1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 bool IsLinuxABI; 1109 unsigned DefaultNumRegisterParameters; 1110 1111 static bool isRegisterSize(unsigned Size) { 1112 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1113 } 1114 1115 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1116 // FIXME: Assumes vectorcall is in use. 1117 return isX86VectorTypeForVectorCall(getContext(), Ty); 1118 } 1119 1120 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1121 uint64_t NumMembers) const override { 1122 // FIXME: Assumes vectorcall is in use. 1123 return isX86VectorCallAggregateSmallEnough(NumMembers); 1124 } 1125 1126 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1127 1128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1129 /// such that the argument will be passed in memory. 1130 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1131 1132 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1133 1134 /// Return the alignment to use for the given type on the stack. 1135 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1136 1137 Class classify(QualType Ty) const; 1138 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1139 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1140 1141 /// Updates the number of available free registers, returns 1142 /// true if any registers were allocated. 1143 bool updateFreeRegs(QualType Ty, CCState &State) const; 1144 1145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1146 bool &NeedsPadding) const; 1147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1148 1149 bool canExpandIndirectArgument(QualType Ty) const; 1150 1151 /// Rewrite the function info so that all memory arguments use 1152 /// inalloca. 1153 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1154 1155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1156 CharUnits &StackOffset, ABIArgInfo &Info, 1157 QualType Type) const; 1158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1159 1160 public: 1161 1162 void computeInfo(CGFunctionInfo &FI) const override; 1163 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1164 QualType Ty) const override; 1165 1166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1167 bool RetSmallStructInRegABI, bool Win32StructABI, 1168 unsigned NumRegisterParameters, bool SoftFloatABI) 1169 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1170 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()), 1174 DefaultNumRegisterParameters(NumRegisterParameters) {} 1175 1176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1177 bool asReturnValue) const override { 1178 // LLVM's x86-32 lowering currently only assigns up to three 1179 // integer registers and three fp registers. Oddly, it'll use up to 1180 // four vector registers for vectors, but those can overlap with the 1181 // scalar registers. 1182 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1183 } 1184 1185 bool isSwiftErrorInRegister() const override { 1186 // x86-32 lowering does not support passing swifterror in a register. 1187 return false; 1188 } 1189 }; 1190 1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1192 public: 1193 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1194 bool RetSmallStructInRegABI, bool Win32StructABI, 1195 unsigned NumRegisterParameters, bool SoftFloatABI) 1196 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1197 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1198 NumRegisterParameters, SoftFloatABI)) {} 1199 1200 static bool isStructReturnInRegABI( 1201 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1202 1203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1204 CodeGen::CodeGenModule &CGM) const override; 1205 1206 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1207 // Darwin uses different dwarf register numbers for EH. 1208 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1209 return 4; 1210 } 1211 1212 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1213 llvm::Value *Address) const override; 1214 1215 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1216 StringRef Constraint, 1217 llvm::Type* Ty) const override { 1218 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1219 } 1220 1221 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1222 std::string &Constraints, 1223 std::vector<llvm::Type *> &ResultRegTypes, 1224 std::vector<llvm::Type *> &ResultTruncRegTypes, 1225 std::vector<LValue> &ResultRegDests, 1226 std::string &AsmString, 1227 unsigned NumOutputs) const override; 1228 1229 llvm::Constant * 1230 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1231 unsigned Sig = (0xeb << 0) | // jmp rel8 1232 (0x06 << 8) | // .+0x08 1233 ('v' << 16) | 1234 ('2' << 24); 1235 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1236 } 1237 1238 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1239 return "movl\t%ebp, %ebp" 1240 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1241 } 1242 }; 1243 1244 } 1245 1246 /// Rewrite input constraint references after adding some output constraints. 1247 /// In the case where there is one output and one input and we add one output, 1248 /// we need to replace all operand references greater than or equal to 1: 1249 /// mov $0, $1 1250 /// mov eax, $1 1251 /// The result will be: 1252 /// mov $0, $2 1253 /// mov eax, $2 1254 static void rewriteInputConstraintReferences(unsigned FirstIn, 1255 unsigned NumNewOuts, 1256 std::string &AsmString) { 1257 std::string Buf; 1258 llvm::raw_string_ostream OS(Buf); 1259 size_t Pos = 0; 1260 while (Pos < AsmString.size()) { 1261 size_t DollarStart = AsmString.find('$', Pos); 1262 if (DollarStart == std::string::npos) 1263 DollarStart = AsmString.size(); 1264 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1265 if (DollarEnd == std::string::npos) 1266 DollarEnd = AsmString.size(); 1267 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1268 Pos = DollarEnd; 1269 size_t NumDollars = DollarEnd - DollarStart; 1270 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1271 // We have an operand reference. 1272 size_t DigitStart = Pos; 1273 if (AsmString[DigitStart] == '{') { 1274 OS << '{'; 1275 ++DigitStart; 1276 } 1277 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1278 if (DigitEnd == std::string::npos) 1279 DigitEnd = AsmString.size(); 1280 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1281 unsigned OperandIndex; 1282 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1283 if (OperandIndex >= FirstIn) 1284 OperandIndex += NumNewOuts; 1285 OS << OperandIndex; 1286 } else { 1287 OS << OperandStr; 1288 } 1289 Pos = DigitEnd; 1290 } 1291 } 1292 AsmString = std::move(OS.str()); 1293 } 1294 1295 /// Add output constraints for EAX:EDX because they are return registers. 1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1297 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1298 std::vector<llvm::Type *> &ResultRegTypes, 1299 std::vector<llvm::Type *> &ResultTruncRegTypes, 1300 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1301 unsigned NumOutputs) const { 1302 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1303 1304 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1305 // larger. 1306 if (!Constraints.empty()) 1307 Constraints += ','; 1308 if (RetWidth <= 32) { 1309 Constraints += "={eax}"; 1310 ResultRegTypes.push_back(CGF.Int32Ty); 1311 } else { 1312 // Use the 'A' constraint for EAX:EDX. 1313 Constraints += "=A"; 1314 ResultRegTypes.push_back(CGF.Int64Ty); 1315 } 1316 1317 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1318 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1319 ResultTruncRegTypes.push_back(CoerceTy); 1320 1321 // Coerce the integer by bitcasting the return slot pointer. 1322 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1323 CoerceTy->getPointerTo())); 1324 ResultRegDests.push_back(ReturnSlot); 1325 1326 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1327 } 1328 1329 /// shouldReturnTypeInRegister - Determine if the given type should be 1330 /// returned in a register (for the Darwin and MCU ABI). 1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1332 ASTContext &Context) const { 1333 uint64_t Size = Context.getTypeSize(Ty); 1334 1335 // For i386, type must be register sized. 1336 // For the MCU ABI, it only needs to be <= 8-byte 1337 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1338 return false; 1339 1340 if (Ty->isVectorType()) { 1341 // 64- and 128- bit vectors inside structures are not returned in 1342 // registers. 1343 if (Size == 64 || Size == 128) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 // If this is a builtin, pointer, enum, complex type, member pointer, or 1350 // member function pointer it is ok. 1351 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1352 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1353 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1354 return true; 1355 1356 // Arrays are treated like records. 1357 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1358 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1359 1360 // Otherwise, it must be a record type. 1361 const RecordType *RT = Ty->getAs<RecordType>(); 1362 if (!RT) return false; 1363 1364 // FIXME: Traverse bases here too. 1365 1366 // Structure types are passed in register if all fields would be 1367 // passed in a register. 1368 for (const auto *FD : RT->getDecl()->fields()) { 1369 // Empty fields are ignored. 1370 if (isEmptyField(Context, FD, true)) 1371 continue; 1372 1373 // Check fields recursively. 1374 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1381 // Treat complex types as the element type. 1382 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1383 Ty = CTy->getElementType(); 1384 1385 // Check for a type which we know has a simple scalar argument-passing 1386 // convention without any padding. (We're specifically looking for 32 1387 // and 64-bit integer and integer-equivalents, float, and double.) 1388 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1389 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1390 return false; 1391 1392 uint64_t Size = Context.getTypeSize(Ty); 1393 return Size == 32 || Size == 64; 1394 } 1395 1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1397 uint64_t &Size) { 1398 for (const auto *FD : RD->fields()) { 1399 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1400 // argument is smaller than 32-bits, expanding the struct will create 1401 // alignment padding. 1402 if (!is32Or64BitBasicType(FD->getType(), Context)) 1403 return false; 1404 1405 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1406 // how to expand them yet, and the predicate for telling if a bitfield still 1407 // counts as "basic" is more complicated than what we were doing previously. 1408 if (FD->isBitField()) 1409 return false; 1410 1411 Size += Context.getTypeSize(FD->getType()); 1412 } 1413 return true; 1414 } 1415 1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1417 uint64_t &Size) { 1418 // Don't do this if there are any non-empty bases. 1419 for (const CXXBaseSpecifier &Base : RD->bases()) { 1420 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1421 Size)) 1422 return false; 1423 } 1424 if (!addFieldSizes(Context, RD, Size)) 1425 return false; 1426 return true; 1427 } 1428 1429 /// Test whether an argument type which is to be passed indirectly (on the 1430 /// stack) would have the equivalent layout if it was expanded into separate 1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1432 /// optimizations. 1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1434 // We can only expand structure types. 1435 const RecordType *RT = Ty->getAs<RecordType>(); 1436 if (!RT) 1437 return false; 1438 const RecordDecl *RD = RT->getDecl(); 1439 uint64_t Size = 0; 1440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1441 if (!IsWin32StructABI) { 1442 // On non-Windows, we have to conservatively match our old bitcode 1443 // prototypes in order to be ABI-compatible at the bitcode level. 1444 if (!CXXRD->isCLike()) 1445 return false; 1446 } else { 1447 // Don't do this for dynamic classes. 1448 if (CXXRD->isDynamicClass()) 1449 return false; 1450 } 1451 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1452 return false; 1453 } else { 1454 if (!addFieldSizes(getContext(), RD, Size)) 1455 return false; 1456 } 1457 1458 // We can do this if there was no alignment padding. 1459 return Size == getContext().getTypeSize(Ty); 1460 } 1461 1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1463 // If the return value is indirect, then the hidden argument is consuming one 1464 // integer register. 1465 if (State.FreeRegs) { 1466 --State.FreeRegs; 1467 if (!IsMCUABI) 1468 return getNaturalAlignIndirectInReg(RetTy); 1469 } 1470 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1471 } 1472 1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1474 CCState &State) const { 1475 if (RetTy->isVoidType()) 1476 return ABIArgInfo::getIgnore(); 1477 1478 const Type *Base = nullptr; 1479 uint64_t NumElts = 0; 1480 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1481 State.CC == llvm::CallingConv::X86_RegCall) && 1482 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1483 // The LLVM struct type for such an aggregate should lower properly. 1484 return ABIArgInfo::getDirect(); 1485 } 1486 1487 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1488 // On Darwin, some vectors are returned in registers. 1489 if (IsDarwinVectorABI) { 1490 uint64_t Size = getContext().getTypeSize(RetTy); 1491 1492 // 128-bit vectors are a special case; they are returned in 1493 // registers and we need to make sure to pick a type the LLVM 1494 // backend will like. 1495 if (Size == 128) 1496 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1497 llvm::Type::getInt64Ty(getVMContext()), 2)); 1498 1499 // Always return in register if it fits in a general purpose 1500 // register, or if it is 64 bits and has a single element. 1501 if ((Size == 8 || Size == 16 || Size == 32) || 1502 (Size == 64 && VT->getNumElements() == 1)) 1503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1504 Size)); 1505 1506 return getIndirectReturnResult(RetTy, State); 1507 } 1508 1509 return ABIArgInfo::getDirect(); 1510 } 1511 1512 if (isAggregateTypeForABI(RetTy)) { 1513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1514 // Structures with flexible arrays are always indirect. 1515 if (RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectReturnResult(RetTy, State); 1517 } 1518 1519 // If specified, structs and unions are always indirect. 1520 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1521 return getIndirectReturnResult(RetTy, State); 1522 1523 // Ignore empty structs/unions. 1524 if (isEmptyRecord(getContext(), RetTy, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 // Small structures which are register sized are generally returned 1528 // in a register. 1529 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1530 uint64_t Size = getContext().getTypeSize(RetTy); 1531 1532 // As a special-case, if the struct is a "single-element" struct, and 1533 // the field is of type "float" or "double", return it in a 1534 // floating-point register. (MSVC does not apply this special case.) 1535 // We apply a similar transformation for pointer types to improve the 1536 // quality of the generated IR. 1537 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1538 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1539 || SeltTy->hasPointerRepresentation()) 1540 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1541 1542 // FIXME: We should be able to narrow this integer in cases with dead 1543 // padding. 1544 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1545 } 1546 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // Treat an enum type as its underlying type. 1551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1552 RetTy = EnumTy->getDecl()->getIntegerType(); 1553 1554 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1555 if (EIT->getNumBits() > 64) 1556 return getIndirectReturnResult(RetTy, State); 1557 1558 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1559 : ABIArgInfo::getDirect()); 1560 } 1561 1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1563 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1564 } 1565 1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1567 const RecordType *RT = Ty->getAs<RecordType>(); 1568 if (!RT) 1569 return 0; 1570 const RecordDecl *RD = RT->getDecl(); 1571 1572 // If this is a C++ record, check the bases first. 1573 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1574 for (const auto &I : CXXRD->bases()) 1575 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1576 return false; 1577 1578 for (const auto *i : RD->fields()) { 1579 QualType FT = i->getType(); 1580 1581 if (isSIMDVectorType(Context, FT)) 1582 return true; 1583 1584 if (isRecordWithSIMDVectorType(Context, FT)) 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1592 unsigned Align) const { 1593 // Otherwise, if the alignment is less than or equal to the minimum ABI 1594 // alignment, just use the default; the backend will handle this. 1595 if (Align <= MinABIStackAlignInBytes) 1596 return 0; // Use default alignment. 1597 1598 if (IsLinuxABI) { 1599 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1600 // want to spend any effort dealing with the ramifications of ABI breaks. 1601 // 1602 // If the vector type is __m128/__m256/__m512, return the default alignment. 1603 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1604 return Align; 1605 } 1606 // On non-Darwin, the stack type alignment is always 4. 1607 if (!IsDarwinVectorABI) { 1608 // Set explicit alignment, since we may need to realign the top. 1609 return MinABIStackAlignInBytes; 1610 } 1611 1612 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1613 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1614 isRecordWithSIMDVectorType(getContext(), Ty))) 1615 return 16; 1616 1617 return MinABIStackAlignInBytes; 1618 } 1619 1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1621 CCState &State) const { 1622 if (!ByVal) { 1623 if (State.FreeRegs) { 1624 --State.FreeRegs; // Non-byval indirects just use one pointer. 1625 if (!IsMCUABI) 1626 return getNaturalAlignIndirectInReg(Ty); 1627 } 1628 return getNaturalAlignIndirect(Ty, false); 1629 } 1630 1631 // Compute the byval alignment. 1632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1634 if (StackAlign == 0) 1635 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1636 1637 // If the stack alignment is less than the type alignment, realign the 1638 // argument. 1639 bool Realign = TypeAlign > StackAlign; 1640 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1641 /*ByVal=*/true, Realign); 1642 } 1643 1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1645 const Type *T = isSingleElementStruct(Ty, getContext()); 1646 if (!T) 1647 T = Ty.getTypePtr(); 1648 1649 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1650 BuiltinType::Kind K = BT->getKind(); 1651 if (K == BuiltinType::Float || K == BuiltinType::Double) 1652 return Float; 1653 } 1654 return Integer; 1655 } 1656 1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1658 if (!IsSoftFloatABI) { 1659 Class C = classify(Ty); 1660 if (C == Float) 1661 return false; 1662 } 1663 1664 unsigned Size = getContext().getTypeSize(Ty); 1665 unsigned SizeInRegs = (Size + 31) / 32; 1666 1667 if (SizeInRegs == 0) 1668 return false; 1669 1670 if (!IsMCUABI) { 1671 if (SizeInRegs > State.FreeRegs) { 1672 State.FreeRegs = 0; 1673 return false; 1674 } 1675 } else { 1676 // The MCU psABI allows passing parameters in-reg even if there are 1677 // earlier parameters that are passed on the stack. Also, 1678 // it does not allow passing >8-byte structs in-register, 1679 // even if there are 3 free registers available. 1680 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1681 return false; 1682 } 1683 1684 State.FreeRegs -= SizeInRegs; 1685 return true; 1686 } 1687 1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1689 bool &InReg, 1690 bool &NeedsPadding) const { 1691 // On Windows, aggregates other than HFAs are never passed in registers, and 1692 // they do not consume register slots. Homogenous floating-point aggregates 1693 // (HFAs) have already been dealt with at this point. 1694 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1695 return false; 1696 1697 NeedsPadding = false; 1698 InReg = !IsMCUABI; 1699 1700 if (!updateFreeRegs(Ty, State)) 1701 return false; 1702 1703 if (IsMCUABI) 1704 return true; 1705 1706 if (State.CC == llvm::CallingConv::X86_FastCall || 1707 State.CC == llvm::CallingConv::X86_VectorCall || 1708 State.CC == llvm::CallingConv::X86_RegCall) { 1709 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1710 NeedsPadding = true; 1711 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1719 if (!updateFreeRegs(Ty, State)) 1720 return false; 1721 1722 if (IsMCUABI) 1723 return false; 1724 1725 if (State.CC == llvm::CallingConv::X86_FastCall || 1726 State.CC == llvm::CallingConv::X86_VectorCall || 1727 State.CC == llvm::CallingConv::X86_RegCall) { 1728 if (getContext().getTypeSize(Ty) > 32) 1729 return false; 1730 1731 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1732 Ty->isReferenceType()); 1733 } 1734 1735 return true; 1736 } 1737 1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // In the second pass over the arguments, HVAs are passed in the remaining 1745 // vector registers if possible, or indirectly by address. The address will be 1746 // passed in ECX/EDX if available. Any other arguments are passed according to 1747 // the usual fastcall rules. 1748 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1749 for (int I = 0, E = Args.size(); I < E; ++I) { 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType &Ty = Args[I].type; 1753 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1754 isHomogeneousAggregate(Ty, Base, NumElts)) { 1755 if (State.FreeSSERegs >= NumElts) { 1756 State.FreeSSERegs -= NumElts; 1757 Args[I].info = ABIArgInfo::getDirectInReg(); 1758 State.IsPreassigned.set(I); 1759 } 1760 } 1761 } 1762 } 1763 1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1765 CCState &State) const { 1766 // FIXME: Set alignment on indirect arguments. 1767 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1768 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1769 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1770 1771 Ty = useFirstFieldIfTransparentUnion(Ty); 1772 TypeInfo TI = getContext().getTypeInfo(Ty); 1773 1774 // Check with the C++ ABI first. 1775 const RecordType *RT = Ty->getAs<RecordType>(); 1776 if (RT) { 1777 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1778 if (RAA == CGCXXABI::RAA_Indirect) { 1779 return getIndirectResult(Ty, false, State); 1780 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1781 // The field index doesn't matter, we'll fix it up later. 1782 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1783 } 1784 } 1785 1786 // Regcall uses the concept of a homogenous vector aggregate, similar 1787 // to other targets. 1788 const Type *Base = nullptr; 1789 uint64_t NumElts = 0; 1790 if ((IsRegCall || IsVectorCall) && 1791 isHomogeneousAggregate(Ty, Base, NumElts)) { 1792 if (State.FreeSSERegs >= NumElts) { 1793 State.FreeSSERegs -= NumElts; 1794 1795 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1796 // does. 1797 if (IsVectorCall) 1798 return getDirectX86Hva(); 1799 1800 if (Ty->isBuiltinType() || Ty->isVectorType()) 1801 return ABIArgInfo::getDirect(); 1802 return ABIArgInfo::getExpand(); 1803 } 1804 return getIndirectResult(Ty, /*ByVal=*/false, State); 1805 } 1806 1807 if (isAggregateTypeForABI(Ty)) { 1808 // Structures with flexible arrays are always indirect. 1809 // FIXME: This should not be byval! 1810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1811 return getIndirectResult(Ty, true, State); 1812 1813 // Ignore empty structs/unions on non-Windows. 1814 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1815 return ABIArgInfo::getIgnore(); 1816 1817 llvm::LLVMContext &LLVMContext = getVMContext(); 1818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1819 bool NeedsPadding = false; 1820 bool InReg; 1821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1822 unsigned SizeInRegs = (TI.Width + 31) / 32; 1823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1825 if (InReg) 1826 return ABIArgInfo::getDirectInReg(Result); 1827 else 1828 return ABIArgInfo::getDirect(Result); 1829 } 1830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1831 1832 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1833 // added in MSVC 2015. 1834 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1835 return getIndirectResult(Ty, /*ByVal=*/false, State); 1836 1837 // Expand small (<= 128-bit) record types when we know that the stack layout 1838 // of those arguments will match the struct. This is important because the 1839 // LLVM backend isn't smart enough to remove byval, which inhibits many 1840 // optimizations. 1841 // Don't do this for the MCU if there are still free integer registers 1842 // (see X86_64 ABI for full explanation). 1843 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1844 canExpandIndirectArgument(Ty)) 1845 return ABIArgInfo::getExpandWithPadding( 1846 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1847 1848 return getIndirectResult(Ty, true, State); 1849 } 1850 1851 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1852 // On Windows, vectors are passed directly if registers are available, or 1853 // indirectly if not. This avoids the need to align argument memory. Pass 1854 // user-defined vector types larger than 512 bits indirectly for simplicity. 1855 if (IsWin32StructABI) { 1856 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1857 --State.FreeSSERegs; 1858 return ABIArgInfo::getDirectInReg(); 1859 } 1860 return getIndirectResult(Ty, /*ByVal=*/false, State); 1861 } 1862 1863 // On Darwin, some vectors are passed in memory, we handle this by passing 1864 // it as an i8/i16/i32/i64. 1865 if (IsDarwinVectorABI) { 1866 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1867 (TI.Width == 64 && VT->getNumElements() == 1)) 1868 return ABIArgInfo::getDirect( 1869 llvm::IntegerType::get(getVMContext(), TI.Width)); 1870 } 1871 1872 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1873 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1874 1875 return ABIArgInfo::getDirect(); 1876 } 1877 1878 1879 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1880 Ty = EnumTy->getDecl()->getIntegerType(); 1881 1882 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1883 1884 if (isPromotableIntegerTypeForABI(Ty)) { 1885 if (InReg) 1886 return ABIArgInfo::getExtendInReg(Ty); 1887 return ABIArgInfo::getExtend(Ty); 1888 } 1889 1890 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1891 if (EIT->getNumBits() <= 64) { 1892 if (InReg) 1893 return ABIArgInfo::getDirectInReg(); 1894 return ABIArgInfo::getDirect(); 1895 } 1896 return getIndirectResult(Ty, /*ByVal=*/false, State); 1897 } 1898 1899 if (InReg) 1900 return ABIArgInfo::getDirectInReg(); 1901 return ABIArgInfo::getDirect(); 1902 } 1903 1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1905 CCState State(FI); 1906 if (IsMCUABI) 1907 State.FreeRegs = 3; 1908 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1909 State.FreeRegs = 2; 1910 State.FreeSSERegs = 3; 1911 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1912 State.FreeRegs = 2; 1913 State.FreeSSERegs = 6; 1914 } else if (FI.getHasRegParm()) 1915 State.FreeRegs = FI.getRegParm(); 1916 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1917 State.FreeRegs = 5; 1918 State.FreeSSERegs = 8; 1919 } else if (IsWin32StructABI) { 1920 // Since MSVC 2015, the first three SSE vectors have been passed in 1921 // registers. The rest are passed indirectly. 1922 State.FreeRegs = DefaultNumRegisterParameters; 1923 State.FreeSSERegs = 3; 1924 } else 1925 State.FreeRegs = DefaultNumRegisterParameters; 1926 1927 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1928 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1929 } else if (FI.getReturnInfo().isIndirect()) { 1930 // The C++ ABI is not aware of register usage, so we have to check if the 1931 // return value was sret and put it in a register ourselves if appropriate. 1932 if (State.FreeRegs) { 1933 --State.FreeRegs; // The sret parameter consumes a register. 1934 if (!IsMCUABI) 1935 FI.getReturnInfo().setInReg(true); 1936 } 1937 } 1938 1939 // The chain argument effectively gives us another free register. 1940 if (FI.isChainCall()) 1941 ++State.FreeRegs; 1942 1943 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1944 // arguments to XMM registers as available. 1945 if (State.CC == llvm::CallingConv::X86_VectorCall) 1946 runVectorCallFirstPass(FI, State); 1947 1948 bool UsedInAlloca = false; 1949 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1950 for (int I = 0, E = Args.size(); I < E; ++I) { 1951 // Skip arguments that have already been assigned. 1952 if (State.IsPreassigned.test(I)) 1953 continue; 1954 1955 Args[I].info = classifyArgumentType(Args[I].type, State); 1956 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1957 } 1958 1959 // If we needed to use inalloca for any argument, do a second pass and rewrite 1960 // all the memory arguments to use inalloca. 1961 if (UsedInAlloca) 1962 rewriteWithInAlloca(FI); 1963 } 1964 1965 void 1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1967 CharUnits &StackOffset, ABIArgInfo &Info, 1968 QualType Type) const { 1969 // Arguments are always 4-byte-aligned. 1970 CharUnits WordSize = CharUnits::fromQuantity(4); 1971 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1972 1973 // sret pointers and indirect things will require an extra pointer 1974 // indirection, unless they are byval. Most things are byval, and will not 1975 // require this indirection. 1976 bool IsIndirect = false; 1977 if (Info.isIndirect() && !Info.getIndirectByVal()) 1978 IsIndirect = true; 1979 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1980 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1981 if (IsIndirect) 1982 LLTy = LLTy->getPointerTo(0); 1983 FrameFields.push_back(LLTy); 1984 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1985 1986 // Insert padding bytes to respect alignment. 1987 CharUnits FieldEnd = StackOffset; 1988 StackOffset = FieldEnd.alignTo(WordSize); 1989 if (StackOffset != FieldEnd) { 1990 CharUnits NumBytes = StackOffset - FieldEnd; 1991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1992 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1993 FrameFields.push_back(Ty); 1994 } 1995 } 1996 1997 static bool isArgInAlloca(const ABIArgInfo &Info) { 1998 // Leave ignored and inreg arguments alone. 1999 switch (Info.getKind()) { 2000 case ABIArgInfo::InAlloca: 2001 return true; 2002 case ABIArgInfo::Ignore: 2003 case ABIArgInfo::IndirectAliased: 2004 return false; 2005 case ABIArgInfo::Indirect: 2006 case ABIArgInfo::Direct: 2007 case ABIArgInfo::Extend: 2008 return !Info.getInReg(); 2009 case ABIArgInfo::Expand: 2010 case ABIArgInfo::CoerceAndExpand: 2011 // These are aggregate types which are never passed in registers when 2012 // inalloca is involved. 2013 return true; 2014 } 2015 llvm_unreachable("invalid enum"); 2016 } 2017 2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2019 assert(IsWin32StructABI && "inalloca only supported on win32"); 2020 2021 // Build a packed struct type for all of the arguments in memory. 2022 SmallVector<llvm::Type *, 6> FrameFields; 2023 2024 // The stack alignment is always 4. 2025 CharUnits StackAlign = CharUnits::fromQuantity(4); 2026 2027 CharUnits StackOffset; 2028 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2029 2030 // Put 'this' into the struct before 'sret', if necessary. 2031 bool IsThisCall = 2032 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2033 ABIArgInfo &Ret = FI.getReturnInfo(); 2034 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2035 isArgInAlloca(I->info)) { 2036 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2037 ++I; 2038 } 2039 2040 // Put the sret parameter into the inalloca struct if it's in memory. 2041 if (Ret.isIndirect() && !Ret.getInReg()) { 2042 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2043 // On Windows, the hidden sret parameter is always returned in eax. 2044 Ret.setInAllocaSRet(IsWin32StructABI); 2045 } 2046 2047 // Skip the 'this' parameter in ecx. 2048 if (IsThisCall) 2049 ++I; 2050 2051 // Put arguments passed in memory into the struct. 2052 for (; I != E; ++I) { 2053 if (isArgInAlloca(I->info)) 2054 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2055 } 2056 2057 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2058 /*isPacked=*/true), 2059 StackAlign); 2060 } 2061 2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2063 Address VAListAddr, QualType Ty) const { 2064 2065 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2066 2067 // x86-32 changes the alignment of certain arguments on the stack. 2068 // 2069 // Just messing with TypeInfo like this works because we never pass 2070 // anything indirectly. 2071 TypeInfo.Align = CharUnits::fromQuantity( 2072 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2073 2074 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2075 TypeInfo, CharUnits::fromQuantity(4), 2076 /*AllowHigherAlign*/ true); 2077 } 2078 2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2080 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2081 assert(Triple.getArch() == llvm::Triple::x86); 2082 2083 switch (Opts.getStructReturnConvention()) { 2084 case CodeGenOptions::SRCK_Default: 2085 break; 2086 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2087 return false; 2088 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2089 return true; 2090 } 2091 2092 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2093 return true; 2094 2095 switch (Triple.getOS()) { 2096 case llvm::Triple::DragonFly: 2097 case llvm::Triple::FreeBSD: 2098 case llvm::Triple::OpenBSD: 2099 case llvm::Triple::Win32: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2107 CodeGen::CodeGenModule &CGM) { 2108 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2109 return; 2110 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 if (FD->getNumParams() == 0) 2114 return; 2115 2116 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2117 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2118 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2119 Fn->getContext(), ByValTy); 2120 Fn->addParamAttr(0, NewAttr); 2121 } 2122 2123 void X86_32TargetCodeGenInfo::setTargetAttributes( 2124 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2125 if (GV->isDeclaration()) 2126 return; 2127 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2128 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2129 llvm::Function *Fn = cast<llvm::Function>(GV); 2130 Fn->addFnAttr("stackrealign"); 2131 } 2132 2133 addX86InterruptAttrs(FD, GV, CGM); 2134 } 2135 } 2136 2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2138 CodeGen::CodeGenFunction &CGF, 2139 llvm::Value *Address) const { 2140 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2141 2142 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2143 2144 // 0-7 are the eight integer registers; the order is different 2145 // on Darwin (for EH), but the range is the same. 2146 // 8 is %eip. 2147 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2148 2149 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2150 // 12-16 are st(0..4). Not sure why we stop at 4. 2151 // These have size 16, which is sizeof(long double) on 2152 // platforms with 8-byte alignment for that type. 2153 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2154 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2155 2156 } else { 2157 // 9 is %eflags, which doesn't get a size on Darwin for some 2158 // reason. 2159 Builder.CreateAlignedStore( 2160 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2161 CharUnits::One()); 2162 2163 // 11-16 are st(0..5). Not sure why we stop at 5. 2164 // These have size 12, which is sizeof(long double) on 2165 // platforms with 4-byte alignment for that type. 2166 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2167 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2168 } 2169 2170 return false; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // X86-64 ABI Implementation 2175 //===----------------------------------------------------------------------===// 2176 2177 2178 namespace { 2179 /// The AVX ABI level for X86 targets. 2180 enum class X86AVXABILevel { 2181 None, 2182 AVX, 2183 AVX512 2184 }; 2185 2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2188 switch (AVXLevel) { 2189 case X86AVXABILevel::AVX512: 2190 return 512; 2191 case X86AVXABILevel::AVX: 2192 return 256; 2193 case X86AVXABILevel::None: 2194 return 128; 2195 } 2196 llvm_unreachable("Unknown AVXLevel"); 2197 } 2198 2199 /// X86_64ABIInfo - The X86_64 ABI information. 2200 class X86_64ABIInfo : public SwiftABIInfo { 2201 enum Class { 2202 Integer = 0, 2203 SSE, 2204 SSEUp, 2205 X87, 2206 X87Up, 2207 ComplexX87, 2208 NoClass, 2209 Memory 2210 }; 2211 2212 /// merge - Implement the X86_64 ABI merging algorithm. 2213 /// 2214 /// Merge an accumulating classification \arg Accum with a field 2215 /// classification \arg Field. 2216 /// 2217 /// \param Accum - The accumulating classification. This should 2218 /// always be either NoClass or the result of a previous merge 2219 /// call. In addition, this should never be Memory (the caller 2220 /// should just return Memory for the aggregate). 2221 static Class merge(Class Accum, Class Field); 2222 2223 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2224 /// 2225 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2226 /// final MEMORY or SSE classes when necessary. 2227 /// 2228 /// \param AggregateSize - The size of the current aggregate in 2229 /// the classification process. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the higher words of the containing object. 2236 /// 2237 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2238 2239 /// classify - Determine the x86_64 register classes in which the 2240 /// given type T should be passed. 2241 /// 2242 /// \param Lo - The classification for the parts of the type 2243 /// residing in the low word of the containing object. 2244 /// 2245 /// \param Hi - The classification for the parts of the type 2246 /// residing in the high word of the containing object. 2247 /// 2248 /// \param OffsetBase - The bit offset of this type in the 2249 /// containing object. Some parameters are classified different 2250 /// depending on whether they straddle an eightbyte boundary. 2251 /// 2252 /// \param isNamedArg - Whether the argument in question is a "named" 2253 /// argument, as used in AMD64-ABI 3.5.7. 2254 /// 2255 /// If a word is unused its result will be NoClass; if a type should 2256 /// be passed in Memory then at least the classification of \arg Lo 2257 /// will be Memory. 2258 /// 2259 /// The \arg Lo class will be NoClass iff the argument is ignored. 2260 /// 2261 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2262 /// also be ComplexX87. 2263 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2264 bool isNamedArg) const; 2265 2266 llvm::Type *GetByteVectorType(QualType Ty) const; 2267 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2268 unsigned IROffset, QualType SourceTy, 2269 unsigned SourceOffset) const; 2270 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2271 unsigned IROffset, QualType SourceTy, 2272 unsigned SourceOffset) const; 2273 2274 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2275 /// such that the argument will be returned in memory. 2276 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2277 2278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2279 /// such that the argument will be passed in memory. 2280 /// 2281 /// \param freeIntRegs - The number of free integer registers remaining 2282 /// available. 2283 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2284 2285 ABIArgInfo classifyReturnType(QualType RetTy) const; 2286 2287 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2288 unsigned &neededInt, unsigned &neededSSE, 2289 bool isNamedArg) const; 2290 2291 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2292 unsigned &NeededSSE) const; 2293 2294 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2295 unsigned &NeededSSE) const; 2296 2297 bool IsIllegalVectorType(QualType Ty) const; 2298 2299 /// The 0.98 ABI revision clarified a lot of ambiguities, 2300 /// unfortunately in ways that were not always consistent with 2301 /// certain previous compilers. In particular, platforms which 2302 /// required strict binary compatibility with older versions of GCC 2303 /// may need to exempt themselves. 2304 bool honorsRevision0_98() const { 2305 return !getTarget().getTriple().isOSDarwin(); 2306 } 2307 2308 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2309 /// classify it as INTEGER (for compatibility with older clang compilers). 2310 bool classifyIntegerMMXAsSSE() const { 2311 // Clang <= 3.8 did not do this. 2312 if (getContext().getLangOpts().getClangABICompat() <= 2313 LangOptions::ClangABI::Ver3_8) 2314 return false; 2315 2316 const llvm::Triple &Triple = getTarget().getTriple(); 2317 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2318 return false; 2319 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2320 return false; 2321 return true; 2322 } 2323 2324 // GCC classifies vectors of __int128 as memory. 2325 bool passInt128VectorsInMem() const { 2326 // Clang <= 9.0 did not do this. 2327 if (getContext().getLangOpts().getClangABICompat() <= 2328 LangOptions::ClangABI::Ver9) 2329 return false; 2330 2331 const llvm::Triple &T = getTarget().getTriple(); 2332 return T.isOSLinux() || T.isOSNetBSD(); 2333 } 2334 2335 X86AVXABILevel AVXLevel; 2336 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2337 // 64-bit hardware. 2338 bool Has64BitPointers; 2339 2340 public: 2341 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2342 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2343 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2344 } 2345 2346 bool isPassedUsingAVXType(QualType type) const { 2347 unsigned neededInt, neededSSE; 2348 // The freeIntRegs argument doesn't matter here. 2349 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2350 /*isNamedArg*/true); 2351 if (info.isDirect()) { 2352 llvm::Type *ty = info.getCoerceToType(); 2353 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2354 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2355 } 2356 return false; 2357 } 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2364 QualType Ty) const override; 2365 2366 bool has64BitPointers() const { 2367 return Has64BitPointers; 2368 } 2369 2370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2371 bool asReturnValue) const override { 2372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2373 } 2374 bool isSwiftErrorInRegister() const override { 2375 return true; 2376 } 2377 }; 2378 2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2380 class WinX86_64ABIInfo : public SwiftABIInfo { 2381 public: 2382 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2383 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2384 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2385 2386 void computeInfo(CGFunctionInfo &FI) const override; 2387 2388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2389 QualType Ty) const override; 2390 2391 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorTypeForVectorCall(getContext(), Ty); 2394 } 2395 2396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2397 uint64_t NumMembers) const override { 2398 // FIXME: Assumes vectorcall is in use. 2399 return isX86VectorCallAggregateSmallEnough(NumMembers); 2400 } 2401 2402 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2403 bool asReturnValue) const override { 2404 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2405 } 2406 2407 bool isSwiftErrorInRegister() const override { 2408 return true; 2409 } 2410 2411 private: 2412 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2413 bool IsVectorCall, bool IsRegCall) const; 2414 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2415 const ABIArgInfo ¤t) const; 2416 2417 X86AVXABILevel AVXLevel; 2418 2419 bool IsMingw64; 2420 }; 2421 2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2423 public: 2424 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2425 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2426 2427 const X86_64ABIInfo &getABIInfo() const { 2428 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2429 } 2430 2431 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2432 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2433 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2434 2435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2436 return 7; 2437 } 2438 2439 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2440 llvm::Value *Address) const override { 2441 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2442 2443 // 0-15 are the 16 integer registers. 