1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::DataLayout &ABIInfo::getDataLayout() const {
55   return CGT.getDataLayout();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   //   AArch64    Linux
99   return 32;
100 }
101 
102 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
103                                      const FunctionNoProtoType *fnType) const {
104   // The following conventions are known to require this to be false:
105   //   x86_stdcall
106   //   MIPS
107   // For everything else, we just prefer false unless we opt out.
108   return false;
109 }
110 
111 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
112 
113 /// isEmptyField - Return true iff a the field is "empty", that is it
114 /// is an unnamed bit-field or an (array of) empty record(s).
115 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
116                          bool AllowArrays) {
117   if (FD->isUnnamedBitfield())
118     return true;
119 
120   QualType FT = FD->getType();
121 
122   // Constant arrays of empty records count as empty, strip them off.
123   // Constant arrays of zero length always count as empty.
124   if (AllowArrays)
125     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
126       if (AT->getSize() == 0)
127         return true;
128       FT = AT->getElementType();
129     }
130 
131   const RecordType *RT = FT->getAs<RecordType>();
132   if (!RT)
133     return false;
134 
135   // C++ record fields are never empty, at least in the Itanium ABI.
136   //
137   // FIXME: We should use a predicate for whether this behavior is true in the
138   // current ABI.
139   if (isa<CXXRecordDecl>(RT->getDecl()))
140     return false;
141 
142   return isEmptyRecord(Context, FT, AllowArrays);
143 }
144 
145 /// isEmptyRecord - Return true iff a structure contains only empty
146 /// fields. Note that a structure with a flexible array member is not
147 /// considered empty.
148 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
149   const RecordType *RT = T->getAs<RecordType>();
150   if (!RT)
151     return 0;
152   const RecordDecl *RD = RT->getDecl();
153   if (RD->hasFlexibleArrayMember())
154     return false;
155 
156   // If this is a C++ record, check the bases first.
157   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
158     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
159            e = CXXRD->bases_end(); i != e; ++i)
160       if (!isEmptyRecord(Context, i->getType(), true))
161         return false;
162 
163   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
164          i != e; ++i)
165     if (!isEmptyField(Context, *i, AllowArrays))
166       return false;
167   return true;
168 }
169 
170 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
171 /// a non-trivial destructor or a non-trivial copy constructor.
172 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
173   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
174   if (!RD)
175     return false;
176 
177   return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor();
178 }
179 
180 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
181 /// a record type with either a non-trivial destructor or a non-trivial copy
182 /// constructor.
183 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
184   const RecordType *RT = T->getAs<RecordType>();
185   if (!RT)
186     return false;
187 
188   return hasNonTrivialDestructorOrCopyConstructor(RT);
189 }
190 
191 /// isSingleElementStruct - Determine if a structure is a "single
192 /// element struct", i.e. it has exactly one non-empty field or
193 /// exactly one field which is itself a single element
194 /// struct. Structures with flexible array members are never
195 /// considered single element structs.
196 ///
197 /// \return The field declaration for the single non-empty field, if
198 /// it exists.
199 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
200   const RecordType *RT = T->getAsStructureType();
201   if (!RT)
202     return 0;
203 
204   const RecordDecl *RD = RT->getDecl();
205   if (RD->hasFlexibleArrayMember())
206     return 0;
207 
208   const Type *Found = 0;
209 
210   // If this is a C++ record, check the bases first.
211   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
212     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
213            e = CXXRD->bases_end(); i != e; ++i) {
214       // Ignore empty records.
215       if (isEmptyRecord(Context, i->getType(), true))
216         continue;
217 
218       // If we already found an element then this isn't a single-element struct.
219       if (Found)
220         return 0;
221 
222       // If this is non-empty and not a single element struct, the composite
223       // cannot be a single element struct.
224       Found = isSingleElementStruct(i->getType(), Context);
225       if (!Found)
226         return 0;
227     }
228   }
229 
230   // Check for single element.
231   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
232          i != e; ++i) {
233     const FieldDecl *FD = *i;
234     QualType FT = FD->getType();
235 
236     // Ignore empty fields.
237     if (isEmptyField(Context, FD, true))
238       continue;
239 
240     // If we already found an element then this isn't a single-element
241     // struct.
242     if (Found)
243       return 0;
244 
245     // Treat single element arrays as the element.
246     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
247       if (AT->getSize().getZExtValue() != 1)
248         break;
249       FT = AT->getElementType();
250     }
251 
252     if (!isAggregateTypeForABI(FT)) {
253       Found = FT.getTypePtr();
254     } else {
255       Found = isSingleElementStruct(FT, Context);
256       if (!Found)
257         return 0;
258     }
259   }
260 
261   // We don't consider a struct a single-element struct if it has
262   // padding beyond the element type.
263   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
264     return 0;
265 
266   return Found;
267 }
268 
269 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
270   // Treat complex types as the element type.
271   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
272     Ty = CTy->getElementType();
273 
274   // Check for a type which we know has a simple scalar argument-passing
275   // convention without any padding.  (We're specifically looking for 32
276   // and 64-bit integer and integer-equivalents, float, and double.)
277   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
278       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
279     return false;
280 
281   uint64_t Size = Context.getTypeSize(Ty);
282   return Size == 32 || Size == 64;
283 }
284 
285 /// canExpandIndirectArgument - Test whether an argument type which is to be
286 /// passed indirectly (on the stack) would have the equivalent layout if it was
287 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
288 /// inhibiting optimizations.
289 ///
290 // FIXME: This predicate is missing many cases, currently it just follows
291 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
292 // should probably make this smarter, or better yet make the LLVM backend
293 // capable of handling it.
294 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
295   // We can only expand structure types.
296   const RecordType *RT = Ty->getAs<RecordType>();
297   if (!RT)
298     return false;
299 
300   // We can only expand (C) structures.
301   //
302   // FIXME: This needs to be generalized to handle classes as well.
303   const RecordDecl *RD = RT->getDecl();
304   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
305     return false;
306 
307   uint64_t Size = 0;
308 
309   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
310          i != e; ++i) {
311     const FieldDecl *FD = *i;
312 
313     if (!is32Or64BitBasicType(FD->getType(), Context))
314       return false;
315 
316     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
317     // how to expand them yet, and the predicate for telling if a bitfield still
318     // counts as "basic" is more complicated than what we were doing previously.
319     if (FD->isBitField())
320       return false;
321 
322     Size += Context.getTypeSize(FD->getType());
323   }
324 
325   // Make sure there are not any holes in the struct.
326   if (Size != Context.getTypeSize(Ty))
327     return false;
328 
329   return true;
330 }
331 
332 namespace {
333 /// DefaultABIInfo - The default implementation for ABI specific
334 /// details. This implementation provides information which results in
335 /// self-consistent and sensible LLVM IR generation, but does not
336 /// conform to any particular ABI.
337 class DefaultABIInfo : public ABIInfo {
338 public:
339   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
340 
341   ABIArgInfo classifyReturnType(QualType RetTy) const;
342   ABIArgInfo classifyArgumentType(QualType RetTy) const;
343 
344   virtual void computeInfo(CGFunctionInfo &FI) const {
345     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
346     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
347          it != ie; ++it)
348       it->info = classifyArgumentType(it->type);
349   }
350 
351   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
352                                  CodeGenFunction &CGF) const;
353 };
354 
355 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
356 public:
357   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
358     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
359 };
360 
361 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
362                                        CodeGenFunction &CGF) const {
363   return 0;
364 }
365 
366 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
367   if (isAggregateTypeForABI(Ty)) {
368     // Records with non trivial destructors/constructors should not be passed
369     // by value.
370     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
371       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
372 
373     return ABIArgInfo::getIndirect(0);
374   }
375 
376   // Treat an enum type as its underlying type.
377   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
378     Ty = EnumTy->getDecl()->getIntegerType();
379 
380   return (Ty->isPromotableIntegerType() ?
381           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
382 }
383 
384 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
385   if (RetTy->isVoidType())
386     return ABIArgInfo::getIgnore();
387 
388   if (isAggregateTypeForABI(RetTy))
389     return ABIArgInfo::getIndirect(0);
390 
391   // Treat an enum type as its underlying type.
392   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
393     RetTy = EnumTy->getDecl()->getIntegerType();
394 
395   return (RetTy->isPromotableIntegerType() ?
396           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
397 }
398 
399 //===----------------------------------------------------------------------===//
400 // le32/PNaCl bitcode ABI Implementation
401 //===----------------------------------------------------------------------===//
402 
403 class PNaClABIInfo : public ABIInfo {
404  public:
405   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
406 
407   ABIArgInfo classifyReturnType(QualType RetTy) const;
408   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
409 
410   virtual void computeInfo(CGFunctionInfo &FI) const;
411   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
412                                  CodeGenFunction &CGF) const;
413 };
414 
415 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
416  public:
417   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
418     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
419 };
420 
421 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
422     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
423 
424     unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
425 
426     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
427          it != ie; ++it)
428       it->info = classifyArgumentType(it->type, FreeRegs);
429   }
430 
431 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
432                                        CodeGenFunction &CGF) const {
433   return 0;
434 }
435 
436 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
437                                               unsigned &FreeRegs) const {
438   if (isAggregateTypeForABI(Ty)) {
439     // Records with non trivial destructors/constructors should not be passed
440     // by value.
441     FreeRegs = 0;
442     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
443       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
444 
445     return ABIArgInfo::getIndirect(0);
446   }
447 
448   // Treat an enum type as its underlying type.
449   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
450     Ty = EnumTy->getDecl()->getIntegerType();
451 
452   ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
453           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
454 
455   // Regparm regs hold 32 bits.
456   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
457   if (SizeInRegs == 0) return BaseInfo;
458   if (SizeInRegs > FreeRegs) {
459     FreeRegs = 0;
460     return BaseInfo;
461   }
462   FreeRegs -= SizeInRegs;
463   return BaseInfo.isDirect() ?
464       ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
465       ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
466 }
467 
468 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
469   if (RetTy->isVoidType())
470     return ABIArgInfo::getIgnore();
471 
472   if (isAggregateTypeForABI(RetTy))
473     return ABIArgInfo::getIndirect(0);
474 
475   // Treat an enum type as its underlying type.
476   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
477     RetTy = EnumTy->getDecl()->getIntegerType();
478 
479   return (RetTy->isPromotableIntegerType() ?
480           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
481 }
482 
483 /// UseX86_MMXType - Return true if this is an MMX type that should use the
484 /// special x86_mmx type.
485 bool UseX86_MMXType(llvm::Type *IRType) {
486   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
487   // special x86_mmx type.
488   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
489     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
490     IRType->getScalarSizeInBits() != 64;
491 }
492 
493 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
494                                           StringRef Constraint,
495                                           llvm::Type* Ty) {
496   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
497     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
498   return Ty;
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // X86-32 ABI Implementation
503 //===----------------------------------------------------------------------===//
504 
505 /// X86_32ABIInfo - The X86-32 ABI information.
506 class X86_32ABIInfo : public ABIInfo {
507   enum Class {
508     Integer,
509     Float
510   };
511 
512   static const unsigned MinABIStackAlignInBytes = 4;
513 
514   bool IsDarwinVectorABI;
515   bool IsSmallStructInRegABI;
516   bool IsMMXDisabled;
517   bool IsWin32FloatStructABI;
518   unsigned DefaultNumRegisterParameters;
519 
520   static bool isRegisterSize(unsigned Size) {
521     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
522   }
523 
524   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
525                                           unsigned callingConvention);
526 
527   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
528   /// such that the argument will be passed in memory.
529   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
530                                unsigned &FreeRegs) const;
531 
532   /// \brief Return the alignment to use for the given type on the stack.
533   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
534 
535   Class classify(QualType Ty) const;
536   ABIArgInfo classifyReturnType(QualType RetTy,
537                                 unsigned callingConvention) const;
538   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
539                                   bool IsFastCall) const;
540   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
541                       bool IsFastCall, bool &NeedsPadding) const;
542 
543 public:
544 
545   virtual void computeInfo(CGFunctionInfo &FI) const;
546   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
547                                  CodeGenFunction &CGF) const;
548 
549   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
550                 unsigned r)
551     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
552       IsMMXDisabled(m), IsWin32FloatStructABI(w),
553       DefaultNumRegisterParameters(r) {}
554 };
555 
556 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
557 public:
558   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
559       bool d, bool p, bool m, bool w, unsigned r)
560     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
561 
562   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
563                            CodeGen::CodeGenModule &CGM) const;
564 
565   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
566     // Darwin uses different dwarf register numbers for EH.
567     if (CGM.isTargetDarwin()) return 5;
568 
569     return 4;
570   }
571 
572   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
573                                llvm::Value *Address) const;
574 
575   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
576                                   StringRef Constraint,
577                                   llvm::Type* Ty) const {
578     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
579   }
580 
581 };
582 
583 }
584 
585 /// shouldReturnTypeInRegister - Determine if the given type should be
586 /// passed in a register (for the Darwin ABI).
587 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
588                                                ASTContext &Context,
589                                                unsigned callingConvention) {
590   uint64_t Size = Context.getTypeSize(Ty);
591 
592   // Type must be register sized.
593   if (!isRegisterSize(Size))
594     return false;
595 
596   if (Ty->isVectorType()) {
597     // 64- and 128- bit vectors inside structures are not returned in
598     // registers.
599     if (Size == 64 || Size == 128)
600       return false;
601 
602     return true;
603   }
604 
605   // If this is a builtin, pointer, enum, complex type, member pointer, or
606   // member function pointer it is ok.
607   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
608       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
609       Ty->isBlockPointerType() || Ty->isMemberPointerType())
610     return true;
611 
612   // Arrays are treated like records.
613   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
614     return shouldReturnTypeInRegister(AT->getElementType(), Context,
615                                       callingConvention);
616 
617   // Otherwise, it must be a record type.
618   const RecordType *RT = Ty->getAs<RecordType>();
619   if (!RT) return false;
620 
621   // FIXME: Traverse bases here too.
622 
623   // For thiscall conventions, structures will never be returned in
624   // a register.  This is for compatibility with the MSVC ABI
625   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
626       RT->isStructureType()) {
627     return false;
628   }
629 
630   // Structure types are passed in register if all fields would be
631   // passed in a register.
632   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
633          e = RT->getDecl()->field_end(); i != e; ++i) {
634     const FieldDecl *FD = *i;
635 
636     // Empty fields are ignored.
637     if (isEmptyField(Context, FD, true))
638       continue;
639 
640     // Check fields recursively.
641     if (!shouldReturnTypeInRegister(FD->getType(), Context,
642                                     callingConvention))
643       return false;
644   }
645   return true;
646 }
647 
648 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
649                                             unsigned callingConvention) const {
650   if (RetTy->isVoidType())
651     return ABIArgInfo::getIgnore();
652 
653   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
654     // On Darwin, some vectors are returned in registers.
655     if (IsDarwinVectorABI) {
656       uint64_t Size = getContext().getTypeSize(RetTy);
657 
658       // 128-bit vectors are a special case; they are returned in
659       // registers and we need to make sure to pick a type the LLVM
660       // backend will like.
661       if (Size == 128)
662         return ABIArgInfo::getDirect(llvm::VectorType::get(
663                   llvm::Type::getInt64Ty(getVMContext()), 2));
664 
665       // Always return in register if it fits in a general purpose
666       // register, or if it is 64 bits and has a single element.
667       if ((Size == 8 || Size == 16 || Size == 32) ||
668           (Size == 64 && VT->getNumElements() == 1))
669         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
670                                                             Size));
671 
672       return ABIArgInfo::getIndirect(0);
673     }
674 
675     return ABIArgInfo::getDirect();
676   }
677 
678   if (isAggregateTypeForABI(RetTy)) {
679     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
680       // Structures with either a non-trivial destructor or a non-trivial
681       // copy constructor are always indirect.
682       if (hasNonTrivialDestructorOrCopyConstructor(RT))
683         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
684 
685       // Structures with flexible arrays are always indirect.
686       if (RT->getDecl()->hasFlexibleArrayMember())
687         return ABIArgInfo::getIndirect(0);
688     }
689 
690     // If specified, structs and unions are always indirect.
691     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
692       return ABIArgInfo::getIndirect(0);
693 
694     // Small structures which are register sized are generally returned
695     // in a register.
696     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
697                                                   callingConvention)) {
698       uint64_t Size = getContext().getTypeSize(RetTy);
699 
700       // As a special-case, if the struct is a "single-element" struct, and
701       // the field is of type "float" or "double", return it in a
702       // floating-point register. (MSVC does not apply this special case.)
703       // We apply a similar transformation for pointer types to improve the
704       // quality of the generated IR.
705       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
706         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
707             || SeltTy->hasPointerRepresentation())
708           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
709 
710       // FIXME: We should be able to narrow this integer in cases with dead
711       // padding.
712       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
713     }
714 
715     return ABIArgInfo::getIndirect(0);
716   }
717 
718   // Treat an enum type as its underlying type.
719   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
720     RetTy = EnumTy->getDecl()->getIntegerType();
721 
722   return (RetTy->isPromotableIntegerType() ?
