size == Alignment ? BaseTy
5733                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5734   }
5735 
5736   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5737 }
5738 
5739 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5740                                               bool IsVariadic) const {
5741   if (RetTy->isVoidType())
5742     return ABIArgInfo::getIgnore();
5743 
5744   if (const auto *VT = RetTy->getAs<VectorType>()) {
5745     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5746         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5747       return coerceIllegalVector(RetTy);
5748   }
5749 
5750   // Large vector types should be returned via memory.
5751   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5752     return getNaturalAlignIndirect(RetTy);
5753 
5754   if (!isAggregateTypeForABI(RetTy)) {
5755     // Treat an enum type as its underlying type.
5756     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5757       RetTy = EnumTy->getDecl()->getIntegerType();
5758 
5759     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5760       if (EIT->getNumBits() > 128)
5761         return getNaturalAlignIndirect(RetTy);
5762 
5763     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5764                 ? ABIArgInfo::getExtend(RetTy)
5765                 : ABIArgInfo::getDirect());
5766   }
5767 
5768   uint64_t Size = getContext().getTypeSize(RetTy);
5769   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5770     return ABIArgInfo::getIgnore();
5771 
5772   const Type *Base = nullptr;
5773   uint64_t Members = 0;
5774   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5775       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5776         IsVariadic))
5777     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5778     return ABIArgInfo::getDirect();
5779 
5780   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5781   if (Size <= 128) {
5782     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5783     // same size and alignment.
5784     if (getTarget().isRenderScriptTarget()) {
5785       return coerceToIntArray(RetTy, getContext(), getVMContext());
5786     }
5787 
5788     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5789       // Composite types are returned in lower bits of a 64-bit register for LE,
5790       // and in higher bits for BE. However, integer types are always returned
5791       // in lower bits for both LE and BE, and they are not rounded up to
5792       // 64-bits. We can skip rounding up of composite types for LE, but not for
5793       // BE, otherwise composite types will be indistinguishable from integer
5794       // types.
5795       return ABIArgInfo::getDirect(
5796           llvm::IntegerType::get(getVMContext(), Size));
5797     }
5798 
5799     unsigned Alignment = getContext().getTypeAlign(RetTy);
5800     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5801 
5802     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5803     // For aggregates with 16-byte alignment, we use i128.
5804     if (Alignment < 128 && Size == 128) {
5805       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5806       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5807     }
5808     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5809   }
5810 
5811   return getNaturalAlignIndirect(RetTy);
5812 }
5813 
5814 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5815 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5816   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5817     // Check whether VT is a fixed-length SVE vector. These types are
5818     // represented as scalable vectors in function args/return and must be
5819     // coerced from fixed vectors.
5820     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5821         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5822       return true;
5823 
5824     // Check whether VT is legal.
5825     unsigned NumElements = VT->getNumElements();
5826     uint64_t Size = getContext().getTypeSize(VT);
5827     // NumElements should be power of 2.
5828     if (!llvm::isPowerOf2_32(NumElements))
5829       return true;
5830 
5831     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5832     // vectors for some reason.
5833     llvm::Triple Triple = getTarget().getTriple();
5834     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5835         Triple.isOSBinFormatMachO())
5836       return Size <= 32;
5837 
5838     return Size != 64 && (Size != 128 || NumElements == 1);
5839   }
5840   return false;
5841 }
5842 
5843 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5844                                                llvm::Type *eltTy,
5845                                                unsigned elts) const {
5846   if (!llvm::isPowerOf2_32(elts))
5847     return false;
5848   if (totalSize.getQuantity() != 8 &&
5849       (totalSize.getQuantity() != 16 || elts == 1))
5850     return false;
5851   return true;
5852 }
5853 
5854 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5855   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5856   // point type or a short-vector type. This is the same as the 32-bit ABI,
5857   // but with the difference that any floating-point type is allowed,
5858   // including __fp16.
5859   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5860     if (BT->isFloatingPoint())
5861       return true;
5862   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5863     unsigned VecSize = getContext().getTypeSize(VT);
5864     if (VecSize == 64 || VecSize == 128)
5865       return true;
5866   }
5867   return false;
5868 }
5869 
5870 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5871                                                        uint64_t Members) const {
5872   return Members <= 4;
5873 }
5874 
5875 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5876                                        CodeGenFunction &CGF) const {
5877   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5878                                        CGF.CurFnInfo->getCallingConvention());
5879   bool IsIndirect = AI.isIndirect();
5880 
5881   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5882   if (IsIndirect)
5883     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5884   else if (AI.getCoerceToType())
5885     BaseTy = AI.getCoerceToType();
5886 
5887   unsigned NumRegs = 1;
5888   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5889     BaseTy = ArrTy->getElementType();
5890     NumRegs = ArrTy->getNumElements();
5891   }
5892   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5893 
5894   // The AArch64 va_list type and handling is specified in the Procedure Call
5895   // Standard, section B.4:
5896   //
5897   // struct {
5898   //   void *__stack;
5899   //   void *__gr_top;
5900   //   void *__vr_top;
5901   //   int __gr_offs;
5902   //   int __vr_offs;
5903   // };
5904 
5905   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5906   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5907   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5908   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5909 
5910   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5911   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5912 
5913   Address reg_offs_p = Address::invalid();
5914   llvm::Value *reg_offs = nullptr;
5915   int reg_top_index;
5916   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5917   if (!IsFPR) {
5918     // 3 is the field number of __gr_offs
5919     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5920     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5921     reg_top_index = 1; // field number for __gr_top
5922     RegSize = llvm::alignTo(RegSize, 8);
5923   } else {
5924     // 4 is the field number of __vr_offs.
5925     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5926     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5927     reg_top_index = 2; // field number for __vr_top
5928     RegSize = 16 * NumRegs;
5929   }
5930 
5931   //=======================================
5932   // Find out where argument was passed
5933   //=======================================
5934 
5935   // If reg_offs >= 0 we're already using the stack for this type of
5936   // argument. We don't want to keep updating reg_offs (in case it overflows,
5937   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5938   // whatever they get).
5939   llvm::Value *UsingStack = nullptr;
5940   UsingStack = CGF.Builder.CreateICmpSGE(
5941       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5942 
5943   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5944 
5945   // Otherwise, at least some kind of argument could go in these registers, the
5946   // question is whether this particular type is too big.
5947   CGF.EmitBlock(MaybeRegBlock);
5948 
5949   // Integer arguments may need to correct register alignment (for example a
5950   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5951   // align __gr_offs to calculate the potential address.
5952   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5953     int Align = TyAlign.getQuantity();
5954 
5955     reg_offs = CGF.Builder.CreateAdd(
5956         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5957         "align_regoffs");
5958     reg_offs = CGF.Builder.CreateAnd(
5959         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5960         "aligned_regoffs");
5961   }
5962 
5963   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5964   // The fact that this is done unconditionally reflects the fact that
5965   // allocating an argument to the stack also uses up all the remaining
5966   // registers of the appropriate kind.
5967   llvm::Value *NewOffset = nullptr;
5968   NewOffset = CGF.Builder.CreateAdd(
5969       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5970   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5971 
5972   // Now we're in a position to decide whether this argument really was in
5973   // registers or not.
5974   llvm::Value *InRegs = nullptr;
5975   InRegs = CGF.Builder.CreateICmpSLE(
5976       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5977 
5978   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5979 
5980   //=======================================
5981   // Argument was in registers
5982   //=======================================
5983 
5984   // Now we emit the code for if the argument was originally passed in
5985   // registers. First start the appropriate block:
5986   CGF.EmitBlock(InRegBlock);
5987 
5988   llvm::Value *reg_top = nullptr;
5989   Address reg_top_p =
5990       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5991   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5992   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
5993                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5994   Address RegAddr = Address::invalid();
5995   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5996 
5997   if (IsIndirect) {
5998     // If it's been passed indirectly (actually a struct), whatever we find from
5999     // stored registers or on the stack will actually be a struct **.
6000     MemTy = llvm::PointerType::getUnqual(MemTy);
6001   }
6002 
6003   const Type *Base = nullptr;
6004   uint64_t NumMembers = 0;
6005   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6006   if (IsHFA && NumMembers > 1) {
6007     // Homogeneous aggregates passed in registers will have their elements split
6008     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6009     // qN+1, ...). We reload and store into a temporary local variable
6010     // contiguously.
6011     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6012     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6013     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6014     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6015     Address Tmp = CGF.CreateTempAlloca(HFATy,
6016                                        std::max(TyAlign, BaseTyInfo.Align));
6017 
6018     // On big-endian platforms, the value will be right-aligned in its slot.
6019     int Offset = 0;
6020     if (CGF.CGM.getDataLayout().isBigEndian() &&
6021         BaseTyInfo.Width.getQuantity() < 16)
6022       Offset = 16 - BaseTyInfo.Width.getQuantity();
6023 
6024     for (unsigned i = 0; i < NumMembers; ++i) {
6025       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6026       Address LoadAddr =
6027         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6028       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6029 
6030       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6031 
6032       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6033       CGF.Builder.CreateStore(Elem, StoreAddr);
6034     }
6035 
6036     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6037   } else {
6038     // Otherwise the object is contiguous in memory.
6039 
6040     // It might be right-aligned in its slot.
6041     CharUnits SlotSize = BaseAddr.getAlignment();
6042     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6043         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6044         TySize < SlotSize) {
6045       CharUnits Offset = SlotSize - TySize;
6046       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6047     }
6048 
6049     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6050   }
6051 
6052   CGF.EmitBranch(ContBlock);
6053 
6054   //=======================================
6055   // Argument was on the stack
6056   //=======================================
6057   CGF.EmitBlock(OnStackBlock);
6058 
6059   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6060   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6061 
6062   // Again, stack arguments may need realignment. In this case both integer and
6063   // floating-point ones might be affected.
6064   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6065     int Align = TyAlign.getQuantity();
6066 
6067     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6068 
6069     OnStackPtr = CGF.Builder.CreateAdd(
6070         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6071         "align_stack");
6072     OnStackPtr = CGF.Builder.CreateAnd(
6073         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6074         "align_stack");
6075 
6076     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6077   }
6078   Address OnStackAddr(OnStackPtr,
6079                       std::max(CharUnits::fromQuantity(8), TyAlign));
6080 
6081   // All stack slots are multiples of 8 bytes.
6082   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6083   CharUnits StackSize;
6084   if (IsIndirect)
6085     StackSize = StackSlotSize;
6086   else
6087     StackSize = TySize.alignTo(StackSlotSize);
6088 
6089   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6090   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6091       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6092 
6093   // Write the new value of __stack for the next call to va_arg
6094   CGF.Builder.CreateStore(NewStack, stack_p);
6095 
6096   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6097       TySize < StackSlotSize) {
6098     CharUnits Offset = StackSlotSize - TySize;
6099     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6100   }
6101 
6102   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6103 
6104   CGF.EmitBranch(ContBlock);
6105 
6106   //=======================================
6107   // Tidy up
6108   //=======================================
6109   CGF.EmitBlock(ContBlock);
6110 
6111   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6112                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6113 
6114   if (IsIndirect)
6115     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6116                    TyAlign);
6117 
6118   return ResAddr;
6119 }
6120 
6121 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6122                                         CodeGenFunction &CGF) const {
6123   // The backend's lowering doesn't support va_arg for aggregates or
6124   // illegal vector types.  Lower VAArg here for these cases and use
6125   // the LLVM va_arg instruction for everything else.
6126   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6127     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6128 
6129   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6130   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6131 
6132   // Empty records are ignored for parameter passing purposes.
6133   if (isEmptyRecord(getContext(), Ty, true)) {
6134     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6135     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6136     return Addr;
6137   }
6138 
6139   // The size of the actual thing passed, which might end up just
6140   // being a pointer for indirect types.
6141   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6142 
6143   // Arguments bigger than 16 bytes which aren't homogeneous
6144   // aggregates should be passed indirectly.
6145   bool IsIndirect = false;
6146   if (TyInfo.Width.getQuantity() > 16) {
6147     const Type *Base = nullptr;
6148     uint64_t Members = 0;
6149     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6150   }
6151 
6152   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6153                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6154 }
6155 
6156 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6157                                     QualType Ty) const {
6158   bool IsIndirect = false;
6159 
6160   // Composites larger than 16 bytes are passed by reference.
6161   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6162     IsIndirect = true;
6163 
6164   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6165                           CGF.getContext().getTypeInfoInChars(Ty),
6166                           CharUnits::fromQuantity(8),
6167                           /*allowHigherAlign*/ false);
6168 }
6169 
6170 //===----------------------------------------------------------------------===//
6171 // ARM ABI Implementation
6172 //===----------------------------------------------------------------------===//
6173 
6174 namespace {
6175 
6176 class ARMABIInfo : public SwiftABIInfo {
6177 public:
6178   enum ABIKind {
6179     APCS = 0,
6180     AAPCS = 1,
6181     AAPCS_VFP = 2,
6182     AAPCS16_VFP = 3,
6183   };
6184 
6185 private:
6186   ABIKind Kind;
6187   bool IsFloatABISoftFP;
6188 
6189 public:
6190   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6191       : SwiftABIInfo(CGT), Kind(_Kind) {
6192     setCCs();
6193     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6194         CGT.getCodeGenOpts().FloatABI == ""; // default
6195   }
6196 
6197   bool isEABI() const {
6198     switch (getTarget().getTriple().getEnvironment()) {
6199     case llvm::Triple::Android:
6200     case llvm::Triple::EABI:
6201     case llvm::Triple::EABIHF:
6202     case llvm::Triple::GNUEABI:
6203     case llvm::Triple::GNUEABIHF:
6204     case llvm::Triple::MuslEABI:
6205     case llvm::Triple::MuslEABIHF:
6206       return true;
6207     default:
6208       return false;
6209     }
6210   }
6211 
6212   bool isEABIHF() const {
6213     switch (getTarget().getTriple().getEnvironment()) {
6214     case llvm::Triple::EABIHF:
6215     case llvm::Triple::GNUEABIHF:
6216     case llvm::Triple::MuslEABIHF:
6217       return true;
6218     default:
6219       return false;
6220     }
6221   }
6222 
6223   ABIKind getABIKind() const { return Kind; }
6224 
6225   bool allowBFloatArgsAndRet() const override {
6226     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6227   }
6228 
6229 private:
6230   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6231                                 unsigned functionCallConv) const;
6232   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6233                                   unsigned functionCallConv) const;
6234   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6235                                           uint64_t Members) const;
6236   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6237   bool isIllegalVectorType(QualType Ty) const;
6238   bool containsAnyFP16Vectors(QualType Ty) const;
6239 
6240   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6241   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6242                                          uint64_t Members) const override;
6243 
6244   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6245 
6246   void computeInfo(CGFunctionInfo &FI) const override;
6247 
6248   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6249                     QualType Ty) const override;
6250 
6251   llvm::CallingConv::ID getLLVMDefaultCC() const;
6252   llvm::CallingConv::ID getABIDefaultCC() const;
6253   void setCCs();
6254 
6255   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6256                                     bool asReturnValue) const override {
6257     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6258   }
6259   bool isSwiftErrorInRegister() const override {
6260     return true;
6261   }
6262   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6263                                  unsigned elts) const override;
6264 };
6265 
6266 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6267 public:
6268   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6269       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6270 
6271   const ARMABIInfo &getABIInfo() const {
6272     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6273   }
6274 
6275   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6276     return 13;
6277   }
6278 
6279   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6280     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6281   }
6282 
6283   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6284                                llvm::Value *Address) const override {
6285     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6286 
6287     // 0-15 are the 16 integer registers.
6288     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6289     return false;
6290   }
6291 
6292   unsigned getSizeOfUnwindException() const override {
6293     if (getABIInfo().isEABI()) return 88;
6294     return TargetCodeGenInfo::getSizeOfUnwindException();
6295   }
6296 
6297   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6298                            CodeGen::CodeGenModule &CGM) const override {
6299     if (GV->isDeclaration())
6300       return;
6301     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6302     if (!FD)
6303       return;
6304 
6305     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6306     if (!Attr)
6307       return;
6308 
6309     const char *Kind;
6310     switch (Attr->getInterrupt()) {
6311     case ARMInterruptAttr::Generic: Kind = ""; break;
6312     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6313     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6314     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6315     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6316     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6317     }
6318 
6319     llvm::Function *Fn = cast<llvm::Function>(GV);
6320 
6321     Fn->addFnAttr("interrupt", Kind);
6322 
6323     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6324     if (ABI == ARMABIInfo::APCS)
6325       return;
6326 
6327     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6328     // however this is not necessarily true on taking any interrupt. Instruct
6329     // the backend to perform a realignment as part of the function prologue.
6330     llvm::AttrBuilder B;
6331     B.addStackAlignmentAttr(8);
6332     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6333   }
6334 };
6335 
6336 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6337 public:
6338   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6339       : ARMTargetCodeGenInfo(CGT, K) {}
6340 
6341   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6342                            CodeGen::CodeGenModule &CGM) const override;
6343 
6344   void getDependentLibraryOption(llvm::StringRef Lib,
6345                                  llvm::SmallString<24> &Opt) const override {
6346     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6347   }
6348 
6349   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6350                                llvm::SmallString<32> &Opt) const override {
6351     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6352   }
6353 };
6354 
6355 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6356     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6357   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6358   if (GV->isDeclaration())
6359     return;
6360   addStackProbeTargetAttributes(D, GV, CGM);
6361 }
6362 }
6363 
6364 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6365   if (!::classifyReturnType(getCXXABI(), FI, *this))
6366     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6367                                             FI.getCallingConvention());
6368 
6369   for (auto &I : FI.arguments())
6370     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6371                                   FI.getCallingConvention());
6372 
6373 
6374   // Always honor user-specified calling convention.
6375   if (FI.getCallingConvention() != llvm::CallingConv::C)
6376     return;
6377 
6378   llvm::CallingConv::ID cc = getRuntimeCC();
6379   if (cc != llvm::CallingConv::C)
6380     FI.setEffectiveCallingConvention(cc);
6381 }
6382 
6383 /// Return the default calling convention that LLVM will use.
6384 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6385   // The default calling convention that LLVM will infer.
6386   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6387     return llvm::CallingConv::ARM_AAPCS_VFP;
6388   else if (isEABI())
6389     return llvm::CallingConv::ARM_AAPCS;
6390   else
6391     return llvm::CallingConv::ARM_APCS;
6392 }
6393 
6394 /// Return the calling convention that our ABI would like us to use
6395 /// as the C calling convention.
6396 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6397   switch (getABIKind()) {
6398   case APCS: return llvm::CallingConv::ARM_APCS;
6399   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6400   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6401   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6402   }
6403   llvm_unreachable("bad ABI kind");
6404 }
6405 
6406 void ARMABIInfo::setCCs() {
6407   assert(getRuntimeCC() == llvm::CallingConv::C);
6408 
6409   // Don't muddy up the IR with a ton of explicit annotations if
6410   // they'd just match what LLVM will infer from the triple.
6411   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6412   if (abiCC != getLLVMDefaultCC())
6413     RuntimeCC = abiCC;
6414 }
6415 
6416 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6417   uint64_t Size = getContext().getTypeSize(Ty);
6418   if (Size <= 32) {
6419     llvm::Type *ResType =
6420         llvm::Type::getInt32Ty(getVMContext());
6421     return ABIArgInfo::getDirect(ResType);
6422   }
6423   if (Size == 64 || Size == 128) {
6424     auto *ResType = llvm::FixedVectorType::get(
6425         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6426     return ABIArgInfo::getDirect(ResType);
6427   }
6428   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6429 }
6430 
6431 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6432                                                     const Type *Base,
6433                                                     uint64_t Members) const {
6434   assert(Base && "Base class should be set for homogeneous aggregate");
6435   // Base can be a floating-point or a vector.
6436   if (const VectorType *VT = Base->getAs<VectorType>()) {
6437     // FP16 vectors should be converted to integer vectors
6438     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6439       uint64_t Size = getContext().getTypeSize(VT);
6440       auto *NewVecTy = llvm::FixedVectorType::get(
6441           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6442       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6443       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6444     }
6445   }
6446   unsigned Align = 0;
6447   if (getABIKind() == ARMABIInfo::AAPCS ||
6448       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6449     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6450     // default otherwise.
6451     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6452     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6453     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6454   }
6455   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6456 }
6457 
6458 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6459                                             unsigned functionCallConv) const {
6460   // 6.1.2.1 The following argument types are VFP CPRCs:
6461   //   A single-precision floating-point type (including promoted
6462   //   half-precision types); A double-precision floating-point type;
6463   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6464   //   with a Base Type of a single- or double-precision floating-point type,
6465   //   64-bit containerized vectors or 128-bit containerized vectors with one
6466   //   to four Elements.
