1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) 144 return CGCXXABI::RAA_Default; 145 return CXXABI.getRecordArgABI(RD); 146 } 147 148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 149 CGCXXABI &CXXABI) { 150 const RecordType *RT = T->getAs<RecordType>(); 151 if (!RT) 152 return CGCXXABI::RAA_Default; 153 return getRecordArgABI(RT, CXXABI); 154 } 155 156 /// Pass transparent unions as if they were the type of the first element. Sema 157 /// should ensure that all elements of the union have the same "machine type". 158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 159 if (const RecordType *UT = Ty->getAsUnionType()) { 160 const RecordDecl *UD = UT->getDecl(); 161 if (UD->hasAttr<TransparentUnionAttr>()) { 162 assert(!UD->field_empty() && "sema created an empty transparent union"); 163 return UD->field_begin()->getType(); 164 } 165 } 166 return Ty; 167 } 168 169 CGCXXABI &ABIInfo::getCXXABI() const { 170 return CGT.getCXXABI(); 171 } 172 173 ASTContext &ABIInfo::getContext() const { 174 return CGT.getContext(); 175 } 176 177 llvm::LLVMContext &ABIInfo::getVMContext() const { 178 return CGT.getLLVMContext(); 179 } 180 181 const llvm::DataLayout &ABIInfo::getDataLayout() const { 182 return CGT.getDataLayout(); 183 } 184 185 const TargetInfo &ABIInfo::getTarget() const { 186 return CGT.getTarget(); 187 } 188 189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 190 return CGT.getCodeGenOpts(); 191 } 192 193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 194 195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 196 return false; 197 } 198 199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 200 uint64_t Members) const { 201 return false; 202 } 203 204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 205 raw_ostream &OS = llvm::errs(); 206 OS << "(ABIArgInfo Kind="; 207 switch (TheKind) { 208 case Direct: 209 OS << "Direct Type="; 210 if (llvm::Type *Ty = getCoerceToType()) 211 Ty->print(OS); 212 else 213 OS << "null"; 214 break; 215 case Extend: 216 OS << "Extend"; 217 break; 218 case Ignore: 219 OS << "Ignore"; 220 break; 221 case InAlloca: 222 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 223 break; 224 case Indirect: 225 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 226 << " ByVal=" << getIndirectByVal() 227 << " Realign=" << getIndirectRealign(); 228 break; 229 case Expand: 230 OS << "Expand"; 231 break; 232 case CoerceAndExpand: 233 OS << "CoerceAndExpand Type="; 234 getCoerceAndExpandType()->print(OS); 235 break; 236 } 237 OS << ")\n"; 238 } 239 240 // Dynamically round a pointer up to a multiple of the given alignment. 241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 242 llvm::Value *Ptr, 243 CharUnits Align) { 244 llvm::Value *PtrAsInt = Ptr; 245 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 246 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 247 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 248 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 249 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 251 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 252 Ptr->getType(), 253 Ptr->getName() + ".aligned"); 254 return PtrAsInt; 255 } 256 257 /// Emit va_arg for a platform using the common void* representation, 258 /// where arguments are simply emitted in an array of slots on the stack. 259 /// 260 /// This version implements the core direct-value passing rules. 261 /// 262 /// \param SlotSize - The size and alignment of a stack slot. 263 /// Each argument will be allocated to a multiple of this number of 264 /// slots, and all the slots will be aligned to this value. 265 /// \param AllowHigherAlign - The slot alignment is not a cap; 266 /// an argument type with an alignment greater than the slot size 267 /// will be emitted on a higher-alignment address, potentially 268 /// leaving one or more empty slots behind as padding. If this 269 /// is false, the returned address might be less-aligned than 270 /// DirectAlign. 271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 272 Address VAListAddr, 273 llvm::Type *DirectTy, 274 CharUnits DirectSize, 275 CharUnits DirectAlign, 276 CharUnits SlotSize, 277 bool AllowHigherAlign) { 278 // Cast the element type to i8* if necessary. Some platforms define 279 // va_list as a struct containing an i8* instead of just an i8*. 280 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 281 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 282 283 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 284 285 // If the CC aligns values higher than the slot size, do so if needed. 286 Address Addr = Address::invalid(); 287 if (AllowHigherAlign && DirectAlign > SlotSize) { 288 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 289 DirectAlign); 290 } else { 291 Addr = Address(Ptr, SlotSize); 292 } 293 294 // Advance the pointer past the argument, then store that back. 295 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 296 llvm::Value *NextPtr = 297 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 298 "argp.next"); 299 CGF.Builder.CreateStore(NextPtr, VAListAddr); 300 301 // If the argument is smaller than a slot, and this is a big-endian 302 // target, the argument will be right-adjusted in its slot. 303 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 304 !DirectTy->isStructTy()) { 305 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 306 } 307 308 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 309 return Addr; 310 } 311 312 /// Emit va_arg for a platform using the common void* representation, 313 /// where arguments are simply emitted in an array of slots on the stack. 314 /// 315 /// \param IsIndirect - Values of this type are passed indirectly. 316 /// \param ValueInfo - The size and alignment of this type, generally 317 /// computed with getContext().getTypeInfoInChars(ValueTy). 318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 319 /// Each argument will be allocated to a multiple of this number of 320 /// slots, and all the slots will be aligned to this value. 321 /// \param AllowHigherAlign - The slot alignment is not a cap; 322 /// an argument type with an alignment greater than the slot size 323 /// will be emitted on a higher-alignment address, potentially 324 /// leaving one or more empty slots behind as padding. 325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 326 QualType ValueTy, bool IsIndirect, 327 std::pair<CharUnits, CharUnits> ValueInfo, 328 CharUnits SlotSizeAndAlign, 329 bool AllowHigherAlign) { 330 // The size and alignment of the value that was passed directly. 331 CharUnits DirectSize, DirectAlign; 332 if (IsIndirect) { 333 DirectSize = CGF.getPointerSize(); 334 DirectAlign = CGF.getPointerAlign(); 335 } else { 336 DirectSize = ValueInfo.first; 337 DirectAlign = ValueInfo.second; 338 } 339 340 // Cast the address we've calculated to the right type. 341 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 342 if (IsIndirect) 343 DirectTy = DirectTy->getPointerTo(0); 344 345 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 346 DirectSize, DirectAlign, 347 SlotSizeAndAlign, 348 AllowHigherAlign); 349 350 if (IsIndirect) { 351 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 352 } 353 354 return Addr; 355 356 } 357 358 static Address emitMergePHI(CodeGenFunction &CGF, 359 Address Addr1, llvm::BasicBlock *Block1, 360 Address Addr2, llvm::BasicBlock *Block2, 361 const llvm::Twine &Name = "") { 362 assert(Addr1.getType() == Addr2.getType()); 363 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 364 PHI->addIncoming(Addr1.getPointer(), Block1); 365 PHI->addIncoming(Addr2.getPointer(), Block2); 366 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 367 return Address(PHI, Align); 368 } 369 370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 371 372 // If someone can figure out a general rule for this, that would be great. 373 // It's probably just doomed to be platform-dependent, though. 374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 375 // Verified for: 376 // x86-64 FreeBSD, Linux, Darwin 377 // x86-32 FreeBSD, Linux, Darwin 378 // PowerPC Linux, Darwin 379 // ARM Darwin (*not* EABI) 380 // AArch64 Linux 381 return 32; 382 } 383 384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 385 const FunctionNoProtoType *fnType) const { 386 // The following conventions are known to require this to be false: 387 // x86_stdcall 388 // MIPS 389 // For everything else, we just prefer false unless we opt out. 390 return false; 391 } 392 393 void 394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 395 llvm::SmallString<24> &Opt) const { 396 // This assumes the user is passing a library name like "rt" instead of a 397 // filename like "librt.a/so", and that they don't care whether it's static or 398 // dynamic. 399 Opt = "-l"; 400 Opt += Lib; 401 } 402 403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 404 // OpenCL kernels are called via an explicit runtime API with arguments 405 // set with clSetKernelArg(), not as normal sub-functions. 406 // Return SPIR_KERNEL by default as the kernel calling convention to 407 // ensure the fingerprint is fixed such way that each OpenCL argument 408 // gets one matching argument in the produced kernel function argument 409 // list to enable feasible implementation of clSetKernelArg() with 410 // aggregates etc. In case we would use the default C calling conv here, 411 // clSetKernelArg() might break depending on the target-specific 412 // conventions; different targets might split structs passed as values 413 // to multiple function arguments etc. 414 return llvm::CallingConv::SPIR_KERNEL; 415 } 416 417 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 418 llvm::PointerType *T, QualType QT) const { 419 return llvm::ConstantPointerNull::get(T); 420 } 421 422 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 423 const VarDecl *D) const { 424 assert(!CGM.getLangOpts().OpenCL && 425 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 426 "Address space agnostic languages only"); 427 return D ? D->getType().getAddressSpace() : LangAS::Default; 428 } 429 430 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 431 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 432 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 433 // Since target may map different address spaces in AST to the same address 434 // space, an address space conversion may end up as a bitcast. 435 if (auto *C = dyn_cast<llvm::Constant>(Src)) 436 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 437 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 438 } 439 440 llvm::Constant * 441 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 442 LangAS SrcAddr, LangAS DestAddr, 443 llvm::Type *DestTy) const { 444 // Since target may map different address spaces in AST to the same address 445 // space, an address space conversion may end up as a bitcast. 446 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 447 } 448 449 llvm::SyncScope::ID 450 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 451 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 452 } 453 454 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 455 456 /// isEmptyField - Return true iff a the field is "empty", that is it 457 /// is an unnamed bit-field or an (array of) empty record(s). 458 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 459 bool AllowArrays) { 460 if (FD->isUnnamedBitfield()) 461 return true; 462 463 QualType FT = FD->getType(); 464 465 // Constant arrays of empty records count as empty, strip them off. 466 // Constant arrays of zero length always count as empty. 467 if (AllowArrays) 468 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 469 if (AT->getSize() == 0) 470 return true; 471 FT = AT->getElementType(); 472 } 473 474 const RecordType *RT = FT->getAs<RecordType>(); 475 if (!RT) 476 return false; 477 478 // C++ record fields are never empty, at least in the Itanium ABI. 479 // 480 // FIXME: We should use a predicate for whether this behavior is true in the 481 // current ABI. 482 if (isa<CXXRecordDecl>(RT->getDecl())) 483 return false; 484 485 return isEmptyRecord(Context, FT, AllowArrays); 486 } 487 488 /// isEmptyRecord - Return true iff a structure contains only empty 489 /// fields. Note that a structure with a flexible array member is not 490 /// considered empty. 491 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 492 const RecordType *RT = T->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 const RecordDecl *RD = RT->getDecl(); 496 if (RD->hasFlexibleArrayMember()) 497 return false; 498 499 // If this is a C++ record, check the bases first. 500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 501 for (const auto &I : CXXRD->bases()) 502 if (!isEmptyRecord(Context, I.getType(), true)) 503 return false; 504 505 for (const auto *I : RD->fields()) 506 if (!isEmptyField(Context, I, AllowArrays)) 507 return false; 508 return true; 509 } 510 511 /// isSingleElementStruct - Determine if a structure is a "single 512 /// element struct", i.e. it has exactly one non-empty field or 513 /// exactly one field which is itself a single element 514 /// struct. Structures with flexible array members are never 515 /// considered single element structs. 516 /// 517 /// \return The field declaration for the single non-empty field, if 518 /// it exists. 519 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 520 const RecordType *RT = T->getAs<RecordType>(); 521 if (!RT) 522 return nullptr; 523 524 const RecordDecl *RD = RT->getDecl(); 525 if (RD->hasFlexibleArrayMember()) 526 return nullptr; 527 528 const Type *Found = nullptr; 529 530 // If this is a C++ record, check the bases first. 531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 532 for (const auto &I : CXXRD->bases()) { 533 // Ignore empty records. 534 if (isEmptyRecord(Context, I.getType(), true)) 535 continue; 536 537 // If we already found an element then this isn't a single-element struct. 538 if (Found) 539 return nullptr; 540 541 // If this is non-empty and not a single element struct, the composite 542 // cannot be a single element struct. 543 Found = isSingleElementStruct(I.getType(), Context); 544 if (!Found) 545 return nullptr; 546 } 547 } 548 549 // Check for single element. 550 for (const auto *FD : RD->fields()) { 551 QualType FT = FD->getType(); 552 553 // Ignore empty fields. 554 if (isEmptyField(Context, FD, true)) 555 continue; 556 557 // If we already found an element then this isn't a single-element 558 // struct. 559 if (Found) 560 return nullptr; 561 562 // Treat single element arrays as the element. 563 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 564 if (AT->getSize().getZExtValue() != 1) 565 break; 566 FT = AT->getElementType(); 567 } 568 569 if (!isAggregateTypeForABI(FT)) { 570 Found = FT.getTypePtr(); 571 } else { 572 Found = isSingleElementStruct(FT, Context); 573 if (!Found) 574 return nullptr; 575 } 576 } 577 578 // We don't consider a struct a single-element struct if it has 579 // padding beyond the element type. 580 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 581 return nullptr; 582 583 return Found; 584 } 585 586 namespace { 587 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 588 const ABIArgInfo &AI) { 589 // This default implementation defers to the llvm backend's va_arg 590 // instruction. It can handle only passing arguments directly 591 // (typically only handled in the backend for primitive types), or 592 // aggregates passed indirectly by pointer (NOTE: if the "byval" 593 // flag has ABI impact in the callee, this implementation cannot 594 // work.) 595 596 // Only a few cases are covered here at the moment -- those needed 597 // by the default abi. 598 llvm::Value *Val; 599 600 if (AI.isIndirect()) { 601 assert(!AI.getPaddingType() && 602 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 603 assert( 604 !AI.getIndirectRealign() && 605 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 606 607 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 608 CharUnits TyAlignForABI = TyInfo.second; 609 610 llvm::Type *BaseTy = 611 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 612 llvm::Value *Addr = 613 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 614 return Address(Addr, TyAlignForABI); 615 } else { 616 assert((AI.isDirect() || AI.isExtend()) && 617 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 618 619 assert(!AI.getInReg() && 620 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 621 assert(!AI.getPaddingType() && 622 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 623 assert(!AI.getDirectOffset() && 624 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 625 assert(!AI.getCoerceToType() && 626 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 627 628 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 629 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 630 CGF.Builder.CreateStore(Val, Temp); 631 return Temp; 632 } 633 } 634 635 /// DefaultABIInfo - The default implementation for ABI specific 636 /// details. This implementation provides information which results in 637 /// self-consistent and sensible LLVM IR generation, but does not 638 /// conform to any particular ABI. 639 class DefaultABIInfo : public ABIInfo { 640 public: 641 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 642 643 ABIArgInfo classifyReturnType(QualType RetTy) const; 644 ABIArgInfo classifyArgumentType(QualType RetTy) const; 645 646 void computeInfo(CGFunctionInfo &FI) const override { 647 if (!getCXXABI().classifyReturnType(FI)) 648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 649 for (auto &I : FI.arguments()) 650 I.info = classifyArgumentType(I.type); 651 } 652 653 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 654 QualType Ty) const override { 655 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 656 } 657 }; 658 659 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 660 public: 661 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 662 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 663 }; 664 665 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 666 Ty = useFirstFieldIfTransparentUnion(Ty); 667 668 if (isAggregateTypeForABI(Ty)) { 669 // Records with non-trivial destructors/copy-constructors should not be 670 // passed by value. 671 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 673 674 return getNaturalAlignIndirect(Ty); 675 } 676 677 // Treat an enum type as its underlying type. 678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 679 Ty = EnumTy->getDecl()->getIntegerType(); 680 681 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 682 : ABIArgInfo::getDirect()); 683 } 684 685 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 686 if (RetTy->isVoidType()) 687 return ABIArgInfo::getIgnore(); 688 689 if (isAggregateTypeForABI(RetTy)) 690 return getNaturalAlignIndirect(RetTy); 691 692 // Treat an enum type as its underlying type. 693 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 694 RetTy = EnumTy->getDecl()->getIntegerType(); 695 696 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 697 : ABIArgInfo::getDirect()); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // WebAssembly ABI Implementation 702 // 703 // This is a very simple ABI that relies a lot on DefaultABIInfo. 704 //===----------------------------------------------------------------------===// 705 706 class WebAssemblyABIInfo final : public DefaultABIInfo { 707 public: 708 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 709 : DefaultABIInfo(CGT) {} 710 711 private: 712 ABIArgInfo classifyReturnType(QualType RetTy) const; 713 ABIArgInfo classifyArgumentType(QualType Ty) const; 714 715 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 716 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 717 // overload them. 718 void computeInfo(CGFunctionInfo &FI) const override { 719 if (!getCXXABI().classifyReturnType(FI)) 720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 721 for (auto &Arg : FI.arguments()) 722 Arg.info = classifyArgumentType(Arg.type); 723 } 724 725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 726 QualType Ty) const override; 727 }; 728 729 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 730 public: 731 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 732 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 733 }; 734 735 /// \brief Classify argument of given type \p Ty. 736 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 737 Ty = useFirstFieldIfTransparentUnion(Ty); 738 739 if (isAggregateTypeForABI(Ty)) { 740 // Records with non-trivial destructors/copy-constructors should not be 741 // passed by value. 742 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 743 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 744 // Ignore empty structs/unions. 745 if (isEmptyRecord(getContext(), Ty, true)) 746 return ABIArgInfo::getIgnore(); 747 // Lower single-element structs to just pass a regular value. TODO: We 748 // could do reasonable-size multiple-element structs too, using getExpand(), 749 // though watch out for things like bitfields. 750 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 751 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 752 } 753 754 // Otherwise just do the default thing. 755 return DefaultABIInfo::classifyArgumentType(Ty); 756 } 757 758 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 759 if (isAggregateTypeForABI(RetTy)) { 760 // Records with non-trivial destructors/copy-constructors should not be 761 // returned by value. 762 if (!getRecordArgABI(RetTy, getCXXABI())) { 763 // Ignore empty structs/unions. 764 if (isEmptyRecord(getContext(), RetTy, true)) 765 return ABIArgInfo::getIgnore(); 766 // Lower single-element structs to just return a regular value. TODO: We 767 // could do reasonable-size multiple-element structs too, using 768 // ABIArgInfo::getDirect(). 769 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 770 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 771 } 772 } 773 774 // Otherwise just do the default thing. 775 return DefaultABIInfo::classifyReturnType(RetTy); 776 } 777 778 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 779 QualType Ty) const { 780 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 781 getContext().getTypeInfoInChars(Ty), 782 CharUnits::fromQuantity(4), 783 /*AllowHigherAlign=*/ true); 784 } 785 786 //===----------------------------------------------------------------------===// 787 // le32/PNaCl bitcode ABI Implementation 788 // 789 // This is a simplified version of the x86_32 ABI. Arguments and return values 790 // are always passed on the stack. 791 //===----------------------------------------------------------------------===// 792 793 class PNaClABIInfo : public ABIInfo { 794 public: 795 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 796 797 ABIArgInfo classifyReturnType(QualType RetTy) const; 798 ABIArgInfo classifyArgumentType(QualType RetTy) const; 799 800 void computeInfo(CGFunctionInfo &FI) const override; 801 Address EmitVAArg(CodeGenFunction &CGF, 802 Address VAListAddr, QualType Ty) const override; 803 }; 804 805 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 806 public: 807 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 808 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 809 }; 810 811 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 812 if (!getCXXABI().classifyReturnType(FI)) 813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 814 815 for (auto &I : FI.arguments()) 816 I.info = classifyArgumentType(I.type); 817 } 818 819 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 820 QualType Ty) const { 821 // The PNaCL ABI is a bit odd, in that varargs don't use normal 822 // function classification. Structs get passed directly for varargs 823 // functions, through a rewriting transform in 824 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 825 // this target to actually support a va_arg instructions with an 826 // aggregate type, unlike other targets. 827 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 828 } 829 830 /// \brief Classify argument of given type \p Ty. 831 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 832 if (isAggregateTypeForABI(Ty)) { 833 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 834 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 835 return getNaturalAlignIndirect(Ty); 836 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 837 // Treat an enum type as its underlying type. 838 Ty = EnumTy->getDecl()->getIntegerType(); 839 } else if (Ty->isFloatingType()) { 840 // Floating-point types don't go inreg. 841 return ABIArgInfo::getDirect(); 842 } 843 844 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 845 : ABIArgInfo::getDirect()); 846 } 847 848 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 849 if (RetTy->isVoidType()) 850 return ABIArgInfo::getIgnore(); 851 852 // In the PNaCl ABI we always return records/structures on the stack. 853 if (isAggregateTypeForABI(RetTy)) 854 return getNaturalAlignIndirect(RetTy); 855 856 // Treat an enum type as its underlying type. 857 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 858 RetTy = EnumTy->getDecl()->getIntegerType(); 859 860 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 861 : ABIArgInfo::getDirect()); 862 } 863 864 /// IsX86_MMXType - Return true if this is an MMX type. 865 bool IsX86_MMXType(llvm::Type *IRType) { 866 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 867 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 868 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 869 IRType->getScalarSizeInBits() != 64; 870 } 871 872 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 873 StringRef Constraint, 874 llvm::Type* Ty) { 875 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 876 .Cases("y", "&y", "^Ym", true) 877 .Default(false); 878 if (IsMMXCons && Ty->isVectorTy()) { 879 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 880 // Invalid MMX constraint 881 return nullptr; 882 } 883 884 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 885 } 886 887 // No operation needed 888 return Ty; 889 } 890 891 /// Returns true if this type can be passed in SSE registers with the 892 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 893 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 894 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 895 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 896 if (BT->getKind() == BuiltinType::LongDouble) { 897 if (&Context.getTargetInfo().getLongDoubleFormat() == 898 &llvm::APFloat::x87DoubleExtended()) 899 return false; 900 } 901 return true; 902 } 903 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 904 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 905 // registers specially. 906 unsigned VecSize = Context.getTypeSize(VT); 907 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 908 return true; 909 } 910 return false; 911 } 912 913 /// Returns true if this aggregate is small enough to be passed in SSE registers 914 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 915 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 916 return NumMembers <= 4; 917 } 918 919 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 920 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 921 auto AI = ABIArgInfo::getDirect(T); 922 AI.setInReg(true); 923 AI.setCanBeFlattened(false); 924 return AI; 925 } 926 927 //===----------------------------------------------------------------------===// 928 // X86-32 ABI Implementation 929 //===----------------------------------------------------------------------===// 930 931 /// \brief Similar to llvm::CCState, but for Clang. 932 struct CCState { 933 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 934 935 unsigned CC; 936 unsigned FreeRegs; 937 unsigned FreeSSERegs; 938 }; 939 940 enum { 941 // Vectorcall only allows the first 6 parameters to be passed in registers. 942 VectorcallMaxParamNumAsReg = 6 943 }; 944 945 /// X86_32ABIInfo - The X86-32 ABI information. 946 class X86_32ABIInfo : public SwiftABIInfo { 947 enum Class { 948 Integer, 949 Float 950 }; 951 952 static const unsigned MinABIStackAlignInBytes = 4; 953 954 bool IsDarwinVectorABI; 955 bool IsRetSmallStructInRegABI; 956 bool IsWin32StructABI; 957 bool IsSoftFloatABI; 958 bool IsMCUABI; 959 unsigned DefaultNumRegisterParameters; 960 961 static bool isRegisterSize(unsigned Size) { 962 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 963 } 964 965 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 966 // FIXME: Assumes vectorcall is in use. 967 return isX86VectorTypeForVectorCall(getContext(), Ty); 968 } 969 970 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 971 uint64_t NumMembers) const override { 972 // FIXME: Assumes vectorcall is in use. 973 return isX86VectorCallAggregateSmallEnough(NumMembers); 974 } 975 976 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 977 978 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 979 /// such that the argument will be passed in memory. 980 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 981 982 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 983 984 /// \brief Return the alignment to use for the given type on the stack. 985 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 986 987 Class classify(QualType Ty) const; 988 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 989 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 990 991 /// \brief Updates the number of available free registers, returns 992 /// true if any registers were allocated. 993 bool updateFreeRegs(QualType Ty, CCState &State) const; 994 995 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 996 bool &NeedsPadding) const; 997 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 998 999 bool canExpandIndirectArgument(QualType Ty) const; 1000 1001 /// \brief Rewrite the function info so that all memory arguments use 1002 /// inalloca. 1003 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1004 1005 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1006 CharUnits &StackOffset, ABIArgInfo &Info, 1007 QualType Type) const; 1008 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1009 bool &UsedInAlloca) const; 1010 1011 public: 1012 1013 void computeInfo(CGFunctionInfo &FI) const override; 1014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1015 QualType Ty) const override; 1016 1017 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1018 bool RetSmallStructInRegABI, bool Win32StructABI, 1019 unsigned NumRegisterParameters, bool SoftFloatABI) 1020 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1021 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1022 IsWin32StructABI(Win32StructABI), 1023 IsSoftFloatABI(SoftFloatABI), 1024 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1025 DefaultNumRegisterParameters(NumRegisterParameters) {} 1026 1027 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1028 bool asReturnValue) const override { 1029 // LLVM's x86-32 lowering currently only assigns up to three 1030 // integer registers and three fp registers. Oddly, it'll use up to 1031 // four vector registers for vectors, but those can overlap with the 1032 // scalar registers. 1033 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1034 } 1035 1036 bool isSwiftErrorInRegister() const override { 1037 // x86-32 lowering does not support passing swifterror in a register. 1038 return false; 1039 } 1040 }; 1041 1042 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1043 public: 1044 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1045 bool RetSmallStructInRegABI, bool Win32StructABI, 1046 unsigned NumRegisterParameters, bool SoftFloatABI) 1047 : TargetCodeGenInfo(new X86_32ABIInfo( 1048 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1049 NumRegisterParameters, SoftFloatABI)) {} 1050 1051 static bool isStructReturnInRegABI( 1052 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1053 1054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1055 CodeGen::CodeGenModule &CGM, 1056 ForDefinition_t IsForDefinition) const override; 1057 1058 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1059 // Darwin uses different dwarf register numbers for EH. 1060 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1061 return 4; 1062 } 1063 1064 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1065 llvm::Value *Address) const override; 1066 1067 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1068 StringRef Constraint, 1069 llvm::Type* Ty) const override { 1070 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1071 } 1072 1073 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1074 std::string &Constraints, 1075 std::vector<llvm::Type *> &ResultRegTypes, 1076 std::vector<llvm::Type *> &ResultTruncRegTypes, 1077 std::vector<LValue> &ResultRegDests, 1078 std::string &AsmString, 1079 unsigned NumOutputs) const override; 1080 1081 llvm::Constant * 1082 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1083 unsigned Sig = (0xeb << 0) | // jmp rel8 1084 (0x06 << 8) | // .+0x08 1085 ('v' << 16) | 1086 ('2' << 24); 1087 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1088 } 1089 1090 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1091 return "movl\t%ebp, %ebp" 1092 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1093 } 1094 }; 1095 1096 } 1097 1098 /// Rewrite input constraint references after adding some output constraints. 1099 /// In the case where there is one output and one input and we add one output, 1100 /// we need to replace all operand references greater than or equal to 1: 1101 /// mov $0, $1 1102 /// mov eax, $1 1103 /// The result will be: 1104 /// mov $0, $2 1105 /// mov eax, $2 1106 static void rewriteInputConstraintReferences(unsigned FirstIn, 1107 unsigned NumNewOuts, 1108 std::string &AsmString) { 1109 std::string Buf; 1110 llvm::raw_string_ostream OS(Buf); 1111 size_t Pos = 0; 1112 while (Pos < AsmString.size()) { 1113 size_t DollarStart = AsmString.find('$', Pos); 1114 if (DollarStart == std::string::npos) 1115 DollarStart = AsmString.size(); 1116 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1117 if (DollarEnd == std::string::npos) 1118 DollarEnd = AsmString.size(); 1119 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1120 Pos = DollarEnd; 1121 size_t NumDollars = DollarEnd - DollarStart; 1122 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1123 // We have an operand reference. 1124 size_t DigitStart = Pos; 1125 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1126 if (DigitEnd == std::string::npos) 1127 DigitEnd = AsmString.size(); 1128 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1129 unsigned OperandIndex; 1130 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1131 if (OperandIndex >= FirstIn) 1132 OperandIndex += NumNewOuts; 1133 OS << OperandIndex; 1134 } else { 1135 OS << OperandStr; 1136 } 1137 Pos = DigitEnd; 1138 } 1139 } 1140 AsmString = std::move(OS.str()); 1141 } 1142 1143 /// Add output constraints for EAX:EDX because they are return registers. 1144 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1145 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1146 std::vector<llvm::Type *> &ResultRegTypes, 1147 std::vector<llvm::Type *> &ResultTruncRegTypes, 1148 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1149 unsigned NumOutputs) const { 1150 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1151 1152 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1153 // larger. 1154 if (!Constraints.empty()) 1155 Constraints += ','; 1156 if (RetWidth <= 32) { 1157 Constraints += "={eax}"; 1158 ResultRegTypes.push_back(CGF.Int32Ty); 1159 } else { 1160 // Use the 'A' constraint for EAX:EDX. 1161 Constraints += "=A"; 1162 ResultRegTypes.push_back(CGF.Int64Ty); 1163 } 1164 1165 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1166 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1167 ResultTruncRegTypes.push_back(CoerceTy); 1168 1169 // Coerce the integer by bitcasting the return slot pointer. 1170 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1171 CoerceTy->getPointerTo())); 1172 ResultRegDests.push_back(ReturnSlot); 1173 1174 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1175 } 1176 1177 /// shouldReturnTypeInRegister - Determine if the given type should be 1178 /// returned in a register (for the Darwin and MCU ABI). 1179 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1180 ASTContext &Context) const { 1181 uint64_t Size = Context.getTypeSize(Ty); 1182 1183 // For i386, type must be register sized. 1184 // For the MCU ABI, it only needs to be <= 8-byte 1185 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1186 return false; 1187 1188 if (Ty->isVectorType()) { 1189 // 64- and 128- bit vectors inside structures are not returned in 1190 // registers. 1191 if (Size == 64 || Size == 128) 1192 return false; 1193 1194 return true; 1195 } 1196 1197 // If this is a builtin, pointer, enum, complex type, member pointer, or 1198 // member function pointer it is ok. 1199 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1200 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1201 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1202 return true; 1203 1204 // Arrays are treated like records. 1205 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1206 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1207 1208 // Otherwise, it must be a record type. 1209 const RecordType *RT = Ty->getAs<RecordType>(); 1210 if (!RT) return false; 1211 1212 // FIXME: Traverse bases here too. 1213 1214 // Structure types are passed in register if all fields would be 1215 // passed in a register. 1216 for (const auto *FD : RT->getDecl()->fields()) { 1217 // Empty fields are ignored. 1218 if (isEmptyField(Context, FD, true)) 1219 continue; 1220 1221 // Check fields recursively. 1222 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1229 // Treat complex types as the element type. 1230 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1231 Ty = CTy->getElementType(); 1232 1233 // Check for a type which we know has a simple scalar argument-passing 1234 // convention without any padding. (We're specifically looking for 32 1235 // and 64-bit integer and integer-equivalents, float, and double.) 1236 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1237 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1238 return false; 1239 1240 uint64_t Size = Context.getTypeSize(Ty); 1241 return Size == 32 || Size == 64; 1242 } 1243 1244 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1245 uint64_t &Size) { 1246 for (const auto *FD : RD->fields()) { 1247 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1248 // argument is smaller than 32-bits, expanding the struct will create 1249 // alignment padding. 1250 if (!is32Or64BitBasicType(FD->getType(), Context)) 1251 return false; 1252 1253 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1254 // how to expand them yet, and the predicate for telling if a bitfield still 1255 // counts as "basic" is more complicated than what we were doing previously. 1256 if (FD->isBitField()) 1257 return false; 1258 1259 Size += Context.getTypeSize(FD->getType()); 1260 } 1261 return true; 1262 } 1263 1264 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1265 uint64_t &Size) { 1266 // Don't do this if there are any non-empty bases. 1267 for (const CXXBaseSpecifier &Base : RD->bases()) { 1268 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1269 Size)) 1270 return false; 1271 } 1272 if (!addFieldSizes(Context, RD, Size)) 1273 return false; 1274 return true; 1275 } 1276 1277 /// Test whether an argument type which is to be passed indirectly (on the 1278 /// stack) would have the equivalent layout if it was expanded into separate 1279 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1280 /// optimizations. 1281 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1282 // We can only expand structure types. 