1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 405 llvm::PointerType *T, QualType QT) const { 406 return llvm::ConstantPointerNull::get(T); 407 } 408 409 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 410 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, QualType SrcTy, 411 QualType DestTy) const { 412 // Since target may map different address spaces in AST to the same address 413 // space, an address space conversion may end up as a bitcast. 414 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 415 CGF.ConvertType(DestTy)); 416 } 417 418 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 419 420 /// isEmptyField - Return true iff a the field is "empty", that is it 421 /// is an unnamed bit-field or an (array of) empty record(s). 422 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 423 bool AllowArrays) { 424 if (FD->isUnnamedBitfield()) 425 return true; 426 427 QualType FT = FD->getType(); 428 429 // Constant arrays of empty records count as empty, strip them off. 430 // Constant arrays of zero length always count as empty. 431 if (AllowArrays) 432 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 433 if (AT->getSize() == 0) 434 return true; 435 FT = AT->getElementType(); 436 } 437 438 const RecordType *RT = FT->getAs<RecordType>(); 439 if (!RT) 440 return false; 441 442 // C++ record fields are never empty, at least in the Itanium ABI. 443 // 444 // FIXME: We should use a predicate for whether this behavior is true in the 445 // current ABI. 446 if (isa<CXXRecordDecl>(RT->getDecl())) 447 return false; 448 449 return isEmptyRecord(Context, FT, AllowArrays); 450 } 451 452 /// isEmptyRecord - Return true iff a structure contains only empty 453 /// fields. Note that a structure with a flexible array member is not 454 /// considered empty. 455 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 456 const RecordType *RT = T->getAs<RecordType>(); 457 if (!RT) 458 return false; 459 const RecordDecl *RD = RT->getDecl(); 460 if (RD->hasFlexibleArrayMember()) 461 return false; 462 463 // If this is a C++ record, check the bases first. 464 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 465 for (const auto &I : CXXRD->bases()) 466 if (!isEmptyRecord(Context, I.getType(), true)) 467 return false; 468 469 for (const auto *I : RD->fields()) 470 if (!isEmptyField(Context, I, AllowArrays)) 471 return false; 472 return true; 473 } 474 475 /// isSingleElementStruct - Determine if a structure is a "single 476 /// element struct", i.e. it has exactly one non-empty field or 477 /// exactly one field which is itself a single element 478 /// struct. Structures with flexible array members are never 479 /// considered single element structs. 480 /// 481 /// \return The field declaration for the single non-empty field, if 482 /// it exists. 483 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 484 const RecordType *RT = T->getAs<RecordType>(); 485 if (!RT) 486 return nullptr; 487 488 const RecordDecl *RD = RT->getDecl(); 489 if (RD->hasFlexibleArrayMember()) 490 return nullptr; 491 492 const Type *Found = nullptr; 493 494 // If this is a C++ record, check the bases first. 495 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 496 for (const auto &I : CXXRD->bases()) { 497 // Ignore empty records. 498 if (isEmptyRecord(Context, I.getType(), true)) 499 continue; 500 501 // If we already found an element then this isn't a single-element struct. 502 if (Found) 503 return nullptr; 504 505 // If this is non-empty and not a single element struct, the composite 506 // cannot be a single element struct. 507 Found = isSingleElementStruct(I.getType(), Context); 508 if (!Found) 509 return nullptr; 510 } 511 } 512 513 // Check for single element. 514 for (const auto *FD : RD->fields()) { 515 QualType FT = FD->getType(); 516 517 // Ignore empty fields. 518 if (isEmptyField(Context, FD, true)) 519 continue; 520 521 // If we already found an element then this isn't a single-element 522 // struct. 523 if (Found) 524 return nullptr; 525 526 // Treat single element arrays as the element. 527 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 528 if (AT->getSize().getZExtValue() != 1) 529 break; 530 FT = AT->getElementType(); 531 } 532 533 if (!isAggregateTypeForABI(FT)) { 534 Found = FT.getTypePtr(); 535 } else { 536 Found = isSingleElementStruct(FT, Context); 537 if (!Found) 538 return nullptr; 539 } 540 } 541 542 // We don't consider a struct a single-element struct if it has 543 // padding beyond the element type. 544 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 545 return nullptr; 546 547 return Found; 548 } 549 550 namespace { 551 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 552 const ABIArgInfo &AI) { 553 // This default implementation defers to the llvm backend's va_arg 554 // instruction. It can handle only passing arguments directly 555 // (typically only handled in the backend for primitive types), or 556 // aggregates passed indirectly by pointer (NOTE: if the "byval" 557 // flag has ABI impact in the callee, this implementation cannot 558 // work.) 559 560 // Only a few cases are covered here at the moment -- those needed 561 // by the default abi. 562 llvm::Value *Val; 563 564 if (AI.isIndirect()) { 565 assert(!AI.getPaddingType() && 566 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 567 assert( 568 !AI.getIndirectRealign() && 569 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 570 571 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 572 CharUnits TyAlignForABI = TyInfo.second; 573 574 llvm::Type *BaseTy = 575 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 576 llvm::Value *Addr = 577 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 578 return Address(Addr, TyAlignForABI); 579 } else { 580 assert((AI.isDirect() || AI.isExtend()) && 581 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 582 583 assert(!AI.getInReg() && 584 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 585 assert(!AI.getPaddingType() && 586 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 587 assert(!AI.getDirectOffset() && 588 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 589 assert(!AI.getCoerceToType() && 590 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 591 592 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 593 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 594 CGF.Builder.CreateStore(Val, Temp); 595 return Temp; 596 } 597 } 598 599 /// DefaultABIInfo - The default implementation for ABI specific 600 /// details. This implementation provides information which results in 601 /// self-consistent and sensible LLVM IR generation, but does not 602 /// conform to any particular ABI. 603 class DefaultABIInfo : public ABIInfo { 604 public: 605 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 606 607 ABIArgInfo classifyReturnType(QualType RetTy) const; 608 ABIArgInfo classifyArgumentType(QualType RetTy) const; 609 610 void computeInfo(CGFunctionInfo &FI) const override { 611 if (!getCXXABI().classifyReturnType(FI)) 612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 613 for (auto &I : FI.arguments()) 614 I.info = classifyArgumentType(I.type); 615 } 616 617 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 618 QualType Ty) const override { 619 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 620 } 621 }; 622 623 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 624 public: 625 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 626 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 627 }; 628 629 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 630 Ty = useFirstFieldIfTransparentUnion(Ty); 631 632 if (isAggregateTypeForABI(Ty)) { 633 // Records with non-trivial destructors/copy-constructors should not be 634 // passed by value. 635 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 636 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 637 638 return getNaturalAlignIndirect(Ty); 639 } 640 641 // Treat an enum type as its underlying type. 642 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 643 Ty = EnumTy->getDecl()->getIntegerType(); 644 645 return (Ty->isPromotableIntegerType() ? 646 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 647 } 648 649 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 650 if (RetTy->isVoidType()) 651 return ABIArgInfo::getIgnore(); 652 653 if (isAggregateTypeForABI(RetTy)) 654 return getNaturalAlignIndirect(RetTy); 655 656 // Treat an enum type as its underlying type. 657 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 658 RetTy = EnumTy->getDecl()->getIntegerType(); 659 660 return (RetTy->isPromotableIntegerType() ? 661 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // WebAssembly ABI Implementation 666 // 667 // This is a very simple ABI that relies a lot on DefaultABIInfo. 668 //===----------------------------------------------------------------------===// 669 670 class WebAssemblyABIInfo final : public DefaultABIInfo { 671 public: 672 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 673 : DefaultABIInfo(CGT) {} 674 675 private: 676 ABIArgInfo classifyReturnType(QualType RetTy) const; 677 ABIArgInfo classifyArgumentType(QualType Ty) const; 678 679 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 680 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 681 // overload them. 682 void computeInfo(CGFunctionInfo &FI) const override { 683 if (!getCXXABI().classifyReturnType(FI)) 684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 685 for (auto &Arg : FI.arguments()) 686 Arg.info = classifyArgumentType(Arg.type); 687 } 688 689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 690 QualType Ty) const override; 691 }; 692 693 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 694 public: 695 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 697 }; 698 699 /// \brief Classify argument of given type \p Ty. 700 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 701 Ty = useFirstFieldIfTransparentUnion(Ty); 702 703 if (isAggregateTypeForABI(Ty)) { 704 // Records with non-trivial destructors/copy-constructors should not be 705 // passed by value. 706 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 707 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 708 // Ignore empty structs/unions. 709 if (isEmptyRecord(getContext(), Ty, true)) 710 return ABIArgInfo::getIgnore(); 711 // Lower single-element structs to just pass a regular value. TODO: We 712 // could do reasonable-size multiple-element structs too, using getExpand(), 713 // though watch out for things like bitfields. 714 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 715 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 716 } 717 718 // Otherwise just do the default thing. 719 return DefaultABIInfo::classifyArgumentType(Ty); 720 } 721 722 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 723 if (isAggregateTypeForABI(RetTy)) { 724 // Records with non-trivial destructors/copy-constructors should not be 725 // returned by value. 726 if (!getRecordArgABI(RetTy, getCXXABI())) { 727 // Ignore empty structs/unions. 728 if (isEmptyRecord(getContext(), RetTy, true)) 729 return ABIArgInfo::getIgnore(); 730 // Lower single-element structs to just return a regular value. TODO: We 731 // could do reasonable-size multiple-element structs too, using 732 // ABIArgInfo::getDirect(). 733 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 734 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 735 } 736 } 737 738 // Otherwise just do the default thing. 739 return DefaultABIInfo::classifyReturnType(RetTy); 740 } 741 742 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const { 744 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 745 getContext().getTypeInfoInChars(Ty), 746 CharUnits::fromQuantity(4), 747 /*AllowHigherAlign=*/ true); 748 } 749 750 //===----------------------------------------------------------------------===// 751 // le32/PNaCl bitcode ABI Implementation 752 // 753 // This is a simplified version of the x86_32 ABI. Arguments and return values 754 // are always passed on the stack. 755 //===----------------------------------------------------------------------===// 756 757 class PNaClABIInfo : public ABIInfo { 758 public: 759 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 760 761 ABIArgInfo classifyReturnType(QualType RetTy) const; 762 ABIArgInfo classifyArgumentType(QualType RetTy) const; 763 764 void computeInfo(CGFunctionInfo &FI) const override; 765 Address EmitVAArg(CodeGenFunction &CGF, 766 Address VAListAddr, QualType Ty) const override; 767 }; 768 769 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 770 public: 771 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 772 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 773 }; 774 775 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 776 if (!getCXXABI().classifyReturnType(FI)) 777 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 778 779 for (auto &I : FI.arguments()) 780 I.info = classifyArgumentType(I.type); 781 } 782 783 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 784 QualType Ty) const { 785 // The PNaCL ABI is a bit odd, in that varargs don't use normal 786 // function classification. Structs get passed directly for varargs 787 // functions, through a rewriting transform in 788 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 789 // this target to actually support a va_arg instructions with an 790 // aggregate type, unlike other targets. 791 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 792 } 793 794 /// \brief Classify argument of given type \p Ty. 795 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 796 if (isAggregateTypeForABI(Ty)) { 797 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 798 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 799 return getNaturalAlignIndirect(Ty); 800 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 801 // Treat an enum type as its underlying type. 802 Ty = EnumTy->getDecl()->getIntegerType(); 803 } else if (Ty->isFloatingType()) { 804 // Floating-point types don't go inreg. 805 return ABIArgInfo::getDirect(); 806 } 807 808 return (Ty->isPromotableIntegerType() ? 809 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 810 } 811 812 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 813 if (RetTy->isVoidType()) 814 return ABIArgInfo::getIgnore(); 815 816 // In the PNaCl ABI we always return records/structures on the stack. 817 if (isAggregateTypeForABI(RetTy)) 818 return getNaturalAlignIndirect(RetTy); 819 820 // Treat an enum type as its underlying type. 821 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 822 RetTy = EnumTy->getDecl()->getIntegerType(); 823 824 return (RetTy->isPromotableIntegerType() ? 825 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 826 } 827 828 /// IsX86_MMXType - Return true if this is an MMX type. 829 bool IsX86_MMXType(llvm::Type *IRType) { 830 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 831 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 832 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 833 IRType->getScalarSizeInBits() != 64; 834 } 835 836 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 837 StringRef Constraint, 838 llvm::Type* Ty) { 839 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 840 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 841 // Invalid MMX constraint 842 return nullptr; 843 } 844 845 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 846 } 847 848 // No operation needed 849 return Ty; 850 } 851 852 /// Returns true if this type can be passed in SSE registers with the 853 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 854 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 856 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 857 return true; 858 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 859 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 860 // registers specially. 861 unsigned VecSize = Context.getTypeSize(VT); 862 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 863 return true; 864 } 865 return false; 866 } 867 868 /// Returns true if this aggregate is small enough to be passed in SSE registers 869 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 870 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 871 return NumMembers <= 4; 872 } 873 874 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 875 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 876 auto AI = ABIArgInfo::getDirect(T); 877 AI.setInReg(true); 878 AI.setCanBeFlattened(false); 879 return AI; 880 } 881 882 //===----------------------------------------------------------------------===// 883 // X86-32 ABI Implementation 884 //===----------------------------------------------------------------------===// 885 886 /// \brief Similar to llvm::CCState, but for Clang. 887 struct CCState { 888 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 889 890 unsigned CC; 891 unsigned FreeRegs; 892 unsigned FreeSSERegs; 893 }; 894 895 enum { 896 // Vectorcall only allows the first 6 parameters to be passed in registers. 897 VectorcallMaxParamNumAsReg = 6 898 }; 899 900 /// X86_32ABIInfo - The X86-32 ABI information. 901 class X86_32ABIInfo : public SwiftABIInfo { 902 enum Class { 903 Integer, 904 Float 905 }; 906 907 static const unsigned MinABIStackAlignInBytes = 4; 908 909 bool IsDarwinVectorABI; 910 bool IsRetSmallStructInRegABI; 911 bool IsWin32StructABI; 912 bool IsSoftFloatABI; 913 bool IsMCUABI; 914 unsigned DefaultNumRegisterParameters; 915 916 static bool isRegisterSize(unsigned Size) { 917 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 918 } 919 920 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 921 // FIXME: Assumes vectorcall is in use. 922 return isX86VectorTypeForVectorCall(getContext(), Ty); 923 } 924 925 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 926 uint64_t NumMembers) const override { 927 // FIXME: Assumes vectorcall is in use. 928 return isX86VectorCallAggregateSmallEnough(NumMembers); 929 } 930 931 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 932 933 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 934 /// such that the argument will be passed in memory. 935 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 936 937 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 938 939 /// \brief Return the alignment to use for the given type on the stack. 940 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 941 942 Class classify(QualType Ty) const; 943 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 944 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 945 ABIArgInfo reclassifyHvaArgType(QualType RetTy, CCState &State, 946 const ABIArgInfo& current) const; 947 /// \brief Updates the number of available free registers, returns 948 /// true if any registers were allocated. 949 bool updateFreeRegs(QualType Ty, CCState &State) const; 950 951 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 952 bool &NeedsPadding) const; 953 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 954 955 bool canExpandIndirectArgument(QualType Ty) const; 956 957 /// \brief Rewrite the function info so that all memory arguments use 958 /// inalloca. 959 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 960 961 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 962 CharUnits &StackOffset, ABIArgInfo &Info, 963 QualType Type) const; 964 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 965 bool &UsedInAlloca) const; 966 967 public: 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 971 QualType Ty) const override; 972 973 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 974 bool RetSmallStructInRegABI, bool Win32StructABI, 975 unsigned NumRegisterParameters, bool SoftFloatABI) 976 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 977 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 978 IsWin32StructABI(Win32StructABI), 979 IsSoftFloatABI(SoftFloatABI), 980 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 981 DefaultNumRegisterParameters(NumRegisterParameters) {} 982 983 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 984 ArrayRef<llvm::Type*> scalars, 985 bool asReturnValue) const override { 986 // LLVM's x86-32 lowering currently only assigns up to three 987 // integer registers and three fp registers. Oddly, it'll use up to 988 // four vector registers for vectors, but those can overlap with the 989 // scalar registers. 990 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 991 } 992 993 bool isSwiftErrorInRegister() const override { 994 // x86-32 lowering does not support passing swifterror in a register. 995 return false; 996 } 997 }; 998 999 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1000 public: 1001 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1002 bool RetSmallStructInRegABI, bool Win32StructABI, 1003 unsigned NumRegisterParameters, bool SoftFloatABI) 1004 : TargetCodeGenInfo(new X86_32ABIInfo( 1005 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1006 NumRegisterParameters, SoftFloatABI)) {} 1007 1008 static bool isStructReturnInRegABI( 1009 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1010 1011 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1012 CodeGen::CodeGenModule &CGM) const override; 1013 1014 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1015 // Darwin uses different dwarf register numbers for EH. 1016 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1017 return 4; 1018 } 1019 1020 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1021 llvm::Value *Address) const override; 1022 1023 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) const override { 1026 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1027 } 1028 1029 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1030 std::string &Constraints, 1031 std::vector<llvm::Type *> &ResultRegTypes, 1032 std::vector<llvm::Type *> &ResultTruncRegTypes, 1033 std::vector<LValue> &ResultRegDests, 1034 std::string &AsmString, 1035 unsigned NumOutputs) const override; 1036 1037 llvm::Constant * 1038 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1039 unsigned Sig = (0xeb << 0) | // jmp rel8 1040 (0x06 << 8) | // .+0x08 1041 ('F' << 16) | 1042 ('T' << 24); 1043 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1044 } 1045 1046 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1047 return "movl\t%ebp, %ebp" 1048 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1049 } 1050 }; 1051 1052 } 1053 1054 /// Rewrite input constraint references after adding some output constraints. 1055 /// In the case where there is one output and one input and we add one output, 1056 /// we need to replace all operand references greater than or equal to 1: 1057 /// mov $0, $1 1058 /// mov eax, $1 1059 /// The result will be: 1060 /// mov $0, $2 1061 /// mov eax, $2 1062 static void rewriteInputConstraintReferences(unsigned FirstIn, 1063 unsigned NumNewOuts, 1064 std::string &AsmString) { 1065 std::string Buf; 1066 llvm::raw_string_ostream OS(Buf); 1067 size_t Pos = 0; 1068 while (Pos < AsmString.size()) { 1069 size_t DollarStart = AsmString.find('$', Pos); 1070 if (DollarStart == std::string::npos) 1071 DollarStart = AsmString.size(); 1072 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1073 if (DollarEnd == std::string::npos) 1074 DollarEnd = AsmString.size(); 1075 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1076 Pos = DollarEnd; 1077 size_t NumDollars = DollarEnd - DollarStart; 1078 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1079 // We have an operand reference. 1080 size_t DigitStart = Pos; 1081 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1082 if (DigitEnd == std::string::npos) 1083 DigitEnd = AsmString.size(); 1084 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1085 unsigned OperandIndex; 1086 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1087 if (OperandIndex >= FirstIn) 1088 OperandIndex += NumNewOuts; 1089 OS << OperandIndex; 1090 } else { 1091 OS << OperandStr; 1092 } 1093 Pos = DigitEnd; 1094 } 1095 } 1096 AsmString = std::move(OS.str()); 1097 } 1098 1099 /// Add output constraints for EAX:EDX because they are return registers. 