6467   // Variadic functions should always marshal to the base standard.
6468   bool IsAAPCS_VFP =
6469       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6470 
6471   Ty = useFirstFieldIfTransparentUnion(Ty);
6472 
6473   // Handle illegal vector types here.
6474   if (isIllegalVectorType(Ty))
6475     return coerceIllegalVector(Ty);
6476 
6477   if (!isAggregateTypeForABI(Ty)) {
6478     // Treat an enum type as its underlying type.
6479     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6480       Ty = EnumTy->getDecl()->getIntegerType();
6481     }
6482 
6483     if (const auto *EIT = Ty->getAs<ExtIntType>())
6484       if (EIT->getNumBits() > 64)
6485         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6486 
6487     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6488                                               : ABIArgInfo::getDirect());
6489   }
6490 
6491   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6492     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6493   }
6494 
6495   // Ignore empty records.
6496   if (isEmptyRecord(getContext(), Ty, true))
6497     return ABIArgInfo::getIgnore();
6498 
6499   if (IsAAPCS_VFP) {
6500     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6501     // into VFP registers.
6502     const Type *Base = nullptr;
6503     uint64_t Members = 0;
6504     if (isHomogeneousAggregate(Ty, Base, Members))
6505       return classifyHomogeneousAggregate(Ty, Base, Members);
6506   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6507     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6508     // this convention even for a variadic function: the backend will use GPRs
6509     // if needed.
6510     const Type *Base = nullptr;
6511     uint64_t Members = 0;
6512     if (isHomogeneousAggregate(Ty, Base, Members)) {
6513       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6514       llvm::Type *Ty =
6515         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6516       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6517     }
6518   }
6519 
6520   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6521       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6522     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6523     // bigger than 128-bits, they get placed in space allocated by the caller,
6524     // and a pointer is passed.
6525     return ABIArgInfo::getIndirect(
6526         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6527   }
6528 
6529   // Support byval for ARM.
6530   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6531   // most 8-byte. We realign the indirect argument if type alignment is bigger
6532   // than ABI alignment.
6533   uint64_t ABIAlign = 4;
6534   uint64_t TyAlign;
6535   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6536       getABIKind() == ARMABIInfo::AAPCS) {
6537     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6538     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6539   } else {
6540     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6541   }
6542   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6543     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6544     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6545                                    /*ByVal=*/true,
6546                                    /*Realign=*/TyAlign > ABIAlign);
6547   }
6548 
6549   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6550   // same size and alignment.
6551   if (getTarget().isRenderScriptTarget()) {
6552     return coerceToIntArray(Ty, getContext(), getVMContext());
6553   }
6554 
6555   // Otherwise, pass by coercing to a structure of the appropriate size.
6556   llvm::Type* ElemTy;
6557   unsigned SizeRegs;
6558   // FIXME: Try to match the types of the arguments more accurately where
6559   // we can.
6560   if (TyAlign <= 4) {
6561     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6562     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6563   } else {
6564     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6565     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6566   }
6567 
6568   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6569 }
6570 
6571 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6572                               llvm::LLVMContext &VMContext) {
6573   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6574   // is called integer-like if its size is less than or equal to one word, and
6575   // the offset of each of its addressable sub-fields is zero.
6576 
6577   uint64_t Size = Context.getTypeSize(Ty);
6578 
6579   // Check that the type fits in a word.
6580   if (Size > 32)
6581     return false;
6582 
6583   // FIXME: Handle vector types!
6584   if (Ty->isVectorType())
6585     return false;
6586 
6587   // Float types are never treated as "integer like".
6588   if (Ty->isRealFloatingType())
6589     return false;
6590 
6591   // If this is a builtin or pointer type then it is ok.
6592   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6593     return true;
6594 
6595   // Small complex integer types are "integer like".
6596   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6597     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6598 
6599   // Single element and zero sized arrays should be allowed, by the definition
6600   // above, but they are not.
6601 
6602   // Otherwise, it must be a record type.
6603   const RecordType *RT = Ty->getAs<RecordType>();
6604   if (!RT) return false;
6605 
6606   // Ignore records with flexible arrays.
6607   const RecordDecl *RD = RT->getDecl();
6608   if (RD->hasFlexibleArrayMember())
6609     return false;
6610 
6611   // Check that all sub-fields are at offset 0, and are themselves "integer
6612   // like".
6613   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6614 
6615   bool HadField = false;
6616   unsigned idx = 0;
6617   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6618        i != e; ++i, ++idx) {
6619     const FieldDecl *FD = *i;
6620 
6621     // Bit-fields are not addressable, we only need to verify they are "integer
6622     // like". We still have to disallow a subsequent non-bitfield, for example:
6623     //   struct { int : 0; int x }
6624     // is non-integer like according to gcc.
6625     if (FD->isBitField()) {
6626       if (!RD->isUnion())
6627         HadField = true;
6628 
6629       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6630         return false;
6631 
6632       continue;
6633     }
6634 
6635     // Check if this field is at offset 0.
6636     if (Layout.getFieldOffset(idx) != 0)
6637       return false;
6638 
6639     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6640       return false;
6641 
6642     // Only allow at most one field in a structure. This doesn't match the
6643     // wording above, but follows gcc in situations with a field following an
6644     // empty structure.
6645     if (!RD->isUnion()) {
6646       if (HadField)
6647         return false;
6648 
6649       HadField = true;
6650     }
6651   }
6652 
6653   return true;
6654 }
6655 
6656 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6657                                           unsigned functionCallConv) const {
6658 
6659   // Variadic functions should always marshal to the base standard.
6660   bool IsAAPCS_VFP =
6661       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6662 
6663   if (RetTy->isVoidType())
6664     return ABIArgInfo::getIgnore();
6665 
6666   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6667     // Large vector types should be returned via memory.
6668     if (getContext().getTypeSize(RetTy) > 128)
6669       return getNaturalAlignIndirect(RetTy);
6670     // TODO: FP16/BF16 vectors should be converted to integer vectors
6671     // This check is similar  to isIllegalVectorType - refactor?
6672     if ((!getTarget().hasLegalHalfType() &&
6673         (VT->getElementType()->isFloat16Type() ||
6674          VT->getElementType()->isHalfType())) ||
6675         (IsFloatABISoftFP &&
6676          VT->getElementType()->isBFloat16Type()))
6677       return coerceIllegalVector(RetTy);
6678   }
6679 
6680   if (!isAggregateTypeForABI(RetTy)) {
6681     // Treat an enum type as its underlying type.
6682     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6683       RetTy = EnumTy->getDecl()->getIntegerType();
6684 
6685     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6686       if (EIT->getNumBits() > 64)
6687         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6688 
6689     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6690                                                 : ABIArgInfo::getDirect();
6691   }
6692 
6693   // Are we following APCS?
6694   if (getABIKind() == APCS) {
6695     if (isEmptyRecord(getContext(), RetTy, false))
6696       return ABIArgInfo::getIgnore();
6697 
6698     // Complex types are all returned as packed integers.
6699     //
6700     // FIXME: Consider using 2 x vector types if the back end handles them
6701     // correctly.
6702     if (RetTy->isAnyComplexType())
6703       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6704           getVMContext(), getContext().getTypeSize(RetTy)));
6705 
6706     // Integer like structures are returned in r0.
6707     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6708       // Return in the smallest viable integer type.
6709       uint64_t Size = getContext().getTypeSize(RetTy);
6710       if (Size <= 8)
6711         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6712       if (Size <= 16)
6713         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6714       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6715     }
6716 
6717     // Otherwise return in memory.
6718     return getNaturalAlignIndirect(RetTy);
6719   }
6720 
6721   // Otherwise this is an AAPCS variant.
6722 
6723   if (isEmptyRecord(getContext(), RetTy, true))
6724     return ABIArgInfo::getIgnore();
6725 
6726   // Check for homogeneous aggregates with AAPCS-VFP.
6727   if (IsAAPCS_VFP) {
6728     const Type *Base = nullptr;
6729     uint64_t Members = 0;
6730     if (isHomogeneousAggregate(RetTy, Base, Members))
6731       return classifyHomogeneousAggregate(RetTy, Base, Members);
6732   }
6733 
6734   // Aggregates <= 4 bytes are returned in r0; other aggregates
6735   // are returned indirectly.
6736   uint64_t Size = getContext().getTypeSize(RetTy);
6737   if (Size <= 32) {
6738     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6739     // same size and alignment.
6740     if (getTarget().isRenderScriptTarget()) {
6741       return coerceToIntArray(RetTy, getContext(), getVMContext());
6742     }
6743     if (getDataLayout().isBigEndian())
6744       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6745       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6746 
6747     // Return in the smallest viable integer type.
6748     if (Size <= 8)
6749       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6750     if (Size <= 16)
6751       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6752     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6753   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6754     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6755     llvm::Type *CoerceTy =
6756         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6757     return ABIArgInfo::getDirect(CoerceTy);
6758   }
6759 
6760   return getNaturalAlignIndirect(RetTy);
6761 }
6762 
6763 /// isIllegalVector - check whether Ty is an illegal vector type.
6764 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6765   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6766     // On targets that don't support half, fp16 or bfloat, they are expanded
6767     // into float, and we don't want the ABI to depend on whether or not they
6768     // are supported in hardware. Thus return false to coerce vectors of these
6769     // types into integer vectors.
6770     // We do not depend on hasLegalHalfType for bfloat as it is a
6771     // separate IR type.
6772     if ((!getTarget().hasLegalHalfType() &&
6773         (VT->getElementType()->isFloat16Type() ||
6774          VT->getElementType()->isHalfType())) ||
6775         (IsFloatABISoftFP &&
6776          VT->getElementType()->isBFloat16Type()))
6777       return true;
6778     if (isAndroid()) {
6779       // Android shipped using Clang 3.1, which supported a slightly different
6780       // vector ABI. The primary differences were that 3-element vector types
6781       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6782       // accepts that legacy behavior for Android only.
6783       // Check whether VT is legal.
6784       unsigned NumElements = VT->getNumElements();
6785       // NumElements should be power of 2 or equal to 3.
6786       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6787         return true;
6788     } else {
6789       // Check whether VT is legal.
6790       unsigned NumElements = VT->getNumElements();
6791       uint64_t Size = getContext().getTypeSize(VT);
6792       // NumElements should be power of 2.
6793       if (!llvm::isPowerOf2_32(NumElements))
6794         return true;
6795       // Size should be greater than 32 bits.
6796       return Size <= 32;
6797     }
6798   }
6799   return false;
6800 }
6801 
6802 /// Return true if a type contains any 16-bit floating point vectors
6803 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6804   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6805     uint64_t NElements = AT->getSize().getZExtValue();
6806     if (NElements == 0)
6807       return false;
6808     return containsAnyFP16Vectors(AT->getElementType());
6809   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6810     const RecordDecl *RD = RT->getDecl();
6811 
6812     // If this is a C++ record, check the bases first.
6813     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6814       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6815             return containsAnyFP16Vectors(B.getType());
6816           }))
6817         return true;
6818 
6819     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6820           return FD && containsAnyFP16Vectors(FD->getType());
6821         }))
6822       return true;
6823 
6824     return false;
6825   } else {
6826     if (const VectorType *VT = Ty->getAs<VectorType>())
6827       return (VT->getElementType()->isFloat16Type() ||
6828               VT->getElementType()->isBFloat16Type() ||
6829               VT->getElementType()->isHalfType());
6830     return false;
6831   }
6832 }
6833 
6834 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6835                                            llvm::Type *eltTy,
6836                                            unsigned numElts) const {
6837   if (!llvm::isPowerOf2_32(numElts))
6838     return false;
6839   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6840   if (size > 64)
6841     return false;
6842   if (vectorSize.getQuantity() != 8 &&
6843       (vectorSize.getQuantity() != 16 || numElts == 1))
6844     return false;
6845   return true;
6846 }
6847 
6848 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6849   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6850   // double, or 64-bit or 128-bit vectors.
6851   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6852     if (BT->getKind() == BuiltinType::Float ||
6853         BT->getKind() == BuiltinType::Double ||
6854         BT->getKind() == BuiltinType::LongDouble)
6855       return true;
6856   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6857     unsigned VecSize = getContext().getTypeSize(VT);
6858     if (VecSize == 64 || VecSize == 128)
6859       return true;
6860   }
6861   return false;
6862 }
6863 
6864 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6865                                                    uint64_t Members) const {
6866   return Members <= 4;
6867 }
6868 
6869 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6870                                         bool acceptHalf) const {
6871   // Give precedence to user-specified calling conventions.
6872   if (callConvention != llvm::CallingConv::C)
6873     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6874   else
6875     return (getABIKind() == AAPCS_VFP) ||
6876            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6877 }
6878 
6879 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6880                               QualType Ty) const {
6881   CharUnits SlotSize = CharUnits::fromQuantity(4);
6882 
6883   // Empty records are ignored for parameter passing purposes.
6884   if (isEmptyRecord(getContext(), Ty, true)) {
6885     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6886     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6887     return Addr;
6888   }
6889 
6890   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6891   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6892 
6893   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6894   bool IsIndirect = false;
6895   const Type *Base = nullptr;
6896   uint64_t Members = 0;
6897   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6898     IsIndirect = true;
6899 
6900   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6901   // allocated by the caller.
6902   } else if (TySize > CharUnits::fromQuantity(16) &&
6903              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6904              !isHomogeneousAggregate(Ty, Base, Members)) {
6905     IsIndirect = true;
6906 
6907   // Otherwise, bound the type's ABI alignment.
6908   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6909   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6910   // Our callers should be prepared to handle an under-aligned address.
6911   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6912              getABIKind() == ARMABIInfo::AAPCS) {
6913     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6914     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6915   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6916     // ARMv7k allows type alignment up to 16 bytes.
6917     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6918     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6919   } else {
6920     TyAlignForABI = CharUnits::fromQuantity(4);
6921   }
6922 
6923   TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
6924   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6925                           SlotSize, /*AllowHigherAlign*/ true);
6926 }
6927 
6928 //===----------------------------------------------------------------------===//
6929 // NVPTX ABI Implementation
6930 //===----------------------------------------------------------------------===//
6931 
6932 namespace {
6933 
6934 class NVPTXTargetCodeGenInfo;
6935 
6936 class NVPTXABIInfo : public ABIInfo {
6937   NVPTXTargetCodeGenInfo &CGInfo;
6938 
6939 public:
6940   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6941       : ABIInfo(CGT), CGInfo(Info) {}
6942 
6943   ABIArgInfo classifyReturnType(QualType RetTy) const;
6944   ABIArgInfo classifyArgumentType(QualType Ty) const;
6945 
6946   void computeInfo(CGFunctionInfo &FI) const override;
6947   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6948                     QualType Ty) const override;
6949   bool isUnsupportedType(QualType T) const;
6950   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6951 };
6952 
6953 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6954 public:
6955   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6956       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6957 
6958   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6959                            CodeGen::CodeGenModule &M) const override;
6960   bool shouldEmitStaticExternCAliases() const override;
6961 
6962   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6963     // On the device side, surface reference is represented as an object handle
6964     // in 64-bit integer.
6965     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6966   }
6967 
6968   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6969     // On the device side, texture reference is represented as an object handle
6970     // in 64-bit integer.
6971     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6972   }
6973 
6974   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6975                                               LValue Src) const override {
6976     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6977     return true;
6978   }
6979 
6980   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6981                                               LValue Src) const override {
6982     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6983     return true;
6984   }
6985 
6986 private:
6987   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6988   // resulting MDNode to the nvvm.annotations MDNode.
6989   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6990                               int Operand);
6991 
6992   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6993                                            LValue Src) {
6994     llvm::Value *Handle = nullptr;
6995     llvm::Constant *C =
6996         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6997     // Lookup `addrspacecast` through the constant pointer if any.
6998     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6999       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7000     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7001       // Load the handle from the specific global variable using
7002       // `nvvm.texsurf.handle.internal` intrinsic.
7003       Handle = CGF.EmitRuntimeCall(
7004           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7005                                {GV->getType()}),
7006           {GV}, "texsurf_handle");
7007     } else
7008       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7009     CGF.EmitStoreOfScalar(Handle, Dst);
7010   }
7011 };
7012 
7013 /// Checks if the type is unsupported directly by the current target.
7014 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7015   ASTContext &Context = getContext();
7016   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7017     return true;
7018   if (!Context.getTargetInfo().hasFloat128Type() &&
7019       (T->isFloat128Type() ||
7020        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7021     return true;
7022   if (const auto *EIT = T->getAs<ExtIntType>())
7023     return EIT->getNumBits() >
7024            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7025   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7026       Context.getTypeSize(T) > 64U)
7027     return true;
7028   if (const auto *AT = T->getAsArrayTypeUnsafe())
7029     return isUnsupportedType(AT->getElementType());
7030   const auto *RT = T->getAs<RecordType>();
7031   if (!RT)
7032     return false;
7033   const RecordDecl *RD = RT->getDecl();
7034 
7035   // If this is a C++ record, check the bases first.
7036   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7037     for (const CXXBaseSpecifier &I : CXXRD->bases())
7038       if (isUnsupportedType(I.getType()))
7039         return true;
7040 
7041   for (const FieldDecl *I : RD->fields())
7042     if (isUnsupportedType(I->getType()))
7043       return true;
7044   return false;
7045 }
7046 
7047 /// Coerce the given type into an array with maximum allowed size of elements.
7048 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7049                                                    unsigned MaxSize) const {
7050   // Alignment and Size are measured in bits.
7051   const uint64_t Size = getContext().getTypeSize(Ty);
7052   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7053   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7054   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7055   const uint64_t NumElements = (Size + Div - 1) / Div;
7056   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7057 }
7058 
7059 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7060   if (RetTy->isVoidType())
7061     return ABIArgInfo::getIgnore();
7062 
7063   if (getContext().getLangOpts().OpenMP &&
7064       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7065     return coerceToIntArrayWithLimit(RetTy, 64);
7066 
7067   // note: this is different from default ABI
7068   if (!RetTy->isScalarType())
7069     return ABIArgInfo::getDirect();
7070 
7071   // Treat an enum type as its underlying type.
7072   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7073     RetTy = EnumTy->getDecl()->getIntegerType();
7074 
7075   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7076                                                : ABIArgInfo::getDirect());
7077 }
7078 
7079 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7080   // Treat an enum type as its underlying type.
7081   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7082     Ty = EnumTy->getDecl()->getIntegerType();
7083 
7084   // Return aggregates type as indirect by value
7085   if (isAggregateTypeForABI(Ty)) {
7086     // Under CUDA device compilation, tex/surf builtin types are replaced with
7087     // object types and passed directly.
7088     if (getContext().getLangOpts().CUDAIsDevice) {
7089       if (Ty->isCUDADeviceBuiltinSurfaceType())
7090         return ABIArgInfo::getDirect(
7091             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7092       if (Ty->isCUDADeviceBuiltinTextureType())
7093         return ABIArgInfo::getDirect(
7094             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7095     }
7096     return getNaturalAlignIndirect(Ty, /* byval */ true);
7097   }
7098 
7099   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7100     if ((EIT->getNumBits() > 128) ||
7101         (!getContext().getTargetInfo().hasInt128Type() &&
7102          EIT->getNumBits() > 64))
7103       return getNaturalAlignIndirect(Ty, /* byval */ true);
7104   }
7105 
7106   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7107                                             : ABIArgInfo::getDirect());
7108 }
7109 
7110 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7111   if (!getCXXABI().classifyReturnType(FI))
7112     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7113   for (auto &I : FI.arguments())
7114     I.info = classifyArgumentType(I.type);
7115 
7116   // Always honor user-specified calling convention.
7117   if (FI.getCallingConvention() != llvm::CallingConv::C)
7118     return;
7119 
7120   FI.setEffectiveCallingConvention(getRuntimeCC());
7121 }
7122 
7123 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7124                                 QualType Ty) const {
7125   llvm_unreachable("NVPTX does not support varargs");
7126 }
7127 
7128 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7129     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7130   if (GV->isDeclaration())
7131     return;
7132   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7133   if (VD) {
7134     if (M.getLangOpts().CUDA) {
7135       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7136         addNVVMMetadata(GV, "surface", 1);
7137       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7138         addNVVMMetadata(GV, "texture", 1);
7139       return;
7140     }
7141   }
7142 
7143   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7144   if (!FD) return;
7145 
7146   llvm::Function *F = cast<llvm::Function>(GV);
7147 
7148   // Perform special handling in OpenCL mode
7149   if (M.getLangOpts().OpenCL) {
7150     // Use OpenCL function attributes to check for kernel functions
7151     // By default, all functions are device functions
7152     if (FD->hasAttr<OpenCLKernelAttr>()) {
7153       // OpenCL __kernel functions get kernel metadata
7154       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7155       addNVVMMetadata(F, "kernel", 1);
7156       // And kernel functions are not subject to inlining
7157       F->addFnAttr(llvm::Attribute::NoInline);
7158     }
7159   }
7160 
7161   // Perform special handling in CUDA mode.