1283 const RecordType *RT = Ty->getAs<RecordType>(); 1284 if (!RT) 1285 return false; 1286 const RecordDecl *RD = RT->getDecl(); 1287 uint64_t Size = 0; 1288 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1289 if (!IsWin32StructABI) { 1290 // On non-Windows, we have to conservatively match our old bitcode 1291 // prototypes in order to be ABI-compatible at the bitcode level. 1292 if (!CXXRD->isCLike()) 1293 return false; 1294 } else { 1295 // Don't do this for dynamic classes. 1296 if (CXXRD->isDynamicClass()) 1297 return false; 1298 } 1299 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1300 return false; 1301 } else { 1302 if (!addFieldSizes(getContext(), RD, Size)) 1303 return false; 1304 } 1305 1306 // We can do this if there was no alignment padding. 1307 return Size == getContext().getTypeSize(Ty); 1308 } 1309 1310 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1311 // If the return value is indirect, then the hidden argument is consuming one 1312 // integer register. 1313 if (State.FreeRegs) { 1314 --State.FreeRegs; 1315 if (!IsMCUABI) 1316 return getNaturalAlignIndirectInReg(RetTy); 1317 } 1318 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1319 } 1320 1321 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1322 CCState &State) const { 1323 if (RetTy->isVoidType()) 1324 return ABIArgInfo::getIgnore(); 1325 1326 const Type *Base = nullptr; 1327 uint64_t NumElts = 0; 1328 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1329 State.CC == llvm::CallingConv::X86_RegCall) && 1330 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1331 // The LLVM struct type for such an aggregate should lower properly. 1332 return ABIArgInfo::getDirect(); 1333 } 1334 1335 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1336 // On Darwin, some vectors are returned in registers. 1337 if (IsDarwinVectorABI) { 1338 uint64_t Size = getContext().getTypeSize(RetTy); 1339 1340 // 128-bit vectors are a special case; they are returned in 1341 // registers and we need to make sure to pick a type the LLVM 1342 // backend will like. 1343 if (Size == 128) 1344 return ABIArgInfo::getDirect(llvm::VectorType::get( 1345 llvm::Type::getInt64Ty(getVMContext()), 2)); 1346 1347 // Always return in register if it fits in a general purpose 1348 // register, or if it is 64 bits and has a single element. 1349 if ((Size == 8 || Size == 16 || Size == 32) || 1350 (Size == 64 && VT->getNumElements() == 1)) 1351 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1352 Size)); 1353 1354 return getIndirectReturnResult(RetTy, State); 1355 } 1356 1357 return ABIArgInfo::getDirect(); 1358 } 1359 1360 if (isAggregateTypeForABI(RetTy)) { 1361 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1362 // Structures with flexible arrays are always indirect. 1363 if (RT->getDecl()->hasFlexibleArrayMember()) 1364 return getIndirectReturnResult(RetTy, State); 1365 } 1366 1367 // If specified, structs and unions are always indirect. 1368 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1369 return getIndirectReturnResult(RetTy, State); 1370 1371 // Ignore empty structs/unions. 1372 if (isEmptyRecord(getContext(), RetTy, true)) 1373 return ABIArgInfo::getIgnore(); 1374 1375 // Small structures which are register sized are generally returned 1376 // in a register. 1377 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1378 uint64_t Size = getContext().getTypeSize(RetTy); 1379 1380 // As a special-case, if the struct is a "single-element" struct, and 1381 // the field is of type "float" or "double", return it in a 1382 // floating-point register. (MSVC does not apply this special case.) 1383 // We apply a similar transformation for pointer types to improve the 1384 // quality of the generated IR. 1385 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1386 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1387 || SeltTy->hasPointerRepresentation()) 1388 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1389 1390 // FIXME: We should be able to narrow this integer in cases with dead 1391 // padding. 1392 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1393 } 1394 1395 return getIndirectReturnResult(RetTy, State); 1396 } 1397 1398 // Treat an enum type as its underlying type. 1399 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1400 RetTy = EnumTy->getDecl()->getIntegerType(); 1401 1402 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1403 : ABIArgInfo::getDirect()); 1404 } 1405 1406 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1407 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1408 } 1409 1410 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1411 const RecordType *RT = Ty->getAs<RecordType>(); 1412 if (!RT) 1413 return 0; 1414 const RecordDecl *RD = RT->getDecl(); 1415 1416 // If this is a C++ record, check the bases first. 1417 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1418 for (const auto &I : CXXRD->bases()) 1419 if (!isRecordWithSSEVectorType(Context, I.getType())) 1420 return false; 1421 1422 for (const auto *i : RD->fields()) { 1423 QualType FT = i->getType(); 1424 1425 if (isSSEVectorType(Context, FT)) 1426 return true; 1427 1428 if (isRecordWithSSEVectorType(Context, FT)) 1429 return true; 1430 } 1431 1432 return false; 1433 } 1434 1435 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1436 unsigned Align) const { 1437 // Otherwise, if the alignment is less than or equal to the minimum ABI 1438 // alignment, just use the default; the backend will handle this. 1439 if (Align <= MinABIStackAlignInBytes) 1440 return 0; // Use default alignment. 1441 1442 // On non-Darwin, the stack type alignment is always 4. 1443 if (!IsDarwinVectorABI) { 1444 // Set explicit alignment, since we may need to realign the top. 1445 return MinABIStackAlignInBytes; 1446 } 1447 1448 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1449 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1450 isRecordWithSSEVectorType(getContext(), Ty))) 1451 return 16; 1452 1453 return MinABIStackAlignInBytes; 1454 } 1455 1456 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1457 CCState &State) const { 1458 if (!ByVal) { 1459 if (State.FreeRegs) { 1460 --State.FreeRegs; // Non-byval indirects just use one pointer. 1461 if (!IsMCUABI) 1462 return getNaturalAlignIndirectInReg(Ty); 1463 } 1464 return getNaturalAlignIndirect(Ty, false); 1465 } 1466 1467 // Compute the byval alignment. 1468 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1469 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1470 if (StackAlign == 0) 1471 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1472 1473 // If the stack alignment is less than the type alignment, realign the 1474 // argument. 1475 bool Realign = TypeAlign > StackAlign; 1476 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1477 /*ByVal=*/true, Realign); 1478 } 1479 1480 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1481 const Type *T = isSingleElementStruct(Ty, getContext()); 1482 if (!T) 1483 T = Ty.getTypePtr(); 1484 1485 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1486 BuiltinType::Kind K = BT->getKind(); 1487 if (K == BuiltinType::Float || K == BuiltinType::Double) 1488 return Float; 1489 } 1490 return Integer; 1491 } 1492 1493 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1494 if (!IsSoftFloatABI) { 1495 Class C = classify(Ty); 1496 if (C == Float) 1497 return false; 1498 } 1499 1500 unsigned Size = getContext().getTypeSize(Ty); 1501 unsigned SizeInRegs = (Size + 31) / 32; 1502 1503 if (SizeInRegs == 0) 1504 return false; 1505 1506 if (!IsMCUABI) { 1507 if (SizeInRegs > State.FreeRegs) { 1508 State.FreeRegs = 0; 1509 return false; 1510 } 1511 } else { 1512 // The MCU psABI allows passing parameters in-reg even if there are 1513 // earlier parameters that are passed on the stack. Also, 1514 // it does not allow passing >8-byte structs in-register, 1515 // even if there are 3 free registers available. 1516 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1517 return false; 1518 } 1519 1520 State.FreeRegs -= SizeInRegs; 1521 return true; 1522 } 1523 1524 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1525 bool &InReg, 1526 bool &NeedsPadding) const { 1527 // On Windows, aggregates other than HFAs are never passed in registers, and 1528 // they do not consume register slots. Homogenous floating-point aggregates 1529 // (HFAs) have already been dealt with at this point. 1530 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1531 return false; 1532 1533 NeedsPadding = false; 1534 InReg = !IsMCUABI; 1535 1536 if (!updateFreeRegs(Ty, State)) 1537 return false; 1538 1539 if (IsMCUABI) 1540 return true; 1541 1542 if (State.CC == llvm::CallingConv::X86_FastCall || 1543 State.CC == llvm::CallingConv::X86_VectorCall || 1544 State.CC == llvm::CallingConv::X86_RegCall) { 1545 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1546 NeedsPadding = true; 1547 1548 return false; 1549 } 1550 1551 return true; 1552 } 1553 1554 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1555 if (!updateFreeRegs(Ty, State)) 1556 return false; 1557 1558 if (IsMCUABI) 1559 return false; 1560 1561 if (State.CC == llvm::CallingConv::X86_FastCall || 1562 State.CC == llvm::CallingConv::X86_VectorCall || 1563 State.CC == llvm::CallingConv::X86_RegCall) { 1564 if (getContext().getTypeSize(Ty) > 32) 1565 return false; 1566 1567 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1568 Ty->isReferenceType()); 1569 } 1570 1571 return true; 1572 } 1573 1574 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1575 CCState &State) const { 1576 // FIXME: Set alignment on indirect arguments. 1577 1578 Ty = useFirstFieldIfTransparentUnion(Ty); 1579 1580 // Check with the C++ ABI first. 1581 const RecordType *RT = Ty->getAs<RecordType>(); 1582 if (RT) { 1583 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1584 if (RAA == CGCXXABI::RAA_Indirect) { 1585 return getIndirectResult(Ty, false, State); 1586 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1587 // The field index doesn't matter, we'll fix it up later. 1588 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1589 } 1590 } 1591 1592 // Regcall uses the concept of a homogenous vector aggregate, similar 1593 // to other targets. 1594 const Type *Base = nullptr; 1595 uint64_t NumElts = 0; 1596 if (State.CC == llvm::CallingConv::X86_RegCall && 1597 isHomogeneousAggregate(Ty, Base, NumElts)) { 1598 1599 if (State.FreeSSERegs >= NumElts) { 1600 State.FreeSSERegs -= NumElts; 1601 if (Ty->isBuiltinType() || Ty->isVectorType()) 1602 return ABIArgInfo::getDirect(); 1603 return ABIArgInfo::getExpand(); 1604 } 1605 return getIndirectResult(Ty, /*ByVal=*/false, State); 1606 } 1607 1608 if (isAggregateTypeForABI(Ty)) { 1609 // Structures with flexible arrays are always indirect. 1610 // FIXME: This should not be byval! 1611 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1612 return getIndirectResult(Ty, true, State); 1613 1614 // Ignore empty structs/unions on non-Windows. 1615 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1616 return ABIArgInfo::getIgnore(); 1617 1618 llvm::LLVMContext &LLVMContext = getVMContext(); 1619 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1620 bool NeedsPadding = false; 1621 bool InReg; 1622 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1623 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1624 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1625 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1626 if (InReg) 1627 return ABIArgInfo::getDirectInReg(Result); 1628 else 1629 return ABIArgInfo::getDirect(Result); 1630 } 1631 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1632 1633 // Expand small (<= 128-bit) record types when we know that the stack layout 1634 // of those arguments will match the struct. This is important because the 1635 // LLVM backend isn't smart enough to remove byval, which inhibits many 1636 // optimizations. 1637 // Don't do this for the MCU if there are still free integer registers 1638 // (see X86_64 ABI for full explanation). 1639 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1640 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1641 return ABIArgInfo::getExpandWithPadding( 1642 State.CC == llvm::CallingConv::X86_FastCall || 1643 State.CC == llvm::CallingConv::X86_VectorCall || 1644 State.CC == llvm::CallingConv::X86_RegCall, 1645 PaddingType); 1646 1647 return getIndirectResult(Ty, true, State); 1648 } 1649 1650 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1651 // On Darwin, some vectors are passed in memory, we handle this by passing 1652 // it as an i8/i16/i32/i64. 1653 if (IsDarwinVectorABI) { 1654 uint64_t Size = getContext().getTypeSize(Ty); 1655 if ((Size == 8 || Size == 16 || Size == 32) || 1656 (Size == 64 && VT->getNumElements() == 1)) 1657 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1658 Size)); 1659 } 1660 1661 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1662 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1663 1664 return ABIArgInfo::getDirect(); 1665 } 1666 1667 1668 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1669 Ty = EnumTy->getDecl()->getIntegerType(); 1670 1671 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1672 1673 if (Ty->isPromotableIntegerType()) { 1674 if (InReg) 1675 return ABIArgInfo::getExtendInReg(Ty); 1676 return ABIArgInfo::getExtend(Ty); 1677 } 1678 1679 if (InReg) 1680 return ABIArgInfo::getDirectInReg(); 1681 return ABIArgInfo::getDirect(); 1682 } 1683 1684 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1685 bool &UsedInAlloca) const { 1686 // Vectorcall x86 works subtly different than in x64, so the format is 1687 // a bit different than the x64 version. First, all vector types (not HVAs) 1688 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1689 // This differs from the x64 implementation, where the first 6 by INDEX get 1690 // registers. 1691 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1692 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1693 // first take up the remaining YMM/XMM registers. If insufficient registers 1694 // remain but an integer register (ECX/EDX) is available, it will be passed 1695 // in that, else, on the stack. 1696 for (auto &I : FI.arguments()) { 1697 // First pass do all the vector types. 1698 const Type *Base = nullptr; 1699 uint64_t NumElts = 0; 1700 const QualType& Ty = I.type; 1701 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1702 isHomogeneousAggregate(Ty, Base, NumElts)) { 1703 if (State.FreeSSERegs >= NumElts) { 1704 State.FreeSSERegs -= NumElts; 1705 I.info = ABIArgInfo::getDirect(); 1706 } else { 1707 I.info = classifyArgumentType(Ty, State); 1708 } 1709 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1710 } 1711 } 1712 1713 for (auto &I : FI.arguments()) { 1714 // Second pass, do the rest! 1715 const Type *Base = nullptr; 1716 uint64_t NumElts = 0; 1717 const QualType& Ty = I.type; 1718 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1719 1720 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1721 // Assign true HVAs (non vector/native FP types). 1722 if (State.FreeSSERegs >= NumElts) { 1723 State.FreeSSERegs -= NumElts; 1724 I.info = getDirectX86Hva(); 1725 } else { 1726 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1727 } 1728 } else if (!IsHva) { 1729 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1730 I.info = classifyArgumentType(Ty, State); 1731 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1732 } 1733 } 1734 } 1735 1736 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1737 CCState State(FI.getCallingConvention()); 1738 if (IsMCUABI) 1739 State.FreeRegs = 3; 1740 else if (State.CC == llvm::CallingConv::X86_FastCall) 1741 State.FreeRegs = 2; 1742 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1743 State.FreeRegs = 2; 1744 State.FreeSSERegs = 6; 1745 } else if (FI.getHasRegParm()) 1746 State.FreeRegs = FI.getRegParm(); 1747 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1748 State.FreeRegs = 5; 1749 State.FreeSSERegs = 8; 1750 } else 1751 State.FreeRegs = DefaultNumRegisterParameters; 1752 1753 if (!getCXXABI().classifyReturnType(FI)) { 1754 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1755 } else if (FI.getReturnInfo().isIndirect()) { 1756 // The C++ ABI is not aware of register usage, so we have to check if the 1757 // return value was sret and put it in a register ourselves if appropriate. 1758 if (State.FreeRegs) { 1759 --State.FreeRegs; // The sret parameter consumes a register. 1760 if (!IsMCUABI) 1761 FI.getReturnInfo().setInReg(true); 1762 } 1763 } 1764 1765 // The chain argument effectively gives us another free register. 1766 if (FI.isChainCall()) 1767 ++State.FreeRegs; 1768 1769 bool UsedInAlloca = false; 1770 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1771 computeVectorCallArgs(FI, State, UsedInAlloca); 1772 } else { 1773 // If not vectorcall, revert to normal behavior. 1774 for (auto &I : FI.arguments()) { 1775 I.info = classifyArgumentType(I.type, State); 1776 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1777 } 1778 } 1779 1780 // If we needed to use inalloca for any argument, do a second pass and rewrite 1781 // all the memory arguments to use inalloca. 1782 if (UsedInAlloca) 1783 rewriteWithInAlloca(FI); 1784 } 1785 1786 void 1787 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1788 CharUnits &StackOffset, ABIArgInfo &Info, 1789 QualType Type) const { 1790 // Arguments are always 4-byte-aligned. 1791 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1792 1793 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1794 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1795 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1796 StackOffset += getContext().getTypeSizeInChars(Type); 1797 1798 // Insert padding bytes to respect alignment. 1799 CharUnits FieldEnd = StackOffset; 1800 StackOffset = FieldEnd.alignTo(FieldAlign); 1801 if (StackOffset != FieldEnd) { 1802 CharUnits NumBytes = StackOffset - FieldEnd; 1803 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1804 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1805 FrameFields.push_back(Ty); 1806 } 1807 } 1808 1809 static bool isArgInAlloca(const ABIArgInfo &Info) { 1810 // Leave ignored and inreg arguments alone. 1811 switch (Info.getKind()) { 1812 case ABIArgInfo::InAlloca: 1813 return true; 1814 case ABIArgInfo::Indirect: 1815 assert(Info.getIndirectByVal()); 1816 return true; 1817 case ABIArgInfo::Ignore: 1818 return false; 1819 case ABIArgInfo::Direct: 1820 case ABIArgInfo::Extend: 1821 if (Info.getInReg()) 1822 return false; 1823 return true; 1824 case ABIArgInfo::Expand: 1825 case ABIArgInfo::CoerceAndExpand: 1826 // These are aggregate types which are never passed in registers when 1827 // inalloca is involved. 1828 return true; 1829 } 1830 llvm_unreachable("invalid enum"); 1831 } 1832 1833 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1834 assert(IsWin32StructABI && "inalloca only supported on win32"); 1835 1836 // Build a packed struct type for all of the arguments in memory. 1837 SmallVector<llvm::Type *, 6> FrameFields; 1838 1839 // The stack alignment is always 4. 1840 CharUnits StackAlign = CharUnits::fromQuantity(4); 1841 1842 CharUnits StackOffset; 1843 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1844 1845 // Put 'this' into the struct before 'sret', if necessary. 1846 bool IsThisCall = 1847 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1848 ABIArgInfo &Ret = FI.getReturnInfo(); 1849 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1850 isArgInAlloca(I->info)) { 1851 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1852 ++I; 1853 } 1854 1855 // Put the sret parameter into the inalloca struct if it's in memory. 1856 if (Ret.isIndirect() && !Ret.getInReg()) { 1857 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1858 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1859 // On Windows, the hidden sret parameter is always returned in eax. 1860 Ret.setInAllocaSRet(IsWin32StructABI); 1861 } 1862 1863 // Skip the 'this' parameter in ecx. 1864 if (IsThisCall) 1865 ++I; 1866 1867 // Put arguments passed in memory into the struct. 1868 for (; I != E; ++I) { 1869 if (isArgInAlloca(I->info)) 1870 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1871 } 1872 1873 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1874 /*isPacked=*/true), 1875 StackAlign); 1876 } 1877 1878 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1879 Address VAListAddr, QualType Ty) const { 1880 1881 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1882 1883 // x86-32 changes the alignment of certain arguments on the stack. 1884 // 1885 // Just messing with TypeInfo like this works because we never pass 1886 // anything indirectly. 1887 TypeInfo.second = CharUnits::fromQuantity( 1888 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1889 1890 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1891 TypeInfo, CharUnits::fromQuantity(4), 1892 /*AllowHigherAlign*/ true); 1893 } 1894 1895 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1896 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1897 assert(Triple.getArch() == llvm::Triple::x86); 1898 1899 switch (Opts.getStructReturnConvention()) { 1900 case CodeGenOptions::SRCK_Default: 1901 break; 1902 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1903 return false; 1904 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1905 return true; 1906 } 1907 1908 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1909 return true; 1910 1911 switch (Triple.getOS()) { 1912 case llvm::Triple::DragonFly: 1913 case llvm::Triple::FreeBSD: 1914 case llvm::Triple::OpenBSD: 1915 case llvm::Triple::Win32: 1916 return true; 1917 default: 1918 return false; 1919 } 1920 } 1921 1922 void X86_32TargetCodeGenInfo::setTargetAttributes( 1923 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 1924 ForDefinition_t IsForDefinition) const { 1925 if (!IsForDefinition) 1926 return; 1927 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1928 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1929 // Get the LLVM function. 1930 llvm::Function *Fn = cast<llvm::Function>(GV); 1931 1932 // Now add the 'alignstack' attribute with a value of 16. 1933 llvm::AttrBuilder B; 1934 B.addStackAlignmentAttr(16); 1935 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1936 } 1937 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1938 llvm::Function *Fn = cast<llvm::Function>(GV); 1939 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1940 } 1941 } 1942 } 1943 1944 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1945 CodeGen::CodeGenFunction &CGF, 1946 llvm::Value *Address) const { 1947 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1948 1949 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1950 1951 // 0-7 are the eight integer registers; the order is different 1952 // on Darwin (for EH), but the range is the same. 1953 // 8 is %eip. 1954 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1955 1956 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1957 // 12-16 are st(0..4). Not sure why we stop at 4. 1958 // These have size 16, which is sizeof(long double) on 1959 // platforms with 8-byte alignment for that type. 1960 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1961 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1962 1963 } else { 1964 // 9 is %eflags, which doesn't get a size on Darwin for some 1965 // reason. 1966 Builder.CreateAlignedStore( 1967 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1968 CharUnits::One()); 1969 1970 // 11-16 are st(0..5). Not sure why we stop at 5. 1971 // These have size 12, which is sizeof(long double) on 1972 // platforms with 4-byte alignment for that type. 1973 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1974 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1975 } 1976 1977 return false; 1978 } 1979 1980 //===----------------------------------------------------------------------===// 1981 // X86-64 ABI Implementation 1982 //===----------------------------------------------------------------------===// 1983 1984 1985 namespace { 1986 /// The AVX ABI level for X86 targets. 1987 enum class X86AVXABILevel { 1988 None, 1989 AVX, 1990 AVX512 1991 }; 1992 1993 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1994 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1995 switch (AVXLevel) { 1996 case X86AVXABILevel::AVX512: 1997 return 512; 1998 case X86AVXABILevel::AVX: 1999 return 256; 2000 case X86AVXABILevel::None: 2001 return 128; 2002 } 2003 llvm_unreachable("Unknown AVXLevel"); 2004 } 2005 2006 /// X86_64ABIInfo - The X86_64 ABI information. 2007 class X86_64ABIInfo : public SwiftABIInfo { 2008 enum Class { 2009 Integer = 0, 2010 SSE, 2011 SSEUp, 2012 X87, 2013 X87Up, 2014 ComplexX87, 2015 NoClass, 2016 Memory 2017 }; 2018 2019 /// merge - Implement the X86_64 ABI merging algorithm. 2020 /// 2021 /// Merge an accumulating classification \arg Accum with a field 2022 /// classification \arg Field. 2023 /// 2024 /// \param Accum - The accumulating classification. This should 2025 /// always be either NoClass or the result of a previous merge 2026 /// call. In addition, this should never be Memory (the caller 2027 /// should just return Memory for the aggregate). 2028 static Class merge(Class Accum, Class Field); 2029 2030 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2031 /// 2032 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2033 /// final MEMORY or SSE classes when necessary. 2034 /// 2035 /// \param AggregateSize - The size of the current aggregate in 2036 /// the classification process. 2037 /// 2038 /// \param Lo - The classification for the parts of the type 2039 /// residing in the low word of the containing object. 2040 /// 2041 /// \param Hi - The classification for the parts of the type 2042 /// residing in the higher words of the containing object. 2043 /// 2044 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2045 2046 /// classify - Determine the x86_64 register classes in which the 2047 /// given type T should be passed. 2048 /// 2049 /// \param Lo - The classification for the parts of the type 2050 /// residing in the low word of the containing object. 2051 /// 2052 /// \param Hi - The classification for the parts of the type 2053 /// residing in the high word of the containing object. 2054 /// 2055 /// \param OffsetBase - The bit offset of this type in the 2056 /// containing object. Some parameters are classified different 2057 /// depending on whether they straddle an eightbyte boundary. 2058 /// 2059 /// \param isNamedArg - Whether the argument in question is a "named" 2060 /// argument, as used in AMD64-ABI 3.5.7. 2061 /// 2062 /// If a word is unused its result will be NoClass; if a type should 2063 /// be passed in Memory then at least the classification of \arg Lo 2064 /// will be Memory. 2065 /// 2066 /// The \arg Lo class will be NoClass iff the argument is ignored. 2067 /// 2068 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2069 /// also be ComplexX87. 2070 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2071 bool isNamedArg) const; 2072 2073 llvm::Type *GetByteVectorType(QualType Ty) const; 2074 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2075 unsigned IROffset, QualType SourceTy, 2076 unsigned SourceOffset) const; 2077 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2078 unsigned IROffset, QualType SourceTy, 2079 unsigned SourceOffset) const; 2080 2081 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2082 /// such that the argument will be returned in memory. 2083 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2084 2085 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2086 /// such that the argument will be passed in memory. 2087 /// 2088 /// \param freeIntRegs - The number of free integer registers remaining 2089 /// available. 2090 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2091 2092 ABIArgInfo classifyReturnType(QualType RetTy) const; 2093 2094 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2095 unsigned &neededInt, unsigned &neededSSE, 2096 bool isNamedArg) const; 2097 2098 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2099 unsigned &NeededSSE) const; 2100 2101 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2102 unsigned &NeededSSE) const; 2103 2104 bool IsIllegalVectorType(QualType Ty) const; 2105 2106 /// The 0.98 ABI revision clarified a lot of ambiguities, 2107 /// unfortunately in ways that were not always consistent with 2108 /// certain previous compilers. In particular, platforms which 2109 /// required strict binary compatibility with older versions of GCC 2110 /// may need to exempt themselves. 2111 bool honorsRevision0_98() const { 2112 return !getTarget().getTriple().isOSDarwin(); 2113 } 2114 2115 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2116 /// classify it as INTEGER (for compatibility with older clang compilers). 2117 bool classifyIntegerMMXAsSSE() const { 2118 // Clang <= 3.8 did not do this. 2119 if (getCodeGenOpts().getClangABICompat() <= 2120 CodeGenOptions::ClangABI::Ver3_8) 2121 return false; 2122 2123 const llvm::Triple &Triple = getTarget().getTriple(); 2124 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2125 return false; 2126 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2127 return false; 2128 return true; 2129 } 2130 2131 X86AVXABILevel AVXLevel; 2132 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2133 // 64-bit hardware. 2134 bool Has64BitPointers; 2135 2136 public: 2137 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2138 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2139 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2140 } 2141 2142 bool isPassedUsingAVXType(QualType type) const { 2143 unsigned neededInt, neededSSE; 2144 // The freeIntRegs argument doesn't matter here. 2145 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2146 /*isNamedArg*/true); 2147 if (info.isDirect()) { 2148 llvm::Type *ty = info.getCoerceToType(); 2149 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2150 return (vectorTy->getBitWidth() > 128); 2151 } 2152 return false; 2153 } 2154 2155 void computeInfo(CGFunctionInfo &FI) const override; 2156 2157 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2158 QualType Ty) const override; 2159 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2160 QualType Ty) const override; 2161 2162 bool has64BitPointers() const { 2163 return Has64BitPointers; 2164 } 2165 2166 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2167 bool asReturnValue) const override { 2168 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2169 } 2170 bool isSwiftErrorInRegister() const override { 2171 return true; 2172 } 2173 }; 2174 2175 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2176 class WinX86_64ABIInfo : public SwiftABIInfo { 2177 public: 2178 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2179 : SwiftABIInfo(CGT), 2180 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2181 2182 void computeInfo(CGFunctionInfo &FI) const override; 2183 2184 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2185 QualType Ty) const override; 2186 2187 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2188 // FIXME: Assumes vectorcall is in use. 2189 return isX86VectorTypeForVectorCall(getContext(), Ty); 2190 } 2191 2192 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2193 uint64_t NumMembers) const override { 2194 // FIXME: Assumes vectorcall is in use. 2195 return isX86VectorCallAggregateSmallEnough(NumMembers); 2196 } 2197 2198 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2199 bool asReturnValue) const override { 2200 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2201 } 2202 2203 bool isSwiftErrorInRegister() const override { 2204 return true; 2205 } 2206 2207 private: 2208 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2209 bool IsVectorCall, bool IsRegCall) const; 2210 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2211 const ABIArgInfo ¤t) const; 2212 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2213 bool IsVectorCall, bool IsRegCall) const; 2214 2215 bool IsMingw64; 2216 }; 2217 2218 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2219 public: 2220 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2221 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2222 2223 const X86_64ABIInfo &getABIInfo() const { 2224 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2225 } 2226 2227 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2228 return 7; 2229 } 2230 2231 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2232 llvm::Value *Address) const override { 2233 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2234 2235 // 0-15 are the 16 integer registers. 2236 // 16 is %rip. 2237 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2238 return false; 2239 } 2240 2241 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2242 StringRef Constraint, 2243 llvm::Type* Ty) const override { 2244 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2245 } 2246 2247 bool isNoProtoCallVariadic(const CallArgList &args, 2248 const FunctionNoProtoType *fnType) const override { 2249 // The default CC on x86-64 sets %al to the number of SSA 2250 // registers used, and GCC sets this when calling an unprototyped 2251 // function, so we override the default behavior. However, don't do 2252 // that when AVX types are involved: the ABI explicitly states it is 2253 // undefined, and it doesn't work in practice because of how the ABI 2254 // defines varargs anyway. 2255 if (fnType->getCallConv() == CC_C) { 2256 bool HasAVXType = false; 2257 for (CallArgList::const_iterator 2258 it = args.begin(), ie = args.end(); it != ie; ++it) { 2259 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2260 HasAVXType = true; 2261 break; 2262 } 2263 } 2264 2265 if (!HasAVXType) 2266 return true; 2267 } 2268 2269 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2270 } 2271 2272 llvm::Constant * 2273 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2274 unsigned Sig = (0xeb << 0) | // jmp rel8 2275 (0x06 << 8) | // .+0x08 2276 ('v' << 16) | 2277 ('2' << 24); 2278 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2279 } 2280 2281 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2282 CodeGen::CodeGenModule &CGM, 2283 ForDefinition_t IsForDefinition) const override { 2284 if (!IsForDefinition) 2285 return; 2286 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2287 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2288 // Get the LLVM function. 2289 auto *Fn = cast<llvm::Function>(GV); 2290 2291 // Now add the 'alignstack' attribute with a value of 16. 2292 llvm::AttrBuilder B; 2293 B.addStackAlignmentAttr(16); 2294 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2295 } 2296 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2297 llvm::Function *Fn = cast<llvm::Function>(GV); 2298 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2299 } 2300 } 2301 } 2302 }; 2303 2304 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2305 public: 2306 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2307 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2308 2309 void getDependentLibraryOption(llvm::StringRef Lib, 2310 llvm::SmallString<24> &Opt) const override { 2311 Opt = "\01"; 2312 // If the argument contains a space, enclose it in quotes. 2313 if (Lib.find(" ") != StringRef::npos) 2314 Opt += "\"" + Lib.str() + "\""; 2315 else 2316 Opt += Lib; 2317 } 2318 }; 2319 2320 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2321 // If the argument does not end in .lib, automatically add the suffix. 2322 // If the argument contains a space, enclose it in quotes. 2323 // This matches the behavior of MSVC. 2324 bool Quote = (Lib.find(" ") != StringRef::npos); 2325 std::string ArgStr = Quote ? "\"" : ""; 2326 ArgStr += Lib; 2327 if (!Lib.endswith_lower(".lib")) 2328 ArgStr += ".lib"; 2329 ArgStr += Quote ? "\"" : ""; 2330 return ArgStr; 2331 } 2332 2333 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2334 public: 2335 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2336 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2337 unsigned NumRegisterParameters) 2338 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2339 Win32StructABI, NumRegisterParameters, false) {} 2340 2341 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2342 CodeGen::CodeGenModule &CGM, 2343 ForDefinition_t IsForDefinition) const override; 2344 2345 void getDependentLibraryOption(llvm::StringRef Lib, 2346 llvm::SmallString<24> &Opt) const override { 2347 Opt = "/DEFAULTLIB:"; 2348 Opt += qualifyWindowsLibrary(Lib); 2349 } 2350 2351 void getDetectMismatchOption(llvm::StringRef Name, 2352 llvm::StringRef Value, 2353 llvm::SmallString<32> &Opt) const override { 2354 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2355 } 2356 }; 2357 2358 static void addStackProbeSizeTargetAttribute(const Decl *D, 2359 llvm::GlobalValue *GV, 2360 CodeGen::CodeGenModule &CGM) { 2361 if (D && isa<FunctionDecl>(D)) { 2362 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2363 llvm::Function *Fn = cast<llvm::Function>(GV); 2364 2365 Fn->addFnAttr("stack-probe-size", 2366 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2367 } 2368 } 2369 } 2370 2371 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2372 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2373 ForDefinition_t IsForDefinition) const { 2374 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2375 if (!IsForDefinition) 2376 return; 2377 addStackProbeSizeTargetAttribute(D, GV, CGM); 2378 } 2379 2380 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2381 public: 2382 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2383 X86AVXABILevel AVXLevel) 2384 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2385 2386 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2387 CodeGen::CodeGenModule &CGM, 2388 ForDefinition_t IsForDefinition) const override; 2389 2390 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2391 return 7; 2392 } 2393 2394 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2395 llvm::Value *Address) const override { 2396 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2397 2398 // 0-15 are the 16 integer registers. 2399 // 16 is %rip. 2400 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2401 return false; 2402 } 2403 2404 void getDependentLibraryOption(llvm::StringRef Lib, 2405 llvm::SmallString<24> &Opt) const override { 2406 Opt = "/DEFAULTLIB:"; 2407 Opt += qualifyWindowsLibrary(Lib); 2408 } 2409 2410 void getDetectMismatchOption(llvm::StringRef Name, 2411 llvm::StringRef Value, 2412 llvm::SmallString<32> &Opt) const override { 2413 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2414 } 2415 }; 2416 2417 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2418 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2419 ForDefinition_t IsForDefinition) const { 2420 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2421 if (!IsForDefinition) 2422 return; 2423 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2424 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2425 // Get the LLVM function. 2426 auto *Fn = cast<llvm::Function>(GV); 2427 2428 // Now add the 'alignstack' attribute with a value of 16. 2429 llvm::AttrBuilder B; 2430 B.addStackAlignmentAttr(16); 2431 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2432 } 2433 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2434 llvm::Function *Fn = cast<llvm::Function>(GV); 2435 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2436 } 2437 } 2438 2439 addStackProbeSizeTargetAttribute(D, GV, CGM); 2440 } 2441 } 2442 2443 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2444 Class &Hi) const { 2445 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2446 // 2447 // (a) If one of the classes is Memory, the whole argument is passed in 2448 // memory. 2449 // 2450 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2451 // memory. 