2444 // 16 is %rip. 2445 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2446 return false; 2447 } 2448 2449 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2450 StringRef Constraint, 2451 llvm::Type* Ty) const override { 2452 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2453 } 2454 2455 bool isNoProtoCallVariadic(const CallArgList &args, 2456 const FunctionNoProtoType *fnType) const override { 2457 // The default CC on x86-64 sets %al to the number of SSA 2458 // registers used, and GCC sets this when calling an unprototyped 2459 // function, so we override the default behavior. However, don't do 2460 // that when AVX types are involved: the ABI explicitly states it is 2461 // undefined, and it doesn't work in practice because of how the ABI 2462 // defines varargs anyway. 2463 if (fnType->getCallConv() == CC_C) { 2464 bool HasAVXType = false; 2465 for (CallArgList::const_iterator 2466 it = args.begin(), ie = args.end(); it != ie; ++it) { 2467 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2468 HasAVXType = true; 2469 break; 2470 } 2471 } 2472 2473 if (!HasAVXType) 2474 return true; 2475 } 2476 2477 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2478 } 2479 2480 llvm::Constant * 2481 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2482 unsigned Sig = (0xeb << 0) | // jmp rel8 2483 (0x06 << 8) | // .+0x08 2484 ('v' << 16) | 2485 ('2' << 24); 2486 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2487 } 2488 2489 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2490 CodeGen::CodeGenModule &CGM) const override { 2491 if (GV->isDeclaration()) 2492 return; 2493 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2494 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2495 llvm::Function *Fn = cast<llvm::Function>(GV); 2496 Fn->addFnAttr("stackrealign"); 2497 } 2498 2499 addX86InterruptAttrs(FD, GV, CGM); 2500 } 2501 } 2502 2503 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2504 const FunctionDecl *Caller, 2505 const FunctionDecl *Callee, 2506 const CallArgList &Args) const override; 2507 }; 2508 2509 static void initFeatureMaps(const ASTContext &Ctx, 2510 llvm::StringMap<bool> &CallerMap, 2511 const FunctionDecl *Caller, 2512 llvm::StringMap<bool> &CalleeMap, 2513 const FunctionDecl *Callee) { 2514 if (CalleeMap.empty() && CallerMap.empty()) { 2515 // The caller is potentially nullptr in the case where the call isn't in a 2516 // function. In this case, the getFunctionFeatureMap ensures we just get 2517 // the TU level setting (since it cannot be modified by 'target'.. 2518 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2519 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2520 } 2521 } 2522 2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2524 SourceLocation CallLoc, 2525 const llvm::StringMap<bool> &CallerMap, 2526 const llvm::StringMap<bool> &CalleeMap, 2527 QualType Ty, StringRef Feature, 2528 bool IsArgument) { 2529 bool CallerHasFeat = CallerMap.lookup(Feature); 2530 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2531 if (!CallerHasFeat && !CalleeHasFeat) 2532 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2533 << IsArgument << Ty << Feature; 2534 2535 // Mixing calling conventions here is very clearly an error. 2536 if (!CallerHasFeat || !CalleeHasFeat) 2537 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2538 << IsArgument << Ty << Feature; 2539 2540 // Else, both caller and callee have the required feature, so there is no need 2541 // to diagnose. 2542 return false; 2543 } 2544 2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2546 SourceLocation CallLoc, 2547 const llvm::StringMap<bool> &CallerMap, 2548 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2549 bool IsArgument) { 2550 uint64_t Size = Ctx.getTypeSize(Ty); 2551 if (Size > 256) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2553 "avx512f", IsArgument); 2554 2555 if (Size > 128) 2556 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2557 IsArgument); 2558 2559 return false; 2560 } 2561 2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2563 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2564 const FunctionDecl *Callee, const CallArgList &Args) const { 2565 llvm::StringMap<bool> CallerMap; 2566 llvm::StringMap<bool> CalleeMap; 2567 unsigned ArgIndex = 0; 2568 2569 // We need to loop through the actual call arguments rather than the the 2570 // function's parameters, in case this variadic. 2571 for (const CallArg &Arg : Args) { 2572 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2573 // additionally changes how vectors >256 in size are passed. Like GCC, we 2574 // warn when a function is called with an argument where this will change. 2575 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2576 // the caller and callee features are mismatched. 2577 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2578 // change its ABI with attribute-target after this call. 2579 if (Arg.getType()->isVectorType() && 2580 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2581 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2582 QualType Ty = Arg.getType(); 2583 // The CallArg seems to have desugared the type already, so for clearer 2584 // diagnostics, replace it with the type in the FunctionDecl if possible. 2585 if (ArgIndex < Callee->getNumParams()) 2586 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2587 2588 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2589 CalleeMap, Ty, /*IsArgument*/ true)) 2590 return; 2591 } 2592 ++ArgIndex; 2593 } 2594 2595 // Check return always, as we don't have a good way of knowing in codegen 2596 // whether this value is used, tail-called, etc. 2597 if (Callee->getReturnType()->isVectorType() && 2598 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2599 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2600 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2601 CalleeMap, Callee->getReturnType(), 2602 /*IsArgument*/ false); 2603 } 2604 } 2605 2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2607 // If the argument does not end in .lib, automatically add the suffix. 2608 // If the argument contains a space, enclose it in quotes. 2609 // This matches the behavior of MSVC. 2610 bool Quote = (Lib.find(' ') != StringRef::npos); 2611 std::string ArgStr = Quote ? "\"" : ""; 2612 ArgStr += Lib; 2613 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2614 ArgStr += ".lib"; 2615 ArgStr += Quote ? "\"" : ""; 2616 return ArgStr; 2617 } 2618 2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2620 public: 2621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2623 unsigned NumRegisterParameters) 2624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2625 Win32StructABI, NumRegisterParameters, false) {} 2626 2627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2628 CodeGen::CodeGenModule &CGM) const override; 2629 2630 void getDependentLibraryOption(llvm::StringRef Lib, 2631 llvm::SmallString<24> &Opt) const override { 2632 Opt = "/DEFAULTLIB:"; 2633 Opt += qualifyWindowsLibrary(Lib); 2634 } 2635 2636 void getDetectMismatchOption(llvm::StringRef Name, 2637 llvm::StringRef Value, 2638 llvm::SmallString<32> &Opt) const override { 2639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2640 } 2641 }; 2642 2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2644 CodeGen::CodeGenModule &CGM) { 2645 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2646 2647 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2648 Fn->addFnAttr("stack-probe-size", 2649 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2650 if (CGM.getCodeGenOpts().NoStackArgProbe) 2651 Fn->addFnAttr("no-stack-arg-probe"); 2652 } 2653 } 2654 2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2656 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2657 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2658 if (GV->isDeclaration()) 2659 return; 2660 addStackProbeTargetAttributes(D, GV, CGM); 2661 } 2662 2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2664 public: 2665 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 X86AVXABILevel AVXLevel) 2667 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2668 2669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2670 CodeGen::CodeGenModule &CGM) const override; 2671 2672 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2673 return 7; 2674 } 2675 2676 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2677 llvm::Value *Address) const override { 2678 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2679 2680 // 0-15 are the 16 integer registers. 2681 // 16 is %rip. 2682 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2683 return false; 2684 } 2685 2686 void getDependentLibraryOption(llvm::StringRef Lib, 2687 llvm::SmallString<24> &Opt) const override { 2688 Opt = "/DEFAULTLIB:"; 2689 Opt += qualifyWindowsLibrary(Lib); 2690 } 2691 2692 void getDetectMismatchOption(llvm::StringRef Name, 2693 llvm::StringRef Value, 2694 llvm::SmallString<32> &Opt) const override { 2695 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2696 } 2697 }; 2698 2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2705 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2706 llvm::Function *Fn = cast<llvm::Function>(GV); 2707 Fn->addFnAttr("stackrealign"); 2708 } 2709 2710 addX86InterruptAttrs(FD, GV, CGM); 2711 } 2712 2713 addStackProbeTargetAttributes(D, GV, CGM); 2714 } 2715 } 2716 2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2718 Class &Hi) const { 2719 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2720 // 2721 // (a) If one of the classes is Memory, the whole argument is passed in 2722 // memory. 2723 // 2724 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2725 // memory. 2726 // 2727 // (c) If the size of the aggregate exceeds two eightbytes and the first 2728 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2729 // argument is passed in memory. NOTE: This is necessary to keep the 2730 // ABI working for processors that don't support the __m256 type. 2731 // 2732 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2733 // 2734 // Some of these are enforced by the merging logic. Others can arise 2735 // only with unions; for example: 2736 // union { _Complex double; unsigned; } 2737 // 2738 // Note that clauses (b) and (c) were added in 0.98. 2739 // 2740 if (Hi == Memory) 2741 Lo = Memory; 2742 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2743 Lo = Memory; 2744 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2745 Lo = Memory; 2746 if (Hi == SSEUp && Lo != SSE) 2747 Hi = SSE; 2748 } 2749 2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2751 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2752 // classified recursively so that always two fields are 2753 // considered. The resulting class is calculated according to 2754 // the classes of the fields in the eightbyte: 2755 // 2756 // (a) If both classes are equal, this is the resulting class. 2757 // 2758 // (b) If one of the classes is NO_CLASS, the resulting class is 2759 // the other class. 2760 // 2761 // (c) If one of the classes is MEMORY, the result is the MEMORY 2762 // class. 2763 // 2764 // (d) If one of the classes is INTEGER, the result is the 2765 // INTEGER. 2766 // 2767 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2768 // MEMORY is used as class. 2769 // 2770 // (f) Otherwise class SSE is used. 2771 2772 // Accum should never be memory (we should have returned) or 2773 // ComplexX87 (because this cannot be passed in a structure). 2774 assert((Accum != Memory && Accum != ComplexX87) && 2775 "Invalid accumulated classification during merge."); 2776 if (Accum == Field || Field == NoClass) 2777 return Accum; 2778 if (Field == Memory) 2779 return Memory; 2780 if (Accum == NoClass) 2781 return Field; 2782 if (Accum == Integer || Field == Integer) 2783 return Integer; 2784 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2785 Accum == X87 || Accum == X87Up) 2786 return Memory; 2787 return SSE; 2788 } 2789 2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2791 Class &Lo, Class &Hi, bool isNamedArg) const { 2792 // FIXME: This code can be simplified by introducing a simple value class for 2793 // Class pairs with appropriate constructor methods for the various 2794 // situations. 2795 2796 // FIXME: Some of the split computations are wrong; unaligned vectors 2797 // shouldn't be passed in registers for example, so there is no chance they 2798 // can straddle an eightbyte. Verify & simplify. 2799 2800 Lo = Hi = NoClass; 2801 2802 Class &Current = OffsetBase < 64 ? Lo : Hi; 2803 Current = Memory; 2804 2805 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2806 BuiltinType::Kind k = BT->getKind(); 2807 2808 if (k == BuiltinType::Void) { 2809 Current = NoClass; 2810 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2811 Lo = Integer; 2812 Hi = Integer; 2813 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2814 Current = Integer; 2815 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2816 Current = SSE; 2817 } else if (k == BuiltinType::LongDouble) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) { 2820 Lo = SSE; 2821 Hi = SSEUp; 2822 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2823 Lo = X87; 2824 Hi = X87Up; 2825 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2826 Current = SSE; 2827 } else 2828 llvm_unreachable("unexpected long double representation!"); 2829 } 2830 // FIXME: _Decimal32 and _Decimal64 are SSE. 2831 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2832 return; 2833 } 2834 2835 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2836 // Classify the underlying integer type. 2837 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2838 return; 2839 } 2840 2841 if (Ty->hasPointerRepresentation()) { 2842 Current = Integer; 2843 return; 2844 } 2845 2846 if (Ty->isMemberPointerType()) { 2847 if (Ty->isMemberFunctionPointerType()) { 2848 if (Has64BitPointers) { 2849 // If Has64BitPointers, this is an {i64, i64}, so classify both 2850 // Lo and Hi now. 2851 Lo = Hi = Integer; 2852 } else { 2853 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2854 // straddles an eightbyte boundary, Hi should be classified as well. 2855 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2856 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2857 if (EB_FuncPtr != EB_ThisAdj) { 2858 Lo = Hi = Integer; 2859 } else { 2860 Current = Integer; 2861 } 2862 } 2863 } else { 2864 Current = Integer; 2865 } 2866 return; 2867 } 2868 2869 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2870 uint64_t Size = getContext().getTypeSize(VT); 2871 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2872 // gcc passes the following as integer: 2873 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2874 // 2 bytes - <2 x char>, <1 x short> 2875 // 1 byte - <1 x char> 2876 Current = Integer; 2877 2878 // If this type crosses an eightbyte boundary, it should be 2879 // split. 2880 uint64_t EB_Lo = (OffsetBase) / 64; 2881 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2882 if (EB_Lo != EB_Hi) 2883 Hi = Lo; 2884 } else if (Size == 64) { 2885 QualType ElementType = VT->getElementType(); 2886 2887 // gcc passes <1 x double> in memory. :( 2888 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2889 return; 2890 2891 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2892 // pass them as integer. For platforms where clang is the de facto 2893 // platform compiler, we must continue to use integer. 2894 if (!classifyIntegerMMXAsSSE() && 2895 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2896 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2897 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2898 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2899 Current = Integer; 2900 else 2901 Current = SSE; 2902 2903 // If this type crosses an eightbyte boundary, it should be 2904 // split. 2905 if (OffsetBase && OffsetBase != 64) 2906 Hi = Lo; 2907 } else if (Size == 128 || 2908 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2909 QualType ElementType = VT->getElementType(); 2910 2911 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2912 if (passInt128VectorsInMem() && Size != 128 && 2913 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2914 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2915 return; 2916 2917 // Arguments of 256-bits are split into four eightbyte chunks. The 2918 // least significant one belongs to class SSE and all the others to class 2919 // SSEUP. The original Lo and Hi design considers that types can't be 2920 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2921 // This design isn't correct for 256-bits, but since there're no cases 2922 // where the upper parts would need to be inspected, avoid adding 2923 // complexity and just consider Hi to match the 64-256 part. 2924 // 2925 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2926 // registers if they are "named", i.e. not part of the "..." of a 2927 // variadic function. 2928 // 2929 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2930 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2931 Lo = SSE; 2932 Hi = SSEUp; 2933 } 2934 return; 2935 } 2936 2937 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2938 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2939 2940 uint64_t Size = getContext().getTypeSize(Ty); 2941 if (ET->isIntegralOrEnumerationType()) { 2942 if (Size <= 64) 2943 Current = Integer; 2944 else if (Size <= 128) 2945 Lo = Hi = Integer; 2946 } else if (ET == getContext().FloatTy) { 2947 Current = SSE; 2948 } else if (ET == getContext().DoubleTy) { 2949 Lo = Hi = SSE; 2950 } else if (ET == getContext().LongDoubleTy) { 2951 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2952 if (LDF == &llvm::APFloat::IEEEquad()) 2953 Current = Memory; 2954 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2955 Current = ComplexX87; 2956 else if (LDF == &llvm::APFloat::IEEEdouble()) 2957 Lo = Hi = SSE; 2958 else 2959 llvm_unreachable("unexpected long double representation!"); 2960 } 2961 2962 // If this complex type crosses an eightbyte boundary then it 2963 // should be split. 2964 uint64_t EB_Real = (OffsetBase) / 64; 2965 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2966 if (Hi == NoClass && EB_Real != EB_Imag) 2967 Hi = Lo; 2968 2969 return; 2970 } 2971 2972 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2973 if (EITy->getNumBits() <= 64) 2974 Current = Integer; 2975 else if (EITy->getNumBits() <= 128) 2976 Lo = Hi = Integer; 2977 // Larger values need to get passed in memory. 2978 return; 2979 } 2980 2981 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2982 // Arrays are treated like structures. 2983 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 2986 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2987 // than eight eightbytes, ..., it has class MEMORY. 2988 if (Size > 512) 2989 return; 2990 2991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2992 // fields, it has class MEMORY. 2993 // 2994 // Only need to check alignment of array base. 2995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2996 return; 2997 2998 // Otherwise implement simplified merge. We could be smarter about 2999 // this, but it isn't worth it and would be harder to verify. 3000 Current = NoClass; 3001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3002 uint64_t ArraySize = AT->getSize().getZExtValue(); 3003 3004 // The only case a 256-bit wide vector could be used is when the array 3005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3006 // to work for sizes wider than 128, early check and fallback to memory. 3007 // 3008 if (Size > 128 && 3009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3010 return; 3011 3012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3013 Class FieldLo, FieldHi; 3014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3015 Lo = merge(Lo, FieldLo); 3016 Hi = merge(Hi, FieldHi); 3017 if (Lo == Memory || Hi == Memory) 3018 break; 3019 } 3020 3021 postMerge(Size, Lo, Hi); 3022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3023 return; 3024 } 3025 3026 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3027 uint64_t Size = getContext().getTypeSize(Ty); 3028 3029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3030 // than eight eightbytes, ..., it has class MEMORY. 3031 if (Size > 512) 3032 return; 3033 3034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3035 // copy constructor or a non-trivial destructor, it is passed by invisible 3036 // reference. 3037 if (getRecordArgABI(RT, getCXXABI())) 3038 return; 3039 3040 const RecordDecl *RD = RT->getDecl(); 3041 3042 // Assume variable sized types are passed in memory. 3043 if (RD->hasFlexibleArrayMember()) 3044 return; 3045 3046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3047 3048 // Reset Lo class, this will be recomputed. 3049 Current = NoClass; 3050 3051 // If this is a C++ record, classify the bases first. 3052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3053 for (const auto &I : CXXRD->bases()) { 3054 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3055 "Unexpected base class!"); 3056 const auto *Base = 3057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3058 3059 // Classify this field. 3060 // 3061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3062 // single eightbyte, each is classified separately. Each eightbyte gets 3063 // initialized to class NO_CLASS. 3064 Class FieldLo, FieldHi; 3065 uint64_t Offset = 3066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3068 Lo = merge(Lo, FieldLo); 3069 Hi = merge(Hi, FieldHi); 3070 if (Lo == Memory || Hi == Memory) { 3071 postMerge(Size, Lo, Hi); 3072 return; 3073 } 3074 } 3075 } 3076 3077 // Classify the fields one at a time, merging the results. 3078 unsigned idx = 0; 3079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3080 LangOptions::ClangABI::Ver11 || 3081 getContext().getTargetInfo().getTriple().isPS4(); 3082 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3083 3084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3085 i != e; ++i, ++idx) { 3086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3087 bool BitField = i->isBitField(); 3088 3089 // Ignore padding bit-fields. 3090 if (BitField && i->isUnnamedBitfield()) 3091 continue; 3092 3093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3095 // 3096 // The only case a 256-bit or a 512-bit wide vector could be used is when 3097 // the struct contains a single 256-bit or 512-bit element. Early check 3098 // and fallback to memory. 3099 // 3100 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3101 // than 128. 3102 if (Size > 128 && 3103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3105 Lo = Memory; 3106 postMerge(Size, Lo, Hi); 3107 return; 3108 } 3109 // Note, skip this test for bit-fields, see below. 3110 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3111 Lo = Memory; 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3119 // exceeds a single eightbyte, each is classified 3120 // separately. Each eightbyte gets initialized to class 3121 // NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 3124 // Bit-fields require special handling, they do not force the 3125 // structure to be passed in memory even if unaligned, and 3126 // therefore they can straddle an eightbyte. 3127 if (BitField) { 3128 assert(!i->isUnnamedBitfield()); 3129 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3130 uint64_t Size = i->getBitWidthValue(getContext()); 3131 3132 uint64_t EB_Lo = Offset / 64; 3133 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3134 3135 if (EB_Lo) { 3136 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3137 FieldLo = NoClass; 3138 FieldHi = Integer; 3139 } else { 3140 FieldLo = Integer; 3141 FieldHi = EB_Hi ? Integer : NoClass; 3142 } 3143 } else 3144 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3145 Lo = merge(Lo, FieldLo); 3146 Hi = merge(Hi, FieldHi); 3147 if (Lo == Memory || Hi == Memory) 3148 break; 3149 } 3150 3151 postMerge(Size, Lo, Hi); 3152 } 3153 } 3154 3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3156 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3157 // place naturally. 3158 if (!isAggregateTypeForABI(Ty)) { 3159 // Treat an enum type as its underlying type. 3160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3161 Ty = EnumTy->getDecl()->getIntegerType(); 3162 3163 if (Ty->isExtIntType()) 3164 return getNaturalAlignIndirect(Ty); 3165 3166 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3167 : ABIArgInfo::getDirect()); 3168 } 3169 3170 return getNaturalAlignIndirect(Ty); 3171 } 3172 3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3174 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3175 uint64_t Size = getContext().getTypeSize(VecTy); 3176 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3177 if (Size <= 64 || Size > LargestVector) 3178 return true; 3179 QualType EltTy = VecTy->getElementType(); 3180 if (passInt128VectorsInMem() && 3181 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3182 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3190 unsigned freeIntRegs) const { 3191 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3192 // place naturally. 3193 // 3194 // This assumption is optimistic, as there could be free registers available 3195 // when we need to pass this argument in memory, and LLVM could try to pass 3196 // the argument in the free register. This does not seem to happen currently, 3197 // but this code would be much safer if we could mark the argument with 3198 // 'onstack'. See PR12193. 3199 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3200 !Ty->isExtIntType()) { 3201 // Treat an enum type as its underlying type. 3202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3203 Ty = EnumTy->getDecl()->getIntegerType(); 3204 3205 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3206 : ABIArgInfo::getDirect()); 3207 } 3208 3209 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3210 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3211 3212 // Compute the byval alignment. We specify the alignment of the byval in all 3213 // cases so that the mid-level optimizer knows the alignment of the byval. 3214 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3215 3216 // Attempt to avoid passing indirect results using byval when possible. This 3217 // is important for good codegen. 3218 // 3219 // We do this by coercing the value into a scalar type which the backend can 3220 // handle naturally (i.e., without using byval). 3221 // 3222 // For simplicity, we currently only do this when we have exhausted all of the 3223 // free integer registers. Doing this when there are free integer registers 3224 // would require more care, as we would have to ensure that the coerced value 3225 // did not claim the unused register. That would require either reording the 3226 // arguments to the function (so that any subsequent inreg values came first), 3227 // or only doing this optimization when there were no following arguments that 3228 // might be inreg. 3229 // 3230 // We currently expect it to be rare (particularly in well written code) for 3231 // arguments to be passed on the stack when there are still free integer 3232 // registers available (this would typically imply large structs being passed 3233 // by value), so this seems like a fair tradeoff for now. 3234 // 3235 // We can revisit this if the backend grows support for 'onstack' parameter 3236 // attributes. See PR12193. 3237 if (freeIntRegs == 0) { 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 3240 // If this type fits in an eightbyte, coerce it into the matching integral 3241 // type, which will end up on the stack (with alignment 8). 3242 if (Align == 8 && Size <= 64) 3243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3244 Size)); 3245 } 3246 3247 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3248 } 3249 3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3251 /// register. Pick an LLVM IR type that will be passed as a vector register. 3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3253 // Wrapper structs/arrays that only contain vectors are passed just like 3254 // vectors; strip them off if present. 3255 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3256 Ty = QualType(InnerTy, 0); 3257 3258 llvm::Type *IRType = CGT.ConvertType(Ty); 3259 if (isa<llvm::VectorType>(IRType)) { 3260 // Don't pass vXi128 vectors in their native type, the backend can't 3261 // legalize them. 3262 if (passInt128VectorsInMem() && 3263 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3264 // Use a vXi64 vector. 3265 uint64_t Size = getContext().getTypeSize(Ty); 3266 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3267 Size / 64); 3268 } 3269 3270 return IRType; 3271 } 3272 3273 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3274 return IRType; 3275 3276 // We couldn't find the preferred IR vector type for 'Ty'. 3277 uint64_t Size = getContext().getTypeSize(Ty); 3278 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3279 3280 3281 // Return a LLVM IR vector type based on the size of 'Ty'. 3282 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3283 Size / 64); 3284 } 3285 3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3287 /// is known to either be off the end of the specified type or being in 3288 /// alignment padding. The user type specified is known to be at most 128 bits 3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3290 /// classification that put one of the two halves in the INTEGER class. 3291 /// 3292 /// It is conservatively correct to return false. 3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3294 unsigned EndBit, ASTContext &Context) { 3295 // If the bytes being queried are off the end of the type, there is no user 3296 // data hiding here. This handles analysis of builtins, vectors and other 3297 // types that don't contain interesting padding. 3298 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3299 if (TySize <= StartBit) 3300 return true; 3301 3302 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3303 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3304 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3305 3306 // Check each element to see if the element overlaps with the queried range. 3307 for (unsigned i = 0; i != NumElts; ++i) { 3308 // If the element is after the span we care about, then we're done.. 3309 unsigned EltOffset = i*EltSize; 3310 if (EltOffset >= EndBit) break; 3311 3312 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3313 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3314 EndBit-EltOffset, Context)) 3315 return false; 3316 } 3317 // If it overlaps no elements, then it is safe to process as padding. 3318 return true; 3319 } 3320 3321 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3322 const RecordDecl *RD = RT->getDecl(); 3323 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3324 3325 // If this is a C++ record, check the bases first. 3326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3327 for (const auto &I : CXXRD->bases()) { 3328 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3329 "Unexpected base class!"); 3330 const auto *Base = 3331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3332 3333 // If the base is after the span we care about, ignore it. 3334 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3335 if (BaseOffset >= EndBit) continue; 3336 3337 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3338 if (!BitsContainNoUserData(I.getType(), BaseStart, 3339 EndBit-BaseOffset, Context)) 3340 return false; 3341 } 3342 } 3343 3344 // Verify that no field has data that overlaps the region of interest. Yes 3345 // this could be sped up a lot by being smarter about queried fields, 3346 // however we're only looking at structs up to 16 bytes, so we don't care 3347 // much. 3348 unsigned idx = 0; 3349 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3350 i != e; ++i, ++idx) { 3351 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3352 3353 // If we found a field after the region we care about, then we're done. 3354 if (FieldOffset >= EndBit) break; 3355 3356 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3357 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3358 Context)) 3359 return false; 3360 } 3361 3362 // If nothing in this record overlapped the area of interest, then we're 3363 // clean. 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3371 /// float member at the specified offset. For example, {int,{float}} has a 3372 /// float at offset 4. It is conservatively correct for this routine to return 3373 /// false. 3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3375 const llvm::DataLayout &TD) { 3376 // Base case if we find a float. 3377 if (IROffset == 0 && IRType->isFloatTy()) 3378 return true; 3379 3380 // If this is a struct, recurse into the field at the specified offset. 3381 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3382 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3383 unsigned Elt = SL->getElementContainingOffset(IROffset); 3384 IROffset -= SL->getElementOffset(Elt); 3385 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3386 } 3387 3388 // If this is an array, recurse into the field at the specified offset. 3389 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3390 llvm::Type *EltTy = ATy->getElementType(); 3391 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3392 IROffset -= IROffset/EltSize*EltSize; 3393 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3394 } 3395 3396 return false; 3397 } 3398 3399 3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3401 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3402 llvm::Type *X86_64ABIInfo:: 3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3404 QualType SourceTy, unsigned SourceOffset) const { 3405 // The only three choices we have are either double, <2 x float>, or float. We 3406 // pass as float if the last 4 bytes is just padding. This happens for 3407 // structs that contain 3 floats. 3408 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3409 SourceOffset*8+64, getContext())) 3410 return llvm::Type::getFloatTy(getVMContext()); 3411 3412 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3413 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3414 // case. 3415 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3416 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3417 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3418 2); 3419 3420 return llvm::Type::getDoubleTy(getVMContext()); 3421 } 3422 3423 3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3425 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3426 /// about the high or low part of an up-to-16-byte struct. This routine picks 3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3429 /// etc). 3430 /// 3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3432 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3433 /// the 8-byte value references. PrefType may be null. 3434 /// 3435 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3436 /// an offset into this that we're processing (which is always either 0 or 8). 3437 /// 3438 llvm::Type *X86_64ABIInfo:: 3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3440 QualType SourceTy, unsigned SourceOffset) const { 3441 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3442 // returning an 8-byte unit starting with it. See if we can safely use it. 3443 if (IROffset == 0) { 3444 // Pointers and int64's always fill the 8-byte unit. 3445 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3446 IRType->isIntegerTy(64)) 3447 return IRType; 3448 3449 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3450 // goodness in the source type is just tail padding. This is allowed to 3451 // kick in for struct {double,int} on the int, but not on 3452 // struct{double,int,int} because we wouldn't return the second int. We 3453 // have to do this analysis on the source type because we can't depend on 3454 // unions being lowered a specific way etc. 3455 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3456 IRType->isIntegerTy(32) || 3457 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3458 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3459 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3460 3461 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3462 SourceOffset*8+64, getContext())) 3463 return IRType; 3464 } 3465 } 3466 3467 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3468 // If this is a struct, recurse into the field at the specified offset. 3469 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3470 if (IROffset < SL->getSizeInBytes()) { 3471 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3472 IROffset -= SL->getElementOffset(FieldIdx); 3473 3474 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3475 SourceTy, SourceOffset); 3476 } 3477 } 3478 3479 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3480 llvm::Type *EltTy = ATy->getElementType(); 3481 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3482 unsigned EltOffset = IROffset/EltSize*EltSize; 3483 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3484 SourceOffset); 3485 } 3486 3487 // Okay, we don't have any better idea of what to pass, so we pass this in an 3488 // integer register that isn't too big to fit the rest of the struct. 3489 unsigned TySizeInBytes = 3490 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3491 3492 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3493 3494 // It is always safe to classify this as an integer type up to i64 that 3495 // isn't larger than the structure. 3496 return llvm::IntegerType::get(getVMContext(), 3497 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3498 } 3499 3500 3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3502 /// be used as elements of a two register pair to pass or return, return a 3503 /// first class aggregate to represent them. For example, if the low part of 3504 /// a by-value argument should be passed as i32* and the high part as float, 3505 /// return {i32*, float}. 3506 static llvm::Type * 3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3508 const llvm::DataLayout &TD) { 3509 // In order to correctly satisfy the ABI, we need to the high part to start 3510 // at offset 8. If the high and low parts we inferred are both 4-byte types 3511 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3512 // the second element at offset 8. Check for this: 3513 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3514 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3515 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3516 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3517 3518 // To handle this, we have to increase the size of the low part so that the 3519 // second element will start at an 8 byte offset. We can't increase the size 3520 // of the second element because it might make us access off the end of the 3521 // struct. 3522 if (HiStart != 8) { 3523 // There are usually two sorts of types the ABI generation code can produce 3524 // for the low part of a pair that aren't 8 bytes in size: float or 3525 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3526 // NaCl). 3527 // Promote these to a larger type. 3528 if (Lo->isFloatTy()) 3529 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3530 else { 3531 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3532 && "Invalid/unknown lo type"); 3533 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3534 } 3535 } 3536 3537 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3538 3539 // Verify that the second element is at an 8-byte offset. 3540 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3541 "Invalid x86-64 argument pair!"); 3542 return Result; 3543 } 3544 3545 ABIArgInfo X86_64ABIInfo:: 3546 classifyReturnType(QualType RetTy) const { 3547 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3548 // classification algorithm. 3549 X86_64ABIInfo::Class Lo, Hi; 3550 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3551 3552 // Check some invariants. 3553 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3554 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3555 3556 llvm::Type *ResType = nullptr; 3557 switch (Lo) { 3558 case NoClass: 3559 if (Hi == NoClass) 3560 return ABIArgInfo::getIgnore(); 3561 // If the low part is just padding, it takes no register, leave ResType 3562 // null. 3563 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3564 "Unknown missing lo part"); 3565 break; 3566 3567 case SSEUp: 3568 case X87Up: 3569 llvm_unreachable("Invalid classification for lo word."); 3570 3571 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3572 // hidden argument. 3573 case Memory: 3574 return getIndirectReturnResult(RetTy); 3575 3576 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3577 // available register of the sequence %rax, %rdx is used. 3578 case Integer: 3579 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3580 3581 // If we have a sign or zero extended integer, make sure to return Extend 3582 // so that the parameter gets the right LLVM IR attributes. 3583 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3584 // Treat an enum type as its underlying type. 3585 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3586 RetTy = EnumTy->getDecl()->getIntegerType(); 3587 3588 if (RetTy->isIntegralOrEnumerationType() && 3589 isPromotableIntegerTypeForABI(RetTy)) 3590 return ABIArgInfo::getExtend(RetTy); 3591 } 3592 break; 3593 3594 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3595 // available SSE register of the sequence %xmm0, %xmm1 is used. 3596 case SSE: 3597 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3598 break; 3599 3600 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3601 // returned on the X87 stack in %st0 as 80-bit x87 number. 3602 case X87: 3603 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3604 break; 3605 3606 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3607 // part of the value is returned in %st0 and the imaginary part in 3608 // %st1. 3609 case ComplexX87: 3610 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3611 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3612 llvm::Type::getX86_FP80Ty(getVMContext())); 3613 break; 3614 } 3615 3616 llvm::Type *HighPart = nullptr; 3617 switch (Hi) { 3618 // Memory was handled previously and X87 should 3619 // never occur as a hi class. 3620 case Memory: 3621 case X87: 3622 llvm_unreachable("Invalid classification for hi word."); 3623 3624 case ComplexX87: // Previously handled. 3625 case NoClass: 3626 break; 3627 3628 case Integer: 3629 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3630 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3631 return ABIArgInfo::getDirect(HighPart, 8); 3632 break; 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 break; 3638 3639 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3640 // is passed in the next available eightbyte chunk if the last used 3641 // vector register. 3642 // 3643 // SSEUP should always be preceded by SSE, just widen. 3644 case SSEUp: 3645 assert(Lo == SSE && "Unexpected SSEUp classification."); 3646 ResType = GetByteVectorType(RetTy); 3647 break; 3648 3649 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3650 // returned together with the previous X87 value in %st0. 3651 case X87Up: 3652 // If X87Up is preceded by X87, we don't need to do 3653 // anything. However, in some cases with unions it may not be 3654 // preceded by X87. In such situations we follow gcc and pass the 3655 // extra bits in an SSE reg. 3656 if (Lo != X87) { 3657 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3658 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3659 return ABIArgInfo::getDirect(HighPart, 8); 3660 } 3661 break; 3662 } 3663 3664 // If a high part was specified, merge it together with the low part. It is 3665 // known to pass in the high eightbyte of the result. We do this by forming a 3666 // first class struct aggregate with the high and low part: {low, high} 3667 if (HighPart) 3668 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3669 3670 return ABIArgInfo::getDirect(ResType); 3671 } 3672 3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3674 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3675 bool isNamedArg) 3676 const 3677 { 3678 Ty = useFirstFieldIfTransparentUnion(Ty); 3679 3680 X86_64ABIInfo::Class Lo, Hi; 3681 classify(Ty, 0, Lo, Hi, isNamedArg); 3682 3683 // Check some invariants. 3684 // FIXME: Enforce these by construction. 3685 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3686 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3687 3688 neededInt = 0; 3689 neededSSE = 0; 3690 llvm::Type *ResType = nullptr; 3691 switch (Lo) { 3692 case NoClass: 3693 if (Hi == NoClass) 3694 return ABIArgInfo::getIgnore(); 3695 // If the low part is just padding, it takes no register, leave ResType 3696 // null. 3697 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3698 "Unknown missing lo part"); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3702 // on the stack. 