7162   if (M.getLangOpts().CUDA) {
7163     // CUDA __global__ functions get a kernel metadata entry.  Since
7164     // __global__ functions cannot be called from the device, we do not
7165     // need to set the noinline attribute.
7166     if (FD->hasAttr<CUDAGlobalAttr>()) {
7167       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7168       addNVVMMetadata(F, "kernel", 1);
7169     }
7170     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7171       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7172       llvm::APSInt MaxThreads(32);
7173       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7174       if (MaxThreads > 0)
7175         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7176 
7177       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7178       // not specified in __launch_bounds__ or if the user specified a 0 value,
7179       // we don't have to add a PTX directive.
7180       if (Attr->getMinBlocks()) {
7181         llvm::APSInt MinBlocks(32);
7182         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7183         if (MinBlocks > 0)
7184           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7185           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7186       }
7187     }
7188   }
7189 }
7190 
7191 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7192                                              StringRef Name, int Operand) {
7193   llvm::Module *M = GV->getParent();
7194   llvm::LLVMContext &Ctx = M->getContext();
7195 
7196   // Get "nvvm.annotations" metadata node
7197   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7198 
7199   llvm::Metadata *MDVals[] = {
7200       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7201       llvm::ConstantAsMetadata::get(
7202           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7203   // Append metadata to nvvm.annotations
7204   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7205 }
7206 
7207 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7208   return false;
7209 }
7210 }
7211 
7212 //===----------------------------------------------------------------------===//
7213 // SystemZ ABI Implementation
7214 //===----------------------------------------------------------------------===//
7215 
7216 namespace {
7217 
7218 class SystemZABIInfo : public SwiftABIInfo {
7219   bool HasVector;
7220   bool IsSoftFloatABI;
7221 
7222 public:
7223   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7224     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7225 
7226   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7227   bool isCompoundType(QualType Ty) const;
7228   bool isVectorArgumentType(QualType Ty) const;
7229   bool isFPArgumentType(QualType Ty) const;
7230   QualType GetSingleElementType(QualType Ty) const;
7231 
7232   ABIArgInfo classifyReturnType(QualType RetTy) const;
7233   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7234 
7235   void computeInfo(CGFunctionInfo &FI) const override {
7236     if (!getCXXABI().classifyReturnType(FI))
7237       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7238     for (auto &I : FI.arguments())
7239       I.info = classifyArgumentType(I.type);
7240   }
7241 
7242   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7243                     QualType Ty) const override;
7244 
7245   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7246                                     bool asReturnValue) const override {
7247     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7248   }
7249   bool isSwiftErrorInRegister() const override {
7250     return false;
7251   }
7252 };
7253 
7254 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7255 public:
7256   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7257       : TargetCodeGenInfo(
7258             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7259 
7260   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7261                           CGBuilderTy &Builder,
7262                           CodeGenModule &CGM) const override {
7263     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7264     // Only use TDC in constrained FP mode.
7265     if (!Builder.getIsFPConstrained())
7266       return nullptr;
7267 
7268     llvm::Type *Ty = V->getType();
7269     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7270       llvm::Module &M = CGM.getModule();
7271       auto &Ctx = M.getContext();
7272       llvm::Function *TDCFunc =
7273           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7274       unsigned TDCBits = 0;
7275       switch (BuiltinID) {
7276       case Builtin::BI__builtin_isnan:
7277         TDCBits = 0xf;
7278         break;
7279       case Builtin::BIfinite:
7280       case Builtin::BI__finite:
7281       case Builtin::BIfinitef:
7282       case Builtin::BI__finitef:
7283       case Builtin::BIfinitel:
7284       case Builtin::BI__finitel:
7285       case Builtin::BI__builtin_isfinite:
7286         TDCBits = 0xfc0;
7287         break;
7288       case Builtin::BI__builtin_isinf:
7289         TDCBits = 0x30;
7290         break;
7291       default:
7292         break;
7293       }
7294       if (TDCBits)
7295         return Builder.CreateCall(
7296             TDCFunc,
7297             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7298     }
7299     return nullptr;
7300   }
7301 };
7302 }
7303 
7304 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7305   // Treat an enum type as its underlying type.
7306   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7307     Ty = EnumTy->getDecl()->getIntegerType();
7308 
7309   // Promotable integer types are required to be promoted by the ABI.
7310   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7311     return true;
7312 
7313   if (const auto *EIT = Ty->getAs<ExtIntType>())
7314     if (EIT->getNumBits() < 64)
7315       return true;
7316 
7317   // 32-bit values must also be promoted.
7318   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7319     switch (BT->getKind()) {
7320     case BuiltinType::Int:
7321     case BuiltinType::UInt:
7322       return true;
7323     default:
7324       return false;
7325     }
7326   return false;
7327 }
7328 
7329 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7330   return (Ty->isAnyComplexType() ||
7331           Ty->isVectorType() ||
7332           isAggregateTypeForABI(Ty));
7333 }
7334 
7335 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7336   return (HasVector &&
7337           Ty->isVectorType() &&
7338           getContext().getTypeSize(Ty) <= 128);
7339 }
7340 
7341 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7342   if (IsSoftFloatABI)
7343     return false;
7344 
7345   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7346     switch (BT->getKind()) {
7347     case BuiltinType::Float:
7348     case BuiltinType::Double:
7349       return true;
7350     default:
7351       return false;
7352     }
7353 
7354   return false;
7355 }
7356 
7357 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7358   const RecordType *RT = Ty->getAs<RecordType>();
7359 
7360   if (RT && RT->isStructureOrClassType()) {
7361     const RecordDecl *RD = RT->getDecl();
7362     QualType Found;
7363 
7364     // If this is a C++ record, check the bases first.
7365     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7366       for (const auto &I : CXXRD->bases()) {
7367         QualType Base = I.getType();
7368 
7369         // Empty bases don't affect things either way.
7370         if (isEmptyRecord(getContext(), Base, true))
7371           continue;
7372 
7373         if (!Found.isNull())
7374           return Ty;
7375         Found = GetSingleElementType(Base);
7376       }
7377 
7378     // Check the fields.
7379     for (const auto *FD : RD->fields()) {
7380       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7381       // Unlike isSingleElementStruct(), empty structure and array fields
7382       // do count.  So do anonymous bitfields that aren't zero-sized.
7383       if (getContext().getLangOpts().CPlusPlus &&
7384           FD->isZeroLengthBitField(getContext()))
7385         continue;
7386       // Like isSingleElementStruct(), ignore C++20 empty data members.
7387       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7388           isEmptyRecord(getContext(), FD->getType(), true))
7389         continue;
7390 
7391       // Unlike isSingleElementStruct(), arrays do not count.
7392       // Nested structures still do though.
7393       if (!Found.isNull())
7394         return Ty;
7395       Found = GetSingleElementType(FD->getType());
7396     }
7397 
7398     // Unlike isSingleElementStruct(), trailing padding is allowed.
7399     // An 8-byte aligned struct s { float f; } is passed as a double.
7400     if (!Found.isNull())
7401       return Found;
7402   }
7403 
7404   return Ty;
7405 }
7406 
7407 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7408                                   QualType Ty) const {
7409   // Assume that va_list type is correct; should be pointer to LLVM type:
7410   // struct {
7411   //   i64 __gpr;
7412   //   i64 __fpr;
7413   //   i8 *__overflow_arg_area;
7414   //   i8 *__reg_save_area;
7415   // };
7416 
7417   // Every non-vector argument occupies 8 bytes and is passed by preference
7418   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7419   // always passed on the stack.
7420   Ty = getContext().getCanonicalType(Ty);
7421   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7422   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7423   llvm::Type *DirectTy = ArgTy;
7424   ABIArgInfo AI = classifyArgumentType(Ty);
7425   bool IsIndirect = AI.isIndirect();
7426   bool InFPRs = false;
7427   bool IsVector = false;
7428   CharUnits UnpaddedSize;
7429   CharUnits DirectAlign;
7430   if (IsIndirect) {
7431     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7432     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7433   } else {
7434     if (AI.getCoerceToType())
7435       ArgTy = AI.getCoerceToType();
7436     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7437     IsVector = ArgTy->isVectorTy();
7438     UnpaddedSize = TyInfo.Width;
7439     DirectAlign = TyInfo.Align;
7440   }
7441   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7442   if (IsVector && UnpaddedSize > PaddedSize)
7443     PaddedSize = CharUnits::fromQuantity(16);
7444   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7445 
7446   CharUnits Padding = (PaddedSize - UnpaddedSize);
7447 
7448   llvm::Type *IndexTy = CGF.Int64Ty;
7449   llvm::Value *PaddedSizeV =
7450     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7451 
7452   if (IsVector) {
7453     // Work out the address of a vector argument on the stack.
7454     // Vector arguments are always passed in the high bits of a
7455     // single (8 byte) or double (16 byte) stack slot.
7456     Address OverflowArgAreaPtr =
7457         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7458     Address OverflowArgArea =
7459       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7460               TyInfo.Align);
7461     Address MemAddr =
7462       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7463 
7464     // Update overflow_arg_area_ptr pointer
7465     llvm::Value *NewOverflowArgArea =
7466       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7467                             OverflowArgArea.getPointer(), PaddedSizeV,
7468                             "overflow_arg_area");
7469     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7470 
7471     return MemAddr;
7472   }
7473 
7474   assert(PaddedSize.getQuantity() == 8);
7475 
7476   unsigned MaxRegs, RegCountField, RegSaveIndex;
7477   CharUnits RegPadding;
7478   if (InFPRs) {
7479     MaxRegs = 4; // Maximum of 4 FPR arguments
7480     RegCountField = 1; // __fpr
7481     RegSaveIndex = 16; // save offset for f0
7482     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7483   } else {
7484     MaxRegs = 5; // Maximum of 5 GPR arguments
7485     RegCountField = 0; // __gpr
7486     RegSaveIndex = 2; // save offset for r2
7487     RegPadding = Padding; // values are passed in the low bits of a GPR
7488   }
7489 
7490   Address RegCountPtr =
7491       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7492   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7493   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7494   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7495                                                  "fits_in_regs");
7496 
7497   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7498   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7499   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7500   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7501 
7502   // Emit code to load the value if it was passed in registers.
7503   CGF.EmitBlock(InRegBlock);
7504 
7505   // Work out the address of an argument register.
7506   llvm::Value *ScaledRegCount =
7507     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7508   llvm::Value *RegBase =
7509     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7510                                       + RegPadding.getQuantity());
7511   llvm::Value *RegOffset =
7512     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7513   Address RegSaveAreaPtr =
7514       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7515   llvm::Value *RegSaveArea =
7516     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7517   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7518                                            "raw_reg_addr"),
7519                      PaddedSize);
7520   Address RegAddr =
7521     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7522 
7523   // Update the register count
7524   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7525   llvm::Value *NewRegCount =
7526     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7527   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7528   CGF.EmitBranch(ContBlock);
7529 
7530   // Emit code to load the value if it was passed in memory.
7531   CGF.EmitBlock(InMemBlock);
7532 
7533   // Work out the address of a stack argument.
7534   Address OverflowArgAreaPtr =
7535       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7536   Address OverflowArgArea =
7537     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7538             PaddedSize);
7539   Address RawMemAddr =
7540     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7541   Address MemAddr =
7542     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7543 
7544   // Update overflow_arg_area_ptr pointer
7545   llvm::Value *NewOverflowArgArea =
7546     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7547                           OverflowArgArea.getPointer(), PaddedSizeV,
7548                           "overflow_arg_area");
7549   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7550   CGF.EmitBranch(ContBlock);
7551 
7552   // Return the appropriate result.
7553   CGF.EmitBlock(ContBlock);
7554   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7555                                  MemAddr, InMemBlock, "va_arg.addr");
7556 
7557   if (IsIndirect)
7558     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7559                       TyInfo.Align);
7560 
7561   return ResAddr;
7562 }
7563 
7564 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7565   if (RetTy->isVoidType())
7566     return ABIArgInfo::getIgnore();
7567   if (isVectorArgumentType(RetTy))
7568     return ABIArgInfo::getDirect();
7569   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7570     return getNaturalAlignIndirect(RetTy);
7571   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7572                                                : ABIArgInfo::getDirect());
7573 }
7574 
7575 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7576   // Handle the generic C++ ABI.
7577   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7578     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7579 
7580   // Integers and enums are extended to full register width.
7581   if (isPromotableIntegerTypeForABI(Ty))
7582     return ABIArgInfo::getExtend(Ty);
7583 
7584   // Handle vector types and vector-like structure types.  Note that
7585   // as opposed to float-like structure types, we do not allow any
7586   // padding for vector-like structures, so verify the sizes match.
7587   uint64_t Size = getContext().getTypeSize(Ty);
7588   QualType SingleElementTy = GetSingleElementType(Ty);
7589   if (isVectorArgumentType(SingleElementTy) &&
7590       getContext().getTypeSize(SingleElementTy) == Size)
7591     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7592 
7593   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7594   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7595     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7596 
7597   // Handle small structures.
7598   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7599     // Structures with flexible arrays have variable length, so really
7600     // fail the size test above.
7601     const RecordDecl *RD = RT->getDecl();
7602     if (RD->hasFlexibleArrayMember())
7603       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7604 
7605     // The structure is passed as an unextended integer, a float, or a double.
7606     llvm::Type *PassTy;
7607     if (isFPArgumentType(SingleElementTy)) {
7608       assert(Size == 32 || Size == 64);
7609       if (Size == 32)
7610         PassTy = llvm::Type::getFloatTy(getVMContext());
7611       else
7612         PassTy = llvm::Type::getDoubleTy(getVMContext());
7613     } else
7614       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7615     return ABIArgInfo::getDirect(PassTy);
7616   }
7617 
7618   // Non-structure compounds are passed indirectly.
7619   if (isCompoundType(Ty))
7620     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7621 
7622   return ABIArgInfo::getDirect(nullptr);
7623 }
7624 
7625 //===----------------------------------------------------------------------===//
7626 // MSP430 ABI Implementation
7627 //===----------------------------------------------------------------------===//
7628 
7629 namespace {
7630 
7631 class MSP430ABIInfo : public DefaultABIInfo {
7632   static ABIArgInfo complexArgInfo() {
7633     ABIArgInfo Info = ABIArgInfo::getDirect();
7634     Info.setCanBeFlattened(false);
7635     return Info;
7636   }
7637 
7638 public:
7639   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7640 
7641   ABIArgInfo classifyReturnType(QualType RetTy) const {
7642     if (RetTy->isAnyComplexType())
7643       return complexArgInfo();
7644 
7645     return DefaultABIInfo::classifyReturnType(RetTy);
7646   }
7647 
7648   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7649     if (RetTy->isAnyComplexType())
7650       return complexArgInfo();
7651 
7652     return DefaultABIInfo::classifyArgumentType(RetTy);
7653   }
7654 
7655   // Just copy the original implementations because
7656   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7657   void computeInfo(CGFunctionInfo &FI) const override {
7658     if (!getCXXABI().classifyReturnType(FI))
7659       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7660     for (auto &I : FI.arguments())
7661       I.info = classifyArgumentType(I.type);
7662   }
7663 
7664   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7665                     QualType Ty) const override {
7666     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7667   }
7668 };
7669 
7670 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7671 public:
7672   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7673       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7674   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7675                            CodeGen::CodeGenModule &M) const override;
7676 };
7677 
7678 }
7679 
7680 void MSP430TargetCodeGenInfo::setTargetAttributes(
7681     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7682   if (GV->isDeclaration())
7683     return;
7684   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7685     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7686     if (!InterruptAttr)
7687       return;
7688 
7689     // Handle 'interrupt' attribute:
7690     llvm::Function *F = cast<llvm::Function>(GV);
7691 
7692     // Step 1: Set ISR calling convention.
7693     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7694 
7695     // Step 2: Add attributes goodness.
7696     F->addFnAttr(llvm::Attribute::NoInline);
7697     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7698   }
7699 }
7700 
7701 //===----------------------------------------------------------------------===//
7702 // MIPS ABI Implementation.  This works for both little-endian and
7703 // big-endian variants.
7704 //===----------------------------------------------------------------------===//
7705 
7706 namespace {
7707 class MipsABIInfo : public ABIInfo {
7708   bool IsO32;
7709   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7710   void CoerceToIntArgs(uint64_t TySize,
7711                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7712   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7713   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7714   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7715 public:
7716   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7717     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7718     StackAlignInBytes(IsO32 ? 8 : 16) {}
7719 
7720   ABIArgInfo classifyReturnType(QualType RetTy) const;
7721   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7722   void computeInfo(CGFunctionInfo &FI) const override;
7723   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7724                     QualType Ty) const override;
7725   ABIArgInfo extendType(QualType Ty) const;
7726 };
7727 
7728 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7729   unsigned SizeOfUnwindException;
7730 public:
7731   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7732       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7733         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7734 
7735   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7736     return 29;
7737   }
7738 
7739   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7740                            CodeGen::CodeGenModule &CGM) const override {
7741     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7742     if (!FD) return;
7743     llvm::Function *Fn = cast<llvm::Function>(GV);
7744 
7745     if (FD->hasAttr<MipsLongCallAttr>())
7746       Fn->addFnAttr("long-call");
7747     else if (FD->hasAttr<MipsShortCallAttr>())
7748       Fn->addFnAttr("short-call");
7749 
7750     // Other attributes do not have a meaning for declarations.
7751     if (GV->isDeclaration())
7752       return;
7753 
7754     if (FD->hasAttr<Mips16Attr>()) {
7755       Fn->addFnAttr("mips16");
7756     }
7757     else if (FD->hasAttr<NoMips16Attr>()) {
7758       Fn->addFnAttr("nomips16");
7759     }
7760 
7761     if (FD->hasAttr<MicroMipsAttr>())
7762       Fn->addFnAttr("micromips");
7763     else if (FD->hasAttr<NoMicroMipsAttr>())
7764       Fn->addFnAttr("nomicromips");
7765 
7766     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7767     if (!Attr)
7768       return;
7769 
7770     const char *Kind;
7771     switch (Attr->getInterrupt()) {
7772     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7773     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7774     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7775     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7776     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7777     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7778     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7779     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7780     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7781     }
7782 
7783     Fn->addFnAttr("interrupt", Kind);
7784 
7785   }
7786 
7787   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7788                                llvm::Value *Address) const override;
7789 
7790   unsigned getSizeOfUnwindException() const override {
7791     return SizeOfUnwindException;
7792   }
7793 };
7794 }
7795 
7796 void MipsABIInfo::CoerceToIntArgs(
7797     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7798   llvm::IntegerType *IntTy =
7799     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7800 
7801   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7802   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7803     ArgList.push_back(IntTy);
7804 
7805   // If necessary, add one more integer type to ArgList.
7806   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7807 
7808   if (R)
7809     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7810 }
7811 
7812 // In N32/64, an aligned double precision floating point field is passed in
7813 // a register.
7814 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7815   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7816 
7817   if (IsO32) {
7818     CoerceToIntArgs(TySize, ArgList);
7819     return llvm::StructType::get(getVMContext(), ArgList);
7820   }
7821 
7822   if (Ty->isComplexType())
7823     return CGT.ConvertType(Ty);
7824 
7825   const RecordType *RT = Ty->getAs<RecordType>();
7826 
7827   // Unions/vectors are passed in integer registers.
7828   if (!RT || !RT->isStructureOrClassType()) {
7829     CoerceToIntArgs(TySize, ArgList);
7830     return llvm::StructType::get(getVMContext(), ArgList);
7831   }
7832 
7833   const RecordDecl *RD = RT->getDecl();
7834   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7835   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7836 
7837   uint64_t LastOffset = 0;
7838   unsigned idx = 0;
7839   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7840 
7841   // Iterate over fields in the struct/class and check if there are any aligned
7842   // double fields.
7843   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7844        i != e; ++i, ++idx) {
7845     const QualType Ty = i->getType();
7846     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7847 
7848     if (!BT || BT->getKind() != BuiltinType::Double)
7849       continue;
7850 
7851     uint64_t Offset = Layout.getFieldOffset(idx);
7852     if (Offset % 64) // Ignore doubles that are not aligned.
7853       continue;
7854 
7855     // Add ((Offset - LastOffset) / 64) args of type i64.
7856     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7857       ArgList.push_back(I64);
7858 
7859     // Add double type.