723           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
724 }
725 
726 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
727   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
728 }
729 
730 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
731   const RecordType *RT = Ty->getAs<RecordType>();
732   if (!RT)
733     return 0;
734   const RecordDecl *RD = RT->getDecl();
735 
736   // If this is a C++ record, check the bases first.
737   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
738     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
739            e = CXXRD->bases_end(); i != e; ++i)
740       if (!isRecordWithSSEVectorType(Context, i->getType()))
741         return false;
742 
743   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
744        i != e; ++i) {
745     QualType FT = i->getType();
746 
747     if (isSSEVectorType(Context, FT))
748       return true;
749 
750     if (isRecordWithSSEVectorType(Context, FT))
751       return true;
752   }
753 
754   return false;
755 }
756 
757 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
758                                                  unsigned Align) const {
759   // Otherwise, if the alignment is less than or equal to the minimum ABI
760   // alignment, just use the default; the backend will handle this.
761   if (Align <= MinABIStackAlignInBytes)
762     return 0; // Use default alignment.
763 
764   // On non-Darwin, the stack type alignment is always 4.
765   if (!IsDarwinVectorABI) {
766     // Set explicit alignment, since we may need to realign the top.
767     return MinABIStackAlignInBytes;
768   }
769 
770   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
771   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
772                       isRecordWithSSEVectorType(getContext(), Ty)))
773     return 16;
774 
775   return MinABIStackAlignInBytes;
776 }
777 
778 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
779                                             unsigned &FreeRegs) const {
780   if (!ByVal) {
781     if (FreeRegs) {
782       --FreeRegs; // Non byval indirects just use one pointer.
783       return ABIArgInfo::getIndirectInReg(0, false);
784     }
785     return ABIArgInfo::getIndirect(0, false);
786   }
787 
788   // Compute the byval alignment.
789   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
790   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
791   if (StackAlign == 0)
792     return ABIArgInfo::getIndirect(4);
793 
794   // If the stack alignment is less than the type alignment, realign the
795   // argument.
796   if (StackAlign < TypeAlign)
797     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
798                                    /*Realign=*/true);
799 
800   return ABIArgInfo::getIndirect(StackAlign);
801 }
802 
803 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
804   const Type *T = isSingleElementStruct(Ty, getContext());
805   if (!T)
806     T = Ty.getTypePtr();
807 
808   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
809     BuiltinType::Kind K = BT->getKind();
810     if (K == BuiltinType::Float || K == BuiltinType::Double)
811       return Float;
812   }
813   return Integer;
814 }
815 
816 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
817                                    bool IsFastCall, bool &NeedsPadding) const {
818   NeedsPadding = false;
819   Class C = classify(Ty);
820   if (C == Float)
821     return false;
822 
823   unsigned Size = getContext().getTypeSize(Ty);
824   unsigned SizeInRegs = (Size + 31) / 32;
825 
826   if (SizeInRegs == 0)
827     return false;
828 
829   if (SizeInRegs > FreeRegs) {
830     FreeRegs = 0;
831     return false;
832   }
833 
834   FreeRegs -= SizeInRegs;
835 
836   if (IsFastCall) {
837     if (Size > 32)
838       return false;
839 
840     if (Ty->isIntegralOrEnumerationType())
841       return true;
842 
843     if (Ty->isPointerType())
844       return true;
845 
846     if (Ty->isReferenceType())
847       return true;
848 
849     if (FreeRegs)
850       NeedsPadding = true;
851 
852     return false;
853   }
854 
855   return true;
856 }
857 
858 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
859                                                unsigned &FreeRegs,
860                                                bool IsFastCall) const {
861   // FIXME: Set alignment on indirect arguments.
862   if (isAggregateTypeForABI(Ty)) {
863     // Structures with flexible arrays are always indirect.
864     if (const RecordType *RT = Ty->getAs<RecordType>()) {
865       // Structures with either a non-trivial destructor or a non-trivial
866       // copy constructor are always indirect.
867       if (hasNonTrivialDestructorOrCopyConstructor(RT))
868         return getIndirectResult(Ty, false, FreeRegs);
869 
870       if (RT->getDecl()->hasFlexibleArrayMember())
871         return getIndirectResult(Ty, true, FreeRegs);
872     }
873 
874     // Ignore empty structs/unions.
875     if (isEmptyRecord(getContext(), Ty, true))
876       return ABIArgInfo::getIgnore();
877 
878     llvm::LLVMContext &LLVMContext = getVMContext();
879     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
880     bool NeedsPadding;
881     if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
882       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
883       SmallVector<llvm::Type*, 3> Elements;
884       for (unsigned I = 0; I < SizeInRegs; ++I)
885         Elements.push_back(Int32);
886       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
887       return ABIArgInfo::getDirectInReg(Result);
888     }
889     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
890 
891     // Expand small (<= 128-bit) record types when we know that the stack layout
892     // of those arguments will match the struct. This is important because the
893     // LLVM backend isn't smart enough to remove byval, which inhibits many
894     // optimizations.
895     if (getContext().getTypeSize(Ty) <= 4*32 &&
896         canExpandIndirectArgument(Ty, getContext()))
897       return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
898 
899     return getIndirectResult(Ty, true, FreeRegs);
900   }
901 
902   if (const VectorType *VT = Ty->getAs<VectorType>()) {
903     // On Darwin, some vectors are passed in memory, we handle this by passing
904     // it as an i8/i16/i32/i64.
905     if (IsDarwinVectorABI) {
906       uint64_t Size = getContext().getTypeSize(Ty);
907       if ((Size == 8 || Size == 16 || Size == 32) ||
908           (Size == 64 && VT->getNumElements() == 1))
909         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
910                                                             Size));
911     }
912 
913     llvm::Type *IRType = CGT.ConvertType(Ty);
914     if (UseX86_MMXType(IRType)) {
915       if (IsMMXDisabled)
916         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
917                                                             64));
918       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
919       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
920       return AAI;
921     }
922 
923     return ABIArgInfo::getDirect();
924   }
925 
926 
927   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
928     Ty = EnumTy->getDecl()->getIntegerType();
929 
930   bool NeedsPadding;
931   bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
932 
933   if (Ty->isPromotableIntegerType()) {
934     if (InReg)
935       return ABIArgInfo::getExtendInReg();
936     return ABIArgInfo::getExtend();
937   }
938   if (InReg)
939     return ABIArgInfo::getDirectInReg();
940   return ABIArgInfo::getDirect();
941 }
942 
943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
944   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
945                                           FI.getCallingConvention());
946 
947   unsigned CC = FI.getCallingConvention();
948   bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
949   unsigned FreeRegs;
950   if (IsFastCall)
951     FreeRegs = 2;
952   else if (FI.getHasRegParm())
953     FreeRegs = FI.getRegParm();
954   else
955     FreeRegs = DefaultNumRegisterParameters;
956 
957   // If the return value is indirect, then the hidden argument is consuming one
958   // integer register.
959   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
960     --FreeRegs;
961     ABIArgInfo &Old = FI.getReturnInfo();
962     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
963                                        Old.getIndirectByVal(),
964                                        Old.getIndirectRealign());
965   }
966 
967   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
968        it != ie; ++it)
969     it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
970 }
971 
972 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
973                                       CodeGenFunction &CGF) const {
974   llvm::Type *BPP = CGF.Int8PtrPtrTy;
975 
976   CGBuilderTy &Builder = CGF.Builder;
977   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
978                                                        "ap");
979   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
980 
981   // Compute if the address needs to be aligned
982   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
983   Align = getTypeStackAlignInBytes(Ty, Align);
984   Align = std::max(Align, 4U);
985   if (Align > 4) {
986     // addr = (addr + align - 1) & -align;
987     llvm::Value *Offset =
988       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
989     Addr = CGF.Builder.CreateGEP(Addr, Offset);
990     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
991                                                     CGF.Int32Ty);
992     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
993     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
994                                       Addr->getType(),
995                                       "ap.cur.aligned");
996   }
997 
998   llvm::Type *PTy =
999     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1000   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1001 
1002   uint64_t Offset =
1003     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1004   llvm::Value *NextAddr =
1005     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1006                       "ap.next");
1007   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1008 
1009   return AddrTyped;
1010 }
1011 
1012 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1013                                                   llvm::GlobalValue *GV,
1014                                             CodeGen::CodeGenModule &CGM) const {
1015   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1016     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1017       // Get the LLVM function.
1018       llvm::Function *Fn = cast<llvm::Function>(GV);
1019 
1020       // Now add the 'alignstack' attribute with a value of 16.
1021       llvm::AttrBuilder B;
1022       B.addStackAlignmentAttr(16);
1023       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1024                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1025                                               llvm::AttributeSet::FunctionIndex,
1026                                               B));
1027     }
1028   }
1029 }
1030 
1031 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1032                                                CodeGen::CodeGenFunction &CGF,
1033                                                llvm::Value *Address) const {
1034   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1035 
1036   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1037 
1038   // 0-7 are the eight integer registers;  the order is different
1039   //   on Darwin (for EH), but the range is the same.
1040   // 8 is %eip.
1041   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1042 
1043   if (CGF.CGM.isTargetDarwin()) {
1044     // 12-16 are st(0..4).  Not sure why we stop at 4.
1045     // These have size 16, which is sizeof(long double) on
1046     // platforms with 8-byte alignment for that type.
1047     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1048     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1049 
1050   } else {
1051     // 9 is %eflags, which doesn't get a size on Darwin for some
1052     // reason.
1053     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1054 
1055     // 11-16 are st(0..5).  Not sure why we stop at 5.
1056     // These have size 12, which is sizeof(long double) on
1057     // platforms with 4-byte alignment for that type.
1058     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1059     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1060   }
1061 
1062   return false;
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 // X86-64 ABI Implementation
1067 //===----------------------------------------------------------------------===//
1068 
1069 
1070 namespace {
1071 /// X86_64ABIInfo - The X86_64 ABI information.
1072 class X86_64ABIInfo : public ABIInfo {
1073   enum Class {
1074     Integer = 0,
1075     SSE,
1076     SSEUp,
1077     X87,
1078     X87Up,
1079     ComplexX87,
1080     NoClass,
1081     Memory
1082   };
1083 
1084   /// merge - Implement the X86_64 ABI merging algorithm.
1085   ///
1086   /// Merge an accumulating classification \arg Accum with a field
1087   /// classification \arg Field.
1088   ///
1089   /// \param Accum - The accumulating classification. This should
1090   /// always be either NoClass or the result of a previous merge
1091   /// call. In addition, this should never be Memory (the caller
1092   /// should just return Memory for the aggregate).
1093   static Class merge(Class Accum, Class Field);
1094 
1095   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1096   ///
1097   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1098   /// final MEMORY or SSE classes when necessary.
1099   ///
1100   /// \param AggregateSize - The size of the current aggregate in
1101   /// the classification process.
1102   ///
1103   /// \param Lo - The classification for the parts of the type
1104   /// residing in the low word of the containing object.
1105   ///
1106   /// \param Hi - The classification for the parts of the type
1107   /// residing in the higher words of the containing object.
1108   ///
1109   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1110 
1111   /// classify - Determine the x86_64 register classes in which the
1112   /// given type T should be passed.
1113   ///
1114   /// \param Lo - The classification for the parts of the type
1115   /// residing in the low word of the containing object.
1116   ///
1117   /// \param Hi - The classification for the parts of the type
1118   /// residing in the high word of the containing object.
1119   ///
1120   /// \param OffsetBase - The bit offset of this type in the
1121   /// containing object.  Some parameters are classified different
1122   /// depending on whether they straddle an eightbyte boundary.
1123   ///
1124   /// If a word is unused its result will be NoClass; if a type should
1125   /// be passed in Memory then at least the classification of \arg Lo
1126   /// will be Memory.
1127   ///
1128   /// The \arg Lo class will be NoClass iff the argument is ignored.
1129   ///
1130   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1131   /// also be ComplexX87.
1132   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1133 
1134   llvm::Type *GetByteVectorType(QualType Ty) const;
1135   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1136                                  unsigned IROffset, QualType SourceTy,
1137                                  unsigned SourceOffset) const;
1138   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1139                                      unsigned IROffset, QualType SourceTy,
1140                                      unsigned SourceOffset) const;
1141 
1142   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1143   /// such that the argument will be returned in memory.
1144   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1145 
1146   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1147   /// such that the argument will be passed in memory.
1148   ///
1149   /// \param freeIntRegs - The number of free integer registers remaining
1150   /// available.
1151   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1152 
1153   ABIArgInfo classifyReturnType(QualType RetTy) const;
1154 
1155   ABIArgInfo classifyArgumentType(QualType Ty,
1156                                   unsigned freeIntRegs,
1157                                   unsigned &neededInt,
1158                                   unsigned &neededSSE) const;
1159 
1160   bool IsIllegalVectorType(QualType Ty) const;
1161 
1162   /// The 0.98 ABI revision clarified a lot of ambiguities,
1163   /// unfortunately in ways that were not always consistent with
1164   /// certain previous compilers.  In particular, platforms which
1165   /// required strict binary compatibility with older versions of GCC
1166   /// may need to exempt themselves.
1167   bool honorsRevision0_98() const {
1168     return !getContext().getTargetInfo().getTriple().isOSDarwin();
1169   }
1170 
1171   bool HasAVX;
1172   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1173   // 64-bit hardware.
1174   bool Has64BitPointers;
1175 
1176 public:
1177   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1178       ABIInfo(CGT), HasAVX(hasavx),
1179       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1180   }
1181 
1182   bool isPassedUsingAVXType(QualType type) const {
1183     unsigned neededInt, neededSSE;
1184     // The freeIntRegs argument doesn't matter here.
1185     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1186     if (info.isDirect()) {
1187       llvm::Type *ty = info.getCoerceToType();
1188       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1189         return (vectorTy->getBitWidth() > 128);
1190     }
1191     return false;
1192   }
1193 
1194   virtual void computeInfo(CGFunctionInfo &FI) const;
1195 
1196   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1197                                  CodeGenFunction &CGF) const;
1198 };
1199 
1200 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1201 class WinX86_64ABIInfo : public ABIInfo {
1202 
1203   ABIArgInfo classify(QualType Ty) const;
1204 
1205 public:
1206   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1207 
1208   virtual void computeInfo(CGFunctionInfo &FI) const;
1209 
1210   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1211                                  CodeGenFunction &CGF) const;
1212 };
1213 
1214 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1215 public:
1216   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1217       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1218 
1219   const X86_64ABIInfo &getABIInfo() const {
1220     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1221   }
1222 
1223   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1224     return 7;
1225   }
1226 
1227   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1228                                llvm::Value *Address) const {
1229     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1230 
1231     // 0-15 are the 16 integer registers.
1232     // 16 is %rip.
1233     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1234     return false;
1235   }
1236 
1237   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1238                                   StringRef Constraint,
1239                                   llvm::Type* Ty) const {
1240     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1241   }
1242 
1243   bool isNoProtoCallVariadic(const CallArgList &args,
1244                              const FunctionNoProtoType *fnType) const {
1245     // The default CC on x86-64 sets %al to the number of SSA
1246     // registers used, and GCC sets this when calling an unprototyped
1247     // function, so we override the default behavior.  However, don't do
1248     // that when AVX types are involved: the ABI explicitly states it is
1249     // undefined, and it doesn't work in practice because of how the ABI
1250     // defines varargs anyway.
1251     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1252       bool HasAVXType = false;
1253       for (CallArgList::const_iterator
1254              it = args.begin(), ie = args.end(); it != ie; ++it) {
1255         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1256           HasAVXType = true;
1257           break;
1258         }
1259       }
1260 
1261       if (!HasAVXType)
1262         return true;
1263     }
1264 
1265     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1266   }
1267 
1268 };
1269 
1270 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1271 public:
1272   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1273     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1274 
1275   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1276     return 7;
1277   }
1278 
1279   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1280                                llvm::Value *Address) const {
1281     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1282 
1283     // 0-15 are the 16 integer registers.
1284     // 16 is %rip.
1285     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1286     return false;
1287   }
1288 };
1289 
1290 }
1291 
1292 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1293                               Class &Hi) const {
1294   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1295   //
1296   // (a) If one of the classes is Memory, the whole argument is passed in
1297   //     memory.
1298   //
1299   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1300   //     memory.
1301   //
1302   // (c) If the size of the aggregate exceeds two eightbytes and the first
1303   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1304   //     argument is passed in memory. NOTE: This is necessary to keep the
1305   //     ABI working for processors that don't support the __m256 type.
1306   //
1307   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1308   //
1309   // Some of these are enforced by the merging logic.  Others can arise
1310   // only with unions; for example:
1311   //   union { _Complex double; unsigned; }
1312   //
1313   // Note that clauses (b) and (c) were added in 0.98.
1314   //
1315   if (Hi == Memory)
1316     Lo = Memory;
1317   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1318     Lo = Memory;
1319   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1320     Lo = Memory;
1321   if (Hi == SSEUp && Lo != SSE)
1322     Hi = SSE;
1323 }
1324 
1325 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1326   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1327   // classified recursively so that always two fields are
1328   // considered. The resulting class is calculated according to
1329   // the classes of the fields in the eightbyte:
1330   //
1331   // (a) If both classes are equal, this is the resulting class.