2452 // 2453 // (c) If the size of the aggregate exceeds two eightbytes and the first 2454 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2455 // argument is passed in memory. NOTE: This is necessary to keep the 2456 // ABI working for processors that don't support the __m256 type. 2457 // 2458 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2459 // 2460 // Some of these are enforced by the merging logic. Others can arise 2461 // only with unions; for example: 2462 // union { _Complex double; unsigned; } 2463 // 2464 // Note that clauses (b) and (c) were added in 0.98. 2465 // 2466 if (Hi == Memory) 2467 Lo = Memory; 2468 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2469 Lo = Memory; 2470 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2471 Lo = Memory; 2472 if (Hi == SSEUp && Lo != SSE) 2473 Hi = SSE; 2474 } 2475 2476 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2477 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2478 // classified recursively so that always two fields are 2479 // considered. The resulting class is calculated according to 2480 // the classes of the fields in the eightbyte: 2481 // 2482 // (a) If both classes are equal, this is the resulting class. 2483 // 2484 // (b) If one of the classes is NO_CLASS, the resulting class is 2485 // the other class. 2486 // 2487 // (c) If one of the classes is MEMORY, the result is the MEMORY 2488 // class. 2489 // 2490 // (d) If one of the classes is INTEGER, the result is the 2491 // INTEGER. 2492 // 2493 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2494 // MEMORY is used as class. 2495 // 2496 // (f) Otherwise class SSE is used. 2497 2498 // Accum should never be memory (we should have returned) or 2499 // ComplexX87 (because this cannot be passed in a structure). 2500 assert((Accum != Memory && Accum != ComplexX87) && 2501 "Invalid accumulated classification during merge."); 2502 if (Accum == Field || Field == NoClass) 2503 return Accum; 2504 if (Field == Memory) 2505 return Memory; 2506 if (Accum == NoClass) 2507 return Field; 2508 if (Accum == Integer || Field == Integer) 2509 return Integer; 2510 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2511 Accum == X87 || Accum == X87Up) 2512 return Memory; 2513 return SSE; 2514 } 2515 2516 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2517 Class &Lo, Class &Hi, bool isNamedArg) const { 2518 // FIXME: This code can be simplified by introducing a simple value class for 2519 // Class pairs with appropriate constructor methods for the various 2520 // situations. 2521 2522 // FIXME: Some of the split computations are wrong; unaligned vectors 2523 // shouldn't be passed in registers for example, so there is no chance they 2524 // can straddle an eightbyte. Verify & simplify. 2525 2526 Lo = Hi = NoClass; 2527 2528 Class &Current = OffsetBase < 64 ? Lo : Hi; 2529 Current = Memory; 2530 2531 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2532 BuiltinType::Kind k = BT->getKind(); 2533 2534 if (k == BuiltinType::Void) { 2535 Current = NoClass; 2536 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2537 Lo = Integer; 2538 Hi = Integer; 2539 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2540 Current = Integer; 2541 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2542 Current = SSE; 2543 } else if (k == BuiltinType::LongDouble) { 2544 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2545 if (LDF == &llvm::APFloat::IEEEquad()) { 2546 Lo = SSE; 2547 Hi = SSEUp; 2548 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2549 Lo = X87; 2550 Hi = X87Up; 2551 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2552 Current = SSE; 2553 } else 2554 llvm_unreachable("unexpected long double representation!"); 2555 } 2556 // FIXME: _Decimal32 and _Decimal64 are SSE. 2557 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2558 return; 2559 } 2560 2561 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2562 // Classify the underlying integer type. 2563 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2564 return; 2565 } 2566 2567 if (Ty->hasPointerRepresentation()) { 2568 Current = Integer; 2569 return; 2570 } 2571 2572 if (Ty->isMemberPointerType()) { 2573 if (Ty->isMemberFunctionPointerType()) { 2574 if (Has64BitPointers) { 2575 // If Has64BitPointers, this is an {i64, i64}, so classify both 2576 // Lo and Hi now. 2577 Lo = Hi = Integer; 2578 } else { 2579 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2580 // straddles an eightbyte boundary, Hi should be classified as well. 2581 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2582 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2583 if (EB_FuncPtr != EB_ThisAdj) { 2584 Lo = Hi = Integer; 2585 } else { 2586 Current = Integer; 2587 } 2588 } 2589 } else { 2590 Current = Integer; 2591 } 2592 return; 2593 } 2594 2595 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2596 uint64_t Size = getContext().getTypeSize(VT); 2597 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2598 // gcc passes the following as integer: 2599 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2600 // 2 bytes - <2 x char>, <1 x short> 2601 // 1 byte - <1 x char> 2602 Current = Integer; 2603 2604 // If this type crosses an eightbyte boundary, it should be 2605 // split. 2606 uint64_t EB_Lo = (OffsetBase) / 64; 2607 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2608 if (EB_Lo != EB_Hi) 2609 Hi = Lo; 2610 } else if (Size == 64) { 2611 QualType ElementType = VT->getElementType(); 2612 2613 // gcc passes <1 x double> in memory. :( 2614 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2615 return; 2616 2617 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2618 // pass them as integer. For platforms where clang is the de facto 2619 // platform compiler, we must continue to use integer. 2620 if (!classifyIntegerMMXAsSSE() && 2621 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2622 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2623 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2624 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2625 Current = Integer; 2626 else 2627 Current = SSE; 2628 2629 // If this type crosses an eightbyte boundary, it should be 2630 // split. 2631 if (OffsetBase && OffsetBase != 64) 2632 Hi = Lo; 2633 } else if (Size == 128 || 2634 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2635 // Arguments of 256-bits are split into four eightbyte chunks. The 2636 // least significant one belongs to class SSE and all the others to class 2637 // SSEUP. The original Lo and Hi design considers that types can't be 2638 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2639 // This design isn't correct for 256-bits, but since there're no cases 2640 // where the upper parts would need to be inspected, avoid adding 2641 // complexity and just consider Hi to match the 64-256 part. 2642 // 2643 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2644 // registers if they are "named", i.e. not part of the "..." of a 2645 // variadic function. 2646 // 2647 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2648 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2649 Lo = SSE; 2650 Hi = SSEUp; 2651 } 2652 return; 2653 } 2654 2655 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2656 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2657 2658 uint64_t Size = getContext().getTypeSize(Ty); 2659 if (ET->isIntegralOrEnumerationType()) { 2660 if (Size <= 64) 2661 Current = Integer; 2662 else if (Size <= 128) 2663 Lo = Hi = Integer; 2664 } else if (ET == getContext().FloatTy) { 2665 Current = SSE; 2666 } else if (ET == getContext().DoubleTy) { 2667 Lo = Hi = SSE; 2668 } else if (ET == getContext().LongDoubleTy) { 2669 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2670 if (LDF == &llvm::APFloat::IEEEquad()) 2671 Current = Memory; 2672 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2673 Current = ComplexX87; 2674 else if (LDF == &llvm::APFloat::IEEEdouble()) 2675 Lo = Hi = SSE; 2676 else 2677 llvm_unreachable("unexpected long double representation!"); 2678 } 2679 2680 // If this complex type crosses an eightbyte boundary then it 2681 // should be split. 2682 uint64_t EB_Real = (OffsetBase) / 64; 2683 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2684 if (Hi == NoClass && EB_Real != EB_Imag) 2685 Hi = Lo; 2686 2687 return; 2688 } 2689 2690 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2691 // Arrays are treated like structures. 2692 2693 uint64_t Size = getContext().getTypeSize(Ty); 2694 2695 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2696 // than eight eightbytes, ..., it has class MEMORY. 2697 if (Size > 512) 2698 return; 2699 2700 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2701 // fields, it has class MEMORY. 2702 // 2703 // Only need to check alignment of array base. 2704 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2705 return; 2706 2707 // Otherwise implement simplified merge. We could be smarter about 2708 // this, but it isn't worth it and would be harder to verify. 2709 Current = NoClass; 2710 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2711 uint64_t ArraySize = AT->getSize().getZExtValue(); 2712 2713 // The only case a 256-bit wide vector could be used is when the array 2714 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2715 // to work for sizes wider than 128, early check and fallback to memory. 2716 // 2717 if (Size > 128 && 2718 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2719 return; 2720 2721 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2722 Class FieldLo, FieldHi; 2723 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2724 Lo = merge(Lo, FieldLo); 2725 Hi = merge(Hi, FieldHi); 2726 if (Lo == Memory || Hi == Memory) 2727 break; 2728 } 2729 2730 postMerge(Size, Lo, Hi); 2731 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2732 return; 2733 } 2734 2735 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2736 uint64_t Size = getContext().getTypeSize(Ty); 2737 2738 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2739 // than eight eightbytes, ..., it has class MEMORY. 2740 if (Size > 512) 2741 return; 2742 2743 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2744 // copy constructor or a non-trivial destructor, it is passed by invisible 2745 // reference. 2746 if (getRecordArgABI(RT, getCXXABI())) 2747 return; 2748 2749 const RecordDecl *RD = RT->getDecl(); 2750 2751 // Assume variable sized types are passed in memory. 2752 if (RD->hasFlexibleArrayMember()) 2753 return; 2754 2755 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2756 2757 // Reset Lo class, this will be recomputed. 2758 Current = NoClass; 2759 2760 // If this is a C++ record, classify the bases first. 2761 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2762 for (const auto &I : CXXRD->bases()) { 2763 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2764 "Unexpected base class!"); 2765 const CXXRecordDecl *Base = 2766 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2767 2768 // Classify this field. 2769 // 2770 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2771 // single eightbyte, each is classified separately. Each eightbyte gets 2772 // initialized to class NO_CLASS. 2773 Class FieldLo, FieldHi; 2774 uint64_t Offset = 2775 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2776 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2777 Lo = merge(Lo, FieldLo); 2778 Hi = merge(Hi, FieldHi); 2779 if (Lo == Memory || Hi == Memory) { 2780 postMerge(Size, Lo, Hi); 2781 return; 2782 } 2783 } 2784 } 2785 2786 // Classify the fields one at a time, merging the results. 2787 unsigned idx = 0; 2788 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2789 i != e; ++i, ++idx) { 2790 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2791 bool BitField = i->isBitField(); 2792 2793 // Ignore padding bit-fields. 2794 if (BitField && i->isUnnamedBitfield()) 2795 continue; 2796 2797 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2798 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2799 // 2800 // The only case a 256-bit wide vector could be used is when the struct 2801 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2802 // to work for sizes wider than 128, early check and fallback to memory. 2803 // 2804 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2805 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2806 Lo = Memory; 2807 postMerge(Size, Lo, Hi); 2808 return; 2809 } 2810 // Note, skip this test for bit-fields, see below. 2811 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2812 Lo = Memory; 2813 postMerge(Size, Lo, Hi); 2814 return; 2815 } 2816 2817 // Classify this field. 2818 // 2819 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2820 // exceeds a single eightbyte, each is classified 2821 // separately. Each eightbyte gets initialized to class 2822 // NO_CLASS. 2823 Class FieldLo, FieldHi; 2824 2825 // Bit-fields require special handling, they do not force the 2826 // structure to be passed in memory even if unaligned, and 2827 // therefore they can straddle an eightbyte. 2828 if (BitField) { 2829 assert(!i->isUnnamedBitfield()); 2830 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2831 uint64_t Size = i->getBitWidthValue(getContext()); 2832 2833 uint64_t EB_Lo = Offset / 64; 2834 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2835 2836 if (EB_Lo) { 2837 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2838 FieldLo = NoClass; 2839 FieldHi = Integer; 2840 } else { 2841 FieldLo = Integer; 2842 FieldHi = EB_Hi ? Integer : NoClass; 2843 } 2844 } else 2845 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2846 Lo = merge(Lo, FieldLo); 2847 Hi = merge(Hi, FieldHi); 2848 if (Lo == Memory || Hi == Memory) 2849 break; 2850 } 2851 2852 postMerge(Size, Lo, Hi); 2853 } 2854 } 2855 2856 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2857 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2858 // place naturally. 2859 if (!isAggregateTypeForABI(Ty)) { 2860 // Treat an enum type as its underlying type. 2861 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2862 Ty = EnumTy->getDecl()->getIntegerType(); 2863 2864 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2865 : ABIArgInfo::getDirect()); 2866 } 2867 2868 return getNaturalAlignIndirect(Ty); 2869 } 2870 2871 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2872 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2873 uint64_t Size = getContext().getTypeSize(VecTy); 2874 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2875 if (Size <= 64 || Size > LargestVector) 2876 return true; 2877 } 2878 2879 return false; 2880 } 2881 2882 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2883 unsigned freeIntRegs) const { 2884 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2885 // place naturally. 2886 // 2887 // This assumption is optimistic, as there could be free registers available 2888 // when we need to pass this argument in memory, and LLVM could try to pass 2889 // the argument in the free register. This does not seem to happen currently, 2890 // but this code would be much safer if we could mark the argument with 2891 // 'onstack'. See PR12193. 2892 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2893 // Treat an enum type as its underlying type. 2894 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2895 Ty = EnumTy->getDecl()->getIntegerType(); 2896 2897 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2898 : ABIArgInfo::getDirect()); 2899 } 2900 2901 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2902 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2903 2904 // Compute the byval alignment. We specify the alignment of the byval in all 2905 // cases so that the mid-level optimizer knows the alignment of the byval. 2906 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2907 2908 // Attempt to avoid passing indirect results using byval when possible. This 2909 // is important for good codegen. 2910 // 2911 // We do this by coercing the value into a scalar type which the backend can 2912 // handle naturally (i.e., without using byval). 2913 // 2914 // For simplicity, we currently only do this when we have exhausted all of the 2915 // free integer registers. Doing this when there are free integer registers 2916 // would require more care, as we would have to ensure that the coerced value 2917 // did not claim the unused register. That would require either reording the 2918 // arguments to the function (so that any subsequent inreg values came first), 2919 // or only doing this optimization when there were no following arguments that 2920 // might be inreg. 2921 // 2922 // We currently expect it to be rare (particularly in well written code) for 2923 // arguments to be passed on the stack when there are still free integer 2924 // registers available (this would typically imply large structs being passed 2925 // by value), so this seems like a fair tradeoff for now. 2926 // 2927 // We can revisit this if the backend grows support for 'onstack' parameter 2928 // attributes. See PR12193. 2929 if (freeIntRegs == 0) { 2930 uint64_t Size = getContext().getTypeSize(Ty); 2931 2932 // If this type fits in an eightbyte, coerce it into the matching integral 2933 // type, which will end up on the stack (with alignment 8). 2934 if (Align == 8 && Size <= 64) 2935 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2936 Size)); 2937 } 2938 2939 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2940 } 2941 2942 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2943 /// register. Pick an LLVM IR type that will be passed as a vector register. 2944 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2945 // Wrapper structs/arrays that only contain vectors are passed just like 2946 // vectors; strip them off if present. 2947 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2948 Ty = QualType(InnerTy, 0); 2949 2950 llvm::Type *IRType = CGT.ConvertType(Ty); 2951 if (isa<llvm::VectorType>(IRType) || 2952 IRType->getTypeID() == llvm::Type::FP128TyID) 2953 return IRType; 2954 2955 // We couldn't find the preferred IR vector type for 'Ty'. 2956 uint64_t Size = getContext().getTypeSize(Ty); 2957 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2958 2959 // Return a LLVM IR vector type based on the size of 'Ty'. 2960 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2961 Size / 64); 2962 } 2963 2964 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2965 /// is known to either be off the end of the specified type or being in 2966 /// alignment padding. The user type specified is known to be at most 128 bits 2967 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2968 /// classification that put one of the two halves in the INTEGER class. 2969 /// 2970 /// It is conservatively correct to return false. 2971 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2972 unsigned EndBit, ASTContext &Context) { 2973 // If the bytes being queried are off the end of the type, there is no user 2974 // data hiding here. This handles analysis of builtins, vectors and other 2975 // types that don't contain interesting padding. 2976 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2977 if (TySize <= StartBit) 2978 return true; 2979 2980 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2981 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2982 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2983 2984 // Check each element to see if the element overlaps with the queried range. 2985 for (unsigned i = 0; i != NumElts; ++i) { 2986 // If the element is after the span we care about, then we're done.. 2987 unsigned EltOffset = i*EltSize; 2988 if (EltOffset >= EndBit) break; 2989 2990 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2991 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2992 EndBit-EltOffset, Context)) 2993 return false; 2994 } 2995 // If it overlaps no elements, then it is safe to process as padding. 2996 return true; 2997 } 2998 2999 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3000 const RecordDecl *RD = RT->getDecl(); 3001 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3002 3003 // If this is a C++ record, check the bases first. 3004 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3005 for (const auto &I : CXXRD->bases()) { 3006 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3007 "Unexpected base class!"); 3008 const CXXRecordDecl *Base = 3009 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3010 3011 // If the base is after the span we care about, ignore it. 3012 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3013 if (BaseOffset >= EndBit) continue; 3014 3015 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3016 if (!BitsContainNoUserData(I.getType(), BaseStart, 3017 EndBit-BaseOffset, Context)) 3018 return false; 3019 } 3020 } 3021 3022 // Verify that no field has data that overlaps the region of interest. Yes 3023 // this could be sped up a lot by being smarter about queried fields, 3024 // however we're only looking at structs up to 16 bytes, so we don't care 3025 // much. 3026 unsigned idx = 0; 3027 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3028 i != e; ++i, ++idx) { 3029 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3030 3031 // If we found a field after the region we care about, then we're done. 3032 if (FieldOffset >= EndBit) break; 3033 3034 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3035 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3036 Context)) 3037 return false; 3038 } 3039 3040 // If nothing in this record overlapped the area of interest, then we're 3041 // clean. 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3049 /// float member at the specified offset. For example, {int,{float}} has a 3050 /// float at offset 4. It is conservatively correct for this routine to return 3051 /// false. 3052 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3053 const llvm::DataLayout &TD) { 3054 // Base case if we find a float. 3055 if (IROffset == 0 && IRType->isFloatTy()) 3056 return true; 3057 3058 // If this is a struct, recurse into the field at the specified offset. 3059 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3060 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3061 unsigned Elt = SL->getElementContainingOffset(IROffset); 3062 IROffset -= SL->getElementOffset(Elt); 3063 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3064 } 3065 3066 // If this is an array, recurse into the field at the specified offset. 3067 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3068 llvm::Type *EltTy = ATy->getElementType(); 3069 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3070 IROffset -= IROffset/EltSize*EltSize; 3071 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3072 } 3073 3074 return false; 3075 } 3076 3077 3078 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3079 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3080 llvm::Type *X86_64ABIInfo:: 3081 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3082 QualType SourceTy, unsigned SourceOffset) const { 3083 // The only three choices we have are either double, <2 x float>, or float. We 3084 // pass as float if the last 4 bytes is just padding. This happens for 3085 // structs that contain 3 floats. 3086 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3087 SourceOffset*8+64, getContext())) 3088 return llvm::Type::getFloatTy(getVMContext()); 3089 3090 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3091 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3092 // case. 3093 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3094 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3095 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3096 3097 return llvm::Type::getDoubleTy(getVMContext()); 3098 } 3099 3100 3101 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3102 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3103 /// about the high or low part of an up-to-16-byte struct. This routine picks 3104 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3105 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3106 /// etc). 3107 /// 3108 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3109 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3110 /// the 8-byte value references. PrefType may be null. 3111 /// 3112 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3113 /// an offset into this that we're processing (which is always either 0 or 8). 3114 /// 3115 llvm::Type *X86_64ABIInfo:: 3116 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3117 QualType SourceTy, unsigned SourceOffset) const { 3118 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3119 // returning an 8-byte unit starting with it. See if we can safely use it. 3120 if (IROffset == 0) { 3121 // Pointers and int64's always fill the 8-byte unit. 3122 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3123 IRType->isIntegerTy(64)) 3124 return IRType; 3125 3126 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3127 // goodness in the source type is just tail padding. This is allowed to 3128 // kick in for struct {double,int} on the int, but not on 3129 // struct{double,int,int} because we wouldn't return the second int. We 3130 // have to do this analysis on the source type because we can't depend on 3131 // unions being lowered a specific way etc. 3132 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3133 IRType->isIntegerTy(32) || 3134 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3135 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3136 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3137 3138 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3139 SourceOffset*8+64, getContext())) 3140 return IRType; 3141 } 3142 } 3143 3144 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3145 // If this is a struct, recurse into the field at the specified offset. 3146 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3147 if (IROffset < SL->getSizeInBytes()) { 3148 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3149 IROffset -= SL->getElementOffset(FieldIdx); 3150 3151 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3152 SourceTy, SourceOffset); 3153 } 3154 } 3155 3156 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3157 llvm::Type *EltTy = ATy->getElementType(); 3158 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3159 unsigned EltOffset = IROffset/EltSize*EltSize; 3160 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3161 SourceOffset); 3162 } 3163 3164 // Okay, we don't have any better idea of what to pass, so we pass this in an 3165 // integer register that isn't too big to fit the rest of the struct. 3166 unsigned TySizeInBytes = 3167 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3168 3169 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3170 3171 // It is always safe to classify this as an integer type up to i64 that 3172 // isn't larger than the structure. 3173 return llvm::IntegerType::get(getVMContext(), 3174 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3175 } 3176 3177 3178 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3179 /// be used as elements of a two register pair to pass or return, return a 3180 /// first class aggregate to represent them. For example, if the low part of 3181 /// a by-value argument should be passed as i32* and the high part as float, 3182 /// return {i32*, float}. 3183 static llvm::Type * 3184 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3185 const llvm::DataLayout &TD) { 3186 // In order to correctly satisfy the ABI, we need to the high part to start 3187 // at offset 8. If the high and low parts we inferred are both 4-byte types 3188 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3189 // the second element at offset 8. Check for this: 3190 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3191 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3192 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3193 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3194 3195 // To handle this, we have to increase the size of the low part so that the 3196 // second element will start at an 8 byte offset. We can't increase the size 3197 // of the second element because it might make us access off the end of the 3198 // struct. 3199 if (HiStart != 8) { 3200 // There are usually two sorts of types the ABI generation code can produce 3201 // for the low part of a pair that aren't 8 bytes in size: float or 3202 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3203 // NaCl). 3204 // Promote these to a larger type. 3205 if (Lo->isFloatTy()) 3206 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3207 else { 3208 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3209 && "Invalid/unknown lo type"); 3210 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3211 } 3212 } 3213 3214 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3215 3216 // Verify that the second element is at an 8-byte offset. 3217 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3218 "Invalid x86-64 argument pair!"); 3219 return Result; 3220 } 3221 3222 ABIArgInfo X86_64ABIInfo:: 3223 classifyReturnType(QualType RetTy) const { 3224 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3225 // classification algorithm. 3226 X86_64ABIInfo::Class Lo, Hi; 3227 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3228 3229 // Check some invariants. 3230 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3231 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3232 3233 llvm::Type *ResType = nullptr; 3234 switch (Lo) { 3235 case NoClass: 3236 if (Hi == NoClass) 3237 return ABIArgInfo::getIgnore(); 3238 // If the low part is just padding, it takes no register, leave ResType 3239 // null. 3240 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3241 "Unknown missing lo part"); 3242 break; 3243 3244 case SSEUp: 3245 case X87Up: 3246 llvm_unreachable("Invalid classification for lo word."); 3247 3248 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3249 // hidden argument. 3250 case Memory: 3251 return getIndirectReturnResult(RetTy); 3252 3253 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3254 // available register of the sequence %rax, %rdx is used. 3255 case Integer: 3256 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3257 3258 // If we have a sign or zero extended integer, make sure to return Extend 3259 // so that the parameter gets the right LLVM IR attributes. 3260 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3261 // Treat an enum type as its underlying type. 3262 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3263 RetTy = EnumTy->getDecl()->getIntegerType(); 3264 3265 if (RetTy->isIntegralOrEnumerationType() && 3266 RetTy->isPromotableIntegerType()) 3267 return ABIArgInfo::getExtend(RetTy); 3268 } 3269 break; 3270 3271 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3272 // available SSE register of the sequence %xmm0, %xmm1 is used. 3273 case SSE: 3274 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3275 break; 3276 3277 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3278 // returned on the X87 stack in %st0 as 80-bit x87 number. 3279 case X87: 3280 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3281 break; 3282 3283 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3284 // part of the value is returned in %st0 and the imaginary part in 3285 // %st1. 3286 case ComplexX87: 3287 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3288 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3289 llvm::Type::getX86_FP80Ty(getVMContext())); 3290 break; 3291 } 3292 3293 llvm::Type *HighPart = nullptr; 3294 switch (Hi) { 3295 // Memory was handled previously and X87 should 3296 // never occur as a hi class. 3297 case Memory: 3298 case X87: 3299 llvm_unreachable("Invalid classification for hi word."); 3300 3301 case ComplexX87: // Previously handled. 3302 case NoClass: 3303 break; 3304 3305 case Integer: 3306 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3307 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3308 return ABIArgInfo::getDirect(HighPart, 8); 3309 break; 3310 case SSE: 3311 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3312 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3313 return ABIArgInfo::getDirect(HighPart, 8); 3314 break; 3315 3316 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3317 // is passed in the next available eightbyte chunk if the last used 3318 // vector register. 3319 // 3320 // SSEUP should always be preceded by SSE, just widen. 3321 case SSEUp: 3322 assert(Lo == SSE && "Unexpected SSEUp classification."); 3323 ResType = GetByteVectorType(RetTy); 3324 break; 3325 3326 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3327 // returned together with the previous X87 value in %st0. 3328 case X87Up: 3329 // If X87Up is preceded by X87, we don't need to do 3330 // anything. However, in some cases with unions it may not be 3331 // preceded by X87. In such situations we follow gcc and pass the 3332 // extra bits in an SSE reg. 3333 if (Lo != X87) { 3334 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3335 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3336 return ABIArgInfo::getDirect(HighPart, 8); 3337 } 3338 break; 3339 } 3340 3341 // If a high part was specified, merge it together with the low part. It is 3342 // known to pass in the high eightbyte of the result. We do this by forming a 3343 // first class struct aggregate with the high and low part: {low, high} 3344 if (HighPart) 3345 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3346 3347 return ABIArgInfo::getDirect(ResType); 3348 } 3349 3350 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3351 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3352 bool isNamedArg) 3353 const 3354 { 3355 Ty = useFirstFieldIfTransparentUnion(Ty); 3356 3357 X86_64ABIInfo::Class Lo, Hi; 3358 classify(Ty, 0, Lo, Hi, isNamedArg); 3359 3360 // Check some invariants. 3361 // FIXME: Enforce these by construction. 3362 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3363 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3364 3365 neededInt = 0; 3366 neededSSE = 0; 3367 llvm::Type *ResType = nullptr; 3368 switch (Lo) { 3369 case NoClass: 3370 if (Hi == NoClass) 3371 return ABIArgInfo::getIgnore(); 3372 // If the low part is just padding, it takes no register, leave ResType 3373 // null. 3374 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3375 "Unknown missing lo part"); 3376 break; 3377 3378 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3379 // on the stack. 3380 case Memory: 3381 3382 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3383 // COMPLEX_X87, it is passed in memory. 3384 case X87: 3385 case ComplexX87: 3386 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3387 ++neededInt; 3388 return getIndirectResult(Ty, freeIntRegs); 3389 3390 case SSEUp: 3391 case X87Up: 3392 llvm_unreachable("Invalid classification for lo word."); 3393 3394 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3395 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3396 // and %r9 is used. 3397 case Integer: 3398 ++neededInt; 3399 3400 // Pick an 8-byte type based on the preferred type. 3401 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3402 3403 // If we have a sign or zero extended integer, make sure to return Extend 3404 // so that the parameter gets the right LLVM IR attributes. 3405 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3406 // Treat an enum type as its underlying type. 3407 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3408 Ty = EnumTy->getDecl()->getIntegerType(); 3409 3410 if (Ty->isIntegralOrEnumerationType() && 3411 Ty->isPromotableIntegerType()) 3412 return ABIArgInfo::getExtend(Ty); 3413 } 3414 3415 break; 3416 3417 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3418 // available SSE register is used, the registers are taken in the 3419 // order from %xmm0 to %xmm7. 3420 case SSE: { 3421 llvm::Type *IRType = CGT.ConvertType(Ty); 3422 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3423 ++neededSSE; 3424 break; 3425 } 3426 } 3427 3428 llvm::Type *HighPart = nullptr; 3429 switch (Hi) { 3430 // Memory was handled previously, ComplexX87 and X87 should 3431 // never occur as hi classes, and X87Up must be preceded by X87, 3432 // which is passed in memory. 3433 case Memory: 3434 case X87: 3435 case ComplexX87: 3436 llvm_unreachable("Invalid classification for hi word."); 3437 3438 case NoClass: break; 3439 3440 case Integer: 3441 ++neededInt; 3442 // Pick an 8-byte type based on the preferred type. 3443 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3444 3445 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3446 return ABIArgInfo::getDirect(HighPart, 8); 3447 break; 3448 3449 // X87Up generally doesn't occur here (long double is passed in 3450 // memory), except in situations involving unions. 3451 case X87Up: 3452 case SSE: 3453 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3454 3455 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3456 return ABIArgInfo::getDirect(HighPart, 8); 3457 3458 ++neededSSE; 3459 break; 3460 3461 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3462 // eightbyte is passed in the upper half of the last used SSE 3463 // register. This only happens when 128-bit vectors are passed. 3464 case SSEUp: 3465 assert(Lo == SSE && "Unexpected SSEUp classification"); 3466 ResType = GetByteVectorType(Ty); 3467 break; 3468 } 3469 3470 // If a high part was specified, merge it together with the low part. It is 3471 // known to pass in the high eightbyte of the result. We do this by forming a 3472 // first class struct aggregate with the high and low part: {low, high} 3473 if (HighPart) 3474 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3475 3476 return ABIArgInfo::getDirect(ResType); 3477 } 3478 3479 ABIArgInfo 3480 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3481 unsigned &NeededSSE) const { 3482 auto RT = Ty->getAs<RecordType>(); 3483 assert(RT && "classifyRegCallStructType only valid with struct types"); 3484 3485 if (RT->getDecl()->hasFlexibleArrayMember()) 3486 return getIndirectReturnResult(Ty); 3487 3488 // Sum up bases 3489 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3490 if (CXXRD->isDynamicClass()) { 3491 NeededInt = NeededSSE = 0; 3492 return getIndirectReturnResult(Ty); 3493 } 3494 3495 for (const auto &I : CXXRD->bases()) 3496 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3497 .isIndirect()) { 3498 NeededInt = NeededSSE = 0; 3499 return getIndirectReturnResult(Ty); 3500 } 3501 } 3502 3503 // Sum up members 3504 for (const auto *FD : RT->getDecl()->fields()) { 3505 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3506 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3507 .isIndirect()) { 3508 NeededInt = NeededSSE = 0; 3509 return getIndirectReturnResult(Ty); 3510 } 3511 } else { 3512 unsigned LocalNeededInt, LocalNeededSSE; 3513 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3514 LocalNeededSSE, true) 3515 .isIndirect()) { 3516 NeededInt = NeededSSE = 0; 3517 return getIndirectReturnResult(Ty); 3518 } 3519 NeededInt += LocalNeededInt; 3520 NeededSSE += LocalNeededSSE; 3521 } 3522 } 3523 3524 return ABIArgInfo::getDirect(); 3525 } 3526 3527 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3528 unsigned &NeededInt, 3529 unsigned &NeededSSE) const { 3530 3531 NeededInt = 0; 3532 NeededSSE = 0; 3533 3534 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3535 } 3536 3537 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3538 3539 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3540 3541 // Keep track of the number of assigned registers. 