3703 case Memory: 3704 3705 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3706 // COMPLEX_X87, it is passed in memory. 3707 case X87: 3708 case ComplexX87: 3709 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3710 ++neededInt; 3711 return getIndirectResult(Ty, freeIntRegs); 3712 3713 case SSEUp: 3714 case X87Up: 3715 llvm_unreachable("Invalid classification for lo word."); 3716 3717 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3718 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3719 // and %r9 is used. 3720 case Integer: 3721 ++neededInt; 3722 3723 // Pick an 8-byte type based on the preferred type. 3724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3725 3726 // If we have a sign or zero extended integer, make sure to return Extend 3727 // so that the parameter gets the right LLVM IR attributes. 3728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3729 // Treat an enum type as its underlying type. 3730 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3731 Ty = EnumTy->getDecl()->getIntegerType(); 3732 3733 if (Ty->isIntegralOrEnumerationType() && 3734 isPromotableIntegerTypeForABI(Ty)) 3735 return ABIArgInfo::getExtend(Ty); 3736 } 3737 3738 break; 3739 3740 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3741 // available SSE register is used, the registers are taken in the 3742 // order from %xmm0 to %xmm7. 3743 case SSE: { 3744 llvm::Type *IRType = CGT.ConvertType(Ty); 3745 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3746 ++neededSSE; 3747 break; 3748 } 3749 } 3750 3751 llvm::Type *HighPart = nullptr; 3752 switch (Hi) { 3753 // Memory was handled previously, ComplexX87 and X87 should 3754 // never occur as hi classes, and X87Up must be preceded by X87, 3755 // which is passed in memory. 3756 case Memory: 3757 case X87: 3758 case ComplexX87: 3759 llvm_unreachable("Invalid classification for hi word."); 3760 3761 case NoClass: break; 3762 3763 case Integer: 3764 ++neededInt; 3765 // Pick an 8-byte type based on the preferred type. 3766 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3767 3768 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3769 return ABIArgInfo::getDirect(HighPart, 8); 3770 break; 3771 3772 // X87Up generally doesn't occur here (long double is passed in 3773 // memory), except in situations involving unions. 3774 case X87Up: 3775 case SSE: 3776 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3777 3778 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3779 return ABIArgInfo::getDirect(HighPart, 8); 3780 3781 ++neededSSE; 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3785 // eightbyte is passed in the upper half of the last used SSE 3786 // register. This only happens when 128-bit vectors are passed. 3787 case SSEUp: 3788 assert(Lo == SSE && "Unexpected SSEUp classification"); 3789 ResType = GetByteVectorType(Ty); 3790 break; 3791 } 3792 3793 // If a high part was specified, merge it together with the low part. It is 3794 // known to pass in the high eightbyte of the result. We do this by forming a 3795 // first class struct aggregate with the high and low part: {low, high} 3796 if (HighPart) 3797 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3798 3799 return ABIArgInfo::getDirect(ResType); 3800 } 3801 3802 ABIArgInfo 3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3804 unsigned &NeededSSE) const { 3805 auto RT = Ty->getAs<RecordType>(); 3806 assert(RT && "classifyRegCallStructType only valid with struct types"); 3807 3808 if (RT->getDecl()->hasFlexibleArrayMember()) 3809 return getIndirectReturnResult(Ty); 3810 3811 // Sum up bases 3812 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3813 if (CXXRD->isDynamicClass()) { 3814 NeededInt = NeededSSE = 0; 3815 return getIndirectReturnResult(Ty); 3816 } 3817 3818 for (const auto &I : CXXRD->bases()) 3819 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3820 .isIndirect()) { 3821 NeededInt = NeededSSE = 0; 3822 return getIndirectReturnResult(Ty); 3823 } 3824 } 3825 3826 // Sum up members 3827 for (const auto *FD : RT->getDecl()->fields()) { 3828 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3829 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3830 .isIndirect()) { 3831 NeededInt = NeededSSE = 0; 3832 return getIndirectReturnResult(Ty); 3833 } 3834 } else { 3835 unsigned LocalNeededInt, LocalNeededSSE; 3836 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3837 LocalNeededSSE, true) 3838 .isIndirect()) { 3839 NeededInt = NeededSSE = 0; 3840 return getIndirectReturnResult(Ty); 3841 } 3842 NeededInt += LocalNeededInt; 3843 NeededSSE += LocalNeededSSE; 3844 } 3845 } 3846 3847 return ABIArgInfo::getDirect(); 3848 } 3849 3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3851 unsigned &NeededInt, 3852 unsigned &NeededSSE) const { 3853 3854 NeededInt = 0; 3855 NeededSSE = 0; 3856 3857 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3858 } 3859 3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3861 3862 const unsigned CallingConv = FI.getCallingConvention(); 3863 // It is possible to force Win64 calling convention on any x86_64 target by 3864 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3865 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3866 if (CallingConv == llvm::CallingConv::Win64) { 3867 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3868 Win64ABIInfo.computeInfo(FI); 3869 return; 3870 } 3871 3872 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3873 3874 // Keep track of the number of assigned registers. 3875 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3876 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3877 unsigned NeededInt, NeededSSE; 3878 3879 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3880 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3881 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3882 FI.getReturnInfo() = 3883 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3884 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3885 FreeIntRegs -= NeededInt; 3886 FreeSSERegs -= NeededSSE; 3887 } else { 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 } 3890 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3891 getContext().getCanonicalType(FI.getReturnType() 3892 ->getAs<ComplexType>() 3893 ->getElementType()) == 3894 getContext().LongDoubleTy) 3895 // Complex Long Double Type is passed in Memory when Regcall 3896 // calling convention is used. 3897 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3898 else 3899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3900 } 3901 3902 // If the return value is indirect, then the hidden argument is consuming one 3903 // integer register. 3904 if (FI.getReturnInfo().isIndirect()) 3905 --FreeIntRegs; 3906 3907 // The chain argument effectively gives us another free register. 3908 if (FI.isChainCall()) 3909 ++FreeIntRegs; 3910 3911 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3912 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3913 // get assigned (in left-to-right order) for passing as follows... 3914 unsigned ArgNo = 0; 3915 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3916 it != ie; ++it, ++ArgNo) { 3917 bool IsNamedArg = ArgNo < NumRequiredArgs; 3918 3919 if (IsRegCall && it->type->isStructureOrClassType()) 3920 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3921 else 3922 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3923 NeededSSE, IsNamedArg); 3924 3925 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3926 // eightbyte of an argument, the whole argument is passed on the 3927 // stack. If registers have already been assigned for some 3928 // eightbytes of such an argument, the assignments get reverted. 3929 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3930 FreeIntRegs -= NeededInt; 3931 FreeSSERegs -= NeededSSE; 3932 } else { 3933 it->info = getIndirectResult(it->type, FreeIntRegs); 3934 } 3935 } 3936 } 3937 3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3939 Address VAListAddr, QualType Ty) { 3940 Address overflow_arg_area_p = 3941 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3942 llvm::Value *overflow_arg_area = 3943 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3944 3945 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3946 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3947 // It isn't stated explicitly in the standard, but in practice we use 3948 // alignment greater than 16 where necessary. 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > CharUnits::fromQuantity(8)) { 3951 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3952 Align); 3953 } 3954 3955 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3956 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3957 llvm::Value *Res = 3958 CGF.Builder.CreateBitCast(overflow_arg_area, 3959 llvm::PointerType::getUnqual(LTy)); 3960 3961 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3962 // l->overflow_arg_area + sizeof(type). 3963 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3964 // an 8 byte boundary. 3965 3966 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3967 llvm::Value *Offset = 3968 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3969 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 3970 Offset, "overflow_arg_area.next"); 3971 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3972 3973 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3974 return Address(Res, Align); 3975 } 3976 3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const { 3979 // Assume that va_list type is correct; should be pointer to LLVM type: 3980 // struct { 3981 // i32 gp_offset; 3982 // i32 fp_offset; 3983 // i8* overflow_arg_area; 3984 // i8* reg_save_area; 3985 // }; 3986 unsigned neededInt, neededSSE; 3987 3988 Ty = getContext().getCanonicalType(Ty); 3989 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3990 /*isNamedArg*/false); 3991 3992 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3993 // in the registers. If not go to step 7. 3994 if (!neededInt && !neededSSE) 3995 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3996 3997 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3998 // general purpose registers needed to pass type and num_fp to hold 3999 // the number of floating point registers needed. 4000 4001 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4002 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4003 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4004 // 4005 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4006 // register save space). 4007 4008 llvm::Value *InRegs = nullptr; 4009 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4010 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4011 if (neededInt) { 4012 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4013 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4014 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4015 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4016 } 4017 4018 if (neededSSE) { 4019 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4020 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4021 llvm::Value *FitsInFP = 4022 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4023 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4024 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4025 } 4026 4027 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4028 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4029 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4030 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4031 4032 // Emit code to load the value if it was passed in registers. 4033 4034 CGF.EmitBlock(InRegBlock); 4035 4036 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4037 // an offset of l->gp_offset and/or l->fp_offset. This may require 4038 // copying to a temporary location in case the parameter is passed 4039 // in different register classes or requires an alignment greater 4040 // than 8 for general purpose registers and 16 for XMM registers. 4041 // 4042 // FIXME: This really results in shameful code when we end up needing to 4043 // collect arguments from different places; often what should result in a 4044 // simple assembling of a structure from scattered addresses has many more 4045 // loads than necessary. Can we clean this up? 4046 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4048 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4049 4050 Address RegAddr = Address::invalid(); 4051 if (neededInt && neededSSE) { 4052 // FIXME: Cleanup. 4053 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4054 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4055 Address Tmp = CGF.CreateMemTemp(Ty); 4056 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4057 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4058 llvm::Type *TyLo = ST->getElementType(0); 4059 llvm::Type *TyHi = ST->getElementType(1); 4060 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4061 "Unexpected ABI info for mixed regs"); 4062 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4063 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4064 llvm::Value *GPAddr = 4065 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4066 llvm::Value *FPAddr = 4067 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4068 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4069 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4070 4071 // Copy the first element. 4072 // FIXME: Our choice of alignment here and below is probably pessimistic. 4073 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4074 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4075 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4076 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4077 4078 // Copy the second element. 4079 V = CGF.Builder.CreateAlignedLoad( 4080 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4081 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4082 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4083 4084 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4085 } else if (neededInt) { 4086 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4087 CharUnits::fromQuantity(8)); 4088 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4089 4090 // Copy to a temporary if necessary to ensure the appropriate alignment. 4091 auto TInfo = getContext().getTypeInfoInChars(Ty); 4092 uint64_t TySize = TInfo.Width.getQuantity(); 4093 CharUnits TyAlign = TInfo.Align; 4094 4095 // Copy into a temporary if the type is more aligned than the 4096 // register save area. 4097 if (TyAlign.getQuantity() > 8) { 4098 Address Tmp = CGF.CreateMemTemp(Ty); 4099 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4100 RegAddr = Tmp; 4101 } 4102 4103 } else if (neededSSE == 1) { 4104 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4105 CharUnits::fromQuantity(16)); 4106 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4107 } else { 4108 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4109 // SSE registers are spaced 16 bytes apart in the register save 4110 // area, we need to collect the two eightbytes together. 4111 // The ABI isn't explicit about this, but it seems reasonable 4112 // to assume that the slots are 16-byte aligned, since the stack is 4113 // naturally 16-byte aligned and the prologue is expected to store 4114 // all the SSE registers to the RSA. 4115 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4116 fp_offset), 4117 CharUnits::fromQuantity(16)); 4118 Address RegAddrHi = 4119 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4120 CharUnits::fromQuantity(16)); 4121 llvm::Type *ST = AI.canHaveCoerceToType() 4122 ? AI.getCoerceToType() 4123 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4124 llvm::Value *V; 4125 Address Tmp = CGF.CreateMemTemp(Ty); 4126 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4127 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4128 RegAddrLo, ST->getStructElementType(0))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4130 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4131 RegAddrHi, ST->getStructElementType(1))); 4132 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4133 4134 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4135 } 4136 4137 // AMD64-ABI 3.5.7p5: Step 5. Set: 4138 // l->gp_offset = l->gp_offset + num_gp * 8 4139 // l->fp_offset = l->fp_offset + num_fp * 16. 4140 if (neededInt) { 4141 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4142 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4143 gp_offset_p); 4144 } 4145 if (neededSSE) { 4146 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4147 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4148 fp_offset_p); 4149 } 4150 CGF.EmitBranch(ContBlock); 4151 4152 // Emit code to load the value if it was passed in memory. 4153 4154 CGF.EmitBlock(InMemBlock); 4155 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4156 4157 // Return the appropriate result. 4158 4159 CGF.EmitBlock(ContBlock); 4160 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4161 "vaarg.addr"); 4162 return ResAddr; 4163 } 4164 4165 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4166 QualType Ty) const { 4167 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4168 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4169 uint64_t Width = getContext().getTypeSize(Ty); 4170 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4171 4172 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4173 CGF.getContext().getTypeInfoInChars(Ty), 4174 CharUnits::fromQuantity(8), 4175 /*allowHigherAlign*/ false); 4176 } 4177 4178 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4179 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4180 const Type *Base = nullptr; 4181 uint64_t NumElts = 0; 4182 4183 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4184 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4185 FreeSSERegs -= NumElts; 4186 return getDirectX86Hva(); 4187 } 4188 return current; 4189 } 4190 4191 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4192 bool IsReturnType, bool IsVectorCall, 4193 bool IsRegCall) const { 4194 4195 if (Ty->isVoidType()) 4196 return ABIArgInfo::getIgnore(); 4197 4198 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4199 Ty = EnumTy->getDecl()->getIntegerType(); 4200 4201 TypeInfo Info = getContext().getTypeInfo(Ty); 4202 uint64_t Width = Info.Width; 4203 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4204 4205 const RecordType *RT = Ty->getAs<RecordType>(); 4206 if (RT) { 4207 if (!IsReturnType) { 4208 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4209 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4210 } 4211 4212 if (RT->getDecl()->hasFlexibleArrayMember()) 4213 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4214 4215 } 4216 4217 const Type *Base = nullptr; 4218 uint64_t NumElts = 0; 4219 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4220 // other targets. 4221 if ((IsVectorCall || IsRegCall) && 4222 isHomogeneousAggregate(Ty, Base, NumElts)) { 4223 if (IsRegCall) { 4224 if (FreeSSERegs >= NumElts) { 4225 FreeSSERegs -= NumElts; 4226 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4227 return ABIArgInfo::getDirect(); 4228 return ABIArgInfo::getExpand(); 4229 } 4230 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4231 } else if (IsVectorCall) { 4232 if (FreeSSERegs >= NumElts && 4233 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4234 FreeSSERegs -= NumElts; 4235 return ABIArgInfo::getDirect(); 4236 } else if (IsReturnType) { 4237 return ABIArgInfo::getExpand(); 4238 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4239 // HVAs are delayed and reclassified in the 2nd step. 4240 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4241 } 4242 } 4243 } 4244 4245 if (Ty->isMemberPointerType()) { 4246 // If the member pointer is represented by an LLVM int or ptr, pass it 4247 // directly. 4248 llvm::Type *LLTy = CGT.ConvertType(Ty); 4249 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4250 return ABIArgInfo::getDirect(); 4251 } 4252 4253 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4254 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4255 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4256 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4257 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4258 4259 // Otherwise, coerce it to a small integer. 4260 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4261 } 4262 4263 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4264 switch (BT->getKind()) { 4265 case BuiltinType::Bool: 4266 // Bool type is always extended to the ABI, other builtin types are not 4267 // extended. 4268 return ABIArgInfo::getExtend(Ty); 4269 4270 case BuiltinType::LongDouble: 4271 // Mingw64 GCC uses the old 80 bit extended precision floating point 4272 // unit. It passes them indirectly through memory. 4273 if (IsMingw64) { 4274 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4275 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4276 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4277 } 4278 break; 4279 4280 case BuiltinType::Int128: 4281 case BuiltinType::UInt128: 4282 // If it's a parameter type, the normal ABI rule is that arguments larger 4283 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4284 // even though it isn't particularly efficient. 4285 if (!IsReturnType) 4286 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4287 4288 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4289 // Clang matches them for compatibility. 4290 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4291 llvm::Type::getInt64Ty(getVMContext()), 2)); 4292 4293 default: 4294 break; 4295 } 4296 } 4297 4298 if (Ty->isExtIntType()) { 4299 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4300 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4301 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4302 // anyway as long is it fits in them, so we don't have to check the power of 4303 // 2. 4304 if (Width <= 64) 4305 return ABIArgInfo::getDirect(); 4306 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4307 } 4308 4309 return ABIArgInfo::getDirect(); 4310 } 4311 4312 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4313 const unsigned CC = FI.getCallingConvention(); 4314 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4315 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4316 4317 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4318 // classification rules. 4319 if (CC == llvm::CallingConv::X86_64_SysV) { 4320 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4321 SysVABIInfo.computeInfo(FI); 4322 return; 4323 } 4324 4325 unsigned FreeSSERegs = 0; 4326 if (IsVectorCall) { 4327 // We can use up to 4 SSE return registers with vectorcall. 4328 FreeSSERegs = 4; 4329 } else if (IsRegCall) { 4330 // RegCall gives us 16 SSE registers. 4331 FreeSSERegs = 16; 4332 } 4333 4334 if (!getCXXABI().classifyReturnType(FI)) 4335 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4336 IsVectorCall, IsRegCall); 4337 4338 if (IsVectorCall) { 4339 // We can use up to 6 SSE register parameters with vectorcall. 4340 FreeSSERegs = 6; 4341 } else if (IsRegCall) { 4342 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4343 FreeSSERegs = 16; 4344 } 4345 4346 unsigned ArgNum = 0; 4347 unsigned ZeroSSERegs = 0; 4348 for (auto &I : FI.arguments()) { 4349 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4350 // XMM/YMM registers. After the sixth argument, pretend no vector 4351 // registers are left. 4352 unsigned *MaybeFreeSSERegs = 4353 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4354 I.info = 4355 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4356 ++ArgNum; 4357 } 4358 4359 if (IsVectorCall) { 4360 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4361 // second pass. 4362 for (auto &I : FI.arguments()) 4363 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4364 } 4365 } 4366 4367 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4368 QualType Ty) const { 4369 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4370 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4371 uint64_t Width = getContext().getTypeSize(Ty); 4372 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4373 4374 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4375 CGF.getContext().getTypeInfoInChars(Ty), 4376 CharUnits::fromQuantity(8), 4377 /*allowHigherAlign*/ false); 4378 } 4379 4380 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4381 llvm::Value *Address, bool Is64Bit, 4382 bool IsAIX) { 4383 // This is calculated from the LLVM and GCC tables and verified 4384 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4385 4386 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4387 4388 llvm::IntegerType *i8 = CGF.Int8Ty; 4389 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4390 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4391 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4392 4393 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4394 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4395 4396 // 32-63: fp0-31, the 8-byte floating-point registers 4397 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4398 4399 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4400 // 64: mq 4401 // 65: lr 4402 // 66: ctr 4403 // 67: ap 4404 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4405 4406 // 68-76 are various 4-byte special-purpose registers: 4407 // 68-75 cr0-7 4408 // 76: xer 4409 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4410 4411 // 77-108: v0-31, the 16-byte vector registers 4412 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4413 4414 // 109: vrsave 4415 // 110: vscr 4416 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4417 4418 // AIX does not utilize the rest of the registers. 4419 if (IsAIX) 4420 return false; 4421 4422 // 111: spe_acc 4423 // 112: spefscr 4424 // 113: sfp 4425 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4426 4427 if (!Is64Bit) 4428 return false; 4429 4430 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4431 // or above CPU. 4432 // 64-bit only registers: 4433 // 114: tfhar 4434 // 115: tfiar 4435 // 116: texasr 4436 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4437 4438 return false; 4439 } 4440 4441 // AIX 4442 namespace { 4443 /// AIXABIInfo - The AIX XCOFF ABI information. 4444 class AIXABIInfo : public ABIInfo { 4445 const bool Is64Bit; 4446 const unsigned PtrByteSize; 4447 CharUnits getParamTypeAlignment(QualType Ty) const; 4448 4449 public: 4450 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4451 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4452 4453 bool isPromotableTypeForABI(QualType Ty) const; 4454 4455 ABIArgInfo classifyReturnType(QualType RetTy) const; 4456 ABIArgInfo classifyArgumentType(QualType Ty) const; 4457 4458 void computeInfo(CGFunctionInfo &FI) const override { 4459 if (!getCXXABI().classifyReturnType(FI)) 4460 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4461 4462 for (auto &I : FI.arguments()) 4463 I.info = classifyArgumentType(I.type); 4464 } 4465 4466 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4467 QualType Ty) const override; 4468 }; 4469 4470 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4471 const bool Is64Bit; 4472 4473 public: 4474 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4475 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4476 Is64Bit(Is64Bit) {} 4477 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4478 return 1; // r1 is the dedicated stack pointer 4479 } 4480 4481 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4482 llvm::Value *Address) const override; 4483 }; 4484 } // namespace 4485 4486 // Return true if the ABI requires Ty to be passed sign- or zero- 4487 // extended to 32/64 bits. 4488 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4489 // Treat an enum type as its underlying type. 4490 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4491 Ty = EnumTy->getDecl()->getIntegerType(); 4492 4493 // Promotable integer types are required to be promoted by the ABI. 4494 if (Ty->isPromotableIntegerType()) 4495 return true; 4496 4497 if (!Is64Bit) 4498 return false; 4499 4500 // For 64 bit mode, in addition to the usual promotable integer types, we also 4501 // need to extend all 32-bit types, since the ABI requires promotion to 64 4502 // bits. 4503 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4504 switch (BT->getKind()) { 4505 case BuiltinType::Int: 4506 case BuiltinType::UInt: 4507 return true; 4508 default: 4509 break; 4510 } 4511 4512 return false; 4513 } 4514 4515 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4516 if (RetTy->isAnyComplexType()) 4517 return ABIArgInfo::getDirect(); 4518 4519 if (RetTy->isVectorType()) 4520 return ABIArgInfo::getDirect(); 4521 4522 if (RetTy->isVoidType()) 4523 return ABIArgInfo::getIgnore(); 4524 4525 if (isAggregateTypeForABI(RetTy)) 4526 return getNaturalAlignIndirect(RetTy); 4527 4528 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4529 : ABIArgInfo::getDirect()); 4530 } 4531 4532 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4533 Ty = useFirstFieldIfTransparentUnion(Ty); 4534 4535 if (Ty->isAnyComplexType()) 4536 return ABIArgInfo::getDirect(); 4537 4538 if (Ty->isVectorType()) 4539 return ABIArgInfo::getDirect(); 4540 4541 if (isAggregateTypeForABI(Ty)) { 4542 // Records with non-trivial destructors/copy-constructors should not be 4543 // passed by value. 4544 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4545 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4546 4547 CharUnits CCAlign = getParamTypeAlignment(Ty); 4548 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4549 4550 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4551 /*Realign*/ TyAlign > CCAlign); 4552 } 4553 4554 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4555 : ABIArgInfo::getDirect()); 4556 } 4557 4558 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4559 // Complex types are passed just like their elements. 4560 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4561 Ty = CTy->getElementType(); 4562 4563 if (Ty->isVectorType()) 4564 return CharUnits::fromQuantity(16); 4565 4566 // If the structure contains a vector type, the alignment is 16. 4567 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4568 return CharUnits::fromQuantity(16); 4569 4570 return CharUnits::fromQuantity(PtrByteSize); 4571 } 4572 4573 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4574 QualType Ty) const { 4575 if (Ty->isAnyComplexType()) 4576 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4577 4578 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4579 TypeInfo.Align = getParamTypeAlignment(Ty); 4580 4581 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4582 4583 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4584 SlotSize, /*AllowHigher*/ true); 4585 } 4586 4587 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4588 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4589 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4590 } 4591 4592 // PowerPC-32 4593 namespace { 4594 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4595 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4596 bool IsSoftFloatABI; 4597 bool IsRetSmallStructInRegABI; 4598 4599 CharUnits getParamTypeAlignment(QualType Ty) const; 4600 4601 public: 4602 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4603 bool RetSmallStructInRegABI) 4604 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4605 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4606 4607 ABIArgInfo classifyReturnType(QualType RetTy) const; 4608 4609 void computeInfo(CGFunctionInfo &FI) const override { 4610 if (!getCXXABI().classifyReturnType(FI)) 4611 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4612 for (auto &I : FI.arguments()) 4613 I.info = classifyArgumentType(I.type); 4614 } 4615 4616 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4617 QualType Ty) const override; 4618 }; 4619 4620 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4621 public: 4622 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4623 bool RetSmallStructInRegABI) 4624 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4625 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4626 4627 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4628 const CodeGenOptions &Opts); 4629 4630 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4631 // This is recovered from gcc output. 4632 return 1; // r1 is the dedicated stack pointer 4633 } 4634 4635 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4636 llvm::Value *Address) const override; 4637 }; 4638 } 4639 4640 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4641 // Complex types are passed just like their elements. 4642 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4643 Ty = CTy->getElementType(); 4644 4645 if (Ty->isVectorType()) 4646 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4647 : 4); 4648 4649 // For single-element float/vector structs, we consider the whole type 4650 // to have the same alignment requirements as its single element. 4651 const Type *AlignTy = nullptr; 4652 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4653 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4654 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4655 (BT && BT->isFloatingPoint())) 4656 AlignTy = EltType; 4657 } 4658 4659 if (AlignTy) 4660 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4661 return CharUnits::fromQuantity(4); 4662 } 4663 4664 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4665 uint64_t Size; 4666 4667 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4668 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4669 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4670 // System V ABI (1995), page 3-22, specified: 4671 // > A structure or union whose size is less than or equal to 8 bytes 4672 // > shall be returned in r3 and r4, as if it were first stored in the 4673 // > 8-byte aligned memory area and then the low addressed word were 4674 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4675 // > the last member of the structure or union are not defined. 4676 // 4677 // GCC for big-endian PPC32 inserts the pad before the first member, 4678 // not "beyond the last member" of the struct. To stay compatible 4679 // with GCC, we coerce the struct to an integer of the same size. 4680 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4681 if (Size == 0) 4682 return ABIArgInfo::getIgnore(); 4683 else { 4684 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4685 return ABIArgInfo::getDirect(CoerceTy); 4686 } 4687 } 4688 4689 return DefaultABIInfo::classifyReturnType(RetTy); 4690 } 4691 4692 // TODO: this implementation is now likely redundant with 4693 // DefaultABIInfo::EmitVAArg. 4694 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4695 QualType Ty) const { 4696 if (getTarget().getTriple().isOSDarwin()) { 4697 auto TI = getContext().getTypeInfoInChars(Ty); 4698 TI.Align = getParamTypeAlignment(Ty); 4699 4700 CharUnits SlotSize = CharUnits::fromQuantity(4); 4701 return emitVoidPtrVAArg(CGF, VAList, Ty, 4702 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4703 /*AllowHigherAlign=*/true); 4704 } 4705 4706 const unsigned OverflowLimit = 8; 4707 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4708 // TODO: Implement this. For now ignore. 4709 (void)CTy; 4710 return Address::invalid(); // FIXME? 4711 } 4712 4713 // struct __va_list_tag { 4714 // unsigned char gpr; 4715 // unsigned char fpr; 4716 // unsigned short reserved; 4717 // void *overflow_arg_area; 4718 // void *reg_save_area; 4719 // }; 4720 4721 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4722 bool isInt = !Ty->isFloatingType(); 4723 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4724 4725 // All aggregates are passed indirectly? That doesn't seem consistent 4726 // with the argument-lowering code. 4727 bool isIndirect = isAggregateTypeForABI(Ty); 4728 4729 CGBuilderTy &Builder = CGF.Builder; 4730 4731 // The calling convention either uses 1-2 GPRs or 1 FPR. 4732 Address NumRegsAddr = Address::invalid(); 4733 if (isInt || IsSoftFloatABI) { 4734 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4735 } else { 4736 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4737 } 4738 4739 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4740 4741 // "Align" the register count when TY is i64. 4742 if (isI64 || (isF64 && IsSoftFloatABI)) { 4743 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4744 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4745 } 4746 4747 llvm::Value *CC = 4748 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4749 4750 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4751 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4752 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4753 4754 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4755 4756 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4757 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4758 4759 // Case 1: consume registers. 4760 Address RegAddr = Address::invalid(); 4761 { 4762 CGF.EmitBlock(UsingRegs); 4763 4764 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4765 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4766 CharUnits::fromQuantity(8)); 4767 assert(RegAddr.getElementType() == CGF.Int8Ty); 4768 4769 // Floating-point registers start after the general-purpose registers. 4770 if (!(isInt || IsSoftFloatABI)) { 4771 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4772 CharUnits::fromQuantity(32)); 4773 } 4774 4775 // Get the address of the saved value by scaling the number of 4776 // registers we've used by the number of 4777 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4778 llvm::Value *RegOffset = 4779 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4780 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4781 RegAddr.getPointer(), RegOffset), 4782 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4783 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4784 4785 // Increase the used-register count. 4786 NumRegs = 4787 Builder.CreateAdd(NumRegs, 4788 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4789 Builder.CreateStore(NumRegs, NumRegsAddr); 4790 4791 CGF.EmitBranch(Cont); 4792 } 4793 4794 // Case 2: consume space in the overflow area. 4795 Address MemAddr = Address::invalid(); 4796 { 4797 CGF.EmitBlock(UsingOverflow); 4798 4799 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4800 4801 // Everything in the overflow area is rounded up to a size of at least 4. 4802 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4803 4804 CharUnits Size; 4805 if (!isIndirect) { 4806 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4807 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4808 } else { 4809 Size = CGF.getPointerSize(); 4810 } 4811 4812 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4813 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4814 OverflowAreaAlign); 4815 // Round up address of argument to alignment 4816 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4817 if (Align > OverflowAreaAlign) { 4818 llvm::Value *Ptr = OverflowArea.getPointer(); 4819 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4820 Align); 4821 } 4822 4823 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4824 4825 // Increase the overflow area. 4826 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4827 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4828 CGF.EmitBranch(Cont); 4829 } 4830 4831 CGF.EmitBlock(Cont); 4832 4833 // Merge the cases with a phi. 4834 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4835 "vaarg.addr"); 4836 4837 // Load the pointer if the argument was passed indirectly. 4838 if (isIndirect) { 4839 Result = Address(Builder.CreateLoad(Result, "aggr"), 4840 getContext().getTypeAlignInChars(Ty)); 4841 } 4842 4843 return Result; 4844 } 4845 4846 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4847 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4848 assert(Triple.isPPC32()); 4849 4850 switch (Opts.getStructReturnConvention()) { 4851 case CodeGenOptions::SRCK_Default: 4852 break; 4853 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4854 return false; 4855 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4856 return true; 4857 } 4858 4859 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4860 return true; 4861 4862 return false; 4863 } 4864 4865 bool 4866 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4867 llvm::Value *Address) const { 4868 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4869 /*IsAIX*/ false); 4870 } 4871 4872 // PowerPC-64 4873 4874 namespace { 4875 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4876 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4877 public: 4878 enum ABIKind { 4879 ELFv1 = 0, 4880 ELFv2 4881 }; 4882 4883 private: 4884 static const unsigned GPRBits = 64; 4885 ABIKind Kind; 4886 bool IsSoftFloatABI; 4887 4888 public: 4889 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4890 bool SoftFloatABI) 4891 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4892 4893 bool isPromotableTypeForABI(QualType Ty) const; 4894 CharUnits getParamTypeAlignment(QualType Ty) const; 4895 4896 ABIArgInfo classifyReturnType(QualType RetTy) const; 4897 ABIArgInfo classifyArgumentType(QualType Ty) const; 4898 4899 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4900 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4901 uint64_t Members) const override; 4902 4903 // TODO: We can add more logic to computeInfo to improve performance. 4904 // Example: For aggregate arguments that fit in a register, we could 4905 // use getDirectInReg (as is done below for structs containing a single 4906 // floating-point value) to avoid pushing them to memory on function 4907 // entry. This would require changing the logic in PPCISelLowering 4908 // when lowering the parameters in the caller and args in the callee. 4909 void computeInfo(CGFunctionInfo &FI) const override { 4910 if (!getCXXABI().classifyReturnType(FI)) 4911 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4912 for (auto &I : FI.arguments()) { 4913 // We rely on the default argument classification for the most part. 4914 // One exception: An aggregate containing a single floating-point 4915 // or vector item must be passed in a register if one is available. 4916 const Type *T = isSingleElementStruct(I.type, getContext()); 4917 if (T) { 4918 const BuiltinType *BT = T->getAs<BuiltinType>(); 4919 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4920 (BT && BT->isFloatingPoint())) { 4921 QualType QT(T, 0); 4922 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4923 continue; 4924 } 4925 } 4926 I.info = classifyArgumentType(I.type); 4927 } 4928 } 4929 4930 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4931 QualType Ty) const override; 4932 4933 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4934 bool asReturnValue) const override { 4935 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4936 } 4937 4938 bool isSwiftErrorInRegister() const override { 4939 return false; 4940 } 4941 }; 4942 4943 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4944 4945 public: 4946 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4947 PPC64_SVR4_ABIInfo::ABIKind Kind, 4948 bool SoftFloatABI) 4949 : TargetCodeGenInfo( 4950 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4951 4952 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4953 // This is recovered from gcc output. 4954 return 1; // r1 is the dedicated stack pointer 4955 } 4956 4957 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4958 llvm::Value *Address) const override; 4959 }; 4960 4961 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4962 public: 4963 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4964 4965 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4966 // This is recovered from gcc output. 4967 return 1; // r1 is the dedicated stack pointer 4968 } 4969 4970 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4971 llvm::Value *Address) const override; 4972 }; 4973 4974 } 4975 4976 // Return true if the ABI requires Ty to be passed sign- or zero- 4977 // extended to 64 bits. 4978 bool 4979 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4980 // Treat an enum type as its underlying type. 4981 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4982 Ty = EnumTy->getDecl()->getIntegerType(); 4983 4984 // Promotable integer types are required to be promoted by the ABI. 4985 if (isPromotableIntegerTypeForABI(Ty)) 4986 return true; 4987 4988 // In addition to the usual promotable integer types, we also need to 4989 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4990 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4991 switch (BT->getKind()) { 4992 case BuiltinType::Int: 4993 case BuiltinType::UInt: 4994 return true; 4995 default: 4996 break; 4997 } 4998 4999 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5000 if (EIT->getNumBits() < 64) 5001 return true; 5002 5003 return false; 5004 } 5005 5006 /// isAlignedParamType - Determine whether a type requires 16-byte or 5007 /// higher alignment in the parameter area. Always returns at least 8. 