1332   //
1333   // (b) If one of the classes is NO_CLASS, the resulting class is
1334   // the other class.
1335   //
1336   // (c) If one of the classes is MEMORY, the result is the MEMORY
1337   // class.
1338   //
1339   // (d) If one of the classes is INTEGER, the result is the
1340   // INTEGER.
1341   //
1342   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1343   // MEMORY is used as class.
1344   //
1345   // (f) Otherwise class SSE is used.
1346 
1347   // Accum should never be memory (we should have returned) or
1348   // ComplexX87 (because this cannot be passed in a structure).
1349   assert((Accum != Memory && Accum != ComplexX87) &&
1350          "Invalid accumulated classification during merge.");
1351   if (Accum == Field || Field == NoClass)
1352     return Accum;
1353   if (Field == Memory)
1354     return Memory;
1355   if (Accum == NoClass)
1356     return Field;
1357   if (Accum == Integer || Field == Integer)
1358     return Integer;
1359   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1360       Accum == X87 || Accum == X87Up)
1361     return Memory;
1362   return SSE;
1363 }
1364 
1365 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1366                              Class &Lo, Class &Hi) const {
1367   // FIXME: This code can be simplified by introducing a simple value class for
1368   // Class pairs with appropriate constructor methods for the various
1369   // situations.
1370 
1371   // FIXME: Some of the split computations are wrong; unaligned vectors
1372   // shouldn't be passed in registers for example, so there is no chance they
1373   // can straddle an eightbyte. Verify & simplify.
1374 
1375   Lo = Hi = NoClass;
1376 
1377   Class &Current = OffsetBase < 64 ? Lo : Hi;
1378   Current = Memory;
1379 
1380   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1381     BuiltinType::Kind k = BT->getKind();
1382 
1383     if (k == BuiltinType::Void) {
1384       Current = NoClass;
1385     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1386       Lo = Integer;
1387       Hi = Integer;
1388     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1389       Current = Integer;
1390     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1391                (k == BuiltinType::LongDouble &&
1392                 getContext().getTargetInfo().getTriple().getOS() ==
1393                 llvm::Triple::NaCl)) {
1394       Current = SSE;
1395     } else if (k == BuiltinType::LongDouble) {
1396       Lo = X87;
1397       Hi = X87Up;
1398     }
1399     // FIXME: _Decimal32 and _Decimal64 are SSE.
1400     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1401     return;
1402   }
1403 
1404   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1405     // Classify the underlying integer type.
1406     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1407     return;
1408   }
1409 
1410   if (Ty->hasPointerRepresentation()) {
1411     Current = Integer;
1412     return;
1413   }
1414 
1415   if (Ty->isMemberPointerType()) {
1416     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1417       Lo = Hi = Integer;
1418     else
1419       Current = Integer;
1420     return;
1421   }
1422 
1423   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1424     uint64_t Size = getContext().getTypeSize(VT);
1425     if (Size == 32) {
1426       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1427       // float> as integer.
1428       Current = Integer;
1429 
1430       // If this type crosses an eightbyte boundary, it should be
1431       // split.
1432       uint64_t EB_Real = (OffsetBase) / 64;
1433       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1434       if (EB_Real != EB_Imag)
1435         Hi = Lo;
1436     } else if (Size == 64) {
1437       // gcc passes <1 x double> in memory. :(
1438       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1439         return;
1440 
1441       // gcc passes <1 x long long> as INTEGER.
1442       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1443           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1444           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1445           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1446         Current = Integer;
1447       else
1448         Current = SSE;
1449 
1450       // If this type crosses an eightbyte boundary, it should be
1451       // split.
1452       if (OffsetBase && OffsetBase != 64)
1453         Hi = Lo;
1454     } else if (Size == 128 || (HasAVX && Size == 256)) {
1455       // Arguments of 256-bits are split into four eightbyte chunks. The
1456       // least significant one belongs to class SSE and all the others to class
1457       // SSEUP. The original Lo and Hi design considers that types can't be
1458       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1459       // This design isn't correct for 256-bits, but since there're no cases
1460       // where the upper parts would need to be inspected, avoid adding
1461       // complexity and just consider Hi to match the 64-256 part.
1462       Lo = SSE;
1463       Hi = SSEUp;
1464     }
1465     return;
1466   }
1467 
1468   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1469     QualType ET = getContext().getCanonicalType(CT->getElementType());
1470 
1471     uint64_t Size = getContext().getTypeSize(Ty);
1472     if (ET->isIntegralOrEnumerationType()) {
1473       if (Size <= 64)
1474         Current = Integer;
1475       else if (Size <= 128)
1476         Lo = Hi = Integer;
1477     } else if (ET == getContext().FloatTy)
1478       Current = SSE;
1479     else if (ET == getContext().DoubleTy ||
1480              (ET == getContext().LongDoubleTy &&
1481               getContext().getTargetInfo().getTriple().getOS() ==
1482               llvm::Triple::NaCl))
1483       Lo = Hi = SSE;
1484     else if (ET == getContext().LongDoubleTy)
1485       Current = ComplexX87;
1486 
1487     // If this complex type crosses an eightbyte boundary then it
1488     // should be split.
1489     uint64_t EB_Real = (OffsetBase) / 64;
1490     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1491     if (Hi == NoClass && EB_Real != EB_Imag)
1492       Hi = Lo;
1493 
1494     return;
1495   }
1496 
1497   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1498     // Arrays are treated like structures.
1499 
1500     uint64_t Size = getContext().getTypeSize(Ty);
1501 
1502     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1503     // than four eightbytes, ..., it has class MEMORY.
1504     if (Size > 256)
1505       return;
1506 
1507     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1508     // fields, it has class MEMORY.
1509     //
1510     // Only need to check alignment of array base.
1511     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1512       return;
1513 
1514     // Otherwise implement simplified merge. We could be smarter about
1515     // this, but it isn't worth it and would be harder to verify.
1516     Current = NoClass;
1517     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1518     uint64_t ArraySize = AT->getSize().getZExtValue();
1519 
1520     // The only case a 256-bit wide vector could be used is when the array
1521     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1522     // to work for sizes wider than 128, early check and fallback to memory.
1523     if (Size > 128 && EltSize != 256)
1524       return;
1525 
1526     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1527       Class FieldLo, FieldHi;
1528       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1529       Lo = merge(Lo, FieldLo);
1530       Hi = merge(Hi, FieldHi);
1531       if (Lo == Memory || Hi == Memory)
1532         break;
1533     }
1534 
1535     postMerge(Size, Lo, Hi);
1536     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1537     return;
1538   }
1539 
1540   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1541     uint64_t Size = getContext().getTypeSize(Ty);
1542 
1543     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1544     // than four eightbytes, ..., it has class MEMORY.
1545     if (Size > 256)
1546       return;
1547 
1548     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1549     // copy constructor or a non-trivial destructor, it is passed by invisible
1550     // reference.
1551     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1552       return;
1553 
1554     const RecordDecl *RD = RT->getDecl();
1555 
1556     // Assume variable sized types are passed in memory.
1557     if (RD->hasFlexibleArrayMember())
1558       return;
1559 
1560     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1561 
1562     // Reset Lo class, this will be recomputed.
1563     Current = NoClass;
1564 
1565     // If this is a C++ record, classify the bases first.
1566     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1567       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1568              e = CXXRD->bases_end(); i != e; ++i) {
1569         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1570                "Unexpected base class!");
1571         const CXXRecordDecl *Base =
1572           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1573 
1574         // Classify this field.
1575         //
1576         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1577         // single eightbyte, each is classified separately. Each eightbyte gets
1578         // initialized to class NO_CLASS.
1579         Class FieldLo, FieldHi;
1580         uint64_t Offset =
1581           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1582         classify(i->getType(), Offset, FieldLo, FieldHi);
1583         Lo = merge(Lo, FieldLo);
1584         Hi = merge(Hi, FieldHi);
1585         if (Lo == Memory || Hi == Memory)
1586           break;
1587       }
1588     }
1589 
1590     // Classify the fields one at a time, merging the results.
1591     unsigned idx = 0;
1592     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1593            i != e; ++i, ++idx) {
1594       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1595       bool BitField = i->isBitField();
1596 
1597       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1598       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1599       //
1600       // The only case a 256-bit wide vector could be used is when the struct
1601       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1602       // to work for sizes wider than 128, early check and fallback to memory.
1603       //
1604       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1605         Lo = Memory;
1606         return;
1607       }
1608       // Note, skip this test for bit-fields, see below.
1609       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1610         Lo = Memory;
1611         return;
1612       }
1613 
1614       // Classify this field.
1615       //
1616       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1617       // exceeds a single eightbyte, each is classified
1618       // separately. Each eightbyte gets initialized to class
1619       // NO_CLASS.
1620       Class FieldLo, FieldHi;
1621 
1622       // Bit-fields require special handling, they do not force the
1623       // structure to be passed in memory even if unaligned, and
1624       // therefore they can straddle an eightbyte.
1625       if (BitField) {
1626         // Ignore padding bit-fields.
1627         if (i->isUnnamedBitfield())
1628           continue;
1629 
1630         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1631         uint64_t Size = i->getBitWidthValue(getContext());
1632 
1633         uint64_t EB_Lo = Offset / 64;
1634         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1635         FieldLo = FieldHi = NoClass;
1636         if (EB_Lo) {
1637           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1638           FieldLo = NoClass;
1639           FieldHi = Integer;
1640         } else {
1641           FieldLo = Integer;
1642           FieldHi = EB_Hi ? Integer : NoClass;
1643         }
1644       } else
1645         classify(i->getType(), Offset, FieldLo, FieldHi);
1646       Lo = merge(Lo, FieldLo);
1647       Hi = merge(Hi, FieldHi);
1648       if (Lo == Memory || Hi == Memory)
1649         break;
1650     }
1651 
1652     postMerge(Size, Lo, Hi);
1653   }
1654 }
1655 
1656 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1657   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1658   // place naturally.
1659   if (!isAggregateTypeForABI(Ty)) {
1660     // Treat an enum type as its underlying type.
1661     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1662       Ty = EnumTy->getDecl()->getIntegerType();
1663 
1664     return (Ty->isPromotableIntegerType() ?
1665             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1666   }
1667 
1668   return ABIArgInfo::getIndirect(0);
1669 }
1670 
1671 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1672   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1673     uint64_t Size = getContext().getTypeSize(VecTy);
1674     unsigned LargestVector = HasAVX ? 256 : 128;
1675     if (Size <= 64 || Size > LargestVector)
1676       return true;
1677   }
1678 
1679   return false;
1680 }
1681 
1682 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1683                                             unsigned freeIntRegs) const {
1684   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1685   // place naturally.
1686   //
1687   // This assumption is optimistic, as there could be free registers available
1688   // when we need to pass this argument in memory, and LLVM could try to pass
1689   // the argument in the free register. This does not seem to happen currently,
1690   // but this code would be much safer if we could mark the argument with
1691   // 'onstack'. See PR12193.
1692   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1693     // Treat an enum type as its underlying type.
1694     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1695       Ty = EnumTy->getDecl()->getIntegerType();
1696 
1697     return (Ty->isPromotableIntegerType() ?
1698             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1699   }
1700 
1701   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1702     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1703 
1704   // Compute the byval alignment. We specify the alignment of the byval in all
1705   // cases so that the mid-level optimizer knows the alignment of the byval.
1706   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1707 
1708   // Attempt to avoid passing indirect results using byval when possible. This
1709   // is important for good codegen.
1710   //
1711   // We do this by coercing the value into a scalar type which the backend can
1712   // handle naturally (i.e., without using byval).
1713   //
1714   // For simplicity, we currently only do this when we have exhausted all of the
1715   // free integer registers. Doing this when there are free integer registers
1716   // would require more care, as we would have to ensure that the coerced value
1717   // did not claim the unused register. That would require either reording the
1718   // arguments to the function (so that any subsequent inreg values came first),
1719   // or only doing this optimization when there were no following arguments that
1720   // might be inreg.
1721   //
1722   // We currently expect it to be rare (particularly in well written code) for
1723   // arguments to be passed on the stack when there are still free integer
1724   // registers available (this would typically imply large structs being passed
1725   // by value), so this seems like a fair tradeoff for now.
1726   //
1727   // We can revisit this if the backend grows support for 'onstack' parameter
1728   // attributes. See PR12193.
1729   if (freeIntRegs == 0) {
1730     uint64_t Size = getContext().getTypeSize(Ty);
1731 
1732     // If this type fits in an eightbyte, coerce it into the matching integral
1733     // type, which will end up on the stack (with alignment 8).
1734     if (Align == 8 && Size <= 64)
1735       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1736                                                           Size));
1737   }
1738 
1739   return ABIArgInfo::getIndirect(Align);
1740 }
1741 
1742 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1743 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1744 /// vector register.
1745 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1746   llvm::Type *IRType = CGT.ConvertType(Ty);
1747 
1748   // Wrapper structs that just contain vectors are passed just like vectors,
1749   // strip them off if present.
1750   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1751   while (STy && STy->getNumElements() == 1) {
1752     IRType = STy->getElementType(0);
1753     STy = dyn_cast<llvm::StructType>(IRType);
1754   }
1755 
1756   // If the preferred type is a 16-byte vector, prefer to pass it.
1757   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1758     llvm::Type *EltTy = VT->getElementType();
1759     unsigned BitWidth = VT->getBitWidth();
1760     if ((BitWidth >= 128 && BitWidth <= 256) &&
1761         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1762          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1763          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1764          EltTy->isIntegerTy(128)))
1765       return VT;
1766   }
1767 
1768   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1769 }
1770 
1771 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1772 /// is known to either be off the end of the specified type or being in
1773 /// alignment padding.  The user type specified is known to be at most 128 bits
1774 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1775 /// classification that put one of the two halves in the INTEGER class.
1776 ///
1777 /// It is conservatively correct to return false.
1778 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1779                                   unsigned EndBit, ASTContext &Context) {
1780   // If the bytes being queried are off the end of the type, there is no user
1781   // data hiding here.  This handles analysis of builtins, vectors and other
1782   // types that don't contain interesting padding.
1783   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1784   if (TySize <= StartBit)
1785     return true;
1786 
1787   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1788     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1789     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1790 
1791     // Check each element to see if the element overlaps with the queried range.
1792     for (unsigned i = 0; i != NumElts; ++i) {
1793       // If the element is after the span we care about, then we're done..
1794       unsigned EltOffset = i*EltSize;
1795       if (EltOffset >= EndBit) break;
1796 
1797       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1798       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1799                                  EndBit-EltOffset, Context))
1800         return false;
1801     }
1802     // If it overlaps no elements, then it is safe to process as padding.
1803     return true;
1804   }
1805 
1806   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1807     const RecordDecl *RD = RT->getDecl();
1808     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1809 
1810     // If this is a C++ record, check the bases first.
1811     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1812       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1813            e = CXXRD->bases_end(); i != e; ++i) {
1814         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1815                "Unexpected base class!");
1816         const CXXRecordDecl *Base =
1817           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1818 
1819         // If the base is after the span we care about, ignore it.
1820         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1821         if (BaseOffset >= EndBit) continue;
1822 
1823         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1824         if (!BitsContainNoUserData(i->getType(), BaseStart,
1825                                    EndBit-BaseOffset, Context))
1826           return false;
1827       }
1828     }
1829 
1830     // Verify that no field has data that overlaps the region of interest.  Yes
1831     // this could be sped up a lot by being smarter about queried fields,
1832     // however we're only looking at structs up to 16 bytes, so we don't care
1833     // much.
1834     unsigned idx = 0;
1835     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1836          i != e; ++i, ++idx) {
1837       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1838 
1839       // If we found a field after the region we care about, then we're done.
1840       if (FieldOffset >= EndBit) break;
1841 
1842       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1843       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1844                                  Context))
1845         return false;
1846     }
1847 
1848     // If nothing in this record overlapped the area of interest, then we're
1849     // clean.
1850     return true;
1851   }
1852 
1853   return false;
1854 }
1855 
1856 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1857 /// float member at the specified offset.  For example, {int,{float}} has a
1858 /// float at offset 4.  It is conservatively correct for this routine to return
1859 /// false.
1860 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1861                                   const llvm::DataLayout &TD) {
1862   // Base case if we find a float.
1863   if (IROffset == 0 && IRType->isFloatTy())
1864     return true;
1865 
1866   // If this is a struct, recurse into the field at the specified offset.
1867   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1868     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1869     unsigned Elt = SL->getElementContainingOffset(IROffset);
1870     IROffset -= SL->getElementOffset(Elt);
1871     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1872   }
1873 
1874   // If this is an array, recurse into the field at the specified offset.
1875   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1876     llvm::Type *EltTy = ATy->getElementType();
1877     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1878     IROffset -= IROffset/EltSize*EltSize;
1879     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1880   }
1881 
1882   return false;
1883 }
1884 
1885 
1886 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1887 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1888 llvm::Type *X86_64ABIInfo::
1889 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1890                    QualType SourceTy, unsigned SourceOffset) const {
1891   // The only three choices we have are either double, <2 x float>, or float. We
1892   // pass as float if the last 4 bytes is just padding.  This happens for
1893   // structs that contain 3 floats.