3542 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3543 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3544 unsigned NeededInt, NeededSSE; 3545 3546 if (!getCXXABI().classifyReturnType(FI)) { 3547 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3548 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3549 FI.getReturnInfo() = 3550 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3551 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3552 FreeIntRegs -= NeededInt; 3553 FreeSSERegs -= NeededSSE; 3554 } else { 3555 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3556 } 3557 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3558 // Complex Long Double Type is passed in Memory when Regcall 3559 // calling convention is used. 3560 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3561 if (getContext().getCanonicalType(CT->getElementType()) == 3562 getContext().LongDoubleTy) 3563 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3564 } else 3565 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3566 } 3567 3568 // If the return value is indirect, then the hidden argument is consuming one 3569 // integer register. 3570 if (FI.getReturnInfo().isIndirect()) 3571 --FreeIntRegs; 3572 3573 // The chain argument effectively gives us another free register. 3574 if (FI.isChainCall()) 3575 ++FreeIntRegs; 3576 3577 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3578 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3579 // get assigned (in left-to-right order) for passing as follows... 3580 unsigned ArgNo = 0; 3581 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3582 it != ie; ++it, ++ArgNo) { 3583 bool IsNamedArg = ArgNo < NumRequiredArgs; 3584 3585 if (IsRegCall && it->type->isStructureOrClassType()) 3586 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3587 else 3588 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3589 NeededSSE, IsNamedArg); 3590 3591 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3592 // eightbyte of an argument, the whole argument is passed on the 3593 // stack. If registers have already been assigned for some 3594 // eightbytes of such an argument, the assignments get reverted. 3595 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3596 FreeIntRegs -= NeededInt; 3597 FreeSSERegs -= NeededSSE; 3598 } else { 3599 it->info = getIndirectResult(it->type, FreeIntRegs); 3600 } 3601 } 3602 } 3603 3604 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3605 Address VAListAddr, QualType Ty) { 3606 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3607 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3608 llvm::Value *overflow_arg_area = 3609 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3610 3611 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3612 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3613 // It isn't stated explicitly in the standard, but in practice we use 3614 // alignment greater than 16 where necessary. 3615 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3616 if (Align > CharUnits::fromQuantity(8)) { 3617 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3618 Align); 3619 } 3620 3621 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3622 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3623 llvm::Value *Res = 3624 CGF.Builder.CreateBitCast(overflow_arg_area, 3625 llvm::PointerType::getUnqual(LTy)); 3626 3627 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3628 // l->overflow_arg_area + sizeof(type). 3629 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3630 // an 8 byte boundary. 3631 3632 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3633 llvm::Value *Offset = 3634 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3635 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3636 "overflow_arg_area.next"); 3637 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3638 3639 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3640 return Address(Res, Align); 3641 } 3642 3643 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3644 QualType Ty) const { 3645 // Assume that va_list type is correct; should be pointer to LLVM type: 3646 // struct { 3647 // i32 gp_offset; 3648 // i32 fp_offset; 3649 // i8* overflow_arg_area; 3650 // i8* reg_save_area; 3651 // }; 3652 unsigned neededInt, neededSSE; 3653 3654 Ty = getContext().getCanonicalType(Ty); 3655 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3656 /*isNamedArg*/false); 3657 3658 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3659 // in the registers. If not go to step 7. 3660 if (!neededInt && !neededSSE) 3661 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3662 3663 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3664 // general purpose registers needed to pass type and num_fp to hold 3665 // the number of floating point registers needed. 3666 3667 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3668 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3669 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3670 // 3671 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3672 // register save space). 3673 3674 llvm::Value *InRegs = nullptr; 3675 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3676 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3677 if (neededInt) { 3678 gp_offset_p = 3679 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3680 "gp_offset_p"); 3681 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3682 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3683 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3684 } 3685 3686 if (neededSSE) { 3687 fp_offset_p = 3688 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3689 "fp_offset_p"); 3690 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3691 llvm::Value *FitsInFP = 3692 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3693 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3694 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3695 } 3696 3697 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3698 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3699 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3700 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3701 3702 // Emit code to load the value if it was passed in registers. 3703 3704 CGF.EmitBlock(InRegBlock); 3705 3706 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3707 // an offset of l->gp_offset and/or l->fp_offset. This may require 3708 // copying to a temporary location in case the parameter is passed 3709 // in different register classes or requires an alignment greater 3710 // than 8 for general purpose registers and 16 for XMM registers. 3711 // 3712 // FIXME: This really results in shameful code when we end up needing to 3713 // collect arguments from different places; often what should result in a 3714 // simple assembling of a structure from scattered addresses has many more 3715 // loads than necessary. Can we clean this up? 3716 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3717 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3718 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3719 "reg_save_area"); 3720 3721 Address RegAddr = Address::invalid(); 3722 if (neededInt && neededSSE) { 3723 // FIXME: Cleanup. 3724 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3725 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3726 Address Tmp = CGF.CreateMemTemp(Ty); 3727 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3728 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3729 llvm::Type *TyLo = ST->getElementType(0); 3730 llvm::Type *TyHi = ST->getElementType(1); 3731 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3732 "Unexpected ABI info for mixed regs"); 3733 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3734 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3735 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3736 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3737 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3738 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3739 3740 // Copy the first element. 3741 // FIXME: Our choice of alignment here and below is probably pessimistic. 3742 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3743 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3744 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3745 CGF.Builder.CreateStore(V, 3746 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3747 3748 // Copy the second element. 3749 V = CGF.Builder.CreateAlignedLoad( 3750 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3751 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3752 CharUnits Offset = CharUnits::fromQuantity( 3753 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3754 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3755 3756 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3757 } else if (neededInt) { 3758 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3759 CharUnits::fromQuantity(8)); 3760 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3761 3762 // Copy to a temporary if necessary to ensure the appropriate alignment. 3763 std::pair<CharUnits, CharUnits> SizeAlign = 3764 getContext().getTypeInfoInChars(Ty); 3765 uint64_t TySize = SizeAlign.first.getQuantity(); 3766 CharUnits TyAlign = SizeAlign.second; 3767 3768 // Copy into a temporary if the type is more aligned than the 3769 // register save area. 3770 if (TyAlign.getQuantity() > 8) { 3771 Address Tmp = CGF.CreateMemTemp(Ty); 3772 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3773 RegAddr = Tmp; 3774 } 3775 3776 } else if (neededSSE == 1) { 3777 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3778 CharUnits::fromQuantity(16)); 3779 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3780 } else { 3781 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3782 // SSE registers are spaced 16 bytes apart in the register save 3783 // area, we need to collect the two eightbytes together. 3784 // The ABI isn't explicit about this, but it seems reasonable 3785 // to assume that the slots are 16-byte aligned, since the stack is 3786 // naturally 16-byte aligned and the prologue is expected to store 3787 // all the SSE registers to the RSA. 3788 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3789 CharUnits::fromQuantity(16)); 3790 Address RegAddrHi = 3791 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3792 CharUnits::fromQuantity(16)); 3793 llvm::Type *ST = AI.canHaveCoerceToType() 3794 ? AI.getCoerceToType() 3795 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3796 llvm::Value *V; 3797 Address Tmp = CGF.CreateMemTemp(Ty); 3798 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3799 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3800 RegAddrLo, ST->getStructElementType(0))); 3801 CGF.Builder.CreateStore(V, 3802 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3803 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3804 RegAddrHi, ST->getStructElementType(1))); 3805 CGF.Builder.CreateStore(V, 3806 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3807 3808 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3809 } 3810 3811 // AMD64-ABI 3.5.7p5: Step 5. Set: 3812 // l->gp_offset = l->gp_offset + num_gp * 8 3813 // l->fp_offset = l->fp_offset + num_fp * 16. 3814 if (neededInt) { 3815 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3816 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3817 gp_offset_p); 3818 } 3819 if (neededSSE) { 3820 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3821 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3822 fp_offset_p); 3823 } 3824 CGF.EmitBranch(ContBlock); 3825 3826 // Emit code to load the value if it was passed in memory. 3827 3828 CGF.EmitBlock(InMemBlock); 3829 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3830 3831 // Return the appropriate result. 3832 3833 CGF.EmitBlock(ContBlock); 3834 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3835 "vaarg.addr"); 3836 return ResAddr; 3837 } 3838 3839 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3840 QualType Ty) const { 3841 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3842 CGF.getContext().getTypeInfoInChars(Ty), 3843 CharUnits::fromQuantity(8), 3844 /*allowHigherAlign*/ false); 3845 } 3846 3847 ABIArgInfo 3848 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3849 const ABIArgInfo ¤t) const { 3850 // Assumes vectorCall calling convention. 3851 const Type *Base = nullptr; 3852 uint64_t NumElts = 0; 3853 3854 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3855 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3856 FreeSSERegs -= NumElts; 3857 return getDirectX86Hva(); 3858 } 3859 return current; 3860 } 3861 3862 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3863 bool IsReturnType, bool IsVectorCall, 3864 bool IsRegCall) const { 3865 3866 if (Ty->isVoidType()) 3867 return ABIArgInfo::getIgnore(); 3868 3869 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3870 Ty = EnumTy->getDecl()->getIntegerType(); 3871 3872 TypeInfo Info = getContext().getTypeInfo(Ty); 3873 uint64_t Width = Info.Width; 3874 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3875 3876 const RecordType *RT = Ty->getAs<RecordType>(); 3877 if (RT) { 3878 if (!IsReturnType) { 3879 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3880 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3881 } 3882 3883 if (RT->getDecl()->hasFlexibleArrayMember()) 3884 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3885 3886 } 3887 3888 const Type *Base = nullptr; 3889 uint64_t NumElts = 0; 3890 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3891 // other targets. 3892 if ((IsVectorCall || IsRegCall) && 3893 isHomogeneousAggregate(Ty, Base, NumElts)) { 3894 if (IsRegCall) { 3895 if (FreeSSERegs >= NumElts) { 3896 FreeSSERegs -= NumElts; 3897 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3898 return ABIArgInfo::getDirect(); 3899 return ABIArgInfo::getExpand(); 3900 } 3901 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3902 } else if (IsVectorCall) { 3903 if (FreeSSERegs >= NumElts && 3904 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3905 FreeSSERegs -= NumElts; 3906 return ABIArgInfo::getDirect(); 3907 } else if (IsReturnType) { 3908 return ABIArgInfo::getExpand(); 3909 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3910 // HVAs are delayed and reclassified in the 2nd step. 3911 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3912 } 3913 } 3914 } 3915 3916 if (Ty->isMemberPointerType()) { 3917 // If the member pointer is represented by an LLVM int or ptr, pass it 3918 // directly. 3919 llvm::Type *LLTy = CGT.ConvertType(Ty); 3920 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3921 return ABIArgInfo::getDirect(); 3922 } 3923 3924 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3925 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3926 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3927 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3928 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3929 3930 // Otherwise, coerce it to a small integer. 3931 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3932 } 3933 3934 // Bool type is always extended to the ABI, other builtin types are not 3935 // extended. 3936 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3937 if (BT && BT->getKind() == BuiltinType::Bool) 3938 return ABIArgInfo::getExtend(Ty); 3939 3940 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3941 // passes them indirectly through memory. 3942 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3943 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3944 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3945 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3946 } 3947 3948 return ABIArgInfo::getDirect(); 3949 } 3950 3951 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3952 unsigned FreeSSERegs, 3953 bool IsVectorCall, 3954 bool IsRegCall) const { 3955 unsigned Count = 0; 3956 for (auto &I : FI.arguments()) { 3957 // Vectorcall in x64 only permits the first 6 arguments to be passed 3958 // as XMM/YMM registers. 3959 if (Count < VectorcallMaxParamNumAsReg) 3960 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3961 else { 3962 // Since these cannot be passed in registers, pretend no registers 3963 // are left. 3964 unsigned ZeroSSERegsAvail = 0; 3965 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3966 IsVectorCall, IsRegCall); 3967 } 3968 ++Count; 3969 } 3970 3971 for (auto &I : FI.arguments()) { 3972 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3973 } 3974 } 3975 3976 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3977 bool IsVectorCall = 3978 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3979 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3980 3981 unsigned FreeSSERegs = 0; 3982 if (IsVectorCall) { 3983 // We can use up to 4 SSE return registers with vectorcall. 3984 FreeSSERegs = 4; 3985 } else if (IsRegCall) { 3986 // RegCall gives us 16 SSE registers. 3987 FreeSSERegs = 16; 3988 } 3989 3990 if (!getCXXABI().classifyReturnType(FI)) 3991 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3992 IsVectorCall, IsRegCall); 3993 3994 if (IsVectorCall) { 3995 // We can use up to 6 SSE register parameters with vectorcall. 3996 FreeSSERegs = 6; 3997 } else if (IsRegCall) { 3998 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3999 FreeSSERegs = 16; 4000 } 4001 4002 if (IsVectorCall) { 4003 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4004 } else { 4005 for (auto &I : FI.arguments()) 4006 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4007 } 4008 4009 } 4010 4011 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4012 QualType Ty) const { 4013 4014 bool IsIndirect = false; 4015 4016 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4017 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4018 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4019 uint64_t Width = getContext().getTypeSize(Ty); 4020 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4021 } 4022 4023 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4024 CGF.getContext().getTypeInfoInChars(Ty), 4025 CharUnits::fromQuantity(8), 4026 /*allowHigherAlign*/ false); 4027 } 4028 4029 // PowerPC-32 4030 namespace { 4031 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4032 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4033 bool IsSoftFloatABI; 4034 4035 CharUnits getParamTypeAlignment(QualType Ty) const; 4036 4037 public: 4038 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4039 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4040 4041 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4042 QualType Ty) const override; 4043 }; 4044 4045 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4046 public: 4047 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4048 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4049 4050 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4051 // This is recovered from gcc output. 4052 return 1; // r1 is the dedicated stack pointer 4053 } 4054 4055 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4056 llvm::Value *Address) const override; 4057 }; 4058 } 4059 4060 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4061 // Complex types are passed just like their elements 4062 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4063 Ty = CTy->getElementType(); 4064 4065 if (Ty->isVectorType()) 4066 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4067 : 4); 4068 4069 // For single-element float/vector structs, we consider the whole type 4070 // to have the same alignment requirements as its single element. 4071 const Type *AlignTy = nullptr; 4072 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4073 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4074 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4075 (BT && BT->isFloatingPoint())) 4076 AlignTy = EltType; 4077 } 4078 4079 if (AlignTy) 4080 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4081 return CharUnits::fromQuantity(4); 4082 } 4083 4084 // TODO: this implementation is now likely redundant with 4085 // DefaultABIInfo::EmitVAArg. 4086 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4087 QualType Ty) const { 4088 if (getTarget().getTriple().isOSDarwin()) { 4089 auto TI = getContext().getTypeInfoInChars(Ty); 4090 TI.second = getParamTypeAlignment(Ty); 4091 4092 CharUnits SlotSize = CharUnits::fromQuantity(4); 4093 return emitVoidPtrVAArg(CGF, VAList, Ty, 4094 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4095 /*AllowHigherAlign=*/true); 4096 } 4097 4098 const unsigned OverflowLimit = 8; 4099 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4100 // TODO: Implement this. For now ignore. 4101 (void)CTy; 4102 return Address::invalid(); // FIXME? 4103 } 4104 4105 // struct __va_list_tag { 4106 // unsigned char gpr; 4107 // unsigned char fpr; 4108 // unsigned short reserved; 4109 // void *overflow_arg_area; 4110 // void *reg_save_area; 4111 // }; 4112 4113 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4114 bool isInt = 4115 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4116 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4117 4118 // All aggregates are passed indirectly? That doesn't seem consistent 4119 // with the argument-lowering code. 4120 bool isIndirect = Ty->isAggregateType(); 4121 4122 CGBuilderTy &Builder = CGF.Builder; 4123 4124 // The calling convention either uses 1-2 GPRs or 1 FPR. 4125 Address NumRegsAddr = Address::invalid(); 4126 if (isInt || IsSoftFloatABI) { 4127 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4128 } else { 4129 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4130 } 4131 4132 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4133 4134 // "Align" the register count when TY is i64. 4135 if (isI64 || (isF64 && IsSoftFloatABI)) { 4136 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4137 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4138 } 4139 4140 llvm::Value *CC = 4141 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4142 4143 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4144 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4145 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4146 4147 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4148 4149 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4150 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4151 4152 // Case 1: consume registers. 4153 Address RegAddr = Address::invalid(); 4154 { 4155 CGF.EmitBlock(UsingRegs); 4156 4157 Address RegSaveAreaPtr = 4158 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4159 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4160 CharUnits::fromQuantity(8)); 4161 assert(RegAddr.getElementType() == CGF.Int8Ty); 4162 4163 // Floating-point registers start after the general-purpose registers. 4164 if (!(isInt || IsSoftFloatABI)) { 4165 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4166 CharUnits::fromQuantity(32)); 4167 } 4168 4169 // Get the address of the saved value by scaling the number of 4170 // registers we've used by the number of 4171 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4172 llvm::Value *RegOffset = 4173 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4174 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4175 RegAddr.getPointer(), RegOffset), 4176 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4177 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4178 4179 // Increase the used-register count. 4180 NumRegs = 4181 Builder.CreateAdd(NumRegs, 4182 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4183 Builder.CreateStore(NumRegs, NumRegsAddr); 4184 4185 CGF.EmitBranch(Cont); 4186 } 4187 4188 // Case 2: consume space in the overflow area. 4189 Address MemAddr = Address::invalid(); 4190 { 4191 CGF.EmitBlock(UsingOverflow); 4192 4193 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4194 4195 // Everything in the overflow area is rounded up to a size of at least 4. 4196 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4197 4198 CharUnits Size; 4199 if (!isIndirect) { 4200 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4201 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4202 } else { 4203 Size = CGF.getPointerSize(); 4204 } 4205 4206 Address OverflowAreaAddr = 4207 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4208 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4209 OverflowAreaAlign); 4210 // Round up address of argument to alignment 4211 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4212 if (Align > OverflowAreaAlign) { 4213 llvm::Value *Ptr = OverflowArea.getPointer(); 4214 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4215 Align); 4216 } 4217 4218 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4219 4220 // Increase the overflow area. 4221 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4222 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4223 CGF.EmitBranch(Cont); 4224 } 4225 4226 CGF.EmitBlock(Cont); 4227 4228 // Merge the cases with a phi. 4229 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4230 "vaarg.addr"); 4231 4232 // Load the pointer if the argument was passed indirectly. 4233 if (isIndirect) { 4234 Result = Address(Builder.CreateLoad(Result, "aggr"), 4235 getContext().getTypeAlignInChars(Ty)); 4236 } 4237 4238 return Result; 4239 } 4240 4241 bool 4242 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4243 llvm::Value *Address) const { 4244 // This is calculated from the LLVM and GCC tables and verified 4245 // against gcc output. AFAIK all ABIs use the same encoding. 4246 4247 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4248 4249 llvm::IntegerType *i8 = CGF.Int8Ty; 4250 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4251 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4252 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4253 4254 // 0-31: r0-31, the 4-byte general-purpose registers 4255 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4256 4257 // 32-63: fp0-31, the 8-byte floating-point registers 4258 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4259 4260 // 64-76 are various 4-byte special-purpose registers: 4261 // 64: mq 4262 // 65: lr 4263 // 66: ctr 4264 // 67: ap 4265 // 68-75 cr0-7 4266 // 76: xer 4267 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4268 4269 // 77-108: v0-31, the 16-byte vector registers 4270 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4271 4272 // 109: vrsave 4273 // 110: vscr 4274 // 111: spe_acc 4275 // 112: spefscr 4276 // 113: sfp 4277 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4278 4279 return false; 4280 } 4281 4282 // PowerPC-64 4283 4284 namespace { 4285 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4286 class PPC64_SVR4_ABIInfo : public ABIInfo { 4287 public: 4288 enum ABIKind { 4289 ELFv1 = 0, 4290 ELFv2 4291 }; 4292 4293 private: 4294 static const unsigned GPRBits = 64; 4295 ABIKind Kind; 4296 bool HasQPX; 4297 bool IsSoftFloatABI; 4298 4299 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4300 // will be passed in a QPX register. 4301 bool IsQPXVectorTy(const Type *Ty) const { 4302 if (!HasQPX) 4303 return false; 4304 4305 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4306 unsigned NumElements = VT->getNumElements(); 4307 if (NumElements == 1) 4308 return false; 4309 4310 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4311 if (getContext().getTypeSize(Ty) <= 256) 4312 return true; 4313 } else if (VT->getElementType()-> 4314 isSpecificBuiltinType(BuiltinType::Float)) { 4315 if (getContext().getTypeSize(Ty) <= 128) 4316 return true; 4317 } 4318 } 4319 4320 return false; 4321 } 4322 4323 bool IsQPXVectorTy(QualType Ty) const { 4324 return IsQPXVectorTy(Ty.getTypePtr()); 4325 } 4326 4327 public: 4328 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4329 bool SoftFloatABI) 4330 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4331 IsSoftFloatABI(SoftFloatABI) {} 4332 4333 bool isPromotableTypeForABI(QualType Ty) const; 4334 CharUnits getParamTypeAlignment(QualType Ty) const; 4335 4336 ABIArgInfo classifyReturnType(QualType RetTy) const; 4337 ABIArgInfo classifyArgumentType(QualType Ty) const; 4338 4339 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4340 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4341 uint64_t Members) const override; 4342 4343 // TODO: We can add more logic to computeInfo to improve performance. 4344 // Example: For aggregate arguments that fit in a register, we could 4345 // use getDirectInReg (as is done below for structs containing a single 4346 // floating-point value) to avoid pushing them to memory on function 4347 // entry. This would require changing the logic in PPCISelLowering 4348 // when lowering the parameters in the caller and args in the callee. 4349 void computeInfo(CGFunctionInfo &FI) const override { 4350 if (!getCXXABI().classifyReturnType(FI)) 4351 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4352 for (auto &I : FI.arguments()) { 4353 // We rely on the default argument classification for the most part. 4354 // One exception: An aggregate containing a single floating-point 4355 // or vector item must be passed in a register if one is available. 4356 const Type *T = isSingleElementStruct(I.type, getContext()); 4357 if (T) { 4358 const BuiltinType *BT = T->getAs<BuiltinType>(); 4359 if (IsQPXVectorTy(T) || 4360 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4361 (BT && BT->isFloatingPoint())) { 4362 QualType QT(T, 0); 4363 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4364 continue; 4365 } 4366 } 4367 I.info = classifyArgumentType(I.type); 4368 } 4369 } 4370 4371 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4372 QualType Ty) const override; 4373 }; 4374 4375 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4376 4377 public: 4378 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4379 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4380 bool SoftFloatABI) 4381 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4382 SoftFloatABI)) {} 4383 4384 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4385 // This is recovered from gcc output. 4386 return 1; // r1 is the dedicated stack pointer 4387 } 4388 4389 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4390 llvm::Value *Address) const override; 4391 }; 4392 4393 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4394 public: 4395 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4396 4397 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4398 // This is recovered from gcc output. 4399 return 1; // r1 is the dedicated stack pointer 4400 } 4401 4402 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4403 llvm::Value *Address) const override; 4404 }; 4405 4406 } 4407 4408 // Return true if the ABI requires Ty to be passed sign- or zero- 4409 // extended to 64 bits. 4410 bool 4411 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4412 // Treat an enum type as its underlying type. 4413 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4414 Ty = EnumTy->getDecl()->getIntegerType(); 4415 4416 // Promotable integer types are required to be promoted by the ABI. 4417 if (Ty->isPromotableIntegerType()) 4418 return true; 4419 4420 // In addition to the usual promotable integer types, we also need to 4421 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4422 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4423 switch (BT->getKind()) { 4424 case BuiltinType::Int: 4425 case BuiltinType::UInt: 4426 return true; 4427 default: 4428 break; 4429 } 4430 4431 return false; 4432 } 4433 4434 /// isAlignedParamType - Determine whether a type requires 16-byte or 4435 /// higher alignment in the parameter area. Always returns at least 8. 4436 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4437 // Complex types are passed just like their elements. 4438 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4439 Ty = CTy->getElementType(); 4440 4441 // Only vector types of size 16 bytes need alignment (larger types are 4442 // passed via reference, smaller types are not aligned). 4443 if (IsQPXVectorTy(Ty)) { 4444 if (getContext().getTypeSize(Ty) > 128) 4445 return CharUnits::fromQuantity(32); 4446 4447 return CharUnits::fromQuantity(16); 4448 } else if (Ty->isVectorType()) { 4449 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4450 } 4451 4452 // For single-element float/vector structs, we consider the whole type 4453 // to have the same alignment requirements as its single element. 4454 const Type *AlignAsType = nullptr; 4455 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4456 if (EltType) { 4457 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4458 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4459 getContext().getTypeSize(EltType) == 128) || 4460 (BT && BT->isFloatingPoint())) 4461 AlignAsType = EltType; 4462 } 4463 4464 // Likewise for ELFv2 homogeneous aggregates. 4465 const Type *Base = nullptr; 4466 uint64_t Members = 0; 4467 if (!AlignAsType && Kind == ELFv2 && 4468 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4469 AlignAsType = Base; 4470 4471 // With special case aggregates, only vector base types need alignment. 4472 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4473 if (getContext().getTypeSize(AlignAsType) > 128) 4474 return CharUnits::fromQuantity(32); 4475 4476 return CharUnits::fromQuantity(16); 4477 } else if (AlignAsType) { 4478 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4479 } 4480 4481 // Otherwise, we only need alignment for any aggregate type that 4482 // has an alignment requirement of >= 16 bytes. 4483 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4484 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4485 return CharUnits::fromQuantity(32); 4486 return CharUnits::fromQuantity(16); 4487 } 4488 4489 return CharUnits::fromQuantity(8); 4490 } 4491 4492 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4493 /// aggregate. Base is set to the base element type, and Members is set 4494 /// to the number of base elements. 4495 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4496 uint64_t &Members) const { 4497 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4498 uint64_t NElements = AT->getSize().getZExtValue(); 4499 if (NElements == 0) 4500 return false; 4501 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4502 return false; 4503 Members *= NElements; 4504 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4505 const RecordDecl *RD = RT->getDecl(); 4506 if (RD->hasFlexibleArrayMember()) 4507 return false; 4508 4509 Members = 0; 4510 4511 // If this is a C++ record, check the bases first. 4512 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4513 for (const auto &I : CXXRD->bases()) { 4514 // Ignore empty records. 4515 if (isEmptyRecord(getContext(), I.getType(), true)) 4516 continue; 4517 4518 uint64_t FldMembers; 4519 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4520 return false; 4521 4522 Members += FldMembers; 4523 } 4524 } 4525 4526 for (const auto *FD : RD->fields()) { 4527 // Ignore (non-zero arrays of) empty records. 4528 QualType FT = FD->getType(); 4529 while (const ConstantArrayType *AT = 4530 getContext().getAsConstantArrayType(FT)) { 4531 if (AT->getSize().getZExtValue() == 0) 4532 return false; 4533 FT = AT->getElementType(); 4534 } 4535 if (isEmptyRecord(getContext(), FT, true)) 4536 continue; 4537 4538 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4539 if (getContext().getLangOpts().CPlusPlus && 4540 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4541 continue; 4542 4543 uint64_t FldMembers; 4544 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4545 return false; 4546 4547 Members = (RD->isUnion() ? 4548 std::max(Members, FldMembers) : Members + FldMembers); 4549 } 4550 4551 if (!Base) 4552 return false; 4553 4554 // Ensure there is no padding. 4555 if (getContext().getTypeSize(Base) * Members != 4556 getContext().getTypeSize(Ty)) 4557 return false; 4558 } else { 4559 Members = 1; 4560 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4561 Members = 2; 4562 Ty = CT->getElementType(); 4563 } 4564 4565 // Most ABIs only support float, double, and some vector type widths. 4566 if (!isHomogeneousAggregateBaseType(Ty)) 4567 return false; 4568 4569 // The base type must be the same for all members. Types that 4570 // agree in both total size and mode (float vs. vector) are 4571 // treated as being equivalent here. 4572 const Type *TyPtr = Ty.getTypePtr(); 4573 if (!Base) { 4574 Base = TyPtr; 4575 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4576 // so make sure to widen it explicitly. 4577 if (const VectorType *VT = Base->getAs<VectorType>()) { 4578 QualType EltTy = VT->getElementType(); 4579 unsigned NumElements = 4580 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4581 Base = getContext() 4582 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4583 .getTypePtr(); 4584 } 4585 } 4586 4587 if (Base->isVectorType() != TyPtr->isVectorType() || 4588 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4589 return false; 4590 } 4591 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4592 } 4593 4594 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4595 // Homogeneous aggregates for ELFv2 must have base types of float, 4596 // double, long double, or 128-bit vectors. 4597 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4598 if (BT->getKind() == BuiltinType::Float || 4599 BT->getKind() == BuiltinType::Double || 4600 BT->getKind() == BuiltinType::LongDouble) { 4601 if (IsSoftFloatABI) 4602 return false; 4603 return true; 4604 } 4605 } 4606 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4607 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4608 return true; 4609 } 4610 return false; 4611 } 4612 4613 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4614 const Type *Base, uint64_t Members) const { 4615 // Vector types require one register, floating point types require one 4616 // or two registers depending on their size. 4617 uint32_t NumRegs = 4618 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4619 4620 // Homogeneous Aggregates may occupy at most 8 registers. 4621 return Members * NumRegs <= 8; 4622 } 4623 4624 ABIArgInfo 4625 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4626 Ty = useFirstFieldIfTransparentUnion(Ty); 4627 4628 if (Ty->isAnyComplexType()) 4629 return ABIArgInfo::getDirect(); 4630 4631 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4632 // or via reference (larger than 16 bytes). 4633 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4634 uint64_t Size = getContext().getTypeSize(Ty); 4635 if (Size > 128) 4636 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4637 else if (Size < 128) { 4638 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4639 return ABIArgInfo::getDirect(CoerceTy); 4640 } 4641 } 4642 4643 if (isAggregateTypeForABI(Ty)) { 4644 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4645 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4646 4647 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4648 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4649 4650 // ELFv2 homogeneous aggregates are passed as array types. 4651 const Type *Base = nullptr; 4652 uint64_t Members = 0; 4653 if (Kind == ELFv2 && 4654 isHomogeneousAggregate(Ty, Base, Members)) { 4655 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4656 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4657 return ABIArgInfo::getDirect(CoerceTy); 4658 } 4659 4660 // If an aggregate may end up fully in registers, we do not 4661 // use the ByVal method, but pass the aggregate as array. 4662 // This is usually beneficial since we avoid forcing the 4663 // back-end to store the argument to memory. 4664 uint64_t Bits = getContext().getTypeSize(Ty); 4665 if (Bits > 0 && Bits <= 8 * GPRBits) { 4666 llvm::Type *CoerceTy; 4667 4668 // Types up to 8 bytes are passed as integer type (which will be 4669 // properly aligned in the argument save area doubleword). 4670 if (Bits <= GPRBits) 4671 CoerceTy = 4672 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4673 // Larger types are passed as arrays, with the base type selected 4674 // according to the required alignment in the save area. 4675 else { 4676 uint64_t RegBits = ABIAlign * 8; 4677 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4678 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4679 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4680 } 4681 4682 return ABIArgInfo::getDirect(CoerceTy); 4683 } 4684 4685 // All other aggregates are passed ByVal. 