5008 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5009 // Complex types are passed just like their elements. 5010 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5011 Ty = CTy->getElementType(); 5012 5013 // Only vector types of size 16 bytes need alignment (larger types are 5014 // passed via reference, smaller types are not aligned). 5015 if (Ty->isVectorType()) { 5016 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5017 } else if (Ty->isRealFloatingType() && 5018 &getContext().getFloatTypeSemantics(Ty) == 5019 &llvm::APFloat::IEEEquad()) { 5020 // According to ABI document section 'Optional Save Areas': If extended 5021 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5022 // format are supported, map them to a single quadword, quadword aligned. 5023 return CharUnits::fromQuantity(16); 5024 } 5025 5026 // For single-element float/vector structs, we consider the whole type 5027 // to have the same alignment requirements as its single element. 5028 const Type *AlignAsType = nullptr; 5029 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5030 if (EltType) { 5031 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5032 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5033 (BT && BT->isFloatingPoint())) 5034 AlignAsType = EltType; 5035 } 5036 5037 // Likewise for ELFv2 homogeneous aggregates. 5038 const Type *Base = nullptr; 5039 uint64_t Members = 0; 5040 if (!AlignAsType && Kind == ELFv2 && 5041 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5042 AlignAsType = Base; 5043 5044 // With special case aggregates, only vector base types need alignment. 5045 if (AlignAsType) { 5046 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5047 } 5048 5049 // Otherwise, we only need alignment for any aggregate type that 5050 // has an alignment requirement of >= 16 bytes. 5051 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5052 return CharUnits::fromQuantity(16); 5053 } 5054 5055 return CharUnits::fromQuantity(8); 5056 } 5057 5058 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5059 /// aggregate. Base is set to the base element type, and Members is set 5060 /// to the number of base elements. 5061 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5062 uint64_t &Members) const { 5063 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5064 uint64_t NElements = AT->getSize().getZExtValue(); 5065 if (NElements == 0) 5066 return false; 5067 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5068 return false; 5069 Members *= NElements; 5070 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5071 const RecordDecl *RD = RT->getDecl(); 5072 if (RD->hasFlexibleArrayMember()) 5073 return false; 5074 5075 Members = 0; 5076 5077 // If this is a C++ record, check the properties of the record such as 5078 // bases and ABI specific restrictions 5079 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5080 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5081 return false; 5082 5083 for (const auto &I : CXXRD->bases()) { 5084 // Ignore empty records. 5085 if (isEmptyRecord(getContext(), I.getType(), true)) 5086 continue; 5087 5088 uint64_t FldMembers; 5089 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5090 return false; 5091 5092 Members += FldMembers; 5093 } 5094 } 5095 5096 for (const auto *FD : RD->fields()) { 5097 // Ignore (non-zero arrays of) empty records. 5098 QualType FT = FD->getType(); 5099 while (const ConstantArrayType *AT = 5100 getContext().getAsConstantArrayType(FT)) { 5101 if (AT->getSize().getZExtValue() == 0) 5102 return false; 5103 FT = AT->getElementType(); 5104 } 5105 if (isEmptyRecord(getContext(), FT, true)) 5106 continue; 5107 5108 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5109 if (getContext().getLangOpts().CPlusPlus && 5110 FD->isZeroLengthBitField(getContext())) 5111 continue; 5112 5113 uint64_t FldMembers; 5114 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5115 return false; 5116 5117 Members = (RD->isUnion() ? 5118 std::max(Members, FldMembers) : Members + FldMembers); 5119 } 5120 5121 if (!Base) 5122 return false; 5123 5124 // Ensure there is no padding. 5125 if (getContext().getTypeSize(Base) * Members != 5126 getContext().getTypeSize(Ty)) 5127 return false; 5128 } else { 5129 Members = 1; 5130 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5131 Members = 2; 5132 Ty = CT->getElementType(); 5133 } 5134 5135 // Most ABIs only support float, double, and some vector type widths. 5136 if (!isHomogeneousAggregateBaseType(Ty)) 5137 return false; 5138 5139 // The base type must be the same for all members. Types that 5140 // agree in both total size and mode (float vs. vector) are 5141 // treated as being equivalent here. 5142 const Type *TyPtr = Ty.getTypePtr(); 5143 if (!Base) { 5144 Base = TyPtr; 5145 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5146 // so make sure to widen it explicitly. 5147 if (const VectorType *VT = Base->getAs<VectorType>()) { 5148 QualType EltTy = VT->getElementType(); 5149 unsigned NumElements = 5150 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5151 Base = getContext() 5152 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5153 .getTypePtr(); 5154 } 5155 } 5156 5157 if (Base->isVectorType() != TyPtr->isVectorType() || 5158 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5159 return false; 5160 } 5161 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5162 } 5163 5164 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5165 // Homogeneous aggregates for ELFv2 must have base types of float, 5166 // double, long double, or 128-bit vectors. 5167 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5168 if (BT->getKind() == BuiltinType::Float || 5169 BT->getKind() == BuiltinType::Double || 5170 BT->getKind() == BuiltinType::LongDouble || 5171 (getContext().getTargetInfo().hasFloat128Type() && 5172 (BT->getKind() == BuiltinType::Float128))) { 5173 if (IsSoftFloatABI) 5174 return false; 5175 return true; 5176 } 5177 } 5178 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5179 if (getContext().getTypeSize(VT) == 128) 5180 return true; 5181 } 5182 return false; 5183 } 5184 5185 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5186 const Type *Base, uint64_t Members) const { 5187 // Vector and fp128 types require one register, other floating point types 5188 // require one or two registers depending on their size. 5189 uint32_t NumRegs = 5190 ((getContext().getTargetInfo().hasFloat128Type() && 5191 Base->isFloat128Type()) || 5192 Base->isVectorType()) ? 1 5193 : (getContext().getTypeSize(Base) + 63) / 64; 5194 5195 // Homogeneous Aggregates may occupy at most 8 registers. 5196 return Members * NumRegs <= 8; 5197 } 5198 5199 ABIArgInfo 5200 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5201 Ty = useFirstFieldIfTransparentUnion(Ty); 5202 5203 if (Ty->isAnyComplexType()) 5204 return ABIArgInfo::getDirect(); 5205 5206 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5207 // or via reference (larger than 16 bytes). 5208 if (Ty->isVectorType()) { 5209 uint64_t Size = getContext().getTypeSize(Ty); 5210 if (Size > 128) 5211 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5212 else if (Size < 128) { 5213 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5214 return ABIArgInfo::getDirect(CoerceTy); 5215 } 5216 } 5217 5218 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5219 if (EIT->getNumBits() > 128) 5220 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5221 5222 if (isAggregateTypeForABI(Ty)) { 5223 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5224 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5225 5226 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5227 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5228 5229 // ELFv2 homogeneous aggregates are passed as array types. 5230 const Type *Base = nullptr; 5231 uint64_t Members = 0; 5232 if (Kind == ELFv2 && 5233 isHomogeneousAggregate(Ty, Base, Members)) { 5234 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5235 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5236 return ABIArgInfo::getDirect(CoerceTy); 5237 } 5238 5239 // If an aggregate may end up fully in registers, we do not 5240 // use the ByVal method, but pass the aggregate as array. 5241 // This is usually beneficial since we avoid forcing the 5242 // back-end to store the argument to memory. 5243 uint64_t Bits = getContext().getTypeSize(Ty); 5244 if (Bits > 0 && Bits <= 8 * GPRBits) { 5245 llvm::Type *CoerceTy; 5246 5247 // Types up to 8 bytes are passed as integer type (which will be 5248 // properly aligned in the argument save area doubleword). 5249 if (Bits <= GPRBits) 5250 CoerceTy = 5251 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5252 // Larger types are passed as arrays, with the base type selected 5253 // according to the required alignment in the save area. 5254 else { 5255 uint64_t RegBits = ABIAlign * 8; 5256 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5257 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5258 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5259 } 5260 5261 return ABIArgInfo::getDirect(CoerceTy); 5262 } 5263 5264 // All other aggregates are passed ByVal. 5265 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5266 /*ByVal=*/true, 5267 /*Realign=*/TyAlign > ABIAlign); 5268 } 5269 5270 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5271 : ABIArgInfo::getDirect()); 5272 } 5273 5274 ABIArgInfo 5275 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5276 if (RetTy->isVoidType()) 5277 return ABIArgInfo::getIgnore(); 5278 5279 if (RetTy->isAnyComplexType()) 5280 return ABIArgInfo::getDirect(); 5281 5282 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5283 // or via reference (larger than 16 bytes). 5284 if (RetTy->isVectorType()) { 5285 uint64_t Size = getContext().getTypeSize(RetTy); 5286 if (Size > 128) 5287 return getNaturalAlignIndirect(RetTy); 5288 else if (Size < 128) { 5289 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5290 return ABIArgInfo::getDirect(CoerceTy); 5291 } 5292 } 5293 5294 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5295 if (EIT->getNumBits() > 128) 5296 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5297 5298 if (isAggregateTypeForABI(RetTy)) { 5299 // ELFv2 homogeneous aggregates are returned as array types. 5300 const Type *Base = nullptr; 5301 uint64_t Members = 0; 5302 if (Kind == ELFv2 && 5303 isHomogeneousAggregate(RetTy, Base, Members)) { 5304 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5305 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5306 return ABIArgInfo::getDirect(CoerceTy); 5307 } 5308 5309 // ELFv2 small aggregates are returned in up to two registers. 5310 uint64_t Bits = getContext().getTypeSize(RetTy); 5311 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5312 if (Bits == 0) 5313 return ABIArgInfo::getIgnore(); 5314 5315 llvm::Type *CoerceTy; 5316 if (Bits > GPRBits) { 5317 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5318 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5319 } else 5320 CoerceTy = 5321 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5322 return ABIArgInfo::getDirect(CoerceTy); 5323 } 5324 5325 // All other aggregates are returned indirectly. 5326 return getNaturalAlignIndirect(RetTy); 5327 } 5328 5329 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5330 : ABIArgInfo::getDirect()); 5331 } 5332 5333 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5334 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5335 QualType Ty) const { 5336 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5337 TypeInfo.Align = getParamTypeAlignment(Ty); 5338 5339 CharUnits SlotSize = CharUnits::fromQuantity(8); 5340 5341 // If we have a complex type and the base type is smaller than 8 bytes, 5342 // the ABI calls for the real and imaginary parts to be right-adjusted 5343 // in separate doublewords. However, Clang expects us to produce a 5344 // pointer to a structure with the two parts packed tightly. So generate 5345 // loads of the real and imaginary parts relative to the va_list pointer, 5346 // and store them to a temporary structure. 5347 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5348 CharUnits EltSize = TypeInfo.Width / 2; 5349 if (EltSize < SlotSize) { 5350 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5351 SlotSize * 2, SlotSize, 5352 SlotSize, /*AllowHigher*/ true); 5353 5354 Address RealAddr = Addr; 5355 Address ImagAddr = RealAddr; 5356 if (CGF.CGM.getDataLayout().isBigEndian()) { 5357 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5358 SlotSize - EltSize); 5359 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5360 2 * SlotSize - EltSize); 5361 } else { 5362 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5363 } 5364 5365 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5366 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5367 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5368 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5369 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5370 5371 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5372 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5373 /*init*/ true); 5374 return Temp; 5375 } 5376 } 5377 5378 // Otherwise, just use the general rule. 5379 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5380 TypeInfo, SlotSize, /*AllowHigher*/ true); 5381 } 5382 5383 bool 5384 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5385 CodeGen::CodeGenFunction &CGF, 5386 llvm::Value *Address) const { 5387 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5388 /*IsAIX*/ false); 5389 } 5390 5391 bool 5392 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5393 llvm::Value *Address) const { 5394 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5395 /*IsAIX*/ false); 5396 } 5397 5398 //===----------------------------------------------------------------------===// 5399 // AArch64 ABI Implementation 5400 //===----------------------------------------------------------------------===// 5401 5402 namespace { 5403 5404 class AArch64ABIInfo : public SwiftABIInfo { 5405 public: 5406 enum ABIKind { 5407 AAPCS = 0, 5408 DarwinPCS, 5409 Win64 5410 }; 5411 5412 private: 5413 ABIKind Kind; 5414 5415 public: 5416 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5417 : SwiftABIInfo(CGT), Kind(Kind) {} 5418 5419 private: 5420 ABIKind getABIKind() const { return Kind; } 5421 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5422 5423 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5424 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5425 unsigned CallingConvention) const; 5426 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5427 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5428 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5429 uint64_t Members) const override; 5430 5431 bool isIllegalVectorType(QualType Ty) const; 5432 5433 void computeInfo(CGFunctionInfo &FI) const override { 5434 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5435 FI.getReturnInfo() = 5436 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5437 5438 for (auto &it : FI.arguments()) 5439 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5440 FI.getCallingConvention()); 5441 } 5442 5443 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5444 CodeGenFunction &CGF) const; 5445 5446 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5447 CodeGenFunction &CGF) const; 5448 5449 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5450 QualType Ty) const override { 5451 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5452 if (isa<llvm::ScalableVectorType>(BaseTy)) 5453 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5454 "currently not supported"); 5455 5456 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5457 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5458 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5459 } 5460 5461 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5462 QualType Ty) const override; 5463 5464 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5465 bool asReturnValue) const override { 5466 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5467 } 5468 bool isSwiftErrorInRegister() const override { 5469 return true; 5470 } 5471 5472 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5473 unsigned elts) const override; 5474 5475 bool allowBFloatArgsAndRet() const override { 5476 return getTarget().hasBFloat16Type(); 5477 } 5478 }; 5479 5480 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5481 public: 5482 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5483 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5484 5485 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5486 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5487 } 5488 5489 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5490 return 31; 5491 } 5492 5493 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5494 5495 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5496 CodeGen::CodeGenModule &CGM) const override { 5497 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5498 if (!FD) 5499 return; 5500 5501 const auto *TA = FD->getAttr<TargetAttr>(); 5502 if (TA == nullptr) 5503 return; 5504 5505 ParsedTargetAttr Attr = TA->parse(); 5506 if (Attr.BranchProtection.empty()) 5507 return; 5508 5509 TargetInfo::BranchProtectionInfo BPI; 5510 StringRef Error; 5511 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5512 BPI, Error); 5513 assert(Error.empty()); 5514 5515 auto *Fn = cast<llvm::Function>(GV); 5516 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5517 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5518 5519 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5520 Fn->addFnAttr("sign-return-address-key", 5521 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5522 ? "a_key" 5523 : "b_key"); 5524 } 5525 5526 Fn->addFnAttr("branch-target-enforcement", 5527 BPI.BranchTargetEnforcement ? "true" : "false"); 5528 } 5529 }; 5530 5531 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5532 public: 5533 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5534 : AArch64TargetCodeGenInfo(CGT, K) {} 5535 5536 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5537 CodeGen::CodeGenModule &CGM) const override; 5538 5539 void getDependentLibraryOption(llvm::StringRef Lib, 5540 llvm::SmallString<24> &Opt) const override { 5541 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5542 } 5543 5544 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5545 llvm::SmallString<32> &Opt) const override { 5546 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5547 } 5548 }; 5549 5550 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5551 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5552 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5553 if (GV->isDeclaration()) 5554 return; 5555 addStackProbeTargetAttributes(D, GV, CGM); 5556 } 5557 } 5558 5559 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5560 assert(Ty->isVectorType() && "expected vector type!"); 5561 5562 const auto *VT = Ty->castAs<VectorType>(); 5563 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5564 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5565 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5566 BuiltinType::UChar && 5567 "unexpected builtin type for SVE predicate!"); 5568 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5569 llvm::Type::getInt1Ty(getVMContext()), 16)); 5570 } 5571 5572 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5573 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5574 5575 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5576 llvm::ScalableVectorType *ResType = nullptr; 5577 switch (BT->getKind()) { 5578 default: 5579 llvm_unreachable("unexpected builtin type for SVE vector!"); 5580 case BuiltinType::SChar: 5581 case BuiltinType::UChar: 5582 ResType = llvm::ScalableVectorType::get( 5583 llvm::Type::getInt8Ty(getVMContext()), 16); 5584 break; 5585 case BuiltinType::Short: 5586 case BuiltinType::UShort: 5587 ResType = llvm::ScalableVectorType::get( 5588 llvm::Type::getInt16Ty(getVMContext()), 8); 5589 break; 5590 case BuiltinType::Int: 5591 case BuiltinType::UInt: 5592 ResType = llvm::ScalableVectorType::get( 5593 llvm::Type::getInt32Ty(getVMContext()), 4); 5594 break; 5595 case BuiltinType::Long: 5596 case BuiltinType::ULong: 5597 ResType = llvm::ScalableVectorType::get( 5598 llvm::Type::getInt64Ty(getVMContext()), 2); 5599 break; 5600 case BuiltinType::Half: 5601 ResType = llvm::ScalableVectorType::get( 5602 llvm::Type::getHalfTy(getVMContext()), 8); 5603 break; 5604 case BuiltinType::Float: 5605 ResType = llvm::ScalableVectorType::get( 5606 llvm::Type::getFloatTy(getVMContext()), 4); 5607 break; 5608 case BuiltinType::Double: 5609 ResType = llvm::ScalableVectorType::get( 5610 llvm::Type::getDoubleTy(getVMContext()), 2); 5611 break; 5612 case BuiltinType::BFloat16: 5613 ResType = llvm::ScalableVectorType::get( 5614 llvm::Type::getBFloatTy(getVMContext()), 8); 5615 break; 5616 } 5617 return ABIArgInfo::getDirect(ResType); 5618 } 5619 5620 uint64_t Size = getContext().getTypeSize(Ty); 5621 // Android promotes <2 x i8> to i16, not i32 5622 if (isAndroid() && (Size <= 16)) { 5623 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5624 return ABIArgInfo::getDirect(ResType); 5625 } 5626 if (Size <= 32) { 5627 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5628 return ABIArgInfo::getDirect(ResType); 5629 } 5630 if (Size == 64) { 5631 auto *ResType = 5632 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5633 return ABIArgInfo::getDirect(ResType); 5634 } 5635 if (Size == 128) { 5636 auto *ResType = 5637 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5638 return ABIArgInfo::getDirect(ResType); 5639 } 5640 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5641 } 5642 5643 ABIArgInfo 5644 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5645 unsigned CallingConvention) const { 5646 Ty = useFirstFieldIfTransparentUnion(Ty); 5647 5648 // Handle illegal vector types here. 5649 if (isIllegalVectorType(Ty)) 5650 return coerceIllegalVector(Ty); 5651 5652 if (!isAggregateTypeForABI(Ty)) { 5653 // Treat an enum type as its underlying type. 5654 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5655 Ty = EnumTy->getDecl()->getIntegerType(); 5656 5657 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5658 if (EIT->getNumBits() > 128) 5659 return getNaturalAlignIndirect(Ty); 5660 5661 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5662 ? ABIArgInfo::getExtend(Ty) 5663 : ABIArgInfo::getDirect()); 5664 } 5665 5666 // Structures with either a non-trivial destructor or a non-trivial 5667 // copy constructor are always indirect. 5668 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5669 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5670 CGCXXABI::RAA_DirectInMemory); 5671 } 5672 5673 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5674 // elsewhere for GNU compatibility. 5675 uint64_t Size = getContext().getTypeSize(Ty); 5676 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5677 if (IsEmpty || Size == 0) { 5678 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5679 return ABIArgInfo::getIgnore(); 5680 5681 // GNU C mode. The only argument that gets ignored is an empty one with size 5682 // 0. 5683 if (IsEmpty && Size == 0) 5684 return ABIArgInfo::getIgnore(); 5685 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5686 } 5687 5688 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5689 const Type *Base = nullptr; 5690 uint64_t Members = 0; 5691 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5692 bool IsWinVariadic = IsWin64 && IsVariadic; 5693 // In variadic functions on Windows, all composite types are treated alike, 5694 // no special handling of HFAs/HVAs. 5695 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5696 if (Kind != AArch64ABIInfo::AAPCS) 5697 return ABIArgInfo::getDirect( 5698 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5699 5700 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5701 // default otherwise. 5702 unsigned Align = 5703 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5704 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5705 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5706 return ABIArgInfo::getDirect( 5707 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5708 nullptr, true, Align); 5709 } 5710 5711 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5712 if (Size <= 128) { 5713 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5714 // same size and alignment. 5715 if (getTarget().isRenderScriptTarget()) { 5716 return coerceToIntArray(Ty, getContext(), getVMContext()); 5717 } 5718 unsigned Alignment; 5719 if (Kind == AArch64ABIInfo::AAPCS) { 5720 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5721 Alignment = Alignment < 128 ? 64 : 128; 5722 } else { 5723 Alignment = std::max(getContext().getTypeAlign(Ty), 5724 (unsigned)getTarget().getPointerWidth(0)); 5725 } 5726 Size = llvm::alignTo(Size, Alignment); 5727 5728 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5729 // For aggregates with 16-byte alignment, we use i128. 5730 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5731 return ABIArgInfo::getDirect( 5732 Size == Alignment ? BaseTy 5733 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5734 } 5735 5736 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5737 } 5738 5739 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5740 bool IsVariadic) const { 5741 if (RetTy->isVoidType()) 5742 return ABIArgInfo::getIgnore(); 5743 5744 if (const auto *VT = RetTy->getAs<VectorType>()) { 5745 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5746 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5747 return coerceIllegalVector(RetTy); 5748 } 5749 5750 // Large vector types should be returned via memory. 5751 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5752 return getNaturalAlignIndirect(RetTy); 5753 5754 if (!isAggregateTypeForABI(RetTy)) { 5755 // Treat an enum type as its underlying type. 5756 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5757 RetTy = EnumTy->getDecl()->getIntegerType(); 5758 5759 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5760 if (EIT->getNumBits() > 128) 5761 return getNaturalAlignIndirect(RetTy); 5762 5763 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5764 ? ABIArgInfo::getExtend(RetTy) 5765 : ABIArgInfo::getDirect()); 5766 } 5767 5768 uint64_t Size = getContext().getTypeSize(RetTy); 5769 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5770 return ABIArgInfo::getIgnore(); 5771 5772 const Type *Base = nullptr; 5773 uint64_t Members = 0; 5774 if (isHomogeneousAggregate(RetTy, Base, Members) && 5775 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5776 IsVariadic)) 5777 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5778 return ABIArgInfo::getDirect(); 5779 5780 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5781 if (Size <= 128) { 5782 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5783 // same size and alignment. 5784 if (getTarget().isRenderScriptTarget()) { 5785 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5786 } 5787 5788 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5789 // Composite types are returned in lower bits of a 64-bit register for LE, 5790 // and in higher bits for BE. However, integer types are always returned 5791 // in lower bits for both LE and BE, and they are not rounded up to 5792 // 64-bits. We can skip rounding up of composite types for LE, but not for 5793 // BE, otherwise composite types will be indistinguishable from integer 5794 // types. 5795 return ABIArgInfo::getDirect( 5796 llvm::IntegerType::get(getVMContext(), Size)); 5797 } 5798 5799 unsigned Alignment = getContext().getTypeAlign(RetTy); 5800 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5801 5802 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5803 // For aggregates with 16-byte alignment, we use i128. 5804 if (Alignment < 128 && Size == 128) { 5805 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5806 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5807 } 5808 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5809 } 5810 5811 return getNaturalAlignIndirect(RetTy); 5812 } 5813 5814 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5815 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5816 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5817 // Check whether VT is a fixed-length SVE vector. These types are 5818 // represented as scalable vectors in function args/return and must be 5819 // coerced from fixed vectors. 5820 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5821 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5822 return true; 5823 5824 // Check whether VT is legal. 5825 unsigned NumElements = VT->getNumElements(); 5826 uint64_t Size = getContext().getTypeSize(VT); 5827 // NumElements should be power of 2. 5828 if (!llvm::isPowerOf2_32(NumElements)) 5829 return true; 5830 5831 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5832 // vectors for some reason. 5833 llvm::Triple Triple = getTarget().getTriple(); 5834 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5835 Triple.isOSBinFormatMachO()) 5836 return Size <= 32; 5837 5838 return Size != 64 && (Size != 128 || NumElements == 1); 5839 } 5840 return false; 5841 } 5842 5843 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5844 llvm::Type *eltTy, 5845 unsigned elts) const { 5846 if (!llvm::isPowerOf2_32(elts)) 5847 return false; 5848 if (totalSize.getQuantity() != 8 && 5849 (totalSize.getQuantity() != 16 || elts == 1)) 5850 return false; 5851 return true; 5852 } 5853 5854 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5855 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5856 // point type or a short-vector type. This is the same as the 32-bit ABI, 5857 // but with the difference that any floating-point type is allowed, 5858 // including __fp16. 5859 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5860 if (BT->isFloatingPoint()) 5861 return true; 5862 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5863 unsigned VecSize = getContext().getTypeSize(VT); 5864 if (VecSize == 64 || VecSize == 128) 5865 return true; 5866 } 5867 return false; 5868 } 5869 5870 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5871 uint64_t Members) const { 5872 return Members <= 4; 5873 } 5874 5875 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5876 CodeGenFunction &CGF) const { 5877 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5878 CGF.CurFnInfo->getCallingConvention()); 5879 bool IsIndirect = AI.isIndirect(); 5880 5881 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5882 if (IsIndirect) 5883 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5884 else if (AI.getCoerceToType()) 5885 BaseTy = AI.getCoerceToType(); 5886 5887 unsigned NumRegs = 1; 5888 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5889 BaseTy = ArrTy->getElementType(); 5890 NumRegs = ArrTy->getNumElements(); 5891 } 5892 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5893 5894 // The AArch64 va_list type and handling is specified in the Procedure Call 5895 // Standard, section B.4: 5896 // 5897 // struct { 5898 // void *__stack; 5899 // void *__gr_top; 5900 // void *__vr_top; 5901 // int __gr_offs; 5902 // int __vr_offs; 5903 // }; 5904 5905 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5906 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5907 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5908 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5909 5910 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5911 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5912 5913 Address reg_offs_p = Address::invalid(); 5914 llvm::Value *reg_offs = nullptr; 5915 int reg_top_index; 5916 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5917 if (!IsFPR) { 5918 // 3 is the field number of __gr_offs 5919 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5920 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5921 reg_top_index = 1; // field number for __gr_top 5922 RegSize = llvm::alignTo(RegSize, 8); 5923 } else { 5924 // 4 is the field number of __vr_offs. 5925 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5926 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5927 reg_top_index = 2; // field number for __vr_top 5928 RegSize = 16 * NumRegs; 5929 } 5930 5931 //======================================= 5932 // Find out where argument was passed 5933 //======================================= 5934 5935 // If reg_offs >= 0 we're already using the stack for this type of 5936 // argument. We don't want to keep updating reg_offs (in case it overflows, 5937 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5938 // whatever they get). 5939 llvm::Value *UsingStack = nullptr; 5940 UsingStack = CGF.Builder.CreateICmpSGE( 5941 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5942 5943 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5944 5945 // Otherwise, at least some kind of argument could go in these registers, the 5946 // question is whether this particular type is too big. 5947 CGF.EmitBlock(MaybeRegBlock); 5948 5949 // Integer arguments may need to correct register alignment (for example a 5950 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5951 // align __gr_offs to calculate the potential address. 5952 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5953 int Align = TyAlign.getQuantity(); 5954 5955 reg_offs = CGF.Builder.CreateAdd( 5956 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5957 "align_regoffs"); 5958 reg_offs = CGF.Builder.CreateAnd( 5959 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5960 "aligned_regoffs"); 5961 } 5962 5963 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5964 // The fact that this is done unconditionally reflects the fact that 5965 // allocating an argument to the stack also uses up all the remaining 5966 // registers of the appropriate kind. 5967 llvm::Value *NewOffset = nullptr; 5968 NewOffset = CGF.Builder.CreateAdd( 5969 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5970 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5971 5972 // Now we're in a position to decide whether this argument really was in 5973 // registers or not. 5974 llvm::Value *InRegs = nullptr; 5975 InRegs = CGF.Builder.CreateICmpSLE( 5976 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5977 5978 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5979 5980 //======================================= 5981 // Argument was in registers 5982 //======================================= 5983 5984 // Now we emit the code for if the argument was originally passed in 5985 // registers. First start the appropriate block: 5986 CGF.EmitBlock(InRegBlock); 5987 5988 llvm::Value *reg_top = nullptr; 5989 Address reg_top_p = 5990 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5991 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5992 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 5993 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5994 Address RegAddr = Address::invalid(); 5995 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5996 5997 if (IsIndirect) { 5998 // If it's been passed indirectly (actually a struct), whatever we find from 5999 // stored registers or on the stack will actually be a struct **. 6000 MemTy = llvm::PointerType::getUnqual(MemTy); 6001 } 6002 6003 const Type *Base = nullptr; 6004 uint64_t NumMembers = 0; 6005 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6006 if (IsHFA && NumMembers > 1) { 6007 // Homogeneous aggregates passed in registers will have their elements split 6008 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6009 // qN+1, ...). We reload and store into a temporary local variable 6010 // contiguously. 6011 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6012 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6013 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6014 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6015 Address Tmp = CGF.CreateTempAlloca(HFATy, 6016 std::max(TyAlign, BaseTyInfo.Align)); 6017 6018 // On big-endian platforms, the value will be right-aligned in its slot. 6019 int Offset = 0; 6020 if (CGF.CGM.getDataLayout().isBigEndian() && 6021 BaseTyInfo.Width.getQuantity() < 16) 6022 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6023 6024 for (unsigned i = 0; i < NumMembers; ++i) { 6025 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6026 Address LoadAddr = 6027 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6028 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6029 6030 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6031 6032 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6033 CGF.Builder.CreateStore(Elem, StoreAddr); 6034 } 6035 6036 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6037 } else { 6038 // Otherwise the object is contiguous in memory. 6039 6040 // It might be right-aligned in its slot. 6041 CharUnits SlotSize = BaseAddr.getAlignment(); 6042 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6043 (IsHFA || !isAggregateTypeForABI(Ty)) && 6044 TySize < SlotSize) { 6045 CharUnits Offset = SlotSize - TySize; 6046 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6047 } 6048 6049 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6050 } 6051 6052 CGF.EmitBranch(ContBlock); 6053 6054 //======================================= 6055 // Argument was on the stack 6056 //======================================= 6057 CGF.EmitBlock(OnStackBlock); 6058 6059 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6060 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6061 6062 // Again, stack arguments may need realignment. In this case both integer and 6063 // floating-point ones might be affected. 6064 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6065 int Align = TyAlign.getQuantity(); 6066 6067 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6068 6069 OnStackPtr = CGF.Builder.CreateAdd( 6070 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6071 "align_stack"); 6072 OnStackPtr = CGF.Builder.CreateAnd( 6073 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6074 "align_stack"); 6075 6076 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6077 } 6078 Address OnStackAddr(OnStackPtr, 6079 std::max(CharUnits::fromQuantity(8), TyAlign)); 6080 6081 // All stack slots are multiples of 8 bytes. 6082 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6083 CharUnits StackSize; 6084 if (IsIndirect) 6085 StackSize = StackSlotSize; 6086 else 6087 StackSize = TySize.alignTo(StackSlotSize); 6088 6089 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6090 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6091 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6092 6093 // Write the new value of __stack for the next call to va_arg 6094 CGF.Builder.CreateStore(NewStack, stack_p); 6095 6096 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6097 TySize < StackSlotSize) { 6098 CharUnits Offset = StackSlotSize - TySize; 6099 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6100 } 6101 6102 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6103 6104 CGF.EmitBranch(ContBlock); 6105 6106 //======================================= 6107 // Tidy up 6108 //======================================= 6109 CGF.EmitBlock(ContBlock); 6110 6111 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6112 OnStackAddr, OnStackBlock, "vaargs.addr"); 6113 6114 if (IsIndirect) 6115 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6116 TyAlign); 6117 6118 return ResAddr; 6119 } 6120 6121 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6122 CodeGenFunction &CGF) const { 6123 // The backend's lowering doesn't support va_arg for aggregates or 6124 // illegal vector types. Lower VAArg here for these cases and use 6125 // the LLVM va_arg instruction for everything else. 6126 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6127 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6128 6129 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6130 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6131 6132 // Empty records are ignored for parameter passing purposes. 6133 if (isEmptyRecord(getContext(), Ty, true)) { 6134 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6135 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6136 return Addr; 6137 } 6138 6139 // The size of the actual thing passed, which might end up just 6140 // being a pointer for indirect types. 6141 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6142 6143 // Arguments bigger than 16 bytes which aren't homogeneous 6144 // aggregates should be passed indirectly. 6145 bool IsIndirect = false; 6146 if (TyInfo.Width.getQuantity() > 16) { 6147 const Type *Base = nullptr; 6148 uint64_t Members = 0; 6149 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6150 } 6151 6152 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6153 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6154 } 6155 6156 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6157 QualType Ty) const { 6158 bool IsIndirect = false; 6159 6160 // Composites larger than 16 bytes are passed by reference. 6161 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6162 IsIndirect = true; 6163 6164 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6165 CGF.getContext().getTypeInfoInChars(Ty), 6166 CharUnits::fromQuantity(8), 6167 /*allowHigherAlign*/ false); 6168 } 6169 6170 //===----------------------------------------------------------------------===// 6171 // ARM ABI Implementation 6172 //===----------------------------------------------------------------------===// 6173 6174 namespace { 6175 6176 class ARMABIInfo : public SwiftABIInfo { 6177 public: 6178 enum ABIKind { 6179 APCS = 0, 6180 AAPCS = 1, 6181 AAPCS_VFP = 2, 6182 AAPCS16_VFP = 3, 6183 }; 6184 6185 private: 6186 ABIKind Kind; 6187 bool IsFloatABISoftFP; 6188 6189 public: 6190 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6191 : SwiftABIInfo(CGT), Kind(_Kind) { 6192 setCCs(); 6193 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6194 CGT.getCodeGenOpts().FloatABI == ""; // default 6195 } 6196 6197 bool isEABI() const { 6198 switch (getTarget().getTriple().getEnvironment()) { 6199 case llvm::Triple::Android: 6200 case llvm::Triple::EABI: 6201 case llvm::Triple::EABIHF: 6202 case llvm::Triple::GNUEABI: 6203 case llvm::Triple::GNUEABIHF: 6204 case llvm::Triple::MuslEABI: 6205 case llvm::Triple::MuslEABIHF: 6206 return true; 6207 default: 6208 return false; 6209 } 6210 } 6211 6212 bool isEABIHF() const { 6213 switch (getTarget().getTriple().getEnvironment()) { 6214 case llvm::Triple::EABIHF: 6215 case llvm::Triple::GNUEABIHF: 6216 case llvm::Triple::MuslEABIHF: 6217 return true; 6218 default: 6219 return false; 6220 } 6221 } 6222 6223 ABIKind getABIKind() const { return Kind; } 6224 6225 bool allowBFloatArgsAndRet() const override { 6226 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6227 } 6228 6229 private: 6230 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6231 unsigned functionCallConv) const; 6232 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6233 unsigned functionCallConv) const; 6234 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6235 uint64_t Members) const; 6236 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6237 bool isIllegalVectorType(QualType Ty) const; 6238 bool containsAnyFP16Vectors(QualType Ty) const; 6239 6240 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6241 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6242 uint64_t Members) const override; 6243 6244 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6245 6246 void computeInfo(CGFunctionInfo &FI) const override; 6247 6248 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6249 QualType Ty) const override; 6250 6251 llvm::CallingConv::ID getLLVMDefaultCC() const; 6252 llvm::CallingConv::ID getABIDefaultCC() const; 6253 void setCCs(); 6254 6255 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6256 bool asReturnValue) const override { 6257 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6258 } 6259 bool isSwiftErrorInRegister() const override { 6260 return true; 6261 } 6262 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6263 unsigned elts) const override; 6264 }; 6265 6266 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6267 public: 6268 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6269 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6270 6271 const ARMABIInfo &getABIInfo() const { 6272 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6273 } 6274 6275 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6276 return 13; 6277 } 6278 6279 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6280 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6281 } 6282 6283 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6284 llvm::Value *Address) const override { 6285 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6286 6287 // 0-15 are the 16 integer registers. 