1894   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1895                             SourceOffset*8+64, getContext()))
1896     return llvm::Type::getFloatTy(getVMContext());
1897 
1898   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1899   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1900   // case.
1901   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1902       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1903     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1904 
1905   return llvm::Type::getDoubleTy(getVMContext());
1906 }
1907 
1908 
1909 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1910 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1911 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1912 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1913 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1914 /// etc).
1915 ///
1916 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1917 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1918 /// the 8-byte value references.  PrefType may be null.
1919 ///
1920 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1921 /// an offset into this that we're processing (which is always either 0 or 8).
1922 ///
1923 llvm::Type *X86_64ABIInfo::
1924 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1925                        QualType SourceTy, unsigned SourceOffset) const {
1926   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1927   // returning an 8-byte unit starting with it.  See if we can safely use it.
1928   if (IROffset == 0) {
1929     // Pointers and int64's always fill the 8-byte unit.
1930     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1931         IRType->isIntegerTy(64))
1932       return IRType;
1933 
1934     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1935     // goodness in the source type is just tail padding.  This is allowed to
1936     // kick in for struct {double,int} on the int, but not on
1937     // struct{double,int,int} because we wouldn't return the second int.  We
1938     // have to do this analysis on the source type because we can't depend on
1939     // unions being lowered a specific way etc.
1940     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1941         IRType->isIntegerTy(32) ||
1942         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1943       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1944           cast<llvm::IntegerType>(IRType)->getBitWidth();
1945 
1946       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1947                                 SourceOffset*8+64, getContext()))
1948         return IRType;
1949     }
1950   }
1951 
1952   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1953     // If this is a struct, recurse into the field at the specified offset.
1954     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1955     if (IROffset < SL->getSizeInBytes()) {
1956       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1957       IROffset -= SL->getElementOffset(FieldIdx);
1958 
1959       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1960                                     SourceTy, SourceOffset);
1961     }
1962   }
1963 
1964   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1965     llvm::Type *EltTy = ATy->getElementType();
1966     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1967     unsigned EltOffset = IROffset/EltSize*EltSize;
1968     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1969                                   SourceOffset);
1970   }
1971 
1972   // Okay, we don't have any better idea of what to pass, so we pass this in an
1973   // integer register that isn't too big to fit the rest of the struct.
1974   unsigned TySizeInBytes =
1975     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1976 
1977   assert(TySizeInBytes != SourceOffset && "Empty field?");
1978 
1979   // It is always safe to classify this as an integer type up to i64 that
1980   // isn't larger than the structure.
1981   return llvm::IntegerType::get(getVMContext(),
1982                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1983 }
1984 
1985 
1986 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1987 /// be used as elements of a two register pair to pass or return, return a
1988 /// first class aggregate to represent them.  For example, if the low part of
1989 /// a by-value argument should be passed as i32* and the high part as float,
1990 /// return {i32*, float}.
1991 static llvm::Type *
1992 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1993                            const llvm::DataLayout &TD) {
1994   // In order to correctly satisfy the ABI, we need to the high part to start
1995   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1996   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1997   // the second element at offset 8.  Check for this:
1998   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1999   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2000   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2001   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2002 
2003   // To handle this, we have to increase the size of the low part so that the
2004   // second element will start at an 8 byte offset.  We can't increase the size
2005   // of the second element because it might make us access off the end of the
2006   // struct.
2007   if (HiStart != 8) {
2008     // There are only two sorts of types the ABI generation code can produce for
2009     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2010     // Promote these to a larger type.
2011     if (Lo->isFloatTy())
2012       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2013     else {
2014       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2015       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2016     }
2017   }
2018 
2019   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2020 
2021 
2022   // Verify that the second element is at an 8-byte offset.
2023   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2024          "Invalid x86-64 argument pair!");
2025   return Result;
2026 }
2027 
2028 ABIArgInfo X86_64ABIInfo::
2029 classifyReturnType(QualType RetTy) const {
2030   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2031   // classification algorithm.
2032   X86_64ABIInfo::Class Lo, Hi;
2033   classify(RetTy, 0, Lo, Hi);
2034 
2035   // Check some invariants.
2036   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2037   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2038 
2039   llvm::Type *ResType = 0;
2040   switch (Lo) {
2041   case NoClass:
2042     if (Hi == NoClass)
2043       return ABIArgInfo::getIgnore();
2044     // If the low part is just padding, it takes no register, leave ResType
2045     // null.
2046     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2047            "Unknown missing lo part");
2048     break;
2049 
2050   case SSEUp:
2051   case X87Up:
2052     llvm_unreachable("Invalid classification for lo word.");
2053 
2054     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2055     // hidden argument.
2056   case Memory:
2057     return getIndirectReturnResult(RetTy);
2058 
2059     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2060     // available register of the sequence %rax, %rdx is used.
2061   case Integer:
2062     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2063 
2064     // If we have a sign or zero extended integer, make sure to return Extend
2065     // so that the parameter gets the right LLVM IR attributes.
2066     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2067       // Treat an enum type as its underlying type.
2068       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2069         RetTy = EnumTy->getDecl()->getIntegerType();
2070 
2071       if (RetTy->isIntegralOrEnumerationType() &&
2072           RetTy->isPromotableIntegerType())
2073         return ABIArgInfo::getExtend();
2074     }
2075     break;
2076 
2077     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2078     // available SSE register of the sequence %xmm0, %xmm1 is used.
2079   case SSE:
2080     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2081     break;
2082 
2083     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2084     // returned on the X87 stack in %st0 as 80-bit x87 number.
2085   case X87:
2086     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2087     break;
2088 
2089     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2090     // part of the value is returned in %st0 and the imaginary part in
2091     // %st1.
2092   case ComplexX87:
2093     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2094     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2095                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2096                                     NULL);
2097     break;
2098   }
2099 
2100   llvm::Type *HighPart = 0;
2101   switch (Hi) {
2102     // Memory was handled previously and X87 should
2103     // never occur as a hi class.
2104   case Memory:
2105   case X87:
2106     llvm_unreachable("Invalid classification for hi word.");
2107 
2108   case ComplexX87: // Previously handled.
2109   case NoClass:
2110     break;
2111 
2112   case Integer:
2113     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2114     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2115       return ABIArgInfo::getDirect(HighPart, 8);
2116     break;
2117   case SSE:
2118     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2119     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2120       return ABIArgInfo::getDirect(HighPart, 8);
2121     break;
2122 
2123     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2124     // is passed in the next available eightbyte chunk if the last used
2125     // vector register.
2126     //
2127     // SSEUP should always be preceded by SSE, just widen.
2128   case SSEUp:
2129     assert(Lo == SSE && "Unexpected SSEUp classification.");
2130     ResType = GetByteVectorType(RetTy);
2131     break;
2132 
2133     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2134     // returned together with the previous X87 value in %st0.
2135   case X87Up:
2136     // If X87Up is preceded by X87, we don't need to do
2137     // anything. However, in some cases with unions it may not be
2138     // preceded by X87. In such situations we follow gcc and pass the
2139     // extra bits in an SSE reg.
2140     if (Lo != X87) {
2141       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2142       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2143         return ABIArgInfo::getDirect(HighPart, 8);
2144     }
2145     break;
2146   }
2147 
2148   // If a high part was specified, merge it together with the low part.  It is
2149   // known to pass in the high eightbyte of the result.  We do this by forming a
2150   // first class struct aggregate with the high and low part: {low, high}
2151   if (HighPart)
2152     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2153 
2154   return ABIArgInfo::getDirect(ResType);
2155 }
2156 
2157 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2158   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2159   const
2160 {
2161   X86_64ABIInfo::Class Lo, Hi;
2162   classify(Ty, 0, Lo, Hi);
2163 
2164   // Check some invariants.
2165   // FIXME: Enforce these by construction.
2166   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2167   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2168 
2169   neededInt = 0;
2170   neededSSE = 0;
2171   llvm::Type *ResType = 0;
2172   switch (Lo) {
2173   case NoClass:
2174     if (Hi == NoClass)
2175       return ABIArgInfo::getIgnore();
2176     // If the low part is just padding, it takes no register, leave ResType
2177     // null.
2178     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2179            "Unknown missing lo part");
2180     break;
2181 
2182     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2183     // on the stack.
2184   case Memory:
2185 
2186     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2187     // COMPLEX_X87, it is passed in memory.
2188   case X87:
2189   case ComplexX87:
2190     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2191       ++neededInt;
2192     return getIndirectResult(Ty, freeIntRegs);
2193 
2194   case SSEUp:
2195   case X87Up:
2196     llvm_unreachable("Invalid classification for lo word.");
2197 
2198     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2199     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2200     // and %r9 is used.
2201   case Integer:
2202     ++neededInt;
2203 
2204     // Pick an 8-byte type based on the preferred type.
2205     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2206 
2207     // If we have a sign or zero extended integer, make sure to return Extend
2208     // so that the parameter gets the right LLVM IR attributes.
2209     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2210       // Treat an enum type as its underlying type.
2211       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2212         Ty = EnumTy->getDecl()->getIntegerType();
2213 
2214       if (Ty->isIntegralOrEnumerationType() &&
2215           Ty->isPromotableIntegerType())
2216         return ABIArgInfo::getExtend();
2217     }
2218 
2219     break;
2220 
2221     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2222     // available SSE register is used, the registers are taken in the
2223     // order from %xmm0 to %xmm7.
2224   case SSE: {
2225     llvm::Type *IRType = CGT.ConvertType(Ty);
2226     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2227     ++neededSSE;
2228     break;
2229   }
2230   }
2231 
2232   llvm::Type *HighPart = 0;
2233   switch (Hi) {
2234     // Memory was handled previously, ComplexX87 and X87 should
2235     // never occur as hi classes, and X87Up must be preceded by X87,
2236     // which is passed in memory.
2237   case Memory:
2238   case X87:
2239   case ComplexX87:
2240     llvm_unreachable("Invalid classification for hi word.");
2241 
2242   case NoClass: break;
2243 
2244   case Integer:
2245     ++neededInt;
2246     // Pick an 8-byte type based on the preferred type.
2247     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2248 
2249     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2250       return ABIArgInfo::getDirect(HighPart, 8);
2251     break;
2252 
2253     // X87Up generally doesn't occur here (long double is passed in
2254     // memory), except in situations involving unions.
2255   case X87Up:
2256   case SSE:
2257     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2258 
2259     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2260       return ABIArgInfo::getDirect(HighPart, 8);
2261 
2262     ++neededSSE;
2263     break;
2264 
2265     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2266     // eightbyte is passed in the upper half of the last used SSE
2267     // register.  This only happens when 128-bit vectors are passed.
2268   case SSEUp:
2269     assert(Lo == SSE && "Unexpected SSEUp classification");
2270     ResType = GetByteVectorType(Ty);
2271     break;
2272   }
2273 
2274   // If a high part was specified, merge it together with the low part.  It is
2275   // known to pass in the high eightbyte of the result.  We do this by forming a
2276   // first class struct aggregate with the high and low part: {low, high}
2277   if (HighPart)
2278     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2279 
2280   return ABIArgInfo::getDirect(ResType);
2281 }
2282 
2283 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2284 
2285   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2286 
2287   // Keep track of the number of assigned registers.
2288   unsigned freeIntRegs = 6, freeSSERegs = 8;
2289 
2290   // If the return value is indirect, then the hidden argument is consuming one
2291   // integer register.
2292   if (FI.getReturnInfo().isIndirect())
2293     --freeIntRegs;
2294 
2295   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2296   // get assigned (in left-to-right order) for passing as follows...
2297   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2298        it != ie; ++it) {
2299     unsigned neededInt, neededSSE;
2300     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2301                                     neededSSE);
2302 
2303     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2304     // eightbyte of an argument, the whole argument is passed on the
2305     // stack. If registers have already been assigned for some
2306     // eightbytes of such an argument, the assignments get reverted.
2307     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2308       freeIntRegs -= neededInt;
2309       freeSSERegs -= neededSSE;
2310     } else {
2311       it->info = getIndirectResult(it->type, freeIntRegs);
2312     }
2313   }
2314 }
2315 
2316 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2317                                         QualType Ty,
2318                                         CodeGenFunction &CGF) {
2319   llvm::Value *overflow_arg_area_p =
2320     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2321   llvm::Value *overflow_arg_area =
2322     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2323 
2324   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2325   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2326   // It isn't stated explicitly in the standard, but in practice we use
2327   // alignment greater than 16 where necessary.
2328   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2329   if (Align > 8) {
2330     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2331     llvm::Value *Offset =
2332       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2333     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2334     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2335                                                     CGF.Int64Ty);
2336     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2337     overflow_arg_area =
2338       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2339                                  overflow_arg_area->getType(),
2340                                  "overflow_arg_area.align");
2341   }
2342 
2343   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2344   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2345   llvm::Value *Res =
2346     CGF.Builder.CreateBitCast(overflow_arg_area,
2347                               llvm::PointerType::getUnqual(LTy));
2348 
2349   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2350   // l->overflow_arg_area + sizeof(type).
2351   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2352   // an 8 byte boundary.
2353 
2354   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2355   llvm::Value *Offset =
2356       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2357   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2358                                             "overflow_arg_area.next");
2359   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2360 
2361   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2362   return Res;
2363 }
2364 
2365 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2366                                       CodeGenFunction &CGF) const {
2367   // Assume that va_list type is correct; should be pointer to LLVM type:
2368   // struct {
2369   //   i32 gp_offset;
2370   //   i32 fp_offset;
2371   //   i8* overflow_arg_area;
2372   //   i8* reg_save_area;
2373   // };
2374   unsigned neededInt, neededSSE;
2375 
2376   Ty = CGF.getContext().getCanonicalType(Ty);
2377   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2378 
2379   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2380   // in the registers. If not go to step 7.
2381   if (!neededInt && !neededSSE)
2382     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2383 
2384   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2385   // general purpose registers needed to pass type and num_fp to hold
2386   // the number of floating point registers needed.
2387 
2388   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2389   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2390   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2391   //
2392   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2393   // register save space).
2394 
2395   llvm::Value *InRegs = 0;
2396   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2397   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2398   if (neededInt) {
2399     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2400     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2401     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2402     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2403   }
2404 
2405   if (neededSSE) {
2406     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2407     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2408     llvm::Value *FitsInFP =
2409       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2410     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2411     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2412   }
2413 
2414   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2415   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2416   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2417   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2418 
2419   // Emit code to load the value if it was passed in registers.
2420 
2421   CGF.EmitBlock(InRegBlock);
2422 
2423   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2424   // an offset of l->gp_offset and/or l->fp_offset. This may require
2425   // copying to a temporary location in case the parameter is passed
2426   // in different register classes or requires an alignment greater
2427   // than 8 for general purpose registers and 16 for XMM registers.
2428   //
2429   // FIXME: This really results in shameful code when we end up needing to
2430   // collect arguments from different places; often what should result in a
2431   // simple assembling of a structure from scattered addresses has many more
2432   // loads than necessary. Can we clean this up?
2433   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434   llvm::Value *RegAddr =
2435     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2436                            "reg_save_area");
2437   if (neededInt && neededSSE) {
2438     // FIXME: Cleanup.
2439     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2440     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2441     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2442     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2443     llvm::Type *TyLo = ST->getElementType(0);
2444     llvm::Type *TyHi = ST->getElementType(1);
2445     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2446            "Unexpected ABI info for mixed regs");
2447     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2448     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2449     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2450     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2451     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2452     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2453     llvm::Value *V =
2454       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2455     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2456     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2457     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2458 
2459     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2460                                         llvm::PointerType::getUnqual(LTy));
2461   } else if (neededInt) {
2462     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2463     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2464                                         llvm::PointerType::getUnqual(LTy));
2465   } else if (neededSSE == 1) {
2466     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2467     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2468                                         llvm::PointerType::getUnqual(LTy));
2469   } else {
2470     assert(neededSSE == 2 && "Invalid number of needed registers!");
2471     // SSE registers are spaced 16 bytes apart in the register save
2472     // area, we need to collect the two eightbytes together.
2473     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2474     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2475     llvm::Type *DoubleTy = CGF.DoubleTy;
2476     llvm::Type *DblPtrTy =
2477       llvm::PointerType::getUnqual(DoubleTy);
2478     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2479                                                        DoubleTy, NULL);
2480     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2481     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2482                                                          DblPtrTy));
2483     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2484     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2485                                                          DblPtrTy));
2486     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2487     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2488                                         llvm::PointerType::getUnqual(LTy));
2489   }
2490 
2491   // AMD64-ABI 3.5.7p5: Step 5. Set:
2492   // l->gp_offset = l->gp_offset + num_gp * 8
2493   // l->fp_offset = l->fp_offset + num_fp * 16.
2494   if (neededInt) {
2495     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2496     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2497                             gp_offset_p);
2498   }
2499   if (neededSSE) {
2500     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2501     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2502                             fp_offset_p);
2503   }
2504   CGF.EmitBranch(ContBlock);
2505 
2506   // Emit code to load the value if it was passed in memory.
2507 
2508   CGF.EmitBlock(InMemBlock);
2509   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2510 
2511   // Return the appropriate result.