4686 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4687 /*ByVal=*/true, 4688 /*Realign=*/TyAlign > ABIAlign); 4689 } 4690 4691 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4692 : ABIArgInfo::getDirect()); 4693 } 4694 4695 ABIArgInfo 4696 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4697 if (RetTy->isVoidType()) 4698 return ABIArgInfo::getIgnore(); 4699 4700 if (RetTy->isAnyComplexType()) 4701 return ABIArgInfo::getDirect(); 4702 4703 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4704 // or via reference (larger than 16 bytes). 4705 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4706 uint64_t Size = getContext().getTypeSize(RetTy); 4707 if (Size > 128) 4708 return getNaturalAlignIndirect(RetTy); 4709 else if (Size < 128) { 4710 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4711 return ABIArgInfo::getDirect(CoerceTy); 4712 } 4713 } 4714 4715 if (isAggregateTypeForABI(RetTy)) { 4716 // ELFv2 homogeneous aggregates are returned as array types. 4717 const Type *Base = nullptr; 4718 uint64_t Members = 0; 4719 if (Kind == ELFv2 && 4720 isHomogeneousAggregate(RetTy, Base, Members)) { 4721 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4722 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4723 return ABIArgInfo::getDirect(CoerceTy); 4724 } 4725 4726 // ELFv2 small aggregates are returned in up to two registers. 4727 uint64_t Bits = getContext().getTypeSize(RetTy); 4728 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4729 if (Bits == 0) 4730 return ABIArgInfo::getIgnore(); 4731 4732 llvm::Type *CoerceTy; 4733 if (Bits > GPRBits) { 4734 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4735 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4736 } else 4737 CoerceTy = 4738 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4739 return ABIArgInfo::getDirect(CoerceTy); 4740 } 4741 4742 // All other aggregates are returned indirectly. 4743 return getNaturalAlignIndirect(RetTy); 4744 } 4745 4746 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4747 : ABIArgInfo::getDirect()); 4748 } 4749 4750 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4751 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4752 QualType Ty) const { 4753 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4754 TypeInfo.second = getParamTypeAlignment(Ty); 4755 4756 CharUnits SlotSize = CharUnits::fromQuantity(8); 4757 4758 // If we have a complex type and the base type is smaller than 8 bytes, 4759 // the ABI calls for the real and imaginary parts to be right-adjusted 4760 // in separate doublewords. However, Clang expects us to produce a 4761 // pointer to a structure with the two parts packed tightly. So generate 4762 // loads of the real and imaginary parts relative to the va_list pointer, 4763 // and store them to a temporary structure. 4764 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4765 CharUnits EltSize = TypeInfo.first / 2; 4766 if (EltSize < SlotSize) { 4767 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4768 SlotSize * 2, SlotSize, 4769 SlotSize, /*AllowHigher*/ true); 4770 4771 Address RealAddr = Addr; 4772 Address ImagAddr = RealAddr; 4773 if (CGF.CGM.getDataLayout().isBigEndian()) { 4774 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4775 SlotSize - EltSize); 4776 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4777 2 * SlotSize - EltSize); 4778 } else { 4779 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4780 } 4781 4782 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4783 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4784 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4785 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4786 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4787 4788 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4789 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4790 /*init*/ true); 4791 return Temp; 4792 } 4793 } 4794 4795 // Otherwise, just use the general rule. 4796 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4797 TypeInfo, SlotSize, /*AllowHigher*/ true); 4798 } 4799 4800 static bool 4801 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4802 llvm::Value *Address) { 4803 // This is calculated from the LLVM and GCC tables and verified 4804 // against gcc output. AFAIK all ABIs use the same encoding. 4805 4806 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4807 4808 llvm::IntegerType *i8 = CGF.Int8Ty; 4809 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4810 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4811 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4812 4813 // 0-31: r0-31, the 8-byte general-purpose registers 4814 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4815 4816 // 32-63: fp0-31, the 8-byte floating-point registers 4817 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4818 4819 // 64-67 are various 8-byte special-purpose registers: 4820 // 64: mq 4821 // 65: lr 4822 // 66: ctr 4823 // 67: ap 4824 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4825 4826 // 68-76 are various 4-byte special-purpose registers: 4827 // 68-75 cr0-7 4828 // 76: xer 4829 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4830 4831 // 77-108: v0-31, the 16-byte vector registers 4832 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4833 4834 // 109: vrsave 4835 // 110: vscr 4836 // 111: spe_acc 4837 // 112: spefscr 4838 // 113: sfp 4839 // 114: tfhar 4840 // 115: tfiar 4841 // 116: texasr 4842 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4843 4844 return false; 4845 } 4846 4847 bool 4848 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4849 CodeGen::CodeGenFunction &CGF, 4850 llvm::Value *Address) const { 4851 4852 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4853 } 4854 4855 bool 4856 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4857 llvm::Value *Address) const { 4858 4859 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4860 } 4861 4862 //===----------------------------------------------------------------------===// 4863 // AArch64 ABI Implementation 4864 //===----------------------------------------------------------------------===// 4865 4866 namespace { 4867 4868 class AArch64ABIInfo : public SwiftABIInfo { 4869 public: 4870 enum ABIKind { 4871 AAPCS = 0, 4872 DarwinPCS, 4873 Win64 4874 }; 4875 4876 private: 4877 ABIKind Kind; 4878 4879 public: 4880 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4881 : SwiftABIInfo(CGT), Kind(Kind) {} 4882 4883 private: 4884 ABIKind getABIKind() const { return Kind; } 4885 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4886 4887 ABIArgInfo classifyReturnType(QualType RetTy) const; 4888 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4889 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4890 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4891 uint64_t Members) const override; 4892 4893 bool isIllegalVectorType(QualType Ty) const; 4894 4895 void computeInfo(CGFunctionInfo &FI) const override { 4896 if (!getCXXABI().classifyReturnType(FI)) 4897 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4898 4899 for (auto &it : FI.arguments()) 4900 it.info = classifyArgumentType(it.type); 4901 } 4902 4903 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4904 CodeGenFunction &CGF) const; 4905 4906 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4907 CodeGenFunction &CGF) const; 4908 4909 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4910 QualType Ty) const override { 4911 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4912 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4913 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4914 } 4915 4916 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4917 QualType Ty) const override; 4918 4919 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4920 bool asReturnValue) const override { 4921 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4922 } 4923 bool isSwiftErrorInRegister() const override { 4924 return true; 4925 } 4926 4927 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4928 unsigned elts) const override; 4929 }; 4930 4931 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4932 public: 4933 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4934 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4935 4936 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4937 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4938 } 4939 4940 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4941 return 31; 4942 } 4943 4944 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4945 }; 4946 4947 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4948 public: 4949 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4950 : AArch64TargetCodeGenInfo(CGT, K) {} 4951 4952 void getDependentLibraryOption(llvm::StringRef Lib, 4953 llvm::SmallString<24> &Opt) const override { 4954 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4955 } 4956 4957 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4958 llvm::SmallString<32> &Opt) const override { 4959 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4960 } 4961 }; 4962 } 4963 4964 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4965 Ty = useFirstFieldIfTransparentUnion(Ty); 4966 4967 // Handle illegal vector types here. 4968 if (isIllegalVectorType(Ty)) { 4969 uint64_t Size = getContext().getTypeSize(Ty); 4970 // Android promotes <2 x i8> to i16, not i32 4971 if (isAndroid() && (Size <= 16)) { 4972 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4973 return ABIArgInfo::getDirect(ResType); 4974 } 4975 if (Size <= 32) { 4976 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4977 return ABIArgInfo::getDirect(ResType); 4978 } 4979 if (Size == 64) { 4980 llvm::Type *ResType = 4981 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4982 return ABIArgInfo::getDirect(ResType); 4983 } 4984 if (Size == 128) { 4985 llvm::Type *ResType = 4986 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4987 return ABIArgInfo::getDirect(ResType); 4988 } 4989 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4990 } 4991 4992 if (!isAggregateTypeForABI(Ty)) { 4993 // Treat an enum type as its underlying type. 4994 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4995 Ty = EnumTy->getDecl()->getIntegerType(); 4996 4997 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4998 ? ABIArgInfo::getExtend(Ty) 4999 : ABIArgInfo::getDirect()); 5000 } 5001 5002 // Structures with either a non-trivial destructor or a non-trivial 5003 // copy constructor are always indirect. 5004 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5005 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5006 CGCXXABI::RAA_DirectInMemory); 5007 } 5008 5009 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5010 // elsewhere for GNU compatibility. 5011 uint64_t Size = getContext().getTypeSize(Ty); 5012 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5013 if (IsEmpty || Size == 0) { 5014 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5015 return ABIArgInfo::getIgnore(); 5016 5017 // GNU C mode. The only argument that gets ignored is an empty one with size 5018 // 0. 5019 if (IsEmpty && Size == 0) 5020 return ABIArgInfo::getIgnore(); 5021 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5022 } 5023 5024 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5025 const Type *Base = nullptr; 5026 uint64_t Members = 0; 5027 if (isHomogeneousAggregate(Ty, Base, Members)) { 5028 return ABIArgInfo::getDirect( 5029 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5030 } 5031 5032 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5033 if (Size <= 128) { 5034 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5035 // same size and alignment. 5036 if (getTarget().isRenderScriptTarget()) { 5037 return coerceToIntArray(Ty, getContext(), getVMContext()); 5038 } 5039 unsigned Alignment = getContext().getTypeAlign(Ty); 5040 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5041 5042 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5043 // For aggregates with 16-byte alignment, we use i128. 5044 if (Alignment < 128 && Size == 128) { 5045 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5046 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5047 } 5048 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5049 } 5050 5051 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5052 } 5053 5054 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5055 if (RetTy->isVoidType()) 5056 return ABIArgInfo::getIgnore(); 5057 5058 // Large vector types should be returned via memory. 5059 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5060 return getNaturalAlignIndirect(RetTy); 5061 5062 if (!isAggregateTypeForABI(RetTy)) { 5063 // Treat an enum type as its underlying type. 5064 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5065 RetTy = EnumTy->getDecl()->getIntegerType(); 5066 5067 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5068 ? ABIArgInfo::getExtend(RetTy) 5069 : ABIArgInfo::getDirect()); 5070 } 5071 5072 uint64_t Size = getContext().getTypeSize(RetTy); 5073 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5074 return ABIArgInfo::getIgnore(); 5075 5076 const Type *Base = nullptr; 5077 uint64_t Members = 0; 5078 if (isHomogeneousAggregate(RetTy, Base, Members)) 5079 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5080 return ABIArgInfo::getDirect(); 5081 5082 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5083 if (Size <= 128) { 5084 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5085 // same size and alignment. 5086 if (getTarget().isRenderScriptTarget()) { 5087 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5088 } 5089 unsigned Alignment = getContext().getTypeAlign(RetTy); 5090 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5091 5092 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5093 // For aggregates with 16-byte alignment, we use i128. 5094 if (Alignment < 128 && Size == 128) { 5095 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5096 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5097 } 5098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5099 } 5100 5101 return getNaturalAlignIndirect(RetTy); 5102 } 5103 5104 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5105 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5106 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5107 // Check whether VT is legal. 5108 unsigned NumElements = VT->getNumElements(); 5109 uint64_t Size = getContext().getTypeSize(VT); 5110 // NumElements should be power of 2. 5111 if (!llvm::isPowerOf2_32(NumElements)) 5112 return true; 5113 return Size != 64 && (Size != 128 || NumElements == 1); 5114 } 5115 return false; 5116 } 5117 5118 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5119 llvm::Type *eltTy, 5120 unsigned elts) const { 5121 if (!llvm::isPowerOf2_32(elts)) 5122 return false; 5123 if (totalSize.getQuantity() != 8 && 5124 (totalSize.getQuantity() != 16 || elts == 1)) 5125 return false; 5126 return true; 5127 } 5128 5129 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5130 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5131 // point type or a short-vector type. This is the same as the 32-bit ABI, 5132 // but with the difference that any floating-point type is allowed, 5133 // including __fp16. 5134 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5135 if (BT->isFloatingPoint()) 5136 return true; 5137 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5138 unsigned VecSize = getContext().getTypeSize(VT); 5139 if (VecSize == 64 || VecSize == 128) 5140 return true; 5141 } 5142 return false; 5143 } 5144 5145 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5146 uint64_t Members) const { 5147 return Members <= 4; 5148 } 5149 5150 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5151 QualType Ty, 5152 CodeGenFunction &CGF) const { 5153 ABIArgInfo AI = classifyArgumentType(Ty); 5154 bool IsIndirect = AI.isIndirect(); 5155 5156 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5157 if (IsIndirect) 5158 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5159 else if (AI.getCoerceToType()) 5160 BaseTy = AI.getCoerceToType(); 5161 5162 unsigned NumRegs = 1; 5163 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5164 BaseTy = ArrTy->getElementType(); 5165 NumRegs = ArrTy->getNumElements(); 5166 } 5167 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5168 5169 // The AArch64 va_list type and handling is specified in the Procedure Call 5170 // Standard, section B.4: 5171 // 5172 // struct { 5173 // void *__stack; 5174 // void *__gr_top; 5175 // void *__vr_top; 5176 // int __gr_offs; 5177 // int __vr_offs; 5178 // }; 5179 5180 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5181 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5182 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5183 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5184 5185 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5186 CharUnits TyAlign = TyInfo.second; 5187 5188 Address reg_offs_p = Address::invalid(); 5189 llvm::Value *reg_offs = nullptr; 5190 int reg_top_index; 5191 CharUnits reg_top_offset; 5192 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5193 if (!IsFPR) { 5194 // 3 is the field number of __gr_offs 5195 reg_offs_p = 5196 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5197 "gr_offs_p"); 5198 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5199 reg_top_index = 1; // field number for __gr_top 5200 reg_top_offset = CharUnits::fromQuantity(8); 5201 RegSize = llvm::alignTo(RegSize, 8); 5202 } else { 5203 // 4 is the field number of __vr_offs. 5204 reg_offs_p = 5205 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5206 "vr_offs_p"); 5207 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5208 reg_top_index = 2; // field number for __vr_top 5209 reg_top_offset = CharUnits::fromQuantity(16); 5210 RegSize = 16 * NumRegs; 5211 } 5212 5213 //======================================= 5214 // Find out where argument was passed 5215 //======================================= 5216 5217 // If reg_offs >= 0 we're already using the stack for this type of 5218 // argument. We don't want to keep updating reg_offs (in case it overflows, 5219 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5220 // whatever they get). 5221 llvm::Value *UsingStack = nullptr; 5222 UsingStack = CGF.Builder.CreateICmpSGE( 5223 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5224 5225 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5226 5227 // Otherwise, at least some kind of argument could go in these registers, the 5228 // question is whether this particular type is too big. 5229 CGF.EmitBlock(MaybeRegBlock); 5230 5231 // Integer arguments may need to correct register alignment (for example a 5232 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5233 // align __gr_offs to calculate the potential address. 5234 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5235 int Align = TyAlign.getQuantity(); 5236 5237 reg_offs = CGF.Builder.CreateAdd( 5238 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5239 "align_regoffs"); 5240 reg_offs = CGF.Builder.CreateAnd( 5241 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5242 "aligned_regoffs"); 5243 } 5244 5245 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5246 // The fact that this is done unconditionally reflects the fact that 5247 // allocating an argument to the stack also uses up all the remaining 5248 // registers of the appropriate kind. 5249 llvm::Value *NewOffset = nullptr; 5250 NewOffset = CGF.Builder.CreateAdd( 5251 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5252 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5253 5254 // Now we're in a position to decide whether this argument really was in 5255 // registers or not. 5256 llvm::Value *InRegs = nullptr; 5257 InRegs = CGF.Builder.CreateICmpSLE( 5258 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5259 5260 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5261 5262 //======================================= 5263 // Argument was in registers 5264 //======================================= 5265 5266 // Now we emit the code for if the argument was originally passed in 5267 // registers. First start the appropriate block: 5268 CGF.EmitBlock(InRegBlock); 5269 5270 llvm::Value *reg_top = nullptr; 5271 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5272 reg_top_offset, "reg_top_p"); 5273 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5274 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5275 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5276 Address RegAddr = Address::invalid(); 5277 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5278 5279 if (IsIndirect) { 5280 // If it's been passed indirectly (actually a struct), whatever we find from 5281 // stored registers or on the stack will actually be a struct **. 5282 MemTy = llvm::PointerType::getUnqual(MemTy); 5283 } 5284 5285 const Type *Base = nullptr; 5286 uint64_t NumMembers = 0; 5287 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5288 if (IsHFA && NumMembers > 1) { 5289 // Homogeneous aggregates passed in registers will have their elements split 5290 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5291 // qN+1, ...). We reload and store into a temporary local variable 5292 // contiguously. 5293 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5294 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5295 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5296 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5297 Address Tmp = CGF.CreateTempAlloca(HFATy, 5298 std::max(TyAlign, BaseTyInfo.second)); 5299 5300 // On big-endian platforms, the value will be right-aligned in its slot. 5301 int Offset = 0; 5302 if (CGF.CGM.getDataLayout().isBigEndian() && 5303 BaseTyInfo.first.getQuantity() < 16) 5304 Offset = 16 - BaseTyInfo.first.getQuantity(); 5305 5306 for (unsigned i = 0; i < NumMembers; ++i) { 5307 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5308 Address LoadAddr = 5309 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5310 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5311 5312 Address StoreAddr = 5313 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5314 5315 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5316 CGF.Builder.CreateStore(Elem, StoreAddr); 5317 } 5318 5319 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5320 } else { 5321 // Otherwise the object is contiguous in memory. 5322 5323 // It might be right-aligned in its slot. 5324 CharUnits SlotSize = BaseAddr.getAlignment(); 5325 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5326 (IsHFA || !isAggregateTypeForABI(Ty)) && 5327 TyInfo.first < SlotSize) { 5328 CharUnits Offset = SlotSize - TyInfo.first; 5329 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5330 } 5331 5332 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5333 } 5334 5335 CGF.EmitBranch(ContBlock); 5336 5337 //======================================= 5338 // Argument was on the stack 5339 //======================================= 5340 CGF.EmitBlock(OnStackBlock); 5341 5342 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5343 CharUnits::Zero(), "stack_p"); 5344 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5345 5346 // Again, stack arguments may need realignment. In this case both integer and 5347 // floating-point ones might be affected. 5348 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5349 int Align = TyAlign.getQuantity(); 5350 5351 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5352 5353 OnStackPtr = CGF.Builder.CreateAdd( 5354 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5355 "align_stack"); 5356 OnStackPtr = CGF.Builder.CreateAnd( 5357 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5358 "align_stack"); 5359 5360 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5361 } 5362 Address OnStackAddr(OnStackPtr, 5363 std::max(CharUnits::fromQuantity(8), TyAlign)); 5364 5365 // All stack slots are multiples of 8 bytes. 5366 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5367 CharUnits StackSize; 5368 if (IsIndirect) 5369 StackSize = StackSlotSize; 5370 else 5371 StackSize = TyInfo.first.alignTo(StackSlotSize); 5372 5373 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5374 llvm::Value *NewStack = 5375 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5376 5377 // Write the new value of __stack for the next call to va_arg 5378 CGF.Builder.CreateStore(NewStack, stack_p); 5379 5380 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5381 TyInfo.first < StackSlotSize) { 5382 CharUnits Offset = StackSlotSize - TyInfo.first; 5383 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5384 } 5385 5386 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5387 5388 CGF.EmitBranch(ContBlock); 5389 5390 //======================================= 5391 // Tidy up 5392 //======================================= 5393 CGF.EmitBlock(ContBlock); 5394 5395 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5396 OnStackAddr, OnStackBlock, "vaargs.addr"); 5397 5398 if (IsIndirect) 5399 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5400 TyInfo.second); 5401 5402 return ResAddr; 5403 } 5404 5405 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5406 CodeGenFunction &CGF) const { 5407 // The backend's lowering doesn't support va_arg for aggregates or 5408 // illegal vector types. Lower VAArg here for these cases and use 5409 // the LLVM va_arg instruction for everything else. 5410 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5411 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5412 5413 CharUnits SlotSize = CharUnits::fromQuantity(8); 5414 5415 // Empty records are ignored for parameter passing purposes. 5416 if (isEmptyRecord(getContext(), Ty, true)) { 5417 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5418 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5419 return Addr; 5420 } 5421 5422 // The size of the actual thing passed, which might end up just 5423 // being a pointer for indirect types. 5424 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5425 5426 // Arguments bigger than 16 bytes which aren't homogeneous 5427 // aggregates should be passed indirectly. 5428 bool IsIndirect = false; 5429 if (TyInfo.first.getQuantity() > 16) { 5430 const Type *Base = nullptr; 5431 uint64_t Members = 0; 5432 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5433 } 5434 5435 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5436 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5437 } 5438 5439 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5440 QualType Ty) const { 5441 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5442 CGF.getContext().getTypeInfoInChars(Ty), 5443 CharUnits::fromQuantity(8), 5444 /*allowHigherAlign*/ false); 5445 } 5446 5447 //===----------------------------------------------------------------------===// 5448 // ARM ABI Implementation 5449 //===----------------------------------------------------------------------===// 5450 5451 namespace { 5452 5453 class ARMABIInfo : public SwiftABIInfo { 5454 public: 5455 enum ABIKind { 5456 APCS = 0, 5457 AAPCS = 1, 5458 AAPCS_VFP = 2, 5459 AAPCS16_VFP = 3, 5460 }; 5461 5462 private: 5463 ABIKind Kind; 5464 5465 public: 5466 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5467 : SwiftABIInfo(CGT), Kind(_Kind) { 5468 setCCs(); 5469 } 5470 5471 bool isEABI() const { 5472 switch (getTarget().getTriple().getEnvironment()) { 5473 case llvm::Triple::Android: 5474 case llvm::Triple::EABI: 5475 case llvm::Triple::EABIHF: 5476 case llvm::Triple::GNUEABI: 5477 case llvm::Triple::GNUEABIHF: 5478 case llvm::Triple::MuslEABI: 5479 case llvm::Triple::MuslEABIHF: 5480 return true; 5481 default: 5482 return false; 5483 } 5484 } 5485 5486 bool isEABIHF() const { 5487 switch (getTarget().getTriple().getEnvironment()) { 5488 case llvm::Triple::EABIHF: 5489 case llvm::Triple::GNUEABIHF: 5490 case llvm::Triple::MuslEABIHF: 5491 return true; 5492 default: 5493 return false; 5494 } 5495 } 5496 5497 ABIKind getABIKind() const { return Kind; } 5498 5499 private: 5500 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5501 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5502 bool isIllegalVectorType(QualType Ty) const; 5503 5504 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5505 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5506 uint64_t Members) const override; 5507 5508 void computeInfo(CGFunctionInfo &FI) const override; 5509 5510 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5511 QualType Ty) const override; 5512 5513 llvm::CallingConv::ID getLLVMDefaultCC() const; 5514 llvm::CallingConv::ID getABIDefaultCC() const; 5515 void setCCs(); 5516 5517 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5518 bool asReturnValue) const override { 5519 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5520 } 5521 bool isSwiftErrorInRegister() const override { 5522 return true; 5523 } 5524 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5525 unsigned elts) const override; 5526 }; 5527 5528 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5529 public: 5530 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5531 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5532 5533 const ARMABIInfo &getABIInfo() const { 5534 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5535 } 5536 5537 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5538 return 13; 5539 } 5540 5541 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5542 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5543 } 5544 5545 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5546 llvm::Value *Address) const override { 5547 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5548 5549 // 0-15 are the 16 integer registers. 5550 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5551 return false; 5552 } 5553 5554 unsigned getSizeOfUnwindException() const override { 5555 if (getABIInfo().isEABI()) return 88; 5556 return TargetCodeGenInfo::getSizeOfUnwindException(); 5557 } 5558 5559 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5560 CodeGen::CodeGenModule &CGM, 5561 ForDefinition_t IsForDefinition) const override { 5562 if (!IsForDefinition) 5563 return; 5564 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5565 if (!FD) 5566 return; 5567 5568 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5569 if (!Attr) 5570 return; 5571 5572 const char *Kind; 5573 switch (Attr->getInterrupt()) { 5574 case ARMInterruptAttr::Generic: Kind = ""; break; 5575 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5576 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5577 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5578 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5579 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5580 } 5581 5582 llvm::Function *Fn = cast<llvm::Function>(GV); 5583 5584 Fn->addFnAttr("interrupt", Kind); 5585 5586 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5587 if (ABI == ARMABIInfo::APCS) 5588 return; 5589 5590 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5591 // however this is not necessarily true on taking any interrupt. Instruct 5592 // the backend to perform a realignment as part of the function prologue. 5593 llvm::AttrBuilder B; 5594 B.addStackAlignmentAttr(8); 5595 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5596 } 5597 }; 5598 5599 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5600 public: 5601 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5602 : ARMTargetCodeGenInfo(CGT, K) {} 5603 5604 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5605 CodeGen::CodeGenModule &CGM, 5606 ForDefinition_t IsForDefinition) const override; 5607 5608 void getDependentLibraryOption(llvm::StringRef Lib, 5609 llvm::SmallString<24> &Opt) const override { 5610 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5611 } 5612 5613 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5614 llvm::SmallString<32> &Opt) const override { 5615 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5616 } 5617 }; 5618 5619 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5620 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 5621 ForDefinition_t IsForDefinition) const { 5622 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 5623 if (!IsForDefinition) 5624 return; 5625 addStackProbeSizeTargetAttribute(D, GV, CGM); 5626 } 5627 } 5628 5629 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5630 if (!getCXXABI().classifyReturnType(FI)) 5631 FI.getReturnInfo() = 5632 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5633 5634 for (auto &I : FI.arguments()) 5635 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5636 5637 // Always honor user-specified calling convention. 5638 if (FI.getCallingConvention() != llvm::CallingConv::C) 5639 return; 5640 5641 llvm::CallingConv::ID cc = getRuntimeCC(); 5642 if (cc != llvm::CallingConv::C) 5643 FI.setEffectiveCallingConvention(cc); 5644 } 5645 5646 /// Return the default calling convention that LLVM will use. 5647 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5648 // The default calling convention that LLVM will infer. 5649 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5650 return llvm::CallingConv::ARM_AAPCS_VFP; 5651 else if (isEABI()) 5652 return llvm::CallingConv::ARM_AAPCS; 5653 else 5654 return llvm::CallingConv::ARM_APCS; 5655 } 5656 5657 /// Return the calling convention that our ABI would like us to use 5658 /// as the C calling convention. 5659 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5660 switch (getABIKind()) { 5661 case APCS: return llvm::CallingConv::ARM_APCS; 5662 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5663 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5664 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5665 } 5666 llvm_unreachable("bad ABI kind"); 5667 } 5668 5669 void ARMABIInfo::setCCs() { 5670 assert(getRuntimeCC() == llvm::CallingConv::C); 5671 5672 // Don't muddy up the IR with a ton of explicit annotations if 5673 // they'd just match what LLVM will infer from the triple. 5674 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5675 if (abiCC != getLLVMDefaultCC()) 5676 RuntimeCC = abiCC; 5677 5678 // AAPCS apparently requires runtime support functions to be soft-float, but 5679 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5680 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5681 5682 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5683 // AEABI-complying FP helper functions to use the base AAPCS. 5684 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5685 // support functions emitted by clang such as the _Complex helpers follow the 5686 // abiCC. 5687 if (abiCC != getLLVMDefaultCC()) 5688 BuiltinCC = abiCC; 5689 } 5690 5691 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5692 bool isVariadic) const { 5693 // 6.1.2.1 The following argument types are VFP CPRCs: 5694 // A single-precision floating-point type (including promoted 5695 // half-precision types); A double-precision floating-point type; 5696 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5697 // with a Base Type of a single- or double-precision floating-point type, 5698 // 64-bit containerized vectors or 128-bit containerized vectors with one 5699 // to four Elements. 5700 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5701 5702 Ty = useFirstFieldIfTransparentUnion(Ty); 5703 5704 // Handle illegal vector types here. 5705 if (isIllegalVectorType(Ty)) { 5706 uint64_t Size = getContext().getTypeSize(Ty); 5707 if (Size <= 32) { 5708 llvm::Type *ResType = 5709 llvm::Type::getInt32Ty(getVMContext()); 5710 return ABIArgInfo::getDirect(ResType); 5711 } 5712 if (Size == 64) { 5713 llvm::Type *ResType = llvm::VectorType::get( 5714 llvm::Type::getInt32Ty(getVMContext()), 2); 5715 return ABIArgInfo::getDirect(ResType); 5716 } 5717 if (Size == 128) { 5718 llvm::Type *ResType = llvm::VectorType::get( 5719 llvm::Type::getInt32Ty(getVMContext()), 4); 5720 return ABIArgInfo::getDirect(ResType); 5721 } 5722 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5723 } 5724 5725 // _Float16 and __fp16 get passed as if it were an int or float, but with 5726 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5727 // half type natively, and does not need to interwork with AAPCS code. 5728 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5729 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5730 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5731 llvm::Type::getFloatTy(getVMContext()) : 5732 llvm::Type::getInt32Ty(getVMContext()); 5733 return ABIArgInfo::getDirect(ResType); 5734 } 5735 5736 if (!isAggregateTypeForABI(Ty)) { 5737 // Treat an enum type as its underlying type. 5738 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5739 Ty = EnumTy->getDecl()->getIntegerType(); 5740 } 5741 5742 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5743 : ABIArgInfo::getDirect()); 5744 } 5745 5746 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5747 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5748 } 5749 5750 // Ignore empty records. 5751 if (isEmptyRecord(getContext(), Ty, true)) 5752 return ABIArgInfo::getIgnore(); 5753 5754 if (IsEffectivelyAAPCS_VFP) { 5755 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5756 // into VFP registers. 5757 const Type *Base = nullptr; 5758 uint64_t Members = 0; 5759 if (isHomogeneousAggregate(Ty, Base, Members)) { 5760 assert(Base && "Base class should be set for homogeneous aggregate"); 5761 // Base can be a floating-point or a vector. 5762 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5763 } 5764 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5765 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5766 // this convention even for a variadic function: the backend will use GPRs 5767 // if needed. 5768 const Type *Base = nullptr; 5769 uint64_t Members = 0; 5770 if (isHomogeneousAggregate(Ty, Base, Members)) { 5771 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5772 llvm::Type *Ty = 5773 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5774 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5775 } 5776 } 5777 5778 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5779 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5780 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5781 // bigger than 128-bits, they get placed in space allocated by the caller, 5782 // and a pointer is passed. 5783 return ABIArgInfo::getIndirect( 5784 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5785 } 5786 5787 // Support byval for ARM. 5788 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5789 // most 8-byte. We realign the indirect argument if type alignment is bigger 5790 // than ABI alignment. 5791 uint64_t ABIAlign = 4; 5792 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5793 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5794 getABIKind() == ARMABIInfo::AAPCS) 5795 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5796 5797 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5798 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5799 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5800 /*ByVal=*/true, 5801 /*Realign=*/TyAlign > ABIAlign); 5802 } 5803 5804 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5805 // same size and alignment. 5806 if (getTarget().isRenderScriptTarget()) { 5807 return coerceToIntArray(Ty, getContext(), getVMContext()); 5808 } 5809 5810 // Otherwise, pass by coercing to a structure of the appropriate size. 5811 llvm::Type* ElemTy; 5812 unsigned SizeRegs; 5813 // FIXME: Try to match the types of the arguments more accurately where 5814 // we can. 5815 if (getContext().getTypeAlign(Ty) <= 32) { 5816 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5817 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5818 } else { 5819 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5820 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5821 } 5822 5823 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5824 } 5825 5826 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5827 llvm::LLVMContext &VMContext) { 5828 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5829 // is called integer-like if its size is less than or equal to one word, and 5830 // the offset of each of its addressable sub-fields is zero. 5831 5832 uint64_t Size = Context.getTypeSize(Ty); 5833 5834 // Check that the type fits in a word. 5835 if (Size > 32) 5836 return false; 5837 5838 // FIXME: Handle vector types! 