7860     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7861     LastOffset = Offset + 64;
7862   }
7863 
7864   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7865   ArgList.append(IntArgList.begin(), IntArgList.end());
7866 
7867   return llvm::StructType::get(getVMContext(), ArgList);
7868 }
7869 
7870 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7871                                         uint64_t Offset) const {
7872   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7873     return nullptr;
7874 
7875   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7876 }
7877 
7878 ABIArgInfo
7879 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7880   Ty = useFirstFieldIfTransparentUnion(Ty);
7881 
7882   uint64_t OrigOffset = Offset;
7883   uint64_t TySize = getContext().getTypeSize(Ty);
7884   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7885 
7886   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7887                    (uint64_t)StackAlignInBytes);
7888   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7889   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7890 
7891   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7892     // Ignore empty aggregates.
7893     if (TySize == 0)
7894       return ABIArgInfo::getIgnore();
7895 
7896     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7897       Offset = OrigOffset + MinABIStackAlignInBytes;
7898       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7899     }
7900 
7901     // If we have reached here, aggregates are passed directly by coercing to
7902     // another structure type. Padding is inserted if the offset of the
7903     // aggregate is unaligned.
7904     ABIArgInfo ArgInfo =
7905         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7906                               getPaddingType(OrigOffset, CurrOffset));
7907     ArgInfo.setInReg(true);
7908     return ArgInfo;
7909   }
7910 
7911   // Treat an enum type as its underlying type.
7912   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7913     Ty = EnumTy->getDecl()->getIntegerType();
7914 
7915   // Make sure we pass indirectly things that are too large.
7916   if (const auto *EIT = Ty->getAs<ExtIntType>())
7917     if (EIT->getNumBits() > 128 ||
7918         (EIT->getNumBits() > 64 &&
7919          !getContext().getTargetInfo().hasInt128Type()))
7920       return getNaturalAlignIndirect(Ty);
7921 
7922   // All integral types are promoted to the GPR width.
7923   if (Ty->isIntegralOrEnumerationType())
7924     return extendType(Ty);
7925 
7926   return ABIArgInfo::getDirect(
7927       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7928 }
7929 
7930 llvm::Type*
7931 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7932   const RecordType *RT = RetTy->getAs<RecordType>();
7933   SmallVector<llvm::Type*, 8> RTList;
7934 
7935   if (RT && RT->isStructureOrClassType()) {
7936     const RecordDecl *RD = RT->getDecl();
7937     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7938     unsigned FieldCnt = Layout.getFieldCount();
7939 
7940     // N32/64 returns struct/classes in floating point registers if the
7941     // following conditions are met:
7942     // 1. The size of the struct/class is no larger than 128-bit.
7943     // 2. The struct/class has one or two fields all of which are floating
7944     //    point types.
7945     // 3. The offset of the first field is zero (this follows what gcc does).
7946     //
7947     // Any other composite results are returned in integer registers.
7948     //
7949     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7950       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7951       for (; b != e; ++b) {
7952         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7953 
7954         if (!BT || !BT->isFloatingPoint())
7955           break;
7956 
7957         RTList.push_back(CGT.ConvertType(b->getType()));
7958       }
7959 
7960       if (b == e)
7961         return llvm::StructType::get(getVMContext(), RTList,
7962                                      RD->hasAttr<PackedAttr>());
7963 
7964       RTList.clear();
7965     }
7966   }
7967 
7968   CoerceToIntArgs(Size, RTList);
7969   return llvm::StructType::get(getVMContext(), RTList);
7970 }
7971 
7972 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7973   uint64_t Size = getContext().getTypeSize(RetTy);
7974 
7975   if (RetTy->isVoidType())
7976     return ABIArgInfo::getIgnore();
7977 
7978   // O32 doesn't treat zero-sized structs differently from other structs.
7979   // However, N32/N64 ignores zero sized return values.
7980   if (!IsO32 && Size == 0)
7981     return ABIArgInfo::getIgnore();
7982 
7983   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7984     if (Size <= 128) {
7985       if (RetTy->isAnyComplexType())
7986         return ABIArgInfo::getDirect();
7987 
7988       // O32 returns integer vectors in registers and N32/N64 returns all small
7989       // aggregates in registers.
7990       if (!IsO32 ||
7991           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7992         ABIArgInfo ArgInfo =
7993             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7994         ArgInfo.setInReg(true);
7995         return ArgInfo;
7996       }
7997     }
7998 
7999     return getNaturalAlignIndirect(RetTy);
8000   }
8001 
8002   // Treat an enum type as its underlying type.
8003   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8004     RetTy = EnumTy->getDecl()->getIntegerType();
8005 
8006   // Make sure we pass indirectly things that are too large.
8007   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8008     if (EIT->getNumBits() > 128 ||
8009         (EIT->getNumBits() > 64 &&
8010          !getContext().getTargetInfo().hasInt128Type()))
8011       return getNaturalAlignIndirect(RetTy);
8012 
8013   if (isPromotableIntegerTypeForABI(RetTy))
8014     return ABIArgInfo::getExtend(RetTy);
8015 
8016   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8017       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8018     return ABIArgInfo::getSignExtend(RetTy);
8019 
8020   return ABIArgInfo::getDirect();
8021 }
8022 
8023 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8024   ABIArgInfo &RetInfo = FI.getReturnInfo();
8025   if (!getCXXABI().classifyReturnType(FI))
8026     RetInfo = classifyReturnType(FI.getReturnType());
8027 
8028   // Check if a pointer to an aggregate is passed as a hidden argument.
8029   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8030 
8031   for (auto &I : FI.arguments())
8032     I.info = classifyArgumentType(I.type, Offset);
8033 }
8034 
8035 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8036                                QualType OrigTy) const {
8037   QualType Ty = OrigTy;
8038 
8039   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8040   // Pointers are also promoted in the same way but this only matters for N32.
8041   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8042   unsigned PtrWidth = getTarget().getPointerWidth(0);
8043   bool DidPromote = false;
8044   if ((Ty->isIntegerType() &&
8045           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8046       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8047     DidPromote = true;
8048     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8049                                             Ty->isSignedIntegerType());
8050   }
8051 
8052   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8053 
8054   // The alignment of things in the argument area is never larger than
8055   // StackAlignInBytes.
8056   TyInfo.Align =
8057     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8058 
8059   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8060   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8061 
8062   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8063                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8064 
8065 
8066   // If there was a promotion, "unpromote" into a temporary.
8067   // TODO: can we just use a pointer into a subset of the original slot?
8068   if (DidPromote) {
8069     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8070     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8071 
8072     // Truncate down to the right width.
8073     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8074                                                  : CGF.IntPtrTy);
8075     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8076     if (OrigTy->isPointerType())
8077       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8078 
8079     CGF.Builder.CreateStore(V, Temp);
8080     Addr = Temp;
8081   }
8082 
8083   return Addr;
8084 }
8085 
8086 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8087   int TySize = getContext().getTypeSize(Ty);
8088 
8089   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8090   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8091     return ABIArgInfo::getSignExtend(Ty);
8092 
8093   return ABIArgInfo::getExtend(Ty);
8094 }
8095 
8096 bool
8097 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8098                                                llvm::Value *Address) const {
8099   // This information comes from gcc's implementation, which seems to
8100   // as canonical as it gets.
8101 
8102   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8103   // are aliased to pairs of single-precision FP registers.
8104   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8105 
8106   // 0-31 are the general purpose registers, $0 - $31.
8107   // 32-63 are the floating-point registers, $f0 - $f31.
8108   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8109   // 66 is the (notional, I think) register for signal-handler return.
8110   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8111 
8112   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8113   // They are one bit wide and ignored here.
8114 
8115   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8116   // (coprocessor 1 is the FP unit)
8117   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8118   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8119   // 176-181 are the DSP accumulator registers.
8120   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8121   return false;
8122 }
8123 
8124 //===----------------------------------------------------------------------===//
8125 // M68k ABI Implementation
8126 //===----------------------------------------------------------------------===//
8127 
8128 namespace {
8129 
8130 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8131 public:
8132   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8133       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8134   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8135                            CodeGen::CodeGenModule &M) const override;
8136 };
8137 
8138 } // namespace
8139 
8140 void M68kTargetCodeGenInfo::setTargetAttributes(
8141     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8142   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8143     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8144       // Handle 'interrupt' attribute:
8145       llvm::Function *F = cast<llvm::Function>(GV);
8146 
8147       // Step 1: Set ISR calling convention.
8148       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8149 
8150       // Step 2: Add attributes goodness.
8151       F->addFnAttr(llvm::Attribute::NoInline);
8152 
8153       // Step 3: Emit ISR vector alias.
8154       unsigned Num = attr->getNumber() / 2;
8155       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8156                                 "__isr_" + Twine(Num), F);
8157     }
8158   }
8159 }
8160 
8161 //===----------------------------------------------------------------------===//
8162 // AVR ABI Implementation. Documented at
8163 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8164 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8165 //===----------------------------------------------------------------------===//
8166 
8167 namespace {
8168 class AVRABIInfo : public DefaultABIInfo {
8169 public:
8170   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8171 
8172   ABIArgInfo classifyReturnType(QualType Ty) const {
8173     // A return struct with size less than or equal to 8 bytes is returned
8174     // directly via registers R18-R25.
8175     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8176       return ABIArgInfo::getDirect();
8177     else
8178       return DefaultABIInfo::classifyReturnType(Ty);
8179   }
8180 
8181   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8182   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8183   void computeInfo(CGFunctionInfo &FI) const override {
8184     if (!getCXXABI().classifyReturnType(FI))
8185       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8186     for (auto &I : FI.arguments())
8187       I.info = classifyArgumentType(I.type);
8188   }
8189 };
8190 
8191 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8192 public:
8193   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8194       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8195 
8196   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8197                                   const VarDecl *D) const override {
8198     // Check if a global/static variable is defined within address space 1
8199     // but not constant.
8200     LangAS AS = D->getType().getAddressSpace();
8201     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8202         !D->getType().isConstQualified())
8203       CGM.getDiags().Report(D->getLocation(),
8204                             diag::err_verify_nonconst_addrspace)
8205           << "__flash";
8206     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8207   }
8208 
8209   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8210                            CodeGen::CodeGenModule &CGM) const override {
8211     if (GV->isDeclaration())
8212       return;
8213     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8214     if (!FD) return;
8215     auto *Fn = cast<llvm::Function>(GV);
8216 
8217     if (FD->getAttr<AVRInterruptAttr>())
8218       Fn->addFnAttr("interrupt");
8219 
8220     if (FD->getAttr<AVRSignalAttr>())
8221       Fn->addFnAttr("signal");
8222   }
8223 };
8224 }
8225 
8226 //===----------------------------------------------------------------------===//
8227 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8228 // Currently subclassed only to implement custom OpenCL C function attribute
8229 // handling.
8230 //===----------------------------------------------------------------------===//
8231 
8232 namespace {
8233 
8234 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8235 public:
8236   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8237     : DefaultTargetCodeGenInfo(CGT) {}
8238 
8239   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8240                            CodeGen::CodeGenModule &M) const override;
8241 };
8242 
8243 void TCETargetCodeGenInfo::setTargetAttributes(
8244     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8245   if (GV->isDeclaration())
8246     return;
8247   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8248   if (!FD) return;
8249 
8250   llvm::Function *F = cast<llvm::Function>(GV);
8251 
8252   if (M.getLangOpts().OpenCL) {
8253     if (FD->hasAttr<OpenCLKernelAttr>()) {
8254       // OpenCL C Kernel functions are not subject to inlining
8255       F->addFnAttr(llvm::Attribute::NoInline);
8256       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8257       if (Attr) {
8258         // Convert the reqd_work_group_size() attributes to metadata.
8259         llvm::LLVMContext &Context = F->getContext();
8260         llvm::NamedMDNode *OpenCLMetadata =
8261             M.getModule().getOrInsertNamedMetadata(
8262                 "opencl.kernel_wg_size_info");
8263 
8264         SmallVector<llvm::Metadata *, 5> Operands;
8265         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8266 
8267         Operands.push_back(
8268             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8269                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8270         Operands.push_back(
8271             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8272                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8273         Operands.push_back(
8274             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8275                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8276 
8277         // Add a boolean constant operand for "required" (true) or "hint"
8278         // (false) for implementing the work_group_size_hint attr later.
8279         // Currently always true as the hint is not yet implemented.
8280         Operands.push_back(
8281             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8282         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8283       }
8284     }
8285   }
8286 }
8287 
8288 }
8289 
8290 //===----------------------------------------------------------------------===//
8291 // Hexagon ABI Implementation
8292 //===----------------------------------------------------------------------===//
8293 
8294 namespace {
8295 
8296 class HexagonABIInfo : public DefaultABIInfo {
8297 public:
8298   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8299 
8300 private:
8301   ABIArgInfo classifyReturnType(QualType RetTy) const;
8302   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8303   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8304 
8305   void computeInfo(CGFunctionInfo &FI) const override;
8306 
8307   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8308                     QualType Ty) const override;
8309   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8310                               QualType Ty) const;
8311   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8312                               QualType Ty) const;
8313   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8314                                    QualType Ty) const;
8315 };
8316 
8317 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8318 public:
8319   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8320       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8321 
8322   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8323     return 29;
8324   }
8325 
8326   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8327                            CodeGen::CodeGenModule &GCM) const override {
8328     if (GV->isDeclaration())
8329       return;
8330     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8331     if (!FD)
8332       return;
8333   }
8334 };
8335 
8336 } // namespace
8337 
8338 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8339   unsigned RegsLeft = 6;
8340   if (!getCXXABI().classifyReturnType(FI))
8341     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8342   for (auto &I : FI.arguments())
8343     I.info = classifyArgumentType(I.type, &RegsLeft);
8344 }
8345 
8346 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8347   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8348                        " through registers");
8349 
8350   if (*RegsLeft == 0)
8351     return false;
8352 
8353   if (Size <= 32) {
8354     (*RegsLeft)--;
8355     return true;
8356   }
8357 
8358   if (2 <= (*RegsLeft & (~1U))) {
8359     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8360     return true;
8361   }
8362 
8363   // Next available register was r5 but candidate was greater than 32-bits so it
8364   // has to go on the stack. However we still consume r5
8365   if (*RegsLeft == 1)
8366     *RegsLeft = 0;
8367 
8368   return false;
8369 }
8370 
8371 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8372                                                 unsigned *RegsLeft) const {
8373   if (!isAggregateTypeForABI(Ty)) {
8374     // Treat an enum type as its underlying type.
8375     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8376       Ty = EnumTy->getDecl()->getIntegerType();
8377 
8378     uint64_t Size = getContext().getTypeSize(Ty);
8379     if (Size <= 64)
8380       HexagonAdjustRegsLeft(Size, RegsLeft);
8381 
8382     if (Size > 64 && Ty->isExtIntType())
8383       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8384 
8385     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8386                                              : ABIArgInfo::getDirect();
8387   }
8388 
8389   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8390     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8391 
8392   // Ignore empty records.
8393   if (isEmptyRecord(getContext(), Ty, true))
8394     return ABIArgInfo::getIgnore();
8395 
8396   uint64_t Size = getContext().getTypeSize(Ty);
8397   unsigned Align = getContext().getTypeAlign(Ty);
8398 
8399   if (Size > 64)
8400     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8401 
8402   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8403     Align = Size <= 32 ? 32 : 64;
8404   if (Size <= Align) {
8405     // Pass in the smallest viable integer type.
8406     if (!llvm::isPowerOf2_64(Size))
8407       Size = llvm::NextPowerOf2(Size);
8408     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8409   }
8410   return DefaultABIInfo::classifyArgumentType(Ty);
8411 }
8412 
8413 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8414   if (RetTy->isVoidType())
8415     return ABIArgInfo::getIgnore();
8416 
8417   const TargetInfo &T = CGT.getTarget();
8418   uint64_t Size = getContext().getTypeSize(RetTy);
8419 
8420   if (RetTy->getAs<VectorType>()) {
8421     // HVX vectors are returned in vector registers or register pairs.
8422     if (T.hasFeature("hvx")) {
8423       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8424       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8425       if (Size == VecSize || Size == 2*VecSize)
8426         return ABIArgInfo::getDirectInReg();
8427     }
8428     // Large vector types should be returned via memory.
8429     if (Size > 64)
8430       return getNaturalAlignIndirect(RetTy);
8431   }
8432 
8433   if (!isAggregateTypeForABI(RetTy)) {
8434     // Treat an enum type as its underlying type.
8435     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8436       RetTy = EnumTy->getDecl()->getIntegerType();
8437 
8438     if (Size > 64 && RetTy->isExtIntType())
8439       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8440 
8441     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8442                                                 : ABIArgInfo::getDirect();
8443   }
8444 
8445   if (isEmptyRecord(getContext(), RetTy, true))
8446     return ABIArgInfo::getIgnore();
8447 
8448   // Aggregates <= 8 bytes are returned in registers, other aggregates
8449   // are returned indirectly.
8450   if (Size <= 64) {
8451     // Return in the smallest viable integer type.
8452     if (!llvm::isPowerOf2_64(Size))
8453       Size = llvm::NextPowerOf2(Size);
8454     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8455   }
8456   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8457 }
8458 
8459 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8460                                             Address VAListAddr,
8461                                             QualType Ty) const {
8462   // Load the overflow area pointer.
8463   Address __overflow_area_pointer_p =
8464       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8465   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8466       __overflow_area_pointer_p, "__overflow_area_pointer");
8467 
8468   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8469   if (Align > 4) {
8470     // Alignment should be a power of 2.
8471     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8472 
8473     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8474     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8475 
8476     // Add offset to the current pointer to access the argument.
8477     __overflow_area_pointer =
8478         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8479     llvm::Value *AsInt =
8480         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8481 
8482     // Create a mask which should be "AND"ed
8483     // with (overflow_arg_area + align - 1)
8484     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8485     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8486         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8487         "__overflow_area_pointer.align");
8488   }
8489 
8490   // Get the type of the argument from memory and bitcast
8491   // overflow area pointer to the argument type.
8492   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8493   Address AddrTyped = CGF.Builder.CreateBitCast(
8494       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8495       llvm::PointerType::getUnqual(PTy));
8496 
8497   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8498   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8499 
8500   __overflow_area_pointer = CGF.Builder.CreateGEP(
8501       CGF.Int8Ty, __overflow_area_pointer,
8502       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8503       "__overflow_area_pointer.next");
8504   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8505 
8506   return AddrTyped;
8507 }
8508 
8509 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8510                                             Address VAListAddr,
8511                                             QualType Ty) const {
8512   // FIXME: Need to handle alignment
8513   llvm::Type *BP = CGF.Int8PtrTy;
8514   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8515   CGBuilderTy &Builder = CGF.Builder;
8516   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8517   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8518   // Handle address alignment for type alignment > 32 bits
8519   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8520   if (TyAlign > 4) {
8521     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8522     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8523     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8524     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8525     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8526   }
8527   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8528   Address AddrTyped = Builder.CreateBitCast(
8529       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8530 
8531   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8532   llvm::Value *NextAddr = Builder.CreateGEP(
8533       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8534   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8535 
8536   return AddrTyped;
8537 }
8538 
8539 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8540                                                  Address VAListAddr,
8541                                                  QualType Ty) const {
8542   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8543 
8544   if (ArgSize > 8)
8545     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8546 
8547   // Here we have check if the argument is in register area or
8548   // in overflow area.
8549   // If the saved register area pointer + argsize rounded up to alignment >
8550   // saved register area end pointer, argument is in overflow area.
8551   unsigned RegsLeft = 6;
8552   Ty = CGF.getContext().getCanonicalType(Ty);
8553   (void)classifyArgumentType(Ty, &RegsLeft);
8554 
8555   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8556   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8557   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8558   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8559 
8560   // Get rounded size of the argument.GCC does not allow vararg of
8561   // size < 4 bytes. We follow the same logic here.
8562   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8563   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8564 
8565   // Argument may be in saved register area
8566   CGF.EmitBlock(MaybeRegBlock);
8567 
8568   // Load the current saved register area pointer.
8569   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8570       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8571   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8572       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8573 
8574   // Load the saved register area end pointer.