2512 
2513   CGF.EmitBlock(ContBlock);
2514   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2515                                                  "vaarg.addr");
2516   ResAddr->addIncoming(RegAddr, InRegBlock);
2517   ResAddr->addIncoming(MemAddr, InMemBlock);
2518   return ResAddr;
2519 }
2520 
2521 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2522 
2523   if (Ty->isVoidType())
2524     return ABIArgInfo::getIgnore();
2525 
2526   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2527     Ty = EnumTy->getDecl()->getIntegerType();
2528 
2529   uint64_t Size = getContext().getTypeSize(Ty);
2530 
2531   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2532     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2533         RT->getDecl()->hasFlexibleArrayMember())
2534       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2535 
2536     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2537     if (Size == 128 &&
2538         getContext().getTargetInfo().getTriple().getOS()
2539           == llvm::Triple::MinGW32)
2540       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2541                                                           Size));
2542 
2543     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2544     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2545     if (Size <= 64 &&
2546         (Size & (Size - 1)) == 0)
2547       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2548                                                           Size));
2549 
2550     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2551   }
2552 
2553   if (Ty->isPromotableIntegerType())
2554     return ABIArgInfo::getExtend();
2555 
2556   return ABIArgInfo::getDirect();
2557 }
2558 
2559 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2560 
2561   QualType RetTy = FI.getReturnType();
2562   FI.getReturnInfo() = classify(RetTy);
2563 
2564   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2565        it != ie; ++it)
2566     it->info = classify(it->type);
2567 }
2568 
2569 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2570                                       CodeGenFunction &CGF) const {
2571   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2572 
2573   CGBuilderTy &Builder = CGF.Builder;
2574   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2575                                                        "ap");
2576   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2577   llvm::Type *PTy =
2578     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2579   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2580 
2581   uint64_t Offset =
2582     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2583   llvm::Value *NextAddr =
2584     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2585                       "ap.next");
2586   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2587 
2588   return AddrTyped;
2589 }
2590 
2591 namespace {
2592 
2593 class NaClX86_64ABIInfo : public ABIInfo {
2594  public:
2595   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2596       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2597   virtual void computeInfo(CGFunctionInfo &FI) const;
2598   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2599                                  CodeGenFunction &CGF) const;
2600  private:
2601   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2602   X86_64ABIInfo NInfo; // Used for everything else.
2603 };
2604 
2605 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2606  public:
2607   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2608       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2609 };
2610 
2611 }
2612 
2613 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2614   if (FI.getASTCallingConvention() == CC_PnaclCall)
2615     PInfo.computeInfo(FI);
2616   else
2617     NInfo.computeInfo(FI);
2618 }
2619 
2620 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2621                                           CodeGenFunction &CGF) const {
2622   // Always use the native convention; calling pnacl-style varargs functions
2623   // is unuspported.
2624   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2625 }
2626 
2627 
2628 // PowerPC-32
2629 
2630 namespace {
2631 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2632 public:
2633   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2634 
2635   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2636     // This is recovered from gcc output.
2637     return 1; // r1 is the dedicated stack pointer
2638   }
2639 
2640   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2641                                llvm::Value *Address) const;
2642 };
2643 
2644 }
2645 
2646 bool
2647 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2648                                                 llvm::Value *Address) const {
2649   // This is calculated from the LLVM and GCC tables and verified
2650   // against gcc output.  AFAIK all ABIs use the same encoding.
2651 
2652   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2653 
2654   llvm::IntegerType *i8 = CGF.Int8Ty;
2655   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2656   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2657   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2658 
2659   // 0-31: r0-31, the 4-byte general-purpose registers
2660   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2661 
2662   // 32-63: fp0-31, the 8-byte floating-point registers
2663   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2664 
2665   // 64-76 are various 4-byte special-purpose registers:
2666   // 64: mq
2667   // 65: lr
2668   // 66: ctr
2669   // 67: ap
2670   // 68-75 cr0-7
2671   // 76: xer
2672   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2673 
2674   // 77-108: v0-31, the 16-byte vector registers
2675   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2676 
2677   // 109: vrsave
2678   // 110: vscr
2679   // 111: spe_acc
2680   // 112: spefscr
2681   // 113: sfp
2682   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2683 
2684   return false;
2685 }
2686 
2687 // PowerPC-64
2688 
2689 namespace {
2690 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2691 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2692 
2693 public:
2694   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2695 
2696   bool isPromotableTypeForABI(QualType Ty) const;
2697 
2698   ABIArgInfo classifyReturnType(QualType RetTy) const;
2699   ABIArgInfo classifyArgumentType(QualType Ty) const;
2700 
2701   // TODO: We can add more logic to computeInfo to improve performance.
2702   // Example: For aggregate arguments that fit in a register, we could
2703   // use getDirectInReg (as is done below for structs containing a single
2704   // floating-point value) to avoid pushing them to memory on function
2705   // entry.  This would require changing the logic in PPCISelLowering
2706   // when lowering the parameters in the caller and args in the callee.
2707   virtual void computeInfo(CGFunctionInfo &FI) const {
2708     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2709     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2710          it != ie; ++it) {
2711       // We rely on the default argument classification for the most part.
2712       // One exception:  An aggregate containing a single floating-point
2713       // item must be passed in a register if one is available.
2714       const Type *T = isSingleElementStruct(it->type, getContext());
2715       if (T) {
2716         const BuiltinType *BT = T->getAs<BuiltinType>();
2717         if (BT && BT->isFloatingPoint()) {
2718           QualType QT(T, 0);
2719           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2720           continue;
2721         }
2722       }
2723       it->info = classifyArgumentType(it->type);
2724     }
2725   }
2726 
2727   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2728                                  QualType Ty,
2729                                  CodeGenFunction &CGF) const;
2730 };
2731 
2732 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2733 public:
2734   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2735     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2736 
2737   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2738     // This is recovered from gcc output.
2739     return 1; // r1 is the dedicated stack pointer
2740   }
2741 
2742   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2743                                llvm::Value *Address) const;
2744 };
2745 
2746 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2747 public:
2748   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2749 
2750   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2751     // This is recovered from gcc output.
2752     return 1; // r1 is the dedicated stack pointer
2753   }
2754 
2755   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2756                                llvm::Value *Address) const;
2757 };
2758 
2759 }
2760 
2761 // Return true if the ABI requires Ty to be passed sign- or zero-
2762 // extended to 64 bits.
2763 bool
2764 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2765   // Treat an enum type as its underlying type.
2766   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2767     Ty = EnumTy->getDecl()->getIntegerType();
2768 
2769   // Promotable integer types are required to be promoted by the ABI.
2770   if (Ty->isPromotableIntegerType())
2771     return true;
2772 
2773   // In addition to the usual promotable integer types, we also need to
2774   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2775   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2776     switch (BT->getKind()) {
2777     case BuiltinType::Int:
2778     case BuiltinType::UInt:
2779       return true;
2780     default:
2781       break;
2782     }
2783 
2784   return false;
2785 }
2786 
2787 ABIArgInfo
2788 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2789   if (Ty->isAnyComplexType())
2790     return ABIArgInfo::getDirect();
2791 
2792   if (isAggregateTypeForABI(Ty)) {
2793     // Records with non trivial destructors/constructors should not be passed
2794     // by value.
2795     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2796       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2797 
2798     return ABIArgInfo::getIndirect(0);
2799   }
2800 
2801   return (isPromotableTypeForABI(Ty) ?
2802           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2803 }
2804 
2805 ABIArgInfo
2806 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2807   if (RetTy->isVoidType())
2808     return ABIArgInfo::getIgnore();
2809 
2810   if (RetTy->isAnyComplexType())
2811     return ABIArgInfo::getDirect();
2812 
2813   if (isAggregateTypeForABI(RetTy))
2814     return ABIArgInfo::getIndirect(0);
2815 
2816   return (isPromotableTypeForABI(RetTy) ?
2817           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2818 }
2819 
2820 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2821 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2822                                            QualType Ty,
2823                                            CodeGenFunction &CGF) const {
2824   llvm::Type *BP = CGF.Int8PtrTy;
2825   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2826 
2827   CGBuilderTy &Builder = CGF.Builder;
2828   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2829   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2830 
2831   // Update the va_list pointer.  The pointer should be bumped by the
2832   // size of the object.  We can trust getTypeSize() except for a complex
2833   // type whose base type is smaller than a doubleword.  For these, the
2834   // size of the object is 16 bytes; see below for further explanation.
2835   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2836   QualType BaseTy;
2837   unsigned CplxBaseSize = 0;
2838 
2839   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2840     BaseTy = CTy->getElementType();
2841     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2842     if (CplxBaseSize < 8)
2843       SizeInBytes = 16;
2844   }
2845 
2846   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2847   llvm::Value *NextAddr =
2848     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2849                       "ap.next");
2850   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2851 
2852   // If we have a complex type and the base type is smaller than 8 bytes,
2853   // the ABI calls for the real and imaginary parts to be right-adjusted
2854   // in separate doublewords.  However, Clang expects us to produce a
2855   // pointer to a structure with the two parts packed tightly.  So generate
2856   // loads of the real and imaginary parts relative to the va_list pointer,
2857   // and store them to a temporary structure.
2858   if (CplxBaseSize && CplxBaseSize < 8) {
2859     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2860     llvm::Value *ImagAddr = RealAddr;
2861     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2862     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2863     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2864     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2865     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2866     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2867     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2868     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2869                                             "vacplx");
2870     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2871     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2872     Builder.CreateStore(Real, RealPtr, false);
2873     Builder.CreateStore(Imag, ImagPtr, false);
2874     return Ptr;
2875   }
2876 
2877   // If the argument is smaller than 8 bytes, it is right-adjusted in
2878   // its doubleword slot.  Adjust the pointer to pick it up from the
2879   // correct offset.
2880   if (SizeInBytes < 8) {
2881     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2882     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2883     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2884   }
2885 
2886   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2887   return Builder.CreateBitCast(Addr, PTy);
2888 }
2889 
2890 static bool
2891 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2892                               llvm::Value *Address) {
2893   // This is calculated from the LLVM and GCC tables and verified
2894   // against gcc output.  AFAIK all ABIs use the same encoding.
2895 
2896   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2897 
2898   llvm::IntegerType *i8 = CGF.Int8Ty;
2899   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2900   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2901   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2902 
2903   // 0-31: r0-31, the 8-byte general-purpose registers
2904   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2905 
2906   // 32-63: fp0-31, the 8-byte floating-point registers
2907   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2908 
2909   // 64-76 are various 4-byte special-purpose registers:
2910   // 64: mq
2911   // 65: lr
2912   // 66: ctr
2913   // 67: ap
2914   // 68-75 cr0-7
2915   // 76: xer
2916   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2917 
2918   // 77-108: v0-31, the 16-byte vector registers
2919   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2920 
2921   // 109: vrsave
2922   // 110: vscr
2923   // 111: spe_acc
2924   // 112: spefscr
2925   // 113: sfp
2926   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2927 
2928   return false;
2929 }
2930 
2931 bool
2932 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2933   CodeGen::CodeGenFunction &CGF,
2934   llvm::Value *Address) const {
2935 
2936   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2937 }
2938 
2939 bool
2940 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2941                                                 llvm::Value *Address) const {
2942 
2943   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2944 }
2945 
2946 //===----------------------------------------------------------------------===//
2947 // ARM ABI Implementation
2948 //===----------------------------------------------------------------------===//
2949 
2950 namespace {
2951 
2952 class ARMABIInfo : public ABIInfo {
2953 public:
2954   enum ABIKind {
2955     APCS = 0,
2956     AAPCS = 1,
2957     AAPCS_VFP
2958   };
2959 
2960 private:
2961   ABIKind Kind;
2962 
2963 public:
2964   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2965 
2966   bool isEABI() const {
2967     StringRef Env =
2968       getContext().getTargetInfo().getTriple().getEnvironmentName();
2969     return (Env == "gnueabi" || Env == "eabi" ||
2970             Env == "android" || Env == "androideabi");
2971   }
2972 
2973 private:
2974   ABIKind getABIKind() const { return Kind; }
2975 
2976   ABIArgInfo classifyReturnType(QualType RetTy) const;
2977   ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
2978                                   unsigned &AllocatedVFP,
2979                                   bool &IsHA) const;
2980   bool isIllegalVectorType(QualType Ty) const;
2981 
2982   virtual void computeInfo(CGFunctionInfo &FI) const;
2983 
2984   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2985                                  CodeGenFunction &CGF) const;
2986 };
2987 
2988 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2989 public:
2990   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2991     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2992 
2993   const ARMABIInfo &getABIInfo() const {
2994     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2995   }
2996 
2997   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2998     return 13;
2999   }
3000 
3001   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3002     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3003   }
3004 
3005   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3006                                llvm::Value *Address) const {
3007     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3008 
3009     // 0-15 are the 16 integer registers.
3010     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3011     return false;
3012   }
3013 
3014   unsigned getSizeOfUnwindException() const {
3015     if (getABIInfo().isEABI()) return 88;
3016     return TargetCodeGenInfo::getSizeOfUnwindException();
3017   }
3018 };
3019 
3020 }
3021 
3022 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3023   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3024   // VFP registers allocated so far.
3025   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3026   // VFP registers of the appropriate type unallocated then the argument is
3027   // allocated to the lowest-numbered sequence of such registers.
3028   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3029   // unallocated are marked as unavailable.
3030   unsigned AllocatedVFP = 0;
3031   int VFPRegs[16] = { 0 };
3032   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3033   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3034        it != ie; ++it) {
3035     unsigned PreAllocation = AllocatedVFP;
3036     bool IsHA = false;
3037     // 6.1.2.3 There is one VFP co-processor register class using registers
3038     // s0-s15 (d0-d7) for passing arguments.
3039     const unsigned NumVFPs = 16;
3040     it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3041     // If we do not have enough VFP registers for the HA, any VFP registers
3042     // that are unallocated are marked as unavailable. To achieve this, we add
3043     // padding of (NumVFPs - PreAllocation) floats.
3044     if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3045       llvm::Type *PaddingTy = llvm::ArrayType::get(
3046           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3047       it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3048     }
3049   }
3050 
3051   // Always honor user-specified calling convention.
3052   if (FI.getCallingConvention() != llvm::CallingConv::C)
3053     return;
3054 
3055   // Calling convention as default by an ABI.
3056   llvm::CallingConv::ID DefaultCC;
3057   if (getContext().getTargetInfo().getTriple().getEnvironmentName()=="gnueabihf")
3058     DefaultCC = llvm::CallingConv::ARM_AAPCS_VFP;
3059   else if (isEABI())
3060     DefaultCC = llvm::CallingConv::ARM_AAPCS;
3061   else
3062     DefaultCC = llvm::CallingConv::ARM_APCS;
3063 
3064   // If user did not ask for specific calling convention explicitly (e.g. via
3065   // pcs attribute), set effective calling convention if it's different than ABI
3066   // default.
3067   switch (getABIKind()) {
3068   case APCS:
3069     if (DefaultCC != llvm::CallingConv::ARM_APCS)
3070       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
3071     break;
3072   case AAPCS:
3073     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
3074       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
3075     break;
3076   case AAPCS_VFP:
3077     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
3078       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
3079     break;
3080   }
3081 }
3082 
3083 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3084 /// aggregate.  If HAMembers is non-null, the number of base elements
3085 /// contained in the type is returned through it; this is used for the
3086 /// recursive calls that check aggregate component types.
3087 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3088                                    ASTContext &Context,
3089                                    uint64_t *HAMembers = 0) {
3090   uint64_t Members = 0;
3091   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3092     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3093       return false;
3094     Members *= AT->getSize().getZExtValue();
3095   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3096     const RecordDecl *RD = RT->getDecl();
3097     if (RD->hasFlexibleArrayMember())
3098       return false;
3099 
3100     Members = 0;
3101     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3102          i != e; ++i) {
3103       const FieldDecl *FD = *i;
3104       uint64_t FldMembers;
3105       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3106         return false;
3107 
3108       Members = (RD->isUnion() ?
3109                  std::max(Members, FldMembers) : Members + FldMembers);
3110     }
3111   } else {
3112     Members = 1;
3113     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3114       Members = 2;
3115       Ty = CT->getElementType();
3116     }
3117 
3118     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3119     // double, or 64-bit or 128-bit vectors.
3120     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3121       if (BT->getKind() != BuiltinType::Float &&
3122           BT->getKind() != BuiltinType::Double &&
3123           BT->getKind() != BuiltinType::LongDouble)
3124         return false;
3125     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3126       unsigned VecSize = Context.getTypeSize(VT);
3127       if (VecSize != 64 && VecSize != 128)
3128         return false;
3129     } else {
3130       return false;
3131     }
3132 
3133     // The base type must be the same for all members.  Vector types of the
3134     // same total size are treated as being equivalent here.
3135     const Type *TyPtr = Ty.getTypePtr();
3136     if (!Base)
3137       Base = TyPtr;
3138     if (Base != TyPtr &&
3139         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3140          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3141       return false;
3142   }
3143 
3144   // Homogeneous Aggregates can have at most 4 members of the base type.