6288 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6289 return false; 6290 } 6291 6292 unsigned getSizeOfUnwindException() const override { 6293 if (getABIInfo().isEABI()) return 88; 6294 return TargetCodeGenInfo::getSizeOfUnwindException(); 6295 } 6296 6297 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6298 CodeGen::CodeGenModule &CGM) const override { 6299 if (GV->isDeclaration()) 6300 return; 6301 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6302 if (!FD) 6303 return; 6304 6305 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6306 if (!Attr) 6307 return; 6308 6309 const char *Kind; 6310 switch (Attr->getInterrupt()) { 6311 case ARMInterruptAttr::Generic: Kind = ""; break; 6312 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6313 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6314 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6315 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6316 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6317 } 6318 6319 llvm::Function *Fn = cast<llvm::Function>(GV); 6320 6321 Fn->addFnAttr("interrupt", Kind); 6322 6323 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6324 if (ABI == ARMABIInfo::APCS) 6325 return; 6326 6327 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6328 // however this is not necessarily true on taking any interrupt. Instruct 6329 // the backend to perform a realignment as part of the function prologue. 6330 llvm::AttrBuilder B; 6331 B.addStackAlignmentAttr(8); 6332 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6333 } 6334 }; 6335 6336 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6337 public: 6338 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6339 : ARMTargetCodeGenInfo(CGT, K) {} 6340 6341 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6342 CodeGen::CodeGenModule &CGM) const override; 6343 6344 void getDependentLibraryOption(llvm::StringRef Lib, 6345 llvm::SmallString<24> &Opt) const override { 6346 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6347 } 6348 6349 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6350 llvm::SmallString<32> &Opt) const override { 6351 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6352 } 6353 }; 6354 6355 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6356 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6357 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6358 if (GV->isDeclaration()) 6359 return; 6360 addStackProbeTargetAttributes(D, GV, CGM); 6361 } 6362 } 6363 6364 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6365 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6366 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6367 FI.getCallingConvention()); 6368 6369 for (auto &I : FI.arguments()) 6370 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6371 FI.getCallingConvention()); 6372 6373 6374 // Always honor user-specified calling convention. 6375 if (FI.getCallingConvention() != llvm::CallingConv::C) 6376 return; 6377 6378 llvm::CallingConv::ID cc = getRuntimeCC(); 6379 if (cc != llvm::CallingConv::C) 6380 FI.setEffectiveCallingConvention(cc); 6381 } 6382 6383 /// Return the default calling convention that LLVM will use. 6384 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6385 // The default calling convention that LLVM will infer. 6386 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6387 return llvm::CallingConv::ARM_AAPCS_VFP; 6388 else if (isEABI()) 6389 return llvm::CallingConv::ARM_AAPCS; 6390 else 6391 return llvm::CallingConv::ARM_APCS; 6392 } 6393 6394 /// Return the calling convention that our ABI would like us to use 6395 /// as the C calling convention. 6396 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6397 switch (getABIKind()) { 6398 case APCS: return llvm::CallingConv::ARM_APCS; 6399 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6400 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6401 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6402 } 6403 llvm_unreachable("bad ABI kind"); 6404 } 6405 6406 void ARMABIInfo::setCCs() { 6407 assert(getRuntimeCC() == llvm::CallingConv::C); 6408 6409 // Don't muddy up the IR with a ton of explicit annotations if 6410 // they'd just match what LLVM will infer from the triple. 6411 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6412 if (abiCC != getLLVMDefaultCC()) 6413 RuntimeCC = abiCC; 6414 } 6415 6416 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6417 uint64_t Size = getContext().getTypeSize(Ty); 6418 if (Size <= 32) { 6419 llvm::Type *ResType = 6420 llvm::Type::getInt32Ty(getVMContext()); 6421 return ABIArgInfo::getDirect(ResType); 6422 } 6423 if (Size == 64 || Size == 128) { 6424 auto *ResType = llvm::FixedVectorType::get( 6425 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6426 return ABIArgInfo::getDirect(ResType); 6427 } 6428 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6429 } 6430 6431 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6432 const Type *Base, 6433 uint64_t Members) const { 6434 assert(Base && "Base class should be set for homogeneous aggregate"); 6435 // Base can be a floating-point or a vector. 6436 if (const VectorType *VT = Base->getAs<VectorType>()) { 6437 // FP16 vectors should be converted to integer vectors 6438 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6439 uint64_t Size = getContext().getTypeSize(VT); 6440 auto *NewVecTy = llvm::FixedVectorType::get( 6441 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6442 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6443 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6444 } 6445 } 6446 unsigned Align = 0; 6447 if (getABIKind() == ARMABIInfo::AAPCS || 6448 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6449 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6450 // default otherwise. 6451 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6452 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6453 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6454 } 6455 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6456 } 6457 6458 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6459 unsigned functionCallConv) const { 6460 // 6.1.2.1 The following argument types are VFP CPRCs: 6461 // A single-precision floating-point type (including promoted 6462 // half-precision types); A double-precision floating-point type; 6463 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6464 // with a Base Type of a single- or double-precision floating-point type, 6465 // 64-bit containerized vectors or 128-bit containerized vectors with one 6466 // to four Elements. 6467 // Variadic functions should always marshal to the base standard. 6468 bool IsAAPCS_VFP = 6469 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6470 6471 Ty = useFirstFieldIfTransparentUnion(Ty); 6472 6473 // Handle illegal vector types here. 6474 if (isIllegalVectorType(Ty)) 6475 return coerceIllegalVector(Ty); 6476 6477 if (!isAggregateTypeForABI(Ty)) { 6478 // Treat an enum type as its underlying type. 6479 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6480 Ty = EnumTy->getDecl()->getIntegerType(); 6481 } 6482 6483 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6484 if (EIT->getNumBits() > 64) 6485 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6486 6487 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6488 : ABIArgInfo::getDirect()); 6489 } 6490 6491 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6492 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6493 } 6494 6495 // Ignore empty records. 6496 if (isEmptyRecord(getContext(), Ty, true)) 6497 return ABIArgInfo::getIgnore(); 6498 6499 if (IsAAPCS_VFP) { 6500 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6501 // into VFP registers. 6502 const Type *Base = nullptr; 6503 uint64_t Members = 0; 6504 if (isHomogeneousAggregate(Ty, Base, Members)) 6505 return classifyHomogeneousAggregate(Ty, Base, Members); 6506 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6507 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6508 // this convention even for a variadic function: the backend will use GPRs 6509 // if needed. 6510 const Type *Base = nullptr; 6511 uint64_t Members = 0; 6512 if (isHomogeneousAggregate(Ty, Base, Members)) { 6513 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6514 llvm::Type *Ty = 6515 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6516 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6517 } 6518 } 6519 6520 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6521 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6522 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6523 // bigger than 128-bits, they get placed in space allocated by the caller, 6524 // and a pointer is passed. 6525 return ABIArgInfo::getIndirect( 6526 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6527 } 6528 6529 // Support byval for ARM. 6530 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6531 // most 8-byte. We realign the indirect argument if type alignment is bigger 6532 // than ABI alignment. 6533 uint64_t ABIAlign = 4; 6534 uint64_t TyAlign; 6535 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6536 getABIKind() == ARMABIInfo::AAPCS) { 6537 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6538 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6539 } else { 6540 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6541 } 6542 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6543 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6544 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6545 /*ByVal=*/true, 6546 /*Realign=*/TyAlign > ABIAlign); 6547 } 6548 6549 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6550 // same size and alignment. 6551 if (getTarget().isRenderScriptTarget()) { 6552 return coerceToIntArray(Ty, getContext(), getVMContext()); 6553 } 6554 6555 // Otherwise, pass by coercing to a structure of the appropriate size. 6556 llvm::Type* ElemTy; 6557 unsigned SizeRegs; 6558 // FIXME: Try to match the types of the arguments more accurately where 6559 // we can. 6560 if (TyAlign <= 4) { 6561 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6562 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6563 } else { 6564 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6565 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6566 } 6567 6568 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6569 } 6570 6571 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6572 llvm::LLVMContext &VMContext) { 6573 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6574 // is called integer-like if its size is less than or equal to one word, and 6575 // the offset of each of its addressable sub-fields is zero. 6576 6577 uint64_t Size = Context.getTypeSize(Ty); 6578 6579 // Check that the type fits in a word. 6580 if (Size > 32) 6581 return false; 6582 6583 // FIXME: Handle vector types! 6584 if (Ty->isVectorType()) 6585 return false; 6586 6587 // Float types are never treated as "integer like". 6588 if (Ty->isRealFloatingType()) 6589 return false; 6590 6591 // If this is a builtin or pointer type then it is ok. 6592 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6593 return true; 6594 6595 // Small complex integer types are "integer like". 6596 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6597 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6598 6599 // Single element and zero sized arrays should be allowed, by the definition 6600 // above, but they are not. 6601 6602 // Otherwise, it must be a record type. 6603 const RecordType *RT = Ty->getAs<RecordType>(); 6604 if (!RT) return false; 6605 6606 // Ignore records with flexible arrays. 6607 const RecordDecl *RD = RT->getDecl(); 6608 if (RD->hasFlexibleArrayMember()) 6609 return false; 6610 6611 // Check that all sub-fields are at offset 0, and are themselves "integer 6612 // like". 6613 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6614 6615 bool HadField = false; 6616 unsigned idx = 0; 6617 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6618 i != e; ++i, ++idx) { 6619 const FieldDecl *FD = *i; 6620 6621 // Bit-fields are not addressable, we only need to verify they are "integer 6622 // like". We still have to disallow a subsequent non-bitfield, for example: 6623 // struct { int : 0; int x } 6624 // is non-integer like according to gcc. 6625 if (FD->isBitField()) { 6626 if (!RD->isUnion()) 6627 HadField = true; 6628 6629 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6630 return false; 6631 6632 continue; 6633 } 6634 6635 // Check if this field is at offset 0. 6636 if (Layout.getFieldOffset(idx) != 0) 6637 return false; 6638 6639 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6640 return false; 6641 6642 // Only allow at most one field in a structure. This doesn't match the 6643 // wording above, but follows gcc in situations with a field following an 6644 // empty structure. 6645 if (!RD->isUnion()) { 6646 if (HadField) 6647 return false; 6648 6649 HadField = true; 6650 } 6651 } 6652 6653 return true; 6654 } 6655 6656 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6657 unsigned functionCallConv) const { 6658 6659 // Variadic functions should always marshal to the base standard. 6660 bool IsAAPCS_VFP = 6661 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6662 6663 if (RetTy->isVoidType()) 6664 return ABIArgInfo::getIgnore(); 6665 6666 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6667 // Large vector types should be returned via memory. 6668 if (getContext().getTypeSize(RetTy) > 128) 6669 return getNaturalAlignIndirect(RetTy); 6670 // TODO: FP16/BF16 vectors should be converted to integer vectors 6671 // This check is similar to isIllegalVectorType - refactor? 6672 if ((!getTarget().hasLegalHalfType() && 6673 (VT->getElementType()->isFloat16Type() || 6674 VT->getElementType()->isHalfType())) || 6675 (IsFloatABISoftFP && 6676 VT->getElementType()->isBFloat16Type())) 6677 return coerceIllegalVector(RetTy); 6678 } 6679 6680 if (!isAggregateTypeForABI(RetTy)) { 6681 // Treat an enum type as its underlying type. 6682 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6683 RetTy = EnumTy->getDecl()->getIntegerType(); 6684 6685 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6686 if (EIT->getNumBits() > 64) 6687 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6688 6689 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6690 : ABIArgInfo::getDirect(); 6691 } 6692 6693 // Are we following APCS? 6694 if (getABIKind() == APCS) { 6695 if (isEmptyRecord(getContext(), RetTy, false)) 6696 return ABIArgInfo::getIgnore(); 6697 6698 // Complex types are all returned as packed integers. 6699 // 6700 // FIXME: Consider using 2 x vector types if the back end handles them 6701 // correctly. 6702 if (RetTy->isAnyComplexType()) 6703 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6704 getVMContext(), getContext().getTypeSize(RetTy))); 6705 6706 // Integer like structures are returned in r0. 6707 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6708 // Return in the smallest viable integer type. 6709 uint64_t Size = getContext().getTypeSize(RetTy); 6710 if (Size <= 8) 6711 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6712 if (Size <= 16) 6713 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6714 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6715 } 6716 6717 // Otherwise return in memory. 6718 return getNaturalAlignIndirect(RetTy); 6719 } 6720 6721 // Otherwise this is an AAPCS variant. 6722 6723 if (isEmptyRecord(getContext(), RetTy, true)) 6724 return ABIArgInfo::getIgnore(); 6725 6726 // Check for homogeneous aggregates with AAPCS-VFP. 6727 if (IsAAPCS_VFP) { 6728 const Type *Base = nullptr; 6729 uint64_t Members = 0; 6730 if (isHomogeneousAggregate(RetTy, Base, Members)) 6731 return classifyHomogeneousAggregate(RetTy, Base, Members); 6732 } 6733 6734 // Aggregates <= 4 bytes are returned in r0; other aggregates 6735 // are returned indirectly. 6736 uint64_t Size = getContext().getTypeSize(RetTy); 6737 if (Size <= 32) { 6738 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6739 // same size and alignment. 6740 if (getTarget().isRenderScriptTarget()) { 6741 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6742 } 6743 if (getDataLayout().isBigEndian()) 6744 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6745 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6746 6747 // Return in the smallest viable integer type. 6748 if (Size <= 8) 6749 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6750 if (Size <= 16) 6751 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6752 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6753 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6754 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6755 llvm::Type *CoerceTy = 6756 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6757 return ABIArgInfo::getDirect(CoerceTy); 6758 } 6759 6760 return getNaturalAlignIndirect(RetTy); 6761 } 6762 6763 /// isIllegalVector - check whether Ty is an illegal vector type. 6764 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6765 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6766 // On targets that don't support half, fp16 or bfloat, they are expanded 6767 // into float, and we don't want the ABI to depend on whether or not they 6768 // are supported in hardware. Thus return false to coerce vectors of these 6769 // types into integer vectors. 6770 // We do not depend on hasLegalHalfType for bfloat as it is a 6771 // separate IR type. 6772 if ((!getTarget().hasLegalHalfType() && 6773 (VT->getElementType()->isFloat16Type() || 6774 VT->getElementType()->isHalfType())) || 6775 (IsFloatABISoftFP && 6776 VT->getElementType()->isBFloat16Type())) 6777 return true; 6778 if (isAndroid()) { 6779 // Android shipped using Clang 3.1, which supported a slightly different 6780 // vector ABI. The primary differences were that 3-element vector types 6781 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6782 // accepts that legacy behavior for Android only. 6783 // Check whether VT is legal. 6784 unsigned NumElements = VT->getNumElements(); 6785 // NumElements should be power of 2 or equal to 3. 6786 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6787 return true; 6788 } else { 6789 // Check whether VT is legal. 6790 unsigned NumElements = VT->getNumElements(); 6791 uint64_t Size = getContext().getTypeSize(VT); 6792 // NumElements should be power of 2. 6793 if (!llvm::isPowerOf2_32(NumElements)) 6794 return true; 6795 // Size should be greater than 32 bits. 6796 return Size <= 32; 6797 } 6798 } 6799 return false; 6800 } 6801 6802 /// Return true if a type contains any 16-bit floating point vectors 6803 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6804 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6805 uint64_t NElements = AT->getSize().getZExtValue(); 6806 if (NElements == 0) 6807 return false; 6808 return containsAnyFP16Vectors(AT->getElementType()); 6809 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6810 const RecordDecl *RD = RT->getDecl(); 6811 6812 // If this is a C++ record, check the bases first. 6813 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6814 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6815 return containsAnyFP16Vectors(B.getType()); 6816 })) 6817 return true; 6818 6819 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6820 return FD && containsAnyFP16Vectors(FD->getType()); 6821 })) 6822 return true; 6823 6824 return false; 6825 } else { 6826 if (const VectorType *VT = Ty->getAs<VectorType>()) 6827 return (VT->getElementType()->isFloat16Type() || 6828 VT->getElementType()->isBFloat16Type() || 6829 VT->getElementType()->isHalfType()); 6830 return false; 6831 } 6832 } 6833 6834 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6835 llvm::Type *eltTy, 6836 unsigned numElts) const { 6837 if (!llvm::isPowerOf2_32(numElts)) 6838 return false; 6839 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6840 if (size > 64) 6841 return false; 6842 if (vectorSize.getQuantity() != 8 && 6843 (vectorSize.getQuantity() != 16 || numElts == 1)) 6844 return false; 6845 return true; 6846 } 6847 6848 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6849 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6850 // double, or 64-bit or 128-bit vectors. 6851 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6852 if (BT->getKind() == BuiltinType::Float || 6853 BT->getKind() == BuiltinType::Double || 6854 BT->getKind() == BuiltinType::LongDouble) 6855 return true; 6856 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6857 unsigned VecSize = getContext().getTypeSize(VT); 6858 if (VecSize == 64 || VecSize == 128) 6859 return true; 6860 } 6861 return false; 6862 } 6863 6864 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6865 uint64_t Members) const { 6866 return Members <= 4; 6867 } 6868 6869 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6870 bool acceptHalf) const { 6871 // Give precedence to user-specified calling conventions. 6872 if (callConvention != llvm::CallingConv::C) 6873 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6874 else 6875 return (getABIKind() == AAPCS_VFP) || 6876 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6877 } 6878 6879 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6880 QualType Ty) const { 6881 CharUnits SlotSize = CharUnits::fromQuantity(4); 6882 6883 // Empty records are ignored for parameter passing purposes. 6884 if (isEmptyRecord(getContext(), Ty, true)) { 6885 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6886 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6887 return Addr; 6888 } 6889 6890 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6891 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6892 6893 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6894 bool IsIndirect = false; 6895 const Type *Base = nullptr; 6896 uint64_t Members = 0; 6897 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6898 IsIndirect = true; 6899 6900 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6901 // allocated by the caller. 6902 } else if (TySize > CharUnits::fromQuantity(16) && 6903 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6904 !isHomogeneousAggregate(Ty, Base, Members)) { 6905 IsIndirect = true; 6906 6907 // Otherwise, bound the type's ABI alignment. 6908 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6909 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6910 // Our callers should be prepared to handle an under-aligned address. 6911 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6912 getABIKind() == ARMABIInfo::AAPCS) { 6913 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6914 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6915 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6916 // ARMv7k allows type alignment up to 16 bytes. 6917 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6918 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6919 } else { 6920 TyAlignForABI = CharUnits::fromQuantity(4); 6921 } 6922 6923 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6924 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6925 SlotSize, /*AllowHigherAlign*/ true); 6926 } 6927 6928 //===----------------------------------------------------------------------===// 6929 // NVPTX ABI Implementation 6930 //===----------------------------------------------------------------------===// 6931 6932 namespace { 6933 6934 class NVPTXTargetCodeGenInfo; 6935 6936 class NVPTXABIInfo : public ABIInfo { 6937 NVPTXTargetCodeGenInfo &CGInfo; 6938 6939 public: 6940 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6941 : ABIInfo(CGT), CGInfo(Info) {} 6942 6943 ABIArgInfo classifyReturnType(QualType RetTy) const; 6944 ABIArgInfo classifyArgumentType(QualType Ty) const; 6945 6946 void computeInfo(CGFunctionInfo &FI) const override; 6947 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6948 QualType Ty) const override; 6949 bool isUnsupportedType(QualType T) const; 6950 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6951 }; 6952 6953 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6954 public: 6955 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6956 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6957 6958 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6959 CodeGen::CodeGenModule &M) const override; 6960 bool shouldEmitStaticExternCAliases() const override; 6961 6962 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6963 // On the device side, surface reference is represented as an object handle 6964 // in 64-bit integer. 6965 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6966 } 6967 6968 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6969 // On the device side, texture reference is represented as an object handle 6970 // in 64-bit integer. 6971 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6972 } 6973 6974 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6975 LValue Src) const override { 6976 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6977 return true; 6978 } 6979 6980 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6981 LValue Src) const override { 6982 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6983 return true; 6984 } 6985 6986 private: 6987 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6988 // resulting MDNode to the nvvm.annotations MDNode. 6989 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6990 int Operand); 6991 6992 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6993 LValue Src) { 6994 llvm::Value *Handle = nullptr; 6995 llvm::Constant *C = 6996 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6997 // Lookup `addrspacecast` through the constant pointer if any. 6998 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6999 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7000 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7001 // Load the handle from the specific global variable using 7002 // `nvvm.texsurf.handle.internal` intrinsic. 7003 Handle = CGF.EmitRuntimeCall( 7004 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7005 {GV->getType()}), 7006 {GV}, "texsurf_handle"); 7007 } else 7008 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7009 CGF.EmitStoreOfScalar(Handle, Dst); 7010 } 7011 }; 7012 7013 /// Checks if the type is unsupported directly by the current target. 7014 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7015 ASTContext &Context = getContext(); 7016 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7017 return true; 7018 if (!Context.getTargetInfo().hasFloat128Type() && 7019 (T->isFloat128Type() || 7020 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7021 return true; 7022 if (const auto *EIT = T->getAs<ExtIntType>()) 7023 return EIT->getNumBits() > 7024 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7025 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7026 Context.getTypeSize(T) > 64U) 7027 return true; 7028 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7029 return isUnsupportedType(AT->getElementType()); 7030 const auto *RT = T->getAs<RecordType>(); 7031 if (!RT) 7032 return false; 7033 const RecordDecl *RD = RT->getDecl(); 7034 7035 // If this is a C++ record, check the bases first. 7036 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7037 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7038 if (isUnsupportedType(I.getType())) 7039 return true; 7040 7041 for (const FieldDecl *I : RD->fields()) 7042 if (isUnsupportedType(I->getType())) 7043 return true; 7044 return false; 7045 } 7046 7047 /// Coerce the given type into an array with maximum allowed size of elements. 7048 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7049 unsigned MaxSize) const { 7050 // Alignment and Size are measured in bits. 7051 const uint64_t Size = getContext().getTypeSize(Ty); 7052 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7053 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7054 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7055 const uint64_t NumElements = (Size + Div - 1) / Div; 7056 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7057 } 7058 7059 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7060 if (RetTy->isVoidType()) 7061 return ABIArgInfo::getIgnore(); 7062 7063 if (getContext().getLangOpts().OpenMP && 7064 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7065 return coerceToIntArrayWithLimit(RetTy, 64); 7066 7067 // note: this is different from default ABI 7068 if (!RetTy->isScalarType()) 7069 return ABIArgInfo::getDirect(); 7070 7071 // Treat an enum type as its underlying type. 7072 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7073 RetTy = EnumTy->getDecl()->getIntegerType(); 7074 7075 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7076 : ABIArgInfo::getDirect()); 7077 } 7078 7079 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7080 // Treat an enum type as its underlying type. 7081 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7082 Ty = EnumTy->getDecl()->getIntegerType(); 7083 7084 // Return aggregates type as indirect by value 7085 if (isAggregateTypeForABI(Ty)) { 7086 // Under CUDA device compilation, tex/surf builtin types are replaced with 7087 // object types and passed directly. 7088 if (getContext().getLangOpts().CUDAIsDevice) { 7089 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7090 return ABIArgInfo::getDirect( 7091 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7092 if (Ty->isCUDADeviceBuiltinTextureType()) 7093 return ABIArgInfo::getDirect( 7094 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7095 } 7096 return getNaturalAlignIndirect(Ty, /* byval */ true); 7097 } 7098 7099 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7100 if ((EIT->getNumBits() > 128) || 7101 (!getContext().getTargetInfo().hasInt128Type() && 7102 EIT->getNumBits() > 64)) 7103 return getNaturalAlignIndirect(Ty, /* byval */ true); 7104 } 7105 7106 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7107 : ABIArgInfo::getDirect()); 7108 } 7109 7110 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7111 if (!getCXXABI().classifyReturnType(FI)) 7112 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7113 for (auto &I : FI.arguments()) 7114 I.info = classifyArgumentType(I.type); 7115 7116 // Always honor user-specified calling convention. 7117 if (FI.getCallingConvention() != llvm::CallingConv::C) 7118 return; 7119 7120 FI.setEffectiveCallingConvention(getRuntimeCC()); 7121 } 7122 7123 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7124 QualType Ty) const { 7125 llvm_unreachable("NVPTX does not support varargs"); 7126 } 7127 7128 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7129 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7130 if (GV->isDeclaration()) 7131 return; 7132 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7133 if (VD) { 7134 if (M.getLangOpts().CUDA) { 7135 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7136 addNVVMMetadata(GV, "surface", 1); 7137 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7138 addNVVMMetadata(GV, "texture", 1); 7139 return; 7140 } 7141 } 7142 7143 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7144 if (!FD) return; 7145 7146 llvm::Function *F = cast<llvm::Function>(GV); 7147 7148 // Perform special handling in OpenCL mode 7149 if (M.getLangOpts().OpenCL) { 7150 // Use OpenCL function attributes to check for kernel functions 7151 // By default, all functions are device functions 7152 if (FD->hasAttr<OpenCLKernelAttr>()) { 7153 // OpenCL __kernel functions get kernel metadata 7154 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7155 addNVVMMetadata(F, "kernel", 1); 7156 // And kernel functions are not subject to inlining 7157 F->addFnAttr(llvm::Attribute::NoInline); 7158 } 7159 } 7160 7161 // Perform special handling in CUDA mode. 7162 if (M.getLangOpts().CUDA) { 7163 // CUDA __global__ functions get a kernel metadata entry. Since 7164 // __global__ functions cannot be called from the device, we do not 7165 // need to set the noinline attribute. 7166 if (FD->hasAttr<CUDAGlobalAttr>()) { 7167 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7168 addNVVMMetadata(F, "kernel", 1); 7169 } 7170 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7171 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7172 llvm::APSInt MaxThreads(32); 7173 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7174 if (MaxThreads > 0) 7175 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7176 7177 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7178 // not specified in __launch_bounds__ or if the user specified a 0 value, 7179 // we don't have to add a PTX directive. 7180 if (Attr->getMinBlocks()) { 7181 llvm::APSInt MinBlocks(32); 7182 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7183 if (MinBlocks > 0) 7184 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7185 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7186 } 7187 } 7188 } 7189 } 7190 7191 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7192 StringRef Name, int Operand) { 7193 llvm::Module *M = GV->getParent(); 7194 llvm::LLVMContext &Ctx = M->getContext(); 7195 7196 // Get "nvvm.annotations" metadata node 7197 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7198 7199 llvm::Metadata *MDVals[] = { 7200 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7201 llvm::ConstantAsMetadata::get( 7202 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7203 // Append metadata to nvvm.annotations 7204 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7205 } 7206 7207 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7208 return false; 7209 } 7210 } 7211 7212 //===----------------------------------------------------------------------===// 7213 // SystemZ ABI Implementation 7214 //===----------------------------------------------------------------------===// 7215 7216 namespace { 7217 7218 class SystemZABIInfo : public SwiftABIInfo { 7219 bool HasVector; 7220 bool IsSoftFloatABI; 7221 7222 public: 7223 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7224 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7225 7226 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7227 bool isCompoundType(QualType Ty) const; 7228 bool isVectorArgumentType(QualType Ty) const; 7229 bool isFPArgumentType(QualType Ty) const; 7230 QualType GetSingleElementType(QualType Ty) const; 7231 7232 ABIArgInfo classifyReturnType(QualType RetTy) const; 7233 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7234 7235 void computeInfo(CGFunctionInfo &FI) const override { 7236 if (!getCXXABI().classifyReturnType(FI)) 7237 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7238 for (auto &I : FI.arguments()) 7239 I.info = classifyArgumentType(I.type); 7240 } 7241 7242 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7243 QualType Ty) const override; 7244 7245 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7246 bool asReturnValue) const override { 7247 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7248 } 7249 bool isSwiftErrorInRegister() const override { 7250 return false; 7251 } 7252 }; 7253 7254 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7255 public: 7256 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7257 : TargetCodeGenInfo( 7258 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7259 7260 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7261 CGBuilderTy &Builder, 7262 CodeGenModule &CGM) const override { 7263 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7264 // Only use TDC in constrained FP mode. 7265 if (!Builder.getIsFPConstrained()) 7266 return nullptr; 7267 7268 llvm::Type *Ty = V->getType(); 7269 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7270 llvm::Module &M = CGM.getModule(); 7271 auto &Ctx = M.getContext(); 7272 llvm::Function *TDCFunc = 7273 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7274 unsigned TDCBits = 0; 7275 switch (BuiltinID) { 7276 case Builtin::BI__builtin_isnan: 7277 TDCBits = 0xf; 7278 break; 7279 case Builtin::BIfinite: 7280 case Builtin::BI__finite: 7281 case Builtin::BIfinitef: 7282 case Builtin::BI__finitef: 7283 case Builtin::BIfinitel: 7284 case Builtin::BI__finitel: 7285 case Builtin::BI__builtin_isfinite: 7286 TDCBits = 0xfc0; 7287 break; 7288 case Builtin::BI__builtin_isinf: 7289 TDCBits = 0x30; 7290 break; 7291 default: 7292 break; 7293 } 7294 if (TDCBits) 7295 return Builder.CreateCall( 7296 TDCFunc, 7297 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7298 } 7299 return nullptr; 7300 } 7301 }; 7302 } 7303 7304 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7305 // Treat an enum type as its underlying type. 7306 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7307 Ty = EnumTy->getDecl()->getIntegerType(); 7308 7309 // Promotable integer types are required to be promoted by the ABI. 7310 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7311 return true; 7312 7313 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7314 if (EIT->getNumBits() < 64) 7315 return true; 7316 7317 // 32-bit values must also be promoted. 7318 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7319 switch (BT->getKind()) { 7320 case BuiltinType::Int: 7321 case BuiltinType::UInt: 7322 return true; 7323 default: 7324 return false; 7325 } 7326 return false; 7327 } 7328 7329 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7330 return (Ty->isAnyComplexType() || 7331 Ty->isVectorType() || 7332 isAggregateTypeForABI(Ty)); 7333 } 7334 7335 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7336 return (HasVector && 7337 Ty->isVectorType() && 7338 getContext().getTypeSize(Ty) <= 128); 7339 } 7340 7341 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7342 if (IsSoftFloatABI) 7343 return false; 7344 7345 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7346 switch (BT->getKind()) { 7347 case BuiltinType::Float: 7348 case BuiltinType::Double: 7349 return true; 7350 default: 7351 return false; 7352 } 7353 7354 return false; 7355 } 7356 7357 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7358 const RecordType *RT = Ty->getAs<RecordType>(); 7359 7360 if (RT && RT->isStructureOrClassType()) { 7361 const RecordDecl *RD = RT->getDecl(); 7362 QualType Found; 7363 7364 // If this is a C++ record, check the bases first. 7365 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7366 for (const auto &I : CXXRD->bases()) { 7367 QualType Base = I.getType(); 7368 7369 // Empty bases don't affect things either way. 7370 if (isEmptyRecord(getContext(), Base, true)) 7371 continue; 7372 7373 if (!Found.isNull()) 7374 return Ty; 7375 Found = GetSingleElementType(Base); 7376 } 7377 7378 // Check the fields. 7379 for (const auto *FD : RD->fields()) { 7380 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7381 // Unlike isSingleElementStruct(), empty structure and array fields 7382 // do count. So do anonymous bitfields that aren't zero-sized. 7383 if (getContext().getLangOpts().CPlusPlus && 7384 FD->isZeroLengthBitField(getContext())) 7385 continue; 7386 // Like isSingleElementStruct(), ignore C++20 empty data members. 7387 if (FD->hasAttr<NoUniqueAddressAttr>() && 7388 isEmptyRecord(getContext(), FD->getType(), true)) 7389 continue; 7390 7391 // Unlike isSingleElementStruct(), arrays do not count. 7392 // Nested structures still do though. 7393 if (!Found.isNull()) 7394 return Ty; 7395 Found = GetSingleElementType(FD->getType()); 7396 } 7397 7398 // Unlike isSingleElementStruct(), trailing padding is allowed. 7399 // An 8-byte aligned struct s { float f; } is passed as a double. 7400 if (!Found.isNull()) 7401 return Found; 7402 } 7403 7404 return Ty; 7405 } 7406 7407 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7408 QualType Ty) const { 7409 // Assume that va_list type is correct; should be pointer to LLVM type: 7410 // struct { 7411 // i64 __gpr; 7412 // i64 __fpr; 7413 // i8 *__overflow_arg_area; 7414 // i8 *__reg_save_area; 7415 // }; 7416 7417 // Every non-vector argument occupies 8 bytes and is passed by preference 7418 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7419 // always passed on the stack. 7420 Ty = getContext().getCanonicalType(Ty); 7421 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7422 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7423 llvm::Type *DirectTy = ArgTy; 7424 ABIArgInfo AI = classifyArgumentType(Ty); 7425 bool IsIndirect = AI.isIndirect(); 7426 bool InFPRs = false; 7427 bool IsVector = false; 7428 CharUnits UnpaddedSize; 7429 CharUnits DirectAlign; 7430 if (IsIndirect) { 7431 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7432 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7433 } else { 7434 if (AI.getCoerceToType()) 7435 ArgTy = AI.getCoerceToType(); 7436 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7437 IsVector = ArgTy->isVectorTy(); 7438 UnpaddedSize = TyInfo.Width; 7439 DirectAlign = TyInfo.Align; 7440 } 7441 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7442 if (IsVector && UnpaddedSize > PaddedSize) 7443 PaddedSize = CharUnits::fromQuantity(16); 7444 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7445 7446 CharUnits Padding = (PaddedSize - UnpaddedSize); 7447 7448 llvm::Type *IndexTy = CGF.Int64Ty; 7449 llvm::Value *PaddedSizeV = 7450 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7451 7452 if (IsVector) { 7453 // Work out the address of a vector argument on the stack. 7454 // Vector arguments are always passed in the high bits of a 7455 // single (8 byte) or double (16 byte) stack slot. 7456 Address OverflowArgAreaPtr = 7457 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7458 Address OverflowArgArea = 7459 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7460 TyInfo.Align); 7461 Address MemAddr = 7462 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7463 7464 // Update overflow_arg_area_ptr pointer 7465 llvm::Value *NewOverflowArgArea = 7466 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7467 OverflowArgArea.getPointer(), PaddedSizeV, 7468 "overflow_arg_area"); 7469 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7470 7471 return MemAddr; 7472 } 7473 7474 assert(PaddedSize.getQuantity() == 8); 7475 7476 unsigned MaxRegs, RegCountField, RegSaveIndex; 7477 CharUnits RegPadding; 7478 if (InFPRs) { 7479 MaxRegs = 4; // Maximum of 4 FPR arguments 7480 RegCountField = 1; // __fpr 7481 RegSaveIndex = 16; // save offset for f0 7482 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7483 } else { 7484 MaxRegs = 5; // Maximum of 5 GPR arguments 7485 RegCountField = 0; // __gpr 7486 RegSaveIndex = 2; // save offset for r2 7487 RegPadding = Padding; // values are passed in the low bits of a GPR 7488 } 7489 7490 Address RegCountPtr = 7491 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7492 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7493 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7494 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7495 "fits_in_regs"); 7496 7497 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7498 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7499 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7500 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7501 7502 // Emit code to load the value if it was passed in registers. 7503 CGF.EmitBlock(InRegBlock); 7504 7505 // Work out the address of an argument register. 7506 llvm::Value *ScaledRegCount = 7507 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7508 llvm::Value *RegBase = 7509 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7510 + RegPadding.getQuantity()); 7511 llvm::Value *RegOffset = 7512 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7513 Address RegSaveAreaPtr = 7514 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7515 llvm::Value *RegSaveArea = 7516 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7517 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7518 "raw_reg_addr"), 7519 PaddedSize); 7520 Address RegAddr = 7521 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7522 7523 // Update the register count 7524 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7525 llvm::Value *NewRegCount = 7526 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7527 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7528 CGF.EmitBranch(ContBlock); 7529 7530 // Emit code to load the value if it was passed in memory. 7531 CGF.EmitBlock(InMemBlock); 7532 7533 // Work out the address of a stack argument. 