8575   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8576       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8577   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8578       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8579 
8580   // If the size of argument is > 4 bytes, check if the stack
8581   // location is aligned to 8 bytes
8582   if (ArgAlign > 4) {
8583 
8584     llvm::Value *__current_saved_reg_area_pointer_int =
8585         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8586                                    CGF.Int32Ty);
8587 
8588     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8589         __current_saved_reg_area_pointer_int,
8590         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8591         "align_current_saved_reg_area_pointer");
8592 
8593     __current_saved_reg_area_pointer_int =
8594         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8595                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8596                               "align_current_saved_reg_area_pointer");
8597 
8598     __current_saved_reg_area_pointer =
8599         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8600                                    __current_saved_reg_area_pointer->getType(),
8601                                    "align_current_saved_reg_area_pointer");
8602   }
8603 
8604   llvm::Value *__new_saved_reg_area_pointer =
8605       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8606                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8607                             "__new_saved_reg_area_pointer");
8608 
8609   llvm::Value *UsingStack = 0;
8610   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8611                                          __saved_reg_area_end_pointer);
8612 
8613   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8614 
8615   // Argument in saved register area
8616   // Implement the block where argument is in register saved area
8617   CGF.EmitBlock(InRegBlock);
8618 
8619   llvm::Type *PTy = CGF.ConvertType(Ty);
8620   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8621       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8622 
8623   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8624                           __current_saved_reg_area_pointer_p);
8625 
8626   CGF.EmitBranch(ContBlock);
8627 
8628   // Argument in overflow area
8629   // Implement the block where the argument is in overflow area.
8630   CGF.EmitBlock(OnStackBlock);
8631 
8632   // Load the overflow area pointer
8633   Address __overflow_area_pointer_p =
8634       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8635   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8636       __overflow_area_pointer_p, "__overflow_area_pointer");
8637 
8638   // Align the overflow area pointer according to the alignment of the argument
8639   if (ArgAlign > 4) {
8640     llvm::Value *__overflow_area_pointer_int =
8641         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8642 
8643     __overflow_area_pointer_int =
8644         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8645                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8646                               "align_overflow_area_pointer");
8647 
8648     __overflow_area_pointer_int =
8649         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8650                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8651                               "align_overflow_area_pointer");
8652 
8653     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8654         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8655         "align_overflow_area_pointer");
8656   }
8657 
8658   // Get the pointer for next argument in overflow area and store it
8659   // to overflow area pointer.
8660   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8661       CGF.Int8Ty, __overflow_area_pointer,
8662       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8663       "__overflow_area_pointer.next");
8664 
8665   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8666                           __overflow_area_pointer_p);
8667 
8668   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8669                           __current_saved_reg_area_pointer_p);
8670 
8671   // Bitcast the overflow area pointer to the type of argument.
8672   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8673   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8674       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8675 
8676   CGF.EmitBranch(ContBlock);
8677 
8678   // Get the correct pointer to load the variable argument
8679   // Implement the ContBlock
8680   CGF.EmitBlock(ContBlock);
8681 
8682   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8683   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8684   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8685   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8686 
8687   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8688 }
8689 
8690 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8691                                   QualType Ty) const {
8692 
8693   if (getTarget().getTriple().isMusl())
8694     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8695 
8696   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8697 }
8698 
8699 //===----------------------------------------------------------------------===//
8700 // Lanai ABI Implementation
8701 //===----------------------------------------------------------------------===//
8702 
8703 namespace {
8704 class LanaiABIInfo : public DefaultABIInfo {
8705 public:
8706   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8707 
8708   bool shouldUseInReg(QualType Ty, CCState &State) const;
8709 
8710   void computeInfo(CGFunctionInfo &FI) const override {
8711     CCState State(FI);
8712     // Lanai uses 4 registers to pass arguments unless the function has the
8713     // regparm attribute set.
8714     if (FI.getHasRegParm()) {
8715       State.FreeRegs = FI.getRegParm();
8716     } else {
8717       State.FreeRegs = 4;
8718     }
8719 
8720     if (!getCXXABI().classifyReturnType(FI))
8721       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8722     for (auto &I : FI.arguments())
8723       I.info = classifyArgumentType(I.type, State);
8724   }
8725 
8726   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8727   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8728 };
8729 } // end anonymous namespace
8730 
8731 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8732   unsigned Size = getContext().getTypeSize(Ty);
8733   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8734 
8735   if (SizeInRegs == 0)
8736     return false;
8737 
8738   if (SizeInRegs > State.FreeRegs) {
8739     State.FreeRegs = 0;
8740     return false;
8741   }
8742 
8743   State.FreeRegs -= SizeInRegs;
8744 
8745   return true;
8746 }
8747 
8748 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8749                                            CCState &State) const {
8750   if (!ByVal) {
8751     if (State.FreeRegs) {
8752       --State.FreeRegs; // Non-byval indirects just use one pointer.
8753       return getNaturalAlignIndirectInReg(Ty);
8754     }
8755     return getNaturalAlignIndirect(Ty, false);
8756   }
8757 
8758   // Compute the byval alignment.
8759   const unsigned MinABIStackAlignInBytes = 4;
8760   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8761   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8762                                  /*Realign=*/TypeAlign >
8763                                      MinABIStackAlignInBytes);
8764 }
8765 
8766 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8767                                               CCState &State) const {
8768   // Check with the C++ ABI first.
8769   const RecordType *RT = Ty->getAs<RecordType>();
8770   if (RT) {
8771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8772     if (RAA == CGCXXABI::RAA_Indirect) {
8773       return getIndirectResult(Ty, /*ByVal=*/false, State);
8774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8775       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8776     }
8777   }
8778 
8779   if (isAggregateTypeForABI(Ty)) {
8780     // Structures with flexible arrays are always indirect.
8781     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8782       return getIndirectResult(Ty, /*ByVal=*/true, State);
8783 
8784     // Ignore empty structs/unions.
8785     if (isEmptyRecord(getContext(), Ty, true))
8786       return ABIArgInfo::getIgnore();
8787 
8788     llvm::LLVMContext &LLVMContext = getVMContext();
8789     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8790     if (SizeInRegs <= State.FreeRegs) {
8791       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8792       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8793       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8794       State.FreeRegs -= SizeInRegs;
8795       return ABIArgInfo::getDirectInReg(Result);
8796     } else {
8797       State.FreeRegs = 0;
8798     }
8799     return getIndirectResult(Ty, true, State);
8800   }
8801 
8802   // Treat an enum type as its underlying type.
8803   if (const auto *EnumTy = Ty->getAs<EnumType>())
8804     Ty = EnumTy->getDecl()->getIntegerType();
8805 
8806   bool InReg = shouldUseInReg(Ty, State);
8807 
8808   // Don't pass >64 bit integers in registers.
8809   if (const auto *EIT = Ty->getAs<ExtIntType>())
8810     if (EIT->getNumBits() > 64)
8811       return getIndirectResult(Ty, /*ByVal=*/true, State);
8812 
8813   if (isPromotableIntegerTypeForABI(Ty)) {
8814     if (InReg)
8815       return ABIArgInfo::getDirectInReg();
8816     return ABIArgInfo::getExtend(Ty);
8817   }
8818   if (InReg)
8819     return ABIArgInfo::getDirectInReg();
8820   return ABIArgInfo::getDirect();
8821 }
8822 
8823 namespace {
8824 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8825 public:
8826   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8827       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8828 };
8829 }
8830 
8831 //===----------------------------------------------------------------------===//
8832 // AMDGPU ABI Implementation
8833 //===----------------------------------------------------------------------===//
8834 
8835 namespace {
8836 
8837 class AMDGPUABIInfo final : public DefaultABIInfo {
8838 private:
8839   static const unsigned MaxNumRegsForArgsRet = 16;
8840 
8841   unsigned numRegsForType(QualType Ty) const;
8842 
8843   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8844   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8845                                          uint64_t Members) const override;
8846 
8847   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8848   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8849                                        unsigned ToAS) const {
8850     // Single value types.
8851     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8852       return llvm::PointerType::get(
8853           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8854     return Ty;
8855   }
8856 
8857 public:
8858   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8859     DefaultABIInfo(CGT) {}
8860 
8861   ABIArgInfo classifyReturnType(QualType RetTy) const;
8862   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8863   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8864 
8865   void computeInfo(CGFunctionInfo &FI) const override;
8866   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8867                     QualType Ty) const override;
8868 };
8869 
8870 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8871   return true;
8872 }
8873 
8874 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8875   const Type *Base, uint64_t Members) const {
8876   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8877 
8878   // Homogeneous Aggregates may occupy at most 16 registers.
8879   return Members * NumRegs <= MaxNumRegsForArgsRet;
8880 }
8881 
8882 /// Estimate number of registers the type will use when passed in registers.
8883 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8884   unsigned NumRegs = 0;
8885 
8886   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8887     // Compute from the number of elements. The reported size is based on the
8888     // in-memory size, which includes the padding 4th element for 3-vectors.
8889     QualType EltTy = VT->getElementType();
8890     unsigned EltSize = getContext().getTypeSize(EltTy);
8891 
8892     // 16-bit element vectors should be passed as packed.
8893     if (EltSize == 16)
8894       return (VT->getNumElements() + 1) / 2;
8895 
8896     unsigned EltNumRegs = (EltSize + 31) / 32;
8897     return EltNumRegs * VT->getNumElements();
8898   }
8899 
8900   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8901     const RecordDecl *RD = RT->getDecl();
8902     assert(!RD->hasFlexibleArrayMember());
8903 
8904     for (const FieldDecl *Field : RD->fields()) {
8905       QualType FieldTy = Field->getType();
8906       NumRegs += numRegsForType(FieldTy);
8907     }
8908 
8909     return NumRegs;
8910   }
8911 
8912   return (getContext().getTypeSize(Ty) + 31) / 32;
8913 }
8914 
8915 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8916   llvm::CallingConv::ID CC = FI.getCallingConvention();
8917 
8918   if (!getCXXABI().classifyReturnType(FI))
8919     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8920 
8921   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8922   for (auto &Arg : FI.arguments()) {
8923     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8924       Arg.info = classifyKernelArgumentType(Arg.type);
8925     } else {
8926       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8927     }
8928   }
8929 }
8930 
8931 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8932                                  QualType Ty) const {
8933   llvm_unreachable("AMDGPU does not support varargs");
8934 }
8935 
8936 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8937   if (isAggregateTypeForABI(RetTy)) {
8938     // Records with non-trivial destructors/copy-constructors should not be
8939     // returned by value.
8940     if (!getRecordArgABI(RetTy, getCXXABI())) {
8941       // Ignore empty structs/unions.
8942       if (isEmptyRecord(getContext(), RetTy, true))
8943         return ABIArgInfo::getIgnore();
8944 
8945       // Lower single-element structs to just return a regular value.
8946       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8947         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8948 
8949       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8950         const RecordDecl *RD = RT->getDecl();
8951         if (RD->hasFlexibleArrayMember())
8952           return DefaultABIInfo::classifyReturnType(RetTy);
8953       }
8954 
8955       // Pack aggregates <= 4 bytes into single VGPR or pair.
8956       uint64_t Size = getContext().getTypeSize(RetTy);
8957       if (Size <= 16)
8958         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8959 
8960       if (Size <= 32)
8961         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8962 
8963       if (Size <= 64) {
8964         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8965         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8966       }
8967 
8968       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8969         return ABIArgInfo::getDirect();
8970     }
8971   }
8972 
8973   // Otherwise just do the default thing.
8974   return DefaultABIInfo::classifyReturnType(RetTy);
8975 }
8976 
8977 /// For kernels all parameters are really passed in a special buffer. It doesn't
8978 /// make sense to pass anything byval, so everything must be direct.
8979 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8980   Ty = useFirstFieldIfTransparentUnion(Ty);
8981 
8982   // TODO: Can we omit empty structs?
8983 
8984   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8985     Ty = QualType(SeltTy, 0);
8986 
8987   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8988   llvm::Type *LTy = OrigLTy;
8989   if (getContext().getLangOpts().HIP) {
8990     LTy = coerceKernelArgumentType(
8991         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8992         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8993   }
8994 
8995   // FIXME: Should also use this for OpenCL, but it requires addressing the
8996   // problem of kernels being called.
8997   //
8998   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8999   // to global address space when using byref. This would require implementing a
9000   // new kind of coercion of the in-memory type when for indirect arguments.
9001   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9002       isAggregateTypeForABI(Ty)) {
9003     return ABIArgInfo::getIndirectAliased(
9004         getContext().getTypeAlignInChars(Ty),
9005         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9006         false /*Realign*/, nullptr /*Padding*/);
9007   }
9008 
9009   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9010   // individual elements, which confuses the Clover OpenCL backend; therefore we
9011   // have to set it to false here. Other args of getDirect() are just defaults.
9012   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9013 }
9014 
9015 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9016                                                unsigned &NumRegsLeft) const {
9017   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9018 
9019   Ty = useFirstFieldIfTransparentUnion(Ty);
9020 
9021   if (isAggregateTypeForABI(Ty)) {
9022     // Records with non-trivial destructors/copy-constructors should not be
9023     // passed by value.
9024     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9025       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9026 
9027     // Ignore empty structs/unions.
9028     if (isEmptyRecord(getContext(), Ty, true))
9029       return ABIArgInfo::getIgnore();
9030 
9031     // Lower single-element structs to just pass a regular value. TODO: We
9032     // could do reasonable-size multiple-element structs too, using getExpand(),
9033     // though watch out for things like bitfields.
9034     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9035       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9036 
9037     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9038       const RecordDecl *RD = RT->getDecl();
9039       if (RD->hasFlexibleArrayMember())
9040         return DefaultABIInfo::classifyArgumentType(Ty);
9041     }
9042 
9043     // Pack aggregates <= 8 bytes into single VGPR or pair.
9044     uint64_t Size = getContext().getTypeSize(Ty);
9045     if (Size <= 64) {
9046       unsigned NumRegs = (Size + 31) / 32;
9047       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9048 
9049       if (Size <= 16)
9050         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9051 
9052       if (Size <= 32)
9053         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9054 
9055       // XXX: Should this be i64 instead, and should the limit increase?
9056       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9057       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9058     }
9059 
9060     if (NumRegsLeft > 0) {
9061       unsigned NumRegs = numRegsForType(Ty);
9062       if (NumRegsLeft >= NumRegs) {
9063         NumRegsLeft -= NumRegs;
9064         return ABIArgInfo::getDirect();
9065       }
9066     }
9067   }
9068 
9069   // Otherwise just do the default thing.
9070   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9071   if (!ArgInfo.isIndirect()) {
9072     unsigned NumRegs = numRegsForType(Ty);
9073     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9074   }
9075 
9076   return ArgInfo;
9077 }
9078 
9079 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9080 public:
9081   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9082       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9083   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9084                            CodeGen::CodeGenModule &M) const override;
9085   unsigned getOpenCLKernelCallingConv() const override;
9086 
9087   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9088       llvm::PointerType *T, QualType QT) const override;
9089 
9090   LangAS getASTAllocaAddressSpace() const override {
9091     return getLangASFromTargetAS(
9092         getABIInfo().getDataLayout().getAllocaAddrSpace());
9093   }
9094   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9095                                   const VarDecl *D) const override;
9096   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9097                                          SyncScope Scope,
9098                                          llvm::AtomicOrdering Ordering,
9099                                          llvm::LLVMContext &Ctx) const override;
9100   llvm::Function *
9101   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9102                             llvm::Function *BlockInvokeFunc,
9103                             llvm::Value *BlockLiteral) const override;
9104   bool shouldEmitStaticExternCAliases() const override;
9105   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9106 };
9107 }
9108 
9109 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9110                                               llvm::GlobalValue *GV) {
9111   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9112     return false;
9113 
9114   return D->hasAttr<OpenCLKernelAttr>() ||
9115          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9116          (isa<VarDecl>(D) &&
9117           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9118            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9119            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9120 }
9121 
9122 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9123     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9124   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9125     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9126     GV->setDSOLocal(true);
9127   }
9128 
9129   if (GV->isDeclaration())
9130     return;
9131   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9132   if (!FD)
9133     return;
9134 
9135   llvm::Function *F = cast<llvm::Function>(GV);
9136 
9137   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9138     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9139 
9140 
9141   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9142                               FD->hasAttr<OpenCLKernelAttr>();
9143   const bool IsHIPKernel = M.getLangOpts().HIP &&
9144                            FD->hasAttr<CUDAGlobalAttr>();
9145   if ((IsOpenCLKernel || IsHIPKernel) &&
9146       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9147     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9148 
9149   if (IsHIPKernel)
9150     F->addFnAttr("uniform-work-group-size", "true");
9151 
9152 
9153   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9154   if (ReqdWGS || FlatWGS) {
9155     unsigned Min = 0;
9156     unsigned Max = 0;
9157     if (FlatWGS) {
9158       Min = FlatWGS->getMin()
9159                 ->EvaluateKnownConstInt(M.getContext())
9160                 .getExtValue();
9161       Max = FlatWGS->getMax()
9162                 ->EvaluateKnownConstInt(M.getContext())
9163                 .getExtValue();
9164     }
9165     if (ReqdWGS && Min == 0 && Max == 0)
9166       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9167 
9168     if (Min != 0) {
9169       assert(Min <= Max && "Min must be less than or equal Max");
9170 
9171       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9172       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9173     } else
9174       assert(Max == 0 && "Max must be zero");
9175   } else if (IsOpenCLKernel || IsHIPKernel) {
9176     // By default, restrict the maximum size to a value specified by
9177     // --gpu-max-threads-per-block=n or its default value for HIP.
9178     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9179     const unsigned DefaultMaxWorkGroupSize =
9180         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9181                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9182     std::string AttrVal =
9183         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9184     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9185   }
9186 
9187   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9188     unsigned Min =
9189         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9190     unsigned Max = Attr->getMax() ? Attr->getMax()
9191                                         ->EvaluateKnownConstInt(M.getContext())
9192                                         .getExtValue()
9193                                   : 0;
9194 
9195     if (Min != 0) {
9196       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9197 
9198       std::string AttrVal = llvm::utostr(Min);
9199       if (Max != 0)
9200         AttrVal = AttrVal + "," + llvm::utostr(Max);
9201       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9202     } else
9203       assert(Max == 0 && "Max must be zero");
9204   }
9205 
9206   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9207     unsigned NumSGPR = Attr->getNumSGPR();
9208 
9209     if (NumSGPR != 0)
9210       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9211   }
9212 
9213   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9214     uint32_t NumVGPR = Attr->getNumVGPR();
9215 
9216     if (NumVGPR != 0)
9217       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9218   }
9219 
9220   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9221     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9222 
9223   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9224     F->addFnAttr("amdgpu-ieee", "false");
9225 }
9226 
9227 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9228   return llvm::CallingConv::AMDGPU_KERNEL;
9229 }
9230 
9231 // Currently LLVM assumes null pointers always have value 0,
9232 // which results in incorrectly transformed IR. Therefore, instead of
9233 // emitting null pointers in private and local address spaces, a null
9234 // pointer in generic address space is emitted which is casted to a
9235 // pointer in local or private address space.
9236 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9237     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9238     QualType QT) const {
9239   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9240     return llvm::ConstantPointerNull::get(PT);
9241 
9242   auto &Ctx = CGM.getContext();
9243   auto NPT = llvm::PointerType::get(PT->getElementType(),
9244       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9245   return llvm::ConstantExpr::getAddrSpaceCast(
9246       llvm::ConstantPointerNull::get(NPT), PT);
9247 }
9248 
9249 LangAS
9250 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9251                                                   const VarDecl *D) const {
9252   assert(!CGM.getLangOpts().OpenCL &&
9253          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9254          "Address space agnostic languages only");
9255   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9256       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9257   if (!D)
9258     return DefaultGlobalAS;
9259 
9260   LangAS AddrSpace = D->getType().getAddressSpace();
9261   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9262   if (AddrSpace != LangAS::Default)
9263     return AddrSpace;
9264 
9265   if (CGM.isTypeConstant(D->getType(), false)) {
9266     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9267       return ConstAS.getValue();
9268   }
9269   return DefaultGlobalAS;
9270 }
9271 
9272 llvm::SyncScope::ID
9273 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9274                                             SyncScope Scope,
9275                                             llvm::AtomicOrdering Ordering,
9276                                             llvm::LLVMContext &Ctx) const {
9277   std::string Name;
9278   switch (Scope) {
9279   case SyncScope::OpenCLWorkGroup:
9280     Name = "workgroup";
9281     break;
9282   case SyncScope::OpenCLDevice:
9283     Name = "agent";
9284     break;
9285   case SyncScope::OpenCLAllSVMDevices:
9286     Name = "";
9287     break;
9288   case SyncScope::OpenCLSubGroup:
9289     Name = "wavefront";
9290   }
9291 
9292   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9293     if (!Name.empty())
9294       Name = Twine(Twine(Name) + Twine("-")).str();
9295 
9296     Name = Twine(Twine(Name) + Twine("one-as")).str();
9297   }
9298 
9299   return Ctx.getOrInsertSyncScopeID(Name);
9300 }
9301 
9302 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9303   return false;
9304 }
9305 
9306 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9307     const FunctionType *&FT) const {
9308   FT = getABIInfo().getContext().adjustFunctionType(
9309       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9310 }
9311 
9312 //===----------------------------------------------------------------------===//
9313 // SPARC v8 ABI Implementation.
9314 // Based on the SPARC Compliance Definition version 2.4.1.