3145   if (HAMembers)
3146     *HAMembers = Members;
3147 
3148   return (Members > 0 && Members <= 4);
3149 }
3150 
3151 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3152 /// number of VFP registers (unit is S register) requested.
3153 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3154                               unsigned Alignment,
3155                               unsigned NumRequired) {
3156   // Early Exit.
3157   if (AllocatedVFP >= 16)
3158     return;
3159   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3160   // VFP registers of the appropriate type unallocated then the argument is
3161   // allocated to the lowest-numbered sequence of such registers.
3162   for (unsigned I = 0; I < 16; I += Alignment) {
3163     bool FoundSlot = true;
3164     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3165       if (J >= 16 || VFPRegs[J]) {
3166          FoundSlot = false;
3167          break;
3168       }
3169     if (FoundSlot) {
3170       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3171         VFPRegs[J] = 1;
3172       AllocatedVFP += NumRequired;
3173       return;
3174     }
3175   }
3176   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3177   // unallocated are marked as unavailable.
3178   for (unsigned I = 0; I < 16; I++)
3179     VFPRegs[I] = 1;
3180   AllocatedVFP = 17; // We do not have enough VFP registers.
3181 }
3182 
3183 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3184                                             unsigned &AllocatedVFP,
3185                                             bool &IsHA) const {
3186   // We update number of allocated VFPs according to
3187   // 6.1.2.1 The following argument types are VFP CPRCs:
3188   //   A single-precision floating-point type (including promoted
3189   //   half-precision types); A double-precision floating-point type;
3190   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3191   //   with a Base Type of a single- or double-precision floating-point type,
3192   //   64-bit containerized vectors or 128-bit containerized vectors with one
3193   //   to four Elements.
3194 
3195   // Handle illegal vector types here.
3196   if (isIllegalVectorType(Ty)) {
3197     uint64_t Size = getContext().getTypeSize(Ty);
3198     if (Size <= 32) {
3199       llvm::Type *ResType =
3200           llvm::Type::getInt32Ty(getVMContext());
3201       return ABIArgInfo::getDirect(ResType);
3202     }
3203     if (Size == 64) {
3204       llvm::Type *ResType = llvm::VectorType::get(
3205           llvm::Type::getInt32Ty(getVMContext()), 2);
3206       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3207       return ABIArgInfo::getDirect(ResType);
3208     }
3209     if (Size == 128) {
3210       llvm::Type *ResType = llvm::VectorType::get(
3211           llvm::Type::getInt32Ty(getVMContext()), 4);
3212       markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3213       return ABIArgInfo::getDirect(ResType);
3214     }
3215     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3216   }
3217   // Update VFPRegs for legal vector types.
3218   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3219     uint64_t Size = getContext().getTypeSize(VT);
3220     // Size of a legal vector should be power of 2 and above 64.
3221     markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3222   }
3223   // Update VFPRegs for floating point types.
3224   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3225     if (BT->getKind() == BuiltinType::Half ||
3226         BT->getKind() == BuiltinType::Float)
3227       markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3228     if (BT->getKind() == BuiltinType::Double ||
3229         BT->getKind() == BuiltinType::LongDouble)
3230       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3231   }
3232 
3233   if (!isAggregateTypeForABI(Ty)) {
3234     // Treat an enum type as its underlying type.
3235     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3236       Ty = EnumTy->getDecl()->getIntegerType();
3237 
3238     return (Ty->isPromotableIntegerType() ?
3239             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3240   }
3241 
3242   // Ignore empty records.
3243   if (isEmptyRecord(getContext(), Ty, true))
3244     return ABIArgInfo::getIgnore();
3245 
3246   // Structures with either a non-trivial destructor or a non-trivial
3247   // copy constructor are always indirect.
3248   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3249     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3250 
3251   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3252     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3253     // into VFP registers.
3254     const Type *Base = 0;
3255     uint64_t Members = 0;
3256     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3257       assert(Base && "Base class should be set for homogeneous aggregate");
3258       // Base can be a floating-point or a vector.
3259       if (Base->isVectorType()) {
3260         // ElementSize is in number of floats.
3261         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3262         markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3263                           Members * ElementSize);
3264       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3265         markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3266       else {
3267         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3268                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3269         markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3270       }
3271       IsHA = true;
3272       return ABIArgInfo::getExpand();
3273     }
3274   }
3275 
3276   // Support byval for ARM.
3277   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3278   // most 8-byte. We realign the indirect argument if type alignment is bigger
3279   // than ABI alignment.
3280   uint64_t ABIAlign = 4;
3281   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3282   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3283       getABIKind() == ARMABIInfo::AAPCS)
3284     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3285   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3286     return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3287            /*Realign=*/TyAlign > ABIAlign);
3288   }
3289 
3290   // Otherwise, pass by coercing to a structure of the appropriate size.
3291   llvm::Type* ElemTy;
3292   unsigned SizeRegs;
3293   // FIXME: Try to match the types of the arguments more accurately where
3294   // we can.
3295   if (getContext().getTypeAlign(Ty) <= 32) {
3296     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3297     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3298   } else {
3299     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3300     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3301   }
3302 
3303   llvm::Type *STy =
3304     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3305   return ABIArgInfo::getDirect(STy);
3306 }
3307 
3308 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3309                               llvm::LLVMContext &VMContext) {
3310   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3311   // is called integer-like if its size is less than or equal to one word, and
3312   // the offset of each of its addressable sub-fields is zero.
3313 
3314   uint64_t Size = Context.getTypeSize(Ty);
3315 
3316   // Check that the type fits in a word.
3317   if (Size > 32)
3318     return false;
3319 
3320   // FIXME: Handle vector types!
3321   if (Ty->isVectorType())
3322     return false;
3323 
3324   // Float types are never treated as "integer like".
3325   if (Ty->isRealFloatingType())
3326     return false;
3327 
3328   // If this is a builtin or pointer type then it is ok.
3329   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3330     return true;
3331 
3332   // Small complex integer types are "integer like".
3333   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3334     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3335 
3336   // Single element and zero sized arrays should be allowed, by the definition
3337   // above, but they are not.
3338 
3339   // Otherwise, it must be a record type.
3340   const RecordType *RT = Ty->getAs<RecordType>();
3341   if (!RT) return false;
3342 
3343   // Ignore records with flexible arrays.
3344   const RecordDecl *RD = RT->getDecl();
3345   if (RD->hasFlexibleArrayMember())
3346     return false;
3347 
3348   // Check that all sub-fields are at offset 0, and are themselves "integer
3349   // like".
3350   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3351 
3352   bool HadField = false;
3353   unsigned idx = 0;
3354   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3355        i != e; ++i, ++idx) {
3356     const FieldDecl *FD = *i;
3357 
3358     // Bit-fields are not addressable, we only need to verify they are "integer
3359     // like". We still have to disallow a subsequent non-bitfield, for example:
3360     //   struct { int : 0; int x }
3361     // is non-integer like according to gcc.
3362     if (FD->isBitField()) {
3363       if (!RD->isUnion())
3364         HadField = true;
3365 
3366       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3367         return false;
3368 
3369       continue;
3370     }
3371 
3372     // Check if this field is at offset 0.
3373     if (Layout.getFieldOffset(idx) != 0)
3374       return false;
3375 
3376     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3377       return false;
3378 
3379     // Only allow at most one field in a structure. This doesn't match the
3380     // wording above, but follows gcc in situations with a field following an
3381     // empty structure.
3382     if (!RD->isUnion()) {
3383       if (HadField)
3384         return false;
3385 
3386       HadField = true;
3387     }
3388   }
3389 
3390   return true;
3391 }
3392 
3393 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3394   if (RetTy->isVoidType())
3395     return ABIArgInfo::getIgnore();
3396 
3397   // Large vector types should be returned via memory.
3398   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3399     return ABIArgInfo::getIndirect(0);
3400 
3401   if (!isAggregateTypeForABI(RetTy)) {
3402     // Treat an enum type as its underlying type.
3403     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3404       RetTy = EnumTy->getDecl()->getIntegerType();
3405 
3406     return (RetTy->isPromotableIntegerType() ?
3407             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3408   }
3409 
3410   // Structures with either a non-trivial destructor or a non-trivial
3411   // copy constructor are always indirect.
3412   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3413     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3414 
3415   // Are we following APCS?
3416   if (getABIKind() == APCS) {
3417     if (isEmptyRecord(getContext(), RetTy, false))
3418       return ABIArgInfo::getIgnore();
3419 
3420     // Complex types are all returned as packed integers.
3421     //
3422     // FIXME: Consider using 2 x vector types if the back end handles them
3423     // correctly.
3424     if (RetTy->isAnyComplexType())
3425       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3426                                               getContext().getTypeSize(RetTy)));
3427 
3428     // Integer like structures are returned in r0.
3429     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3430       // Return in the smallest viable integer type.
3431       uint64_t Size = getContext().getTypeSize(RetTy);
3432       if (Size <= 8)
3433         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3434       if (Size <= 16)
3435         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3436       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3437     }
3438 
3439     // Otherwise return in memory.
3440     return ABIArgInfo::getIndirect(0);
3441   }
3442 
3443   // Otherwise this is an AAPCS variant.
3444 
3445   if (isEmptyRecord(getContext(), RetTy, true))
3446     return ABIArgInfo::getIgnore();
3447 
3448   // Check for homogeneous aggregates with AAPCS-VFP.
3449   if (getABIKind() == AAPCS_VFP) {
3450     const Type *Base = 0;
3451     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3452       assert(Base && "Base class should be set for homogeneous aggregate");
3453       // Homogeneous Aggregates are returned directly.
3454       return ABIArgInfo::getDirect();
3455     }
3456   }
3457 
3458   // Aggregates <= 4 bytes are returned in r0; other aggregates
3459   // are returned indirectly.
3460   uint64_t Size = getContext().getTypeSize(RetTy);
3461   if (Size <= 32) {
3462     // Return in the smallest viable integer type.
3463     if (Size <= 8)
3464       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3465     if (Size <= 16)
3466       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3467     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3468   }
3469 
3470   return ABIArgInfo::getIndirect(0);
3471 }
3472 
3473 /// isIllegalVector - check whether Ty is an illegal vector type.
3474 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3475   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3476     // Check whether VT is legal.
3477     unsigned NumElements = VT->getNumElements();
3478     uint64_t Size = getContext().getTypeSize(VT);
3479     // NumElements should be power of 2.
3480     if ((NumElements & (NumElements - 1)) != 0)
3481       return true;
3482     // Size should be greater than 32 bits.
3483     return Size <= 32;
3484   }
3485   return false;
3486 }
3487 
3488 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3489                                    CodeGenFunction &CGF) const {
3490   llvm::Type *BP = CGF.Int8PtrTy;
3491   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3492 
3493   CGBuilderTy &Builder = CGF.Builder;
3494   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3495   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3496 
3497   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3498   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3499   bool IsIndirect = false;
3500 
3501   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3502   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3503   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3504       getABIKind() == ARMABIInfo::AAPCS)
3505     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3506   else
3507     TyAlign = 4;
3508   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3509   if (isIllegalVectorType(Ty) && Size > 16) {
3510     IsIndirect = true;
3511     Size = 4;
3512     TyAlign = 4;
3513   }
3514 
3515   // Handle address alignment for ABI alignment > 4 bytes.
3516   if (TyAlign > 4) {
3517     assert((TyAlign & (TyAlign - 1)) == 0 &&
3518            "Alignment is not power of 2!");
3519     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3520     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3521     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3522     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3523   }
3524 
3525   uint64_t Offset =
3526     llvm::RoundUpToAlignment(Size, 4);
3527   llvm::Value *NextAddr =
3528     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3529                       "ap.next");
3530   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3531 
3532   if (IsIndirect)
3533     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3534   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3535     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3536     // may not be correctly aligned for the vector type. We create an aligned
3537     // temporary space and copy the content over from ap.cur to the temporary
3538     // space. This is necessary if the natural alignment of the type is greater
3539     // than the ABI alignment.
3540     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3541     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3542     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3543                                                     "var.align");
3544     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3545     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3546     Builder.CreateMemCpy(Dst, Src,
3547         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3548         TyAlign, false);
3549     Addr = AlignedTemp; //The content is in aligned location.
3550   }
3551   llvm::Type *PTy =
3552     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3553   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3554 
3555   return AddrTyped;
3556 }
3557 
3558 namespace {
3559 
3560 class NaClARMABIInfo : public ABIInfo {
3561  public:
3562   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3563       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3564   virtual void computeInfo(CGFunctionInfo &FI) const;
3565   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3566                                  CodeGenFunction &CGF) const;
3567  private:
3568   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3569   ARMABIInfo NInfo; // Used for everything else.
3570 };
3571 
3572 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3573  public:
3574   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3575       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3576 };
3577 
3578 }
3579 
3580 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3581   if (FI.getASTCallingConvention() == CC_PnaclCall)
3582     PInfo.computeInfo(FI);
3583   else
3584     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3585 }
3586 
3587 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3588                                        CodeGenFunction &CGF) const {
3589   // Always use the native convention; calling pnacl-style varargs functions
3590   // is unsupported.
3591   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3592 }
3593 
3594 //===----------------------------------------------------------------------===//
3595 // AArch64 ABI Implementation
3596 //===----------------------------------------------------------------------===//
3597 
3598 namespace {
3599 
3600 class AArch64ABIInfo : public ABIInfo {
3601 public:
3602   AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3603 
3604 private:
3605   // The AArch64 PCS is explicit about return types and argument types being
3606   // handled identically, so we don't need to draw a distinction between
3607   // Argument and Return classification.
3608   ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3609                                  int &FreeVFPRegs) const;
3610 
3611   ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3612                         llvm::Type *DirectTy = 0) const;
3613 
3614   virtual void computeInfo(CGFunctionInfo &FI) const;
3615 
3616   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3617                                  CodeGenFunction &CGF) const;
3618 };
3619 
3620 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3621 public:
3622   AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3623     :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3624 
3625   const AArch64ABIInfo &getABIInfo() const {
3626     return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3627   }
3628 
3629   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3630     return 31;
3631   }
3632 
3633   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3634                                llvm::Value *Address) const {
3635     // 0-31 are x0-x30 and sp: 8 bytes each
3636     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3637     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3638 
3639     // 64-95 are v0-v31: 16 bytes each
3640     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3641     AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3642 
3643     return false;
3644   }
3645 
3646 };
3647 
3648 }
3649 
3650 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3651   int FreeIntRegs = 8, FreeVFPRegs = 8;
3652 
3653   FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3654                                            FreeIntRegs, FreeVFPRegs);
3655 
3656   FreeIntRegs = FreeVFPRegs = 8;
3657   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3658        it != ie; ++it) {
3659     it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3660 
3661   }
3662 }
3663 
3664 ABIArgInfo
3665 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3666                            bool IsInt, llvm::Type *DirectTy) const {
3667   if (FreeRegs >= RegsNeeded) {
3668     FreeRegs -= RegsNeeded;
3669     return ABIArgInfo::getDirect(DirectTy);
3670   }
3671 
3672   llvm::Type *Padding = 0;
3673 
3674   // We need padding so that later arguments don't get filled in anyway. That
3675   // wouldn't happen if only ByVal arguments followed in the same category, but
3676   // a large structure will simply seem to be a pointer as far as LLVM is
3677   // concerned.
3678   if (FreeRegs > 0) {
3679     if (IsInt)
3680       Padding = llvm::Type::getInt64Ty(getVMContext());
3681     else
3682       Padding = llvm::Type::getFloatTy(getVMContext());
3683 
3684     // Either [N x i64] or [N x float].
3685     Padding = llvm::ArrayType::get(Padding, FreeRegs);
3686     FreeRegs = 0;
3687   }
3688 
3689   return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3690                                  /*IsByVal=*/ true, /*Realign=*/ false,
3691                                  Padding);
3692 }
3693 
3694 
3695 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3696                                                int &FreeIntRegs,
3697                                                int &FreeVFPRegs) const {
3698   // Can only occurs for return, but harmless otherwise.
3699   if (Ty->isVoidType())
3700     return ABIArgInfo::getIgnore();
3701 
3702   // Large vector types should be returned via memory. There's no such concept
3703   // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3704   // classified they'd go into memory (see B.3).
3705   if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3706     if (FreeIntRegs > 0)
3707       --FreeIntRegs;
3708     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3709   }
3710 
3711   // All non-aggregate LLVM types have a concrete ABI representation so they can
3712   // be passed directly. After this block we're guaranteed to be in a
3713   // complicated case.
3714   if (!isAggregateTypeForABI(Ty)) {
3715     // Treat an enum type as its underlying type.
3716     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3717       Ty = EnumTy->getDecl()->getIntegerType();
3718 
3719     if (Ty->isFloatingType() || Ty->isVectorType())
3720       return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3721 
3722     assert(getContext().getTypeSize(Ty) <= 128 &&
3723            "unexpectedly large scalar type");
3724 
3725     int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3726 
3727     // If the type may need padding registers to ensure "alignment", we must be
3728     // careful when this is accounted for. Increasing the effective size covers
3729     // all cases.