7534 Address OverflowArgAreaPtr = 7535 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7536 Address OverflowArgArea = 7537 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7538 PaddedSize); 7539 Address RawMemAddr = 7540 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7541 Address MemAddr = 7542 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7543 7544 // Update overflow_arg_area_ptr pointer 7545 llvm::Value *NewOverflowArgArea = 7546 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7547 OverflowArgArea.getPointer(), PaddedSizeV, 7548 "overflow_arg_area"); 7549 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7550 CGF.EmitBranch(ContBlock); 7551 7552 // Return the appropriate result. 7553 CGF.EmitBlock(ContBlock); 7554 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7555 MemAddr, InMemBlock, "va_arg.addr"); 7556 7557 if (IsIndirect) 7558 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7559 TyInfo.Align); 7560 7561 return ResAddr; 7562 } 7563 7564 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7565 if (RetTy->isVoidType()) 7566 return ABIArgInfo::getIgnore(); 7567 if (isVectorArgumentType(RetTy)) 7568 return ABIArgInfo::getDirect(); 7569 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7570 return getNaturalAlignIndirect(RetTy); 7571 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7572 : ABIArgInfo::getDirect()); 7573 } 7574 7575 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7576 // Handle the generic C++ ABI. 7577 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7578 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7579 7580 // Integers and enums are extended to full register width. 7581 if (isPromotableIntegerTypeForABI(Ty)) 7582 return ABIArgInfo::getExtend(Ty); 7583 7584 // Handle vector types and vector-like structure types. Note that 7585 // as opposed to float-like structure types, we do not allow any 7586 // padding for vector-like structures, so verify the sizes match. 7587 uint64_t Size = getContext().getTypeSize(Ty); 7588 QualType SingleElementTy = GetSingleElementType(Ty); 7589 if (isVectorArgumentType(SingleElementTy) && 7590 getContext().getTypeSize(SingleElementTy) == Size) 7591 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7592 7593 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7594 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7595 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7596 7597 // Handle small structures. 7598 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7599 // Structures with flexible arrays have variable length, so really 7600 // fail the size test above. 7601 const RecordDecl *RD = RT->getDecl(); 7602 if (RD->hasFlexibleArrayMember()) 7603 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7604 7605 // The structure is passed as an unextended integer, a float, or a double. 7606 llvm::Type *PassTy; 7607 if (isFPArgumentType(SingleElementTy)) { 7608 assert(Size == 32 || Size == 64); 7609 if (Size == 32) 7610 PassTy = llvm::Type::getFloatTy(getVMContext()); 7611 else 7612 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7613 } else 7614 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7615 return ABIArgInfo::getDirect(PassTy); 7616 } 7617 7618 // Non-structure compounds are passed indirectly. 7619 if (isCompoundType(Ty)) 7620 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7621 7622 return ABIArgInfo::getDirect(nullptr); 7623 } 7624 7625 //===----------------------------------------------------------------------===// 7626 // MSP430 ABI Implementation 7627 //===----------------------------------------------------------------------===// 7628 7629 namespace { 7630 7631 class MSP430ABIInfo : public DefaultABIInfo { 7632 static ABIArgInfo complexArgInfo() { 7633 ABIArgInfo Info = ABIArgInfo::getDirect(); 7634 Info.setCanBeFlattened(false); 7635 return Info; 7636 } 7637 7638 public: 7639 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7640 7641 ABIArgInfo classifyReturnType(QualType RetTy) const { 7642 if (RetTy->isAnyComplexType()) 7643 return complexArgInfo(); 7644 7645 return DefaultABIInfo::classifyReturnType(RetTy); 7646 } 7647 7648 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7649 if (RetTy->isAnyComplexType()) 7650 return complexArgInfo(); 7651 7652 return DefaultABIInfo::classifyArgumentType(RetTy); 7653 } 7654 7655 // Just copy the original implementations because 7656 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7657 void computeInfo(CGFunctionInfo &FI) const override { 7658 if (!getCXXABI().classifyReturnType(FI)) 7659 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7660 for (auto &I : FI.arguments()) 7661 I.info = classifyArgumentType(I.type); 7662 } 7663 7664 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7665 QualType Ty) const override { 7666 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7667 } 7668 }; 7669 7670 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7671 public: 7672 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7673 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7674 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7675 CodeGen::CodeGenModule &M) const override; 7676 }; 7677 7678 } 7679 7680 void MSP430TargetCodeGenInfo::setTargetAttributes( 7681 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7682 if (GV->isDeclaration()) 7683 return; 7684 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7685 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7686 if (!InterruptAttr) 7687 return; 7688 7689 // Handle 'interrupt' attribute: 7690 llvm::Function *F = cast<llvm::Function>(GV); 7691 7692 // Step 1: Set ISR calling convention. 7693 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7694 7695 // Step 2: Add attributes goodness. 7696 F->addFnAttr(llvm::Attribute::NoInline); 7697 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7698 } 7699 } 7700 7701 //===----------------------------------------------------------------------===// 7702 // MIPS ABI Implementation. This works for both little-endian and 7703 // big-endian variants. 7704 //===----------------------------------------------------------------------===// 7705 7706 namespace { 7707 class MipsABIInfo : public ABIInfo { 7708 bool IsO32; 7709 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7710 void CoerceToIntArgs(uint64_t TySize, 7711 SmallVectorImpl<llvm::Type *> &ArgList) const; 7712 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7713 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7714 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7715 public: 7716 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7717 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7718 StackAlignInBytes(IsO32 ? 8 : 16) {} 7719 7720 ABIArgInfo classifyReturnType(QualType RetTy) const; 7721 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7722 void computeInfo(CGFunctionInfo &FI) const override; 7723 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7724 QualType Ty) const override; 7725 ABIArgInfo extendType(QualType Ty) const; 7726 }; 7727 7728 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7729 unsigned SizeOfUnwindException; 7730 public: 7731 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7732 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7733 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7734 7735 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7736 return 29; 7737 } 7738 7739 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7740 CodeGen::CodeGenModule &CGM) const override { 7741 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7742 if (!FD) return; 7743 llvm::Function *Fn = cast<llvm::Function>(GV); 7744 7745 if (FD->hasAttr<MipsLongCallAttr>()) 7746 Fn->addFnAttr("long-call"); 7747 else if (FD->hasAttr<MipsShortCallAttr>()) 7748 Fn->addFnAttr("short-call"); 7749 7750 // Other attributes do not have a meaning for declarations. 7751 if (GV->isDeclaration()) 7752 return; 7753 7754 if (FD->hasAttr<Mips16Attr>()) { 7755 Fn->addFnAttr("mips16"); 7756 } 7757 else if (FD->hasAttr<NoMips16Attr>()) { 7758 Fn->addFnAttr("nomips16"); 7759 } 7760 7761 if (FD->hasAttr<MicroMipsAttr>()) 7762 Fn->addFnAttr("micromips"); 7763 else if (FD->hasAttr<NoMicroMipsAttr>()) 7764 Fn->addFnAttr("nomicromips"); 7765 7766 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7767 if (!Attr) 7768 return; 7769 7770 const char *Kind; 7771 switch (Attr->getInterrupt()) { 7772 case MipsInterruptAttr::eic: Kind = "eic"; break; 7773 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7774 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7775 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7776 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7777 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7778 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7779 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7780 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7781 } 7782 7783 Fn->addFnAttr("interrupt", Kind); 7784 7785 } 7786 7787 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7788 llvm::Value *Address) const override; 7789 7790 unsigned getSizeOfUnwindException() const override { 7791 return SizeOfUnwindException; 7792 } 7793 }; 7794 } 7795 7796 void MipsABIInfo::CoerceToIntArgs( 7797 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7798 llvm::IntegerType *IntTy = 7799 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7800 7801 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7802 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7803 ArgList.push_back(IntTy); 7804 7805 // If necessary, add one more integer type to ArgList. 7806 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7807 7808 if (R) 7809 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7810 } 7811 7812 // In N32/64, an aligned double precision floating point field is passed in 7813 // a register. 7814 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7815 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7816 7817 if (IsO32) { 7818 CoerceToIntArgs(TySize, ArgList); 7819 return llvm::StructType::get(getVMContext(), ArgList); 7820 } 7821 7822 if (Ty->isComplexType()) 7823 return CGT.ConvertType(Ty); 7824 7825 const RecordType *RT = Ty->getAs<RecordType>(); 7826 7827 // Unions/vectors are passed in integer registers. 7828 if (!RT || !RT->isStructureOrClassType()) { 7829 CoerceToIntArgs(TySize, ArgList); 7830 return llvm::StructType::get(getVMContext(), ArgList); 7831 } 7832 7833 const RecordDecl *RD = RT->getDecl(); 7834 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7835 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7836 7837 uint64_t LastOffset = 0; 7838 unsigned idx = 0; 7839 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7840 7841 // Iterate over fields in the struct/class and check if there are any aligned 7842 // double fields. 7843 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7844 i != e; ++i, ++idx) { 7845 const QualType Ty = i->getType(); 7846 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7847 7848 if (!BT || BT->getKind() != BuiltinType::Double) 7849 continue; 7850 7851 uint64_t Offset = Layout.getFieldOffset(idx); 7852 if (Offset % 64) // Ignore doubles that are not aligned. 7853 continue; 7854 7855 // Add ((Offset - LastOffset) / 64) args of type i64. 7856 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7857 ArgList.push_back(I64); 7858 7859 // Add double type. 7860 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7861 LastOffset = Offset + 64; 7862 } 7863 7864 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7865 ArgList.append(IntArgList.begin(), IntArgList.end()); 7866 7867 return llvm::StructType::get(getVMContext(), ArgList); 7868 } 7869 7870 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7871 uint64_t Offset) const { 7872 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7873 return nullptr; 7874 7875 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7876 } 7877 7878 ABIArgInfo 7879 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7880 Ty = useFirstFieldIfTransparentUnion(Ty); 7881 7882 uint64_t OrigOffset = Offset; 7883 uint64_t TySize = getContext().getTypeSize(Ty); 7884 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7885 7886 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7887 (uint64_t)StackAlignInBytes); 7888 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7889 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7890 7891 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7892 // Ignore empty aggregates. 7893 if (TySize == 0) 7894 return ABIArgInfo::getIgnore(); 7895 7896 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7897 Offset = OrigOffset + MinABIStackAlignInBytes; 7898 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7899 } 7900 7901 // If we have reached here, aggregates are passed directly by coercing to 7902 // another structure type. Padding is inserted if the offset of the 7903 // aggregate is unaligned. 7904 ABIArgInfo ArgInfo = 7905 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7906 getPaddingType(OrigOffset, CurrOffset)); 7907 ArgInfo.setInReg(true); 7908 return ArgInfo; 7909 } 7910 7911 // Treat an enum type as its underlying type. 7912 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7913 Ty = EnumTy->getDecl()->getIntegerType(); 7914 7915 // Make sure we pass indirectly things that are too large. 7916 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7917 if (EIT->getNumBits() > 128 || 7918 (EIT->getNumBits() > 64 && 7919 !getContext().getTargetInfo().hasInt128Type())) 7920 return getNaturalAlignIndirect(Ty); 7921 7922 // All integral types are promoted to the GPR width. 7923 if (Ty->isIntegralOrEnumerationType()) 7924 return extendType(Ty); 7925 7926 return ABIArgInfo::getDirect( 7927 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7928 } 7929 7930 llvm::Type* 7931 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7932 const RecordType *RT = RetTy->getAs<RecordType>(); 7933 SmallVector<llvm::Type*, 8> RTList; 7934 7935 if (RT && RT->isStructureOrClassType()) { 7936 const RecordDecl *RD = RT->getDecl(); 7937 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7938 unsigned FieldCnt = Layout.getFieldCount(); 7939 7940 // N32/64 returns struct/classes in floating point registers if the 7941 // following conditions are met: 7942 // 1. The size of the struct/class is no larger than 128-bit. 7943 // 2. The struct/class has one or two fields all of which are floating 7944 // point types. 7945 // 3. The offset of the first field is zero (this follows what gcc does). 7946 // 7947 // Any other composite results are returned in integer registers. 7948 // 7949 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7950 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7951 for (; b != e; ++b) { 7952 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7953 7954 if (!BT || !BT->isFloatingPoint()) 7955 break; 7956 7957 RTList.push_back(CGT.ConvertType(b->getType())); 7958 } 7959 7960 if (b == e) 7961 return llvm::StructType::get(getVMContext(), RTList, 7962 RD->hasAttr<PackedAttr>()); 7963 7964 RTList.clear(); 7965 } 7966 } 7967 7968 CoerceToIntArgs(Size, RTList); 7969 return llvm::StructType::get(getVMContext(), RTList); 7970 } 7971 7972 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7973 uint64_t Size = getContext().getTypeSize(RetTy); 7974 7975 if (RetTy->isVoidType()) 7976 return ABIArgInfo::getIgnore(); 7977 7978 // O32 doesn't treat zero-sized structs differently from other structs. 7979 // However, N32/N64 ignores zero sized return values. 7980 if (!IsO32 && Size == 0) 7981 return ABIArgInfo::getIgnore(); 7982 7983 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7984 if (Size <= 128) { 7985 if (RetTy->isAnyComplexType()) 7986 return ABIArgInfo::getDirect(); 7987 7988 // O32 returns integer vectors in registers and N32/N64 returns all small 7989 // aggregates in registers. 7990 if (!IsO32 || 7991 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7992 ABIArgInfo ArgInfo = 7993 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7994 ArgInfo.setInReg(true); 7995 return ArgInfo; 7996 } 7997 } 7998 7999 return getNaturalAlignIndirect(RetTy); 8000 } 8001 8002 // Treat an enum type as its underlying type. 8003 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8004 RetTy = EnumTy->getDecl()->getIntegerType(); 8005 8006 // Make sure we pass indirectly things that are too large. 8007 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 8008 if (EIT->getNumBits() > 128 || 8009 (EIT->getNumBits() > 64 && 8010 !getContext().getTargetInfo().hasInt128Type())) 8011 return getNaturalAlignIndirect(RetTy); 8012 8013 if (isPromotableIntegerTypeForABI(RetTy)) 8014 return ABIArgInfo::getExtend(RetTy); 8015 8016 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8017 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8018 return ABIArgInfo::getSignExtend(RetTy); 8019 8020 return ABIArgInfo::getDirect(); 8021 } 8022 8023 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8024 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8025 if (!getCXXABI().classifyReturnType(FI)) 8026 RetInfo = classifyReturnType(FI.getReturnType()); 8027 8028 // Check if a pointer to an aggregate is passed as a hidden argument. 8029 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8030 8031 for (auto &I : FI.arguments()) 8032 I.info = classifyArgumentType(I.type, Offset); 8033 } 8034 8035 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8036 QualType OrigTy) const { 8037 QualType Ty = OrigTy; 8038 8039 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8040 // Pointers are also promoted in the same way but this only matters for N32. 8041 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8042 unsigned PtrWidth = getTarget().getPointerWidth(0); 8043 bool DidPromote = false; 8044 if ((Ty->isIntegerType() && 8045 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8046 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8047 DidPromote = true; 8048 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8049 Ty->isSignedIntegerType()); 8050 } 8051 8052 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8053 8054 // The alignment of things in the argument area is never larger than 8055 // StackAlignInBytes. 8056 TyInfo.Align = 8057 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8058 8059 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8060 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8061 8062 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8063 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8064 8065 8066 // If there was a promotion, "unpromote" into a temporary. 8067 // TODO: can we just use a pointer into a subset of the original slot? 8068 if (DidPromote) { 8069 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8070 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8071 8072 // Truncate down to the right width. 8073 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8074 : CGF.IntPtrTy); 8075 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8076 if (OrigTy->isPointerType()) 8077 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8078 8079 CGF.Builder.CreateStore(V, Temp); 8080 Addr = Temp; 8081 } 8082 8083 return Addr; 8084 } 8085 8086 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8087 int TySize = getContext().getTypeSize(Ty); 8088 8089 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8090 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8091 return ABIArgInfo::getSignExtend(Ty); 8092 8093 return ABIArgInfo::getExtend(Ty); 8094 } 8095 8096 bool 8097 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8098 llvm::Value *Address) const { 8099 // This information comes from gcc's implementation, which seems to 8100 // as canonical as it gets. 8101 8102 // Everything on MIPS is 4 bytes. Double-precision FP registers 8103 // are aliased to pairs of single-precision FP registers. 8104 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8105 8106 // 0-31 are the general purpose registers, $0 - $31. 8107 // 32-63 are the floating-point registers, $f0 - $f31. 8108 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8109 // 66 is the (notional, I think) register for signal-handler return. 8110 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8111 8112 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8113 // They are one bit wide and ignored here. 8114 8115 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8116 // (coprocessor 1 is the FP unit) 8117 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8118 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8119 // 176-181 are the DSP accumulator registers. 8120 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8121 return false; 8122 } 8123 8124 //===----------------------------------------------------------------------===// 8125 // M68k ABI Implementation 8126 //===----------------------------------------------------------------------===// 8127 8128 namespace { 8129 8130 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8131 public: 8132 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8133 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8134 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8135 CodeGen::CodeGenModule &M) const override; 8136 }; 8137 8138 } // namespace 8139 8140 void M68kTargetCodeGenInfo::setTargetAttributes( 8141 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8142 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8143 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8144 // Handle 'interrupt' attribute: 8145 llvm::Function *F = cast<llvm::Function>(GV); 8146 8147 // Step 1: Set ISR calling convention. 8148 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8149 8150 // Step 2: Add attributes goodness. 8151 F->addFnAttr(llvm::Attribute::NoInline); 8152 8153 // Step 3: Emit ISR vector alias. 8154 unsigned Num = attr->getNumber() / 2; 8155 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8156 "__isr_" + Twine(Num), F); 8157 } 8158 } 8159 } 8160 8161 //===----------------------------------------------------------------------===// 8162 // AVR ABI Implementation. Documented at 8163 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8164 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8165 //===----------------------------------------------------------------------===// 8166 8167 namespace { 8168 class AVRABIInfo : public DefaultABIInfo { 8169 public: 8170 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8171 8172 ABIArgInfo classifyReturnType(QualType Ty) const { 8173 // A return struct with size less than or equal to 8 bytes is returned 8174 // directly via registers R18-R25. 8175 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8176 return ABIArgInfo::getDirect(); 8177 else 8178 return DefaultABIInfo::classifyReturnType(Ty); 8179 } 8180 8181 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8182 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8183 void computeInfo(CGFunctionInfo &FI) const override { 8184 if (!getCXXABI().classifyReturnType(FI)) 8185 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8186 for (auto &I : FI.arguments()) 8187 I.info = classifyArgumentType(I.type); 8188 } 8189 }; 8190 8191 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8192 public: 8193 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8194 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8195 8196 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8197 const VarDecl *D) const override { 8198 // Check if a global/static variable is defined within address space 1 8199 // but not constant. 8200 LangAS AS = D->getType().getAddressSpace(); 8201 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8202 !D->getType().isConstQualified()) 8203 CGM.getDiags().Report(D->getLocation(), 8204 diag::err_verify_nonconst_addrspace) 8205 << "__flash"; 8206 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8207 } 8208 8209 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8210 CodeGen::CodeGenModule &CGM) const override { 8211 if (GV->isDeclaration()) 8212 return; 8213 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8214 if (!FD) return; 8215 auto *Fn = cast<llvm::Function>(GV); 8216 8217 if (FD->getAttr<AVRInterruptAttr>()) 8218 Fn->addFnAttr("interrupt"); 8219 8220 if (FD->getAttr<AVRSignalAttr>()) 8221 Fn->addFnAttr("signal"); 8222 } 8223 }; 8224 } 8225 8226 //===----------------------------------------------------------------------===// 8227 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8228 // Currently subclassed only to implement custom OpenCL C function attribute 8229 // handling. 8230 //===----------------------------------------------------------------------===// 8231 8232 namespace { 8233 8234 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8235 public: 8236 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8237 : DefaultTargetCodeGenInfo(CGT) {} 8238 8239 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8240 CodeGen::CodeGenModule &M) const override; 8241 }; 8242 8243 void TCETargetCodeGenInfo::setTargetAttributes( 8244 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8245 if (GV->isDeclaration()) 8246 return; 8247 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8248 if (!FD) return; 8249 8250 llvm::Function *F = cast<llvm::Function>(GV); 8251 8252 if (M.getLangOpts().OpenCL) { 8253 if (FD->hasAttr<OpenCLKernelAttr>()) { 8254 // OpenCL C Kernel functions are not subject to inlining 8255 F->addFnAttr(llvm::Attribute::NoInline); 8256 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8257 if (Attr) { 8258 // Convert the reqd_work_group_size() attributes to metadata. 8259 llvm::LLVMContext &Context = F->getContext(); 8260 llvm::NamedMDNode *OpenCLMetadata = 8261 M.getModule().getOrInsertNamedMetadata( 8262 "opencl.kernel_wg_size_info"); 8263 8264 SmallVector<llvm::Metadata *, 5> Operands; 8265 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8266 8267 Operands.push_back( 8268 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8269 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8270 Operands.push_back( 8271 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8272 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8273 Operands.push_back( 8274 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8275 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8276 8277 // Add a boolean constant operand for "required" (true) or "hint" 8278 // (false) for implementing the work_group_size_hint attr later. 8279 // Currently always true as the hint is not yet implemented. 8280 Operands.push_back( 8281 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8282 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8283 } 8284 } 8285 } 8286 } 8287 8288 } 8289 8290 //===----------------------------------------------------------------------===// 8291 // Hexagon ABI Implementation 8292 //===----------------------------------------------------------------------===// 8293 8294 namespace { 8295 8296 class HexagonABIInfo : public DefaultABIInfo { 8297 public: 8298 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8299 8300 private: 8301 ABIArgInfo classifyReturnType(QualType RetTy) const; 8302 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8303 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8304 8305 void computeInfo(CGFunctionInfo &FI) const override; 8306 8307 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8308 QualType Ty) const override; 8309 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8310 QualType Ty) const; 8311 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8312 QualType Ty) const; 8313 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8314 QualType Ty) const; 8315 }; 8316 8317 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8318 public: 8319 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8320 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8321 8322 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8323 return 29; 8324 } 8325 8326 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8327 CodeGen::CodeGenModule &GCM) const override { 8328 if (GV->isDeclaration()) 8329 return; 8330 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8331 if (!FD) 8332 return; 8333 } 8334 }; 8335 8336 } // namespace 8337 8338 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8339 unsigned RegsLeft = 6; 8340 if (!getCXXABI().classifyReturnType(FI)) 8341 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8342 for (auto &I : FI.arguments()) 8343 I.info = classifyArgumentType(I.type, &RegsLeft); 8344 } 8345 8346 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8347 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8348 " through registers"); 8349 8350 if (*RegsLeft == 0) 8351 return false; 8352 8353 if (Size <= 32) { 8354 (*RegsLeft)--; 8355 return true; 8356 } 8357 8358 if (2 <= (*RegsLeft & (~1U))) { 8359 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8360 return true; 8361 } 8362 8363 // Next available register was r5 but candidate was greater than 32-bits so it 8364 // has to go on the stack. However we still consume r5 8365 if (*RegsLeft == 1) 8366 *RegsLeft = 0; 8367 8368 return false; 8369 } 8370 8371 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8372 unsigned *RegsLeft) const { 8373 if (!isAggregateTypeForABI(Ty)) { 8374 // Treat an enum type as its underlying type. 8375 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8376 Ty = EnumTy->getDecl()->getIntegerType(); 8377 8378 uint64_t Size = getContext().getTypeSize(Ty); 8379 if (Size <= 64) 8380 HexagonAdjustRegsLeft(Size, RegsLeft); 8381 8382 if (Size > 64 && Ty->isExtIntType()) 8383 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8384 8385 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8386 : ABIArgInfo::getDirect(); 8387 } 8388 8389 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8390 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8391 8392 // Ignore empty records. 8393 if (isEmptyRecord(getContext(), Ty, true)) 8394 return ABIArgInfo::getIgnore(); 8395 8396 uint64_t Size = getContext().getTypeSize(Ty); 8397 unsigned Align = getContext().getTypeAlign(Ty); 8398 8399 if (Size > 64) 8400 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8401 8402 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8403 Align = Size <= 32 ? 32 : 64; 8404 if (Size <= Align) { 8405 // Pass in the smallest viable integer type. 8406 if (!llvm::isPowerOf2_64(Size)) 8407 Size = llvm::NextPowerOf2(Size); 8408 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8409 } 8410 return DefaultABIInfo::classifyArgumentType(Ty); 8411 } 8412 8413 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8414 if (RetTy->isVoidType()) 8415 return ABIArgInfo::getIgnore(); 8416 8417 const TargetInfo &T = CGT.getTarget(); 8418 uint64_t Size = getContext().getTypeSize(RetTy); 8419 8420 if (RetTy->getAs<VectorType>()) { 8421 // HVX vectors are returned in vector registers or register pairs. 8422 if (T.hasFeature("hvx")) { 8423 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8424 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8425 if (Size == VecSize || Size == 2*VecSize) 8426 return ABIArgInfo::getDirectInReg(); 8427 } 8428 // Large vector types should be returned via memory. 8429 if (Size > 64) 8430 return getNaturalAlignIndirect(RetTy); 8431 } 8432 8433 if (!isAggregateTypeForABI(RetTy)) { 8434 // Treat an enum type as its underlying type. 8435 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8436 RetTy = EnumTy->getDecl()->getIntegerType(); 8437 8438 if (Size > 64 && RetTy->isExtIntType()) 8439 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8440 8441 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8442 : ABIArgInfo::getDirect(); 8443 } 8444 8445 if (isEmptyRecord(getContext(), RetTy, true)) 8446 return ABIArgInfo::getIgnore(); 8447 8448 // Aggregates <= 8 bytes are returned in registers, other aggregates 8449 // are returned indirectly. 8450 if (Size <= 64) { 8451 // Return in the smallest viable integer type. 8452 if (!llvm::isPowerOf2_64(Size)) 8453 Size = llvm::NextPowerOf2(Size); 8454 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8455 } 8456 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8457 } 8458 8459 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8460 Address VAListAddr, 8461 QualType Ty) const { 8462 // Load the overflow area pointer. 8463 Address __overflow_area_pointer_p = 8464 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8465 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8466 __overflow_area_pointer_p, "__overflow_area_pointer"); 8467 8468 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8469 if (Align > 4) { 8470 // Alignment should be a power of 2. 8471 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8472 8473 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8474 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8475 8476 // Add offset to the current pointer to access the argument. 8477 __overflow_area_pointer = 8478 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8479 llvm::Value *AsInt = 8480 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8481 8482 // Create a mask which should be "AND"ed 8483 // with (overflow_arg_area + align - 1) 8484 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8485 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8486 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8487 "__overflow_area_pointer.align"); 8488 } 8489 8490 // Get the type of the argument from memory and bitcast 8491 // overflow area pointer to the argument type. 8492 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8493 Address AddrTyped = CGF.Builder.CreateBitCast( 8494 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8495 llvm::PointerType::getUnqual(PTy)); 8496 8497 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8498 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8499 8500 __overflow_area_pointer = CGF.Builder.CreateGEP( 8501 CGF.Int8Ty, __overflow_area_pointer, 8502 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8503 "__overflow_area_pointer.next"); 8504 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8505 8506 return AddrTyped; 8507 } 8508 8509 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8510 Address VAListAddr, 8511 QualType Ty) const { 8512 // FIXME: Need to handle alignment 8513 llvm::Type *BP = CGF.Int8PtrTy; 8514 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8515 CGBuilderTy &Builder = CGF.Builder; 8516 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8517 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8518 // Handle address alignment for type alignment > 32 bits 8519 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8520 if (TyAlign > 4) { 8521 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8522 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8523 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8524 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8525 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8526 } 8527 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8528 Address AddrTyped = Builder.CreateBitCast( 8529 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8530 8531 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8532 llvm::Value *NextAddr = Builder.CreateGEP( 8533 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8534 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8535 8536 return AddrTyped; 8537 } 8538 8539 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8540 Address VAListAddr, 8541 QualType Ty) const { 8542 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8543 8544 if (ArgSize > 8) 8545 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8546 8547 // Here we have check if the argument is in register area or 8548 // in overflow area. 8549 // If the saved register area pointer + argsize rounded up to alignment > 8550 // saved register area end pointer, argument is in overflow area. 8551 unsigned RegsLeft = 6; 8552 Ty = CGF.getContext().getCanonicalType(Ty); 8553 (void)classifyArgumentType(Ty, &RegsLeft); 8554 8555 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8556 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8557 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8558 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8559 8560 // Get rounded size of the argument.GCC does not allow vararg of 8561 // size < 4 bytes. We follow the same logic here. 8562 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8563 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8564 8565 // Argument may be in saved register area 8566 CGF.EmitBlock(MaybeRegBlock); 8567 8568 // Load the current saved register area pointer. 8569 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8570 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8571 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8572 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8573 8574 // Load the saved register area end pointer. 8575 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8576 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8577 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8578 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8579 8580 // If the size of argument is > 4 bytes, check if the stack 8581 // location is aligned to 8 bytes 8582 if (ArgAlign > 4) { 8583 8584 llvm::Value *__current_saved_reg_area_pointer_int = 8585 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8586 CGF.Int32Ty); 8587 8588 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8589 __current_saved_reg_area_pointer_int, 8590 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8591 "align_current_saved_reg_area_pointer"); 8592 8593 __current_saved_reg_area_pointer_int = 8594 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8595 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8596 "align_current_saved_reg_area_pointer"); 8597 8598 __current_saved_reg_area_pointer = 8599 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8600 __current_saved_reg_area_pointer->getType(), 8601 "align_current_saved_reg_area_pointer"); 8602 } 8603 8604 llvm::Value *__new_saved_reg_area_pointer = 8605 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8606 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8607 "__new_saved_reg_area_pointer"); 8608 8609 llvm::Value *UsingStack = 0; 8610 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8611 __saved_reg_area_end_pointer); 8612 8613 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8614 8615 // Argument in saved register area 8616 // Implement the block where argument is in register saved area 8617 CGF.EmitBlock(InRegBlock); 8618 8619 llvm::Type *PTy = CGF.ConvertType(Ty); 8620 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8621 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8622 8623 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8624 __current_saved_reg_area_pointer_p); 8625 8626 CGF.EmitBranch(ContBlock); 8627 8628 // Argument in overflow area 8629 // Implement the block where the argument is in overflow area. 8630 CGF.EmitBlock(OnStackBlock); 8631 8632 // Load the overflow area pointer 8633 Address __overflow_area_pointer_p = 8634 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8635 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8636 __overflow_area_pointer_p, "__overflow_area_pointer"); 8637 8638 // Align the overflow area pointer according to the alignment of the argument 8639 if (ArgAlign > 4) { 8640 llvm::Value *__overflow_area_pointer_int = 8641 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8642 8643 __overflow_area_pointer_int = 8644 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8645 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8646 "align_overflow_area_pointer"); 8647 8648 __overflow_area_pointer_int = 8649 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8650 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8651 "align_overflow_area_pointer"); 8652 8653 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8654 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8655 "align_overflow_area_pointer"); 8656 } 8657 8658 // Get the pointer for next argument in overflow area and store it 8659 // to overflow area pointer. 8660 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8661 CGF.Int8Ty, __overflow_area_pointer, 8662 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8663 "__overflow_area_pointer.next"); 8664 8665 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8666 __overflow_area_pointer_p); 8667 8668 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8669 __current_saved_reg_area_pointer_p); 8670 8671 // Bitcast the overflow area pointer to the type of argument. 8672 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8673 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8674 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8675 8676 CGF.EmitBranch(ContBlock); 8677 8678 // Get the correct pointer to load the variable argument 8679 // Implement the ContBlock 8680 CGF.EmitBlock(ContBlock); 8681 8682 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8683 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8684 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8685 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8686 8687 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8688 } 8689 8690 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8691 QualType Ty) const { 8692 8693 if (getTarget().getTriple().isMusl()) 8694 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8695 8696 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8697 } 8698 8699 //===----------------------------------------------------------------------===// 8700 // Lanai ABI Implementation 8701 //===----------------------------------------------------------------------===// 8702 8703 namespace { 8704 class LanaiABIInfo : public DefaultABIInfo { 8705 public: 8706 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8707 8708 bool shouldUseInReg(QualType Ty, CCState &State) const; 8709 8710 void computeInfo(CGFunctionInfo &FI) const override { 8711 CCState State(FI); 8712 // Lanai uses 4 registers to pass arguments unless the function has the 8713 // regparm attribute set. 8714 if (FI.getHasRegParm()) { 8715 State.FreeRegs = FI.getRegParm(); 8716 } else { 8717 State.FreeRegs = 4; 8718 } 8719 8720 if (!getCXXABI().classifyReturnType(FI)) 8721 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8722 for (auto &I : FI.arguments()) 8723 I.info = classifyArgumentType(I.type, State); 8724 } 8725 8726 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8727 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8728 }; 8729 } // end anonymous namespace 8730 8731 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8732 unsigned Size = getContext().getTypeSize(Ty); 8733 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8734 8735 if (SizeInRegs == 0) 8736 return false; 8737 8738 if (SizeInRegs > State.FreeRegs) { 8739 State.FreeRegs = 0; 8740 return false; 8741 } 8742 8743 State.FreeRegs -= SizeInRegs; 8744 8745 return true; 8746 } 8747 8748 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8749 CCState &State) const { 8750 if (!ByVal) { 8751 if (State.FreeRegs) { 8752 --State.FreeRegs; // Non-byval indirects just use one pointer. 8753 return getNaturalAlignIndirectInReg(Ty); 8754 } 8755 return getNaturalAlignIndirect(Ty, false); 8756 } 8757 8758 // Compute the byval alignment. 8759 const unsigned MinABIStackAlignInBytes = 4; 8760 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8761 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8762 /*Realign=*/TypeAlign > 8763 MinABIStackAlignInBytes); 8764 } 8765 8766 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8767 CCState &State) const { 8768 // Check with the C++ ABI first. 8769 const RecordType *RT = Ty->getAs<RecordType>(); 8770 if (RT) { 8771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8772 if (RAA == CGCXXABI::RAA_Indirect) { 8773 return getIndirectResult(Ty, /*ByVal=*/false, State); 8774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8775 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8776 } 8777 } 8778 8779 if (isAggregateTypeForABI(Ty)) { 8780 // Structures with flexible arrays are always indirect. 8781 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8782 return getIndirectResult(Ty, /*ByVal=*/true, State); 8783 8784 // Ignore empty structs/unions. 8785 if (isEmptyRecord(getContext(), Ty, true)) 8786 return ABIArgInfo::getIgnore(); 8787 8788 llvm::LLVMContext &LLVMContext = getVMContext(); 8789 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8790 if (SizeInRegs <= State.FreeRegs) { 8791 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8792 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8793 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8794 State.FreeRegs -= SizeInRegs; 8795 return ABIArgInfo::getDirectInReg(Result); 8796 } else { 8797 State.FreeRegs = 0; 8798 } 8799 return getIndirectResult(Ty, true, State); 8800 } 8801 8802 // Treat an enum type as its underlying type. 8803 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8804 Ty = EnumTy->getDecl()->getIntegerType(); 8805 8806 bool InReg = shouldUseInReg(Ty, State); 8807 8808 // Don't pass >64 bit integers in registers. 