1100 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1101 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1102 std::vector<llvm::Type *> &ResultRegTypes, 1103 std::vector<llvm::Type *> &ResultTruncRegTypes, 1104 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1105 unsigned NumOutputs) const { 1106 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1107 1108 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1109 // larger. 1110 if (!Constraints.empty()) 1111 Constraints += ','; 1112 if (RetWidth <= 32) { 1113 Constraints += "={eax}"; 1114 ResultRegTypes.push_back(CGF.Int32Ty); 1115 } else { 1116 // Use the 'A' constraint for EAX:EDX. 1117 Constraints += "=A"; 1118 ResultRegTypes.push_back(CGF.Int64Ty); 1119 } 1120 1121 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1122 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1123 ResultTruncRegTypes.push_back(CoerceTy); 1124 1125 // Coerce the integer by bitcasting the return slot pointer. 1126 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1127 CoerceTy->getPointerTo())); 1128 ResultRegDests.push_back(ReturnSlot); 1129 1130 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1131 } 1132 1133 /// shouldReturnTypeInRegister - Determine if the given type should be 1134 /// returned in a register (for the Darwin and MCU ABI). 1135 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1136 ASTContext &Context) const { 1137 uint64_t Size = Context.getTypeSize(Ty); 1138 1139 // For i386, type must be register sized. 1140 // For the MCU ABI, it only needs to be <= 8-byte 1141 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1142 return false; 1143 1144 if (Ty->isVectorType()) { 1145 // 64- and 128- bit vectors inside structures are not returned in 1146 // registers. 1147 if (Size == 64 || Size == 128) 1148 return false; 1149 1150 return true; 1151 } 1152 1153 // If this is a builtin, pointer, enum, complex type, member pointer, or 1154 // member function pointer it is ok. 1155 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1156 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1157 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1158 return true; 1159 1160 // Arrays are treated like records. 1161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1162 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1163 1164 // Otherwise, it must be a record type. 1165 const RecordType *RT = Ty->getAs<RecordType>(); 1166 if (!RT) return false; 1167 1168 // FIXME: Traverse bases here too. 1169 1170 // Structure types are passed in register if all fields would be 1171 // passed in a register. 1172 for (const auto *FD : RT->getDecl()->fields()) { 1173 // Empty fields are ignored. 1174 if (isEmptyField(Context, FD, true)) 1175 continue; 1176 1177 // Check fields recursively. 1178 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1185 // Treat complex types as the element type. 1186 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1187 Ty = CTy->getElementType(); 1188 1189 // Check for a type which we know has a simple scalar argument-passing 1190 // convention without any padding. (We're specifically looking for 32 1191 // and 64-bit integer and integer-equivalents, float, and double.) 1192 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1193 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1194 return false; 1195 1196 uint64_t Size = Context.getTypeSize(Ty); 1197 return Size == 32 || Size == 64; 1198 } 1199 1200 /// Test whether an argument type which is to be passed indirectly (on the 1201 /// stack) would have the equivalent layout if it was expanded into separate 1202 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1203 /// optimizations. 1204 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1205 // We can only expand structure types. 1206 const RecordType *RT = Ty->getAs<RecordType>(); 1207 if (!RT) 1208 return false; 1209 const RecordDecl *RD = RT->getDecl(); 1210 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1211 if (!IsWin32StructABI ) { 1212 // On non-Windows, we have to conservatively match our old bitcode 1213 // prototypes in order to be ABI-compatible at the bitcode level. 1214 if (!CXXRD->isCLike()) 1215 return false; 1216 } else { 1217 // Don't do this for dynamic classes. 1218 if (CXXRD->isDynamicClass()) 1219 return false; 1220 // Don't do this if there are any non-empty bases. 1221 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1222 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1223 return false; 1224 } 1225 } 1226 } 1227 1228 uint64_t Size = 0; 1229 1230 for (const auto *FD : RD->fields()) { 1231 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1232 // argument is smaller than 32-bits, expanding the struct will create 1233 // alignment padding. 1234 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1235 return false; 1236 1237 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1238 // how to expand them yet, and the predicate for telling if a bitfield still 1239 // counts as "basic" is more complicated than what we were doing previously. 1240 if (FD->isBitField()) 1241 return false; 1242 1243 Size += getContext().getTypeSize(FD->getType()); 1244 } 1245 1246 // We can do this if there was no alignment padding. 1247 return Size == getContext().getTypeSize(Ty); 1248 } 1249 1250 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1251 // If the return value is indirect, then the hidden argument is consuming one 1252 // integer register. 1253 if (State.FreeRegs) { 1254 --State.FreeRegs; 1255 if (!IsMCUABI) 1256 return getNaturalAlignIndirectInReg(RetTy); 1257 } 1258 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1259 } 1260 1261 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1262 CCState &State) const { 1263 if (RetTy->isVoidType()) 1264 return ABIArgInfo::getIgnore(); 1265 1266 const Type *Base = nullptr; 1267 uint64_t NumElts = 0; 1268 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1269 State.CC == llvm::CallingConv::X86_RegCall) && 1270 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1271 // The LLVM struct type for such an aggregate should lower properly. 1272 return ABIArgInfo::getDirect(); 1273 } 1274 1275 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1276 // On Darwin, some vectors are returned in registers. 1277 if (IsDarwinVectorABI) { 1278 uint64_t Size = getContext().getTypeSize(RetTy); 1279 1280 // 128-bit vectors are a special case; they are returned in 1281 // registers and we need to make sure to pick a type the LLVM 1282 // backend will like. 1283 if (Size == 128) 1284 return ABIArgInfo::getDirect(llvm::VectorType::get( 1285 llvm::Type::getInt64Ty(getVMContext()), 2)); 1286 1287 // Always return in register if it fits in a general purpose 1288 // register, or if it is 64 bits and has a single element. 1289 if ((Size == 8 || Size == 16 || Size == 32) || 1290 (Size == 64 && VT->getNumElements() == 1)) 1291 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1292 Size)); 1293 1294 return getIndirectReturnResult(RetTy, State); 1295 } 1296 1297 return ABIArgInfo::getDirect(); 1298 } 1299 1300 if (isAggregateTypeForABI(RetTy)) { 1301 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1302 // Structures with flexible arrays are always indirect. 1303 if (RT->getDecl()->hasFlexibleArrayMember()) 1304 return getIndirectReturnResult(RetTy, State); 1305 } 1306 1307 // If specified, structs and unions are always indirect. 1308 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1309 return getIndirectReturnResult(RetTy, State); 1310 1311 // Ignore empty structs/unions. 1312 if (isEmptyRecord(getContext(), RetTy, true)) 1313 return ABIArgInfo::getIgnore(); 1314 1315 // Small structures which are register sized are generally returned 1316 // in a register. 1317 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1318 uint64_t Size = getContext().getTypeSize(RetTy); 1319 1320 // As a special-case, if the struct is a "single-element" struct, and 1321 // the field is of type "float" or "double", return it in a 1322 // floating-point register. (MSVC does not apply this special case.) 1323 // We apply a similar transformation for pointer types to improve the 1324 // quality of the generated IR. 1325 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1326 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1327 || SeltTy->hasPointerRepresentation()) 1328 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1329 1330 // FIXME: We should be able to narrow this integer in cases with dead 1331 // padding. 1332 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1333 } 1334 1335 return getIndirectReturnResult(RetTy, State); 1336 } 1337 1338 // Treat an enum type as its underlying type. 1339 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1340 RetTy = EnumTy->getDecl()->getIntegerType(); 1341 1342 return (RetTy->isPromotableIntegerType() ? 1343 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1344 } 1345 1346 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1347 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1348 } 1349 1350 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1351 const RecordType *RT = Ty->getAs<RecordType>(); 1352 if (!RT) 1353 return 0; 1354 const RecordDecl *RD = RT->getDecl(); 1355 1356 // If this is a C++ record, check the bases first. 1357 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1358 for (const auto &I : CXXRD->bases()) 1359 if (!isRecordWithSSEVectorType(Context, I.getType())) 1360 return false; 1361 1362 for (const auto *i : RD->fields()) { 1363 QualType FT = i->getType(); 1364 1365 if (isSSEVectorType(Context, FT)) 1366 return true; 1367 1368 if (isRecordWithSSEVectorType(Context, FT)) 1369 return true; 1370 } 1371 1372 return false; 1373 } 1374 1375 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1376 unsigned Align) const { 1377 // Otherwise, if the alignment is less than or equal to the minimum ABI 1378 // alignment, just use the default; the backend will handle this. 1379 if (Align <= MinABIStackAlignInBytes) 1380 return 0; // Use default alignment. 1381 1382 // On non-Darwin, the stack type alignment is always 4. 1383 if (!IsDarwinVectorABI) { 1384 // Set explicit alignment, since we may need to realign the top. 1385 return MinABIStackAlignInBytes; 1386 } 1387 1388 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1389 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1390 isRecordWithSSEVectorType(getContext(), Ty))) 1391 return 16; 1392 1393 return MinABIStackAlignInBytes; 1394 } 1395 1396 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1397 CCState &State) const { 1398 if (!ByVal) { 1399 if (State.FreeRegs) { 1400 --State.FreeRegs; // Non-byval indirects just use one pointer. 1401 if (!IsMCUABI) 1402 return getNaturalAlignIndirectInReg(Ty); 1403 } 1404 return getNaturalAlignIndirect(Ty, false); 1405 } 1406 1407 // Compute the byval alignment. 1408 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1409 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1410 if (StackAlign == 0) 1411 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1412 1413 // If the stack alignment is less than the type alignment, realign the 1414 // argument. 1415 bool Realign = TypeAlign > StackAlign; 1416 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1417 /*ByVal=*/true, Realign); 1418 } 1419 1420 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1421 const Type *T = isSingleElementStruct(Ty, getContext()); 1422 if (!T) 1423 T = Ty.getTypePtr(); 1424 1425 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1426 BuiltinType::Kind K = BT->getKind(); 1427 if (K == BuiltinType::Float || K == BuiltinType::Double) 1428 return Float; 1429 } 1430 return Integer; 1431 } 1432 1433 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1434 if (!IsSoftFloatABI) { 1435 Class C = classify(Ty); 1436 if (C == Float) 1437 return false; 1438 } 1439 1440 unsigned Size = getContext().getTypeSize(Ty); 1441 unsigned SizeInRegs = (Size + 31) / 32; 1442 1443 if (SizeInRegs == 0) 1444 return false; 1445 1446 if (!IsMCUABI) { 1447 if (SizeInRegs > State.FreeRegs) { 1448 State.FreeRegs = 0; 1449 return false; 1450 } 1451 } else { 1452 // The MCU psABI allows passing parameters in-reg even if there are 1453 // earlier parameters that are passed on the stack. Also, 1454 // it does not allow passing >8-byte structs in-register, 1455 // even if there are 3 free registers available. 1456 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1457 return false; 1458 } 1459 1460 State.FreeRegs -= SizeInRegs; 1461 return true; 1462 } 1463 1464 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1465 bool &InReg, 1466 bool &NeedsPadding) const { 1467 // On Windows, aggregates other than HFAs are never passed in registers, and 1468 // they do not consume register slots. Homogenous floating-point aggregates 1469 // (HFAs) have already been dealt with at this point. 1470 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1471 return false; 1472 1473 NeedsPadding = false; 1474 InReg = !IsMCUABI; 1475 1476 if (!updateFreeRegs(Ty, State)) 1477 return false; 1478 1479 if (IsMCUABI) 1480 return true; 1481 1482 if (State.CC == llvm::CallingConv::X86_FastCall || 1483 State.CC == llvm::CallingConv::X86_VectorCall || 1484 State.CC == llvm::CallingConv::X86_RegCall) { 1485 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1486 NeedsPadding = true; 1487 1488 return false; 1489 } 1490 1491 return true; 1492 } 1493 1494 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1495 if (!updateFreeRegs(Ty, State)) 1496 return false; 1497 1498 if (IsMCUABI) 1499 return false; 1500 1501 if (State.CC == llvm::CallingConv::X86_FastCall || 1502 State.CC == llvm::CallingConv::X86_VectorCall || 1503 State.CC == llvm::CallingConv::X86_RegCall) { 1504 if (getContext().getTypeSize(Ty) > 32) 1505 return false; 1506 1507 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1508 Ty->isReferenceType()); 1509 } 1510 1511 return true; 1512 } 1513 1514 ABIArgInfo 1515 X86_32ABIInfo::reclassifyHvaArgType(QualType Ty, CCState &State, 1516 const ABIArgInfo ¤t) const { 1517 // Assumes vectorCall calling convention. 1518 const Type *Base = nullptr; 1519 uint64_t NumElts = 0; 1520 1521 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 1522 isHomogeneousAggregate(Ty, Base, NumElts)) { 1523 if (State.FreeSSERegs >= NumElts) { 1524 // HVA types get passed directly in registers if there is room. 1525 State.FreeSSERegs -= NumElts; 1526 return getDirectX86Hva(); 1527 } 1528 // If there's no room, the HVA gets passed as normal indirect 1529 // structure. 1530 return getIndirectResult(Ty, /*ByVal=*/false, State); 1531 } 1532 return current; 1533 } 1534 1535 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1536 CCState &State) const { 1537 // FIXME: Set alignment on indirect arguments. 1538 1539 Ty = useFirstFieldIfTransparentUnion(Ty); 1540 1541 // Check with the C++ ABI first. 1542 const RecordType *RT = Ty->getAs<RecordType>(); 1543 if (RT) { 1544 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1545 if (RAA == CGCXXABI::RAA_Indirect) { 1546 return getIndirectResult(Ty, false, State); 1547 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1548 // The field index doesn't matter, we'll fix it up later. 1549 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1550 } 1551 } 1552 1553 // vectorcall adds the concept of a homogenous vector aggregate, similar 1554 // to other targets, regcall uses some of the HVA rules. 1555 const Type *Base = nullptr; 1556 uint64_t NumElts = 0; 1557 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1558 State.CC == llvm::CallingConv::X86_RegCall) && 1559 isHomogeneousAggregate(Ty, Base, NumElts)) { 1560 1561 if (State.CC == llvm::CallingConv::X86_RegCall) { 1562 if (State.FreeSSERegs >= NumElts) { 1563 State.FreeSSERegs -= NumElts; 1564 if (Ty->isBuiltinType() || Ty->isVectorType()) 1565 return ABIArgInfo::getDirect(); 1566 return ABIArgInfo::getExpand(); 1567 1568 } 1569 return getIndirectResult(Ty, /*ByVal=*/false, State); 1570 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1571 if (State.FreeSSERegs >= NumElts && (Ty->isBuiltinType() || Ty->isVectorType())) { 1572 // Actual floating-point types get registers first time through if 1573 // there is registers available 1574 State.FreeSSERegs -= NumElts; 1575 return ABIArgInfo::getDirect(); 1576 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 1577 // HVA Types only get registers after everything else has been 1578 // set, so it gets set as indirect for now. 1579 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty)); 1580 } 1581 } 1582 } 1583 1584 if (isAggregateTypeForABI(Ty)) { 1585 // Structures with flexible arrays are always indirect. 1586 // FIXME: This should not be byval! 1587 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1588 return getIndirectResult(Ty, true, State); 1589 1590 // Ignore empty structs/unions on non-Windows. 1591 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1592 return ABIArgInfo::getIgnore(); 1593 1594 llvm::LLVMContext &LLVMContext = getVMContext(); 1595 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1596 bool NeedsPadding = false; 1597 bool InReg; 1598 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1599 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1600 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1601 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1602 if (InReg) 1603 return ABIArgInfo::getDirectInReg(Result); 1604 else 1605 return ABIArgInfo::getDirect(Result); 1606 } 1607 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1608 1609 // Expand small (<= 128-bit) record types when we know that the stack layout 1610 // of those arguments will match the struct. This is important because the 1611 // LLVM backend isn't smart enough to remove byval, which inhibits many 1612 // optimizations. 1613 // Don't do this for the MCU if there are still free integer registers 1614 // (see X86_64 ABI for full explanation). 1615 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1616 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1617 return ABIArgInfo::getExpandWithPadding( 1618 State.CC == llvm::CallingConv::X86_FastCall || 1619 State.CC == llvm::CallingConv::X86_VectorCall || 1620 State.CC == llvm::CallingConv::X86_RegCall, 1621 PaddingType); 1622 1623 return getIndirectResult(Ty, true, State); 1624 } 1625 1626 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1627 // On Darwin, some vectors are passed in memory, we handle this by passing 1628 // it as an i8/i16/i32/i64. 1629 if (IsDarwinVectorABI) { 1630 uint64_t Size = getContext().getTypeSize(Ty); 1631 if ((Size == 8 || Size == 16 || Size == 32) || 1632 (Size == 64 && VT->getNumElements() == 1)) 1633 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1634 Size)); 1635 } 1636 1637 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1638 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1639 1640 return ABIArgInfo::getDirect(); 1641 } 1642 1643 1644 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1645 Ty = EnumTy->getDecl()->getIntegerType(); 1646 1647 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1648 1649 if (Ty->isPromotableIntegerType()) { 1650 if (InReg) 1651 return ABIArgInfo::getExtendInReg(); 1652 return ABIArgInfo::getExtend(); 1653 } 1654 1655 if (InReg) 1656 return ABIArgInfo::getDirectInReg(); 1657 return ABIArgInfo::getDirect(); 1658 } 1659 1660 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1661 bool &UsedInAlloca) const { 1662 // Vectorcall only allows the first 6 parameters to be passed in registers, 1663 // and homogeneous vector aggregates are only put into registers as a second 1664 // priority. 1665 unsigned Count = 0; 1666 CCState ZeroState = State; 1667 ZeroState.FreeRegs = ZeroState.FreeSSERegs = 0; 1668 // HVAs must be done as a second priority for registers, so the deferred 1669 // items are dealt with by going through the pattern a second time. 1670 for (auto &I : FI.arguments()) { 1671 if (Count < VectorcallMaxParamNumAsReg) 1672 I.info = classifyArgumentType(I.type, State); 1673 else 1674 // Parameters after the 6th cannot be passed in registers, 1675 // so pretend there are no registers left for them. 1676 I.info = classifyArgumentType(I.type, ZeroState); 1677 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1678 ++Count; 1679 } 1680 Count = 0; 1681 // Go through the arguments a second time to get HVAs registers if there 1682 // are still some available. 1683 for (auto &I : FI.arguments()) { 1684 if (Count < VectorcallMaxParamNumAsReg) 1685 I.info = reclassifyHvaArgType(I.type, State, I.info); 1686 ++Count; 1687 } 1688 } 1689 1690 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1691 CCState State(FI.getCallingConvention()); 1692 if (IsMCUABI) 1693 State.FreeRegs = 3; 1694 else if (State.CC == llvm::CallingConv::X86_FastCall) 1695 State.FreeRegs = 2; 1696 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1697 State.FreeRegs = 2; 1698 State.FreeSSERegs = 6; 1699 } else if (FI.getHasRegParm()) 1700 State.FreeRegs = FI.getRegParm(); 1701 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1702 State.FreeRegs = 5; 1703 State.FreeSSERegs = 8; 1704 } else 1705 State.FreeRegs = DefaultNumRegisterParameters; 1706 1707 if (!getCXXABI().classifyReturnType(FI)) { 1708 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1709 } else if (FI.getReturnInfo().isIndirect()) { 1710 // The C++ ABI is not aware of register usage, so we have to check if the 1711 // return value was sret and put it in a register ourselves if appropriate. 1712 if (State.FreeRegs) { 1713 --State.FreeRegs; // The sret parameter consumes a register. 1714 if (!IsMCUABI) 1715 FI.getReturnInfo().setInReg(true); 1716 } 1717 } 1718 1719 // The chain argument effectively gives us another free register. 1720 if (FI.isChainCall()) 1721 ++State.FreeRegs; 1722 1723 bool UsedInAlloca = false; 1724 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1725 computeVectorCallArgs(FI, State, UsedInAlloca); 1726 } else { 1727 // If not vectorcall, revert to normal behavior. 1728 for (auto &I : FI.arguments()) { 1729 I.info = classifyArgumentType(I.type, State); 1730 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1731 } 1732 } 1733 1734 // If we needed to use inalloca for any argument, do a second pass and rewrite 1735 // all the memory arguments to use inalloca. 1736 if (UsedInAlloca) 1737 rewriteWithInAlloca(FI); 1738 } 1739 1740 void 1741 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1742 CharUnits &StackOffset, ABIArgInfo &Info, 1743 QualType Type) const { 1744 // Arguments are always 4-byte-aligned. 1745 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1746 1747 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1748 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1749 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1750 StackOffset += getContext().getTypeSizeInChars(Type); 1751 1752 // Insert padding bytes to respect alignment. 1753 CharUnits FieldEnd = StackOffset; 1754 StackOffset = FieldEnd.alignTo(FieldAlign); 1755 if (StackOffset != FieldEnd) { 1756 CharUnits NumBytes = StackOffset - FieldEnd; 1757 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1758 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1759 FrameFields.push_back(Ty); 1760 } 1761 } 1762 1763 static bool isArgInAlloca(const ABIArgInfo &Info) { 1764 // Leave ignored and inreg arguments alone. 1765 switch (Info.getKind()) { 1766 case ABIArgInfo::InAlloca: 1767 return true; 1768 case ABIArgInfo::Indirect: 1769 assert(Info.getIndirectByVal()); 1770 return true; 1771 case ABIArgInfo::Ignore: 1772 return false; 1773 case ABIArgInfo::Direct: 1774 case ABIArgInfo::Extend: 1775 if (Info.getInReg()) 1776 return false; 1777 return true; 1778 case ABIArgInfo::Expand: 1779 case ABIArgInfo::CoerceAndExpand: 1780 // These are aggregate types which are never passed in registers when 1781 // inalloca is involved. 