3730     if (getContext().getTypeAlign(Ty) == 128)
3731       RegsNeeded += FreeIntRegs % 2 != 0;
3732 
3733     return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3734   }
3735 
3736   // Structures with either a non-trivial destructor or a non-trivial
3737   // copy constructor are always indirect.
3738   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3739     if (FreeIntRegs > 0)
3740       --FreeIntRegs;
3741     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3742   }
3743 
3744   if (isEmptyRecord(getContext(), Ty, true)) {
3745     if (!getContext().getLangOpts().CPlusPlus) {
3746       // Empty structs outside C++ mode are a GNU extension, so no ABI can
3747       // possibly tell us what to do. It turns out (I believe) that GCC ignores
3748       // the object for parameter-passsing purposes.
3749       return ABIArgInfo::getIgnore();
3750     }
3751 
3752     // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3753     // description of va_arg in the PCS require that an empty struct does
3754     // actually occupy space for parameter-passing. I'm hoping for a
3755     // clarification giving an explicit paragraph to point to in future.
3756     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3757                       llvm::Type::getInt8Ty(getVMContext()));
3758   }
3759 
3760   // Homogeneous vector aggregates get passed in registers or on the stack.
3761   const Type *Base = 0;
3762   uint64_t NumMembers = 0;
3763   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3764     assert(Base && "Base class should be set for homogeneous aggregate");
3765     // Homogeneous aggregates are passed and returned directly.
3766     return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3767                       /*IsInt=*/ false);
3768   }
3769 
3770   uint64_t Size = getContext().getTypeSize(Ty);
3771   if (Size <= 128) {
3772     // Small structs can use the same direct type whether they're in registers
3773     // or on the stack.
3774     llvm::Type *BaseTy;
3775     unsigned NumBases;
3776     int SizeInRegs = (Size + 63) / 64;
3777 
3778     if (getContext().getTypeAlign(Ty) == 128) {
3779       BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3780       NumBases = 1;
3781 
3782       // If the type may need padding registers to ensure "alignment", we must
3783       // be careful when this is accounted for. Increasing the effective size
3784       // covers all cases.
3785       SizeInRegs += FreeIntRegs % 2 != 0;
3786     } else {
3787       BaseTy = llvm::Type::getInt64Ty(getVMContext());
3788       NumBases = SizeInRegs;
3789     }
3790     llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3791 
3792     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3793                       /*IsInt=*/ true, DirectTy);
3794   }
3795 
3796   // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3797   // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3798   --FreeIntRegs;
3799   return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3800 }
3801 
3802 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3803                                        CodeGenFunction &CGF) const {
3804   // The AArch64 va_list type and handling is specified in the Procedure Call
3805   // Standard, section B.4:
3806   //
3807   // struct {
3808   //   void *__stack;
3809   //   void *__gr_top;
3810   //   void *__vr_top;
3811   //   int __gr_offs;
3812   //   int __vr_offs;
3813   // };
3814 
3815   assert(!CGF.CGM.getDataLayout().isBigEndian()
3816          && "va_arg not implemented for big-endian AArch64");
3817 
3818   int FreeIntRegs = 8, FreeVFPRegs = 8;
3819   Ty = CGF.getContext().getCanonicalType(Ty);
3820   ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3821 
3822   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3823   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3824   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3825   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3826 
3827   llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3828   int reg_top_index;
3829   int RegSize;
3830   if (FreeIntRegs < 8) {
3831     assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3832     // 3 is the field number of __gr_offs
3833     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3834     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3835     reg_top_index = 1; // field number for __gr_top
3836     RegSize = 8 * (8 - FreeIntRegs);
3837   } else {
3838     assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3839     // 4 is the field number of __vr_offs.
3840     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3841     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3842     reg_top_index = 2; // field number for __vr_top
3843     RegSize = 16 * (8 - FreeVFPRegs);
3844   }
3845 
3846   //=======================================
3847   // Find out where argument was passed
3848   //=======================================
3849 
3850   // If reg_offs >= 0 we're already using the stack for this type of
3851   // argument. We don't want to keep updating reg_offs (in case it overflows,
3852   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3853   // whatever they get).
3854   llvm::Value *UsingStack = 0;
3855   UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
3856                                          llvm::ConstantInt::get(CGF.Int32Ty, 0));
3857 
3858   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3859 
3860   // Otherwise, at least some kind of argument could go in these registers, the
3861   // quesiton is whether this particular type is too big.
3862   CGF.EmitBlock(MaybeRegBlock);
3863 
3864   // Integer arguments may need to correct register alignment (for example a
3865   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3866   // align __gr_offs to calculate the potential address.
3867   if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
3868     int Align = getContext().getTypeAlign(Ty) / 8;
3869 
3870     reg_offs = CGF.Builder.CreateAdd(reg_offs,
3871                                  llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3872                                  "align_regoffs");
3873     reg_offs = CGF.Builder.CreateAnd(reg_offs,
3874                                     llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3875                                     "aligned_regoffs");
3876   }
3877 
3878   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3879   llvm::Value *NewOffset = 0;
3880   NewOffset = CGF.Builder.CreateAdd(reg_offs,
3881                                     llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
3882                                     "new_reg_offs");
3883   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3884 
3885   // Now we're in a position to decide whether this argument really was in
3886   // registers or not.
3887   llvm::Value *InRegs = 0;
3888   InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
3889                                      llvm::ConstantInt::get(CGF.Int32Ty, 0),
3890                                      "inreg");
3891 
3892   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
3893 
3894   //=======================================
3895   // Argument was in registers
3896   //=======================================
3897 
3898   // Now we emit the code for if the argument was originally passed in
3899   // registers. First start the appropriate block:
3900   CGF.EmitBlock(InRegBlock);
3901 
3902   llvm::Value *reg_top_p = 0, *reg_top = 0;
3903   reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
3904   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
3905   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
3906   llvm::Value *RegAddr = 0;
3907   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
3908 
3909   if (!AI.isDirect()) {
3910     // If it's been passed indirectly (actually a struct), whatever we find from
3911     // stored registers or on the stack will actually be a struct **.
3912     MemTy = llvm::PointerType::getUnqual(MemTy);
3913   }
3914 
3915   const Type *Base = 0;
3916   uint64_t NumMembers;
3917   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
3918       && NumMembers > 1) {
3919     // Homogeneous aggregates passed in registers will have their elements split
3920     // and stored 16-bytes apart regardless of size (they're notionally in qN,
3921     // qN+1, ...). We reload and store into a temporary local variable
3922     // contiguously.
3923     assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
3924     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
3925     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
3926     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
3927 
3928     for (unsigned i = 0; i < NumMembers; ++i) {
3929       llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
3930       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
3931       LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
3932                                            llvm::PointerType::getUnqual(BaseTy));
3933       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
3934 
3935       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
3936       CGF.Builder.CreateStore(Elem, StoreAddr);
3937     }
3938 
3939     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
3940   } else {
3941     // Otherwise the object is contiguous in memory
3942     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
3943   }
3944 
3945   CGF.EmitBranch(ContBlock);
3946 
3947   //=======================================
3948   // Argument was on the stack
3949   //=======================================
3950   CGF.EmitBlock(OnStackBlock);
3951 
3952   llvm::Value *stack_p = 0, *OnStackAddr = 0;
3953   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
3954   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
3955 
3956   // Again, stack arguments may need realigmnent. In this case both integer and
3957   // floating-point ones might be affected.
3958   if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
3959     int Align = getContext().getTypeAlign(Ty) / 8;
3960 
3961     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3962 
3963     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
3964                                  llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
3965                                  "align_stack");
3966     OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
3967                                     llvm::ConstantInt::get(CGF.Int64Ty, -Align),
3968                                     "align_stack");
3969 
3970     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3971   }
3972 
3973   uint64_t StackSize;
3974   if (AI.isDirect())
3975     StackSize = getContext().getTypeSize(Ty) / 8;
3976   else
3977     StackSize = 8;
3978 
3979   // All stack slots are 8 bytes
3980   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
3981 
3982   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
3983   llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
3984                                                 "new_stack");
3985 
3986   // Write the new value of __stack for the next call to va_arg
3987   CGF.Builder.CreateStore(NewStack, stack_p);
3988 
3989   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
3990 
3991   CGF.EmitBranch(ContBlock);
3992 
3993   //=======================================
3994   // Tidy up
3995   //=======================================
3996   CGF.EmitBlock(ContBlock);
3997 
3998   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
3999   ResAddr->addIncoming(RegAddr, InRegBlock);
4000   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4001 
4002   if (AI.isDirect())
4003     return ResAddr;
4004 
4005   return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4006 }
4007 
4008 //===----------------------------------------------------------------------===//
4009 // NVPTX ABI Implementation
4010 //===----------------------------------------------------------------------===//
4011 
4012 namespace {
4013 
4014 class NVPTXABIInfo : public ABIInfo {
4015 public:
4016   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4017 
4018   ABIArgInfo classifyReturnType(QualType RetTy) const;
4019   ABIArgInfo classifyArgumentType(QualType Ty) const;
4020 
4021   virtual void computeInfo(CGFunctionInfo &FI) const;
4022   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4023                                  CodeGenFunction &CFG) const;
4024 };
4025 
4026 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4027 public:
4028   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4029     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4030 
4031   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4032                                    CodeGen::CodeGenModule &M) const;
4033 };
4034 
4035 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4036   if (RetTy->isVoidType())
4037     return ABIArgInfo::getIgnore();
4038   if (isAggregateTypeForABI(RetTy))
4039     return ABIArgInfo::getIndirect(0);
4040   return ABIArgInfo::getDirect();
4041 }
4042 
4043 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4044   if (isAggregateTypeForABI(Ty))
4045     return ABIArgInfo::getIndirect(0);
4046 
4047   return ABIArgInfo::getDirect();
4048 }
4049 
4050 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4051   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4052   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4053        it != ie; ++it)
4054     it->info = classifyArgumentType(it->type);
4055 
4056   // Always honor user-specified calling convention.
4057   if (FI.getCallingConvention() != llvm::CallingConv::C)
4058     return;
4059 
4060   // Calling convention as default by an ABI.
4061   // We're still using the PTX_Kernel/PTX_Device calling conventions here,
4062   // but we should switch to NVVM metadata later on.
4063   llvm::CallingConv::ID DefaultCC;
4064   const LangOptions &LangOpts = getContext().getLangOpts();
4065   if (LangOpts.OpenCL || LangOpts.CUDA) {
4066     // If we are in OpenCL or CUDA mode, then default to device functions
4067     DefaultCC = llvm::CallingConv::PTX_Device;
4068   } else {
4069     // If we are in standard C/C++ mode, use the triple to decide on the default
4070     StringRef Env =
4071       getContext().getTargetInfo().getTriple().getEnvironmentName();
4072     if (Env == "device")
4073       DefaultCC = llvm::CallingConv::PTX_Device;
4074     else
4075       DefaultCC = llvm::CallingConv::PTX_Kernel;
4076   }
4077   FI.setEffectiveCallingConvention(DefaultCC);
4078 
4079 }
4080 
4081 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4082                                      CodeGenFunction &CFG) const {
4083   llvm_unreachable("NVPTX does not support varargs");
4084 }
4085 
4086 void NVPTXTargetCodeGenInfo::
4087 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4088                     CodeGen::CodeGenModule &M) const{
4089   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4090   if (!FD) return;
4091 
4092   llvm::Function *F = cast<llvm::Function>(GV);
4093 
4094   // Perform special handling in OpenCL mode
4095   if (M.getLangOpts().OpenCL) {
4096     // Use OpenCL function attributes to set proper calling conventions
4097     // By default, all functions are device functions
4098     if (FD->hasAttr<OpenCLKernelAttr>()) {
4099       // OpenCL __kernel functions get a kernel calling convention
4100       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
4101       // And kernel functions are not subject to inlining
4102       F->addFnAttr(llvm::Attribute::NoInline);
4103     }
4104   }
4105 
4106   // Perform special handling in CUDA mode.
4107   if (M.getLangOpts().CUDA) {
4108     // CUDA __global__ functions get a kernel calling convention.  Since
4109     // __global__ functions cannot be called from the device, we do not
4110     // need to set the noinline attribute.
4111     if (FD->getAttr<CUDAGlobalAttr>())
4112       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
4113   }
4114 }
4115 
4116 }
4117 
4118 //===----------------------------------------------------------------------===//
4119 // MBlaze ABI Implementation
4120 //===----------------------------------------------------------------------===//
4121 
4122 namespace {
4123 
4124 class MBlazeABIInfo : public ABIInfo {
4125 public:
4126   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4127 
4128   bool isPromotableIntegerType(QualType Ty) const;
4129 
4130   ABIArgInfo classifyReturnType(QualType RetTy) const;
4131   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4132 
4133   virtual void computeInfo(CGFunctionInfo &FI) const {
4134     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4135     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4136          it != ie; ++it)
4137       it->info = classifyArgumentType(it->type);
4138   }
4139 
4140   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4141                                  CodeGenFunction &CGF) const;
4142 };
4143 
4144 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
4145 public:
4146   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
4147     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
4148   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4149                            CodeGen::CodeGenModule &M) const;
4150 };
4151 
4152 }
4153 
4154 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
4155   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
4156   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4157     switch (BT->getKind()) {
4158     case BuiltinType::Bool:
4159     case BuiltinType::Char_S:
4160     case BuiltinType::Char_U:
4161     case BuiltinType::SChar:
4162     case BuiltinType::UChar:
4163     case BuiltinType::Short:
4164     case BuiltinType::UShort:
4165       return true;
4166     default:
4167       return false;
4168     }
4169   return false;
4170 }
4171 
4172 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4173                                       CodeGenFunction &CGF) const {
4174   // FIXME: Implement
4175   return 0;
4176 }
4177 
4178 
4179 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
4180   if (RetTy->isVoidType())
4181     return ABIArgInfo::getIgnore();
4182   if (isAggregateTypeForABI(RetTy))
4183     return ABIArgInfo::getIndirect(0);
4184 
4185   return (isPromotableIntegerType(RetTy) ?
4186           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4187 }
4188 
4189 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
4190   if (isAggregateTypeForABI(Ty))
4191     return ABIArgInfo::getIndirect(0);
4192 
4193   return (isPromotableIntegerType(Ty) ?
4194           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4195 }
4196 
4197 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4198                                                   llvm::GlobalValue *GV,
4199                                                   CodeGen::CodeGenModule &M)
4200                                                   const {
4201   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4202   if (!FD) return;
4203 
4204   llvm::CallingConv::ID CC = llvm::CallingConv::C;
4205   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
4206     CC = llvm::CallingConv::MBLAZE_INTR;
4207   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
4208     CC = llvm::CallingConv::MBLAZE_SVOL;
4209 
4210   if (CC != llvm::CallingConv::C) {
4211       // Handle 'interrupt_handler' attribute:
4212       llvm::Function *F = cast<llvm::Function>(GV);
4213 
4214       // Step 1: Set ISR calling convention.
4215       F->setCallingConv(CC);
4216 
4217       // Step 2: Add attributes goodness.
4218       F->addFnAttr(llvm::Attribute::NoInline);
4219   }
4220 
4221   // Step 3: Emit _interrupt_handler alias.
4222   if (CC == llvm::CallingConv::MBLAZE_INTR)
4223     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4224                           "_interrupt_handler", GV, &M.getModule());
4225 }
4226 
4227 
4228 //===----------------------------------------------------------------------===//
4229 // MSP430 ABI Implementation
4230 //===----------------------------------------------------------------------===//
4231 
4232 namespace {
4233 
4234 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4235 public:
4236   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4237     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4238   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4239                            CodeGen::CodeGenModule &M) const;
4240 };
4241 
4242 }
4243 
4244 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4245                                                   llvm::GlobalValue *GV,
4246                                              CodeGen::CodeGenModule &M) const {
4247   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4248     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4249       // Handle 'interrupt' attribute:
4250       llvm::Function *F = cast<llvm::Function>(GV);
4251 
4252       // Step 1: Set ISR calling convention.
4253       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4254 
4255       // Step 2: Add attributes goodness.
4256       F->addFnAttr(llvm::Attribute::NoInline);
4257 
4258       // Step 3: Emit ISR vector alias.
4259       unsigned Num = attr->getNumber() / 2;
4260       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4261                             "__isr_" + Twine(Num),
4262                             GV, &M.getModule());
4263     }
4264   }
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 // MIPS ABI Implementation.  This works for both little-endian and
4269 // big-endian variants.
4270 //===----------------------------------------------------------------------===//
4271 
4272 namespace {
4273 class MipsABIInfo : public ABIInfo {
4274   bool IsO32;
4275   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4276   void CoerceToIntArgs(uint64_t TySize,
4277                        SmallVector<llvm::Type*, 8> &ArgList) const;
4278   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4279   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4280   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4281 public:
4282   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4283     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4284     StackAlignInBytes(IsO32 ? 8 : 16) {}
4285 
4286   ABIArgInfo classifyReturnType(QualType RetTy) const;
4287   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4288   virtual void computeInfo(CGFunctionInfo &FI) const;
4289   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4290                                  CodeGenFunction &CGF) const;
4291 };
4292 
4293 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4294   unsigned SizeOfUnwindException;
4295 public:
4296   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4297     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4298       SizeOfUnwindException(IsO32 ? 24 : 32) {}
4299 
4300   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4301     return 29;
4302   }
4303 
4304   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4305                            CodeGen::CodeGenModule &CGM) const {
4306     //
4307     // can fill this in when new attribute work in llvm is done.