5839 if (Ty->isVectorType()) 5840 return false; 5841 5842 // Float types are never treated as "integer like". 5843 if (Ty->isRealFloatingType()) 5844 return false; 5845 5846 // If this is a builtin or pointer type then it is ok. 5847 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5848 return true; 5849 5850 // Small complex integer types are "integer like". 5851 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5852 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5853 5854 // Single element and zero sized arrays should be allowed, by the definition 5855 // above, but they are not. 5856 5857 // Otherwise, it must be a record type. 5858 const RecordType *RT = Ty->getAs<RecordType>(); 5859 if (!RT) return false; 5860 5861 // Ignore records with flexible arrays. 5862 const RecordDecl *RD = RT->getDecl(); 5863 if (RD->hasFlexibleArrayMember()) 5864 return false; 5865 5866 // Check that all sub-fields are at offset 0, and are themselves "integer 5867 // like". 5868 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5869 5870 bool HadField = false; 5871 unsigned idx = 0; 5872 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5873 i != e; ++i, ++idx) { 5874 const FieldDecl *FD = *i; 5875 5876 // Bit-fields are not addressable, we only need to verify they are "integer 5877 // like". We still have to disallow a subsequent non-bitfield, for example: 5878 // struct { int : 0; int x } 5879 // is non-integer like according to gcc. 5880 if (FD->isBitField()) { 5881 if (!RD->isUnion()) 5882 HadField = true; 5883 5884 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5885 return false; 5886 5887 continue; 5888 } 5889 5890 // Check if this field is at offset 0. 5891 if (Layout.getFieldOffset(idx) != 0) 5892 return false; 5893 5894 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5895 return false; 5896 5897 // Only allow at most one field in a structure. This doesn't match the 5898 // wording above, but follows gcc in situations with a field following an 5899 // empty structure. 5900 if (!RD->isUnion()) { 5901 if (HadField) 5902 return false; 5903 5904 HadField = true; 5905 } 5906 } 5907 5908 return true; 5909 } 5910 5911 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5912 bool isVariadic) const { 5913 bool IsEffectivelyAAPCS_VFP = 5914 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5915 5916 if (RetTy->isVoidType()) 5917 return ABIArgInfo::getIgnore(); 5918 5919 // Large vector types should be returned via memory. 5920 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5921 return getNaturalAlignIndirect(RetTy); 5922 } 5923 5924 // _Float16 and __fp16 get returned as if it were an int or float, but with 5925 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5926 // half type natively, and does not need to interwork with AAPCS code. 5927 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5928 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5929 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5930 llvm::Type::getFloatTy(getVMContext()) : 5931 llvm::Type::getInt32Ty(getVMContext()); 5932 return ABIArgInfo::getDirect(ResType); 5933 } 5934 5935 if (!isAggregateTypeForABI(RetTy)) { 5936 // Treat an enum type as its underlying type. 5937 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5938 RetTy = EnumTy->getDecl()->getIntegerType(); 5939 5940 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5941 : ABIArgInfo::getDirect(); 5942 } 5943 5944 // Are we following APCS? 5945 if (getABIKind() == APCS) { 5946 if (isEmptyRecord(getContext(), RetTy, false)) 5947 return ABIArgInfo::getIgnore(); 5948 5949 // Complex types are all returned as packed integers. 5950 // 5951 // FIXME: Consider using 2 x vector types if the back end handles them 5952 // correctly. 5953 if (RetTy->isAnyComplexType()) 5954 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5955 getVMContext(), getContext().getTypeSize(RetTy))); 5956 5957 // Integer like structures are returned in r0. 5958 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5959 // Return in the smallest viable integer type. 5960 uint64_t Size = getContext().getTypeSize(RetTy); 5961 if (Size <= 8) 5962 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5963 if (Size <= 16) 5964 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5965 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5966 } 5967 5968 // Otherwise return in memory. 5969 return getNaturalAlignIndirect(RetTy); 5970 } 5971 5972 // Otherwise this is an AAPCS variant. 5973 5974 if (isEmptyRecord(getContext(), RetTy, true)) 5975 return ABIArgInfo::getIgnore(); 5976 5977 // Check for homogeneous aggregates with AAPCS-VFP. 5978 if (IsEffectivelyAAPCS_VFP) { 5979 const Type *Base = nullptr; 5980 uint64_t Members = 0; 5981 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5982 assert(Base && "Base class should be set for homogeneous aggregate"); 5983 // Homogeneous Aggregates are returned directly. 5984 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5985 } 5986 } 5987 5988 // Aggregates <= 4 bytes are returned in r0; other aggregates 5989 // are returned indirectly. 5990 uint64_t Size = getContext().getTypeSize(RetTy); 5991 if (Size <= 32) { 5992 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5993 // same size and alignment. 5994 if (getTarget().isRenderScriptTarget()) { 5995 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5996 } 5997 if (getDataLayout().isBigEndian()) 5998 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5999 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6000 6001 // Return in the smallest viable integer type. 6002 if (Size <= 8) 6003 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6004 if (Size <= 16) 6005 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6006 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6007 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6008 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6009 llvm::Type *CoerceTy = 6010 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6011 return ABIArgInfo::getDirect(CoerceTy); 6012 } 6013 6014 return getNaturalAlignIndirect(RetTy); 6015 } 6016 6017 /// isIllegalVector - check whether Ty is an illegal vector type. 6018 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6019 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6020 if (isAndroid()) { 6021 // Android shipped using Clang 3.1, which supported a slightly different 6022 // vector ABI. The primary differences were that 3-element vector types 6023 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6024 // accepts that legacy behavior for Android only. 6025 // Check whether VT is legal. 6026 unsigned NumElements = VT->getNumElements(); 6027 // NumElements should be power of 2 or equal to 3. 6028 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6029 return true; 6030 } else { 6031 // Check whether VT is legal. 6032 unsigned NumElements = VT->getNumElements(); 6033 uint64_t Size = getContext().getTypeSize(VT); 6034 // NumElements should be power of 2. 6035 if (!llvm::isPowerOf2_32(NumElements)) 6036 return true; 6037 // Size should be greater than 32 bits. 6038 return Size <= 32; 6039 } 6040 } 6041 return false; 6042 } 6043 6044 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6045 llvm::Type *eltTy, 6046 unsigned numElts) const { 6047 if (!llvm::isPowerOf2_32(numElts)) 6048 return false; 6049 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6050 if (size > 64) 6051 return false; 6052 if (vectorSize.getQuantity() != 8 && 6053 (vectorSize.getQuantity() != 16 || numElts == 1)) 6054 return false; 6055 return true; 6056 } 6057 6058 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6059 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6060 // double, or 64-bit or 128-bit vectors. 6061 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6062 if (BT->getKind() == BuiltinType::Float || 6063 BT->getKind() == BuiltinType::Double || 6064 BT->getKind() == BuiltinType::LongDouble) 6065 return true; 6066 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6067 unsigned VecSize = getContext().getTypeSize(VT); 6068 if (VecSize == 64 || VecSize == 128) 6069 return true; 6070 } 6071 return false; 6072 } 6073 6074 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6075 uint64_t Members) const { 6076 return Members <= 4; 6077 } 6078 6079 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6080 QualType Ty) const { 6081 CharUnits SlotSize = CharUnits::fromQuantity(4); 6082 6083 // Empty records are ignored for parameter passing purposes. 6084 if (isEmptyRecord(getContext(), Ty, true)) { 6085 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6086 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6087 return Addr; 6088 } 6089 6090 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6091 CharUnits TyAlignForABI = TyInfo.second; 6092 6093 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6094 bool IsIndirect = false; 6095 const Type *Base = nullptr; 6096 uint64_t Members = 0; 6097 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6098 IsIndirect = true; 6099 6100 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6101 // allocated by the caller. 6102 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6103 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6104 !isHomogeneousAggregate(Ty, Base, Members)) { 6105 IsIndirect = true; 6106 6107 // Otherwise, bound the type's ABI alignment. 6108 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6109 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6110 // Our callers should be prepared to handle an under-aligned address. 6111 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6112 getABIKind() == ARMABIInfo::AAPCS) { 6113 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6114 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6115 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6116 // ARMv7k allows type alignment up to 16 bytes. 6117 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6118 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6119 } else { 6120 TyAlignForABI = CharUnits::fromQuantity(4); 6121 } 6122 TyInfo.second = TyAlignForABI; 6123 6124 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6125 SlotSize, /*AllowHigherAlign*/ true); 6126 } 6127 6128 //===----------------------------------------------------------------------===// 6129 // NVPTX ABI Implementation 6130 //===----------------------------------------------------------------------===// 6131 6132 namespace { 6133 6134 class NVPTXABIInfo : public ABIInfo { 6135 public: 6136 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6137 6138 ABIArgInfo classifyReturnType(QualType RetTy) const; 6139 ABIArgInfo classifyArgumentType(QualType Ty) const; 6140 6141 void computeInfo(CGFunctionInfo &FI) const override; 6142 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6143 QualType Ty) const override; 6144 }; 6145 6146 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6147 public: 6148 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6149 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6150 6151 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6152 CodeGen::CodeGenModule &M, 6153 ForDefinition_t IsForDefinition) const override; 6154 6155 private: 6156 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6157 // resulting MDNode to the nvvm.annotations MDNode. 6158 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6159 }; 6160 6161 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6162 if (RetTy->isVoidType()) 6163 return ABIArgInfo::getIgnore(); 6164 6165 // note: this is different from default ABI 6166 if (!RetTy->isScalarType()) 6167 return ABIArgInfo::getDirect(); 6168 6169 // Treat an enum type as its underlying type. 6170 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6171 RetTy = EnumTy->getDecl()->getIntegerType(); 6172 6173 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6174 : ABIArgInfo::getDirect()); 6175 } 6176 6177 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6178 // Treat an enum type as its underlying type. 6179 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6180 Ty = EnumTy->getDecl()->getIntegerType(); 6181 6182 // Return aggregates type as indirect by value 6183 if (isAggregateTypeForABI(Ty)) 6184 return getNaturalAlignIndirect(Ty, /* byval */ true); 6185 6186 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6187 : ABIArgInfo::getDirect()); 6188 } 6189 6190 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6191 if (!getCXXABI().classifyReturnType(FI)) 6192 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6193 for (auto &I : FI.arguments()) 6194 I.info = classifyArgumentType(I.type); 6195 6196 // Always honor user-specified calling convention. 6197 if (FI.getCallingConvention() != llvm::CallingConv::C) 6198 return; 6199 6200 FI.setEffectiveCallingConvention(getRuntimeCC()); 6201 } 6202 6203 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6204 QualType Ty) const { 6205 llvm_unreachable("NVPTX does not support varargs"); 6206 } 6207 6208 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6209 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6210 ForDefinition_t IsForDefinition) const { 6211 if (!IsForDefinition) 6212 return; 6213 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6214 if (!FD) return; 6215 6216 llvm::Function *F = cast<llvm::Function>(GV); 6217 6218 // Perform special handling in OpenCL mode 6219 if (M.getLangOpts().OpenCL) { 6220 // Use OpenCL function attributes to check for kernel functions 6221 // By default, all functions are device functions 6222 if (FD->hasAttr<OpenCLKernelAttr>()) { 6223 // OpenCL __kernel functions get kernel metadata 6224 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6225 addNVVMMetadata(F, "kernel", 1); 6226 // And kernel functions are not subject to inlining 6227 F->addFnAttr(llvm::Attribute::NoInline); 6228 } 6229 } 6230 6231 // Perform special handling in CUDA mode. 6232 if (M.getLangOpts().CUDA) { 6233 // CUDA __global__ functions get a kernel metadata entry. Since 6234 // __global__ functions cannot be called from the device, we do not 6235 // need to set the noinline attribute. 6236 if (FD->hasAttr<CUDAGlobalAttr>()) { 6237 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6238 addNVVMMetadata(F, "kernel", 1); 6239 } 6240 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6241 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6242 llvm::APSInt MaxThreads(32); 6243 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6244 if (MaxThreads > 0) 6245 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6246 6247 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6248 // not specified in __launch_bounds__ or if the user specified a 0 value, 6249 // we don't have to add a PTX directive. 6250 if (Attr->getMinBlocks()) { 6251 llvm::APSInt MinBlocks(32); 6252 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6253 if (MinBlocks > 0) 6254 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6255 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6256 } 6257 } 6258 } 6259 } 6260 6261 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6262 int Operand) { 6263 llvm::Module *M = F->getParent(); 6264 llvm::LLVMContext &Ctx = M->getContext(); 6265 6266 // Get "nvvm.annotations" metadata node 6267 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6268 6269 llvm::Metadata *MDVals[] = { 6270 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6271 llvm::ConstantAsMetadata::get( 6272 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6273 // Append metadata to nvvm.annotations 6274 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6275 } 6276 } 6277 6278 //===----------------------------------------------------------------------===// 6279 // SystemZ ABI Implementation 6280 //===----------------------------------------------------------------------===// 6281 6282 namespace { 6283 6284 class SystemZABIInfo : public SwiftABIInfo { 6285 bool HasVector; 6286 6287 public: 6288 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6289 : SwiftABIInfo(CGT), HasVector(HV) {} 6290 6291 bool isPromotableIntegerType(QualType Ty) const; 6292 bool isCompoundType(QualType Ty) const; 6293 bool isVectorArgumentType(QualType Ty) const; 6294 bool isFPArgumentType(QualType Ty) const; 6295 QualType GetSingleElementType(QualType Ty) const; 6296 6297 ABIArgInfo classifyReturnType(QualType RetTy) const; 6298 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6299 6300 void computeInfo(CGFunctionInfo &FI) const override { 6301 if (!getCXXABI().classifyReturnType(FI)) 6302 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6303 for (auto &I : FI.arguments()) 6304 I.info = classifyArgumentType(I.type); 6305 } 6306 6307 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6308 QualType Ty) const override; 6309 6310 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6311 bool asReturnValue) const override { 6312 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6313 } 6314 bool isSwiftErrorInRegister() const override { 6315 return false; 6316 } 6317 }; 6318 6319 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6320 public: 6321 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6322 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6323 }; 6324 6325 } 6326 6327 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6328 // Treat an enum type as its underlying type. 6329 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6330 Ty = EnumTy->getDecl()->getIntegerType(); 6331 6332 // Promotable integer types are required to be promoted by the ABI. 6333 if (Ty->isPromotableIntegerType()) 6334 return true; 6335 6336 // 32-bit values must also be promoted. 6337 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6338 switch (BT->getKind()) { 6339 case BuiltinType::Int: 6340 case BuiltinType::UInt: 6341 return true; 6342 default: 6343 return false; 6344 } 6345 return false; 6346 } 6347 6348 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6349 return (Ty->isAnyComplexType() || 6350 Ty->isVectorType() || 6351 isAggregateTypeForABI(Ty)); 6352 } 6353 6354 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6355 return (HasVector && 6356 Ty->isVectorType() && 6357 getContext().getTypeSize(Ty) <= 128); 6358 } 6359 6360 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6361 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6362 switch (BT->getKind()) { 6363 case BuiltinType::Float: 6364 case BuiltinType::Double: 6365 return true; 6366 default: 6367 return false; 6368 } 6369 6370 return false; 6371 } 6372 6373 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6374 if (const RecordType *RT = Ty->getAsStructureType()) { 6375 const RecordDecl *RD = RT->getDecl(); 6376 QualType Found; 6377 6378 // If this is a C++ record, check the bases first. 6379 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6380 for (const auto &I : CXXRD->bases()) { 6381 QualType Base = I.getType(); 6382 6383 // Empty bases don't affect things either way. 6384 if (isEmptyRecord(getContext(), Base, true)) 6385 continue; 6386 6387 if (!Found.isNull()) 6388 return Ty; 6389 Found = GetSingleElementType(Base); 6390 } 6391 6392 // Check the fields. 6393 for (const auto *FD : RD->fields()) { 6394 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6395 // Unlike isSingleElementStruct(), empty structure and array fields 6396 // do count. So do anonymous bitfields that aren't zero-sized. 6397 if (getContext().getLangOpts().CPlusPlus && 6398 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6399 continue; 6400 6401 // Unlike isSingleElementStruct(), arrays do not count. 6402 // Nested structures still do though. 6403 if (!Found.isNull()) 6404 return Ty; 6405 Found = GetSingleElementType(FD->getType()); 6406 } 6407 6408 // Unlike isSingleElementStruct(), trailing padding is allowed. 6409 // An 8-byte aligned struct s { float f; } is passed as a double. 6410 if (!Found.isNull()) 6411 return Found; 6412 } 6413 6414 return Ty; 6415 } 6416 6417 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6418 QualType Ty) const { 6419 // Assume that va_list type is correct; should be pointer to LLVM type: 6420 // struct { 6421 // i64 __gpr; 6422 // i64 __fpr; 6423 // i8 *__overflow_arg_area; 6424 // i8 *__reg_save_area; 6425 // }; 6426 6427 // Every non-vector argument occupies 8 bytes and is passed by preference 6428 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6429 // always passed on the stack. 6430 Ty = getContext().getCanonicalType(Ty); 6431 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6432 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6433 llvm::Type *DirectTy = ArgTy; 6434 ABIArgInfo AI = classifyArgumentType(Ty); 6435 bool IsIndirect = AI.isIndirect(); 6436 bool InFPRs = false; 6437 bool IsVector = false; 6438 CharUnits UnpaddedSize; 6439 CharUnits DirectAlign; 6440 if (IsIndirect) { 6441 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6442 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6443 } else { 6444 if (AI.getCoerceToType()) 6445 ArgTy = AI.getCoerceToType(); 6446 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6447 IsVector = ArgTy->isVectorTy(); 6448 UnpaddedSize = TyInfo.first; 6449 DirectAlign = TyInfo.second; 6450 } 6451 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6452 if (IsVector && UnpaddedSize > PaddedSize) 6453 PaddedSize = CharUnits::fromQuantity(16); 6454 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6455 6456 CharUnits Padding = (PaddedSize - UnpaddedSize); 6457 6458 llvm::Type *IndexTy = CGF.Int64Ty; 6459 llvm::Value *PaddedSizeV = 6460 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6461 6462 if (IsVector) { 6463 // Work out the address of a vector argument on the stack. 6464 // Vector arguments are always passed in the high bits of a 6465 // single (8 byte) or double (16 byte) stack slot. 6466 Address OverflowArgAreaPtr = 6467 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6468 "overflow_arg_area_ptr"); 6469 Address OverflowArgArea = 6470 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6471 TyInfo.second); 6472 Address MemAddr = 6473 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6474 6475 // Update overflow_arg_area_ptr pointer 6476 llvm::Value *NewOverflowArgArea = 6477 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6478 "overflow_arg_area"); 6479 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6480 6481 return MemAddr; 6482 } 6483 6484 assert(PaddedSize.getQuantity() == 8); 6485 6486 unsigned MaxRegs, RegCountField, RegSaveIndex; 6487 CharUnits RegPadding; 6488 if (InFPRs) { 6489 MaxRegs = 4; // Maximum of 4 FPR arguments 6490 RegCountField = 1; // __fpr 6491 RegSaveIndex = 16; // save offset for f0 6492 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6493 } else { 6494 MaxRegs = 5; // Maximum of 5 GPR arguments 6495 RegCountField = 0; // __gpr 6496 RegSaveIndex = 2; // save offset for r2 6497 RegPadding = Padding; // values are passed in the low bits of a GPR 6498 } 6499 6500 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6501 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6502 "reg_count_ptr"); 6503 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6504 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6505 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6506 "fits_in_regs"); 6507 6508 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6509 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6510 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6511 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6512 6513 // Emit code to load the value if it was passed in registers. 6514 CGF.EmitBlock(InRegBlock); 6515 6516 // Work out the address of an argument register. 6517 llvm::Value *ScaledRegCount = 6518 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6519 llvm::Value *RegBase = 6520 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6521 + RegPadding.getQuantity()); 6522 llvm::Value *RegOffset = 6523 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6524 Address RegSaveAreaPtr = 6525 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6526 "reg_save_area_ptr"); 6527 llvm::Value *RegSaveArea = 6528 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6529 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6530 "raw_reg_addr"), 6531 PaddedSize); 6532 Address RegAddr = 6533 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6534 6535 // Update the register count 6536 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6537 llvm::Value *NewRegCount = 6538 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6539 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6540 CGF.EmitBranch(ContBlock); 6541 6542 // Emit code to load the value if it was passed in memory. 6543 CGF.EmitBlock(InMemBlock); 6544 6545 // Work out the address of a stack argument. 6546 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6547 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6548 Address OverflowArgArea = 6549 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6550 PaddedSize); 6551 Address RawMemAddr = 6552 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6553 Address MemAddr = 6554 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6555 6556 // Update overflow_arg_area_ptr pointer 6557 llvm::Value *NewOverflowArgArea = 6558 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6559 "overflow_arg_area"); 6560 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6561 CGF.EmitBranch(ContBlock); 6562 6563 // Return the appropriate result. 6564 CGF.EmitBlock(ContBlock); 6565 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6566 MemAddr, InMemBlock, "va_arg.addr"); 6567 6568 if (IsIndirect) 6569 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6570 TyInfo.second); 6571 6572 return ResAddr; 6573 } 6574 6575 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6576 if (RetTy->isVoidType()) 6577 return ABIArgInfo::getIgnore(); 6578 if (isVectorArgumentType(RetTy)) 6579 return ABIArgInfo::getDirect(); 6580 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6581 return getNaturalAlignIndirect(RetTy); 6582 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6583 : ABIArgInfo::getDirect()); 6584 } 6585 6586 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6587 // Handle the generic C++ ABI. 6588 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6589 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6590 6591 // Integers and enums are extended to full register width. 6592 if (isPromotableIntegerType(Ty)) 6593 return ABIArgInfo::getExtend(Ty); 6594 6595 // Handle vector types and vector-like structure types. Note that 6596 // as opposed to float-like structure types, we do not allow any 6597 // padding for vector-like structures, so verify the sizes match. 6598 uint64_t Size = getContext().getTypeSize(Ty); 6599 QualType SingleElementTy = GetSingleElementType(Ty); 6600 if (isVectorArgumentType(SingleElementTy) && 6601 getContext().getTypeSize(SingleElementTy) == Size) 6602 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6603 6604 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6605 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6606 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6607 6608 // Handle small structures. 6609 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6610 // Structures with flexible arrays have variable length, so really 6611 // fail the size test above. 6612 const RecordDecl *RD = RT->getDecl(); 6613 if (RD->hasFlexibleArrayMember()) 6614 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6615 6616 // The structure is passed as an unextended integer, a float, or a double. 6617 llvm::Type *PassTy; 6618 if (isFPArgumentType(SingleElementTy)) { 6619 assert(Size == 32 || Size == 64); 6620 if (Size == 32) 6621 PassTy = llvm::Type::getFloatTy(getVMContext()); 6622 else 6623 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6624 } else 6625 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6626 return ABIArgInfo::getDirect(PassTy); 6627 } 6628 6629 // Non-structure compounds are passed indirectly. 6630 if (isCompoundType(Ty)) 6631 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6632 6633 return ABIArgInfo::getDirect(nullptr); 6634 } 6635 6636 //===----------------------------------------------------------------------===// 6637 // MSP430 ABI Implementation 6638 //===----------------------------------------------------------------------===// 6639 6640 namespace { 6641 6642 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6643 public: 6644 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6645 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6646 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6647 CodeGen::CodeGenModule &M, 6648 ForDefinition_t IsForDefinition) const override; 6649 }; 6650 6651 } 6652 6653 void MSP430TargetCodeGenInfo::setTargetAttributes( 6654 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6655 ForDefinition_t IsForDefinition) const { 6656 if (!IsForDefinition) 6657 return; 6658 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6659 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6660 // Handle 'interrupt' attribute: 6661 llvm::Function *F = cast<llvm::Function>(GV); 6662 6663 // Step 1: Set ISR calling convention. 6664 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6665 6666 // Step 2: Add attributes goodness. 6667 F->addFnAttr(llvm::Attribute::NoInline); 6668 6669 // Step 3: Emit ISR vector alias. 6670 unsigned Num = attr->getNumber() / 2; 6671 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6672 "__isr_" + Twine(Num), F); 6673 } 6674 } 6675 } 6676 6677 //===----------------------------------------------------------------------===// 6678 // MIPS ABI Implementation. This works for both little-endian and 6679 // big-endian variants. 6680 //===----------------------------------------------------------------------===// 6681 6682 namespace { 6683 class MipsABIInfo : public ABIInfo { 6684 bool IsO32; 6685 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6686 void CoerceToIntArgs(uint64_t TySize, 6687 SmallVectorImpl<llvm::Type *> &ArgList) const; 6688 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6689 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6690 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6691 public: 6692 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6693 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6694 StackAlignInBytes(IsO32 ? 8 : 16) {} 6695 6696 ABIArgInfo classifyReturnType(QualType RetTy) const; 6697 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6698 void computeInfo(CGFunctionInfo &FI) const override; 6699 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6700 QualType Ty) const override; 6701 ABIArgInfo extendType(QualType Ty) const; 6702 }; 6703 6704 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6705 unsigned SizeOfUnwindException; 6706 public: 6707 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6708 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6709 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6710 6711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6712 return 29; 6713 } 6714 6715 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6716 CodeGen::CodeGenModule &CGM, 6717 ForDefinition_t IsForDefinition) const override { 6718 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6719 if (!FD) return; 6720 llvm::Function *Fn = cast<llvm::Function>(GV); 6721 6722 if (FD->hasAttr<MipsLongCallAttr>()) 6723 Fn->addFnAttr("long-call"); 6724 else if (FD->hasAttr<MipsShortCallAttr>()) 6725 Fn->addFnAttr("short-call"); 6726 6727 // Other attributes do not have a meaning for declarations. 6728 if (!IsForDefinition) 6729 return; 6730 6731 if (FD->hasAttr<Mips16Attr>()) { 6732 Fn->addFnAttr("mips16"); 6733 } 6734 else if (FD->hasAttr<NoMips16Attr>()) { 6735 Fn->addFnAttr("nomips16"); 6736 } 6737 6738 if (FD->hasAttr<MicroMipsAttr>()) 6739 Fn->addFnAttr("micromips"); 6740 else if (FD->hasAttr<NoMicroMipsAttr>()) 6741 Fn->addFnAttr("nomicromips"); 6742 6743 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6744 if (!Attr) 6745 return; 6746 6747 const char *Kind; 6748 switch (Attr->getInterrupt()) { 6749 case MipsInterruptAttr::eic: Kind = "eic"; break; 6750 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6751 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6752 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6753 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6754 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6755 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6756 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6757 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6758 } 6759 6760 Fn->addFnAttr("interrupt", Kind); 6761 6762 } 6763 6764 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6765 llvm::Value *Address) const override; 6766 6767 unsigned getSizeOfUnwindException() const override { 6768 return SizeOfUnwindException; 6769 } 6770 }; 6771 } 6772 6773 void MipsABIInfo::CoerceToIntArgs( 6774 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6775 llvm::IntegerType *IntTy = 6776 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6777 6778 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6779 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6780 ArgList.push_back(IntTy); 6781 6782 // If necessary, add one more integer type to ArgList. 6783 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6784 6785 if (R) 6786 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6787 } 6788 6789 // In N32/64, an aligned double precision floating point field is passed in 6790 // a register. 6791 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6792 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6793 6794 if (IsO32) { 6795 CoerceToIntArgs(TySize, ArgList); 6796 return llvm::StructType::get(getVMContext(), ArgList); 6797 } 6798 6799 if (Ty->isComplexType()) 6800 return CGT.ConvertType(Ty); 6801 6802 const RecordType *RT = Ty->getAs<RecordType>(); 6803 6804 // Unions/vectors are passed in integer registers. 6805 if (!RT || !RT->isStructureOrClassType()) { 6806 CoerceToIntArgs(TySize, ArgList); 6807 return llvm::StructType::get(getVMContext(), ArgList); 6808 } 6809 6810 const RecordDecl *RD = RT->getDecl(); 6811 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6812 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6813 6814 uint64_t LastOffset = 0; 6815 unsigned idx = 0; 6816 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6817 6818 // Iterate over fields in the struct/class and check if there are any aligned 6819 // double fields. 6820 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6821 i != e; ++i, ++idx) { 6822 const QualType Ty = i->getType(); 6823 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6824 6825 if (!BT || BT->getKind() != BuiltinType::Double) 6826 continue; 6827 6828 uint64_t Offset = Layout.getFieldOffset(idx); 6829 if (Offset % 64) // Ignore doubles that are not aligned. 6830 continue; 6831 6832 // Add ((Offset - LastOffset) / 64) args of type i64. 6833 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6834 ArgList.push_back(I64); 6835 6836 // Add double type. 6837 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6838 LastOffset = Offset + 64; 6839 } 6840 6841 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6842 ArgList.append(IntArgList.begin(), IntArgList.end()); 6843 6844 return llvm::StructType::get(getVMContext(), ArgList); 6845 } 6846 6847 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6848 uint64_t Offset) const { 6849 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6850 return nullptr; 6851 6852 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6853 } 6854 6855 ABIArgInfo 6856 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6857 Ty = useFirstFieldIfTransparentUnion(Ty); 6858 6859 uint64_t OrigOffset = Offset; 6860 uint64_t TySize = getContext().getTypeSize(Ty); 6861 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6862 6863 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6864 (uint64_t)StackAlignInBytes); 6865 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6866 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6867 6868 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6869 // Ignore empty aggregates. 6870 if (TySize == 0) 6871 return ABIArgInfo::getIgnore(); 6872 6873 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6874 Offset = OrigOffset + MinABIStackAlignInBytes; 6875 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6876 } 6877 6878 // If we have reached here, aggregates are passed directly by coercing to 6879 // another structure type. Padding is inserted if the offset of the 6880 // aggregate is unaligned. 6881 ABIArgInfo ArgInfo = 6882 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6883 getPaddingType(OrigOffset, CurrOffset)); 6884 ArgInfo.setInReg(true); 6885 return ArgInfo; 6886 } 6887 6888 // Treat an enum type as its underlying type. 6889 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6890 Ty = EnumTy->getDecl()->getIntegerType(); 6891 6892 // All integral types are promoted to the GPR width. 6893 if (Ty->isIntegralOrEnumerationType()) 6894 return extendType(Ty); 6895 6896 return ABIArgInfo::getDirect( 6897 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6898 } 6899 6900 llvm::Type* 6901 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6902 const RecordType *RT = RetTy->getAs<RecordType>(); 6903 SmallVector<llvm::Type*, 8> RTList; 6904 6905 if (RT && RT->isStructureOrClassType()) { 6906 const RecordDecl *RD = RT->getDecl(); 6907 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6908 unsigned FieldCnt = Layout.getFieldCount(); 6909 6910 // N32/64 returns struct/classes in floating point registers if the 6911 // following conditions are met: 6912 // 1. The size of the struct/class is no larger than 128-bit. 6913 // 2. The struct/class has one or two fields all of which are floating 6914 // point types. 6915 // 3. The offset of the first field is zero (this follows what gcc does). 6916 // 6917 // Any other composite results are returned in integer registers. 6918 // 6919 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6920 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6921 for (; b != e; ++b) { 6922 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6923 6924 if (!BT || !BT->isFloatingPoint()) 6925 break; 6926 6927 RTList.push_back(CGT.ConvertType(b->getType())); 6928 } 6929 6930 if (b == e) 6931 return llvm::StructType::get(getVMContext(), RTList, 6932 RD->hasAttr<PackedAttr>()); 6933 6934 RTList.clear(); 6935 } 6936 } 6937 6938 CoerceToIntArgs(Size, RTList); 6939 return llvm::StructType::get(getVMContext(), RTList); 6940 } 6941 6942 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6943 uint64_t Size = getContext().getTypeSize(RetTy); 6944 6945 if (RetTy->isVoidType()) 6946 return ABIArgInfo::getIgnore(); 6947 6948 // O32 doesn't treat zero-sized structs differently from other structs. 6949 // However, N32/N64 ignores zero sized return values. 6950 if (!IsO32 && Size == 0) 6951 return ABIArgInfo::getIgnore(); 6952 6953 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6954 if (Size <= 128) { 6955 if (RetTy->isAnyComplexType()) 6956 return ABIArgInfo::getDirect(); 6957 6958 // O32 returns integer vectors in registers and N32/N64 returns all small 6959 // aggregates in registers. 