9315 //
9316 // Ensures that complex values are passed in registers.
9317 //
9318 namespace {
9319 class SparcV8ABIInfo : public DefaultABIInfo {
9320 public:
9321   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9322 
9323 private:
9324   ABIArgInfo classifyReturnType(QualType RetTy) const;
9325   void computeInfo(CGFunctionInfo &FI) const override;
9326 };
9327 } // end anonymous namespace
9328 
9329 
9330 ABIArgInfo
9331 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9332   if (Ty->isAnyComplexType()) {
9333     return ABIArgInfo::getDirect();
9334   }
9335   else {
9336     return DefaultABIInfo::classifyReturnType(Ty);
9337   }
9338 }
9339 
9340 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9341 
9342   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9343   for (auto &Arg : FI.arguments())
9344     Arg.info = classifyArgumentType(Arg.type);
9345 }
9346 
9347 namespace {
9348 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9349 public:
9350   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9351       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9352 };
9353 } // end anonymous namespace
9354 
9355 //===----------------------------------------------------------------------===//
9356 // SPARC v9 ABI Implementation.
9357 // Based on the SPARC Compliance Definition version 2.4.1.
9358 //
9359 // Function arguments a mapped to a nominal "parameter array" and promoted to
9360 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9361 // the array, structs larger than 16 bytes are passed indirectly.
9362 //
9363 // One case requires special care:
9364 //
9365 //   struct mixed {
9366 //     int i;
9367 //     float f;
9368 //   };
9369 //
9370 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9371 // parameter array, but the int is passed in an integer register, and the float
9372 // is passed in a floating point register. This is represented as two arguments
9373 // with the LLVM IR inreg attribute:
9374 //
9375 //   declare void f(i32 inreg %i, float inreg %f)
9376 //
9377 // The code generator will only allocate 4 bytes from the parameter array for
9378 // the inreg arguments. All other arguments are allocated a multiple of 8
9379 // bytes.
9380 //
9381 namespace {
9382 class SparcV9ABIInfo : public ABIInfo {
9383 public:
9384   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9385 
9386 private:
9387   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9388   void computeInfo(CGFunctionInfo &FI) const override;
9389   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9390                     QualType Ty) const override;
9391 
9392   // Coercion type builder for structs passed in registers. The coercion type
9393   // serves two purposes:
9394   //
9395   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9396   //    in registers.
9397   // 2. Expose aligned floating point elements as first-level elements, so the
9398   //    code generator knows to pass them in floating point registers.
9399   //
9400   // We also compute the InReg flag which indicates that the struct contains
9401   // aligned 32-bit floats.
9402   //
9403   struct CoerceBuilder {
9404     llvm::LLVMContext &Context;
9405     const llvm::DataLayout &DL;
9406     SmallVector<llvm::Type*, 8> Elems;
9407     uint64_t Size;
9408     bool InReg;
9409 
9410     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9411       : Context(c), DL(dl), Size(0), InReg(false) {}
9412 
9413     // Pad Elems with integers until Size is ToSize.
9414     void pad(uint64_t ToSize) {
9415       assert(ToSize >= Size && "Cannot remove elements");
9416       if (ToSize == Size)
9417         return;
9418 
9419       // Finish the current 64-bit word.
9420       uint64_t Aligned = llvm::alignTo(Size, 64);
9421       if (Aligned > Size && Aligned <= ToSize) {
9422         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9423         Size = Aligned;
9424       }
9425 
9426       // Add whole 64-bit words.
9427       while (Size + 64 <= ToSize) {
9428         Elems.push_back(llvm::Type::getInt64Ty(Context));
9429         Size += 64;
9430       }
9431 
9432       // Final in-word padding.
9433       if (Size < ToSize) {
9434         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9435         Size = ToSize;
9436       }
9437     }
9438 
9439     // Add a floating point element at Offset.
9440     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9441       // Unaligned floats are treated as integers.
9442       if (Offset % Bits)
9443         return;
9444       // The InReg flag is only required if there are any floats < 64 bits.
9445       if (Bits < 64)
9446         InReg = true;
9447       pad(Offset);
9448       Elems.push_back(Ty);
9449       Size = Offset + Bits;
9450     }
9451 
9452     // Add a struct type to the coercion type, starting at Offset (in bits).
9453     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9454       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9455       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9456         llvm::Type *ElemTy = StrTy->getElementType(i);
9457         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9458         switch (ElemTy->getTypeID()) {
9459         case llvm::Type::StructTyID:
9460           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9461           break;
9462         case llvm::Type::FloatTyID:
9463           addFloat(ElemOffset, ElemTy, 32);
9464           break;
9465         case llvm::Type::DoubleTyID:
9466           addFloat(ElemOffset, ElemTy, 64);
9467           break;
9468         case llvm::Type::FP128TyID:
9469           addFloat(ElemOffset, ElemTy, 128);
9470           break;
9471         case llvm::Type::PointerTyID:
9472           if (ElemOffset % 64 == 0) {
9473             pad(ElemOffset);
9474             Elems.push_back(ElemTy);
9475             Size += 64;
9476           }
9477           break;
9478         default:
9479           break;
9480         }
9481       }
9482     }
9483 
9484     // Check if Ty is a usable substitute for the coercion type.
9485     bool isUsableType(llvm::StructType *Ty) const {
9486       return llvm::makeArrayRef(Elems) == Ty->elements();
9487     }
9488 
9489     // Get the coercion type as a literal struct type.
9490     llvm::Type *getType() const {
9491       if (Elems.size() == 1)
9492         return Elems.front();
9493       else
9494         return llvm::StructType::get(Context, Elems);
9495     }
9496   };
9497 };
9498 } // end anonymous namespace
9499 
9500 ABIArgInfo
9501 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9502   if (Ty->isVoidType())
9503     return ABIArgInfo::getIgnore();
9504 
9505   uint64_t Size = getContext().getTypeSize(Ty);
9506 
9507   // Anything too big to fit in registers is passed with an explicit indirect
9508   // pointer / sret pointer.
9509   if (Size > SizeLimit)
9510     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9511 
9512   // Treat an enum type as its underlying type.
9513   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9514     Ty = EnumTy->getDecl()->getIntegerType();
9515 
9516   // Integer types smaller than a register are extended.
9517   if (Size < 64 && Ty->isIntegerType())
9518     return ABIArgInfo::getExtend(Ty);
9519 
9520   if (const auto *EIT = Ty->getAs<ExtIntType>())
9521     if (EIT->getNumBits() < 64)
9522       return ABIArgInfo::getExtend(Ty);
9523 
9524   // Other non-aggregates go in registers.
9525   if (!isAggregateTypeForABI(Ty))
9526     return ABIArgInfo::getDirect();
9527 
9528   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9529   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9530   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9531     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9532 
9533   // This is a small aggregate type that should be passed in registers.
9534   // Build a coercion type from the LLVM struct type.
9535   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9536   if (!StrTy)
9537     return ABIArgInfo::getDirect();
9538 
9539   CoerceBuilder CB(getVMContext(), getDataLayout());
9540   CB.addStruct(0, StrTy);
9541   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9542 
9543   // Try to use the original type for coercion.
9544   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9545 
9546   if (CB.InReg)
9547     return ABIArgInfo::getDirectInReg(CoerceTy);
9548   else
9549     return ABIArgInfo::getDirect(CoerceTy);
9550 }
9551 
9552 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9553                                   QualType Ty) const {
9554   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9555   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9556   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9557     AI.setCoerceToType(ArgTy);
9558 
9559   CharUnits SlotSize = CharUnits::fromQuantity(8);
9560 
9561   CGBuilderTy &Builder = CGF.Builder;
9562   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9563   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9564 
9565   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9566 
9567   Address ArgAddr = Address::invalid();
9568   CharUnits Stride;
9569   switch (AI.getKind()) {
9570   case ABIArgInfo::Expand:
9571   case ABIArgInfo::CoerceAndExpand:
9572   case ABIArgInfo::InAlloca:
9573     llvm_unreachable("Unsupported ABI kind for va_arg");
9574 
9575   case ABIArgInfo::Extend: {
9576     Stride = SlotSize;
9577     CharUnits Offset = SlotSize - TypeInfo.Width;
9578     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9579     break;
9580   }
9581 
9582   case ABIArgInfo::Direct: {
9583     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9584     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9585     ArgAddr = Addr;
9586     break;
9587   }
9588 
9589   case ABIArgInfo::Indirect:
9590   case ABIArgInfo::IndirectAliased:
9591     Stride = SlotSize;
9592     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9593     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9594                       TypeInfo.Align);
9595     break;
9596 
9597   case ABIArgInfo::Ignore:
9598     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9599   }
9600 
9601   // Update VAList.
9602   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9603   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9604 
9605   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9606 }
9607 
9608 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9609   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9610   for (auto &I : FI.arguments())
9611     I.info = classifyType(I.type, 16 * 8);
9612 }
9613 
9614 namespace {
9615 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9616 public:
9617   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9618       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9619 
9620   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9621     return 14;
9622   }
9623 
9624   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9625                                llvm::Value *Address) const override;
9626 };
9627 } // end anonymous namespace
9628 
9629 bool
9630 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9631                                                 llvm::Value *Address) const {
9632   // This is calculated from the LLVM and GCC tables and verified
9633   // against gcc output.  AFAIK all ABIs use the same encoding.
9634 
9635   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9636 
9637   llvm::IntegerType *i8 = CGF.Int8Ty;
9638   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9639   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9640 
9641   // 0-31: the 8-byte general-purpose registers
9642   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9643 
9644   // 32-63: f0-31, the 4-byte floating-point registers
9645   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9646 
9647   //   Y   = 64
9648   //   PSR = 65
9649   //   WIM = 66
9650   //   TBR = 67
9651   //   PC  = 68
9652   //   NPC = 69
9653   //   FSR = 70
9654   //   CSR = 71
9655   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9656 
9657   // 72-87: d0-15, the 8-byte floating-point registers
9658   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9659 
9660   return false;
9661 }
9662 
9663 // ARC ABI implementation.
9664 namespace {
9665 
9666 class ARCABIInfo : public DefaultABIInfo {
9667 public:
9668   using DefaultABIInfo::DefaultABIInfo;
9669 
9670 private:
9671   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9672                     QualType Ty) const override;
9673 
9674   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9675     if (!State.FreeRegs)
9676       return;
9677     if (Info.isIndirect() && Info.getInReg())
9678       State.FreeRegs--;
9679     else if (Info.isDirect() && Info.getInReg()) {
9680       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9681       if (sz < State.FreeRegs)
9682         State.FreeRegs -= sz;
9683       else
9684         State.FreeRegs = 0;
9685     }
9686   }
9687 
9688   void computeInfo(CGFunctionInfo &FI) const override {
9689     CCState State(FI);
9690     // ARC uses 8 registers to pass arguments.
9691     State.FreeRegs = 8;
9692 
9693     if (!getCXXABI().classifyReturnType(FI))
9694       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9695     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9696     for (auto &I : FI.arguments()) {
9697       I.info = classifyArgumentType(I.type, State.FreeRegs);
9698       updateState(I.info, I.type, State);
9699     }
9700   }
9701 
9702   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9703   ABIArgInfo getIndirectByValue(QualType Ty) const;
9704   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9705   ABIArgInfo classifyReturnType(QualType RetTy) const;
9706 };
9707 
9708 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9709 public:
9710   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9711       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9712 };
9713 
9714 
9715 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9716   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9717                        getNaturalAlignIndirect(Ty, false);
9718 }
9719 
9720 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9721   // Compute the byval alignment.
9722   const unsigned MinABIStackAlignInBytes = 4;
9723   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9724   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9725                                  TypeAlign > MinABIStackAlignInBytes);
9726 }
9727 
9728 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9729                               QualType Ty) const {
9730   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9731                           getContext().getTypeInfoInChars(Ty),
9732                           CharUnits::fromQuantity(4), true);
9733 }
9734 
9735 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9736                                             uint8_t FreeRegs) const {
9737   // Handle the generic C++ ABI.
9738   const RecordType *RT = Ty->getAs<RecordType>();
9739   if (RT) {
9740     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9741     if (RAA == CGCXXABI::RAA_Indirect)
9742       return getIndirectByRef(Ty, FreeRegs > 0);
9743 
9744     if (RAA == CGCXXABI::RAA_DirectInMemory)
9745       return getIndirectByValue(Ty);
9746   }
9747 
9748   // Treat an enum type as its underlying type.
9749   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9750     Ty = EnumTy->getDecl()->getIntegerType();
9751 
9752   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9753 
9754   if (isAggregateTypeForABI(Ty)) {
9755     // Structures with flexible arrays are always indirect.
9756     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9757       return getIndirectByValue(Ty);
9758 
9759     // Ignore empty structs/unions.
9760     if (isEmptyRecord(getContext(), Ty, true))
9761       return ABIArgInfo::getIgnore();
9762 
9763     llvm::LLVMContext &LLVMContext = getVMContext();
9764 
9765     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9766     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9767     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9768 
9769     return FreeRegs >= SizeInRegs ?
9770         ABIArgInfo::getDirectInReg(Result) :
9771         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9772   }
9773 
9774   if (const auto *EIT = Ty->getAs<ExtIntType>())
9775     if (EIT->getNumBits() > 64)
9776       return getIndirectByValue(Ty);
9777 
9778   return isPromotableIntegerTypeForABI(Ty)
9779              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9780                                        : ABIArgInfo::getExtend(Ty))
9781              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9782                                        : ABIArgInfo::getDirect());
9783 }
9784 
9785 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9786   if (RetTy->isAnyComplexType())
9787     return ABIArgInfo::getDirectInReg();
9788 
9789   // Arguments of size > 4 registers are indirect.
9790   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9791   if (RetSize > 4)
9792     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9793 
9794   return DefaultABIInfo::classifyReturnType(RetTy);
9795 }
9796 
9797 } // End anonymous namespace.
9798 
9799 //===----------------------------------------------------------------------===//
9800 // XCore ABI Implementation
9801 //===----------------------------------------------------------------------===//
9802 
9803 namespace {
9804 
9805 /// A SmallStringEnc instance is used to build up the TypeString by passing
9806 /// it by reference between functions that append to it.
9807 typedef llvm::SmallString<128> SmallStringEnc;
9808 
9809 /// TypeStringCache caches the meta encodings of Types.
9810 ///
9811 /// The reason for caching TypeStrings is two fold:
9812 ///   1. To cache a type's encoding for later uses;
9813 ///   2. As a means to break recursive member type inclusion.
9814 ///
9815 /// A cache Entry can have a Status of:
9816 ///   NonRecursive:   The type encoding is not recursive;
9817 ///   Recursive:      The type encoding is recursive;
9818 ///   Incomplete:     An incomplete TypeString;
9819 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9820 ///                   Recursive type encoding.
9821 ///
9822 /// A NonRecursive entry will have all of its sub-members expanded as fully
9823 /// as possible. Whilst it may contain types which are recursive, the type
9824 /// itself is not recursive and thus its encoding may be safely used whenever
9825 /// the type is encountered.
9826 ///
9827 /// A Recursive entry will have all of its sub-members expanded as fully as
9828 /// possible. The type itself is recursive and it may contain other types which
9829 /// are recursive. The Recursive encoding must not be used during the expansion
9830 /// of a recursive type's recursive branch. For simplicity the code uses
9831 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9832 ///
9833 /// An Incomplete entry is always a RecordType and only encodes its
9834 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9835 /// are placed into the cache during type expansion as a means to identify and
9836 /// handle recursive inclusion of types as sub-members. If there is recursion
9837 /// the entry becomes IncompleteUsed.
9838 ///
9839 /// During the expansion of a RecordType's members:
9840 ///
9841 ///   If the cache contains a NonRecursive encoding for the member type, the
9842 ///   cached encoding is used;
9843 ///
9844 ///   If the cache contains a Recursive encoding for the member type, the
9845 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9846 ///
9847 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9848 ///   cache to break potential recursive inclusion of itself as a sub-member;
9849 ///
9850 ///   Once a member RecordType has been expanded, its temporary incomplete
9851 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9852 ///   it is swapped back in;
9853 ///
9854 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9855 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9856 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9857 ///
9858 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9859 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9860 ///   Else the member is part of a recursive type and thus the recursion has
9861 ///   been exited too soon for the encoding to be correct for the member.
9862 ///
9863 class TypeStringCache {
9864   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9865   struct Entry {
9866     std::string Str;     // The encoded TypeString for the type.
9867     enum Status State;   // Information about the encoding in 'Str'.
9868     std::string Swapped; // A temporary place holder for a Recursive encoding
9869                          // during the expansion of RecordType's members.
9870   };
9871   std::map<const IdentifierInfo *, struct Entry> Map;
9872   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9873   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9874 public:
9875   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9876   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9877   bool removeIncomplete(const IdentifierInfo *ID);
9878   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9879                      bool IsRecursive);
9880   StringRef lookupStr(const IdentifierInfo *ID);
9881 };
9882 
9883 /// TypeString encodings for enum & union fields must be order.
9884 /// FieldEncoding is a helper for this ordering process.
9885 class FieldEncoding {
9886   bool HasName;
9887   std::string Enc;
9888 public:
9889   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9890   StringRef str() { return Enc; }
9891   bool operator<(const FieldEncoding &rhs) const {
9892     if (HasName != rhs.HasName) return HasName;
9893     return Enc < rhs.Enc;
9894   }
9895 };
9896 
9897 class XCoreABIInfo : public DefaultABIInfo {
9898 public:
9899   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9900   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9901                     QualType Ty) const override;
9902 };
9903 
9904 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9905   mutable TypeStringCache TSC;
9906   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9907                     const CodeGen::CodeGenModule &M) const;
9908 
9909 public:
9910   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9911       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9912   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9913                           const llvm::MapVector<GlobalDecl, StringRef>
9914                               &MangledDeclNames) const override;
9915 };
9916 
9917 } // End anonymous namespace.
9918 
9919 // TODO: this implementation is likely now redundant with the default
9920 // EmitVAArg.
9921 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9922                                 QualType Ty) const {
9923   CGBuilderTy &Builder = CGF.Builder;
9924 
9925   // Get the VAList.
9926   CharUnits SlotSize = CharUnits::fromQuantity(4);
9927   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9928 
9929   // Handle the argument.
9930   ABIArgInfo AI = classifyArgumentType(Ty);
9931   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9932   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9933   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9934     AI.setCoerceToType(ArgTy);
9935   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9936 
9937   Address Val = Address::invalid();
9938   CharUnits ArgSize = CharUnits::Zero();
9939   switch (AI.getKind()) {
9940   case ABIArgInfo::Expand:
9941   case ABIArgInfo::CoerceAndExpand:
9942   case ABIArgInfo::InAlloca:
9943     llvm_unreachable("Unsupported ABI kind for va_arg");
9944   case ABIArgInfo::Ignore:
9945     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9946     ArgSize = CharUnits::Zero();
9947     break;
9948   case ABIArgInfo::Extend:
9949   case ABIArgInfo::Direct:
9950     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9951     ArgSize = CharUnits::fromQuantity(
9952                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9953     ArgSize = ArgSize.alignTo(SlotSize);
9954     break;
9955   case ABIArgInfo::Indirect:
9956   case ABIArgInfo::IndirectAliased:
9957     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9958     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9959     ArgSize = SlotSize;
9960     break;
9961   }
9962 
9963   // Increment the VAList.
9964   if (!ArgSize.isZero()) {
9965     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9966     Builder.CreateStore(APN.getPointer(), VAListAddr);
9967   }
9968 
9969   return Val;
9970 }
9971 
9972 /// During the expansion of a RecordType, an incomplete TypeString is placed
9973 /// into the cache as a means to identify and break recursion.
9974 /// If there is a Recursive encoding in the cache, it is swapped out and will
9975 /// be reinserted by removeIncomplete().
9976 /// All other types of encoding should have been used rather than arriving here.
9977 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9978                                     std::string StubEnc) {
9979   if (!ID)
9980     return;
9981   Entry &E = Map[ID];
9982   assert( (E.Str.empty() || E.State == Recursive) &&
9983          "Incorrectly use of addIncomplete");
9984   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9985   E.Swapped.swap(E.Str); // swap out the Recursive
9986   E.Str.swap(StubEnc);
9987   E.State = Incomplete;
9988   ++IncompleteCount;
9989 }
9990 
9991 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9992 /// must be removed from the cache.
9993 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9994 /// Returns true if the RecordType was defined recursively.
9995 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9996   if (!ID)
9997     return false;
9998   auto I = Map.find(ID);
9999   assert(I != Map.end() && "Entry not present");
10000   Entry &E = I->second;
10001   assert( (E.State == Incomplete ||
10002            E.State == IncompleteUsed) &&
10003          "Entry must be an incomplete type");
10004   bool IsRecursive = false;
10005   if (E.State == IncompleteUsed) {
10006     // We made use of our Incomplete encoding, thus we are recursive.