8809 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8810 if (EIT->getNumBits() > 64) 8811 return getIndirectResult(Ty, /*ByVal=*/true, State); 8812 8813 if (isPromotableIntegerTypeForABI(Ty)) { 8814 if (InReg) 8815 return ABIArgInfo::getDirectInReg(); 8816 return ABIArgInfo::getExtend(Ty); 8817 } 8818 if (InReg) 8819 return ABIArgInfo::getDirectInReg(); 8820 return ABIArgInfo::getDirect(); 8821 } 8822 8823 namespace { 8824 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8825 public: 8826 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8827 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8828 }; 8829 } 8830 8831 //===----------------------------------------------------------------------===// 8832 // AMDGPU ABI Implementation 8833 //===----------------------------------------------------------------------===// 8834 8835 namespace { 8836 8837 class AMDGPUABIInfo final : public DefaultABIInfo { 8838 private: 8839 static const unsigned MaxNumRegsForArgsRet = 16; 8840 8841 unsigned numRegsForType(QualType Ty) const; 8842 8843 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8844 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8845 uint64_t Members) const override; 8846 8847 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8848 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8849 unsigned ToAS) const { 8850 // Single value types. 8851 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8852 return llvm::PointerType::get( 8853 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8854 return Ty; 8855 } 8856 8857 public: 8858 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8859 DefaultABIInfo(CGT) {} 8860 8861 ABIArgInfo classifyReturnType(QualType RetTy) const; 8862 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8863 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8864 8865 void computeInfo(CGFunctionInfo &FI) const override; 8866 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8867 QualType Ty) const override; 8868 }; 8869 8870 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8871 return true; 8872 } 8873 8874 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8875 const Type *Base, uint64_t Members) const { 8876 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8877 8878 // Homogeneous Aggregates may occupy at most 16 registers. 8879 return Members * NumRegs <= MaxNumRegsForArgsRet; 8880 } 8881 8882 /// Estimate number of registers the type will use when passed in registers. 8883 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8884 unsigned NumRegs = 0; 8885 8886 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8887 // Compute from the number of elements. The reported size is based on the 8888 // in-memory size, which includes the padding 4th element for 3-vectors. 8889 QualType EltTy = VT->getElementType(); 8890 unsigned EltSize = getContext().getTypeSize(EltTy); 8891 8892 // 16-bit element vectors should be passed as packed. 8893 if (EltSize == 16) 8894 return (VT->getNumElements() + 1) / 2; 8895 8896 unsigned EltNumRegs = (EltSize + 31) / 32; 8897 return EltNumRegs * VT->getNumElements(); 8898 } 8899 8900 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8901 const RecordDecl *RD = RT->getDecl(); 8902 assert(!RD->hasFlexibleArrayMember()); 8903 8904 for (const FieldDecl *Field : RD->fields()) { 8905 QualType FieldTy = Field->getType(); 8906 NumRegs += numRegsForType(FieldTy); 8907 } 8908 8909 return NumRegs; 8910 } 8911 8912 return (getContext().getTypeSize(Ty) + 31) / 32; 8913 } 8914 8915 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8916 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8917 8918 if (!getCXXABI().classifyReturnType(FI)) 8919 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8920 8921 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8922 for (auto &Arg : FI.arguments()) { 8923 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8924 Arg.info = classifyKernelArgumentType(Arg.type); 8925 } else { 8926 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8927 } 8928 } 8929 } 8930 8931 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8932 QualType Ty) const { 8933 llvm_unreachable("AMDGPU does not support varargs"); 8934 } 8935 8936 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8937 if (isAggregateTypeForABI(RetTy)) { 8938 // Records with non-trivial destructors/copy-constructors should not be 8939 // returned by value. 8940 if (!getRecordArgABI(RetTy, getCXXABI())) { 8941 // Ignore empty structs/unions. 8942 if (isEmptyRecord(getContext(), RetTy, true)) 8943 return ABIArgInfo::getIgnore(); 8944 8945 // Lower single-element structs to just return a regular value. 8946 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8947 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8948 8949 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8950 const RecordDecl *RD = RT->getDecl(); 8951 if (RD->hasFlexibleArrayMember()) 8952 return DefaultABIInfo::classifyReturnType(RetTy); 8953 } 8954 8955 // Pack aggregates <= 4 bytes into single VGPR or pair. 8956 uint64_t Size = getContext().getTypeSize(RetTy); 8957 if (Size <= 16) 8958 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8959 8960 if (Size <= 32) 8961 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8962 8963 if (Size <= 64) { 8964 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8965 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8966 } 8967 8968 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8969 return ABIArgInfo::getDirect(); 8970 } 8971 } 8972 8973 // Otherwise just do the default thing. 8974 return DefaultABIInfo::classifyReturnType(RetTy); 8975 } 8976 8977 /// For kernels all parameters are really passed in a special buffer. It doesn't 8978 /// make sense to pass anything byval, so everything must be direct. 8979 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8980 Ty = useFirstFieldIfTransparentUnion(Ty); 8981 8982 // TODO: Can we omit empty structs? 8983 8984 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8985 Ty = QualType(SeltTy, 0); 8986 8987 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8988 llvm::Type *LTy = OrigLTy; 8989 if (getContext().getLangOpts().HIP) { 8990 LTy = coerceKernelArgumentType( 8991 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8992 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8993 } 8994 8995 // FIXME: Should also use this for OpenCL, but it requires addressing the 8996 // problem of kernels being called. 8997 // 8998 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8999 // to global address space when using byref. This would require implementing a 9000 // new kind of coercion of the in-memory type when for indirect arguments. 9001 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9002 isAggregateTypeForABI(Ty)) { 9003 return ABIArgInfo::getIndirectAliased( 9004 getContext().getTypeAlignInChars(Ty), 9005 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9006 false /*Realign*/, nullptr /*Padding*/); 9007 } 9008 9009 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9010 // individual elements, which confuses the Clover OpenCL backend; therefore we 9011 // have to set it to false here. Other args of getDirect() are just defaults. 9012 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9013 } 9014 9015 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9016 unsigned &NumRegsLeft) const { 9017 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9018 9019 Ty = useFirstFieldIfTransparentUnion(Ty); 9020 9021 if (isAggregateTypeForABI(Ty)) { 9022 // Records with non-trivial destructors/copy-constructors should not be 9023 // passed by value. 9024 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9025 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9026 9027 // Ignore empty structs/unions. 9028 if (isEmptyRecord(getContext(), Ty, true)) 9029 return ABIArgInfo::getIgnore(); 9030 9031 // Lower single-element structs to just pass a regular value. TODO: We 9032 // could do reasonable-size multiple-element structs too, using getExpand(), 9033 // though watch out for things like bitfields. 9034 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9035 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9036 9037 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9038 const RecordDecl *RD = RT->getDecl(); 9039 if (RD->hasFlexibleArrayMember()) 9040 return DefaultABIInfo::classifyArgumentType(Ty); 9041 } 9042 9043 // Pack aggregates <= 8 bytes into single VGPR or pair. 9044 uint64_t Size = getContext().getTypeSize(Ty); 9045 if (Size <= 64) { 9046 unsigned NumRegs = (Size + 31) / 32; 9047 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9048 9049 if (Size <= 16) 9050 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9051 9052 if (Size <= 32) 9053 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9054 9055 // XXX: Should this be i64 instead, and should the limit increase? 9056 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9057 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9058 } 9059 9060 if (NumRegsLeft > 0) { 9061 unsigned NumRegs = numRegsForType(Ty); 9062 if (NumRegsLeft >= NumRegs) { 9063 NumRegsLeft -= NumRegs; 9064 return ABIArgInfo::getDirect(); 9065 } 9066 } 9067 } 9068 9069 // Otherwise just do the default thing. 9070 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9071 if (!ArgInfo.isIndirect()) { 9072 unsigned NumRegs = numRegsForType(Ty); 9073 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9074 } 9075 9076 return ArgInfo; 9077 } 9078 9079 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9080 public: 9081 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9082 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9083 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9084 CodeGen::CodeGenModule &M) const override; 9085 unsigned getOpenCLKernelCallingConv() const override; 9086 9087 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9088 llvm::PointerType *T, QualType QT) const override; 9089 9090 LangAS getASTAllocaAddressSpace() const override { 9091 return getLangASFromTargetAS( 9092 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9093 } 9094 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9095 const VarDecl *D) const override; 9096 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9097 SyncScope Scope, 9098 llvm::AtomicOrdering Ordering, 9099 llvm::LLVMContext &Ctx) const override; 9100 llvm::Function * 9101 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9102 llvm::Function *BlockInvokeFunc, 9103 llvm::Value *BlockLiteral) const override; 9104 bool shouldEmitStaticExternCAliases() const override; 9105 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9106 }; 9107 } 9108 9109 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9110 llvm::GlobalValue *GV) { 9111 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9112 return false; 9113 9114 return D->hasAttr<OpenCLKernelAttr>() || 9115 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9116 (isa<VarDecl>(D) && 9117 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9118 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9119 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9120 } 9121 9122 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9123 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9124 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9125 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9126 GV->setDSOLocal(true); 9127 } 9128 9129 if (GV->isDeclaration()) 9130 return; 9131 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9132 if (!FD) 9133 return; 9134 9135 llvm::Function *F = cast<llvm::Function>(GV); 9136 9137 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9138 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9139 9140 9141 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9142 FD->hasAttr<OpenCLKernelAttr>(); 9143 const bool IsHIPKernel = M.getLangOpts().HIP && 9144 FD->hasAttr<CUDAGlobalAttr>(); 9145 if ((IsOpenCLKernel || IsHIPKernel) && 9146 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9147 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9148 9149 if (IsHIPKernel) 9150 F->addFnAttr("uniform-work-group-size", "true"); 9151 9152 9153 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9154 if (ReqdWGS || FlatWGS) { 9155 unsigned Min = 0; 9156 unsigned Max = 0; 9157 if (FlatWGS) { 9158 Min = FlatWGS->getMin() 9159 ->EvaluateKnownConstInt(M.getContext()) 9160 .getExtValue(); 9161 Max = FlatWGS->getMax() 9162 ->EvaluateKnownConstInt(M.getContext()) 9163 .getExtValue(); 9164 } 9165 if (ReqdWGS && Min == 0 && Max == 0) 9166 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9167 9168 if (Min != 0) { 9169 assert(Min <= Max && "Min must be less than or equal Max"); 9170 9171 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9172 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9173 } else 9174 assert(Max == 0 && "Max must be zero"); 9175 } else if (IsOpenCLKernel || IsHIPKernel) { 9176 // By default, restrict the maximum size to a value specified by 9177 // --gpu-max-threads-per-block=n or its default value for HIP. 9178 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9179 const unsigned DefaultMaxWorkGroupSize = 9180 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9181 : M.getLangOpts().GPUMaxThreadsPerBlock; 9182 std::string AttrVal = 9183 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9184 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9185 } 9186 9187 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9188 unsigned Min = 9189 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9190 unsigned Max = Attr->getMax() ? Attr->getMax() 9191 ->EvaluateKnownConstInt(M.getContext()) 9192 .getExtValue() 9193 : 0; 9194 9195 if (Min != 0) { 9196 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9197 9198 std::string AttrVal = llvm::utostr(Min); 9199 if (Max != 0) 9200 AttrVal = AttrVal + "," + llvm::utostr(Max); 9201 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9202 } else 9203 assert(Max == 0 && "Max must be zero"); 9204 } 9205 9206 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9207 unsigned NumSGPR = Attr->getNumSGPR(); 9208 9209 if (NumSGPR != 0) 9210 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9211 } 9212 9213 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9214 uint32_t NumVGPR = Attr->getNumVGPR(); 9215 9216 if (NumVGPR != 0) 9217 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9218 } 9219 9220 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9221 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9222 9223 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9224 F->addFnAttr("amdgpu-ieee", "false"); 9225 } 9226 9227 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9228 return llvm::CallingConv::AMDGPU_KERNEL; 9229 } 9230 9231 // Currently LLVM assumes null pointers always have value 0, 9232 // which results in incorrectly transformed IR. Therefore, instead of 9233 // emitting null pointers in private and local address spaces, a null 9234 // pointer in generic address space is emitted which is casted to a 9235 // pointer in local or private address space. 9236 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9237 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9238 QualType QT) const { 9239 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9240 return llvm::ConstantPointerNull::get(PT); 9241 9242 auto &Ctx = CGM.getContext(); 9243 auto NPT = llvm::PointerType::get(PT->getElementType(), 9244 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9245 return llvm::ConstantExpr::getAddrSpaceCast( 9246 llvm::ConstantPointerNull::get(NPT), PT); 9247 } 9248 9249 LangAS 9250 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9251 const VarDecl *D) const { 9252 assert(!CGM.getLangOpts().OpenCL && 9253 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9254 "Address space agnostic languages only"); 9255 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9256 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9257 if (!D) 9258 return DefaultGlobalAS; 9259 9260 LangAS AddrSpace = D->getType().getAddressSpace(); 9261 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9262 if (AddrSpace != LangAS::Default) 9263 return AddrSpace; 9264 9265 if (CGM.isTypeConstant(D->getType(), false)) { 9266 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9267 return ConstAS.getValue(); 9268 } 9269 return DefaultGlobalAS; 9270 } 9271 9272 llvm::SyncScope::ID 9273 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9274 SyncScope Scope, 9275 llvm::AtomicOrdering Ordering, 9276 llvm::LLVMContext &Ctx) const { 9277 std::string Name; 9278 switch (Scope) { 9279 case SyncScope::OpenCLWorkGroup: 9280 Name = "workgroup"; 9281 break; 9282 case SyncScope::OpenCLDevice: 9283 Name = "agent"; 9284 break; 9285 case SyncScope::OpenCLAllSVMDevices: 9286 Name = ""; 9287 break; 9288 case SyncScope::OpenCLSubGroup: 9289 Name = "wavefront"; 9290 } 9291 9292 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9293 if (!Name.empty()) 9294 Name = Twine(Twine(Name) + Twine("-")).str(); 9295 9296 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9297 } 9298 9299 return Ctx.getOrInsertSyncScopeID(Name); 9300 } 9301 9302 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9303 return false; 9304 } 9305 9306 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9307 const FunctionType *&FT) const { 9308 FT = getABIInfo().getContext().adjustFunctionType( 9309 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9310 } 9311 9312 //===----------------------------------------------------------------------===// 9313 // SPARC v8 ABI Implementation. 9314 // Based on the SPARC Compliance Definition version 2.4.1. 9315 // 9316 // Ensures that complex values are passed in registers. 9317 // 9318 namespace { 9319 class SparcV8ABIInfo : public DefaultABIInfo { 9320 public: 9321 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9322 9323 private: 9324 ABIArgInfo classifyReturnType(QualType RetTy) const; 9325 void computeInfo(CGFunctionInfo &FI) const override; 9326 }; 9327 } // end anonymous namespace 9328 9329 9330 ABIArgInfo 9331 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9332 if (Ty->isAnyComplexType()) { 9333 return ABIArgInfo::getDirect(); 9334 } 9335 else { 9336 return DefaultABIInfo::classifyReturnType(Ty); 9337 } 9338 } 9339 9340 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9341 9342 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9343 for (auto &Arg : FI.arguments()) 9344 Arg.info = classifyArgumentType(Arg.type); 9345 } 9346 9347 namespace { 9348 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9349 public: 9350 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9351 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9352 }; 9353 } // end anonymous namespace 9354 9355 //===----------------------------------------------------------------------===// 9356 // SPARC v9 ABI Implementation. 9357 // Based on the SPARC Compliance Definition version 2.4.1. 9358 // 9359 // Function arguments a mapped to a nominal "parameter array" and promoted to 9360 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9361 // the array, structs larger than 16 bytes are passed indirectly. 9362 // 9363 // One case requires special care: 9364 // 9365 // struct mixed { 9366 // int i; 9367 // float f; 9368 // }; 9369 // 9370 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9371 // parameter array, but the int is passed in an integer register, and the float 9372 // is passed in a floating point register. This is represented as two arguments 9373 // with the LLVM IR inreg attribute: 9374 // 9375 // declare void f(i32 inreg %i, float inreg %f) 9376 // 9377 // The code generator will only allocate 4 bytes from the parameter array for 9378 // the inreg arguments. All other arguments are allocated a multiple of 8 9379 // bytes. 9380 // 9381 namespace { 9382 class SparcV9ABIInfo : public ABIInfo { 9383 public: 9384 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9385 9386 private: 9387 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9388 void computeInfo(CGFunctionInfo &FI) const override; 9389 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9390 QualType Ty) const override; 9391 9392 // Coercion type builder for structs passed in registers. The coercion type 9393 // serves two purposes: 9394 // 9395 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9396 // in registers. 9397 // 2. Expose aligned floating point elements as first-level elements, so the 9398 // code generator knows to pass them in floating point registers. 9399 // 9400 // We also compute the InReg flag which indicates that the struct contains 9401 // aligned 32-bit floats. 9402 // 9403 struct CoerceBuilder { 9404 llvm::LLVMContext &Context; 9405 const llvm::DataLayout &DL; 9406 SmallVector<llvm::Type*, 8> Elems; 9407 uint64_t Size; 9408 bool InReg; 9409 9410 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9411 : Context(c), DL(dl), Size(0), InReg(false) {} 9412 9413 // Pad Elems with integers until Size is ToSize. 9414 void pad(uint64_t ToSize) { 9415 assert(ToSize >= Size && "Cannot remove elements"); 9416 if (ToSize == Size) 9417 return; 9418 9419 // Finish the current 64-bit word. 9420 uint64_t Aligned = llvm::alignTo(Size, 64); 9421 if (Aligned > Size && Aligned <= ToSize) { 9422 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9423 Size = Aligned; 9424 } 9425 9426 // Add whole 64-bit words. 9427 while (Size + 64 <= ToSize) { 9428 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9429 Size += 64; 9430 } 9431 9432 // Final in-word padding. 9433 if (Size < ToSize) { 9434 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9435 Size = ToSize; 9436 } 9437 } 9438 9439 // Add a floating point element at Offset. 9440 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9441 // Unaligned floats are treated as integers. 9442 if (Offset % Bits) 9443 return; 9444 // The InReg flag is only required if there are any floats < 64 bits. 9445 if (Bits < 64) 9446 InReg = true; 9447 pad(Offset); 9448 Elems.push_back(Ty); 9449 Size = Offset + Bits; 9450 } 9451 9452 // Add a struct type to the coercion type, starting at Offset (in bits). 9453 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9454 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9455 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9456 llvm::Type *ElemTy = StrTy->getElementType(i); 9457 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9458 switch (ElemTy->getTypeID()) { 9459 case llvm::Type::StructTyID: 9460 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9461 break; 9462 case llvm::Type::FloatTyID: 9463 addFloat(ElemOffset, ElemTy, 32); 9464 break; 9465 case llvm::Type::DoubleTyID: 9466 addFloat(ElemOffset, ElemTy, 64); 9467 break; 9468 case llvm::Type::FP128TyID: 9469 addFloat(ElemOffset, ElemTy, 128); 9470 break; 9471 case llvm::Type::PointerTyID: 9472 if (ElemOffset % 64 == 0) { 9473 pad(ElemOffset); 9474 Elems.push_back(ElemTy); 9475 Size += 64; 9476 } 9477 break; 9478 default: 9479 break; 9480 } 9481 } 9482 } 9483 9484 // Check if Ty is a usable substitute for the coercion type. 9485 bool isUsableType(llvm::StructType *Ty) const { 9486 return llvm::makeArrayRef(Elems) == Ty->elements(); 9487 } 9488 9489 // Get the coercion type as a literal struct type. 9490 llvm::Type *getType() const { 9491 if (Elems.size() == 1) 9492 return Elems.front(); 9493 else 9494 return llvm::StructType::get(Context, Elems); 9495 } 9496 }; 9497 }; 9498 } // end anonymous namespace 9499 9500 ABIArgInfo 9501 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9502 if (Ty->isVoidType()) 9503 return ABIArgInfo::getIgnore(); 9504 9505 uint64_t Size = getContext().getTypeSize(Ty); 9506 9507 // Anything too big to fit in registers is passed with an explicit indirect 9508 // pointer / sret pointer. 9509 if (Size > SizeLimit) 9510 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9511 9512 // Treat an enum type as its underlying type. 9513 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9514 Ty = EnumTy->getDecl()->getIntegerType(); 9515 9516 // Integer types smaller than a register are extended. 9517 if (Size < 64 && Ty->isIntegerType()) 9518 return ABIArgInfo::getExtend(Ty); 9519 9520 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9521 if (EIT->getNumBits() < 64) 9522 return ABIArgInfo::getExtend(Ty); 9523 9524 // Other non-aggregates go in registers. 9525 if (!isAggregateTypeForABI(Ty)) 9526 return ABIArgInfo::getDirect(); 9527 9528 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9529 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9530 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9531 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9532 9533 // This is a small aggregate type that should be passed in registers. 9534 // Build a coercion type from the LLVM struct type. 9535 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9536 if (!StrTy) 9537 return ABIArgInfo::getDirect(); 9538 9539 CoerceBuilder CB(getVMContext(), getDataLayout()); 9540 CB.addStruct(0, StrTy); 9541 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9542 9543 // Try to use the original type for coercion. 9544 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9545 9546 if (CB.InReg) 9547 return ABIArgInfo::getDirectInReg(CoerceTy); 9548 else 9549 return ABIArgInfo::getDirect(CoerceTy); 9550 } 9551 9552 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9553 QualType Ty) const { 9554 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9555 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9556 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9557 AI.setCoerceToType(ArgTy); 9558 9559 CharUnits SlotSize = CharUnits::fromQuantity(8); 9560 9561 CGBuilderTy &Builder = CGF.Builder; 9562 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9563 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9564 9565 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9566 9567 Address ArgAddr = Address::invalid(); 9568 CharUnits Stride; 9569 switch (AI.getKind()) { 9570 case ABIArgInfo::Expand: 9571 case ABIArgInfo::CoerceAndExpand: 9572 case ABIArgInfo::InAlloca: 9573 llvm_unreachable("Unsupported ABI kind for va_arg"); 9574 9575 case ABIArgInfo::Extend: { 9576 Stride = SlotSize; 9577 CharUnits Offset = SlotSize - TypeInfo.Width; 9578 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9579 break; 9580 } 9581 9582 case ABIArgInfo::Direct: { 9583 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9584 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9585 ArgAddr = Addr; 9586 break; 9587 } 9588 9589 case ABIArgInfo::Indirect: 9590 case ABIArgInfo::IndirectAliased: 9591 Stride = SlotSize; 9592 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9593 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9594 TypeInfo.Align); 9595 break; 9596 9597 case ABIArgInfo::Ignore: 9598 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9599 } 9600 9601 // Update VAList. 9602 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9603 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9604 9605 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9606 } 9607 9608 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9609 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9610 for (auto &I : FI.arguments()) 9611 I.info = classifyType(I.type, 16 * 8); 9612 } 9613 9614 namespace { 9615 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9616 public: 9617 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9618 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9619 9620 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9621 return 14; 9622 } 9623 9624 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9625 llvm::Value *Address) const override; 9626 }; 9627 } // end anonymous namespace 9628 9629 bool 9630 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9631 llvm::Value *Address) const { 9632 // This is calculated from the LLVM and GCC tables and verified 9633 // against gcc output. AFAIK all ABIs use the same encoding. 9634 9635 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9636 9637 llvm::IntegerType *i8 = CGF.Int8Ty; 9638 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9639 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9640 9641 // 0-31: the 8-byte general-purpose registers 9642 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9643 9644 // 32-63: f0-31, the 4-byte floating-point registers 9645 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9646 9647 // Y = 64 9648 // PSR = 65 9649 // WIM = 66 9650 // TBR = 67 9651 // PC = 68 9652 // NPC = 69 9653 // FSR = 70 9654 // CSR = 71 9655 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9656 9657 // 72-87: d0-15, the 8-byte floating-point registers 9658 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9659 9660 return false; 9661 } 9662 9663 // ARC ABI implementation. 9664 namespace { 9665 9666 class ARCABIInfo : public DefaultABIInfo { 9667 public: 9668 using DefaultABIInfo::DefaultABIInfo; 9669 9670 private: 9671 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9672 QualType Ty) const override; 9673 9674 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9675 if (!State.FreeRegs) 9676 return; 9677 if (Info.isIndirect() && Info.getInReg()) 9678 State.FreeRegs--; 9679 else if (Info.isDirect() && Info.getInReg()) { 9680 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9681 if (sz < State.FreeRegs) 9682 State.FreeRegs -= sz; 9683 else 9684 State.FreeRegs = 0; 9685 } 9686 } 9687 9688 void computeInfo(CGFunctionInfo &FI) const override { 9689 CCState State(FI); 9690 // ARC uses 8 registers to pass arguments. 9691 State.FreeRegs = 8; 9692 9693 if (!getCXXABI().classifyReturnType(FI)) 9694 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9695 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9696 for (auto &I : FI.arguments()) { 9697 I.info = classifyArgumentType(I.type, State.FreeRegs); 9698 updateState(I.info, I.type, State); 9699 } 9700 } 9701 9702 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9703 ABIArgInfo getIndirectByValue(QualType Ty) const; 9704 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9705 ABIArgInfo classifyReturnType(QualType RetTy) const; 9706 }; 9707 9708 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9709 public: 9710 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9711 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9712 }; 9713 9714 9715 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9716 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9717 getNaturalAlignIndirect(Ty, false); 9718 } 9719 9720 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9721 // Compute the byval alignment. 9722 const unsigned MinABIStackAlignInBytes = 4; 9723 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9724 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9725 TypeAlign > MinABIStackAlignInBytes); 9726 } 9727 9728 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9729 QualType Ty) const { 9730 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9731 getContext().getTypeInfoInChars(Ty), 9732 CharUnits::fromQuantity(4), true); 9733 } 9734 9735 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9736 uint8_t FreeRegs) const { 9737 // Handle the generic C++ ABI. 9738 const RecordType *RT = Ty->getAs<RecordType>(); 9739 if (RT) { 9740 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9741 if (RAA == CGCXXABI::RAA_Indirect) 9742 return getIndirectByRef(Ty, FreeRegs > 0); 9743 9744 if (RAA == CGCXXABI::RAA_DirectInMemory) 9745 return getIndirectByValue(Ty); 9746 } 9747 9748 // Treat an enum type as its underlying type. 9749 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9750 Ty = EnumTy->getDecl()->getIntegerType(); 9751 9752 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9753 9754 if (isAggregateTypeForABI(Ty)) { 9755 // Structures with flexible arrays are always indirect. 9756 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9757 return getIndirectByValue(Ty); 9758 9759 // Ignore empty structs/unions. 9760 if (isEmptyRecord(getContext(), Ty, true)) 9761 return ABIArgInfo::getIgnore(); 9762 9763 llvm::LLVMContext &LLVMContext = getVMContext(); 9764 9765 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9766 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9767 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9768 9769 return FreeRegs >= SizeInRegs ? 9770 ABIArgInfo::getDirectInReg(Result) : 9771 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9772 } 9773 9774 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9775 if (EIT->getNumBits() > 64) 9776 return getIndirectByValue(Ty); 9777 9778 return isPromotableIntegerTypeForABI(Ty) 9779 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9780 : ABIArgInfo::getExtend(Ty)) 9781 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9782 : ABIArgInfo::getDirect()); 9783 } 9784 9785 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9786 if (RetTy->isAnyComplexType()) 9787 return ABIArgInfo::getDirectInReg(); 9788 9789 // Arguments of size > 4 registers are indirect. 9790 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9791 if (RetSize > 4) 9792 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9793 9794 return DefaultABIInfo::classifyReturnType(RetTy); 9795 } 9796 9797 } // End anonymous namespace. 9798 9799 //===----------------------------------------------------------------------===// 9800 // XCore ABI Implementation 9801 //===----------------------------------------------------------------------===// 9802 9803 namespace { 9804 9805 /// A SmallStringEnc instance is used to build up the TypeString by passing 9806 /// it by reference between functions that append to it. 9807 typedef llvm::SmallString<128> SmallStringEnc; 9808 9809 /// TypeStringCache caches the meta encodings of Types. 9810 /// 9811 /// The reason for caching TypeStrings is two fold: 9812 /// 1. To cache a type's encoding for later uses; 9813 /// 2. As a means to break recursive member type inclusion. 9814 /// 9815 /// A cache Entry can have a Status of: 9816 /// NonRecursive: The type encoding is not recursive; 9817 /// Recursive: The type encoding is recursive; 9818 /// Incomplete: An incomplete TypeString; 9819 /// IncompleteUsed: An incomplete TypeString that has been used in a 9820 /// Recursive type encoding. 9821 /// 9822 /// A NonRecursive entry will have all of its sub-members expanded as fully 9823 /// as possible. Whilst it may contain types which are recursive, the type 9824 /// itself is not recursive and thus its encoding may be safely used whenever 9825 /// the type is encountered. 9826 /// 9827 /// A Recursive entry will have all of its sub-members expanded as fully as 9828 /// possible. The type itself is recursive and it may contain other types which 9829 /// are recursive. The Recursive encoding must not be used during the expansion 9830 /// of a recursive type's recursive branch. For simplicity the code uses 9831 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9832 /// 9833 /// An Incomplete entry is always a RecordType and only encodes its 9834 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9835 /// are placed into the cache during type expansion as a means to identify and 9836 /// handle recursive inclusion of types as sub-members. If there is recursion 9837 /// the entry becomes IncompleteUsed. 9838 /// 9839 /// During the expansion of a RecordType's members: 9840 /// 9841 /// If the cache contains a NonRecursive encoding for the member type, the 9842 /// cached encoding is used; 9843 /// 9844 /// If the cache contains a Recursive encoding for the member type, the 9845 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9846 /// 9847 /// If the member is a RecordType, an Incomplete encoding is placed into the 9848 /// cache to break potential recursive inclusion of itself as a sub-member; 9849 /// 9850 /// Once a member RecordType has been expanded, its temporary incomplete 9851 /// entry is removed from the cache. If a Recursive encoding was swapped out 9852 /// it is swapped back in; 9853 /// 9854 /// If an incomplete entry is used to expand a sub-member, the incomplete 9855 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9856 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9857 /// 9858 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9859 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9860 /// Else the member is part of a recursive type and thus the recursion has 9861 /// been exited too soon for the encoding to be correct for the member. 9862 /// 9863 class TypeStringCache { 9864 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9865 struct Entry { 9866 std::string Str; // The encoded TypeString for the type. 9867 enum Status State; // Information about the encoding in 'Str'. 9868 std::string Swapped; // A temporary place holder for a Recursive encoding 9869 // during the expansion of RecordType's members. 9870 }; 9871 std::map<const IdentifierInfo *, struct Entry> Map; 9872 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9873 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9874 public: 9875 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9876 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9877 bool removeIncomplete(const IdentifierInfo *ID); 9878 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9879 bool IsRecursive); 9880 StringRef lookupStr(const IdentifierInfo *ID); 9881 }; 9882 9883 /// TypeString encodings for enum & union fields must be order. 9884 /// FieldEncoding is a helper for this ordering process. 9885 class FieldEncoding { 9886 bool HasName; 9887 std::string Enc; 9888 public: 9889 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9890 StringRef str() { return Enc; } 9891 bool operator<(const FieldEncoding &rhs) const { 9892 if (HasName != rhs.HasName) return HasName; 9893 return Enc < rhs.Enc; 9894 } 9895 }; 9896 9897 class XCoreABIInfo : public DefaultABIInfo { 9898 public: 9899 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9900 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9901 QualType Ty) const override; 9902 }; 9903 9904 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9905 mutable TypeStringCache TSC; 9906 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9907 const CodeGen::CodeGenModule &M) const; 9908 9909 public: 9910 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9911 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9912 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9913 const llvm::MapVector<GlobalDecl, StringRef> 9914 &MangledDeclNames) const override; 9915 }; 9916 9917 } // End anonymous namespace. 9918 9919 // TODO: this implementation is likely now redundant with the default 9920 // EmitVAArg. 9921 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9922 QualType Ty) const { 9923 CGBuilderTy &Builder = CGF.Builder; 9924 9925 // Get the VAList. 9926 CharUnits SlotSize = CharUnits::fromQuantity(4); 9927 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9928 9929 // Handle the argument. 9930 ABIArgInfo AI = classifyArgumentType(Ty); 9931 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9932 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9933 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9934 AI.setCoerceToType(ArgTy); 9935 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9936 9937 Address Val = Address::invalid(); 9938 CharUnits ArgSize = CharUnits::Zero(); 9939 switch (AI.getKind()) { 9940 case ABIArgInfo::Expand: 9941 case ABIArgInfo::CoerceAndExpand: 9942 case ABIArgInfo::InAlloca: 9943 llvm_unreachable("Unsupported ABI kind for va_arg"); 9944 case ABIArgInfo::Ignore: 9945 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9946 ArgSize = CharUnits::Zero(); 9947 break; 9948 case ABIArgInfo::Extend: 9949 case ABIArgInfo::Direct: 9950 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9951 ArgSize = CharUnits::fromQuantity( 9952 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9953 ArgSize = ArgSize.alignTo(SlotSize); 9954 break; 9955 case ABIArgInfo::Indirect: 9956 case ABIArgInfo::IndirectAliased: 9957 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9958 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9959 ArgSize = SlotSize; 9960 break; 9961 } 9962 9963 // Increment the VAList. 9964 if (!ArgSize.isZero()) { 9965 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9966 Builder.CreateStore(APN.getPointer(), VAListAddr); 9967 } 9968 9969 return Val; 9970 } 9971 9972 /// During the expansion of a RecordType, an incomplete TypeString is placed 9973 /// into the cache as a means to identify and break recursion. 9974 /// If there is a Recursive encoding in the cache, it is swapped out and will 9975 /// be reinserted by removeIncomplete(). 9976 /// All other types of encoding should have been used rather than arriving here. 9977 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9978 std::string StubEnc) { 9979 if (!ID) 9980 return; 9981 Entry &E = Map[ID]; 9982 assert( (E.Str.empty() || E.State == Recursive) && 9983 "Incorrectly use of addIncomplete"); 9984 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9985 E.Swapped.swap(E.Str); // swap out the Recursive 9986 E.Str.swap(StubEnc); 9987 E.State = Incomplete; 9988 ++IncompleteCount; 9989 } 9990 9991 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9992 /// must be removed from the cache. 9993 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9994 /// Returns true if the RecordType was defined recursively. 9995 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9996 if (!ID) 9997 return false; 9998 auto I = Map.find(ID); 9999 assert(I != Map.end() && "Entry not present"); 10000 Entry &E = I->second; 10001 assert( (E.State == Incomplete || 10002 E.State == IncompleteUsed) && 10003 "Entry must be an incomplete type"); 10004 bool IsRecursive = false; 10005 if (E.State == IncompleteUsed) { 10006 // We made use of our Incomplete encoding, thus we are recursive. 10007 IsRecursive = true; 10008 --IncompleteUsedCount; 10009 } 10010 if (E.Swapped.empty()) 10011 Map.erase(I); 10012 else { 10013 // Swap the Recursive back. 10014 E.Swapped.swap(E.Str); 10015 E.Swapped.clear(); 10016 E.State = Recursive; 10017 } 10018 --IncompleteCount; 10019 return IsRecursive; 10020 } 10021 10022 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10023 /// Recursive (viz: all sub-members were expanded as fully as possible). 10024 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10025 bool IsRecursive) { 10026 if (!ID || IncompleteUsedCount) 10027 return; // No key or it is is an incomplete sub-type so don't add. 10028 Entry &E = Map[ID]; 10029 if (IsRecursive && !E.Str.empty()) { 10030 assert(E.State==Recursive && E.Str.size() == Str.size() && 10031 "This is not the same Recursive entry"); 10032 // The parent container was not recursive after all, so we could have used 10033 // this Recursive sub-member entry after all, but we assumed the worse when 10034 // we started viz: IncompleteCount!=0. 10035 return; 10036 } 10037 assert(E.Str.empty() && "Entry already present"); 10038 E.Str = Str.str(); 10039 E.State = IsRecursive? Recursive : NonRecursive; 10040 } 10041 10042 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10043 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10044 /// encoding is Recursive, return an empty StringRef. 10045 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10046 if (!ID) 10047 return StringRef(); // We have no key. 10048 auto I = Map.find(ID); 10049 if (I == Map.end()) 10050 return StringRef(); // We have no encoding. 10051 Entry &E = I->second; 10052 if (E.State == Recursive && IncompleteCount) 10053 return StringRef(); // We don't use Recursive encodings for member types. 10054 10055 if (E.State == Incomplete) { 10056 // The incomplete type is being used to break out of recursion. 10057 E.State = IncompleteUsed; 10058 ++IncompleteUsedCount; 10059 } 10060 return E.Str; 10061 } 10062 10063 /// The XCore ABI includes a type information section that communicates symbol 10064 /// type information to the linker. The linker uses this information to verify 10065 /// safety/correctness of things such as array bound and pointers et al. 10066 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10067 /// This type information (TypeString) is emitted into meta data for all global 10068 /// symbols: definitions, declarations, functions & variables. 10069 /// 10070 /// The TypeString carries type, qualifier, name, size & value details. 