1782 return true; 1783 } 1784 llvm_unreachable("invalid enum"); 1785 } 1786 1787 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1788 assert(IsWin32StructABI && "inalloca only supported on win32"); 1789 1790 // Build a packed struct type for all of the arguments in memory. 1791 SmallVector<llvm::Type *, 6> FrameFields; 1792 1793 // The stack alignment is always 4. 1794 CharUnits StackAlign = CharUnits::fromQuantity(4); 1795 1796 CharUnits StackOffset; 1797 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1798 1799 // Put 'this' into the struct before 'sret', if necessary. 1800 bool IsThisCall = 1801 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1802 ABIArgInfo &Ret = FI.getReturnInfo(); 1803 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1804 isArgInAlloca(I->info)) { 1805 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1806 ++I; 1807 } 1808 1809 // Put the sret parameter into the inalloca struct if it's in memory. 1810 if (Ret.isIndirect() && !Ret.getInReg()) { 1811 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1812 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1813 // On Windows, the hidden sret parameter is always returned in eax. 1814 Ret.setInAllocaSRet(IsWin32StructABI); 1815 } 1816 1817 // Skip the 'this' parameter in ecx. 1818 if (IsThisCall) 1819 ++I; 1820 1821 // Put arguments passed in memory into the struct. 1822 for (; I != E; ++I) { 1823 if (isArgInAlloca(I->info)) 1824 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1825 } 1826 1827 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1828 /*isPacked=*/true), 1829 StackAlign); 1830 } 1831 1832 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1833 Address VAListAddr, QualType Ty) const { 1834 1835 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1836 1837 // x86-32 changes the alignment of certain arguments on the stack. 1838 // 1839 // Just messing with TypeInfo like this works because we never pass 1840 // anything indirectly. 1841 TypeInfo.second = CharUnits::fromQuantity( 1842 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1843 1844 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1845 TypeInfo, CharUnits::fromQuantity(4), 1846 /*AllowHigherAlign*/ true); 1847 } 1848 1849 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1850 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1851 assert(Triple.getArch() == llvm::Triple::x86); 1852 1853 switch (Opts.getStructReturnConvention()) { 1854 case CodeGenOptions::SRCK_Default: 1855 break; 1856 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1857 return false; 1858 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1859 return true; 1860 } 1861 1862 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1863 return true; 1864 1865 switch (Triple.getOS()) { 1866 case llvm::Triple::DragonFly: 1867 case llvm::Triple::FreeBSD: 1868 case llvm::Triple::OpenBSD: 1869 case llvm::Triple::Bitrig: 1870 case llvm::Triple::Win32: 1871 return true; 1872 default: 1873 return false; 1874 } 1875 } 1876 1877 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1878 llvm::GlobalValue *GV, 1879 CodeGen::CodeGenModule &CGM) const { 1880 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1881 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1882 // Get the LLVM function. 1883 llvm::Function *Fn = cast<llvm::Function>(GV); 1884 1885 // Now add the 'alignstack' attribute with a value of 16. 1886 llvm::AttrBuilder B; 1887 B.addStackAlignmentAttr(16); 1888 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1889 llvm::AttributeSet::get(CGM.getLLVMContext(), 1890 llvm::AttributeSet::FunctionIndex, 1891 B)); 1892 } 1893 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1894 llvm::Function *Fn = cast<llvm::Function>(GV); 1895 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1896 } 1897 } 1898 } 1899 1900 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1901 CodeGen::CodeGenFunction &CGF, 1902 llvm::Value *Address) const { 1903 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1904 1905 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1906 1907 // 0-7 are the eight integer registers; the order is different 1908 // on Darwin (for EH), but the range is the same. 1909 // 8 is %eip. 1910 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1911 1912 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1913 // 12-16 are st(0..4). Not sure why we stop at 4. 1914 // These have size 16, which is sizeof(long double) on 1915 // platforms with 8-byte alignment for that type. 1916 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1917 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1918 1919 } else { 1920 // 9 is %eflags, which doesn't get a size on Darwin for some 1921 // reason. 1922 Builder.CreateAlignedStore( 1923 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1924 CharUnits::One()); 1925 1926 // 11-16 are st(0..5). Not sure why we stop at 5. 1927 // These have size 12, which is sizeof(long double) on 1928 // platforms with 4-byte alignment for that type. 1929 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1930 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1931 } 1932 1933 return false; 1934 } 1935 1936 //===----------------------------------------------------------------------===// 1937 // X86-64 ABI Implementation 1938 //===----------------------------------------------------------------------===// 1939 1940 1941 namespace { 1942 /// The AVX ABI level for X86 targets. 1943 enum class X86AVXABILevel { 1944 None, 1945 AVX, 1946 AVX512 1947 }; 1948 1949 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1950 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1951 switch (AVXLevel) { 1952 case X86AVXABILevel::AVX512: 1953 return 512; 1954 case X86AVXABILevel::AVX: 1955 return 256; 1956 case X86AVXABILevel::None: 1957 return 128; 1958 } 1959 llvm_unreachable("Unknown AVXLevel"); 1960 } 1961 1962 /// X86_64ABIInfo - The X86_64 ABI information. 1963 class X86_64ABIInfo : public SwiftABIInfo { 1964 enum Class { 1965 Integer = 0, 1966 SSE, 1967 SSEUp, 1968 X87, 1969 X87Up, 1970 ComplexX87, 1971 NoClass, 1972 Memory 1973 }; 1974 1975 /// merge - Implement the X86_64 ABI merging algorithm. 1976 /// 1977 /// Merge an accumulating classification \arg Accum with a field 1978 /// classification \arg Field. 1979 /// 1980 /// \param Accum - The accumulating classification. This should 1981 /// always be either NoClass or the result of a previous merge 1982 /// call. In addition, this should never be Memory (the caller 1983 /// should just return Memory for the aggregate). 1984 static Class merge(Class Accum, Class Field); 1985 1986 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1987 /// 1988 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1989 /// final MEMORY or SSE classes when necessary. 1990 /// 1991 /// \param AggregateSize - The size of the current aggregate in 1992 /// the classification process. 1993 /// 1994 /// \param Lo - The classification for the parts of the type 1995 /// residing in the low word of the containing object. 1996 /// 1997 /// \param Hi - The classification for the parts of the type 1998 /// residing in the higher words of the containing object. 1999 /// 2000 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2001 2002 /// classify - Determine the x86_64 register classes in which the 2003 /// given type T should be passed. 2004 /// 2005 /// \param Lo - The classification for the parts of the type 2006 /// residing in the low word of the containing object. 2007 /// 2008 /// \param Hi - The classification for the parts of the type 2009 /// residing in the high word of the containing object. 2010 /// 2011 /// \param OffsetBase - The bit offset of this type in the 2012 /// containing object. Some parameters are classified different 2013 /// depending on whether they straddle an eightbyte boundary. 2014 /// 2015 /// \param isNamedArg - Whether the argument in question is a "named" 2016 /// argument, as used in AMD64-ABI 3.5.7. 2017 /// 2018 /// If a word is unused its result will be NoClass; if a type should 2019 /// be passed in Memory then at least the classification of \arg Lo 2020 /// will be Memory. 2021 /// 2022 /// The \arg Lo class will be NoClass iff the argument is ignored. 2023 /// 2024 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2025 /// also be ComplexX87. 2026 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2027 bool isNamedArg) const; 2028 2029 llvm::Type *GetByteVectorType(QualType Ty) const; 2030 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2031 unsigned IROffset, QualType SourceTy, 2032 unsigned SourceOffset) const; 2033 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2034 unsigned IROffset, QualType SourceTy, 2035 unsigned SourceOffset) const; 2036 2037 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2038 /// such that the argument will be returned in memory. 2039 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2040 2041 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2042 /// such that the argument will be passed in memory. 2043 /// 2044 /// \param freeIntRegs - The number of free integer registers remaining 2045 /// available. 2046 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2047 2048 ABIArgInfo classifyReturnType(QualType RetTy) const; 2049 2050 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2051 unsigned &neededInt, unsigned &neededSSE, 2052 bool isNamedArg) const; 2053 2054 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2055 unsigned &NeededSSE) const; 2056 2057 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2058 unsigned &NeededSSE) const; 2059 2060 bool IsIllegalVectorType(QualType Ty) const; 2061 2062 /// The 0.98 ABI revision clarified a lot of ambiguities, 2063 /// unfortunately in ways that were not always consistent with 2064 /// certain previous compilers. In particular, platforms which 2065 /// required strict binary compatibility with older versions of GCC 2066 /// may need to exempt themselves. 2067 bool honorsRevision0_98() const { 2068 return !getTarget().getTriple().isOSDarwin(); 2069 } 2070 2071 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 2072 // compilers require us to classify it as INTEGER. 2073 bool classifyIntegerMMXAsSSE() const { 2074 const llvm::Triple &Triple = getTarget().getTriple(); 2075 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2076 return false; 2077 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2078 return false; 2079 return true; 2080 } 2081 2082 X86AVXABILevel AVXLevel; 2083 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2084 // 64-bit hardware. 2085 bool Has64BitPointers; 2086 2087 public: 2088 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2089 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2090 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2091 } 2092 2093 bool isPassedUsingAVXType(QualType type) const { 2094 unsigned neededInt, neededSSE; 2095 // The freeIntRegs argument doesn't matter here. 2096 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2097 /*isNamedArg*/true); 2098 if (info.isDirect()) { 2099 llvm::Type *ty = info.getCoerceToType(); 2100 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2101 return (vectorTy->getBitWidth() > 128); 2102 } 2103 return false; 2104 } 2105 2106 void computeInfo(CGFunctionInfo &FI) const override; 2107 2108 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2109 QualType Ty) const override; 2110 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2111 QualType Ty) const override; 2112 2113 bool has64BitPointers() const { 2114 return Has64BitPointers; 2115 } 2116 2117 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2118 ArrayRef<llvm::Type*> scalars, 2119 bool asReturnValue) const override { 2120 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2121 } 2122 bool isSwiftErrorInRegister() const override { 2123 return true; 2124 } 2125 }; 2126 2127 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2128 class WinX86_64ABIInfo : public SwiftABIInfo { 2129 public: 2130 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2131 : SwiftABIInfo(CGT), 2132 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2133 2134 void computeInfo(CGFunctionInfo &FI) const override; 2135 2136 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2137 QualType Ty) const override; 2138 2139 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2140 // FIXME: Assumes vectorcall is in use. 2141 return isX86VectorTypeForVectorCall(getContext(), Ty); 2142 } 2143 2144 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2145 uint64_t NumMembers) const override { 2146 // FIXME: Assumes vectorcall is in use. 2147 return isX86VectorCallAggregateSmallEnough(NumMembers); 2148 } 2149 2150 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2151 ArrayRef<llvm::Type *> scalars, 2152 bool asReturnValue) const override { 2153 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2154 } 2155 2156 bool isSwiftErrorInRegister() const override { 2157 return true; 2158 } 2159 2160 private: 2161 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2162 bool IsVectorCall, bool IsRegCall) const; 2163 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2164 const ABIArgInfo ¤t) const; 2165 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2166 bool IsVectorCall, bool IsRegCall) const; 2167 2168 bool IsMingw64; 2169 }; 2170 2171 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2172 public: 2173 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2174 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2175 2176 const X86_64ABIInfo &getABIInfo() const { 2177 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2178 } 2179 2180 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2181 return 7; 2182 } 2183 2184 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2185 llvm::Value *Address) const override { 2186 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2187 2188 // 0-15 are the 16 integer registers. 2189 // 16 is %rip. 2190 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2191 return false; 2192 } 2193 2194 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2195 StringRef Constraint, 2196 llvm::Type* Ty) const override { 2197 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2198 } 2199 2200 bool isNoProtoCallVariadic(const CallArgList &args, 2201 const FunctionNoProtoType *fnType) const override { 2202 // The default CC on x86-64 sets %al to the number of SSA 2203 // registers used, and GCC sets this when calling an unprototyped 2204 // function, so we override the default behavior. However, don't do 2205 // that when AVX types are involved: the ABI explicitly states it is 2206 // undefined, and it doesn't work in practice because of how the ABI 2207 // defines varargs anyway. 2208 if (fnType->getCallConv() == CC_C) { 2209 bool HasAVXType = false; 2210 for (CallArgList::const_iterator 2211 it = args.begin(), ie = args.end(); it != ie; ++it) { 2212 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2213 HasAVXType = true; 2214 break; 2215 } 2216 } 2217 2218 if (!HasAVXType) 2219 return true; 2220 } 2221 2222 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2223 } 2224 2225 llvm::Constant * 2226 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2227 unsigned Sig; 2228 if (getABIInfo().has64BitPointers()) 2229 Sig = (0xeb << 0) | // jmp rel8 2230 (0x0a << 8) | // .+0x0c 2231 ('F' << 16) | 2232 ('T' << 24); 2233 else 2234 Sig = (0xeb << 0) | // jmp rel8 2235 (0x06 << 8) | // .+0x08 2236 ('F' << 16) | 2237 ('T' << 24); 2238 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2239 } 2240 2241 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2242 CodeGen::CodeGenModule &CGM) const override { 2243 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2244 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2245 llvm::Function *Fn = cast<llvm::Function>(GV); 2246 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2247 } 2248 } 2249 } 2250 }; 2251 2252 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2253 public: 2254 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2255 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2256 2257 void getDependentLibraryOption(llvm::StringRef Lib, 2258 llvm::SmallString<24> &Opt) const override { 2259 Opt = "\01"; 2260 // If the argument contains a space, enclose it in quotes. 2261 if (Lib.find(" ") != StringRef::npos) 2262 Opt += "\"" + Lib.str() + "\""; 2263 else 2264 Opt += Lib; 2265 } 2266 }; 2267 2268 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2269 // If the argument does not end in .lib, automatically add the suffix. 2270 // If the argument contains a space, enclose it in quotes. 2271 // This matches the behavior of MSVC. 2272 bool Quote = (Lib.find(" ") != StringRef::npos); 2273 std::string ArgStr = Quote ? "\"" : ""; 2274 ArgStr += Lib; 2275 if (!Lib.endswith_lower(".lib")) 2276 ArgStr += ".lib"; 2277 ArgStr += Quote ? "\"" : ""; 2278 return ArgStr; 2279 } 2280 2281 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2282 public: 2283 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2284 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2285 unsigned NumRegisterParameters) 2286 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2287 Win32StructABI, NumRegisterParameters, false) {} 2288 2289 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2290 CodeGen::CodeGenModule &CGM) const override; 2291 2292 void getDependentLibraryOption(llvm::StringRef Lib, 2293 llvm::SmallString<24> &Opt) const override { 2294 Opt = "/DEFAULTLIB:"; 2295 Opt += qualifyWindowsLibrary(Lib); 2296 } 2297 2298 void getDetectMismatchOption(llvm::StringRef Name, 2299 llvm::StringRef Value, 2300 llvm::SmallString<32> &Opt) const override { 2301 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2302 } 2303 }; 2304 2305 static void addStackProbeSizeTargetAttribute(const Decl *D, 2306 llvm::GlobalValue *GV, 2307 CodeGen::CodeGenModule &CGM) { 2308 if (D && isa<FunctionDecl>(D)) { 2309 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2310 llvm::Function *Fn = cast<llvm::Function>(GV); 2311 2312 Fn->addFnAttr("stack-probe-size", 2313 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2314 } 2315 } 2316 } 2317 2318 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2319 llvm::GlobalValue *GV, 2320 CodeGen::CodeGenModule &CGM) const { 2321 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2322 2323 addStackProbeSizeTargetAttribute(D, GV, CGM); 2324 } 2325 2326 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2327 public: 2328 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2329 X86AVXABILevel AVXLevel) 2330 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2331 2332 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2333 CodeGen::CodeGenModule &CGM) const override; 2334 2335 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2336 return 7; 2337 } 2338 2339 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2340 llvm::Value *Address) const override { 2341 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2342 2343 // 0-15 are the 16 integer registers. 2344 // 16 is %rip. 2345 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2346 return false; 2347 } 2348 2349 void getDependentLibraryOption(llvm::StringRef Lib, 2350 llvm::SmallString<24> &Opt) const override { 2351 Opt = "/DEFAULTLIB:"; 2352 Opt += qualifyWindowsLibrary(Lib); 2353 } 2354 2355 void getDetectMismatchOption(llvm::StringRef Name, 2356 llvm::StringRef Value, 2357 llvm::SmallString<32> &Opt) const override { 2358 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2359 } 2360 }; 2361 2362 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2363 llvm::GlobalValue *GV, 2364 CodeGen::CodeGenModule &CGM) const { 2365 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2366 2367 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2368 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2369 llvm::Function *Fn = cast<llvm::Function>(GV); 2370 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2371 } 2372 } 2373 2374 addStackProbeSizeTargetAttribute(D, GV, CGM); 2375 } 2376 } 2377 2378 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2379 Class &Hi) const { 2380 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2381 // 2382 // (a) If one of the classes is Memory, the whole argument is passed in 2383 // memory. 2384 // 2385 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2386 // memory. 2387 // 2388 // (c) If the size of the aggregate exceeds two eightbytes and the first 2389 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2390 // argument is passed in memory. NOTE: This is necessary to keep the 2391 // ABI working for processors that don't support the __m256 type. 2392 // 2393 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2394 // 2395 // Some of these are enforced by the merging logic. Others can arise 2396 // only with unions; for example: 2397 // union { _Complex double; unsigned; } 2398 // 2399 // Note that clauses (b) and (c) were added in 0.98. 2400 // 2401 if (Hi == Memory) 2402 Lo = Memory; 2403 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2404 Lo = Memory; 2405 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2406 Lo = Memory; 2407 if (Hi == SSEUp && Lo != SSE) 2408 Hi = SSE; 2409 } 2410 2411 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2412 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2413 // classified recursively so that always two fields are 2414 // considered. The resulting class is calculated according to 2415 // the classes of the fields in the eightbyte: 2416 // 2417 // (a) If both classes are equal, this is the resulting class. 2418 // 2419 // (b) If one of the classes is NO_CLASS, the resulting class is 2420 // the other class. 2421 // 2422 // (c) If one of the classes is MEMORY, the result is the MEMORY 2423 // class. 2424 // 2425 // (d) If one of the classes is INTEGER, the result is the 2426 // INTEGER. 2427 // 2428 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2429 // MEMORY is used as class. 2430 // 2431 // (f) Otherwise class SSE is used. 2432 2433 // Accum should never be memory (we should have returned) or 2434 // ComplexX87 (because this cannot be passed in a structure). 2435 assert((Accum != Memory && Accum != ComplexX87) && 2436 "Invalid accumulated classification during merge."); 2437 if (Accum == Field || Field == NoClass) 2438 return Accum; 2439 if (Field == Memory) 2440 return Memory; 2441 if (Accum == NoClass) 2442 return Field; 2443 if (Accum == Integer || Field == Integer) 2444 return Integer; 2445 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2446 Accum == X87 || Accum == X87Up) 2447 return Memory; 2448 return SSE; 2449 } 2450 2451 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2452 Class &Lo, Class &Hi, bool isNamedArg) const { 2453 // FIXME: This code can be simplified by introducing a simple value class for 2454 // Class pairs with appropriate constructor methods for the various 2455 // situations. 2456 2457 // FIXME: Some of the split computations are wrong; unaligned vectors 2458 // shouldn't be passed in registers for example, so there is no chance they 2459 // can straddle an eightbyte. Verify & simplify. 