10007     IsRecursive = true;
10008     --IncompleteUsedCount;
10009   }
10010   if (E.Swapped.empty())
10011     Map.erase(I);
10012   else {
10013     // Swap the Recursive back.
10014     E.Swapped.swap(E.Str);
10015     E.Swapped.clear();
10016     E.State = Recursive;
10017   }
10018   --IncompleteCount;
10019   return IsRecursive;
10020 }
10021 
10022 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10023 /// Recursive (viz: all sub-members were expanded as fully as possible).
10024 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10025                                     bool IsRecursive) {
10026   if (!ID || IncompleteUsedCount)
10027     return; // No key or it is is an incomplete sub-type so don't add.
10028   Entry &E = Map[ID];
10029   if (IsRecursive && !E.Str.empty()) {
10030     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10031            "This is not the same Recursive entry");
10032     // The parent container was not recursive after all, so we could have used
10033     // this Recursive sub-member entry after all, but we assumed the worse when
10034     // we started viz: IncompleteCount!=0.
10035     return;
10036   }
10037   assert(E.Str.empty() && "Entry already present");
10038   E.Str = Str.str();
10039   E.State = IsRecursive? Recursive : NonRecursive;
10040 }
10041 
10042 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10043 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10044 /// encoding is Recursive, return an empty StringRef.
10045 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10046   if (!ID)
10047     return StringRef();   // We have no key.
10048   auto I = Map.find(ID);
10049   if (I == Map.end())
10050     return StringRef();   // We have no encoding.
10051   Entry &E = I->second;
10052   if (E.State == Recursive && IncompleteCount)
10053     return StringRef();   // We don't use Recursive encodings for member types.
10054 
10055   if (E.State == Incomplete) {
10056     // The incomplete type is being used to break out of recursion.
10057     E.State = IncompleteUsed;
10058     ++IncompleteUsedCount;
10059   }
10060   return E.Str;
10061 }
10062 
10063 /// The XCore ABI includes a type information section that communicates symbol
10064 /// type information to the linker. The linker uses this information to verify
10065 /// safety/correctness of things such as array bound and pointers et al.
10066 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10067 /// This type information (TypeString) is emitted into meta data for all global
10068 /// symbols: definitions, declarations, functions & variables.
10069 ///
10070 /// The TypeString carries type, qualifier, name, size & value details.
10071 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10072 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10073 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10074 ///
10075 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10076                           const CodeGen::CodeGenModule &CGM,
10077                           TypeStringCache &TSC);
10078 
10079 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10080 void XCoreTargetCodeGenInfo::emitTargetMD(
10081     const Decl *D, llvm::GlobalValue *GV,
10082     const CodeGen::CodeGenModule &CGM) const {
10083   SmallStringEnc Enc;
10084   if (getTypeString(Enc, D, CGM, TSC)) {
10085     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10086     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10087                                 llvm::MDString::get(Ctx, Enc.str())};
10088     llvm::NamedMDNode *MD =
10089       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10090     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10091   }
10092 }
10093 
10094 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10095     CodeGen::CodeGenModule &CGM,
10096     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10097   // Warning, new MangledDeclNames may be appended within this loop.
10098   // We rely on MapVector insertions adding new elements to the end
10099   // of the container.
10100   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10101     auto Val = *(MangledDeclNames.begin() + I);
10102     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10103     if (GV) {
10104       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10105       emitTargetMD(D, GV, CGM);
10106     }
10107   }
10108 }
10109 //===----------------------------------------------------------------------===//
10110 // SPIR ABI Implementation
10111 //===----------------------------------------------------------------------===//
10112 
10113 namespace {
10114 class SPIRABIInfo : public DefaultABIInfo {
10115 public:
10116   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10117 
10118 private:
10119   void setCCs();
10120 };
10121 } // end anonymous namespace
10122 namespace {
10123 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10124 public:
10125   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10126       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
10127 
10128   LangAS getASTAllocaAddressSpace() const override {
10129     return getLangASFromTargetAS(
10130         getABIInfo().getDataLayout().getAllocaAddrSpace());
10131   }
10132 
10133   unsigned getOpenCLKernelCallingConv() const override;
10134 };
10135 
10136 } // End anonymous namespace.
10137 void SPIRABIInfo::setCCs() {
10138   assert(getRuntimeCC() == llvm::CallingConv::C);
10139   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10140 }
10141 
10142 namespace clang {
10143 namespace CodeGen {
10144 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10145   DefaultABIInfo SPIRABI(CGM.getTypes());
10146   SPIRABI.computeInfo(FI);
10147 }
10148 }
10149 }
10150 
10151 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10152   return llvm::CallingConv::SPIR_KERNEL;
10153 }
10154 
10155 static bool appendType(SmallStringEnc &Enc, QualType QType,
10156                        const CodeGen::CodeGenModule &CGM,
10157                        TypeStringCache &TSC);
10158 
10159 /// Helper function for appendRecordType().
10160 /// Builds a SmallVector containing the encoded field types in declaration
10161 /// order.
10162 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10163                              const RecordDecl *RD,
10164                              const CodeGen::CodeGenModule &CGM,
10165                              TypeStringCache &TSC) {
10166   for (const auto *Field : RD->fields()) {
10167     SmallStringEnc Enc;
10168     Enc += "m(";
10169     Enc += Field->getName();
10170     Enc += "){";
10171     if (Field->isBitField()) {
10172       Enc += "b(";
10173       llvm::raw_svector_ostream OS(Enc);
10174       OS << Field->getBitWidthValue(CGM.getContext());
10175       Enc += ':';
10176     }
10177     if (!appendType(Enc, Field->getType(), CGM, TSC))
10178       return false;
10179     if (Field->isBitField())
10180       Enc += ')';
10181     Enc += '}';
10182     FE.emplace_back(!Field->getName().empty(), Enc);
10183   }
10184   return true;
10185 }
10186 
10187 /// Appends structure and union types to Enc and adds encoding to cache.
10188 /// Recursively calls appendType (via extractFieldType) for each field.
10189 /// Union types have their fields ordered according to the ABI.
10190 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10191                              const CodeGen::CodeGenModule &CGM,
10192                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10193   // Append the cached TypeString if we have one.
10194   StringRef TypeString = TSC.lookupStr(ID);
10195   if (!TypeString.empty()) {
10196     Enc += TypeString;
10197     return true;
10198   }
10199 
10200   // Start to emit an incomplete TypeString.
10201   size_t Start = Enc.size();
10202   Enc += (RT->isUnionType()? 'u' : 's');
10203   Enc += '(';
10204   if (ID)
10205     Enc += ID->getName();
10206   Enc += "){";
10207 
10208   // We collect all encoded fields and order as necessary.
10209   bool IsRecursive = false;
10210   const RecordDecl *RD = RT->getDecl()->getDefinition();
10211   if (RD && !RD->field_empty()) {
10212     // An incomplete TypeString stub is placed in the cache for this RecordType
10213     // so that recursive calls to this RecordType will use it whilst building a
10214     // complete TypeString for this RecordType.
10215     SmallVector<FieldEncoding, 16> FE;
10216     std::string StubEnc(Enc.substr(Start).str());
10217     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10218     TSC.addIncomplete(ID, std::move(StubEnc));
10219     if (!extractFieldType(FE, RD, CGM, TSC)) {
10220       (void) TSC.removeIncomplete(ID);
10221       return false;
10222     }
10223     IsRecursive = TSC.removeIncomplete(ID);
10224     // The ABI requires unions to be sorted but not structures.
10225     // See FieldEncoding::operator< for sort algorithm.
10226     if (RT->isUnionType())
10227       llvm::sort(FE);
10228     // We can now complete the TypeString.
10229     unsigned E = FE.size();
10230     for (unsigned I = 0; I != E; ++I) {
10231       if (I)
10232         Enc += ',';
10233       Enc += FE[I].str();
10234     }
10235   }
10236   Enc += '}';
10237   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10238   return true;
10239 }
10240 
10241 /// Appends enum types to Enc and adds the encoding to the cache.
10242 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10243                            TypeStringCache &TSC,
10244                            const IdentifierInfo *ID) {
10245   // Append the cached TypeString if we have one.
10246   StringRef TypeString = TSC.lookupStr(ID);
10247   if (!TypeString.empty()) {
10248     Enc += TypeString;
10249     return true;
10250   }
10251 
10252   size_t Start = Enc.size();
10253   Enc += "e(";
10254   if (ID)
10255     Enc += ID->getName();
10256   Enc += "){";
10257 
10258   // We collect all encoded enumerations and order them alphanumerically.
10259   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10260     SmallVector<FieldEncoding, 16> FE;
10261     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10262          ++I) {
10263       SmallStringEnc EnumEnc;
10264       EnumEnc += "m(";
10265       EnumEnc += I->getName();
10266       EnumEnc += "){";
10267       I->getInitVal().toString(EnumEnc);
10268       EnumEnc += '}';
10269       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10270     }
10271     llvm::sort(FE);
10272     unsigned E = FE.size();
10273     for (unsigned I = 0; I != E; ++I) {
10274       if (I)
10275         Enc += ',';
10276       Enc += FE[I].str();
10277     }
10278   }
10279   Enc += '}';
10280   TSC.addIfComplete(ID, Enc.substr(Start), false);
10281   return true;
10282 }
10283 
10284 /// Appends type's qualifier to Enc.
10285 /// This is done prior to appending the type's encoding.
10286 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10287   // Qualifiers are emitted in alphabetical order.
10288   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10289   int Lookup = 0;
10290   if (QT.isConstQualified())
10291     Lookup += 1<<0;
10292   if (QT.isRestrictQualified())
10293     Lookup += 1<<1;
10294   if (QT.isVolatileQualified())
10295     Lookup += 1<<2;
10296   Enc += Table[Lookup];
10297 }
10298 
10299 /// Appends built-in types to Enc.
10300 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10301   const char *EncType;
10302   switch (BT->getKind()) {
10303     case BuiltinType::Void:
10304       EncType = "0";
10305       break;
10306     case BuiltinType::Bool:
10307       EncType = "b";
10308       break;
10309     case BuiltinType::Char_U:
10310       EncType = "uc";
10311       break;
10312     case BuiltinType::UChar:
10313       EncType = "uc";
10314       break;
10315     case BuiltinType::SChar:
10316       EncType = "sc";
10317       break;
10318     case BuiltinType::UShort:
10319       EncType = "us";
10320       break;
10321     case BuiltinType::Short:
10322       EncType = "ss";
10323       break;
10324     case BuiltinType::UInt:
10325       EncType = "ui";
10326       break;
10327     case BuiltinType::Int:
10328       EncType = "si";
10329       break;
10330     case BuiltinType::ULong:
10331       EncType = "ul";
10332       break;
10333     case BuiltinType::Long:
10334       EncType = "sl";
10335       break;
10336     case BuiltinType::ULongLong:
10337       EncType = "ull";
10338       break;
10339     case BuiltinType::LongLong:
10340       EncType = "sll";
10341       break;
10342     case BuiltinType::Float:
10343       EncType = "ft";
10344       break;
10345     case BuiltinType::Double:
10346       EncType = "d";
10347       break;
10348     case BuiltinType::LongDouble:
10349       EncType = "ld";
10350       break;
10351     default:
10352       return false;
10353   }
10354   Enc += EncType;
10355   return true;
10356 }
10357 
10358 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10359 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10360                               const CodeGen::CodeGenModule &CGM,
10361                               TypeStringCache &TSC) {
10362   Enc += "p(";
10363   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10364     return false;
10365   Enc += ')';
10366   return true;
10367 }
10368 
10369 /// Appends array encoding to Enc before calling appendType for the element.
10370 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10371                             const ArrayType *AT,
10372                             const CodeGen::CodeGenModule &CGM,
10373                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10374   if (AT->getSizeModifier() != ArrayType::Normal)
10375     return false;
10376   Enc += "a(";
10377   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10378     CAT->getSize().toStringUnsigned(Enc);
10379   else
10380     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10381   Enc += ':';
10382   // The Qualifiers should be attached to the type rather than the array.
10383   appendQualifier(Enc, QT);
10384   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10385     return false;
10386   Enc += ')';
10387   return true;
10388 }
10389 
10390 /// Appends a function encoding to Enc, calling appendType for the return type
10391 /// and the arguments.
10392 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10393                              const CodeGen::CodeGenModule &CGM,
10394                              TypeStringCache &TSC) {
10395   Enc += "f{";
10396   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10397     return false;
10398   Enc += "}(";
10399   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10400     // N.B. we are only interested in the adjusted param types.
10401     auto I = FPT->param_type_begin();
10402     auto E = FPT->param_type_end();
10403     if (I != E) {
10404       do {
10405         if (!appendType(Enc, *I, CGM, TSC))
10406           return false;
10407         ++I;
10408         if (I != E)
10409           Enc += ',';
10410       } while (I != E);
10411       if (FPT->isVariadic())
10412         Enc += ",va";
10413     } else {
10414       if (FPT->isVariadic())
10415         Enc += "va";
10416       else
10417         Enc += '0';
10418     }
10419   }
10420   Enc += ')';
10421   return true;
10422 }
10423 
10424 /// Handles the type's qualifier before dispatching a call to handle specific
10425 /// type encodings.
10426 static bool appendType(SmallStringEnc &Enc, QualType QType,
10427                        const CodeGen::CodeGenModule &CGM,
10428                        TypeStringCache &TSC) {
10429 
10430   QualType QT = QType.getCanonicalType();
10431 
10432   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10433     // The Qualifiers should be attached to the type rather than the array.
10434     // Thus we don't call appendQualifier() here.
10435     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10436 
10437   appendQualifier(Enc, QT);
10438 
10439   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10440     return appendBuiltinType(Enc, BT);
10441 
10442   if (const PointerType *PT = QT->getAs<PointerType>())
10443     return appendPointerType(Enc, PT, CGM, TSC);
10444 
10445   if (const EnumType *ET = QT->getAs<EnumType>())
10446     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10447 
10448   if (const RecordType *RT = QT->getAsStructureType())
10449     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10450 
10451   if (const RecordType *RT = QT->getAsUnionType())
10452     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10453 
10454   if (const FunctionType *FT = QT->getAs<FunctionType>())
10455     return appendFunctionType(Enc, FT, CGM, TSC);
10456 
10457   return false;
10458 }
10459 
10460 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10461                           const CodeGen::CodeGenModule &CGM,
10462                           TypeStringCache &TSC) {
10463   if (!D)
10464     return false;
10465 
10466   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10467     if (FD->getLanguageLinkage() != CLanguageLinkage)
10468       return false;
10469     return appendType(Enc, FD->getType(), CGM, TSC);
10470   }
10471 
10472   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10473     if (VD->getLanguageLinkage() != CLanguageLinkage)
10474       return false;
10475     QualType QT = VD->getType().getCanonicalType();
10476     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10477       // Global ArrayTypes are given a size of '*' if the size is unknown.
10478       // The Qualifiers should be attached to the type rather than the array.
10479       // Thus we don't call appendQualifier() here.
10480       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10481     }
10482     return appendType(Enc, QT, CGM, TSC);
10483   }
10484   return false;
10485 }
10486 
10487 //===----------------------------------------------------------------------===//
10488 // RISCV ABI Implementation
10489 //===----------------------------------------------------------------------===//
10490 
10491 namespace {
10492 class RISCVABIInfo : public DefaultABIInfo {
10493 private:
10494   // Size of the integer ('x') registers in bits.
10495   unsigned XLen;
10496   // Size of the floating point ('f') registers in bits. Note that the target
10497   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10498   // with soft float ABI has FLen==0).
10499   unsigned FLen;
10500   static const int NumArgGPRs = 8;
10501   static const int NumArgFPRs = 8;
10502   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10503                                       llvm::Type *&Field1Ty,
10504                                       CharUnits &Field1Off,
10505                                       llvm::Type *&Field2Ty,
10506                                       CharUnits &Field2Off) const;
10507 
10508 public:
10509   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10510       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10511 
10512   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10513   // non-virtual, but computeInfo is virtual, so we overload it.
10514   void computeInfo(CGFunctionInfo &FI) const override;
10515 
10516   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10517                                   int &ArgFPRsLeft) const;
10518   ABIArgInfo classifyReturnType(QualType RetTy) const;
10519 
10520   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10521                     QualType Ty) const override;
10522 
10523   ABIArgInfo extendType(QualType Ty) const;
10524 
10525   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10526                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10527                                 CharUnits &Field2Off, int &NeededArgGPRs,
10528                                 int &NeededArgFPRs) const;
10529   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10530                                                CharUnits Field1Off,
10531                                                llvm::Type *Field2Ty,
10532                                                CharUnits Field2Off) const;
10533 };
10534 } // end anonymous namespace
10535 
10536 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10537   QualType RetTy = FI.getReturnType();
10538   if (!getCXXABI().classifyReturnType(FI))
10539     FI.getReturnInfo() = classifyReturnType(RetTy);
10540 
10541   // IsRetIndirect is true if classifyArgumentType indicated the value should
10542   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10543   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10544   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10545   // list and pass indirectly on RV32.
10546   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10547   if (!IsRetIndirect && RetTy->isScalarType() &&
10548       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10549     if (RetTy->isComplexType() && FLen) {
10550       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10551       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10552     } else {
10553       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10554       IsRetIndirect = true;
10555     }
10556   }
10557 
10558   // We must track the number of GPRs used in order to conform to the RISC-V
10559   // ABI, as integer scalars passed in registers should have signext/zeroext
10560   // when promoted, but are anyext if passed on the stack. As GPR usage is
10561   // different for variadic arguments, we must also track whether we are
10562   // examining a vararg or not.
10563   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10564   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10565   int NumFixedArgs = FI.getNumRequiredArgs();
10566 
10567   int ArgNum = 0;
10568   for (auto &ArgInfo : FI.arguments()) {
10569     bool IsFixed = ArgNum < NumFixedArgs;
10570     ArgInfo.info =
10571         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10572     ArgNum++;
10573   }
10574 }
10575 
10576 // Returns true if the struct is a potential candidate for the floating point
10577 // calling convention. If this function returns true, the caller is
10578 // responsible for checking that if there is only a single field then that
10579 // field is a float.
10580 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10581                                                   llvm::Type *&Field1Ty,
10582                                                   CharUnits &Field1Off,
10583                                                   llvm::Type *&Field2Ty,
10584                                                   CharUnits &Field2Off) const {
10585   bool IsInt = Ty->isIntegralOrEnumerationType();
10586   bool IsFloat = Ty->isRealFloatingType();
10587 
10588   if (IsInt || IsFloat) {
10589     uint64_t Size = getContext().getTypeSize(Ty);
10590     if (IsInt && Size > XLen)
10591       return false;
10592     // Can't be eligible if larger than the FP registers. Half precision isn't
10593     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10594     // default to the integer ABI in that case.
10595     if (IsFloat && (Size > FLen || Size < 32))
10596       return false;
10597     // Can't be eligible if an integer type was already found (int+int pairs
10598     // are not eligible).
10599     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10600       return false;
10601     if (!Field1Ty) {
10602       Field1Ty = CGT.ConvertType(Ty);
10603       Field1Off = CurOff;
10604       return true;
10605     }
10606     if (!Field2Ty) {
10607       Field2Ty = CGT.ConvertType(Ty);
10608       Field2Off = CurOff;
10609       return true;
10610     }
10611     return false;
10612   }
10613 
10614   if (auto CTy = Ty->getAs<ComplexType>()) {
10615     if (Field1Ty)
10616       return false;
10617     QualType EltTy = CTy->getElementType();
10618     if (getContext().getTypeSize(EltTy) > FLen)
10619       return false;
10620     Field1Ty = CGT.ConvertType(EltTy);
10621     Field1Off = CurOff;
10622     Field2Ty = Field1Ty;
10623     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10624     return true;
10625   }
10626 
10627   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10628     uint64_t ArraySize = ATy->getSize().getZExtValue();
10629     QualType EltTy = ATy->getElementType();
10630     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10631     for (uint64_t i = 0; i < ArraySize; ++i) {
10632       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10633                                                 Field1Off, Field2Ty, Field2Off);
10634       if (!Ret)
10635         return false;
10636       CurOff += EltSize;
10637     }
10638     return true;
10639   }
10640 
10641   if (const auto *RTy = Ty->getAs<RecordType>()) {
10642     // Structures with either a non-trivial destructor or a non-trivial
10643     // copy constructor are not eligible for the FP calling convention.
10644     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10645       return false;
10646     if (isEmptyRecord(getContext(), Ty, true))
10647       return true;
10648     const RecordDecl *RD = RTy->getDecl();
10649     // Unions aren't eligible unless they're empty (which is caught above).