6960 if (!IsO32 || 6961 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6962 ABIArgInfo ArgInfo = 6963 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6964 ArgInfo.setInReg(true); 6965 return ArgInfo; 6966 } 6967 } 6968 6969 return getNaturalAlignIndirect(RetTy); 6970 } 6971 6972 // Treat an enum type as its underlying type. 6973 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6974 RetTy = EnumTy->getDecl()->getIntegerType(); 6975 6976 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6977 : ABIArgInfo::getDirect()); 6978 } 6979 6980 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6981 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6982 if (!getCXXABI().classifyReturnType(FI)) 6983 RetInfo = classifyReturnType(FI.getReturnType()); 6984 6985 // Check if a pointer to an aggregate is passed as a hidden argument. 6986 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6987 6988 for (auto &I : FI.arguments()) 6989 I.info = classifyArgumentType(I.type, Offset); 6990 } 6991 6992 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6993 QualType OrigTy) const { 6994 QualType Ty = OrigTy; 6995 6996 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6997 // Pointers are also promoted in the same way but this only matters for N32. 6998 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6999 unsigned PtrWidth = getTarget().getPointerWidth(0); 7000 bool DidPromote = false; 7001 if ((Ty->isIntegerType() && 7002 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7003 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7004 DidPromote = true; 7005 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7006 Ty->isSignedIntegerType()); 7007 } 7008 7009 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7010 7011 // The alignment of things in the argument area is never larger than 7012 // StackAlignInBytes. 7013 TyInfo.second = 7014 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7015 7016 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7017 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7018 7019 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7020 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7021 7022 7023 // If there was a promotion, "unpromote" into a temporary. 7024 // TODO: can we just use a pointer into a subset of the original slot? 7025 if (DidPromote) { 7026 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7027 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7028 7029 // Truncate down to the right width. 7030 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7031 : CGF.IntPtrTy); 7032 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7033 if (OrigTy->isPointerType()) 7034 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7035 7036 CGF.Builder.CreateStore(V, Temp); 7037 Addr = Temp; 7038 } 7039 7040 return Addr; 7041 } 7042 7043 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7044 int TySize = getContext().getTypeSize(Ty); 7045 7046 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7047 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7048 return ABIArgInfo::getSignExtend(Ty); 7049 7050 return ABIArgInfo::getExtend(Ty); 7051 } 7052 7053 bool 7054 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7055 llvm::Value *Address) const { 7056 // This information comes from gcc's implementation, which seems to 7057 // as canonical as it gets. 7058 7059 // Everything on MIPS is 4 bytes. Double-precision FP registers 7060 // are aliased to pairs of single-precision FP registers. 7061 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7062 7063 // 0-31 are the general purpose registers, $0 - $31. 7064 // 32-63 are the floating-point registers, $f0 - $f31. 7065 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7066 // 66 is the (notional, I think) register for signal-handler return. 7067 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7068 7069 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7070 // They are one bit wide and ignored here. 7071 7072 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7073 // (coprocessor 1 is the FP unit) 7074 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7075 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7076 // 176-181 are the DSP accumulator registers. 7077 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7078 return false; 7079 } 7080 7081 //===----------------------------------------------------------------------===// 7082 // AVR ABI Implementation. 7083 //===----------------------------------------------------------------------===// 7084 7085 namespace { 7086 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7087 public: 7088 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7089 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7090 7091 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7092 CodeGen::CodeGenModule &CGM, 7093 ForDefinition_t IsForDefinition) const override { 7094 if (!IsForDefinition) 7095 return; 7096 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7097 if (!FD) return; 7098 auto *Fn = cast<llvm::Function>(GV); 7099 7100 if (FD->getAttr<AVRInterruptAttr>()) 7101 Fn->addFnAttr("interrupt"); 7102 7103 if (FD->getAttr<AVRSignalAttr>()) 7104 Fn->addFnAttr("signal"); 7105 } 7106 }; 7107 } 7108 7109 //===----------------------------------------------------------------------===// 7110 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7111 // Currently subclassed only to implement custom OpenCL C function attribute 7112 // handling. 7113 //===----------------------------------------------------------------------===// 7114 7115 namespace { 7116 7117 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7118 public: 7119 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7120 : DefaultTargetCodeGenInfo(CGT) {} 7121 7122 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7123 CodeGen::CodeGenModule &M, 7124 ForDefinition_t IsForDefinition) const override; 7125 }; 7126 7127 void TCETargetCodeGenInfo::setTargetAttributes( 7128 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7129 ForDefinition_t IsForDefinition) const { 7130 if (!IsForDefinition) 7131 return; 7132 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7133 if (!FD) return; 7134 7135 llvm::Function *F = cast<llvm::Function>(GV); 7136 7137 if (M.getLangOpts().OpenCL) { 7138 if (FD->hasAttr<OpenCLKernelAttr>()) { 7139 // OpenCL C Kernel functions are not subject to inlining 7140 F->addFnAttr(llvm::Attribute::NoInline); 7141 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7142 if (Attr) { 7143 // Convert the reqd_work_group_size() attributes to metadata. 7144 llvm::LLVMContext &Context = F->getContext(); 7145 llvm::NamedMDNode *OpenCLMetadata = 7146 M.getModule().getOrInsertNamedMetadata( 7147 "opencl.kernel_wg_size_info"); 7148 7149 SmallVector<llvm::Metadata *, 5> Operands; 7150 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7151 7152 Operands.push_back( 7153 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7154 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7155 Operands.push_back( 7156 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7157 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7158 Operands.push_back( 7159 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7160 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7161 7162 // Add a boolean constant operand for "required" (true) or "hint" 7163 // (false) for implementing the work_group_size_hint attr later. 7164 // Currently always true as the hint is not yet implemented. 7165 Operands.push_back( 7166 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7167 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7168 } 7169 } 7170 } 7171 } 7172 7173 } 7174 7175 //===----------------------------------------------------------------------===// 7176 // Hexagon ABI Implementation 7177 //===----------------------------------------------------------------------===// 7178 7179 namespace { 7180 7181 class HexagonABIInfo : public ABIInfo { 7182 7183 7184 public: 7185 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7186 7187 private: 7188 7189 ABIArgInfo classifyReturnType(QualType RetTy) const; 7190 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7191 7192 void computeInfo(CGFunctionInfo &FI) const override; 7193 7194 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7195 QualType Ty) const override; 7196 }; 7197 7198 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7199 public: 7200 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7201 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7202 7203 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7204 return 29; 7205 } 7206 }; 7207 7208 } 7209 7210 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7211 if (!getCXXABI().classifyReturnType(FI)) 7212 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7213 for (auto &I : FI.arguments()) 7214 I.info = classifyArgumentType(I.type); 7215 } 7216 7217 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7218 if (!isAggregateTypeForABI(Ty)) { 7219 // Treat an enum type as its underlying type. 7220 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7221 Ty = EnumTy->getDecl()->getIntegerType(); 7222 7223 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7224 : ABIArgInfo::getDirect()); 7225 } 7226 7227 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7228 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7229 7230 // Ignore empty records. 7231 if (isEmptyRecord(getContext(), Ty, true)) 7232 return ABIArgInfo::getIgnore(); 7233 7234 uint64_t Size = getContext().getTypeSize(Ty); 7235 if (Size > 64) 7236 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7237 // Pass in the smallest viable integer type. 7238 else if (Size > 32) 7239 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7240 else if (Size > 16) 7241 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7242 else if (Size > 8) 7243 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7244 else 7245 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7246 } 7247 7248 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7249 if (RetTy->isVoidType()) 7250 return ABIArgInfo::getIgnore(); 7251 7252 // Large vector types should be returned via memory. 7253 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7254 return getNaturalAlignIndirect(RetTy); 7255 7256 if (!isAggregateTypeForABI(RetTy)) { 7257 // Treat an enum type as its underlying type. 7258 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7259 RetTy = EnumTy->getDecl()->getIntegerType(); 7260 7261 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7262 : ABIArgInfo::getDirect()); 7263 } 7264 7265 if (isEmptyRecord(getContext(), RetTy, true)) 7266 return ABIArgInfo::getIgnore(); 7267 7268 // Aggregates <= 8 bytes are returned in r0; other aggregates 7269 // are returned indirectly. 7270 uint64_t Size = getContext().getTypeSize(RetTy); 7271 if (Size <= 64) { 7272 // Return in the smallest viable integer type. 7273 if (Size <= 8) 7274 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7275 if (Size <= 16) 7276 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7277 if (Size <= 32) 7278 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7279 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7280 } 7281 7282 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7283 } 7284 7285 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7286 QualType Ty) const { 7287 // FIXME: Someone needs to audit that this handle alignment correctly. 7288 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7289 getContext().getTypeInfoInChars(Ty), 7290 CharUnits::fromQuantity(4), 7291 /*AllowHigherAlign*/ true); 7292 } 7293 7294 //===----------------------------------------------------------------------===// 7295 // Lanai ABI Implementation 7296 //===----------------------------------------------------------------------===// 7297 7298 namespace { 7299 class LanaiABIInfo : public DefaultABIInfo { 7300 public: 7301 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7302 7303 bool shouldUseInReg(QualType Ty, CCState &State) const; 7304 7305 void computeInfo(CGFunctionInfo &FI) const override { 7306 CCState State(FI.getCallingConvention()); 7307 // Lanai uses 4 registers to pass arguments unless the function has the 7308 // regparm attribute set. 7309 if (FI.getHasRegParm()) { 7310 State.FreeRegs = FI.getRegParm(); 7311 } else { 7312 State.FreeRegs = 4; 7313 } 7314 7315 if (!getCXXABI().classifyReturnType(FI)) 7316 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7317 for (auto &I : FI.arguments()) 7318 I.info = classifyArgumentType(I.type, State); 7319 } 7320 7321 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7322 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7323 }; 7324 } // end anonymous namespace 7325 7326 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7327 unsigned Size = getContext().getTypeSize(Ty); 7328 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7329 7330 if (SizeInRegs == 0) 7331 return false; 7332 7333 if (SizeInRegs > State.FreeRegs) { 7334 State.FreeRegs = 0; 7335 return false; 7336 } 7337 7338 State.FreeRegs -= SizeInRegs; 7339 7340 return true; 7341 } 7342 7343 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7344 CCState &State) const { 7345 if (!ByVal) { 7346 if (State.FreeRegs) { 7347 --State.FreeRegs; // Non-byval indirects just use one pointer. 7348 return getNaturalAlignIndirectInReg(Ty); 7349 } 7350 return getNaturalAlignIndirect(Ty, false); 7351 } 7352 7353 // Compute the byval alignment. 7354 const unsigned MinABIStackAlignInBytes = 4; 7355 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7356 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7357 /*Realign=*/TypeAlign > 7358 MinABIStackAlignInBytes); 7359 } 7360 7361 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7362 CCState &State) const { 7363 // Check with the C++ ABI first. 7364 const RecordType *RT = Ty->getAs<RecordType>(); 7365 if (RT) { 7366 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7367 if (RAA == CGCXXABI::RAA_Indirect) { 7368 return getIndirectResult(Ty, /*ByVal=*/false, State); 7369 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7370 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7371 } 7372 } 7373 7374 if (isAggregateTypeForABI(Ty)) { 7375 // Structures with flexible arrays are always indirect. 7376 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7377 return getIndirectResult(Ty, /*ByVal=*/true, State); 7378 7379 // Ignore empty structs/unions. 7380 if (isEmptyRecord(getContext(), Ty, true)) 7381 return ABIArgInfo::getIgnore(); 7382 7383 llvm::LLVMContext &LLVMContext = getVMContext(); 7384 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7385 if (SizeInRegs <= State.FreeRegs) { 7386 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7387 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7388 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7389 State.FreeRegs -= SizeInRegs; 7390 return ABIArgInfo::getDirectInReg(Result); 7391 } else { 7392 State.FreeRegs = 0; 7393 } 7394 return getIndirectResult(Ty, true, State); 7395 } 7396 7397 // Treat an enum type as its underlying type. 7398 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7399 Ty = EnumTy->getDecl()->getIntegerType(); 7400 7401 bool InReg = shouldUseInReg(Ty, State); 7402 if (Ty->isPromotableIntegerType()) { 7403 if (InReg) 7404 return ABIArgInfo::getDirectInReg(); 7405 return ABIArgInfo::getExtend(Ty); 7406 } 7407 if (InReg) 7408 return ABIArgInfo::getDirectInReg(); 7409 return ABIArgInfo::getDirect(); 7410 } 7411 7412 namespace { 7413 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7414 public: 7415 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7416 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7417 }; 7418 } 7419 7420 //===----------------------------------------------------------------------===// 7421 // AMDGPU ABI Implementation 7422 //===----------------------------------------------------------------------===// 7423 7424 namespace { 7425 7426 class AMDGPUABIInfo final : public DefaultABIInfo { 7427 private: 7428 static const unsigned MaxNumRegsForArgsRet = 16; 7429 7430 unsigned numRegsForType(QualType Ty) const; 7431 7432 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7433 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7434 uint64_t Members) const override; 7435 7436 public: 7437 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7438 DefaultABIInfo(CGT) {} 7439 7440 ABIArgInfo classifyReturnType(QualType RetTy) const; 7441 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7442 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7443 7444 void computeInfo(CGFunctionInfo &FI) const override; 7445 }; 7446 7447 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7448 return true; 7449 } 7450 7451 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7452 const Type *Base, uint64_t Members) const { 7453 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7454 7455 // Homogeneous Aggregates may occupy at most 16 registers. 7456 return Members * NumRegs <= MaxNumRegsForArgsRet; 7457 } 7458 7459 /// Estimate number of registers the type will use when passed in registers. 7460 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7461 unsigned NumRegs = 0; 7462 7463 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7464 // Compute from the number of elements. The reported size is based on the 7465 // in-memory size, which includes the padding 4th element for 3-vectors. 7466 QualType EltTy = VT->getElementType(); 7467 unsigned EltSize = getContext().getTypeSize(EltTy); 7468 7469 // 16-bit element vectors should be passed as packed. 7470 if (EltSize == 16) 7471 return (VT->getNumElements() + 1) / 2; 7472 7473 unsigned EltNumRegs = (EltSize + 31) / 32; 7474 return EltNumRegs * VT->getNumElements(); 7475 } 7476 7477 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7478 const RecordDecl *RD = RT->getDecl(); 7479 assert(!RD->hasFlexibleArrayMember()); 7480 7481 for (const FieldDecl *Field : RD->fields()) { 7482 QualType FieldTy = Field->getType(); 7483 NumRegs += numRegsForType(FieldTy); 7484 } 7485 7486 return NumRegs; 7487 } 7488 7489 return (getContext().getTypeSize(Ty) + 31) / 32; 7490 } 7491 7492 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7493 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7494 7495 if (!getCXXABI().classifyReturnType(FI)) 7496 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7497 7498 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7499 for (auto &Arg : FI.arguments()) { 7500 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7501 Arg.info = classifyKernelArgumentType(Arg.type); 7502 } else { 7503 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7504 } 7505 } 7506 } 7507 7508 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7509 if (isAggregateTypeForABI(RetTy)) { 7510 // Records with non-trivial destructors/copy-constructors should not be 7511 // returned by value. 7512 if (!getRecordArgABI(RetTy, getCXXABI())) { 7513 // Ignore empty structs/unions. 7514 if (isEmptyRecord(getContext(), RetTy, true)) 7515 return ABIArgInfo::getIgnore(); 7516 7517 // Lower single-element structs to just return a regular value. 7518 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7519 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7520 7521 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7522 const RecordDecl *RD = RT->getDecl(); 7523 if (RD->hasFlexibleArrayMember()) 7524 return DefaultABIInfo::classifyReturnType(RetTy); 7525 } 7526 7527 // Pack aggregates <= 4 bytes into single VGPR or pair. 7528 uint64_t Size = getContext().getTypeSize(RetTy); 7529 if (Size <= 16) 7530 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7531 7532 if (Size <= 32) 7533 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7534 7535 if (Size <= 64) { 7536 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7537 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7538 } 7539 7540 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7541 return ABIArgInfo::getDirect(); 7542 } 7543 } 7544 7545 // Otherwise just do the default thing. 7546 return DefaultABIInfo::classifyReturnType(RetTy); 7547 } 7548 7549 /// For kernels all parameters are really passed in a special buffer. It doesn't 7550 /// make sense to pass anything byval, so everything must be direct. 7551 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7552 Ty = useFirstFieldIfTransparentUnion(Ty); 7553 7554 // TODO: Can we omit empty structs? 7555 7556 // Coerce single element structs to its element. 7557 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7558 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7559 7560 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7561 // individual elements, which confuses the Clover OpenCL backend; therefore we 7562 // have to set it to false here. Other args of getDirect() are just defaults. 7563 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7564 } 7565 7566 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7567 unsigned &NumRegsLeft) const { 7568 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7569 7570 Ty = useFirstFieldIfTransparentUnion(Ty); 7571 7572 if (isAggregateTypeForABI(Ty)) { 7573 // Records with non-trivial destructors/copy-constructors should not be 7574 // passed by value. 7575 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7576 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7577 7578 // Ignore empty structs/unions. 7579 if (isEmptyRecord(getContext(), Ty, true)) 7580 return ABIArgInfo::getIgnore(); 7581 7582 // Lower single-element structs to just pass a regular value. TODO: We 7583 // could do reasonable-size multiple-element structs too, using getExpand(), 7584 // though watch out for things like bitfields. 7585 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7586 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7587 7588 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7589 const RecordDecl *RD = RT->getDecl(); 7590 if (RD->hasFlexibleArrayMember()) 7591 return DefaultABIInfo::classifyArgumentType(Ty); 7592 } 7593 7594 // Pack aggregates <= 8 bytes into single VGPR or pair. 7595 uint64_t Size = getContext().getTypeSize(Ty); 7596 if (Size <= 64) { 7597 unsigned NumRegs = (Size + 31) / 32; 7598 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7599 7600 if (Size <= 16) 7601 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7602 7603 if (Size <= 32) 7604 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7605 7606 // XXX: Should this be i64 instead, and should the limit increase? 7607 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7608 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7609 } 7610 7611 if (NumRegsLeft > 0) { 7612 unsigned NumRegs = numRegsForType(Ty); 7613 if (NumRegsLeft >= NumRegs) { 7614 NumRegsLeft -= NumRegs; 7615 return ABIArgInfo::getDirect(); 7616 } 7617 } 7618 } 7619 7620 // Otherwise just do the default thing. 7621 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7622 if (!ArgInfo.isIndirect()) { 7623 unsigned NumRegs = numRegsForType(Ty); 7624 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7625 } 7626 7627 return ArgInfo; 7628 } 7629 7630 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7631 public: 7632 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7633 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7634 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7635 CodeGen::CodeGenModule &M, 7636 ForDefinition_t IsForDefinition) const override; 7637 unsigned getOpenCLKernelCallingConv() const override; 7638 7639 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7640 llvm::PointerType *T, QualType QT) const override; 7641 7642 LangAS getASTAllocaAddressSpace() const override { 7643 return getLangASFromTargetAS( 7644 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7645 } 7646 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7647 const VarDecl *D) const override; 7648 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7649 llvm::LLVMContext &C) const override; 7650 llvm::Function * 7651 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7652 llvm::Function *BlockInvokeFunc, 7653 llvm::Value *BlockLiteral) const override; 7654 }; 7655 } 7656 7657 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7658 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7659 ForDefinition_t IsForDefinition) const { 7660 if (!IsForDefinition) 7661 return; 7662 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7663 if (!FD) 7664 return; 7665 7666 llvm::Function *F = cast<llvm::Function>(GV); 7667 7668 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7669 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7670 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7671 if (ReqdWGS || FlatWGS) { 7672 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7673 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7674 if (ReqdWGS && Min == 0 && Max == 0) 7675 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7676 7677 if (Min != 0) { 7678 assert(Min <= Max && "Min must be less than or equal Max"); 7679 7680 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7681 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7682 } else 7683 assert(Max == 0 && "Max must be zero"); 7684 } 7685 7686 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7687 unsigned Min = Attr->getMin(); 7688 unsigned Max = Attr->getMax(); 7689 7690 if (Min != 0) { 7691 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7692 7693 std::string AttrVal = llvm::utostr(Min); 7694 if (Max != 0) 7695 AttrVal = AttrVal + "," + llvm::utostr(Max); 7696 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7697 } else 7698 assert(Max == 0 && "Max must be zero"); 7699 } 7700 7701 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7702 unsigned NumSGPR = Attr->getNumSGPR(); 7703 7704 if (NumSGPR != 0) 7705 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7706 } 7707 7708 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7709 uint32_t NumVGPR = Attr->getNumVGPR(); 7710 7711 if (NumVGPR != 0) 7712 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7713 } 7714 } 7715 7716 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7717 return llvm::CallingConv::AMDGPU_KERNEL; 7718 } 7719 7720 // Currently LLVM assumes null pointers always have value 0, 7721 // which results in incorrectly transformed IR. Therefore, instead of 7722 // emitting null pointers in private and local address spaces, a null 7723 // pointer in generic address space is emitted which is casted to a 7724 // pointer in local or private address space. 7725 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7726 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7727 QualType QT) const { 7728 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7729 return llvm::ConstantPointerNull::get(PT); 7730 7731 auto &Ctx = CGM.getContext(); 7732 auto NPT = llvm::PointerType::get(PT->getElementType(), 7733 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7734 return llvm::ConstantExpr::getAddrSpaceCast( 7735 llvm::ConstantPointerNull::get(NPT), PT); 7736 } 7737 7738 LangAS 7739 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7740 const VarDecl *D) const { 7741 assert(!CGM.getLangOpts().OpenCL && 7742 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7743 "Address space agnostic languages only"); 7744 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7745 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7746 if (!D) 7747 return DefaultGlobalAS; 7748 7749 LangAS AddrSpace = D->getType().getAddressSpace(); 7750 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7751 if (AddrSpace != LangAS::Default) 7752 return AddrSpace; 7753 7754 if (CGM.isTypeConstant(D->getType(), false)) { 7755 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7756 return ConstAS.getValue(); 7757 } 7758 return DefaultGlobalAS; 7759 } 7760 7761 llvm::SyncScope::ID 7762 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7763 llvm::LLVMContext &C) const { 7764 StringRef Name; 7765 switch (S) { 7766 case SyncScope::OpenCLWorkGroup: 7767 Name = "workgroup"; 7768 break; 7769 case SyncScope::OpenCLDevice: 7770 Name = "agent"; 7771 break; 7772 case SyncScope::OpenCLAllSVMDevices: 7773 Name = ""; 7774 break; 7775 case SyncScope::OpenCLSubGroup: 7776 Name = "subgroup"; 7777 } 7778 return C.getOrInsertSyncScopeID(Name); 7779 } 7780 7781 //===----------------------------------------------------------------------===// 7782 // SPARC v8 ABI Implementation. 7783 // Based on the SPARC Compliance Definition version 2.4.1. 7784 // 7785 // Ensures that complex values are passed in registers. 7786 // 7787 namespace { 7788 class SparcV8ABIInfo : public DefaultABIInfo { 7789 public: 7790 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7791 7792 private: 7793 ABIArgInfo classifyReturnType(QualType RetTy) const; 7794 void computeInfo(CGFunctionInfo &FI) const override; 7795 }; 7796 } // end anonymous namespace 7797 7798 7799 ABIArgInfo 7800 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7801 if (Ty->isAnyComplexType()) { 7802 return ABIArgInfo::getDirect(); 7803 } 7804 else { 7805 return DefaultABIInfo::classifyReturnType(Ty); 7806 } 7807 } 7808 7809 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7810 7811 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7812 for (auto &Arg : FI.arguments()) 7813 Arg.info = classifyArgumentType(Arg.type); 7814 } 7815 7816 namespace { 7817 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7818 public: 7819 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7820 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7821 }; 7822 } // end anonymous namespace 7823 7824 //===----------------------------------------------------------------------===// 7825 // SPARC v9 ABI Implementation. 7826 // Based on the SPARC Compliance Definition version 2.4.1. 7827 // 7828 // Function arguments a mapped to a nominal "parameter array" and promoted to 7829 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7830 // the array, structs larger than 16 bytes are passed indirectly. 7831 // 7832 // One case requires special care: 7833 // 7834 // struct mixed { 7835 // int i; 7836 // float f; 7837 // }; 7838 // 7839 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7840 // parameter array, but the int is passed in an integer register, and the float 7841 // is passed in a floating point register. This is represented as two arguments 7842 // with the LLVM IR inreg attribute: 7843 // 7844 // declare void f(i32 inreg %i, float inreg %f) 7845 // 7846 // The code generator will only allocate 4 bytes from the parameter array for 7847 // the inreg arguments. All other arguments are allocated a multiple of 8 7848 // bytes. 7849 // 7850 namespace { 7851 class SparcV9ABIInfo : public ABIInfo { 7852 public: 7853 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7854 7855 private: 7856 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7857 void computeInfo(CGFunctionInfo &FI) const override; 7858 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7859 QualType Ty) const override; 7860 7861 // Coercion type builder for structs passed in registers. The coercion type 7862 // serves two purposes: 7863 // 7864 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7865 // in registers. 7866 // 2. Expose aligned floating point elements as first-level elements, so the 7867 // code generator knows to pass them in floating point registers. 7868 // 7869 // We also compute the InReg flag which indicates that the struct contains 7870 // aligned 32-bit floats. 7871 // 7872 struct CoerceBuilder { 7873 llvm::LLVMContext &Context; 7874 const llvm::DataLayout &DL; 7875 SmallVector<llvm::Type*, 8> Elems; 7876 uint64_t Size; 7877 bool InReg; 7878 7879 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7880 : Context(c), DL(dl), Size(0), InReg(false) {} 7881 7882 // Pad Elems with integers until Size is ToSize. 7883 void pad(uint64_t ToSize) { 7884 assert(ToSize >= Size && "Cannot remove elements"); 7885 if (ToSize == Size) 7886 return; 7887 7888 // Finish the current 64-bit word. 7889 uint64_t Aligned = llvm::alignTo(Size, 64); 7890 if (Aligned > Size && Aligned <= ToSize) { 7891 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7892 Size = Aligned; 7893 } 7894 7895 // Add whole 64-bit words. 7896 while (Size + 64 <= ToSize) { 7897 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7898 Size += 64; 7899 } 7900 7901 // Final in-word padding. 7902 if (Size < ToSize) { 7903 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7904 Size = ToSize; 7905 } 7906 } 7907 7908 // Add a floating point element at Offset. 7909 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7910 // Unaligned floats are treated as integers. 7911 if (Offset % Bits) 7912 return; 7913 // The InReg flag is only required if there are any floats < 64 bits. 7914 if (Bits < 64) 7915 InReg = true; 7916 pad(Offset); 7917 Elems.push_back(Ty); 7918 Size = Offset + Bits; 7919 } 7920 7921 // Add a struct type to the coercion type, starting at Offset (in bits). 7922 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7923 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7924 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7925 llvm::Type *ElemTy = StrTy->getElementType(i); 7926 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7927 switch (ElemTy->getTypeID()) { 7928 case llvm::Type::StructTyID: 7929 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7930 break; 7931 case llvm::Type::FloatTyID: 7932 addFloat(ElemOffset, ElemTy, 32); 7933 break; 7934 case llvm::Type::DoubleTyID: 7935 addFloat(ElemOffset, ElemTy, 64); 7936 break; 7937 case llvm::Type::FP128TyID: 7938 addFloat(ElemOffset, ElemTy, 128); 7939 break; 7940 case llvm::Type::PointerTyID: 7941 if (ElemOffset % 64 == 0) { 7942 pad(ElemOffset); 7943 Elems.push_back(ElemTy); 7944 Size += 64; 7945 } 7946 break; 7947 default: 7948 break; 7949 } 7950 } 7951 } 7952 7953 // Check if Ty is a usable substitute for the coercion type. 7954 bool isUsableType(llvm::StructType *Ty) const { 7955 return llvm::makeArrayRef(Elems) == Ty->elements(); 7956 } 7957 7958 // Get the coercion type as a literal struct type. 7959 llvm::Type *getType() const { 7960 if (Elems.size() == 1) 7961 return Elems.front(); 7962 else 7963 return llvm::StructType::get(Context, Elems); 7964 } 7965 }; 7966 }; 7967 } // end anonymous namespace 7968 7969 ABIArgInfo 7970 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7971 if (Ty->isVoidType()) 7972 return ABIArgInfo::getIgnore(); 7973 7974 uint64_t Size = getContext().getTypeSize(Ty); 7975 7976 // Anything too big to fit in registers is passed with an explicit indirect 7977 // pointer / sret pointer. 7978 if (Size > SizeLimit) 7979 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7980 7981 // Treat an enum type as its underlying type. 7982 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7983 Ty = EnumTy->getDecl()->getIntegerType(); 7984 7985 // Integer types smaller than a register are extended. 7986 if (Size < 64 && Ty->isIntegerType()) 7987 return ABIArgInfo::getExtend(Ty); 7988 7989 // Other non-aggregates go in registers. 7990 if (!isAggregateTypeForABI(Ty)) 7991 return ABIArgInfo::getDirect(); 7992 7993 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7994 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7995 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7996 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7997 7998 // This is a small aggregate type that should be passed in registers. 7999 // Build a coercion type from the LLVM struct type. 8000 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8001 if (!StrTy) 8002 return ABIArgInfo::getDirect(); 8003 8004 CoerceBuilder CB(getVMContext(), getDataLayout()); 8005 CB.addStruct(0, StrTy); 8006 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8007 8008 // Try to use the original type for coercion. 8009 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8010 8011 if (CB.InReg) 8012 return ABIArgInfo::getDirectInReg(CoerceTy); 8013 else 8014 return ABIArgInfo::getDirect(CoerceTy); 8015 } 8016 8017 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8018 QualType Ty) const { 8019 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8020 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8021 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8022 AI.setCoerceToType(ArgTy); 8023 8024 CharUnits SlotSize = CharUnits::fromQuantity(8); 8025 8026 CGBuilderTy &Builder = CGF.Builder; 8027 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8028 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8029 8030 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8031 8032 Address ArgAddr = Address::invalid(); 8033 CharUnits Stride; 8034 switch (AI.getKind()) { 8035 case ABIArgInfo::Expand: 8036 case ABIArgInfo::CoerceAndExpand: 8037 case ABIArgInfo::InAlloca: 8038 llvm_unreachable("Unsupported ABI kind for va_arg"); 8039 8040 case ABIArgInfo::Extend: { 8041 Stride = SlotSize; 8042 CharUnits Offset = SlotSize - TypeInfo.first; 8043 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8044 break; 8045 } 8046 8047 case ABIArgInfo::Direct: { 8048 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8049 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8050 ArgAddr = Addr; 8051 break; 8052 } 8053 8054 case ABIArgInfo::Indirect: 8055 Stride = SlotSize; 8056 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8057 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8058 TypeInfo.second); 8059 break; 8060 8061 case ABIArgInfo::Ignore: 8062 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8063 } 8064 8065 // Update VAList. 8066 llvm::Value *NextPtr = 8067 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8068 Builder.CreateStore(NextPtr, VAListAddr); 8069 8070 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8071 } 8072 8073 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8074 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8075 for (auto &I : FI.arguments()) 8076 I.info = classifyType(I.type, 16 * 8); 8077 } 8078 8079 namespace { 8080 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8081 public: 8082 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8083 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8084 8085 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8086 return 14; 8087 } 8088 8089 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8090 llvm::Value *Address) const override; 8091 }; 8092 } // end anonymous namespace 8093 8094 bool 8095 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8096 llvm::Value *Address) const { 8097 // This is calculated from the LLVM and GCC tables and verified 8098 // against gcc output. AFAIK all ABIs use the same encoding. 8099 8100 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8101 8102 llvm::IntegerType *i8 = CGF.Int8Ty; 8103 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8104 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8105 8106 // 0-31: the 8-byte general-purpose registers 8107 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8108 8109 // 32-63: f0-31, the 4-byte floating-point registers 8110 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8111 8112 // Y = 64 8113 // PSR = 65 8114 // WIM = 66 8115 // TBR = 67 8116 // PC = 68 8117 // NPC = 69 8118 // FSR = 70 8119 // CSR = 71 8120 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8121 8122 // 72-87: d0-15, the 8-byte floating-point registers 8123 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8124 8125 return false; 8126 } 8127 8128 8129 //===----------------------------------------------------------------------===// 8130 // XCore ABI Implementation 8131 //===----------------------------------------------------------------------===// 8132 8133 namespace { 8134 8135 /// A SmallStringEnc instance is used to build up the TypeString by passing 8136 /// it by reference between functions that append to it. 8137 typedef llvm::SmallString<128> SmallStringEnc; 8138 8139 /// TypeStringCache caches the meta encodings of Types. 