2460 2461 Lo = Hi = NoClass; 2462 2463 Class &Current = OffsetBase < 64 ? Lo : Hi; 2464 Current = Memory; 2465 2466 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2467 BuiltinType::Kind k = BT->getKind(); 2468 2469 if (k == BuiltinType::Void) { 2470 Current = NoClass; 2471 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2472 Lo = Integer; 2473 Hi = Integer; 2474 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2475 Current = Integer; 2476 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2477 Current = SSE; 2478 } else if (k == BuiltinType::LongDouble) { 2479 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2480 if (LDF == &llvm::APFloat::IEEEquad()) { 2481 Lo = SSE; 2482 Hi = SSEUp; 2483 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2484 Lo = X87; 2485 Hi = X87Up; 2486 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2487 Current = SSE; 2488 } else 2489 llvm_unreachable("unexpected long double representation!"); 2490 } 2491 // FIXME: _Decimal32 and _Decimal64 are SSE. 2492 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2493 return; 2494 } 2495 2496 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2497 // Classify the underlying integer type. 2498 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2499 return; 2500 } 2501 2502 if (Ty->hasPointerRepresentation()) { 2503 Current = Integer; 2504 return; 2505 } 2506 2507 if (Ty->isMemberPointerType()) { 2508 if (Ty->isMemberFunctionPointerType()) { 2509 if (Has64BitPointers) { 2510 // If Has64BitPointers, this is an {i64, i64}, so classify both 2511 // Lo and Hi now. 2512 Lo = Hi = Integer; 2513 } else { 2514 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2515 // straddles an eightbyte boundary, Hi should be classified as well. 2516 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2517 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2518 if (EB_FuncPtr != EB_ThisAdj) { 2519 Lo = Hi = Integer; 2520 } else { 2521 Current = Integer; 2522 } 2523 } 2524 } else { 2525 Current = Integer; 2526 } 2527 return; 2528 } 2529 2530 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2531 uint64_t Size = getContext().getTypeSize(VT); 2532 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2533 // gcc passes the following as integer: 2534 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2535 // 2 bytes - <2 x char>, <1 x short> 2536 // 1 byte - <1 x char> 2537 Current = Integer; 2538 2539 // If this type crosses an eightbyte boundary, it should be 2540 // split. 2541 uint64_t EB_Lo = (OffsetBase) / 64; 2542 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2543 if (EB_Lo != EB_Hi) 2544 Hi = Lo; 2545 } else if (Size == 64) { 2546 QualType ElementType = VT->getElementType(); 2547 2548 // gcc passes <1 x double> in memory. :( 2549 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2550 return; 2551 2552 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2553 // pass them as integer. For platforms where clang is the de facto 2554 // platform compiler, we must continue to use integer. 2555 if (!classifyIntegerMMXAsSSE() && 2556 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2557 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2558 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2559 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2560 Current = Integer; 2561 else 2562 Current = SSE; 2563 2564 // If this type crosses an eightbyte boundary, it should be 2565 // split. 2566 if (OffsetBase && OffsetBase != 64) 2567 Hi = Lo; 2568 } else if (Size == 128 || 2569 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2570 // Arguments of 256-bits are split into four eightbyte chunks. The 2571 // least significant one belongs to class SSE and all the others to class 2572 // SSEUP. The original Lo and Hi design considers that types can't be 2573 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2574 // This design isn't correct for 256-bits, but since there're no cases 2575 // where the upper parts would need to be inspected, avoid adding 2576 // complexity and just consider Hi to match the 64-256 part. 2577 // 2578 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2579 // registers if they are "named", i.e. not part of the "..." of a 2580 // variadic function. 2581 // 2582 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2583 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2584 Lo = SSE; 2585 Hi = SSEUp; 2586 } 2587 return; 2588 } 2589 2590 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2591 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2592 2593 uint64_t Size = getContext().getTypeSize(Ty); 2594 if (ET->isIntegralOrEnumerationType()) { 2595 if (Size <= 64) 2596 Current = Integer; 2597 else if (Size <= 128) 2598 Lo = Hi = Integer; 2599 } else if (ET == getContext().FloatTy) { 2600 Current = SSE; 2601 } else if (ET == getContext().DoubleTy) { 2602 Lo = Hi = SSE; 2603 } else if (ET == getContext().LongDoubleTy) { 2604 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2605 if (LDF == &llvm::APFloat::IEEEquad()) 2606 Current = Memory; 2607 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2608 Current = ComplexX87; 2609 else if (LDF == &llvm::APFloat::IEEEdouble()) 2610 Lo = Hi = SSE; 2611 else 2612 llvm_unreachable("unexpected long double representation!"); 2613 } 2614 2615 // If this complex type crosses an eightbyte boundary then it 2616 // should be split. 2617 uint64_t EB_Real = (OffsetBase) / 64; 2618 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2619 if (Hi == NoClass && EB_Real != EB_Imag) 2620 Hi = Lo; 2621 2622 return; 2623 } 2624 2625 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2626 // Arrays are treated like structures. 2627 2628 uint64_t Size = getContext().getTypeSize(Ty); 2629 2630 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2631 // than eight eightbytes, ..., it has class MEMORY. 2632 if (Size > 512) 2633 return; 2634 2635 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2636 // fields, it has class MEMORY. 2637 // 2638 // Only need to check alignment of array base. 2639 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2640 return; 2641 2642 // Otherwise implement simplified merge. We could be smarter about 2643 // this, but it isn't worth it and would be harder to verify. 2644 Current = NoClass; 2645 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2646 uint64_t ArraySize = AT->getSize().getZExtValue(); 2647 2648 // The only case a 256-bit wide vector could be used is when the array 2649 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2650 // to work for sizes wider than 128, early check and fallback to memory. 2651 // 2652 if (Size > 128 && 2653 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2654 return; 2655 2656 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2657 Class FieldLo, FieldHi; 2658 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2659 Lo = merge(Lo, FieldLo); 2660 Hi = merge(Hi, FieldHi); 2661 if (Lo == Memory || Hi == Memory) 2662 break; 2663 } 2664 2665 postMerge(Size, Lo, Hi); 2666 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2667 return; 2668 } 2669 2670 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2671 uint64_t Size = getContext().getTypeSize(Ty); 2672 2673 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2674 // than eight eightbytes, ..., it has class MEMORY. 2675 if (Size > 512) 2676 return; 2677 2678 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2679 // copy constructor or a non-trivial destructor, it is passed by invisible 2680 // reference. 2681 if (getRecordArgABI(RT, getCXXABI())) 2682 return; 2683 2684 const RecordDecl *RD = RT->getDecl(); 2685 2686 // Assume variable sized types are passed in memory. 2687 if (RD->hasFlexibleArrayMember()) 2688 return; 2689 2690 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2691 2692 // Reset Lo class, this will be recomputed. 2693 Current = NoClass; 2694 2695 // If this is a C++ record, classify the bases first. 2696 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2697 for (const auto &I : CXXRD->bases()) { 2698 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2699 "Unexpected base class!"); 2700 const CXXRecordDecl *Base = 2701 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2702 2703 // Classify this field. 2704 // 2705 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2706 // single eightbyte, each is classified separately. Each eightbyte gets 2707 // initialized to class NO_CLASS. 2708 Class FieldLo, FieldHi; 2709 uint64_t Offset = 2710 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2711 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2712 Lo = merge(Lo, FieldLo); 2713 Hi = merge(Hi, FieldHi); 2714 if (Lo == Memory || Hi == Memory) { 2715 postMerge(Size, Lo, Hi); 2716 return; 2717 } 2718 } 2719 } 2720 2721 // Classify the fields one at a time, merging the results. 2722 unsigned idx = 0; 2723 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2724 i != e; ++i, ++idx) { 2725 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2726 bool BitField = i->isBitField(); 2727 2728 // Ignore padding bit-fields. 2729 if (BitField && i->isUnnamedBitfield()) 2730 continue; 2731 2732 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2733 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2734 // 2735 // The only case a 256-bit wide vector could be used is when the struct 2736 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2737 // to work for sizes wider than 128, early check and fallback to memory. 2738 // 2739 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2740 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2741 Lo = Memory; 2742 postMerge(Size, Lo, Hi); 2743 return; 2744 } 2745 // Note, skip this test for bit-fields, see below. 2746 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2747 Lo = Memory; 2748 postMerge(Size, Lo, Hi); 2749 return; 2750 } 2751 2752 // Classify this field. 2753 // 2754 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2755 // exceeds a single eightbyte, each is classified 2756 // separately. Each eightbyte gets initialized to class 2757 // NO_CLASS. 2758 Class FieldLo, FieldHi; 2759 2760 // Bit-fields require special handling, they do not force the 2761 // structure to be passed in memory even if unaligned, and 2762 // therefore they can straddle an eightbyte. 2763 if (BitField) { 2764 assert(!i->isUnnamedBitfield()); 2765 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2766 uint64_t Size = i->getBitWidthValue(getContext()); 2767 2768 uint64_t EB_Lo = Offset / 64; 2769 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2770 2771 if (EB_Lo) { 2772 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2773 FieldLo = NoClass; 2774 FieldHi = Integer; 2775 } else { 2776 FieldLo = Integer; 2777 FieldHi = EB_Hi ? Integer : NoClass; 2778 } 2779 } else 2780 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2781 Lo = merge(Lo, FieldLo); 2782 Hi = merge(Hi, FieldHi); 2783 if (Lo == Memory || Hi == Memory) 2784 break; 2785 } 2786 2787 postMerge(Size, Lo, Hi); 2788 } 2789 } 2790 2791 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2792 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2793 // place naturally. 2794 if (!isAggregateTypeForABI(Ty)) { 2795 // Treat an enum type as its underlying type. 2796 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2797 Ty = EnumTy->getDecl()->getIntegerType(); 2798 2799 return (Ty->isPromotableIntegerType() ? 2800 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2801 } 2802 2803 return getNaturalAlignIndirect(Ty); 2804 } 2805 2806 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2807 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2808 uint64_t Size = getContext().getTypeSize(VecTy); 2809 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2810 if (Size <= 64 || Size > LargestVector) 2811 return true; 2812 } 2813 2814 return false; 2815 } 2816 2817 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2818 unsigned freeIntRegs) const { 2819 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2820 // place naturally. 2821 // 2822 // This assumption is optimistic, as there could be free registers available 2823 // when we need to pass this argument in memory, and LLVM could try to pass 2824 // the argument in the free register. This does not seem to happen currently, 2825 // but this code would be much safer if we could mark the argument with 2826 // 'onstack'. See PR12193. 2827 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2828 // Treat an enum type as its underlying type. 2829 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2830 Ty = EnumTy->getDecl()->getIntegerType(); 2831 2832 return (Ty->isPromotableIntegerType() ? 2833 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2834 } 2835 2836 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2837 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2838 2839 // Compute the byval alignment. We specify the alignment of the byval in all 2840 // cases so that the mid-level optimizer knows the alignment of the byval. 2841 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2842 2843 // Attempt to avoid passing indirect results using byval when possible. This 2844 // is important for good codegen. 2845 // 2846 // We do this by coercing the value into a scalar type which the backend can 2847 // handle naturally (i.e., without using byval). 2848 // 2849 // For simplicity, we currently only do this when we have exhausted all of the 2850 // free integer registers. Doing this when there are free integer registers 2851 // would require more care, as we would have to ensure that the coerced value 2852 // did not claim the unused register. That would require either reording the 2853 // arguments to the function (so that any subsequent inreg values came first), 2854 // or only doing this optimization when there were no following arguments that 2855 // might be inreg. 2856 // 2857 // We currently expect it to be rare (particularly in well written code) for 2858 // arguments to be passed on the stack when there are still free integer 2859 // registers available (this would typically imply large structs being passed 2860 // by value), so this seems like a fair tradeoff for now. 2861 // 2862 // We can revisit this if the backend grows support for 'onstack' parameter 2863 // attributes. See PR12193. 2864 if (freeIntRegs == 0) { 2865 uint64_t Size = getContext().getTypeSize(Ty); 2866 2867 // If this type fits in an eightbyte, coerce it into the matching integral 2868 // type, which will end up on the stack (with alignment 8). 2869 if (Align == 8 && Size <= 64) 2870 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2871 Size)); 2872 } 2873 2874 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2875 } 2876 2877 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2878 /// register. Pick an LLVM IR type that will be passed as a vector register. 2879 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2880 // Wrapper structs/arrays that only contain vectors are passed just like 2881 // vectors; strip them off if present. 2882 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2883 Ty = QualType(InnerTy, 0); 2884 2885 llvm::Type *IRType = CGT.ConvertType(Ty); 2886 if (isa<llvm::VectorType>(IRType) || 2887 IRType->getTypeID() == llvm::Type::FP128TyID) 2888 return IRType; 2889 2890 // We couldn't find the preferred IR vector type for 'Ty'. 2891 uint64_t Size = getContext().getTypeSize(Ty); 2892 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2893 2894 // Return a LLVM IR vector type based on the size of 'Ty'. 2895 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2896 Size / 64); 2897 } 2898 2899 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2900 /// is known to either be off the end of the specified type or being in 2901 /// alignment padding. The user type specified is known to be at most 128 bits 2902 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2903 /// classification that put one of the two halves in the INTEGER class. 2904 /// 2905 /// It is conservatively correct to return false. 2906 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2907 unsigned EndBit, ASTContext &Context) { 2908 // If the bytes being queried are off the end of the type, there is no user 2909 // data hiding here. This handles analysis of builtins, vectors and other 2910 // types that don't contain interesting padding. 2911 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2912 if (TySize <= StartBit) 2913 return true; 2914 2915 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2916 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2917 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2918 2919 // Check each element to see if the element overlaps with the queried range. 2920 for (unsigned i = 0; i != NumElts; ++i) { 2921 // If the element is after the span we care about, then we're done.. 2922 unsigned EltOffset = i*EltSize; 2923 if (EltOffset >= EndBit) break; 2924 2925 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2926 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2927 EndBit-EltOffset, Context)) 2928 return false; 2929 } 2930 // If it overlaps no elements, then it is safe to process as padding. 2931 return true; 2932 } 2933 2934 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2935 const RecordDecl *RD = RT->getDecl(); 2936 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2937 2938 // If this is a C++ record, check the bases first. 2939 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2940 for (const auto &I : CXXRD->bases()) { 2941 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2942 "Unexpected base class!"); 2943 const CXXRecordDecl *Base = 2944 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2945 2946 // If the base is after the span we care about, ignore it. 2947 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2948 if (BaseOffset >= EndBit) continue; 2949 2950 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2951 if (!BitsContainNoUserData(I.getType(), BaseStart, 2952 EndBit-BaseOffset, Context)) 2953 return false; 2954 } 2955 } 2956 2957 // Verify that no field has data that overlaps the region of interest. Yes 2958 // this could be sped up a lot by being smarter about queried fields, 2959 // however we're only looking at structs up to 16 bytes, so we don't care 2960 // much. 2961 unsigned idx = 0; 2962 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2963 i != e; ++i, ++idx) { 2964 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2965 2966 // If we found a field after the region we care about, then we're done. 2967 if (FieldOffset >= EndBit) break; 2968 2969 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2970 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2971 Context)) 2972 return false; 2973 } 2974 2975 // If nothing in this record overlapped the area of interest, then we're 2976 // clean. 2977 return true; 2978 } 2979 2980 return false; 2981 } 2982 2983 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2984 /// float member at the specified offset. For example, {int,{float}} has a 2985 /// float at offset 4. It is conservatively correct for this routine to return 2986 /// false. 2987 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2988 const llvm::DataLayout &TD) { 2989 // Base case if we find a float. 2990 if (IROffset == 0 && IRType->isFloatTy()) 2991 return true; 2992 2993 // If this is a struct, recurse into the field at the specified offset. 2994 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2995 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2996 unsigned Elt = SL->getElementContainingOffset(IROffset); 2997 IROffset -= SL->getElementOffset(Elt); 2998 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2999 } 3000 3001 // If this is an array, recurse into the field at the specified offset. 3002 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3003 llvm::Type *EltTy = ATy->getElementType(); 3004 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3005 IROffset -= IROffset/EltSize*EltSize; 3006 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3007 } 3008 3009 return false; 3010 } 3011 3012 3013 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3014 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3015 llvm::Type *X86_64ABIInfo:: 3016 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3017 QualType SourceTy, unsigned SourceOffset) const { 3018 // The only three choices we have are either double, <2 x float>, or float. We 3019 // pass as float if the last 4 bytes is just padding. This happens for 3020 // structs that contain 3 floats. 3021 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3022 SourceOffset*8+64, getContext())) 3023 return llvm::Type::getFloatTy(getVMContext()); 3024 3025 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3026 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3027 // case. 3028 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3029 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3030 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3031 3032 return llvm::Type::getDoubleTy(getVMContext()); 3033 } 3034 3035 3036 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3037 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3038 /// about the high or low part of an up-to-16-byte struct. This routine picks 3039 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3040 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3041 /// etc). 3042 /// 3043 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3044 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3045 /// the 8-byte value references. PrefType may be null. 3046 /// 3047 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3048 /// an offset into this that we're processing (which is always either 0 or 8). 3049 /// 3050 llvm::Type *X86_64ABIInfo:: 3051 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3052 QualType SourceTy, unsigned SourceOffset) const { 3053 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3054 // returning an 8-byte unit starting with it. See if we can safely use it. 3055 if (IROffset == 0) { 3056 // Pointers and int64's always fill the 8-byte unit. 3057 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3058 IRType->isIntegerTy(64)) 3059 return IRType; 3060 3061 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3062 // goodness in the source type is just tail padding. This is allowed to 3063 // kick in for struct {double,int} on the int, but not on 3064 // struct{double,int,int} because we wouldn't return the second int. We 3065 // have to do this analysis on the source type because we can't depend on 3066 // unions being lowered a specific way etc. 3067 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3068 IRType->isIntegerTy(32) || 3069 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3070 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3071 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3072 3073 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3074 SourceOffset*8+64, getContext())) 3075 return IRType; 3076 } 3077 } 3078 3079 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3080 // If this is a struct, recurse into the field at the specified offset. 3081 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3082 if (IROffset < SL->getSizeInBytes()) { 3083 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3084 IROffset -= SL->getElementOffset(FieldIdx); 3085 3086 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3087 SourceTy, SourceOffset); 3088 } 3089 } 3090 3091 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3092 llvm::Type *EltTy = ATy->getElementType(); 3093 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3094 unsigned EltOffset = IROffset/EltSize*EltSize; 3095 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3096 SourceOffset); 3097 } 3098 3099 // Okay, we don't have any better idea of what to pass, so we pass this in an 3100 // integer register that isn't too big to fit the rest of the struct. 3101 unsigned TySizeInBytes = 3102 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3103 3104 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3105 3106 // It is always safe to classify this as an integer type up to i64 that 3107 // isn't larger than the structure. 3108 return llvm::IntegerType::get(getVMContext(), 3109 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3110 } 3111 3112 3113 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3114 /// be used as elements of a two register pair to pass or return, return a 3115 /// first class aggregate to represent them. For example, if the low part of 3116 /// a by-value argument should be passed as i32* and the high part as float, 3117 /// return {i32*, float}. 