10650     if (RD->isUnion())
10651       return false;
10652     int ZeroWidthBitFieldCount = 0;
10653     for (const FieldDecl *FD : RD->fields()) {
10654       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10655       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10656       QualType QTy = FD->getType();
10657       if (FD->isBitField()) {
10658         unsigned BitWidth = FD->getBitWidthValue(getContext());
10659         // Allow a bitfield with a type greater than XLen as long as the
10660         // bitwidth is XLen or less.
10661         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10662           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10663         if (BitWidth == 0) {
10664           ZeroWidthBitFieldCount++;
10665           continue;
10666         }
10667       }
10668 
10669       bool Ret = detectFPCCEligibleStructHelper(
10670           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10671           Field1Ty, Field1Off, Field2Ty, Field2Off);
10672       if (!Ret)
10673         return false;
10674 
10675       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10676       // or int+fp structs, but are ignored for a struct with an fp field and
10677       // any number of zero-width bitfields.
10678       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10679         return false;
10680     }
10681     return Field1Ty != nullptr;
10682   }
10683 
10684   return false;
10685 }
10686 
10687 // Determine if a struct is eligible for passing according to the floating
10688 // point calling convention (i.e., when flattened it contains a single fp
10689 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10690 // NeededArgGPRs are incremented appropriately.
10691 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10692                                             CharUnits &Field1Off,
10693                                             llvm::Type *&Field2Ty,
10694                                             CharUnits &Field2Off,
10695                                             int &NeededArgGPRs,
10696                                             int &NeededArgFPRs) const {
10697   Field1Ty = nullptr;
10698   Field2Ty = nullptr;
10699   NeededArgGPRs = 0;
10700   NeededArgFPRs = 0;
10701   bool IsCandidate = detectFPCCEligibleStructHelper(
10702       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10703   // Not really a candidate if we have a single int but no float.
10704   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10705     return false;
10706   if (!IsCandidate)
10707     return false;
10708   if (Field1Ty && Field1Ty->isFloatingPointTy())
10709     NeededArgFPRs++;
10710   else if (Field1Ty)
10711     NeededArgGPRs++;
10712   if (Field2Ty && Field2Ty->isFloatingPointTy())
10713     NeededArgFPRs++;
10714   else if (Field2Ty)
10715     NeededArgGPRs++;
10716   return true;
10717 }
10718 
10719 // Call getCoerceAndExpand for the two-element flattened struct described by
10720 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10721 // appropriate coerceToType and unpaddedCoerceToType.
10722 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10723     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10724     CharUnits Field2Off) const {
10725   SmallVector<llvm::Type *, 3> CoerceElts;
10726   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10727   if (!Field1Off.isZero())
10728     CoerceElts.push_back(llvm::ArrayType::get(
10729         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10730 
10731   CoerceElts.push_back(Field1Ty);
10732   UnpaddedCoerceElts.push_back(Field1Ty);
10733 
10734   if (!Field2Ty) {
10735     return ABIArgInfo::getCoerceAndExpand(
10736         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10737         UnpaddedCoerceElts[0]);
10738   }
10739 
10740   CharUnits Field2Align =
10741       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10742   CharUnits Field1End = Field1Off +
10743       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10744   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10745 
10746   CharUnits Padding = CharUnits::Zero();
10747   if (Field2Off > Field2OffNoPadNoPack)
10748     Padding = Field2Off - Field2OffNoPadNoPack;
10749   else if (Field2Off != Field2Align && Field2Off > Field1End)
10750     Padding = Field2Off - Field1End;
10751 
10752   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10753 
10754   if (!Padding.isZero())
10755     CoerceElts.push_back(llvm::ArrayType::get(
10756         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10757 
10758   CoerceElts.push_back(Field2Ty);
10759   UnpaddedCoerceElts.push_back(Field2Ty);
10760 
10761   auto CoerceToType =
10762       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10763   auto UnpaddedCoerceToType =
10764       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10765 
10766   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10767 }
10768 
10769 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10770                                               int &ArgGPRsLeft,
10771                                               int &ArgFPRsLeft) const {
10772   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10773   Ty = useFirstFieldIfTransparentUnion(Ty);
10774 
10775   // Structures with either a non-trivial destructor or a non-trivial
10776   // copy constructor are always passed indirectly.
10777   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10778     if (ArgGPRsLeft)
10779       ArgGPRsLeft -= 1;
10780     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10781                                            CGCXXABI::RAA_DirectInMemory);
10782   }
10783 
10784   // Ignore empty structs/unions.
10785   if (isEmptyRecord(getContext(), Ty, true))
10786     return ABIArgInfo::getIgnore();
10787 
10788   uint64_t Size = getContext().getTypeSize(Ty);
10789 
10790   // Pass floating point values via FPRs if possible.
10791   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10792       FLen >= Size && ArgFPRsLeft) {
10793     ArgFPRsLeft--;
10794     return ABIArgInfo::getDirect();
10795   }
10796 
10797   // Complex types for the hard float ABI must be passed direct rather than
10798   // using CoerceAndExpand.
10799   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10800     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10801     if (getContext().getTypeSize(EltTy) <= FLen) {
10802       ArgFPRsLeft -= 2;
10803       return ABIArgInfo::getDirect();
10804     }
10805   }
10806 
10807   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10808     llvm::Type *Field1Ty = nullptr;
10809     llvm::Type *Field2Ty = nullptr;
10810     CharUnits Field1Off = CharUnits::Zero();
10811     CharUnits Field2Off = CharUnits::Zero();
10812     int NeededArgGPRs = 0;
10813     int NeededArgFPRs = 0;
10814     bool IsCandidate =
10815         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10816                                  NeededArgGPRs, NeededArgFPRs);
10817     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10818         NeededArgFPRs <= ArgFPRsLeft) {
10819       ArgGPRsLeft -= NeededArgGPRs;
10820       ArgFPRsLeft -= NeededArgFPRs;
10821       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10822                                                Field2Off);
10823     }
10824   }
10825 
10826   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10827   bool MustUseStack = false;
10828   // Determine the number of GPRs needed to pass the current argument
10829   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10830   // register pairs, so may consume 3 registers.
10831   int NeededArgGPRs = 1;
10832   if (!IsFixed && NeededAlign == 2 * XLen)
10833     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10834   else if (Size > XLen && Size <= 2 * XLen)
10835     NeededArgGPRs = 2;
10836 
10837   if (NeededArgGPRs > ArgGPRsLeft) {
10838     MustUseStack = true;
10839     NeededArgGPRs = ArgGPRsLeft;
10840   }
10841 
10842   ArgGPRsLeft -= NeededArgGPRs;
10843 
10844   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10845     // Treat an enum type as its underlying type.
10846     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10847       Ty = EnumTy->getDecl()->getIntegerType();
10848 
10849     // All integral types are promoted to XLen width, unless passed on the
10850     // stack.
10851     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10852       return extendType(Ty);
10853     }
10854 
10855     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10856       if (EIT->getNumBits() < XLen && !MustUseStack)
10857         return extendType(Ty);
10858       if (EIT->getNumBits() > 128 ||
10859           (!getContext().getTargetInfo().hasInt128Type() &&
10860            EIT->getNumBits() > 64))
10861         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10862     }
10863 
10864     return ABIArgInfo::getDirect();
10865   }
10866 
10867   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10868   // so coerce to integers.
10869   if (Size <= 2 * XLen) {
10870     unsigned Alignment = getContext().getTypeAlign(Ty);
10871 
10872     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10873     // required, and a 2-element XLen array if only XLen alignment is required.
10874     if (Size <= XLen) {
10875       return ABIArgInfo::getDirect(
10876           llvm::IntegerType::get(getVMContext(), XLen));
10877     } else if (Alignment == 2 * XLen) {
10878       return ABIArgInfo::getDirect(
10879           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10880     } else {
10881       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10882           llvm::IntegerType::get(getVMContext(), XLen), 2));
10883     }
10884   }
10885   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10886 }
10887 
10888 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10889   if (RetTy->isVoidType())
10890     return ABIArgInfo::getIgnore();
10891 
10892   int ArgGPRsLeft = 2;
10893   int ArgFPRsLeft = FLen ? 2 : 0;
10894 
10895   // The rules for return and argument types are the same, so defer to
10896   // classifyArgumentType.
10897   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10898                               ArgFPRsLeft);
10899 }
10900 
10901 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10902                                 QualType Ty) const {
10903   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10904 
10905   // Empty records are ignored for parameter passing purposes.
10906   if (isEmptyRecord(getContext(), Ty, true)) {
10907     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10908     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10909     return Addr;
10910   }
10911 
10912   auto TInfo = getContext().getTypeInfoInChars(Ty);
10913 
10914   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10915   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10916 
10917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10918                           SlotSize, /*AllowHigherAlign=*/true);
10919 }
10920 
10921 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10922   int TySize = getContext().getTypeSize(Ty);
10923   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10924   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10925     return ABIArgInfo::getSignExtend(Ty);
10926   return ABIArgInfo::getExtend(Ty);
10927 }
10928 
10929 namespace {
10930 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10931 public:
10932   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10933                          unsigned FLen)
10934       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10935 
10936   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10937                            CodeGen::CodeGenModule &CGM) const override {
10938     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10939     if (!FD) return;
10940 
10941     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10942     if (!Attr)
10943       return;
10944 
10945     const char *Kind;
10946     switch (Attr->getInterrupt()) {
10947     case RISCVInterruptAttr::user: Kind = "user"; break;
10948     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10949     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10950     }
10951 
10952     auto *Fn = cast<llvm::Function>(GV);
10953 
10954     Fn->addFnAttr("interrupt", Kind);
10955   }
10956 };
10957 } // namespace
10958 
10959 //===----------------------------------------------------------------------===//
10960 // VE ABI Implementation.
10961 //
10962 namespace {
10963 class VEABIInfo : public DefaultABIInfo {
10964 public:
10965   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10966 
10967 private:
10968   ABIArgInfo classifyReturnType(QualType RetTy) const;
10969   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10970   void computeInfo(CGFunctionInfo &FI) const override;
10971 };
10972 } // end anonymous namespace
10973 
10974 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10975   if (Ty->isAnyComplexType())
10976     return ABIArgInfo::getDirect();
10977   uint64_t Size = getContext().getTypeSize(Ty);
10978   if (Size < 64 && Ty->isIntegerType())
10979     return ABIArgInfo::getExtend(Ty);
10980   return DefaultABIInfo::classifyReturnType(Ty);
10981 }
10982 
10983 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10984   if (Ty->isAnyComplexType())
10985     return ABIArgInfo::getDirect();
10986   uint64_t Size = getContext().getTypeSize(Ty);
10987   if (Size < 64 && Ty->isIntegerType())
10988     return ABIArgInfo::getExtend(Ty);
10989   return DefaultABIInfo::classifyArgumentType(Ty);
10990 }
10991 
10992 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10993   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10994   for (auto &Arg : FI.arguments())
10995     Arg.info = classifyArgumentType(Arg.type);
10996 }
10997 
10998 namespace {
10999 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11000 public:
11001   VETargetCodeGenInfo(CodeGenTypes &CGT)
11002       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11003   // VE ABI requires the arguments of variadic and prototype-less functions
11004   // are passed in both registers and memory.
11005   bool isNoProtoCallVariadic(const CallArgList &args,
11006                              const FunctionNoProtoType *fnType) const override {
11007     return true;
11008   }
11009 };
11010 } // end anonymous namespace
11011 
11012 //===----------------------------------------------------------------------===//
11013 // Driver code
11014 //===----------------------------------------------------------------------===//
11015 
11016 bool CodeGenModule::supportsCOMDAT() const {
11017   return getTriple().supportsCOMDAT();
11018 }
11019 
11020 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11021   if (TheTargetCodeGenInfo)
11022     return *TheTargetCodeGenInfo;
11023 
11024   // Helper to set the unique_ptr while still keeping the return value.
11025   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11026     this->TheTargetCodeGenInfo.reset(P);
11027     return *P;
11028   };
11029 
11030   const llvm::Triple &Triple = getTarget().getTriple();
11031   switch (Triple.getArch()) {
11032   default:
11033     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11034 
11035   case llvm::Triple::le32:
11036     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11037   case llvm::Triple::m68k:
11038     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11039   case llvm::Triple::mips:
11040   case llvm::Triple::mipsel:
11041     if (Triple.getOS() == llvm::Triple::NaCl)
11042       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11043     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11044 
11045   case llvm::Triple::mips64:
11046   case llvm::Triple::mips64el:
11047     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11048 
11049   case llvm::Triple::avr:
11050     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11051 
11052   case llvm::Triple::aarch64:
11053   case llvm::Triple::aarch64_32:
11054   case llvm::Triple::aarch64_be: {
11055     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11056     if (getTarget().getABI() == "darwinpcs")
11057       Kind = AArch64ABIInfo::DarwinPCS;
11058     else if (Triple.isOSWindows())
11059       return SetCGInfo(
11060           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11061 
11062     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11063   }
11064 
11065   case llvm::Triple::wasm32:
11066   case llvm::Triple::wasm64: {
11067     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11068     if (getTarget().getABI() == "experimental-mv")
11069       Kind = WebAssemblyABIInfo::ExperimentalMV;
11070     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11071   }
11072 
11073   case llvm::Triple::arm:
11074   case llvm::Triple::armeb:
11075   case llvm::Triple::thumb:
11076   case llvm::Triple::thumbeb: {
11077     if (Triple.getOS() == llvm::Triple::Win32) {
11078       return SetCGInfo(
11079           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11080     }
11081 
11082     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11083     StringRef ABIStr = getTarget().getABI();
11084     if (ABIStr == "apcs-gnu")
11085       Kind = ARMABIInfo::APCS;
11086     else if (ABIStr == "aapcs16")
11087       Kind = ARMABIInfo::AAPCS16_VFP;
11088     else if (CodeGenOpts.FloatABI == "hard" ||
11089              (CodeGenOpts.FloatABI != "soft" &&
11090               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11091                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11092                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11093       Kind = ARMABIInfo::AAPCS_VFP;
11094 
11095     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11096   }
11097 
11098   case llvm::Triple::ppc: {
11099     if (Triple.isOSAIX())
11100       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11101 
11102     bool IsSoftFloat =
11103         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11104     bool RetSmallStructInRegABI =
11105         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11106     return SetCGInfo(
11107         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11108   }
11109   case llvm::Triple::ppcle: {
11110     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11111     bool RetSmallStructInRegABI =
11112         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11113     return SetCGInfo(
11114         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11115   }
11116   case llvm::Triple::ppc64:
11117     if (Triple.isOSAIX())
11118       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11119 
11120     if (Triple.isOSBinFormatELF()) {
11121       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11122       if (getTarget().getABI() == "elfv2")
11123         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11124       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11125 
11126       return SetCGInfo(
11127           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11128     }
11129     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11130   case llvm::Triple::ppc64le: {
11131     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11132     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11133     if (getTarget().getABI() == "elfv1")
11134       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11135     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11136 
11137     return SetCGInfo(
11138         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11139   }
11140 
11141   case llvm::Triple::nvptx:
11142   case llvm::Triple::nvptx64:
11143     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11144 
11145   case llvm::Triple::msp430:
11146     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11147 
11148   case llvm::Triple::riscv32:
11149   case llvm::Triple::riscv64: {
11150     StringRef ABIStr = getTarget().getABI();
11151     unsigned XLen = getTarget().getPointerWidth(0);
11152     unsigned ABIFLen = 0;
11153     if (ABIStr.endswith("f"))
11154       ABIFLen = 32;
11155     else if (ABIStr.endswith("d"))
11156       ABIFLen = 64;
11157     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11158   }
11159 
11160   case llvm::Triple::systemz: {
11161     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11162     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11163     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11164   }
11165 
11166   case llvm::Triple::tce:
11167   case llvm::Triple::tcele:
11168     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11169 
11170   case llvm::Triple::x86: {
11171     bool IsDarwinVectorABI = Triple.isOSDarwin();
11172     bool RetSmallStructInRegABI =
11173         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11174     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11175 
11176     if (Triple.getOS() == llvm::Triple::Win32) {
11177       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11178           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11179           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11180     } else {
11181       return SetCGInfo(new X86_32TargetCodeGenInfo(
11182           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11183           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11184           CodeGenOpts.FloatABI == "soft"));
11185     }
11186   }
11187 
11188   case llvm::Triple::x86_64: {
11189     StringRef ABI = getTarget().getABI();
11190     X86AVXABILevel AVXLevel =
11191         (ABI == "avx512"
11192              ? X86AVXABILevel::AVX512
11193              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11194 
11195     switch (Triple.getOS()) {
11196     case llvm::Triple::Win32:
11197       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11198     default:
11199       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11200     }
11201   }
11202   case llvm::Triple::hexagon:
11203     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11204   case llvm::Triple::lanai:
11205     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11206   case llvm::Triple::r600:
11207     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11208   case llvm::Triple::amdgcn:
11209     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11210   case llvm::Triple::sparc:
11211     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11212   case llvm::Triple::sparcv9:
11213     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11214   case llvm::Triple::xcore:
11215     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11216   case llvm::Triple::arc:
11217     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11218   case llvm::Triple::spir:
11219   case llvm::Triple::spir64:
11220     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11221   case llvm::Triple::ve:
11222     return SetCGInfo(new VETargetCodeGenInfo(Types));
11223   }
11224 }
11225 
11226 /// Create an OpenCL kernel for an enqueued block.
11227 ///
11228 /// The kernel has the same function type as the block invoke function. Its
11229 /// name is the name of the block invoke function postfixed with "_kernel".
11230 /// It simply calls the block invoke function then returns.
11231 llvm::Function *
11232 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11233                                              llvm::Function *Invoke,
11234                                              llvm::Value *BlockLiteral) const {
11235   auto *InvokeFT = Invoke->getFunctionType();
11236   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11237   for (auto &P : InvokeFT->params())
11238     ArgTys.push_back(P);
11239   auto &C = CGF.getLLVMContext();
11240   std::string Name = Invoke->getName().str() + "_kernel";
11241   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11242   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11243                                    &CGF.CGM.getModule());
11244   auto IP = CGF.Builder.saveIP();
11245   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11246   auto &Builder = CGF.Builder;
11247   Builder.SetInsertPoint(BB);
11248   llvm::SmallVector<llvm::Value *, 2> Args;
11249   for (auto &A : F->args())
11250     Args.push_back(&A);
11251   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11252   call->setCallingConv(Invoke->getCallingConv());
11253   Builder.CreateRetVoid();
11254   Builder.restoreIP(IP);
11255   return F;
11256 }
11257 
11258 /// Create an OpenCL kernel for an enqueued block.
11259 ///
11260 /// The type of the first argument (the block literal) is the struct type
11261 /// of the block literal instead of a pointer type. The first argument
11262 /// (block literal) is passed directly by value to the kernel. The kernel
11263 /// allocates the same type of struct on stack and stores the block literal
11264 /// to it and passes its pointer to the block invoke function. The kernel
11265 /// has "enqueued-block" function attribute and kernel argument metadata.
11266 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11267     CodeGenFunction &CGF, llvm::Function *Invoke,
11268     llvm::Value *BlockLiteral) const {
11269   auto &Builder = CGF.Builder;
11270   auto &C = CGF.getLLVMContext();
11271 
11272   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11273   auto *InvokeFT = Invoke->getFunctionType();
11274   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11275   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11276   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11277   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11278   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11279   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11280   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11281 
11282   ArgTys.push_back(BlockTy);
11283   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11284   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11285   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11286   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11287   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11288   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11289   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11290     ArgTys.push_back(InvokeFT->getParamType(I));
11291     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11292     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11293     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11294     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11295     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11296     ArgNames.push_back(
11297         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11298   }
11299   std::string Name = Invoke->getName().str() + "_kernel";
11300   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11301   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11302                                    &CGF.CGM.getModule());
11303   F->addFnAttr("enqueued-block");
11304   auto IP = CGF.Builder.saveIP();
11305   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11306   Builder.SetInsertPoint(BB);
11307   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11308   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11309   BlockPtr->setAlignment(BlockAlign);
11310   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11311   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11312   llvm::SmallVector<llvm::Value *, 2> Args;
11313   Args.push_back(Cast);
11314   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11315     Args.push_back(I);
11316   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11317   call->setCallingConv(Invoke->getCallingConv());
11318   Builder.CreateRetVoid();
11319   Builder.restoreIP(IP);
11320 
11321   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11322   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11323   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11324   F->setMetadata("kernel_arg_base_type",
11325                  llvm::MDNode::get(C, ArgBaseTypeNames));
11326   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11327   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11328     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11329 
11330   return F;
11331 }
11332