10071 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10072 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10073 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10074 /// 10075 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10076 const CodeGen::CodeGenModule &CGM, 10077 TypeStringCache &TSC); 10078 10079 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10080 void XCoreTargetCodeGenInfo::emitTargetMD( 10081 const Decl *D, llvm::GlobalValue *GV, 10082 const CodeGen::CodeGenModule &CGM) const { 10083 SmallStringEnc Enc; 10084 if (getTypeString(Enc, D, CGM, TSC)) { 10085 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10086 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10087 llvm::MDString::get(Ctx, Enc.str())}; 10088 llvm::NamedMDNode *MD = 10089 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10090 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10091 } 10092 } 10093 10094 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10095 CodeGen::CodeGenModule &CGM, 10096 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10097 // Warning, new MangledDeclNames may be appended within this loop. 10098 // We rely on MapVector insertions adding new elements to the end 10099 // of the container. 10100 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10101 auto Val = *(MangledDeclNames.begin() + I); 10102 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10103 if (GV) { 10104 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10105 emitTargetMD(D, GV, CGM); 10106 } 10107 } 10108 } 10109 //===----------------------------------------------------------------------===// 10110 // SPIR ABI Implementation 10111 //===----------------------------------------------------------------------===// 10112 10113 namespace { 10114 class SPIRABIInfo : public DefaultABIInfo { 10115 public: 10116 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10117 10118 private: 10119 void setCCs(); 10120 }; 10121 } // end anonymous namespace 10122 namespace { 10123 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10124 public: 10125 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10126 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10127 10128 LangAS getASTAllocaAddressSpace() const override { 10129 return getLangASFromTargetAS( 10130 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10131 } 10132 10133 unsigned getOpenCLKernelCallingConv() const override; 10134 }; 10135 10136 } // End anonymous namespace. 10137 void SPIRABIInfo::setCCs() { 10138 assert(getRuntimeCC() == llvm::CallingConv::C); 10139 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10140 } 10141 10142 namespace clang { 10143 namespace CodeGen { 10144 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10145 DefaultABIInfo SPIRABI(CGM.getTypes()); 10146 SPIRABI.computeInfo(FI); 10147 } 10148 } 10149 } 10150 10151 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10152 return llvm::CallingConv::SPIR_KERNEL; 10153 } 10154 10155 static bool appendType(SmallStringEnc &Enc, QualType QType, 10156 const CodeGen::CodeGenModule &CGM, 10157 TypeStringCache &TSC); 10158 10159 /// Helper function for appendRecordType(). 10160 /// Builds a SmallVector containing the encoded field types in declaration 10161 /// order. 10162 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10163 const RecordDecl *RD, 10164 const CodeGen::CodeGenModule &CGM, 10165 TypeStringCache &TSC) { 10166 for (const auto *Field : RD->fields()) { 10167 SmallStringEnc Enc; 10168 Enc += "m("; 10169 Enc += Field->getName(); 10170 Enc += "){"; 10171 if (Field->isBitField()) { 10172 Enc += "b("; 10173 llvm::raw_svector_ostream OS(Enc); 10174 OS << Field->getBitWidthValue(CGM.getContext()); 10175 Enc += ':'; 10176 } 10177 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10178 return false; 10179 if (Field->isBitField()) 10180 Enc += ')'; 10181 Enc += '}'; 10182 FE.emplace_back(!Field->getName().empty(), Enc); 10183 } 10184 return true; 10185 } 10186 10187 /// Appends structure and union types to Enc and adds encoding to cache. 10188 /// Recursively calls appendType (via extractFieldType) for each field. 10189 /// Union types have their fields ordered according to the ABI. 10190 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10191 const CodeGen::CodeGenModule &CGM, 10192 TypeStringCache &TSC, const IdentifierInfo *ID) { 10193 // Append the cached TypeString if we have one. 10194 StringRef TypeString = TSC.lookupStr(ID); 10195 if (!TypeString.empty()) { 10196 Enc += TypeString; 10197 return true; 10198 } 10199 10200 // Start to emit an incomplete TypeString. 10201 size_t Start = Enc.size(); 10202 Enc += (RT->isUnionType()? 'u' : 's'); 10203 Enc += '('; 10204 if (ID) 10205 Enc += ID->getName(); 10206 Enc += "){"; 10207 10208 // We collect all encoded fields and order as necessary. 10209 bool IsRecursive = false; 10210 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10211 if (RD && !RD->field_empty()) { 10212 // An incomplete TypeString stub is placed in the cache for this RecordType 10213 // so that recursive calls to this RecordType will use it whilst building a 10214 // complete TypeString for this RecordType. 10215 SmallVector<FieldEncoding, 16> FE; 10216 std::string StubEnc(Enc.substr(Start).str()); 10217 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10218 TSC.addIncomplete(ID, std::move(StubEnc)); 10219 if (!extractFieldType(FE, RD, CGM, TSC)) { 10220 (void) TSC.removeIncomplete(ID); 10221 return false; 10222 } 10223 IsRecursive = TSC.removeIncomplete(ID); 10224 // The ABI requires unions to be sorted but not structures. 10225 // See FieldEncoding::operator< for sort algorithm. 10226 if (RT->isUnionType()) 10227 llvm::sort(FE); 10228 // We can now complete the TypeString. 10229 unsigned E = FE.size(); 10230 for (unsigned I = 0; I != E; ++I) { 10231 if (I) 10232 Enc += ','; 10233 Enc += FE[I].str(); 10234 } 10235 } 10236 Enc += '}'; 10237 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10238 return true; 10239 } 10240 10241 /// Appends enum types to Enc and adds the encoding to the cache. 10242 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10243 TypeStringCache &TSC, 10244 const IdentifierInfo *ID) { 10245 // Append the cached TypeString if we have one. 10246 StringRef TypeString = TSC.lookupStr(ID); 10247 if (!TypeString.empty()) { 10248 Enc += TypeString; 10249 return true; 10250 } 10251 10252 size_t Start = Enc.size(); 10253 Enc += "e("; 10254 if (ID) 10255 Enc += ID->getName(); 10256 Enc += "){"; 10257 10258 // We collect all encoded enumerations and order them alphanumerically. 10259 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10260 SmallVector<FieldEncoding, 16> FE; 10261 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10262 ++I) { 10263 SmallStringEnc EnumEnc; 10264 EnumEnc += "m("; 10265 EnumEnc += I->getName(); 10266 EnumEnc += "){"; 10267 I->getInitVal().toString(EnumEnc); 10268 EnumEnc += '}'; 10269 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10270 } 10271 llvm::sort(FE); 10272 unsigned E = FE.size(); 10273 for (unsigned I = 0; I != E; ++I) { 10274 if (I) 10275 Enc += ','; 10276 Enc += FE[I].str(); 10277 } 10278 } 10279 Enc += '}'; 10280 TSC.addIfComplete(ID, Enc.substr(Start), false); 10281 return true; 10282 } 10283 10284 /// Appends type's qualifier to Enc. 10285 /// This is done prior to appending the type's encoding. 10286 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10287 // Qualifiers are emitted in alphabetical order. 10288 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10289 int Lookup = 0; 10290 if (QT.isConstQualified()) 10291 Lookup += 1<<0; 10292 if (QT.isRestrictQualified()) 10293 Lookup += 1<<1; 10294 if (QT.isVolatileQualified()) 10295 Lookup += 1<<2; 10296 Enc += Table[Lookup]; 10297 } 10298 10299 /// Appends built-in types to Enc. 10300 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10301 const char *EncType; 10302 switch (BT->getKind()) { 10303 case BuiltinType::Void: 10304 EncType = "0"; 10305 break; 10306 case BuiltinType::Bool: 10307 EncType = "b"; 10308 break; 10309 case BuiltinType::Char_U: 10310 EncType = "uc"; 10311 break; 10312 case BuiltinType::UChar: 10313 EncType = "uc"; 10314 break; 10315 case BuiltinType::SChar: 10316 EncType = "sc"; 10317 break; 10318 case BuiltinType::UShort: 10319 EncType = "us"; 10320 break; 10321 case BuiltinType::Short: 10322 EncType = "ss"; 10323 break; 10324 case BuiltinType::UInt: 10325 EncType = "ui"; 10326 break; 10327 case BuiltinType::Int: 10328 EncType = "si"; 10329 break; 10330 case BuiltinType::ULong: 10331 EncType = "ul"; 10332 break; 10333 case BuiltinType::Long: 10334 EncType = "sl"; 10335 break; 10336 case BuiltinType::ULongLong: 10337 EncType = "ull"; 10338 break; 10339 case BuiltinType::LongLong: 10340 EncType = "sll"; 10341 break; 10342 case BuiltinType::Float: 10343 EncType = "ft"; 10344 break; 10345 case BuiltinType::Double: 10346 EncType = "d"; 10347 break; 10348 case BuiltinType::LongDouble: 10349 EncType = "ld"; 10350 break; 10351 default: 10352 return false; 10353 } 10354 Enc += EncType; 10355 return true; 10356 } 10357 10358 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10359 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10360 const CodeGen::CodeGenModule &CGM, 10361 TypeStringCache &TSC) { 10362 Enc += "p("; 10363 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10364 return false; 10365 Enc += ')'; 10366 return true; 10367 } 10368 10369 /// Appends array encoding to Enc before calling appendType for the element. 10370 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10371 const ArrayType *AT, 10372 const CodeGen::CodeGenModule &CGM, 10373 TypeStringCache &TSC, StringRef NoSizeEnc) { 10374 if (AT->getSizeModifier() != ArrayType::Normal) 10375 return false; 10376 Enc += "a("; 10377 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10378 CAT->getSize().toStringUnsigned(Enc); 10379 else 10380 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10381 Enc += ':'; 10382 // The Qualifiers should be attached to the type rather than the array. 10383 appendQualifier(Enc, QT); 10384 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10385 return false; 10386 Enc += ')'; 10387 return true; 10388 } 10389 10390 /// Appends a function encoding to Enc, calling appendType for the return type 10391 /// and the arguments. 10392 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10393 const CodeGen::CodeGenModule &CGM, 10394 TypeStringCache &TSC) { 10395 Enc += "f{"; 10396 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10397 return false; 10398 Enc += "}("; 10399 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10400 // N.B. we are only interested in the adjusted param types. 10401 auto I = FPT->param_type_begin(); 10402 auto E = FPT->param_type_end(); 10403 if (I != E) { 10404 do { 10405 if (!appendType(Enc, *I, CGM, TSC)) 10406 return false; 10407 ++I; 10408 if (I != E) 10409 Enc += ','; 10410 } while (I != E); 10411 if (FPT->isVariadic()) 10412 Enc += ",va"; 10413 } else { 10414 if (FPT->isVariadic()) 10415 Enc += "va"; 10416 else 10417 Enc += '0'; 10418 } 10419 } 10420 Enc += ')'; 10421 return true; 10422 } 10423 10424 /// Handles the type's qualifier before dispatching a call to handle specific 10425 /// type encodings. 10426 static bool appendType(SmallStringEnc &Enc, QualType QType, 10427 const CodeGen::CodeGenModule &CGM, 10428 TypeStringCache &TSC) { 10429 10430 QualType QT = QType.getCanonicalType(); 10431 10432 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10433 // The Qualifiers should be attached to the type rather than the array. 10434 // Thus we don't call appendQualifier() here. 10435 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10436 10437 appendQualifier(Enc, QT); 10438 10439 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10440 return appendBuiltinType(Enc, BT); 10441 10442 if (const PointerType *PT = QT->getAs<PointerType>()) 10443 return appendPointerType(Enc, PT, CGM, TSC); 10444 10445 if (const EnumType *ET = QT->getAs<EnumType>()) 10446 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10447 10448 if (const RecordType *RT = QT->getAsStructureType()) 10449 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10450 10451 if (const RecordType *RT = QT->getAsUnionType()) 10452 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10453 10454 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10455 return appendFunctionType(Enc, FT, CGM, TSC); 10456 10457 return false; 10458 } 10459 10460 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10461 const CodeGen::CodeGenModule &CGM, 10462 TypeStringCache &TSC) { 10463 if (!D) 10464 return false; 10465 10466 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10467 if (FD->getLanguageLinkage() != CLanguageLinkage) 10468 return false; 10469 return appendType(Enc, FD->getType(), CGM, TSC); 10470 } 10471 10472 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10473 if (VD->getLanguageLinkage() != CLanguageLinkage) 10474 return false; 10475 QualType QT = VD->getType().getCanonicalType(); 10476 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10477 // Global ArrayTypes are given a size of '*' if the size is unknown. 10478 // The Qualifiers should be attached to the type rather than the array. 10479 // Thus we don't call appendQualifier() here. 10480 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10481 } 10482 return appendType(Enc, QT, CGM, TSC); 10483 } 10484 return false; 10485 } 10486 10487 //===----------------------------------------------------------------------===// 10488 // RISCV ABI Implementation 10489 //===----------------------------------------------------------------------===// 10490 10491 namespace { 10492 class RISCVABIInfo : public DefaultABIInfo { 10493 private: 10494 // Size of the integer ('x') registers in bits. 10495 unsigned XLen; 10496 // Size of the floating point ('f') registers in bits. Note that the target 10497 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10498 // with soft float ABI has FLen==0). 10499 unsigned FLen; 10500 static const int NumArgGPRs = 8; 10501 static const int NumArgFPRs = 8; 10502 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10503 llvm::Type *&Field1Ty, 10504 CharUnits &Field1Off, 10505 llvm::Type *&Field2Ty, 10506 CharUnits &Field2Off) const; 10507 10508 public: 10509 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10510 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10511 10512 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10513 // non-virtual, but computeInfo is virtual, so we overload it. 10514 void computeInfo(CGFunctionInfo &FI) const override; 10515 10516 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10517 int &ArgFPRsLeft) const; 10518 ABIArgInfo classifyReturnType(QualType RetTy) const; 10519 10520 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10521 QualType Ty) const override; 10522 10523 ABIArgInfo extendType(QualType Ty) const; 10524 10525 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10526 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10527 CharUnits &Field2Off, int &NeededArgGPRs, 10528 int &NeededArgFPRs) const; 10529 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10530 CharUnits Field1Off, 10531 llvm::Type *Field2Ty, 10532 CharUnits Field2Off) const; 10533 }; 10534 } // end anonymous namespace 10535 10536 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10537 QualType RetTy = FI.getReturnType(); 10538 if (!getCXXABI().classifyReturnType(FI)) 10539 FI.getReturnInfo() = classifyReturnType(RetTy); 10540 10541 // IsRetIndirect is true if classifyArgumentType indicated the value should 10542 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10543 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10544 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10545 // list and pass indirectly on RV32. 10546 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10547 if (!IsRetIndirect && RetTy->isScalarType() && 10548 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10549 if (RetTy->isComplexType() && FLen) { 10550 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10551 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10552 } else { 10553 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10554 IsRetIndirect = true; 10555 } 10556 } 10557 10558 // We must track the number of GPRs used in order to conform to the RISC-V 10559 // ABI, as integer scalars passed in registers should have signext/zeroext 10560 // when promoted, but are anyext if passed on the stack. As GPR usage is 10561 // different for variadic arguments, we must also track whether we are 10562 // examining a vararg or not. 10563 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10564 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10565 int NumFixedArgs = FI.getNumRequiredArgs(); 10566 10567 int ArgNum = 0; 10568 for (auto &ArgInfo : FI.arguments()) { 10569 bool IsFixed = ArgNum < NumFixedArgs; 10570 ArgInfo.info = 10571 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10572 ArgNum++; 10573 } 10574 } 10575 10576 // Returns true if the struct is a potential candidate for the floating point 10577 // calling convention. If this function returns true, the caller is 10578 // responsible for checking that if there is only a single field then that 10579 // field is a float. 10580 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10581 llvm::Type *&Field1Ty, 10582 CharUnits &Field1Off, 10583 llvm::Type *&Field2Ty, 10584 CharUnits &Field2Off) const { 10585 bool IsInt = Ty->isIntegralOrEnumerationType(); 10586 bool IsFloat = Ty->isRealFloatingType(); 10587 10588 if (IsInt || IsFloat) { 10589 uint64_t Size = getContext().getTypeSize(Ty); 10590 if (IsInt && Size > XLen) 10591 return false; 10592 // Can't be eligible if larger than the FP registers. Half precision isn't 10593 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10594 // default to the integer ABI in that case. 10595 if (IsFloat && (Size > FLen || Size < 32)) 10596 return false; 10597 // Can't be eligible if an integer type was already found (int+int pairs 10598 // are not eligible). 10599 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10600 return false; 10601 if (!Field1Ty) { 10602 Field1Ty = CGT.ConvertType(Ty); 10603 Field1Off = CurOff; 10604 return true; 10605 } 10606 if (!Field2Ty) { 10607 Field2Ty = CGT.ConvertType(Ty); 10608 Field2Off = CurOff; 10609 return true; 10610 } 10611 return false; 10612 } 10613 10614 if (auto CTy = Ty->getAs<ComplexType>()) { 10615 if (Field1Ty) 10616 return false; 10617 QualType EltTy = CTy->getElementType(); 10618 if (getContext().getTypeSize(EltTy) > FLen) 10619 return false; 10620 Field1Ty = CGT.ConvertType(EltTy); 10621 Field1Off = CurOff; 10622 Field2Ty = Field1Ty; 10623 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10624 return true; 10625 } 10626 10627 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10628 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10629 QualType EltTy = ATy->getElementType(); 10630 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10631 for (uint64_t i = 0; i < ArraySize; ++i) { 10632 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10633 Field1Off, Field2Ty, Field2Off); 10634 if (!Ret) 10635 return false; 10636 CurOff += EltSize; 10637 } 10638 return true; 10639 } 10640 10641 if (const auto *RTy = Ty->getAs<RecordType>()) { 10642 // Structures with either a non-trivial destructor or a non-trivial 10643 // copy constructor are not eligible for the FP calling convention. 10644 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10645 return false; 10646 if (isEmptyRecord(getContext(), Ty, true)) 10647 return true; 10648 const RecordDecl *RD = RTy->getDecl(); 10649 // Unions aren't eligible unless they're empty (which is caught above). 10650 if (RD->isUnion()) 10651 return false; 10652 int ZeroWidthBitFieldCount = 0; 10653 for (const FieldDecl *FD : RD->fields()) { 10654 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10655 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10656 QualType QTy = FD->getType(); 10657 if (FD->isBitField()) { 10658 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10659 // Allow a bitfield with a type greater than XLen as long as the 10660 // bitwidth is XLen or less. 10661 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10662 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10663 if (BitWidth == 0) { 10664 ZeroWidthBitFieldCount++; 10665 continue; 10666 } 10667 } 10668 10669 bool Ret = detectFPCCEligibleStructHelper( 10670 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10671 Field1Ty, Field1Off, Field2Ty, Field2Off); 10672 if (!Ret) 10673 return false; 10674 10675 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10676 // or int+fp structs, but are ignored for a struct with an fp field and 10677 // any number of zero-width bitfields. 10678 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10679 return false; 10680 } 10681 return Field1Ty != nullptr; 10682 } 10683 10684 return false; 10685 } 10686 10687 // Determine if a struct is eligible for passing according to the floating 10688 // point calling convention (i.e., when flattened it contains a single fp 10689 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10690 // NeededArgGPRs are incremented appropriately. 10691 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10692 CharUnits &Field1Off, 10693 llvm::Type *&Field2Ty, 10694 CharUnits &Field2Off, 10695 int &NeededArgGPRs, 10696 int &NeededArgFPRs) const { 10697 Field1Ty = nullptr; 10698 Field2Ty = nullptr; 10699 NeededArgGPRs = 0; 10700 NeededArgFPRs = 0; 10701 bool IsCandidate = detectFPCCEligibleStructHelper( 10702 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10703 // Not really a candidate if we have a single int but no float. 10704 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10705 return false; 10706 if (!IsCandidate) 10707 return false; 10708 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10709 NeededArgFPRs++; 10710 else if (Field1Ty) 10711 NeededArgGPRs++; 10712 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10713 NeededArgFPRs++; 10714 else if (Field2Ty) 10715 NeededArgGPRs++; 10716 return true; 10717 } 10718 10719 // Call getCoerceAndExpand for the two-element flattened struct described by 10720 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10721 // appropriate coerceToType and unpaddedCoerceToType. 10722 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10723 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10724 CharUnits Field2Off) const { 10725 SmallVector<llvm::Type *, 3> CoerceElts; 10726 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10727 if (!Field1Off.isZero()) 10728 CoerceElts.push_back(llvm::ArrayType::get( 10729 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10730 10731 CoerceElts.push_back(Field1Ty); 10732 UnpaddedCoerceElts.push_back(Field1Ty); 10733 10734 if (!Field2Ty) { 10735 return ABIArgInfo::getCoerceAndExpand( 10736 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10737 UnpaddedCoerceElts[0]); 10738 } 10739 10740 CharUnits Field2Align = 10741 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10742 CharUnits Field1End = Field1Off + 10743 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10744 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10745 10746 CharUnits Padding = CharUnits::Zero(); 10747 if (Field2Off > Field2OffNoPadNoPack) 10748 Padding = Field2Off - Field2OffNoPadNoPack; 10749 else if (Field2Off != Field2Align && Field2Off > Field1End) 10750 Padding = Field2Off - Field1End; 10751 10752 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10753 10754 if (!Padding.isZero()) 10755 CoerceElts.push_back(llvm::ArrayType::get( 10756 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10757 10758 CoerceElts.push_back(Field2Ty); 10759 UnpaddedCoerceElts.push_back(Field2Ty); 10760 10761 auto CoerceToType = 10762 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10763 auto UnpaddedCoerceToType = 10764 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10765 10766 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10767 } 10768 10769 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10770 int &ArgGPRsLeft, 10771 int &ArgFPRsLeft) const { 10772 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10773 Ty = useFirstFieldIfTransparentUnion(Ty); 10774 10775 // Structures with either a non-trivial destructor or a non-trivial 10776 // copy constructor are always passed indirectly. 10777 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10778 if (ArgGPRsLeft) 10779 ArgGPRsLeft -= 1; 10780 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10781 CGCXXABI::RAA_DirectInMemory); 10782 } 10783 10784 // Ignore empty structs/unions. 10785 if (isEmptyRecord(getContext(), Ty, true)) 10786 return ABIArgInfo::getIgnore(); 10787 10788 uint64_t Size = getContext().getTypeSize(Ty); 10789 10790 // Pass floating point values via FPRs if possible. 10791 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10792 FLen >= Size && ArgFPRsLeft) { 10793 ArgFPRsLeft--; 10794 return ABIArgInfo::getDirect(); 10795 } 10796 10797 // Complex types for the hard float ABI must be passed direct rather than 10798 // using CoerceAndExpand. 10799 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10800 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10801 if (getContext().getTypeSize(EltTy) <= FLen) { 10802 ArgFPRsLeft -= 2; 10803 return ABIArgInfo::getDirect(); 10804 } 10805 } 10806 10807 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10808 llvm::Type *Field1Ty = nullptr; 10809 llvm::Type *Field2Ty = nullptr; 10810 CharUnits Field1Off = CharUnits::Zero(); 10811 CharUnits Field2Off = CharUnits::Zero(); 10812 int NeededArgGPRs = 0; 10813 int NeededArgFPRs = 0; 10814 bool IsCandidate = 10815 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10816 NeededArgGPRs, NeededArgFPRs); 10817 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10818 NeededArgFPRs <= ArgFPRsLeft) { 10819 ArgGPRsLeft -= NeededArgGPRs; 10820 ArgFPRsLeft -= NeededArgFPRs; 10821 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10822 Field2Off); 10823 } 10824 } 10825 10826 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10827 bool MustUseStack = false; 10828 // Determine the number of GPRs needed to pass the current argument 10829 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10830 // register pairs, so may consume 3 registers. 10831 int NeededArgGPRs = 1; 10832 if (!IsFixed && NeededAlign == 2 * XLen) 10833 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10834 else if (Size > XLen && Size <= 2 * XLen) 10835 NeededArgGPRs = 2; 10836 10837 if (NeededArgGPRs > ArgGPRsLeft) { 10838 MustUseStack = true; 10839 NeededArgGPRs = ArgGPRsLeft; 10840 } 10841 10842 ArgGPRsLeft -= NeededArgGPRs; 10843 10844 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10845 // Treat an enum type as its underlying type. 10846 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10847 Ty = EnumTy->getDecl()->getIntegerType(); 10848 10849 // All integral types are promoted to XLen width, unless passed on the 10850 // stack. 10851 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10852 return extendType(Ty); 10853 } 10854 10855 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10856 if (EIT->getNumBits() < XLen && !MustUseStack) 10857 return extendType(Ty); 10858 if (EIT->getNumBits() > 128 || 10859 (!getContext().getTargetInfo().hasInt128Type() && 10860 EIT->getNumBits() > 64)) 10861 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10862 } 10863 10864 return ABIArgInfo::getDirect(); 10865 } 10866 10867 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10868 // so coerce to integers. 10869 if (Size <= 2 * XLen) { 10870 unsigned Alignment = getContext().getTypeAlign(Ty); 10871 10872 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10873 // required, and a 2-element XLen array if only XLen alignment is required. 10874 if (Size <= XLen) { 10875 return ABIArgInfo::getDirect( 10876 llvm::IntegerType::get(getVMContext(), XLen)); 10877 } else if (Alignment == 2 * XLen) { 10878 return ABIArgInfo::getDirect( 10879 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10880 } else { 10881 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10882 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10883 } 10884 } 10885 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10886 } 10887 10888 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10889 if (RetTy->isVoidType()) 10890 return ABIArgInfo::getIgnore(); 10891 10892 int ArgGPRsLeft = 2; 10893 int ArgFPRsLeft = FLen ? 2 : 0; 10894 10895 // The rules for return and argument types are the same, so defer to 10896 // classifyArgumentType. 10897 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10898 ArgFPRsLeft); 10899 } 10900 10901 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10902 QualType Ty) const { 10903 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10904 10905 // Empty records are ignored for parameter passing purposes. 10906 if (isEmptyRecord(getContext(), Ty, true)) { 10907 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10908 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10909 return Addr; 10910 } 10911 10912 auto TInfo = getContext().getTypeInfoInChars(Ty); 10913 10914 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10915 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10916 10917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10918 SlotSize, /*AllowHigherAlign=*/true); 10919 } 10920 10921 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10922 int TySize = getContext().getTypeSize(Ty); 10923 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10924 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10925 return ABIArgInfo::getSignExtend(Ty); 10926 return ABIArgInfo::getExtend(Ty); 10927 } 10928 10929 namespace { 10930 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10931 public: 10932 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10933 unsigned FLen) 10934 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10935 10936 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10937 CodeGen::CodeGenModule &CGM) const override { 10938 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10939 if (!FD) return; 10940 10941 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10942 if (!Attr) 10943 return; 10944 10945 const char *Kind; 10946 switch (Attr->getInterrupt()) { 10947 case RISCVInterruptAttr::user: Kind = "user"; break; 10948 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10949 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10950 } 10951 10952 auto *Fn = cast<llvm::Function>(GV); 10953 10954 Fn->addFnAttr("interrupt", Kind); 10955 } 10956 }; 10957 } // namespace 10958 10959 //===----------------------------------------------------------------------===// 10960 // VE ABI Implementation. 10961 // 10962 namespace { 10963 class VEABIInfo : public DefaultABIInfo { 10964 public: 10965 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10966 10967 private: 10968 ABIArgInfo classifyReturnType(QualType RetTy) const; 10969 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10970 void computeInfo(CGFunctionInfo &FI) const override; 10971 }; 10972 } // end anonymous namespace 10973 10974 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10975 if (Ty->isAnyComplexType()) 10976 return ABIArgInfo::getDirect(); 10977 uint64_t Size = getContext().getTypeSize(Ty); 10978 if (Size < 64 && Ty->isIntegerType()) 10979 return ABIArgInfo::getExtend(Ty); 10980 return DefaultABIInfo::classifyReturnType(Ty); 10981 } 10982 10983 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10984 if (Ty->isAnyComplexType()) 10985 return ABIArgInfo::getDirect(); 10986 uint64_t Size = getContext().getTypeSize(Ty); 10987 if (Size < 64 && Ty->isIntegerType()) 10988 return ABIArgInfo::getExtend(Ty); 10989 return DefaultABIInfo::classifyArgumentType(Ty); 10990 } 10991 10992 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10993 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10994 for (auto &Arg : FI.arguments()) 10995 Arg.info = classifyArgumentType(Arg.type); 10996 } 10997 10998 namespace { 10999 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11000 public: 11001 VETargetCodeGenInfo(CodeGenTypes &CGT) 11002 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11003 // VE ABI requires the arguments of variadic and prototype-less functions 11004 // are passed in both registers and memory. 11005 bool isNoProtoCallVariadic(const CallArgList &args, 11006 const FunctionNoProtoType *fnType) const override { 11007 return true; 11008 } 11009 }; 11010 } // end anonymous namespace 11011 11012 //===----------------------------------------------------------------------===// 11013 // Driver code 11014 //===----------------------------------------------------------------------===// 11015 11016 bool CodeGenModule::supportsCOMDAT() const { 11017 return getTriple().supportsCOMDAT(); 11018 } 11019 11020 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11021 if (TheTargetCodeGenInfo) 11022 return *TheTargetCodeGenInfo; 11023 11024 // Helper to set the unique_ptr while still keeping the return value. 11025 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11026 this->TheTargetCodeGenInfo.reset(P); 11027 return *P; 11028 }; 11029 11030 const llvm::Triple &Triple = getTarget().getTriple(); 11031 switch (Triple.getArch()) { 11032 default: 11033 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11034 11035 case llvm::Triple::le32: 11036 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11037 case llvm::Triple::m68k: 11038 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11039 case llvm::Triple::mips: 11040 case llvm::Triple::mipsel: 11041 if (Triple.getOS() == llvm::Triple::NaCl) 11042 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11043 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11044 11045 case llvm::Triple::mips64: 11046 case llvm::Triple::mips64el: 11047 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11048 11049 case llvm::Triple::avr: 11050 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11051 11052 case llvm::Triple::aarch64: 11053 case llvm::Triple::aarch64_32: 11054 case llvm::Triple::aarch64_be: { 11055 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11056 if (getTarget().getABI() == "darwinpcs") 11057 Kind = AArch64ABIInfo::DarwinPCS; 11058 else if (Triple.isOSWindows()) 11059 return SetCGInfo( 11060 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11061 11062 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11063 } 11064 11065 case llvm::Triple::wasm32: 11066 case llvm::Triple::wasm64: { 11067 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11068 if (getTarget().getABI() == "experimental-mv") 11069 Kind = WebAssemblyABIInfo::ExperimentalMV; 11070 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11071 } 11072 11073 case llvm::Triple::arm: 11074 case llvm::Triple::armeb: 11075 case llvm::Triple::thumb: 11076 case llvm::Triple::thumbeb: { 11077 if (Triple.getOS() == llvm::Triple::Win32) { 11078 return SetCGInfo( 11079 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11080 } 11081 11082 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11083 StringRef ABIStr = getTarget().getABI(); 11084 if (ABIStr == "apcs-gnu") 11085 Kind = ARMABIInfo::APCS; 11086 else if (ABIStr == "aapcs16") 11087 Kind = ARMABIInfo::AAPCS16_VFP; 11088 else if (CodeGenOpts.FloatABI == "hard" || 11089 (CodeGenOpts.FloatABI != "soft" && 11090 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11091 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11092 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11093 Kind = ARMABIInfo::AAPCS_VFP; 11094 11095 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11096 } 11097 11098 case llvm::Triple::ppc: { 11099 if (Triple.isOSAIX()) 11100 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11101 11102 bool IsSoftFloat = 11103 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11104 bool RetSmallStructInRegABI = 11105 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11106 return SetCGInfo( 11107 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11108 } 11109 case llvm::Triple::ppcle: { 11110 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11111 bool RetSmallStructInRegABI = 11112 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11113 return SetCGInfo( 11114 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11115 } 11116 case llvm::Triple::ppc64: 11117 if (Triple.isOSAIX()) 11118 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11119 11120 if (Triple.isOSBinFormatELF()) { 11121 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11122 if (getTarget().getABI() == "elfv2") 11123 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11124 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11125 11126 return SetCGInfo( 11127 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11128 } 11129 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11130 case llvm::Triple::ppc64le: { 11131 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11132 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11133 if (getTarget().getABI() == "elfv1") 11134 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11135 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11136 11137 return SetCGInfo( 11138 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11139 } 11140 11141 case llvm::Triple::nvptx: 11142 case llvm::Triple::nvptx64: 11143 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11144 11145 case llvm::Triple::msp430: 11146 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11147 11148 case llvm::Triple::riscv32: 11149 case llvm::Triple::riscv64: { 11150 StringRef ABIStr = getTarget().getABI(); 11151 unsigned XLen = getTarget().getPointerWidth(0); 11152 unsigned ABIFLen = 0; 11153 if (ABIStr.endswith("f")) 11154 ABIFLen = 32; 11155 else if (ABIStr.endswith("d")) 11156 ABIFLen = 64; 11157 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11158 } 11159 11160 case llvm::Triple::systemz: { 11161 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11162 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11163 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11164 } 11165 11166 case llvm::Triple::tce: 11167 case llvm::Triple::tcele: 11168 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11169 11170 case llvm::Triple::x86: { 11171 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11172 bool RetSmallStructInRegABI = 11173 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11174 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11175 11176 if (Triple.getOS() == llvm::Triple::Win32) { 11177 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11178 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11179 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11180 } else { 11181 return SetCGInfo(new X86_32TargetCodeGenInfo( 11182 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11183 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11184 CodeGenOpts.FloatABI == "soft")); 11185 } 11186 } 11187 11188 case llvm::Triple::x86_64: { 11189 StringRef ABI = getTarget().getABI(); 11190 X86AVXABILevel AVXLevel = 11191 (ABI == "avx512" 11192 ? X86AVXABILevel::AVX512 11193 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11194 11195 switch (Triple.getOS()) { 11196 case llvm::Triple::Win32: 11197 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11198 default: 11199 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11200 } 11201 } 11202 case llvm::Triple::hexagon: 11203 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11204 case llvm::Triple::lanai: 11205 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11206 case llvm::Triple::r600: 11207 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11208 case llvm::Triple::amdgcn: 11209 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11210 case llvm::Triple::sparc: 11211 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11212 case llvm::Triple::sparcv9: 11213 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11214 case llvm::Triple::xcore: 11215 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11216 case llvm::Triple::arc: 11217 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11218 case llvm::Triple::spir: 11219 case llvm::Triple::spir64: 11220 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11221 case llvm::Triple::ve: 11222 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11223 } 11224 } 11225 11226 /// Create an OpenCL kernel for an enqueued block. 11227 /// 11228 /// The kernel has the same function type as the block invoke function. Its 11229 /// name is the name of the block invoke function postfixed with "_kernel". 11230 /// It simply calls the block invoke function then returns. 11231 llvm::Function * 11232 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11233 llvm::Function *Invoke, 11234 llvm::Value *BlockLiteral) const { 11235 auto *InvokeFT = Invoke->getFunctionType(); 11236 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11237 for (auto &P : InvokeFT->params()) 11238 ArgTys.push_back(P); 11239 auto &C = CGF.getLLVMContext(); 11240 std::string Name = Invoke->getName().str() + "_kernel"; 11241 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11242 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11243 &CGF.CGM.getModule()); 11244 auto IP = CGF.Builder.saveIP(); 11245 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11246 auto &Builder = CGF.Builder; 11247 Builder.SetInsertPoint(BB); 11248 llvm::SmallVector<llvm::Value *, 2> Args; 11249 for (auto &A : F->args()) 11250 Args.push_back(&A); 11251 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11252 call->setCallingConv(Invoke->getCallingConv()); 11253 Builder.CreateRetVoid(); 11254 Builder.restoreIP(IP); 11255 return F; 11256 } 11257 11258 /// Create an OpenCL kernel for an enqueued block. 11259 /// 11260 /// The type of the first argument (the block literal) is the struct type 11261 /// of the block literal instead of a pointer type. The first argument 11262 /// (block literal) is passed directly by value to the kernel. The kernel 11263 /// allocates the same type of struct on stack and stores the block literal 11264 /// to it and passes its pointer to the block invoke function. The kernel 11265 /// has "enqueued-block" function attribute and kernel argument metadata. 11266 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11267 CodeGenFunction &CGF, llvm::Function *Invoke, 11268 llvm::Value *BlockLiteral) const { 11269 auto &Builder = CGF.Builder; 11270 auto &C = CGF.getLLVMContext(); 11271 11272 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11273 auto *InvokeFT = Invoke->getFunctionType(); 11274 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11275 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11276 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11277 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11278 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11279 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11280 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11281 11282 ArgTys.push_back(BlockTy); 11283 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11284 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11285 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11286 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11287 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11288 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11289 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11290 ArgTys.push_back(InvokeFT->getParamType(I)); 11291 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11292 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11293 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11294 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11295 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11296 ArgNames.push_back( 11297 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11298 } 11299 std::string Name = Invoke->getName().str() + "_kernel"; 11300 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11301 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11302 &CGF.CGM.getModule()); 11303 F->addFnAttr("enqueued-block"); 11304 auto IP = CGF.Builder.saveIP(); 11305 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11306 Builder.SetInsertPoint(BB); 11307 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11308 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11309 BlockPtr->setAlignment(BlockAlign); 11310 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11311 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11312 llvm::SmallVector<llvm::Value *, 2> Args; 11313 Args.push_back(Cast); 11314 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11315 Args.push_back(I); 11316 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11317 call->setCallingConv(Invoke->getCallingConv()); 11318 Builder.CreateRetVoid(); 11319 Builder.restoreIP(IP); 11320 11321 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11322 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11323 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11324 F->setMetadata("kernel_arg_base_type", 11325 llvm::MDNode::get(C, ArgBaseTypeNames)); 11326 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11327 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11328 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11329 11330 return F; 11331 } 11332