3118 static llvm::Type * 3119 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3120 const llvm::DataLayout &TD) { 3121 // In order to correctly satisfy the ABI, we need to the high part to start 3122 // at offset 8. If the high and low parts we inferred are both 4-byte types 3123 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3124 // the second element at offset 8. Check for this: 3125 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3126 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3127 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3128 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3129 3130 // To handle this, we have to increase the size of the low part so that the 3131 // second element will start at an 8 byte offset. We can't increase the size 3132 // of the second element because it might make us access off the end of the 3133 // struct. 3134 if (HiStart != 8) { 3135 // There are usually two sorts of types the ABI generation code can produce 3136 // for the low part of a pair that aren't 8 bytes in size: float or 3137 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3138 // NaCl). 3139 // Promote these to a larger type. 3140 if (Lo->isFloatTy()) 3141 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3142 else { 3143 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3144 && "Invalid/unknown lo type"); 3145 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3146 } 3147 } 3148 3149 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3150 3151 3152 // Verify that the second element is at an 8-byte offset. 3153 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3154 "Invalid x86-64 argument pair!"); 3155 return Result; 3156 } 3157 3158 ABIArgInfo X86_64ABIInfo:: 3159 classifyReturnType(QualType RetTy) const { 3160 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3161 // classification algorithm. 3162 X86_64ABIInfo::Class Lo, Hi; 3163 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3164 3165 // Check some invariants. 3166 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3167 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3168 3169 llvm::Type *ResType = nullptr; 3170 switch (Lo) { 3171 case NoClass: 3172 if (Hi == NoClass) 3173 return ABIArgInfo::getIgnore(); 3174 // If the low part is just padding, it takes no register, leave ResType 3175 // null. 3176 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3177 "Unknown missing lo part"); 3178 break; 3179 3180 case SSEUp: 3181 case X87Up: 3182 llvm_unreachable("Invalid classification for lo word."); 3183 3184 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3185 // hidden argument. 3186 case Memory: 3187 return getIndirectReturnResult(RetTy); 3188 3189 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3190 // available register of the sequence %rax, %rdx is used. 3191 case Integer: 3192 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3193 3194 // If we have a sign or zero extended integer, make sure to return Extend 3195 // so that the parameter gets the right LLVM IR attributes. 3196 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3197 // Treat an enum type as its underlying type. 3198 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3199 RetTy = EnumTy->getDecl()->getIntegerType(); 3200 3201 if (RetTy->isIntegralOrEnumerationType() && 3202 RetTy->isPromotableIntegerType()) 3203 return ABIArgInfo::getExtend(); 3204 } 3205 break; 3206 3207 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3208 // available SSE register of the sequence %xmm0, %xmm1 is used. 3209 case SSE: 3210 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3211 break; 3212 3213 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3214 // returned on the X87 stack in %st0 as 80-bit x87 number. 3215 case X87: 3216 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3217 break; 3218 3219 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3220 // part of the value is returned in %st0 and the imaginary part in 3221 // %st1. 3222 case ComplexX87: 3223 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3224 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3225 llvm::Type::getX86_FP80Ty(getVMContext()), 3226 nullptr); 3227 break; 3228 } 3229 3230 llvm::Type *HighPart = nullptr; 3231 switch (Hi) { 3232 // Memory was handled previously and X87 should 3233 // never occur as a hi class. 3234 case Memory: 3235 case X87: 3236 llvm_unreachable("Invalid classification for hi word."); 3237 3238 case ComplexX87: // Previously handled. 3239 case NoClass: 3240 break; 3241 3242 case Integer: 3243 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3244 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3245 return ABIArgInfo::getDirect(HighPart, 8); 3246 break; 3247 case SSE: 3248 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3249 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3250 return ABIArgInfo::getDirect(HighPart, 8); 3251 break; 3252 3253 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3254 // is passed in the next available eightbyte chunk if the last used 3255 // vector register. 3256 // 3257 // SSEUP should always be preceded by SSE, just widen. 3258 case SSEUp: 3259 assert(Lo == SSE && "Unexpected SSEUp classification."); 3260 ResType = GetByteVectorType(RetTy); 3261 break; 3262 3263 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3264 // returned together with the previous X87 value in %st0. 3265 case X87Up: 3266 // If X87Up is preceded by X87, we don't need to do 3267 // anything. However, in some cases with unions it may not be 3268 // preceded by X87. In such situations we follow gcc and pass the 3269 // extra bits in an SSE reg. 3270 if (Lo != X87) { 3271 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3272 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3273 return ABIArgInfo::getDirect(HighPart, 8); 3274 } 3275 break; 3276 } 3277 3278 // If a high part was specified, merge it together with the low part. It is 3279 // known to pass in the high eightbyte of the result. We do this by forming a 3280 // first class struct aggregate with the high and low part: {low, high} 3281 if (HighPart) 3282 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3283 3284 return ABIArgInfo::getDirect(ResType); 3285 } 3286 3287 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3288 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3289 bool isNamedArg) 3290 const 3291 { 3292 Ty = useFirstFieldIfTransparentUnion(Ty); 3293 3294 X86_64ABIInfo::Class Lo, Hi; 3295 classify(Ty, 0, Lo, Hi, isNamedArg); 3296 3297 // Check some invariants. 3298 // FIXME: Enforce these by construction. 3299 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3300 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3301 3302 neededInt = 0; 3303 neededSSE = 0; 3304 llvm::Type *ResType = nullptr; 3305 switch (Lo) { 3306 case NoClass: 3307 if (Hi == NoClass) 3308 return ABIArgInfo::getIgnore(); 3309 // If the low part is just padding, it takes no register, leave ResType 3310 // null. 3311 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3312 "Unknown missing lo part"); 3313 break; 3314 3315 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3316 // on the stack. 3317 case Memory: 3318 3319 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3320 // COMPLEX_X87, it is passed in memory. 3321 case X87: 3322 case ComplexX87: 3323 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3324 ++neededInt; 3325 return getIndirectResult(Ty, freeIntRegs); 3326 3327 case SSEUp: 3328 case X87Up: 3329 llvm_unreachable("Invalid classification for lo word."); 3330 3331 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3332 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3333 // and %r9 is used. 3334 case Integer: 3335 ++neededInt; 3336 3337 // Pick an 8-byte type based on the preferred type. 3338 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3339 3340 // If we have a sign or zero extended integer, make sure to return Extend 3341 // so that the parameter gets the right LLVM IR attributes. 3342 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3343 // Treat an enum type as its underlying type. 3344 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3345 Ty = EnumTy->getDecl()->getIntegerType(); 3346 3347 if (Ty->isIntegralOrEnumerationType() && 3348 Ty->isPromotableIntegerType()) 3349 return ABIArgInfo::getExtend(); 3350 } 3351 3352 break; 3353 3354 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3355 // available SSE register is used, the registers are taken in the 3356 // order from %xmm0 to %xmm7. 3357 case SSE: { 3358 llvm::Type *IRType = CGT.ConvertType(Ty); 3359 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3360 ++neededSSE; 3361 break; 3362 } 3363 } 3364 3365 llvm::Type *HighPart = nullptr; 3366 switch (Hi) { 3367 // Memory was handled previously, ComplexX87 and X87 should 3368 // never occur as hi classes, and X87Up must be preceded by X87, 3369 // which is passed in memory. 3370 case Memory: 3371 case X87: 3372 case ComplexX87: 3373 llvm_unreachable("Invalid classification for hi word."); 3374 3375 case NoClass: break; 3376 3377 case Integer: 3378 ++neededInt; 3379 // Pick an 8-byte type based on the preferred type. 3380 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3381 3382 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3383 return ABIArgInfo::getDirect(HighPart, 8); 3384 break; 3385 3386 // X87Up generally doesn't occur here (long double is passed in 3387 // memory), except in situations involving unions. 3388 case X87Up: 3389 case SSE: 3390 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3391 3392 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3393 return ABIArgInfo::getDirect(HighPart, 8); 3394 3395 ++neededSSE; 3396 break; 3397 3398 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3399 // eightbyte is passed in the upper half of the last used SSE 3400 // register. This only happens when 128-bit vectors are passed. 3401 case SSEUp: 3402 assert(Lo == SSE && "Unexpected SSEUp classification"); 3403 ResType = GetByteVectorType(Ty); 3404 break; 3405 } 3406 3407 // If a high part was specified, merge it together with the low part. It is 3408 // known to pass in the high eightbyte of the result. We do this by forming a 3409 // first class struct aggregate with the high and low part: {low, high} 3410 if (HighPart) 3411 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3412 3413 return ABIArgInfo::getDirect(ResType); 3414 } 3415 3416 ABIArgInfo 3417 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3418 unsigned &NeededSSE) const { 3419 auto RT = Ty->getAs<RecordType>(); 3420 assert(RT && "classifyRegCallStructType only valid with struct types"); 3421 3422 if (RT->getDecl()->hasFlexibleArrayMember()) 3423 return getIndirectReturnResult(Ty); 3424 3425 // Sum up bases 3426 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3427 if (CXXRD->isDynamicClass()) { 3428 NeededInt = NeededSSE = 0; 3429 return getIndirectReturnResult(Ty); 3430 } 3431 3432 for (const auto &I : CXXRD->bases()) 3433 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3434 .isIndirect()) { 3435 NeededInt = NeededSSE = 0; 3436 return getIndirectReturnResult(Ty); 3437 } 3438 } 3439 3440 // Sum up members 3441 for (const auto *FD : RT->getDecl()->fields()) { 3442 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3443 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3444 .isIndirect()) { 3445 NeededInt = NeededSSE = 0; 3446 return getIndirectReturnResult(Ty); 3447 } 3448 } else { 3449 unsigned LocalNeededInt, LocalNeededSSE; 3450 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3451 LocalNeededSSE, true) 3452 .isIndirect()) { 3453 NeededInt = NeededSSE = 0; 3454 return getIndirectReturnResult(Ty); 3455 } 3456 NeededInt += LocalNeededInt; 3457 NeededSSE += LocalNeededSSE; 3458 } 3459 } 3460 3461 return ABIArgInfo::getDirect(); 3462 } 3463 3464 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3465 unsigned &NeededInt, 3466 unsigned &NeededSSE) const { 3467 3468 NeededInt = 0; 3469 NeededSSE = 0; 3470 3471 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3472 } 3473 3474 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3475 3476 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3477 3478 // Keep track of the number of assigned registers. 3479 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3480 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3481 unsigned NeededInt, NeededSSE; 3482 3483 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3484 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3485 FI.getReturnInfo() = 3486 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3487 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3488 FreeIntRegs -= NeededInt; 3489 FreeSSERegs -= NeededSSE; 3490 } else { 3491 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3492 } 3493 } else if (!getCXXABI().classifyReturnType(FI)) 3494 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3495 3496 // If the return value is indirect, then the hidden argument is consuming one 3497 // integer register. 3498 if (FI.getReturnInfo().isIndirect()) 3499 --FreeIntRegs; 3500 3501 // The chain argument effectively gives us another free register. 3502 if (FI.isChainCall()) 3503 ++FreeIntRegs; 3504 3505 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3506 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3507 // get assigned (in left-to-right order) for passing as follows... 3508 unsigned ArgNo = 0; 3509 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3510 it != ie; ++it, ++ArgNo) { 3511 bool IsNamedArg = ArgNo < NumRequiredArgs; 3512 3513 if (IsRegCall && it->type->isStructureOrClassType()) 3514 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3515 else 3516 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3517 NeededSSE, IsNamedArg); 3518 3519 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3520 // eightbyte of an argument, the whole argument is passed on the 3521 // stack. If registers have already been assigned for some 3522 // eightbytes of such an argument, the assignments get reverted. 3523 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3524 FreeIntRegs -= NeededInt; 3525 FreeSSERegs -= NeededSSE; 3526 } else { 3527 it->info = getIndirectResult(it->type, FreeIntRegs); 3528 } 3529 } 3530 } 3531 3532 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3533 Address VAListAddr, QualType Ty) { 3534 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3535 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3536 llvm::Value *overflow_arg_area = 3537 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3538 3539 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3540 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3541 // It isn't stated explicitly in the standard, but in practice we use 3542 // alignment greater than 16 where necessary. 3543 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3544 if (Align > CharUnits::fromQuantity(8)) { 3545 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3546 Align); 3547 } 3548 3549 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3550 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3551 llvm::Value *Res = 3552 CGF.Builder.CreateBitCast(overflow_arg_area, 3553 llvm::PointerType::getUnqual(LTy)); 3554 3555 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3556 // l->overflow_arg_area + sizeof(type). 3557 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3558 // an 8 byte boundary. 3559 3560 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3561 llvm::Value *Offset = 3562 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3563 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3564 "overflow_arg_area.next"); 3565 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3566 3567 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3568 return Address(Res, Align); 3569 } 3570 3571 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3572 QualType Ty) const { 3573 // Assume that va_list type is correct; should be pointer to LLVM type: 3574 // struct { 3575 // i32 gp_offset; 3576 // i32 fp_offset; 3577 // i8* overflow_arg_area; 3578 // i8* reg_save_area; 3579 // }; 3580 unsigned neededInt, neededSSE; 3581 3582 Ty = getContext().getCanonicalType(Ty); 3583 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3584 /*isNamedArg*/false); 3585 3586 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3587 // in the registers. If not go to step 7. 3588 if (!neededInt && !neededSSE) 3589 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3590 3591 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3592 // general purpose registers needed to pass type and num_fp to hold 3593 // the number of floating point registers needed. 3594 3595 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3596 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3597 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3598 // 3599 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3600 // register save space). 3601 3602 llvm::Value *InRegs = nullptr; 3603 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3604 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3605 if (neededInt) { 3606 gp_offset_p = 3607 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3608 "gp_offset_p"); 3609 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3610 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3611 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3612 } 3613 3614 if (neededSSE) { 3615 fp_offset_p = 3616 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3617 "fp_offset_p"); 3618 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3619 llvm::Value *FitsInFP = 3620 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3621 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3622 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3623 } 3624 3625 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3626 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3627 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3628 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3629 3630 // Emit code to load the value if it was passed in registers. 3631 3632 CGF.EmitBlock(InRegBlock); 3633 3634 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3635 // an offset of l->gp_offset and/or l->fp_offset. This may require 3636 // copying to a temporary location in case the parameter is passed 3637 // in different register classes or requires an alignment greater 3638 // than 8 for general purpose registers and 16 for XMM registers. 3639 // 3640 // FIXME: This really results in shameful code when we end up needing to 3641 // collect arguments from different places; often what should result in a 3642 // simple assembling of a structure from scattered addresses has many more 3643 // loads than necessary. Can we clean this up? 3644 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3645 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3646 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3647 "reg_save_area"); 3648 3649 Address RegAddr = Address::invalid(); 3650 if (neededInt && neededSSE) { 3651 // FIXME: Cleanup. 3652 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3653 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3654 Address Tmp = CGF.CreateMemTemp(Ty); 3655 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3656 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3657 llvm::Type *TyLo = ST->getElementType(0); 3658 llvm::Type *TyHi = ST->getElementType(1); 3659 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3660 "Unexpected ABI info for mixed regs"); 3661 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3662 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3663 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3664 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3665 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3666 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3667 3668 // Copy the first element. 3669 // FIXME: Our choice of alignment here and below is probably pessimistic. 3670 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3671 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3672 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3673 CGF.Builder.CreateStore(V, 3674 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3675 3676 // Copy the second element. 3677 V = CGF.Builder.CreateAlignedLoad( 3678 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3679 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3680 CharUnits Offset = CharUnits::fromQuantity( 3681 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3682 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3683 3684 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3685 } else if (neededInt) { 3686 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3687 CharUnits::fromQuantity(8)); 3688 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3689 3690 // Copy to a temporary if necessary to ensure the appropriate alignment. 3691 std::pair<CharUnits, CharUnits> SizeAlign = 3692 getContext().getTypeInfoInChars(Ty); 3693 uint64_t TySize = SizeAlign.first.getQuantity(); 3694 CharUnits TyAlign = SizeAlign.second; 3695 3696 // Copy into a temporary if the type is more aligned than the 3697 // register save area. 3698 if (TyAlign.getQuantity() > 8) { 3699 Address Tmp = CGF.CreateMemTemp(Ty); 3700 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3701 RegAddr = Tmp; 3702 } 3703 3704 } else if (neededSSE == 1) { 3705 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3706 CharUnits::fromQuantity(16)); 3707 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3708 } else { 3709 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3710 // SSE registers are spaced 16 bytes apart in the register save 3711 // area, we need to collect the two eightbytes together. 3712 // The ABI isn't explicit about this, but it seems reasonable 3713 // to assume that the slots are 16-byte aligned, since the stack is 3714 // naturally 16-byte aligned and the prologue is expected to store 3715 // all the SSE registers to the RSA. 3716 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3717 CharUnits::fromQuantity(16)); 3718 Address RegAddrHi = 3719 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3720 CharUnits::fromQuantity(16)); 3721 llvm::Type *DoubleTy = CGF.DoubleTy; 3722 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3723 llvm::Value *V; 3724 Address Tmp = CGF.CreateMemTemp(Ty); 3725 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3726 V = CGF.Builder.CreateLoad( 3727 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3728 CGF.Builder.CreateStore(V, 3729 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3730 V = CGF.Builder.CreateLoad( 3731 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3732 CGF.Builder.CreateStore(V, 3733 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3734 3735 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3736 } 3737 3738 // AMD64-ABI 3.5.7p5: Step 5. Set: 3739 // l->gp_offset = l->gp_offset + num_gp * 8 3740 // l->fp_offset = l->fp_offset + num_fp * 16. 3741 if (neededInt) { 3742 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3743 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3744 gp_offset_p); 3745 } 3746 if (neededSSE) { 3747 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3748 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3749 fp_offset_p); 3750 } 3751 CGF.EmitBranch(ContBlock); 3752 3753 // Emit code to load the value if it was passed in memory. 3754 3755 CGF.EmitBlock(InMemBlock); 3756 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3757 3758 // Return the appropriate result. 3759 3760 CGF.EmitBlock(ContBlock); 3761 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3762 "vaarg.addr"); 3763 return ResAddr; 3764 } 3765 3766 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3767 QualType Ty) const { 3768 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3769 CGF.getContext().getTypeInfoInChars(Ty), 3770 CharUnits::fromQuantity(8), 3771 /*allowHigherAlign*/ false); 3772 } 3773 3774 ABIArgInfo 3775 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3776 const ABIArgInfo ¤t) const { 3777 // Assumes vectorCall calling convention. 