4308     // attributes mips16 and nomips16 need to be handled here.
4309     //
4310   }
4311   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4312                                llvm::Value *Address) const;
4313 
4314   unsigned getSizeOfUnwindException() const {
4315     return SizeOfUnwindException;
4316   }
4317 };
4318 }
4319 
4320 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4321                                   SmallVector<llvm::Type*, 8> &ArgList) const {
4322   llvm::IntegerType *IntTy =
4323     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4324 
4325   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4326   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4327     ArgList.push_back(IntTy);
4328 
4329   // If necessary, add one more integer type to ArgList.
4330   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4331 
4332   if (R)
4333     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4334 }
4335 
4336 // In N32/64, an aligned double precision floating point field is passed in
4337 // a register.
4338 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4339   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4340 
4341   if (IsO32) {
4342     CoerceToIntArgs(TySize, ArgList);
4343     return llvm::StructType::get(getVMContext(), ArgList);
4344   }
4345 
4346   if (Ty->isComplexType())
4347     return CGT.ConvertType(Ty);
4348 
4349   const RecordType *RT = Ty->getAs<RecordType>();
4350 
4351   // Unions/vectors are passed in integer registers.
4352   if (!RT || !RT->isStructureOrClassType()) {
4353     CoerceToIntArgs(TySize, ArgList);
4354     return llvm::StructType::get(getVMContext(), ArgList);
4355   }
4356 
4357   const RecordDecl *RD = RT->getDecl();
4358   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4359   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4360 
4361   uint64_t LastOffset = 0;
4362   unsigned idx = 0;
4363   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4364 
4365   // Iterate over fields in the struct/class and check if there are any aligned
4366   // double fields.
4367   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4368        i != e; ++i, ++idx) {
4369     const QualType Ty = i->getType();
4370     const BuiltinType *BT = Ty->getAs<BuiltinType>();
4371 
4372     if (!BT || BT->getKind() != BuiltinType::Double)
4373       continue;
4374 
4375     uint64_t Offset = Layout.getFieldOffset(idx);
4376     if (Offset % 64) // Ignore doubles that are not aligned.
4377       continue;
4378 
4379     // Add ((Offset - LastOffset) / 64) args of type i64.
4380     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4381       ArgList.push_back(I64);
4382 
4383     // Add double type.
4384     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4385     LastOffset = Offset + 64;
4386   }
4387 
4388   CoerceToIntArgs(TySize - LastOffset, IntArgList);
4389   ArgList.append(IntArgList.begin(), IntArgList.end());
4390 
4391   return llvm::StructType::get(getVMContext(), ArgList);
4392 }
4393 
4394 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
4395   assert((Offset % MinABIStackAlignInBytes) == 0);
4396 
4397   if ((Align - 1) & Offset)
4398     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4399 
4400   return 0;
4401 }
4402 
4403 ABIArgInfo
4404 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4405   uint64_t OrigOffset = Offset;
4406   uint64_t TySize = getContext().getTypeSize(Ty);
4407   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4408 
4409   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4410                    (uint64_t)StackAlignInBytes);
4411   Offset = llvm::RoundUpToAlignment(Offset, Align);
4412   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4413 
4414   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4415     // Ignore empty aggregates.
4416     if (TySize == 0)
4417       return ABIArgInfo::getIgnore();
4418 
4419     // Records with non trivial destructors/constructors should not be passed
4420     // by value.
4421     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
4422       Offset = OrigOffset + MinABIStackAlignInBytes;
4423       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4424     }
4425 
4426     // If we have reached here, aggregates are passed directly by coercing to
4427     // another structure type. Padding is inserted if the offset of the
4428     // aggregate is unaligned.
4429     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4430                                  getPaddingType(Align, OrigOffset));
4431   }
4432 
4433   // Treat an enum type as its underlying type.
4434   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4435     Ty = EnumTy->getDecl()->getIntegerType();
4436 
4437   if (Ty->isPromotableIntegerType())
4438     return ABIArgInfo::getExtend();
4439 
4440   return ABIArgInfo::getDirect(0, 0,
4441                                IsO32 ? 0 : getPaddingType(Align, OrigOffset));
4442 }
4443 
4444 llvm::Type*
4445 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4446   const RecordType *RT = RetTy->getAs<RecordType>();
4447   SmallVector<llvm::Type*, 8> RTList;
4448 
4449   if (RT && RT->isStructureOrClassType()) {
4450     const RecordDecl *RD = RT->getDecl();
4451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4452     unsigned FieldCnt = Layout.getFieldCount();
4453 
4454     // N32/64 returns struct/classes in floating point registers if the
4455     // following conditions are met:
4456     // 1. The size of the struct/class is no larger than 128-bit.
4457     // 2. The struct/class has one or two fields all of which are floating
4458     //    point types.
4459     // 3. The offset of the first field is zero (this follows what gcc does).
4460     //
4461     // Any other composite results are returned in integer registers.
4462     //
4463     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4464       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4465       for (; b != e; ++b) {
4466         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4467 
4468         if (!BT || !BT->isFloatingPoint())
4469           break;
4470 
4471         RTList.push_back(CGT.ConvertType(b->getType()));
4472       }
4473 
4474       if (b == e)
4475         return llvm::StructType::get(getVMContext(), RTList,
4476                                      RD->hasAttr<PackedAttr>());
4477 
4478       RTList.clear();
4479     }
4480   }
4481 
4482   CoerceToIntArgs(Size, RTList);
4483   return llvm::StructType::get(getVMContext(), RTList);
4484 }
4485 
4486 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4487   uint64_t Size = getContext().getTypeSize(RetTy);
4488 
4489   if (RetTy->isVoidType() || Size == 0)
4490     return ABIArgInfo::getIgnore();
4491 
4492   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4493     if (Size <= 128) {
4494       if (RetTy->isAnyComplexType())
4495         return ABIArgInfo::getDirect();
4496 
4497       // O32 returns integer vectors in registers.
4498       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4499         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4500 
4501       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4502         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4503     }
4504 
4505     return ABIArgInfo::getIndirect(0);
4506   }
4507 
4508   // Treat an enum type as its underlying type.
4509   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4510     RetTy = EnumTy->getDecl()->getIntegerType();
4511 
4512   return (RetTy->isPromotableIntegerType() ?
4513           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4514 }
4515 
4516 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4517   ABIArgInfo &RetInfo = FI.getReturnInfo();
4518   RetInfo = classifyReturnType(FI.getReturnType());
4519 
4520   // Check if a pointer to an aggregate is passed as a hidden argument.
4521   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4522 
4523   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4524        it != ie; ++it)
4525     it->info = classifyArgumentType(it->type, Offset);
4526 }
4527 
4528 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4529                                     CodeGenFunction &CGF) const {
4530   llvm::Type *BP = CGF.Int8PtrTy;
4531   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4532 
4533   CGBuilderTy &Builder = CGF.Builder;
4534   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4535   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4536   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4537   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4538   llvm::Value *AddrTyped;
4539   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
4540   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4541 
4542   if (TypeAlign > MinABIStackAlignInBytes) {
4543     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4544     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4545     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4546     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4547     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4548     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4549   }
4550   else
4551     AddrTyped = Builder.CreateBitCast(Addr, PTy);
4552 
4553   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4554   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4555   uint64_t Offset =
4556     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4557   llvm::Value *NextAddr =
4558     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4559                       "ap.next");
4560   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4561 
4562   return AddrTyped;
4563 }
4564 
4565 bool
4566 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4567                                                llvm::Value *Address) const {
4568   // This information comes from gcc's implementation, which seems to
4569   // as canonical as it gets.
4570 
4571   // Everything on MIPS is 4 bytes.  Double-precision FP registers
4572   // are aliased to pairs of single-precision FP registers.
4573   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4574 
4575   // 0-31 are the general purpose registers, $0 - $31.
4576   // 32-63 are the floating-point registers, $f0 - $f31.
4577   // 64 and 65 are the multiply/divide registers, $hi and $lo.
4578   // 66 is the (notional, I think) register for signal-handler return.
4579   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4580 
4581   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4582   // They are one bit wide and ignored here.
4583 
4584   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4585   // (coprocessor 1 is the FP unit)
4586   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4587   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4588   // 176-181 are the DSP accumulator registers.
4589   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4590   return false;
4591 }
4592 
4593 //===----------------------------------------------------------------------===//
4594 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4595 // Currently subclassed only to implement custom OpenCL C function attribute
4596 // handling.
4597 //===----------------------------------------------------------------------===//
4598 
4599 namespace {
4600 
4601 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4602 public:
4603   TCETargetCodeGenInfo(CodeGenTypes &CGT)
4604     : DefaultTargetCodeGenInfo(CGT) {}
4605 
4606   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4607                                    CodeGen::CodeGenModule &M) const;
4608 };
4609 
4610 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4611                                                llvm::GlobalValue *GV,
4612                                                CodeGen::CodeGenModule &M) const {
4613   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4614   if (!FD) return;
4615 
4616   llvm::Function *F = cast<llvm::Function>(GV);
4617 
4618   if (M.getLangOpts().OpenCL) {
4619     if (FD->hasAttr<OpenCLKernelAttr>()) {
4620       // OpenCL C Kernel functions are not subject to inlining
4621       F->addFnAttr(llvm::Attribute::NoInline);
4622 
4623       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
4624 
4625         // Convert the reqd_work_group_size() attributes to metadata.
4626         llvm::LLVMContext &Context = F->getContext();
4627         llvm::NamedMDNode *OpenCLMetadata =
4628             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
4629 
4630         SmallVector<llvm::Value*, 5> Operands;
4631         Operands.push_back(F);
4632 
4633         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4634                              llvm::APInt(32,
4635                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
4636         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4637                              llvm::APInt(32,
4638                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
4639         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4640                              llvm::APInt(32,
4641                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
4642 
4643         // Add a boolean constant operand for "required" (true) or "hint" (false)
4644         // for implementing the work_group_size_hint attr later. Currently
4645         // always true as the hint is not yet implemented.
4646         Operands.push_back(llvm::ConstantInt::getTrue(Context));
4647         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
4648       }
4649     }
4650   }
4651 }
4652 
4653 }
4654 
4655 //===----------------------------------------------------------------------===//
4656 // Hexagon ABI Implementation
4657 //===----------------------------------------------------------------------===//
4658 
4659 namespace {
4660 
4661 class HexagonABIInfo : public ABIInfo {
4662 
4663 
4664 public:
4665   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4666 
4667 private:
4668 
4669   ABIArgInfo classifyReturnType(QualType RetTy) const;
4670   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4671 
4672   virtual void computeInfo(CGFunctionInfo &FI) const;
4673 
4674   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4675                                  CodeGenFunction &CGF) const;
4676 };
4677 
4678 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4679 public:
4680   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4681     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4682 
4683   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4684     return 29;
4685   }
4686 };
4687 
4688 }
4689 
4690 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4691   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4692   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4693        it != ie; ++it)
4694     it->info = classifyArgumentType(it->type);
4695 }
4696 
4697 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4698   if (!isAggregateTypeForABI(Ty)) {
4699     // Treat an enum type as its underlying type.
4700     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4701       Ty = EnumTy->getDecl()->getIntegerType();
4702 
4703     return (Ty->isPromotableIntegerType() ?
4704             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4705   }
4706 
4707   // Ignore empty records.
4708   if (isEmptyRecord(getContext(), Ty, true))
4709     return ABIArgInfo::getIgnore();
4710 
4711   // Structures with either a non-trivial destructor or a non-trivial
4712   // copy constructor are always indirect.
4713   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4714     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4715 
4716   uint64_t Size = getContext().getTypeSize(Ty);
4717   if (Size > 64)
4718     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4719     // Pass in the smallest viable integer type.
4720   else if (Size > 32)
4721       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4722   else if (Size > 16)
4723       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4724   else if (Size > 8)
4725       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4726   else
4727       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4728 }
4729 
4730 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4731   if (RetTy->isVoidType())
4732     return ABIArgInfo::getIgnore();
4733 
4734   // Large vector types should be returned via memory.
4735   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4736     return ABIArgInfo::getIndirect(0);
4737 
4738   if (!isAggregateTypeForABI(RetTy)) {
4739     // Treat an enum type as its underlying type.
4740     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4741       RetTy = EnumTy->getDecl()->getIntegerType();
4742 
4743     return (RetTy->isPromotableIntegerType() ?
4744             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4745   }
4746 
4747   // Structures with either a non-trivial destructor or a non-trivial
4748   // copy constructor are always indirect.
4749   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4750     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4751 
4752   if (isEmptyRecord(getContext(), RetTy, true))
4753     return ABIArgInfo::getIgnore();
4754 
4755   // Aggregates <= 8 bytes are returned in r0; other aggregates
4756   // are returned indirectly.
4757   uint64_t Size = getContext().getTypeSize(RetTy);
4758   if (Size <= 64) {
4759     // Return in the smallest viable integer type.
4760     if (Size <= 8)
4761       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4762     if (Size <= 16)
4763       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4764     if (Size <= 32)
4765       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4766     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4767   }
4768 
4769   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4770 }
4771 
4772 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4773                                        CodeGenFunction &CGF) const {
4774   // FIXME: Need to handle alignment
4775   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4776 
4777   CGBuilderTy &Builder = CGF.Builder;
4778   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4779                                                        "ap");
4780   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4781   llvm::Type *PTy =
4782     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4783   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4784 
4785   uint64_t Offset =
4786     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4787   llvm::Value *NextAddr =
4788     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4789                       "ap.next");
4790   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4791 
4792   return AddrTyped;
4793 }
4794 
4795 
4796 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4797   if (TheTargetCodeGenInfo)
4798     return *TheTargetCodeGenInfo;
4799 
4800   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4801   switch (Triple.getArch()) {
4802   default:
4803     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4804 
4805   case llvm::Triple::le32:
4806     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4807   case llvm::Triple::mips:
4808   case llvm::Triple::mipsel:
4809     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4810 
4811   case llvm::Triple::mips64:
4812   case llvm::Triple::mips64el:
4813     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4814 
4815   case llvm::Triple::aarch64:
4816     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
4817 
4818   case llvm::Triple::arm:
4819   case llvm::Triple::thumb:
4820     {
4821       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4822       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4823         Kind = ARMABIInfo::APCS;
4824       else if (CodeGenOpts.FloatABI == "hard" ||
4825                (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment()==llvm::Triple::GNUEABIHF))
4826         Kind = ARMABIInfo::AAPCS_VFP;
4827 
4828       switch (Triple.getOS()) {
4829         case llvm::Triple::NaCl:
4830           return *(TheTargetCodeGenInfo =
4831                    new NaClARMTargetCodeGenInfo(Types, Kind));
4832         default:
4833           return *(TheTargetCodeGenInfo =
4834                    new ARMTargetCodeGenInfo(Types, Kind));
4835       }
4836     }
4837 
4838   case llvm::Triple::ppc:
4839     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4840   case llvm::Triple::ppc64:
4841     if (Triple.isOSBinFormatELF())
4842       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4843     else
4844       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4845 
4846   case llvm::Triple::nvptx:
4847   case llvm::Triple::nvptx64:
4848     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4849 
4850   case llvm::Triple::mblaze:
4851     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4852 
4853   case llvm::Triple::msp430:
4854     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4855 
4856   case llvm::Triple::tce:
4857     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4858 
4859   case llvm::Triple::x86: {
4860     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4861 
4862     if (Triple.isOSDarwin())
4863       return *(TheTargetCodeGenInfo =
4864                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4865                                            CodeGenOpts.NumRegisterParameters));
4866 
4867     switch (Triple.getOS()) {
4868     case llvm::Triple::Cygwin:
4869     case llvm::Triple::MinGW32:
4870     case llvm::Triple::AuroraUX:
4871     case llvm::Triple::DragonFly:
4872     case llvm::Triple::FreeBSD:
4873     case llvm::Triple::OpenBSD:
4874     case llvm::Triple::Bitrig:
4875       return *(TheTargetCodeGenInfo =
4876                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4877                                            false,
4878                                            CodeGenOpts.NumRegisterParameters));
4879 
4880     case llvm::Triple::Win32:
4881       return *(TheTargetCodeGenInfo =
4882                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4883                                            CodeGenOpts.NumRegisterParameters));
4884 
4885     default:
4886       return *(TheTargetCodeGenInfo =
4887                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4888                                            false,
4889                                            CodeGenOpts.NumRegisterParameters));
4890     }
4891   }
4892 
4893   case llvm::Triple::x86_64: {
4894     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4895 
4896     switch (Triple.getOS()) {
4897     case llvm::Triple::Win32:
4898     case llvm::Triple::MinGW32:
4899     case llvm::Triple::Cygwin:
4900       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4901     case llvm::Triple::NaCl:
4902       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4903     default:
4904       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4905                                                                   HasAVX));
4906     }
4907   }
4908   case llvm::Triple::hexagon:
4909     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4910   }
4911 }
4912