8140 /// 8141 /// The reason for caching TypeStrings is two fold: 8142 /// 1. To cache a type's encoding for later uses; 8143 /// 2. As a means to break recursive member type inclusion. 8144 /// 8145 /// A cache Entry can have a Status of: 8146 /// NonRecursive: The type encoding is not recursive; 8147 /// Recursive: The type encoding is recursive; 8148 /// Incomplete: An incomplete TypeString; 8149 /// IncompleteUsed: An incomplete TypeString that has been used in a 8150 /// Recursive type encoding. 8151 /// 8152 /// A NonRecursive entry will have all of its sub-members expanded as fully 8153 /// as possible. Whilst it may contain types which are recursive, the type 8154 /// itself is not recursive and thus its encoding may be safely used whenever 8155 /// the type is encountered. 8156 /// 8157 /// A Recursive entry will have all of its sub-members expanded as fully as 8158 /// possible. The type itself is recursive and it may contain other types which 8159 /// are recursive. The Recursive encoding must not be used during the expansion 8160 /// of a recursive type's recursive branch. For simplicity the code uses 8161 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8162 /// 8163 /// An Incomplete entry is always a RecordType and only encodes its 8164 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8165 /// are placed into the cache during type expansion as a means to identify and 8166 /// handle recursive inclusion of types as sub-members. If there is recursion 8167 /// the entry becomes IncompleteUsed. 8168 /// 8169 /// During the expansion of a RecordType's members: 8170 /// 8171 /// If the cache contains a NonRecursive encoding for the member type, the 8172 /// cached encoding is used; 8173 /// 8174 /// If the cache contains a Recursive encoding for the member type, the 8175 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8176 /// 8177 /// If the member is a RecordType, an Incomplete encoding is placed into the 8178 /// cache to break potential recursive inclusion of itself as a sub-member; 8179 /// 8180 /// Once a member RecordType has been expanded, its temporary incomplete 8181 /// entry is removed from the cache. If a Recursive encoding was swapped out 8182 /// it is swapped back in; 8183 /// 8184 /// If an incomplete entry is used to expand a sub-member, the incomplete 8185 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8186 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8187 /// 8188 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8189 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8190 /// Else the member is part of a recursive type and thus the recursion has 8191 /// been exited too soon for the encoding to be correct for the member. 8192 /// 8193 class TypeStringCache { 8194 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8195 struct Entry { 8196 std::string Str; // The encoded TypeString for the type. 8197 enum Status State; // Information about the encoding in 'Str'. 8198 std::string Swapped; // A temporary place holder for a Recursive encoding 8199 // during the expansion of RecordType's members. 8200 }; 8201 std::map<const IdentifierInfo *, struct Entry> Map; 8202 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8203 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8204 public: 8205 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8206 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8207 bool removeIncomplete(const IdentifierInfo *ID); 8208 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8209 bool IsRecursive); 8210 StringRef lookupStr(const IdentifierInfo *ID); 8211 }; 8212 8213 /// TypeString encodings for enum & union fields must be order. 8214 /// FieldEncoding is a helper for this ordering process. 8215 class FieldEncoding { 8216 bool HasName; 8217 std::string Enc; 8218 public: 8219 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8220 StringRef str() { return Enc; } 8221 bool operator<(const FieldEncoding &rhs) const { 8222 if (HasName != rhs.HasName) return HasName; 8223 return Enc < rhs.Enc; 8224 } 8225 }; 8226 8227 class XCoreABIInfo : public DefaultABIInfo { 8228 public: 8229 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8230 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8231 QualType Ty) const override; 8232 }; 8233 8234 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8235 mutable TypeStringCache TSC; 8236 public: 8237 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8238 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8239 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8240 CodeGen::CodeGenModule &M) const override; 8241 }; 8242 8243 } // End anonymous namespace. 8244 8245 // TODO: this implementation is likely now redundant with the default 8246 // EmitVAArg. 8247 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8248 QualType Ty) const { 8249 CGBuilderTy &Builder = CGF.Builder; 8250 8251 // Get the VAList. 8252 CharUnits SlotSize = CharUnits::fromQuantity(4); 8253 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8254 8255 // Handle the argument. 8256 ABIArgInfo AI = classifyArgumentType(Ty); 8257 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8258 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8259 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8260 AI.setCoerceToType(ArgTy); 8261 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8262 8263 Address Val = Address::invalid(); 8264 CharUnits ArgSize = CharUnits::Zero(); 8265 switch (AI.getKind()) { 8266 case ABIArgInfo::Expand: 8267 case ABIArgInfo::CoerceAndExpand: 8268 case ABIArgInfo::InAlloca: 8269 llvm_unreachable("Unsupported ABI kind for va_arg"); 8270 case ABIArgInfo::Ignore: 8271 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8272 ArgSize = CharUnits::Zero(); 8273 break; 8274 case ABIArgInfo::Extend: 8275 case ABIArgInfo::Direct: 8276 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8277 ArgSize = CharUnits::fromQuantity( 8278 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8279 ArgSize = ArgSize.alignTo(SlotSize); 8280 break; 8281 case ABIArgInfo::Indirect: 8282 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8283 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8284 ArgSize = SlotSize; 8285 break; 8286 } 8287 8288 // Increment the VAList. 8289 if (!ArgSize.isZero()) { 8290 llvm::Value *APN = 8291 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8292 Builder.CreateStore(APN, VAListAddr); 8293 } 8294 8295 return Val; 8296 } 8297 8298 /// During the expansion of a RecordType, an incomplete TypeString is placed 8299 /// into the cache as a means to identify and break recursion. 8300 /// If there is a Recursive encoding in the cache, it is swapped out and will 8301 /// be reinserted by removeIncomplete(). 8302 /// All other types of encoding should have been used rather than arriving here. 8303 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8304 std::string StubEnc) { 8305 if (!ID) 8306 return; 8307 Entry &E = Map[ID]; 8308 assert( (E.Str.empty() || E.State == Recursive) && 8309 "Incorrectly use of addIncomplete"); 8310 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8311 E.Swapped.swap(E.Str); // swap out the Recursive 8312 E.Str.swap(StubEnc); 8313 E.State = Incomplete; 8314 ++IncompleteCount; 8315 } 8316 8317 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8318 /// must be removed from the cache. 8319 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8320 /// Returns true if the RecordType was defined recursively. 8321 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8322 if (!ID) 8323 return false; 8324 auto I = Map.find(ID); 8325 assert(I != Map.end() && "Entry not present"); 8326 Entry &E = I->second; 8327 assert( (E.State == Incomplete || 8328 E.State == IncompleteUsed) && 8329 "Entry must be an incomplete type"); 8330 bool IsRecursive = false; 8331 if (E.State == IncompleteUsed) { 8332 // We made use of our Incomplete encoding, thus we are recursive. 8333 IsRecursive = true; 8334 --IncompleteUsedCount; 8335 } 8336 if (E.Swapped.empty()) 8337 Map.erase(I); 8338 else { 8339 // Swap the Recursive back. 8340 E.Swapped.swap(E.Str); 8341 E.Swapped.clear(); 8342 E.State = Recursive; 8343 } 8344 --IncompleteCount; 8345 return IsRecursive; 8346 } 8347 8348 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8349 /// Recursive (viz: all sub-members were expanded as fully as possible). 8350 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8351 bool IsRecursive) { 8352 if (!ID || IncompleteUsedCount) 8353 return; // No key or it is is an incomplete sub-type so don't add. 8354 Entry &E = Map[ID]; 8355 if (IsRecursive && !E.Str.empty()) { 8356 assert(E.State==Recursive && E.Str.size() == Str.size() && 8357 "This is not the same Recursive entry"); 8358 // The parent container was not recursive after all, so we could have used 8359 // this Recursive sub-member entry after all, but we assumed the worse when 8360 // we started viz: IncompleteCount!=0. 8361 return; 8362 } 8363 assert(E.Str.empty() && "Entry already present"); 8364 E.Str = Str.str(); 8365 E.State = IsRecursive? Recursive : NonRecursive; 8366 } 8367 8368 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8369 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8370 /// encoding is Recursive, return an empty StringRef. 8371 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8372 if (!ID) 8373 return StringRef(); // We have no key. 8374 auto I = Map.find(ID); 8375 if (I == Map.end()) 8376 return StringRef(); // We have no encoding. 8377 Entry &E = I->second; 8378 if (E.State == Recursive && IncompleteCount) 8379 return StringRef(); // We don't use Recursive encodings for member types. 8380 8381 if (E.State == Incomplete) { 8382 // The incomplete type is being used to break out of recursion. 8383 E.State = IncompleteUsed; 8384 ++IncompleteUsedCount; 8385 } 8386 return E.Str; 8387 } 8388 8389 /// The XCore ABI includes a type information section that communicates symbol 8390 /// type information to the linker. The linker uses this information to verify 8391 /// safety/correctness of things such as array bound and pointers et al. 8392 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8393 /// This type information (TypeString) is emitted into meta data for all global 8394 /// symbols: definitions, declarations, functions & variables. 8395 /// 8396 /// The TypeString carries type, qualifier, name, size & value details. 8397 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8398 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8399 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8400 /// 8401 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8402 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8403 8404 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8405 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8406 CodeGen::CodeGenModule &CGM) const { 8407 SmallStringEnc Enc; 8408 if (getTypeString(Enc, D, CGM, TSC)) { 8409 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8410 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8411 llvm::MDString::get(Ctx, Enc.str())}; 8412 llvm::NamedMDNode *MD = 8413 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8414 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8415 } 8416 } 8417 8418 //===----------------------------------------------------------------------===// 8419 // SPIR ABI Implementation 8420 //===----------------------------------------------------------------------===// 8421 8422 namespace { 8423 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8424 public: 8425 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8426 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8427 unsigned getOpenCLKernelCallingConv() const override; 8428 }; 8429 8430 } // End anonymous namespace. 8431 8432 namespace clang { 8433 namespace CodeGen { 8434 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8435 DefaultABIInfo SPIRABI(CGM.getTypes()); 8436 SPIRABI.computeInfo(FI); 8437 } 8438 } 8439 } 8440 8441 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8442 return llvm::CallingConv::SPIR_KERNEL; 8443 } 8444 8445 static bool appendType(SmallStringEnc &Enc, QualType QType, 8446 const CodeGen::CodeGenModule &CGM, 8447 TypeStringCache &TSC); 8448 8449 /// Helper function for appendRecordType(). 8450 /// Builds a SmallVector containing the encoded field types in declaration 8451 /// order. 8452 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8453 const RecordDecl *RD, 8454 const CodeGen::CodeGenModule &CGM, 8455 TypeStringCache &TSC) { 8456 for (const auto *Field : RD->fields()) { 8457 SmallStringEnc Enc; 8458 Enc += "m("; 8459 Enc += Field->getName(); 8460 Enc += "){"; 8461 if (Field->isBitField()) { 8462 Enc += "b("; 8463 llvm::raw_svector_ostream OS(Enc); 8464 OS << Field->getBitWidthValue(CGM.getContext()); 8465 Enc += ':'; 8466 } 8467 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8468 return false; 8469 if (Field->isBitField()) 8470 Enc += ')'; 8471 Enc += '}'; 8472 FE.emplace_back(!Field->getName().empty(), Enc); 8473 } 8474 return true; 8475 } 8476 8477 /// Appends structure and union types to Enc and adds encoding to cache. 8478 /// Recursively calls appendType (via extractFieldType) for each field. 8479 /// Union types have their fields ordered according to the ABI. 8480 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8481 const CodeGen::CodeGenModule &CGM, 8482 TypeStringCache &TSC, const IdentifierInfo *ID) { 8483 // Append the cached TypeString if we have one. 8484 StringRef TypeString = TSC.lookupStr(ID); 8485 if (!TypeString.empty()) { 8486 Enc += TypeString; 8487 return true; 8488 } 8489 8490 // Start to emit an incomplete TypeString. 8491 size_t Start = Enc.size(); 8492 Enc += (RT->isUnionType()? 'u' : 's'); 8493 Enc += '('; 8494 if (ID) 8495 Enc += ID->getName(); 8496 Enc += "){"; 8497 8498 // We collect all encoded fields and order as necessary. 8499 bool IsRecursive = false; 8500 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8501 if (RD && !RD->field_empty()) { 8502 // An incomplete TypeString stub is placed in the cache for this RecordType 8503 // so that recursive calls to this RecordType will use it whilst building a 8504 // complete TypeString for this RecordType. 8505 SmallVector<FieldEncoding, 16> FE; 8506 std::string StubEnc(Enc.substr(Start).str()); 8507 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8508 TSC.addIncomplete(ID, std::move(StubEnc)); 8509 if (!extractFieldType(FE, RD, CGM, TSC)) { 8510 (void) TSC.removeIncomplete(ID); 8511 return false; 8512 } 8513 IsRecursive = TSC.removeIncomplete(ID); 8514 // The ABI requires unions to be sorted but not structures. 8515 // See FieldEncoding::operator< for sort algorithm. 8516 if (RT->isUnionType()) 8517 std::sort(FE.begin(), FE.end()); 8518 // We can now complete the TypeString. 8519 unsigned E = FE.size(); 8520 for (unsigned I = 0; I != E; ++I) { 8521 if (I) 8522 Enc += ','; 8523 Enc += FE[I].str(); 8524 } 8525 } 8526 Enc += '}'; 8527 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8528 return true; 8529 } 8530 8531 /// Appends enum types to Enc and adds the encoding to the cache. 8532 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8533 TypeStringCache &TSC, 8534 const IdentifierInfo *ID) { 8535 // Append the cached TypeString if we have one. 8536 StringRef TypeString = TSC.lookupStr(ID); 8537 if (!TypeString.empty()) { 8538 Enc += TypeString; 8539 return true; 8540 } 8541 8542 size_t Start = Enc.size(); 8543 Enc += "e("; 8544 if (ID) 8545 Enc += ID->getName(); 8546 Enc += "){"; 8547 8548 // We collect all encoded enumerations and order them alphanumerically. 8549 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8550 SmallVector<FieldEncoding, 16> FE; 8551 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8552 ++I) { 8553 SmallStringEnc EnumEnc; 8554 EnumEnc += "m("; 8555 EnumEnc += I->getName(); 8556 EnumEnc += "){"; 8557 I->getInitVal().toString(EnumEnc); 8558 EnumEnc += '}'; 8559 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8560 } 8561 std::sort(FE.begin(), FE.end()); 8562 unsigned E = FE.size(); 8563 for (unsigned I = 0; I != E; ++I) { 8564 if (I) 8565 Enc += ','; 8566 Enc += FE[I].str(); 8567 } 8568 } 8569 Enc += '}'; 8570 TSC.addIfComplete(ID, Enc.substr(Start), false); 8571 return true; 8572 } 8573 8574 /// Appends type's qualifier to Enc. 8575 /// This is done prior to appending the type's encoding. 8576 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8577 // Qualifiers are emitted in alphabetical order. 8578 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8579 int Lookup = 0; 8580 if (QT.isConstQualified()) 8581 Lookup += 1<<0; 8582 if (QT.isRestrictQualified()) 8583 Lookup += 1<<1; 8584 if (QT.isVolatileQualified()) 8585 Lookup += 1<<2; 8586 Enc += Table[Lookup]; 8587 } 8588 8589 /// Appends built-in types to Enc. 8590 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8591 const char *EncType; 8592 switch (BT->getKind()) { 8593 case BuiltinType::Void: 8594 EncType = "0"; 8595 break; 8596 case BuiltinType::Bool: 8597 EncType = "b"; 8598 break; 8599 case BuiltinType::Char_U: 8600 EncType = "uc"; 8601 break; 8602 case BuiltinType::UChar: 8603 EncType = "uc"; 8604 break; 8605 case BuiltinType::SChar: 8606 EncType = "sc"; 8607 break; 8608 case BuiltinType::UShort: 8609 EncType = "us"; 8610 break; 8611 case BuiltinType::Short: 8612 EncType = "ss"; 8613 break; 8614 case BuiltinType::UInt: 8615 EncType = "ui"; 8616 break; 8617 case BuiltinType::Int: 8618 EncType = "si"; 8619 break; 8620 case BuiltinType::ULong: 8621 EncType = "ul"; 8622 break; 8623 case BuiltinType::Long: 8624 EncType = "sl"; 8625 break; 8626 case BuiltinType::ULongLong: 8627 EncType = "ull"; 8628 break; 8629 case BuiltinType::LongLong: 8630 EncType = "sll"; 8631 break; 8632 case BuiltinType::Float: 8633 EncType = "ft"; 8634 break; 8635 case BuiltinType::Double: 8636 EncType = "d"; 8637 break; 8638 case BuiltinType::LongDouble: 8639 EncType = "ld"; 8640 break; 8641 default: 8642 return false; 8643 } 8644 Enc += EncType; 8645 return true; 8646 } 8647 8648 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8649 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8650 const CodeGen::CodeGenModule &CGM, 8651 TypeStringCache &TSC) { 8652 Enc += "p("; 8653 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8654 return false; 8655 Enc += ')'; 8656 return true; 8657 } 8658 8659 /// Appends array encoding to Enc before calling appendType for the element. 8660 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8661 const ArrayType *AT, 8662 const CodeGen::CodeGenModule &CGM, 8663 TypeStringCache &TSC, StringRef NoSizeEnc) { 8664 if (AT->getSizeModifier() != ArrayType::Normal) 8665 return false; 8666 Enc += "a("; 8667 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8668 CAT->getSize().toStringUnsigned(Enc); 8669 else 8670 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8671 Enc += ':'; 8672 // The Qualifiers should be attached to the type rather than the array. 8673 appendQualifier(Enc, QT); 8674 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8675 return false; 8676 Enc += ')'; 8677 return true; 8678 } 8679 8680 /// Appends a function encoding to Enc, calling appendType for the return type 8681 /// and the arguments. 8682 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8683 const CodeGen::CodeGenModule &CGM, 8684 TypeStringCache &TSC) { 8685 Enc += "f{"; 8686 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8687 return false; 8688 Enc += "}("; 8689 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8690 // N.B. we are only interested in the adjusted param types. 8691 auto I = FPT->param_type_begin(); 8692 auto E = FPT->param_type_end(); 8693 if (I != E) { 8694 do { 8695 if (!appendType(Enc, *I, CGM, TSC)) 8696 return false; 8697 ++I; 8698 if (I != E) 8699 Enc += ','; 8700 } while (I != E); 8701 if (FPT->isVariadic()) 8702 Enc += ",va"; 8703 } else { 8704 if (FPT->isVariadic()) 8705 Enc += "va"; 8706 else 8707 Enc += '0'; 8708 } 8709 } 8710 Enc += ')'; 8711 return true; 8712 } 8713 8714 /// Handles the type's qualifier before dispatching a call to handle specific 8715 /// type encodings. 8716 static bool appendType(SmallStringEnc &Enc, QualType QType, 8717 const CodeGen::CodeGenModule &CGM, 8718 TypeStringCache &TSC) { 8719 8720 QualType QT = QType.getCanonicalType(); 8721 8722 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8723 // The Qualifiers should be attached to the type rather than the array. 8724 // Thus we don't call appendQualifier() here. 8725 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8726 8727 appendQualifier(Enc, QT); 8728 8729 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8730 return appendBuiltinType(Enc, BT); 8731 8732 if (const PointerType *PT = QT->getAs<PointerType>()) 8733 return appendPointerType(Enc, PT, CGM, TSC); 8734 8735 if (const EnumType *ET = QT->getAs<EnumType>()) 8736 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8737 8738 if (const RecordType *RT = QT->getAsStructureType()) 8739 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8740 8741 if (const RecordType *RT = QT->getAsUnionType()) 8742 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8743 8744 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8745 return appendFunctionType(Enc, FT, CGM, TSC); 8746 8747 return false; 8748 } 8749 8750 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8751 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8752 if (!D) 8753 return false; 8754 8755 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8756 if (FD->getLanguageLinkage() != CLanguageLinkage) 8757 return false; 8758 return appendType(Enc, FD->getType(), CGM, TSC); 8759 } 8760 8761 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8762 if (VD->getLanguageLinkage() != CLanguageLinkage) 8763 return false; 8764 QualType QT = VD->getType().getCanonicalType(); 8765 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8766 // Global ArrayTypes are given a size of '*' if the size is unknown. 8767 // The Qualifiers should be attached to the type rather than the array. 8768 // Thus we don't call appendQualifier() here. 8769 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8770 } 8771 return appendType(Enc, QT, CGM, TSC); 8772 } 8773 return false; 8774 } 8775 8776 //===----------------------------------------------------------------------===// 8777 // RISCV ABI Implementation 8778 //===----------------------------------------------------------------------===// 8779 8780 namespace { 8781 class RISCVABIInfo : public DefaultABIInfo { 8782 private: 8783 unsigned XLen; // Size of the integer ('x') registers in bits. 8784 static const int NumArgGPRs = 8; 8785 8786 public: 8787 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8788 : DefaultABIInfo(CGT), XLen(XLen) {} 8789 8790 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8791 // non-virtual, but computeInfo is virtual, so we overload it. 8792 void computeInfo(CGFunctionInfo &FI) const override; 8793 8794 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8795 int &ArgGPRsLeft) const; 8796 ABIArgInfo classifyReturnType(QualType RetTy) const; 8797 8798 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8799 QualType Ty) const override; 8800 8801 ABIArgInfo extendType(QualType Ty) const; 8802 }; 8803 } // end anonymous namespace 8804 8805 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8806 QualType RetTy = FI.getReturnType(); 8807 if (!getCXXABI().classifyReturnType(FI)) 8808 FI.getReturnInfo() = classifyReturnType(RetTy); 8809 8810 // IsRetIndirect is true if classifyArgumentType indicated the value should 8811 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8812 // is passed direct in LLVM IR, relying on the backend lowering code to 8813 // rewrite the argument list and pass indirectly on RV32. 8814 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8815 getContext().getTypeSize(RetTy) > (2 * XLen); 8816 8817 // We must track the number of GPRs used in order to conform to the RISC-V 8818 // ABI, as integer scalars passed in registers should have signext/zeroext 8819 // when promoted, but are anyext if passed on the stack. As GPR usage is 8820 // different for variadic arguments, we must also track whether we are 8821 // examining a vararg or not. 8822 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8823 int NumFixedArgs = FI.getNumRequiredArgs(); 8824 8825 int ArgNum = 0; 8826 for (auto &ArgInfo : FI.arguments()) { 8827 bool IsFixed = ArgNum < NumFixedArgs; 8828 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8829 ArgNum++; 8830 } 8831 } 8832 8833 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8834 int &ArgGPRsLeft) const { 8835 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8836 Ty = useFirstFieldIfTransparentUnion(Ty); 8837 8838 // Structures with either a non-trivial destructor or a non-trivial 8839 // copy constructor are always passed indirectly. 8840 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8841 if (ArgGPRsLeft) 8842 ArgGPRsLeft -= 1; 8843 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8844 CGCXXABI::RAA_DirectInMemory); 8845 } 8846 8847 // Ignore empty structs/unions. 8848 if (isEmptyRecord(getContext(), Ty, true)) 8849 return ABIArgInfo::getIgnore(); 8850 8851 uint64_t Size = getContext().getTypeSize(Ty); 8852 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8853 bool MustUseStack = false; 8854 // Determine the number of GPRs needed to pass the current argument 8855 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8856 // register pairs, so may consume 3 registers. 8857 int NeededArgGPRs = 1; 8858 if (!IsFixed && NeededAlign == 2 * XLen) 8859 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8860 else if (Size > XLen && Size <= 2 * XLen) 8861 NeededArgGPRs = 2; 8862 8863 if (NeededArgGPRs > ArgGPRsLeft) { 8864 MustUseStack = true; 8865 NeededArgGPRs = ArgGPRsLeft; 8866 } 8867 8868 ArgGPRsLeft -= NeededArgGPRs; 8869 8870 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8871 // Treat an enum type as its underlying type. 8872 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8873 Ty = EnumTy->getDecl()->getIntegerType(); 8874 8875 // All integral types are promoted to XLen width, unless passed on the 8876 // stack. 8877 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8878 return extendType(Ty); 8879 } 8880 8881 return ABIArgInfo::getDirect(); 8882 } 8883 8884 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8885 // so coerce to integers. 8886 if (Size <= 2 * XLen) { 8887 unsigned Alignment = getContext().getTypeAlign(Ty); 8888 8889 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8890 // required, and a 2-element XLen array if only XLen alignment is required. 8891 if (Size <= XLen) { 8892 return ABIArgInfo::getDirect( 8893 llvm::IntegerType::get(getVMContext(), XLen)); 8894 } else if (Alignment == 2 * XLen) { 8895 return ABIArgInfo::getDirect( 8896 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8897 } else { 8898 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8899 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8900 } 8901 } 8902 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8903 } 8904 8905 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8906 if (RetTy->isVoidType()) 8907 return ABIArgInfo::getIgnore(); 8908 8909 int ArgGPRsLeft = 2; 8910 8911 // The rules for return and argument types are the same, so defer to 8912 // classifyArgumentType. 8913 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8914 } 8915 8916 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8917 QualType Ty) const { 8918 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8919 8920 // Empty records are ignored for parameter passing purposes. 8921 if (isEmptyRecord(getContext(), Ty, true)) { 8922 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8923 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8924 return Addr; 8925 } 8926 8927 std::pair<CharUnits, CharUnits> SizeAndAlign = 8928 getContext().getTypeInfoInChars(Ty); 8929 8930 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8931 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8932 8933 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8934 SlotSize, /*AllowHigherAlign=*/true); 8935 } 8936 8937 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8938 int TySize = getContext().getTypeSize(Ty); 8939 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8940 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8941 return ABIArgInfo::getSignExtend(Ty); 8942 return ABIArgInfo::getExtend(Ty); 8943 } 8944 8945 namespace { 8946 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8947 public: 8948 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8949 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8950 }; 8951 } // namespace 8952 8953 //===----------------------------------------------------------------------===// 8954 // Driver code 8955 //===----------------------------------------------------------------------===// 8956 8957 bool CodeGenModule::supportsCOMDAT() const { 8958 return getTriple().supportsCOMDAT(); 8959 } 8960 8961 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8962 if (TheTargetCodeGenInfo) 8963 return *TheTargetCodeGenInfo; 8964 8965 // Helper to set the unique_ptr while still keeping the return value. 8966 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8967 this->TheTargetCodeGenInfo.reset(P); 8968 return *P; 8969 }; 8970 8971 const llvm::Triple &Triple = getTarget().getTriple(); 8972 switch (Triple.getArch()) { 8973 default: 8974 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8975 8976 case llvm::Triple::le32: 8977 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8978 case llvm::Triple::mips: 8979 case llvm::Triple::mipsel: 8980 if (Triple.getOS() == llvm::Triple::NaCl) 8981 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8982 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8983 8984 case llvm::Triple::mips64: 8985 case llvm::Triple::mips64el: 8986 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8987 8988 case llvm::Triple::avr: 8989 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8990 8991 case llvm::Triple::aarch64: 8992 case llvm::Triple::aarch64_be: { 8993 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8994 if (getTarget().getABI() == "darwinpcs") 8995 Kind = AArch64ABIInfo::DarwinPCS; 8996 else if (Triple.isOSWindows()) 8997 return SetCGInfo( 8998 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8999 9000 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9001 } 9002 9003 case llvm::Triple::wasm32: 9004 case llvm::Triple::wasm64: 9005 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9006 9007 case llvm::Triple::arm: 9008 case llvm::Triple::armeb: 9009 case llvm::Triple::thumb: 9010 case llvm::Triple::thumbeb: { 9011 if (Triple.getOS() == llvm::Triple::Win32) { 9012 return SetCGInfo( 9013 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9014 } 9015 9016 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9017 StringRef ABIStr = getTarget().getABI(); 9018 if (ABIStr == "apcs-gnu") 9019 Kind = ARMABIInfo::APCS; 9020 else if (ABIStr == "aapcs16") 9021 Kind = ARMABIInfo::AAPCS16_VFP; 9022 else if (CodeGenOpts.FloatABI == "hard" || 9023 (CodeGenOpts.FloatABI != "soft" && 9024 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9025 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9026 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9027 Kind = ARMABIInfo::AAPCS_VFP; 9028 9029 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9030 } 9031 9032 case llvm::Triple::ppc: 9033 return SetCGInfo( 9034 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9035 case llvm::Triple::ppc64: 9036 if (Triple.isOSBinFormatELF()) { 9037 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9038 if (getTarget().getABI() == "elfv2") 9039 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9040 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9041 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9042 9043 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9044 IsSoftFloat)); 9045 } else 9046 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9047 case llvm::Triple::ppc64le: { 9048 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9049 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9050 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9051 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9052 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9053 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9054 9055 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9056 IsSoftFloat)); 9057 } 9058 9059 case llvm::Triple::nvptx: 9060 case llvm::Triple::nvptx64: 9061 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9062 9063 case llvm::Triple::msp430: 9064 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9065 9066 case llvm::Triple::riscv32: 9067 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9068 case llvm::Triple::riscv64: 9069 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9070 9071 case llvm::Triple::systemz: { 9072 bool HasVector = getTarget().getABI() == "vector"; 9073 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9074 } 9075 9076 case llvm::Triple::tce: 9077 case llvm::Triple::tcele: 9078 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9079 9080 case llvm::Triple::x86: { 9081 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9082 bool RetSmallStructInRegABI = 9083 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9084 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9085 9086 if (Triple.getOS() == llvm::Triple::Win32) { 9087 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9088 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9089 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9090 } else { 9091 return SetCGInfo(new X86_32TargetCodeGenInfo( 9092 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9093 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9094 CodeGenOpts.FloatABI == "soft")); 9095 } 9096 } 9097 9098 case llvm::Triple::x86_64: { 9099 StringRef ABI = getTarget().getABI(); 9100 X86AVXABILevel AVXLevel = 9101 (ABI == "avx512" 9102 ? X86AVXABILevel::AVX512 9103 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9104 9105 switch (Triple.getOS()) { 9106 case llvm::Triple::Win32: 9107 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9108 case llvm::Triple::PS4: 9109 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9110 default: 9111 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9112 } 9113 } 9114 case llvm::Triple::hexagon: 9115 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9116 case llvm::Triple::lanai: 9117 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9118 case llvm::Triple::r600: 9119 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9120 case llvm::Triple::amdgcn: 9121 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9122 case llvm::Triple::sparc: 9123 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9124 case llvm::Triple::sparcv9: 9125 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9126 case llvm::Triple::xcore: 9127 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9128 case llvm::Triple::spir: 9129 case llvm::Triple::spir64: 9130 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9131 } 9132 } 9133 9134 /// Create an OpenCL kernel for an enqueued block. 9135 /// 9136 /// The kernel has the same function type as the block invoke function. Its 9137 /// name is the name of the block invoke function postfixed with "_kernel". 9138 /// It simply calls the block invoke function then returns. 9139 llvm::Function * 9140 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9141 llvm::Function *Invoke, 9142 llvm::Value *BlockLiteral) const { 9143 auto *InvokeFT = Invoke->getFunctionType(); 9144 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9145 for (auto &P : InvokeFT->params()) 9146 ArgTys.push_back(P); 9147 auto &C = CGF.getLLVMContext(); 9148 std::string Name = Invoke->getName().str() + "_kernel"; 9149 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9150 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9151 &CGF.CGM.getModule()); 9152 auto IP = CGF.Builder.saveIP(); 9153 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9154 auto &Builder = CGF.Builder; 9155 Builder.SetInsertPoint(BB); 9156 llvm::SmallVector<llvm::Value *, 2> Args; 9157 for (auto &A : F->args()) 9158 Args.push_back(&A); 9159 Builder.CreateCall(Invoke, Args); 9160 Builder.CreateRetVoid(); 9161 Builder.restoreIP(IP); 9162 return F; 9163 } 9164 9165 /// Create an OpenCL kernel for an enqueued block. 9166 /// 9167 /// The type of the first argument (the block literal) is the struct type 9168 /// of the block literal instead of a pointer type. The first argument 9169 /// (block literal) is passed directly by value to the kernel. The kernel 9170 /// allocates the same type of struct on stack and stores the block literal 9171 /// to it and passes its pointer to the block invoke function. The kernel 9172 /// has "enqueued-block" function attribute and kernel argument metadata. 9173 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9174 CodeGenFunction &CGF, llvm::Function *Invoke, 9175 llvm::Value *BlockLiteral) const { 9176 auto &Builder = CGF.Builder; 9177 auto &C = CGF.getLLVMContext(); 9178 9179 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9180 auto *InvokeFT = Invoke->getFunctionType(); 9181 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9182 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9183 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9184 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9185 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9186 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9187 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9188 9189 ArgTys.push_back(BlockTy); 9190 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9191 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9192 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9193 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9194 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9195 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9196 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9197 ArgTys.push_back(InvokeFT->getParamType(I)); 9198 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9199 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9200 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9201 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9202 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9203 ArgNames.push_back( 9204 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9205 } 9206 std::string Name = Invoke->getName().str() + "_kernel"; 9207 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9208 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9209 &CGF.CGM.getModule()); 9210 F->addFnAttr("enqueued-block"); 9211 auto IP = CGF.Builder.saveIP(); 9212 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9213 Builder.SetInsertPoint(BB); 9214 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9215 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9216 BlockPtr->setAlignment(BlockAlign); 9217 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9218 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9219 llvm::SmallVector<llvm::Value *, 2> Args; 9220 Args.push_back(Cast); 9221 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9222 Args.push_back(I); 9223 Builder.CreateCall(Invoke, Args); 9224 Builder.CreateRetVoid(); 9225 Builder.restoreIP(IP); 9226 9227 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9228 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9229 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9230 F->setMetadata("kernel_arg_base_type", 9231 llvm::MDNode::get(C, ArgBaseTypeNames)); 9232 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9233 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9234 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9235 9236 return F; 9237 } 9238