3778 const Type *Base = nullptr; 3779 uint64_t NumElts = 0; 3780 3781 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3782 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3783 FreeSSERegs -= NumElts; 3784 return getDirectX86Hva(); 3785 } 3786 return current; 3787 } 3788 3789 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3790 bool IsReturnType, bool IsVectorCall, 3791 bool IsRegCall) const { 3792 3793 if (Ty->isVoidType()) 3794 return ABIArgInfo::getIgnore(); 3795 3796 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3797 Ty = EnumTy->getDecl()->getIntegerType(); 3798 3799 TypeInfo Info = getContext().getTypeInfo(Ty); 3800 uint64_t Width = Info.Width; 3801 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3802 3803 const RecordType *RT = Ty->getAs<RecordType>(); 3804 if (RT) { 3805 if (!IsReturnType) { 3806 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3807 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3808 } 3809 3810 if (RT->getDecl()->hasFlexibleArrayMember()) 3811 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3812 3813 } 3814 3815 const Type *Base = nullptr; 3816 uint64_t NumElts = 0; 3817 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3818 // other targets. 3819 if ((IsVectorCall || IsRegCall) && 3820 isHomogeneousAggregate(Ty, Base, NumElts)) { 3821 if (IsRegCall) { 3822 if (FreeSSERegs >= NumElts) { 3823 FreeSSERegs -= NumElts; 3824 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3825 return ABIArgInfo::getDirect(); 3826 return ABIArgInfo::getExpand(); 3827 } 3828 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3829 } else if (IsVectorCall) { 3830 if (FreeSSERegs >= NumElts && 3831 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3832 FreeSSERegs -= NumElts; 3833 return ABIArgInfo::getDirect(); 3834 } else if (IsReturnType) { 3835 return ABIArgInfo::getExpand(); 3836 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3837 // HVAs are delayed and reclassified in the 2nd step. 3838 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3839 } 3840 } 3841 } 3842 3843 if (Ty->isMemberPointerType()) { 3844 // If the member pointer is represented by an LLVM int or ptr, pass it 3845 // directly. 3846 llvm::Type *LLTy = CGT.ConvertType(Ty); 3847 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3848 return ABIArgInfo::getDirect(); 3849 } 3850 3851 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3852 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3853 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3854 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3855 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3856 3857 // Otherwise, coerce it to a small integer. 3858 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3859 } 3860 3861 // Bool type is always extended to the ABI, other builtin types are not 3862 // extended. 3863 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3864 if (BT && BT->getKind() == BuiltinType::Bool) 3865 return ABIArgInfo::getExtend(); 3866 3867 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3868 // passes them indirectly through memory. 3869 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3870 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3871 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3872 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3873 } 3874 3875 return ABIArgInfo::getDirect(); 3876 } 3877 3878 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3879 unsigned FreeSSERegs, 3880 bool IsVectorCall, 3881 bool IsRegCall) const { 3882 unsigned Count = 0; 3883 for (auto &I : FI.arguments()) { 3884 if (Count < VectorcallMaxParamNumAsReg) 3885 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3886 else { 3887 // Since these cannot be passed in registers, pretend no registers 3888 // are left. 3889 unsigned ZeroSSERegsAvail = 0; 3890 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3891 IsVectorCall, IsRegCall); 3892 } 3893 ++Count; 3894 } 3895 3896 Count = 0; 3897 for (auto &I : FI.arguments()) { 3898 if (Count < VectorcallMaxParamNumAsReg) 3899 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3900 ++Count; 3901 } 3902 } 3903 3904 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3905 bool IsVectorCall = 3906 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3907 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3908 3909 unsigned FreeSSERegs = 0; 3910 if (IsVectorCall) { 3911 // We can use up to 4 SSE return registers with vectorcall. 3912 FreeSSERegs = 4; 3913 } else if (IsRegCall) { 3914 // RegCall gives us 16 SSE registers. 3915 FreeSSERegs = 16; 3916 } 3917 3918 if (!getCXXABI().classifyReturnType(FI)) 3919 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3920 IsVectorCall, IsRegCall); 3921 3922 if (IsVectorCall) { 3923 // We can use up to 6 SSE register parameters with vectorcall. 3924 FreeSSERegs = 6; 3925 } else if (IsRegCall) { 3926 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3927 FreeSSERegs = 16; 3928 } 3929 3930 if (IsVectorCall) { 3931 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 3932 } else { 3933 for (auto &I : FI.arguments()) 3934 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3935 } 3936 3937 } 3938 3939 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3940 QualType Ty) const { 3941 3942 bool IsIndirect = false; 3943 3944 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3945 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3946 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3947 uint64_t Width = getContext().getTypeSize(Ty); 3948 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3949 } 3950 3951 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3952 CGF.getContext().getTypeInfoInChars(Ty), 3953 CharUnits::fromQuantity(8), 3954 /*allowHigherAlign*/ false); 3955 } 3956 3957 // PowerPC-32 3958 namespace { 3959 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3960 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3961 bool IsSoftFloatABI; 3962 public: 3963 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3964 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3965 3966 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3967 QualType Ty) const override; 3968 }; 3969 3970 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3971 public: 3972 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3973 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3974 3975 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3976 // This is recovered from gcc output. 3977 return 1; // r1 is the dedicated stack pointer 3978 } 3979 3980 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3981 llvm::Value *Address) const override; 3982 }; 3983 3984 } 3985 3986 // TODO: this implementation is now likely redundant with 3987 // DefaultABIInfo::EmitVAArg. 3988 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3989 QualType Ty) const { 3990 const unsigned OverflowLimit = 8; 3991 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3992 // TODO: Implement this. For now ignore. 3993 (void)CTy; 3994 return Address::invalid(); // FIXME? 3995 } 3996 3997 // struct __va_list_tag { 3998 // unsigned char gpr; 3999 // unsigned char fpr; 4000 // unsigned short reserved; 4001 // void *overflow_arg_area; 4002 // void *reg_save_area; 4003 // }; 4004 4005 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4006 bool isInt = 4007 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4008 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4009 4010 // All aggregates are passed indirectly? That doesn't seem consistent 4011 // with the argument-lowering code. 4012 bool isIndirect = Ty->isAggregateType(); 4013 4014 CGBuilderTy &Builder = CGF.Builder; 4015 4016 // The calling convention either uses 1-2 GPRs or 1 FPR. 4017 Address NumRegsAddr = Address::invalid(); 4018 if (isInt || IsSoftFloatABI) { 4019 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4020 } else { 4021 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4022 } 4023 4024 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4025 4026 // "Align" the register count when TY is i64. 4027 if (isI64 || (isF64 && IsSoftFloatABI)) { 4028 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4029 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4030 } 4031 4032 llvm::Value *CC = 4033 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4034 4035 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4036 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4037 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4038 4039 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4040 4041 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4042 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4043 4044 // Case 1: consume registers. 4045 Address RegAddr = Address::invalid(); 4046 { 4047 CGF.EmitBlock(UsingRegs); 4048 4049 Address RegSaveAreaPtr = 4050 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4051 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4052 CharUnits::fromQuantity(8)); 4053 assert(RegAddr.getElementType() == CGF.Int8Ty); 4054 4055 // Floating-point registers start after the general-purpose registers. 4056 if (!(isInt || IsSoftFloatABI)) { 4057 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4058 CharUnits::fromQuantity(32)); 4059 } 4060 4061 // Get the address of the saved value by scaling the number of 4062 // registers we've used by the number of 4063 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4064 llvm::Value *RegOffset = 4065 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4066 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4067 RegAddr.getPointer(), RegOffset), 4068 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4069 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4070 4071 // Increase the used-register count. 4072 NumRegs = 4073 Builder.CreateAdd(NumRegs, 4074 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4075 Builder.CreateStore(NumRegs, NumRegsAddr); 4076 4077 CGF.EmitBranch(Cont); 4078 } 4079 4080 // Case 2: consume space in the overflow area. 4081 Address MemAddr = Address::invalid(); 4082 { 4083 CGF.EmitBlock(UsingOverflow); 4084 4085 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4086 4087 // Everything in the overflow area is rounded up to a size of at least 4. 4088 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4089 4090 CharUnits Size; 4091 if (!isIndirect) { 4092 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4093 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4094 } else { 4095 Size = CGF.getPointerSize(); 4096 } 4097 4098 Address OverflowAreaAddr = 4099 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4100 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4101 OverflowAreaAlign); 4102 // Round up address of argument to alignment 4103 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4104 if (Align > OverflowAreaAlign) { 4105 llvm::Value *Ptr = OverflowArea.getPointer(); 4106 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4107 Align); 4108 } 4109 4110 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4111 4112 // Increase the overflow area. 4113 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4114 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4115 CGF.EmitBranch(Cont); 4116 } 4117 4118 CGF.EmitBlock(Cont); 4119 4120 // Merge the cases with a phi. 4121 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4122 "vaarg.addr"); 4123 4124 // Load the pointer if the argument was passed indirectly. 4125 if (isIndirect) { 4126 Result = Address(Builder.CreateLoad(Result, "aggr"), 4127 getContext().getTypeAlignInChars(Ty)); 4128 } 4129 4130 return Result; 4131 } 4132 4133 bool 4134 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4135 llvm::Value *Address) const { 4136 // This is calculated from the LLVM and GCC tables and verified 4137 // against gcc output. AFAIK all ABIs use the same encoding. 4138 4139 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4140 4141 llvm::IntegerType *i8 = CGF.Int8Ty; 4142 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4143 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4144 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4145 4146 // 0-31: r0-31, the 4-byte general-purpose registers 4147 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4148 4149 // 32-63: fp0-31, the 8-byte floating-point registers 4150 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4151 4152 // 64-76 are various 4-byte special-purpose registers: 4153 // 64: mq 4154 // 65: lr 4155 // 66: ctr 4156 // 67: ap 4157 // 68-75 cr0-7 4158 // 76: xer 4159 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4160 4161 // 77-108: v0-31, the 16-byte vector registers 4162 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4163 4164 // 109: vrsave 4165 // 110: vscr 4166 // 111: spe_acc 4167 // 112: spefscr 4168 // 113: sfp 4169 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4170 4171 return false; 4172 } 4173 4174 // PowerPC-64 4175 4176 namespace { 4177 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4178 class PPC64_SVR4_ABIInfo : public ABIInfo { 4179 public: 4180 enum ABIKind { 4181 ELFv1 = 0, 4182 ELFv2 4183 }; 4184 4185 private: 4186 static const unsigned GPRBits = 64; 4187 ABIKind Kind; 4188 bool HasQPX; 4189 bool IsSoftFloatABI; 4190 4191 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4192 // will be passed in a QPX register. 4193 bool IsQPXVectorTy(const Type *Ty) const { 4194 if (!HasQPX) 4195 return false; 4196 4197 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4198 unsigned NumElements = VT->getNumElements(); 4199 if (NumElements == 1) 4200 return false; 4201 4202 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4203 if (getContext().getTypeSize(Ty) <= 256) 4204 return true; 4205 } else if (VT->getElementType()-> 4206 isSpecificBuiltinType(BuiltinType::Float)) { 4207 if (getContext().getTypeSize(Ty) <= 128) 4208 return true; 4209 } 4210 } 4211 4212 return false; 4213 } 4214 4215 bool IsQPXVectorTy(QualType Ty) const { 4216 return IsQPXVectorTy(Ty.getTypePtr()); 4217 } 4218 4219 public: 4220 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4221 bool SoftFloatABI) 4222 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4223 IsSoftFloatABI(SoftFloatABI) {} 4224 4225 bool isPromotableTypeForABI(QualType Ty) const; 4226 CharUnits getParamTypeAlignment(QualType Ty) const; 4227 4228 ABIArgInfo classifyReturnType(QualType RetTy) const; 4229 ABIArgInfo classifyArgumentType(QualType Ty) const; 4230 4231 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4232 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4233 uint64_t Members) const override; 4234 4235 // TODO: We can add more logic to computeInfo to improve performance. 4236 // Example: For aggregate arguments that fit in a register, we could 4237 // use getDirectInReg (as is done below for structs containing a single 4238 // floating-point value) to avoid pushing them to memory on function 4239 // entry. This would require changing the logic in PPCISelLowering 4240 // when lowering the parameters in the caller and args in the callee. 4241 void computeInfo(CGFunctionInfo &FI) const override { 4242 if (!getCXXABI().classifyReturnType(FI)) 4243 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4244 for (auto &I : FI.arguments()) { 4245 // We rely on the default argument classification for the most part. 4246 // One exception: An aggregate containing a single floating-point 4247 // or vector item must be passed in a register if one is available. 4248 const Type *T = isSingleElementStruct(I.type, getContext()); 4249 if (T) { 4250 const BuiltinType *BT = T->getAs<BuiltinType>(); 4251 if (IsQPXVectorTy(T) || 4252 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4253 (BT && BT->isFloatingPoint())) { 4254 QualType QT(T, 0); 4255 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4256 continue; 4257 } 4258 } 4259 I.info = classifyArgumentType(I.type); 4260 } 4261 } 4262 4263 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4264 QualType Ty) const override; 4265 }; 4266 4267 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4268 4269 public: 4270 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4271 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4272 bool SoftFloatABI) 4273 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4274 SoftFloatABI)) {} 4275 4276 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4277 // This is recovered from gcc output. 4278 return 1; // r1 is the dedicated stack pointer 4279 } 4280 4281 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4282 llvm::Value *Address) const override; 4283 }; 4284 4285 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4286 public: 4287 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4288 4289 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4290 // This is recovered from gcc output. 4291 return 1; // r1 is the dedicated stack pointer 4292 } 4293 4294 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4295 llvm::Value *Address) const override; 4296 }; 4297 4298 } 4299 4300 // Return true if the ABI requires Ty to be passed sign- or zero- 4301 // extended to 64 bits. 4302 bool 4303 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4304 // Treat an enum type as its underlying type. 4305 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4306 Ty = EnumTy->getDecl()->getIntegerType(); 4307 4308 // Promotable integer types are required to be promoted by the ABI. 4309 if (Ty->isPromotableIntegerType()) 4310 return true; 4311 4312 // In addition to the usual promotable integer types, we also need to 4313 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4314 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4315 switch (BT->getKind()) { 4316 case BuiltinType::Int: 4317 case BuiltinType::UInt: 4318 return true; 4319 default: 4320 break; 4321 } 4322 4323 return false; 4324 } 4325 4326 /// isAlignedParamType - Determine whether a type requires 16-byte or 4327 /// higher alignment in the parameter area. Always returns at least 8. 4328 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4329 // Complex types are passed just like their elements. 4330 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4331 Ty = CTy->getElementType(); 4332 4333 // Only vector types of size 16 bytes need alignment (larger types are 4334 // passed via reference, smaller types are not aligned). 4335 if (IsQPXVectorTy(Ty)) { 4336 if (getContext().getTypeSize(Ty) > 128) 4337 return CharUnits::fromQuantity(32); 4338 4339 return CharUnits::fromQuantity(16); 4340 } else if (Ty->isVectorType()) { 4341 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4342 } 4343 4344 // For single-element float/vector structs, we consider the whole type 4345 // to have the same alignment requirements as its single element. 4346 const Type *AlignAsType = nullptr; 4347 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4348 if (EltType) { 4349 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4350 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4351 getContext().getTypeSize(EltType) == 128) || 4352 (BT && BT->isFloatingPoint())) 4353 AlignAsType = EltType; 4354 } 4355 4356 // Likewise for ELFv2 homogeneous aggregates. 4357 const Type *Base = nullptr; 4358 uint64_t Members = 0; 4359 if (!AlignAsType && Kind == ELFv2 && 4360 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4361 AlignAsType = Base; 4362 4363 // With special case aggregates, only vector base types need alignment. 4364 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4365 if (getContext().getTypeSize(AlignAsType) > 128) 4366 return CharUnits::fromQuantity(32); 4367 4368 return CharUnits::fromQuantity(16); 4369 } else if (AlignAsType) { 4370 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4371 } 4372 4373 // Otherwise, we only need alignment for any aggregate type that 4374 // has an alignment requirement of >= 16 bytes. 4375 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4376 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4377 return CharUnits::fromQuantity(32); 4378 return CharUnits::fromQuantity(16); 4379 } 4380 4381 return CharUnits::fromQuantity(8); 4382 } 4383 4384 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4385 /// aggregate. Base is set to the base element type, and Members is set 4386 /// to the number of base elements. 4387 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4388 uint64_t &Members) const { 4389 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4390 uint64_t NElements = AT->getSize().getZExtValue(); 4391 if (NElements == 0) 4392 return false; 4393 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4394 return false; 4395 Members *= NElements; 4396 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4397 const RecordDecl *RD = RT->getDecl(); 4398 if (RD->hasFlexibleArrayMember()) 4399 return false; 4400 4401 Members = 0; 4402 4403 // If this is a C++ record, check the bases first. 4404 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4405 for (const auto &I : CXXRD->bases()) { 4406 // Ignore empty records. 4407 if (isEmptyRecord(getContext(), I.getType(), true)) 4408 continue; 4409 4410 uint64_t FldMembers; 4411 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4412 return false; 4413 4414 Members += FldMembers; 4415 } 4416 } 4417 4418 for (const auto *FD : RD->fields()) { 4419 // Ignore (non-zero arrays of) empty records. 4420 QualType FT = FD->getType(); 4421 while (const ConstantArrayType *AT = 4422 getContext().getAsConstantArrayType(FT)) { 4423 if (AT->getSize().getZExtValue() == 0) 4424 return false; 4425 FT = AT->getElementType(); 4426 } 4427 if (isEmptyRecord(getContext(), FT, true)) 4428 continue; 4429 4430 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4431 if (getContext().getLangOpts().CPlusPlus && 4432 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4433 continue; 4434 4435 uint64_t FldMembers; 4436 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4437 return false; 4438 4439 Members = (RD->isUnion() ? 4440 std::max(Members, FldMembers) : Members + FldMembers); 4441 } 4442 4443 if (!Base) 4444 return false; 4445 4446 // Ensure there is no padding. 4447 if (getContext().getTypeSize(Base) * Members != 4448 getContext().getTypeSize(Ty)) 4449 return false; 4450 } else { 4451 Members = 1; 4452 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4453 Members = 2; 4454 Ty = CT->getElementType(); 4455 } 4456 4457 // Most ABIs only support float, double, and some vector type widths. 4458 if (!isHomogeneousAggregateBaseType(Ty)) 4459 return false; 4460 4461 // The base type must be the same for all members. Types that 4462 // agree in both total size and mode (float vs. vector) are 4463 // treated as being equivalent here. 4464 const Type *TyPtr = Ty.getTypePtr(); 4465 if (!Base) { 4466 Base = TyPtr; 4467 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4468 // so make sure to widen it explicitly. 4469 if (const VectorType *VT = Base->getAs<VectorType>()) { 4470 QualType EltTy = VT->getElementType(); 4471 unsigned NumElements = 4472 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4473 Base = getContext() 4474 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4475 .getTypePtr(); 4476 } 4477 } 4478 4479 if (Base->isVectorType() != TyPtr->isVectorType() || 4480 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4481 return false; 4482 } 4483 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4484 } 4485 4486 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4487 // Homogeneous aggregates for ELFv2 must have base types of float, 4488 // double, long double, or 128-bit vectors. 4489 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4490 if (BT->getKind() == BuiltinType::Float || 4491 BT->getKind() == BuiltinType::Double || 4492 BT->getKind() == BuiltinType::LongDouble) { 4493 if (IsSoftFloatABI) 4494 return false; 4495 return true; 4496 } 4497 } 4498 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4499 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4500 return true; 4501 } 4502 return false; 4503 } 4504 4505 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4506 const Type *Base, uint64_t Members) const { 4507 // Vector types require one register, floating point types require one 4508 // or two registers depending on their size. 4509 uint32_t NumRegs = 4510 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4511 4512 // Homogeneous Aggregates may occupy at most 8 registers. 4513 return Members * NumRegs <= 8; 4514 } 4515 4516 ABIArgInfo 4517 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4518 Ty = useFirstFieldIfTransparentUnion(Ty); 4519 4520 if (Ty->isAnyComplexType()) 4521 return ABIArgInfo::getDirect(); 4522 4523 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4524 // or via reference (larger than 16 bytes). 4525 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4526 uint64_t Size = getContext().getTypeSize(Ty); 4527 if (Size > 128) 4528 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4529 else if (Size < 128) { 4530 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4531 return ABIArgInfo::getDirect(CoerceTy); 4532 } 4533 } 4534 4535 if (isAggregateTypeForABI(Ty)) { 4536 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4537 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4538 4539 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4540 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4541 4542 // ELFv2 homogeneous aggregates are passed as array types. 4543 const Type *Base = nullptr; 4544 uint64_t Members = 0; 4545 if (Kind == ELFv2 && 4546 isHomogeneousAggregate(Ty, Base, Members)) { 4547 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4548 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4549 return ABIArgInfo::getDirect(CoerceTy); 4550 } 4551 4552 // If an aggregate may end up fully in registers, we do not 4553 // use the ByVal method, but pass the aggregate as array. 4554 // This is usually beneficial since we avoid forcing the 4555 // back-end to store the argument to memory. 4556 uint64_t Bits = getContext().getTypeSize(Ty); 4557 if (Bits > 0 && Bits <= 8 * GPRBits) { 4558 llvm::Type *CoerceTy; 4559 4560 // Types up to 8 bytes are passed as integer type (which will be 4561 // properly aligned in the argument save area doubleword). 4562 if (Bits <= GPRBits) 4563 CoerceTy = 4564 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4565 // Larger types are passed as arrays, with the base type selected 4566 // according to the required alignment in the save area. 4567 else { 4568 uint64_t RegBits = ABIAlign * 8; 4569 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4570 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4571 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4572 } 4573 4574 return ABIArgInfo::getDirect(CoerceTy); 4575 } 4576 4577 // All other aggregates are passed ByVal. 4578 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4579 /*ByVal=*/true, 4580 /*Realign=*/TyAlign > ABIAlign); 4581 } 4582 4583 return (isPromotableTypeForABI(Ty) ? 4584 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4585 } 4586 4587 ABIArgInfo 4588 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4589 if (RetTy->isVoidType()) 4590 return ABIArgInfo::getIgnore(); 4591 4592 if (RetTy->isAnyComplexType()) 4593 return ABIArgInfo::getDirect(); 4594 4595 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4596 // or via reference (larger than 16 bytes). 4597 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4598 uint64_t Size = getContext().getTypeSize(RetTy); 4599 if (Size > 128) 4600 return getNaturalAlignIndirect(RetTy); 4601 else if (Size < 128) { 4602 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4603 return ABIArgInfo::getDirect(CoerceTy); 4604 } 4605 } 4606 4607 if (isAggregateTypeForABI(RetTy)) { 4608 // ELFv2 homogeneous aggregates are returned as array types. 4609 const Type *Base = nullptr; 4610 uint64_t Members = 0; 4611 if (Kind == ELFv2 && 4612 isHomogeneousAggregate(RetTy, Base, Members)) { 4613 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4614 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4615 return ABIArgInfo::getDirect(CoerceTy); 4616 } 4617 4618 // ELFv2 small aggregates are returned in up to two registers. 4619 uint64_t Bits = getContext().getTypeSize(RetTy); 4620 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4621 if (Bits == 0) 4622 return ABIArgInfo::getIgnore(); 4623 4624 llvm::Type *CoerceTy; 4625 if (Bits > GPRBits) { 4626 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4627 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4628 } else 4629 CoerceTy = 4630 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4631 return ABIArgInfo::getDirect(CoerceTy); 4632 } 4633 4634 // All other aggregates are returned indirectly. 4635 return getNaturalAlignIndirect(RetTy); 4636 } 4637 4638 return (isPromotableTypeForABI(RetTy) ? 4639 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4640 } 4641 4642 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4643 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4644 QualType Ty) const { 4645 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4646 TypeInfo.second = getParamTypeAlignment(Ty); 4647 4648 CharUnits SlotSize = CharUnits::fromQuantity(8); 4649 4650 // If we have a complex type and the base type is smaller than 8 bytes, 4651 // the ABI calls for the real and imaginary parts to be right-adjusted 4652 // in separate doublewords. However, Clang expects us to produce a 4653 // pointer to a structure with the two parts packed tightly. So generate 4654 // loads of the real and imaginary parts relative to the va_list pointer, 4655 // and store them to a temporary structure. 4656 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4657 CharUnits EltSize = TypeInfo.first / 2; 4658 if (EltSize < SlotSize) { 4659 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4660 SlotSize * 2, SlotSize, 4661 SlotSize, /*AllowHigher*/ true); 4662 4663 Address RealAddr = Addr; 4664 Address ImagAddr = RealAddr; 4665 if (CGF.CGM.getDataLayout().isBigEndian()) { 4666 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4667 SlotSize - EltSize); 4668 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4669 2 * SlotSize - EltSize); 4670 } else { 4671 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4672 } 4673 4674 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4675 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4676 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4677 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4678 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4679 4680 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4681 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4682 /*init*/ true); 4683 return Temp; 4684 } 4685 } 4686 4687 // Otherwise, just use the general rule. 4688 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4689 TypeInfo, SlotSize, /*AllowHigher*/ true); 4690 } 4691 4692 static bool 4693 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4694 llvm::Value *Address) { 4695 // This is calculated from the LLVM and GCC tables and verified 4696 // against gcc output. AFAIK all ABIs use the same encoding. 4697 4698 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4699 4700 llvm::IntegerType *i8 = CGF.Int8Ty; 4701 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4702 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4703 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4704 4705 // 0-31: r0-31, the 8-byte general-purpose registers 4706 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4707 4708 // 32-63: fp0-31, the 8-byte floating-point registers 4709 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4710 4711 // 64-67 are various 8-byte special-purpose registers: 4712 // 64: mq 4713 // 65: lr 4714 // 66: ctr 4715 // 67: ap 4716 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4717 4718 // 68-76 are various 4-byte special-purpose registers: 4719 // 68-75 cr0-7 4720 // 76: xer 4721 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4722 4723 // 77-108: v0-31, the 16-byte vector registers 4724 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4725 4726 // 109: vrsave 4727 // 110: vscr 4728 // 111: spe_acc 4729 // 112: spefscr 4730 // 113: sfp 4731 // 114: tfhar 4732 // 115: tfiar 4733 // 116: texasr 4734 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4735 4736 return false; 4737 } 4738 4739 bool 4740 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4741 CodeGen::CodeGenFunction &CGF, 4742 llvm::Value *Address) const { 4743 4744 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4745 } 4746 4747 bool 4748 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4749 llvm::Value *Address) const { 4750 4751 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4752 } 4753 4754 //===----------------------------------------------------------------------===// 4755 // AArch64 ABI Implementation 4756 //===----------------------------------------------------------------------===// 4757 4758 namespace { 4759 4760 class AArch64ABIInfo : public SwiftABIInfo { 4761 public: 4762 enum ABIKind { 4763 AAPCS = 0, 4764 DarwinPCS 4765 }; 4766 4767 private: 4768 ABIKind Kind; 4769 4770 public: 4771 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4772 : SwiftABIInfo(CGT), Kind(Kind) {} 4773 4774 private: 4775 ABIKind getABIKind() const { return Kind; } 4776 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4777 4778 ABIArgInfo classifyReturnType(QualType RetTy) const; 4779 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4780 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4781 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4782 uint64_t Members) const override; 4783 4784 bool isIllegalVectorType(QualType Ty) const; 4785 4786 void computeInfo(CGFunctionInfo &FI) const override { 4787 if (!getCXXABI().classifyReturnType(FI)) 4788 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4789 4790 for (auto &it : FI.arguments()) 4791 it.info = classifyArgumentType(it.type); 4792 } 4793 4794 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4795 CodeGenFunction &CGF) const; 4796 4797 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4798 CodeGenFunction &CGF) const; 4799 4800 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4801 QualType Ty) const override { 4802 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4803 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4804 } 4805 4806 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4807 ArrayRef<llvm::Type*> scalars, 4808 bool asReturnValue) const override { 4809 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4810 } 4811 bool isSwiftErrorInRegister() const override { 4812 return true; 4813 } 4814 }; 4815 4816 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4817 public: 4818 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4819 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4820 4821 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4822 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4823 } 4824 4825 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4826 return 31; 4827 } 4828 4829 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4830 }; 4831 } 4832 4833 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4834 Ty = useFirstFieldIfTransparentUnion(Ty); 4835 4836 // Handle illegal vector types here. 4837 if (isIllegalVectorType(Ty)) { 4838 uint64_t Size = getContext().getTypeSize(Ty); 4839 // Android promotes <2 x i8> to i16, not i32 4840 if (isAndroid() && (Size <= 16)) { 4841 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4842 return ABIArgInfo::getDirect(ResType); 4843 } 4844 if (Size <= 32) { 4845 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4846 return ABIArgInfo::getDirect(ResType); 4847 } 4848 if (Size == 64) { 4849 llvm::Type *ResType = 4850 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4851 return ABIArgInfo::getDirect(ResType); 4852 } 4853 if (Size == 128) { 4854 llvm::Type *ResType = 4855 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4856 return ABIArgInfo::getDirect(ResType); 4857 } 4858 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4859 } 4860 4861 if (!isAggregateTypeForABI(Ty)) { 4862 // Treat an enum type as its underlying type. 4863 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4864 Ty = EnumTy->getDecl()->getIntegerType(); 4865 4866 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4867 ? ABIArgInfo::getExtend() 4868 : ABIArgInfo::getDirect()); 4869 } 4870 4871 // Structures with either a non-trivial destructor or a non-trivial 4872 // copy constructor are always indirect. 4873 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4874 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4875 CGCXXABI::RAA_DirectInMemory); 4876 } 4877 4878 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4879 // elsewhere for GNU compatibility. 4880 if (isEmptyRecord(getContext(), Ty, true)) { 4881 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4882 return ABIArgInfo::getIgnore(); 4883 4884 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4885 } 4886 4887 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4888 const Type *Base = nullptr; 4889 uint64_t Members = 0; 4890 if (isHomogeneousAggregate(Ty, Base, Members)) { 4891 return ABIArgInfo::getDirect( 4892 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4893 } 4894 4895 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4896 uint64_t Size = getContext().getTypeSize(Ty); 4897 if (Size <= 128) { 4898 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4899 // same size and alignment. 4900 if (getTarget().isRenderScriptTarget()) { 4901 return coerceToIntArray(Ty, getContext(), getVMContext()); 4902 } 4903 unsigned Alignment = getContext().getTypeAlign(Ty); 4904 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4905 4906 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4907 // For aggregates with 16-byte alignment, we use i128. 4908 if (Alignment < 128 && Size == 128) { 4909 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4910 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4911 } 4912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4913 } 4914 4915 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4916 } 4917 4918 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4919 if (RetTy->isVoidType()) 4920 return ABIArgInfo::getIgnore(); 4921 4922 // Large vector types should be returned via memory. 4923 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4924 return getNaturalAlignIndirect(RetTy); 4925 4926 if (!isAggregateTypeForABI(RetTy)) { 4927 // Treat an enum type as its underlying type. 4928 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4929 RetTy = EnumTy->getDecl()->getIntegerType(); 4930 4931 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4932 ? ABIArgInfo::getExtend() 4933 : ABIArgInfo::getDirect()); 4934 } 4935 4936 if (isEmptyRecord(getContext(), RetTy, true)) 4937 return ABIArgInfo::getIgnore(); 4938 4939 const Type *Base = nullptr; 4940 uint64_t Members = 0; 4941 if (isHomogeneousAggregate(RetTy, Base, Members)) 4942 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4943 return ABIArgInfo::getDirect(); 4944 4945 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4946 uint64_t Size = getContext().getTypeSize(RetTy); 4947 if (Size <= 128) { 4948 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4949 // same size and alignment. 4950 if (getTarget().isRenderScriptTarget()) { 4951 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4952 } 4953 unsigned Alignment = getContext().getTypeAlign(RetTy); 4954 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4955 4956 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4957 // For aggregates with 16-byte alignment, we use i128. 4958 if (Alignment < 128 && Size == 128) { 4959 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4960 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4961 } 4962 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4963 } 4964 4965 return getNaturalAlignIndirect(RetTy); 4966 } 4967 4968 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4969 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4970 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4971 // Check whether VT is legal. 4972 unsigned NumElements = VT->getNumElements(); 4973 uint64_t Size = getContext().getTypeSize(VT); 4974 // NumElements should be power of 2. 4975 if (!llvm::isPowerOf2_32(NumElements)) 4976 return true; 4977 return Size != 64 && (Size != 128 || NumElements == 1); 4978 } 4979 return false; 4980 } 4981 4982 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4983 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4984 // point type or a short-vector type. This is the same as the 32-bit ABI, 4985 // but with the difference that any floating-point type is allowed, 4986 // including __fp16. 4987 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4988 if (BT->isFloatingPoint()) 4989 return true; 4990 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4991 unsigned VecSize = getContext().getTypeSize(VT); 4992 if (VecSize == 64 || VecSize == 128) 4993 return true; 4994 } 4995 return false; 4996 } 4997 4998 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4999 uint64_t Members) const { 5000 return Members <= 4; 5001 } 5002 5003 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5004 QualType Ty, 5005 CodeGenFunction &CGF) const { 5006 ABIArgInfo AI = classifyArgumentType(Ty); 5007 bool IsIndirect = AI.isIndirect(); 5008 5009 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5010 if (IsIndirect) 5011 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5012 else if (AI.getCoerceToType()) 5013 BaseTy = AI.getCoerceToType(); 5014 5015 unsigned NumRegs = 1; 5016 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5017 BaseTy = ArrTy->getElementType(); 5018 NumRegs = ArrTy->getNumElements(); 5019 } 5020 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5021 5022 // The AArch64 va_list type and handling is specified in the Procedure Call 5023 // Standard, section B.4: 5024 // 5025 // struct { 5026 // void *__stack; 5027 // void *__gr_top; 5028 // void *__vr_top; 5029 // int __gr_offs; 5030 // int __vr_offs; 5031 // }; 5032 5033 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5034 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5035 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5036 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5037 5038 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5039 CharUnits TyAlign = TyInfo.second; 5040 5041 Address reg_offs_p = Address::invalid(); 5042 llvm::Value *reg_offs = nullptr; 5043 int reg_top_index; 5044 CharUnits reg_top_offset; 5045 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5046 if (!IsFPR) { 5047 // 3 is the field number of __gr_offs 5048 reg_offs_p = 5049 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5050 "gr_offs_p"); 5051 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5052 reg_top_index = 1; // field number for __gr_top 5053 reg_top_offset = CharUnits::fromQuantity(8); 5054 RegSize = llvm::alignTo(RegSize, 8); 5055 } else { 5056 // 4 is the field number of __vr_offs. 5057 reg_offs_p = 5058 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5059 "vr_offs_p"); 5060 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5061 reg_top_index = 2; // field number for __vr_top 5062 reg_top_offset = CharUnits::fromQuantity(16); 5063 RegSize = 16 * NumRegs; 5064 } 5065 5066 //======================================= 5067 // Find out where argument was passed 5068 //======================================= 5069 5070 // If reg_offs >= 0 we're already using the stack for this type of 5071 // argument. We don't want to keep updating reg_offs (in case it overflows, 5072 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5073 // whatever they get). 5074 llvm::Value *UsingStack = nullptr; 5075 UsingStack = CGF.Builder.CreateICmpSGE( 5076 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5077 5078 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5079 5080 // Otherwise, at least some kind of argument could go in these registers, the 5081 // question is whether this particular type is too big. 5082 CGF.EmitBlock(MaybeRegBlock); 5083 5084 // Integer arguments may need to correct register alignment (for example a 5085 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5086 // align __gr_offs to calculate the potential address. 5087 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5088 int Align = TyAlign.getQuantity(); 5089 5090 reg_offs = CGF.Builder.CreateAdd( 5091 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5092 "align_regoffs"); 5093 reg_offs = CGF.Builder.CreateAnd( 5094 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5095 "aligned_regoffs"); 5096 } 5097 5098 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5099 // The fact that this is done unconditionally reflects the fact that 5100 // allocating an argument to the stack also uses up all the remaining 5101 // registers of the appropriate kind. 5102 llvm::Value *NewOffset = nullptr; 5103 NewOffset = CGF.Builder.CreateAdd( 5104 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5105 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5106 5107 // Now we're in a position to decide whether this argument really was in 5108 // registers or not. 5109 llvm::Value *InRegs = nullptr; 5110 InRegs = CGF.Builder.CreateICmpSLE( 5111 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5112 5113 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5114 5115 //======================================= 5116 // Argument was in registers 5117 //======================================= 5118 5119 // Now we emit the code for if the argument was originally passed in 5120 // registers. First start the appropriate block: 5121 CGF.EmitBlock(InRegBlock); 5122 5123 llvm::Value *reg_top = nullptr; 5124 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5125 reg_top_offset, "reg_top_p"); 5126 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5127 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5128 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5129 Address RegAddr = Address::invalid(); 5130 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5131 5132 if (IsIndirect) { 5133 // If it's been passed indirectly (actually a struct), whatever we find from 5134 // stored registers or on the stack will actually be a struct **. 5135 MemTy = llvm::PointerType::getUnqual(MemTy); 5136 } 5137 5138 const Type *Base = nullptr; 5139 uint64_t NumMembers = 0; 5140 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5141 if (IsHFA && NumMembers > 1) { 5142 // Homogeneous aggregates passed in registers will have their elements split 5143 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5144 // qN+1, ...). We reload and store into a temporary local variable 5145 // contiguously. 5146 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5147 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5148 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5149 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5150 Address Tmp = CGF.CreateTempAlloca(HFATy, 5151 std::max(TyAlign, BaseTyInfo.second)); 5152 5153 // On big-endian platforms, the value will be right-aligned in its slot. 5154 int Offset = 0; 5155 if (CGF.CGM.getDataLayout().isBigEndian() && 5156 BaseTyInfo.first.getQuantity() < 16) 5157 Offset = 16 - BaseTyInfo.first.getQuantity(); 5158 5159 for (unsigned i = 0; i < NumMembers; ++i) { 5160 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5161 Address LoadAddr = 5162 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5163 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5164 5165 Address StoreAddr = 5166 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5167 5168 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5169 CGF.Builder.CreateStore(Elem, StoreAddr); 5170 } 5171 5172 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5173 } else { 5174 // Otherwise the object is contiguous in memory. 5175 5176 // It might be right-aligned in its slot. 5177 CharUnits SlotSize = BaseAddr.getAlignment(); 5178 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5179 (IsHFA || !isAggregateTypeForABI(Ty)) && 5180 TyInfo.first < SlotSize) { 5181 CharUnits Offset = SlotSize - TyInfo.first; 5182 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5183 } 5184 5185 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5186 } 5187 5188 CGF.EmitBranch(ContBlock); 5189 5190 //======================================= 5191 // Argument was on the stack 5192 //======================================= 5193 CGF.EmitBlock(OnStackBlock); 5194 5195 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5196 CharUnits::Zero(), "stack_p"); 5197 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5198 5199 // Again, stack arguments may need realignment. In this case both integer and 5200 // floating-point ones might be affected. 5201 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5202 int Align = TyAlign.getQuantity(); 5203 5204 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5205 5206 OnStackPtr = CGF.Builder.CreateAdd( 5207 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5208 "align_stack"); 5209 OnStackPtr = CGF.Builder.CreateAnd( 5210 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5211 "align_stack"); 5212 5213 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5214 } 5215 Address OnStackAddr(OnStackPtr, 5216 std::max(CharUnits::fromQuantity(8), TyAlign)); 5217 5218 // All stack slots are multiples of 8 bytes. 5219 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5220 CharUnits StackSize; 5221 if (IsIndirect) 5222 StackSize = StackSlotSize; 5223 else 5224 StackSize = TyInfo.first.alignTo(StackSlotSize); 5225 5226 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5227 llvm::Value *NewStack = 5228 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5229 5230 // Write the new value of __stack for the next call to va_arg 5231 CGF.Builder.CreateStore(NewStack, stack_p); 5232 5233 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5234 TyInfo.first < StackSlotSize) { 5235 CharUnits Offset = StackSlotSize - TyInfo.first; 5236 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5237 } 5238 5239 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5240 5241 CGF.EmitBranch(ContBlock); 5242 5243 //======================================= 5244 // Tidy up 5245 //======================================= 5246 CGF.EmitBlock(ContBlock); 5247 5248 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5249 OnStackAddr, OnStackBlock, "vaargs.addr"); 5250 5251 if (IsIndirect) 5252 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5253 TyInfo.second); 5254 5255 return ResAddr; 5256 } 5257 5258 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5259 CodeGenFunction &CGF) const { 5260 // The backend's lowering doesn't support va_arg for aggregates or 5261 // illegal vector types. Lower VAArg here for these cases and use 5262 // the LLVM va_arg instruction for everything else. 5263 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5264 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5265 5266 CharUnits SlotSize = CharUnits::fromQuantity(8); 5267 5268 // Empty records are ignored for parameter passing purposes. 5269 if (isEmptyRecord(getContext(), Ty, true)) { 5270 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5271 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5272 return Addr; 5273 } 5274 5275 // The size of the actual thing passed, which might end up just 5276 // being a pointer for indirect types. 5277 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5278 5279 // Arguments bigger than 16 bytes which aren't homogeneous 5280 // aggregates should be passed indirectly. 5281 bool IsIndirect = false; 5282 if (TyInfo.first.getQuantity() > 16) { 5283 const Type *Base = nullptr; 5284 uint64_t Members = 0; 5285 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5286 } 5287 5288 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5289 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5290 } 5291 5292 //===----------------------------------------------------------------------===// 5293 // ARM ABI Implementation 5294 //===----------------------------------------------------------------------===// 5295 5296 namespace { 5297 5298 class ARMABIInfo : public SwiftABIInfo { 5299 public: 5300 enum ABIKind { 5301 APCS = 0, 5302 AAPCS = 1, 5303 AAPCS_VFP = 2, 5304 AAPCS16_VFP = 3, 5305 }; 5306 5307 private: 5308 ABIKind Kind; 5309 5310 public: 5311 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5312 : SwiftABIInfo(CGT), Kind(_Kind) { 5313 setCCs(); 5314 } 5315 5316 bool isEABI() const { 5317 switch (getTarget().getTriple().getEnvironment()) { 5318 case llvm::Triple::Android: 5319 case llvm::Triple::EABI: 5320 case llvm::Triple::EABIHF: 5321 case llvm::Triple::GNUEABI: 5322 case llvm::Triple::GNUEABIHF: 5323 case llvm::Triple::MuslEABI: 5324 case llvm::Triple::MuslEABIHF: 5325 return true; 5326 default: 5327 return false; 5328 } 5329 } 5330 5331 bool isEABIHF() const { 5332 switch (getTarget().getTriple().getEnvironment()) { 5333 case llvm::Triple::EABIHF: 5334 case llvm::Triple::GNUEABIHF: 5335 case llvm::Triple::MuslEABIHF: 5336 return true; 5337 default: 5338 return false; 5339 } 5340 } 5341 5342 ABIKind getABIKind() const { return Kind; } 5343 5344 private: 5345 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5346 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5347 bool isIllegalVectorType(QualType Ty) const; 5348 5349 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5350 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5351 uint64_t Members) const override; 5352 5353 void computeInfo(CGFunctionInfo &FI) const override; 5354 5355 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5356 QualType Ty) const override; 5357 5358 llvm::CallingConv::ID getLLVMDefaultCC() const; 5359 llvm::CallingConv::ID getABIDefaultCC() const; 5360 void setCCs(); 5361 5362 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5363 ArrayRef<llvm::Type*> scalars, 5364 bool asReturnValue) const override { 5365 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5366 } 5367 bool isSwiftErrorInRegister() const override { 5368 return true; 5369 } 5370 }; 5371 5372 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5373 public: 5374 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5375 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5376 5377 const ARMABIInfo &getABIInfo() const { 5378 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5379 } 5380 5381 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5382 return 13; 5383 } 5384 5385 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5386 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5387 } 5388 5389 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5390 llvm::Value *Address) const override { 5391 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5392 5393 // 0-15 are the 16 integer registers. 5394 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5395 return false; 5396 } 5397 5398 unsigned getSizeOfUnwindException() const override { 5399 if (getABIInfo().isEABI()) return 88; 5400 return TargetCodeGenInfo::getSizeOfUnwindException(); 5401 } 5402 5403 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5404 CodeGen::CodeGenModule &CGM) const override { 5405 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5406 if (!FD) 5407 return; 5408 5409 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5410 if (!Attr) 5411 return; 5412 5413 const char *Kind; 5414 switch (Attr->getInterrupt()) { 5415 case ARMInterruptAttr::Generic: Kind = ""; break; 5416 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5417 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5418 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5419 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5420 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5421 } 5422 5423 llvm::Function *Fn = cast<llvm::Function>(GV); 5424 5425 Fn->addFnAttr("interrupt", Kind); 5426 5427 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5428 if (ABI == ARMABIInfo::APCS) 5429 return; 5430 5431 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5432 // however this is not necessarily true on taking any interrupt. Instruct 5433 // the backend to perform a realignment as part of the function prologue. 5434 llvm::AttrBuilder B; 5435 B.addStackAlignmentAttr(8); 5436 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5437 llvm::AttributeSet::get(CGM.getLLVMContext(), 5438 llvm::AttributeSet::FunctionIndex, 5439 B)); 5440 } 5441 }; 5442 5443 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5444 public: 5445 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5446 : ARMTargetCodeGenInfo(CGT, K) {} 5447 5448 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5449 CodeGen::CodeGenModule &CGM) const override; 5450 5451 void getDependentLibraryOption(llvm::StringRef Lib, 5452 llvm::SmallString<24> &Opt) const override { 5453 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5454 } 5455 5456 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5457 llvm::SmallString<32> &Opt) const override { 5458 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5459 } 5460 }; 5461 5462 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5463 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5464 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5465 addStackProbeSizeTargetAttribute(D, GV, CGM); 5466 } 5467 } 5468 5469 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5470 if (!getCXXABI().classifyReturnType(FI)) 5471 FI.getReturnInfo() = 5472 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5473 5474 for (auto &I : FI.arguments()) 5475 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5476 5477 // Always honor user-specified calling convention. 5478 if (FI.getCallingConvention() != llvm::CallingConv::C) 5479 return; 5480 5481 llvm::CallingConv::ID cc = getRuntimeCC(); 5482 if (cc != llvm::CallingConv::C) 5483 FI.setEffectiveCallingConvention(cc); 5484 } 5485 5486 /// Return the default calling convention that LLVM will use. 5487 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5488 // The default calling convention that LLVM will infer. 5489 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5490 return llvm::CallingConv::ARM_AAPCS_VFP; 5491 else if (isEABI()) 5492 return llvm::CallingConv::ARM_AAPCS; 5493 else 5494 return llvm::CallingConv::ARM_APCS; 5495 } 5496 5497 /// Return the calling convention that our ABI would like us to use 5498 /// as the C calling convention. 5499 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5500 switch (getABIKind()) { 5501 case APCS: return llvm::CallingConv::ARM_APCS; 5502 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5503 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5504 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5505 } 5506 llvm_unreachable("bad ABI kind"); 5507 } 5508 5509 void ARMABIInfo::setCCs() { 5510 assert(getRuntimeCC() == llvm::CallingConv::C); 5511 5512 // Don't muddy up the IR with a ton of explicit annotations if 5513 // they'd just match what LLVM will infer from the triple. 5514 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5515 if (abiCC != getLLVMDefaultCC()) 5516 RuntimeCC = abiCC; 5517 5518 // AAPCS apparently requires runtime support functions to be soft-float, but 5519 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5520 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5521 switch (getABIKind()) { 5522 case APCS: 5523 case AAPCS16_VFP: 5524 if (abiCC != getLLVMDefaultCC()) 5525 BuiltinCC = abiCC; 5526 break; 5527 case AAPCS: 5528 case AAPCS_VFP: 5529 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5530 break; 5531 } 5532 } 5533 5534 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5535 bool isVariadic) const { 5536 // 6.1.2.1 The following argument types are VFP CPRCs: 5537 // A single-precision floating-point type (including promoted 5538 // half-precision types); A double-precision floating-point type; 5539 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5540 // with a Base Type of a single- or double-precision floating-point type, 5541 // 64-bit containerized vectors or 128-bit containerized vectors with one 5542 // to four Elements. 5543 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5544 5545 Ty = useFirstFieldIfTransparentUnion(Ty); 5546 5547 // Handle illegal vector types here. 5548 if (isIllegalVectorType(Ty)) { 5549 uint64_t Size = getContext().getTypeSize(Ty); 5550 if (Size <= 32) { 5551 llvm::Type *ResType = 5552 llvm::Type::getInt32Ty(getVMContext()); 5553 return ABIArgInfo::getDirect(ResType); 5554 } 5555 if (Size == 64) { 5556 llvm::Type *ResType = llvm::VectorType::get( 5557 llvm::Type::getInt32Ty(getVMContext()), 2); 5558 return ABIArgInfo::getDirect(ResType); 5559 } 5560 if (Size == 128) { 5561 llvm::Type *ResType = llvm::VectorType::get( 5562 llvm::Type::getInt32Ty(getVMContext()), 4); 5563 return ABIArgInfo::getDirect(ResType); 5564 } 5565 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5566 } 5567 5568 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5569 // unspecified. This is not done for OpenCL as it handles the half type 5570 // natively, and does not need to interwork with AAPCS code. 5571 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5572 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5573 llvm::Type::getFloatTy(getVMContext()) : 5574 llvm::Type::getInt32Ty(getVMContext()); 5575 return ABIArgInfo::getDirect(ResType); 5576 } 5577 5578 if (!isAggregateTypeForABI(Ty)) { 5579 // Treat an enum type as its underlying type. 5580 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5581 Ty = EnumTy->getDecl()->getIntegerType(); 5582 } 5583 5584 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5585 : ABIArgInfo::getDirect()); 5586 } 5587 5588 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5589 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5590 } 5591 5592 // Ignore empty records. 5593 if (isEmptyRecord(getContext(), Ty, true)) 5594 return ABIArgInfo::getIgnore(); 5595 5596 if (IsEffectivelyAAPCS_VFP) { 5597 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5598 // into VFP registers. 5599 const Type *Base = nullptr; 5600 uint64_t Members = 0; 5601 if (isHomogeneousAggregate(Ty, Base, Members)) { 5602 assert(Base && "Base class should be set for homogeneous aggregate"); 5603 // Base can be a floating-point or a vector. 5604 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5605 } 5606 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5607 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5608 // this convention even for a variadic function: the backend will use GPRs 5609 // if needed. 5610 const Type *Base = nullptr; 5611 uint64_t Members = 0; 5612 if (isHomogeneousAggregate(Ty, Base, Members)) { 5613 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5614 llvm::Type *Ty = 5615 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5616 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5617 } 5618 } 5619 5620 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5621 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5622 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5623 // bigger than 128-bits, they get placed in space allocated by the caller, 5624 // and a pointer is passed. 5625 return ABIArgInfo::getIndirect( 5626 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5627 } 5628 5629 // Support byval for ARM. 5630 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5631 // most 8-byte. We realign the indirect argument if type alignment is bigger 5632 // than ABI alignment. 5633 uint64_t ABIAlign = 4; 5634 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5635 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5636 getABIKind() == ARMABIInfo::AAPCS) 5637 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5638 5639 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5640 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5641 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5642 /*ByVal=*/true, 5643 /*Realign=*/TyAlign > ABIAlign); 5644 } 5645 5646 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5647 // same size and alignment. 5648 if (getTarget().isRenderScriptTarget()) { 5649 return coerceToIntArray(Ty, getContext(), getVMContext()); 5650 } 5651 5652 // Otherwise, pass by coercing to a structure of the appropriate size. 5653 llvm::Type* ElemTy; 5654 unsigned SizeRegs; 5655 // FIXME: Try to match the types of the arguments more accurately where 5656 // we can. 5657 if (getContext().getTypeAlign(Ty) <= 32) { 5658 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5659 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5660 } else { 5661 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5662 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5663 } 5664 5665 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5666 } 5667 5668 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5669 llvm::LLVMContext &VMContext) { 5670 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5671 // is called integer-like if its size is less than or equal to one word, and 5672 // the offset of each of its addressable sub-fields is zero. 5673 5674 uint64_t Size = Context.getTypeSize(Ty); 5675 5676 // Check that the type fits in a word. 5677 if (Size > 32) 5678 return false; 5679 5680 // FIXME: Handle vector types! 5681 if (Ty->isVectorType()) 5682 return false; 5683 5684 // Float types are never treated as "integer like". 5685 if (Ty->isRealFloatingType()) 5686 return false; 5687 5688 // If this is a builtin or pointer type then it is ok. 5689 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5690 return true; 5691 5692 // Small complex integer types are "integer like". 5693 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5694 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5695 5696 // Single element and zero sized arrays should be allowed, by the definition 5697 // above, but they are not. 5698 5699 // Otherwise, it must be a record type. 5700 const RecordType *RT = Ty->getAs<RecordType>(); 5701 if (!RT) return false; 5702 5703 // Ignore records with flexible arrays. 5704 const RecordDecl *RD = RT->getDecl(); 5705 if (RD->hasFlexibleArrayMember()) 5706 return false; 5707 5708 // Check that all sub-fields are at offset 0, and are themselves "integer 5709 // like". 5710 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5711 5712 bool HadField = false; 5713 unsigned idx = 0; 5714 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5715 i != e; ++i, ++idx) { 5716 const FieldDecl *FD = *i; 5717 5718 // Bit-fields are not addressable, we only need to verify they are "integer 5719 // like". We still have to disallow a subsequent non-bitfield, for example: 5720 // struct { int : 0; int x } 5721 // is non-integer like according to gcc. 5722 if (FD->isBitField()) { 5723 if (!RD->isUnion()) 5724 HadField = true; 5725 5726 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5727 return false; 5728 5729 continue; 5730 } 5731 5732 // Check if this field is at offset 0. 5733 if (Layout.getFieldOffset(idx) != 0) 5734 return false; 5735 5736 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5737 return false; 5738 5739 // Only allow at most one field in a structure. This doesn't match the 5740 // wording above, but follows gcc in situations with a field following an 5741 // empty structure. 5742 if (!RD->isUnion()) { 5743 if (HadField) 5744 return false; 5745 5746 HadField = true; 5747 } 5748 } 5749 5750 return true; 5751 } 5752 5753 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5754 bool isVariadic) const { 5755 bool IsEffectivelyAAPCS_VFP = 5756 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5757 5758 if (RetTy->isVoidType()) 5759 return ABIArgInfo::getIgnore(); 5760 5761 // Large vector types should be returned via memory. 5762 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5763 return getNaturalAlignIndirect(RetTy); 5764 } 5765 5766 // __fp16 gets returned as if it were an int or float, but with the top 16 5767 // bits unspecified. This is not done for OpenCL as it handles the half type 5768 // natively, and does not need to interwork with AAPCS code. 5769 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5770 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5771 llvm::Type::getFloatTy(getVMContext()) : 5772 llvm::Type::getInt32Ty(getVMContext()); 5773 return ABIArgInfo::getDirect(ResType); 5774 } 5775 5776 if (!isAggregateTypeForABI(RetTy)) { 5777 // Treat an enum type as its underlying type. 5778 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5779 RetTy = EnumTy->getDecl()->getIntegerType(); 5780 5781 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5782 : ABIArgInfo::getDirect(); 5783 } 5784 5785 // Are we following APCS? 5786 if (getABIKind() == APCS) { 5787 if (isEmptyRecord(getContext(), RetTy, false)) 5788 return ABIArgInfo::getIgnore(); 5789 5790 // Complex types are all returned as packed integers. 5791 // 5792 // FIXME: Consider using 2 x vector types if the back end handles them 5793 // correctly. 5794 if (RetTy->isAnyComplexType()) 5795 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5796 getVMContext(), getContext().getTypeSize(RetTy))); 5797 5798 // Integer like structures are returned in r0. 5799 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5800 // Return in the smallest viable integer type. 5801 uint64_t Size = getContext().getTypeSize(RetTy); 5802 if (Size <= 8) 5803 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5804 if (Size <= 16) 5805 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5806 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5807 } 5808 5809 // Otherwise return in memory. 5810 return getNaturalAlignIndirect(RetTy); 5811 } 5812 5813 // Otherwise this is an AAPCS variant. 5814 5815 if (isEmptyRecord(getContext(), RetTy, true)) 5816 return ABIArgInfo::getIgnore(); 5817 5818 // Check for homogeneous aggregates with AAPCS-VFP. 5819 if (IsEffectivelyAAPCS_VFP) { 5820 const Type *Base = nullptr; 5821 uint64_t Members = 0; 5822 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5823 assert(Base && "Base class should be set for homogeneous aggregate"); 5824 // Homogeneous Aggregates are returned directly. 5825 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5826 } 5827 } 5828 5829 // Aggregates <= 4 bytes are returned in r0; other aggregates 5830 // are returned indirectly. 5831 uint64_t Size = getContext().getTypeSize(RetTy); 5832 if (Size <= 32) { 5833 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5834 // same size and alignment. 5835 if (getTarget().isRenderScriptTarget()) { 5836 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5837 } 5838 if (getDataLayout().isBigEndian()) 5839 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5840 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5841 5842 // Return in the smallest viable integer type. 5843 if (Size <= 8) 5844 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5845 if (Size <= 16) 5846 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5847 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5848 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5849 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5850 llvm::Type *CoerceTy = 5851 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5852 return ABIArgInfo::getDirect(CoerceTy); 5853 } 5854 5855 return getNaturalAlignIndirect(RetTy); 5856 } 5857 5858 /// isIllegalVector - check whether Ty is an illegal vector type. 5859 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5860 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5861 if (isAndroid()) { 5862 // Android shipped using Clang 3.1, which supported a slightly different 5863 // vector ABI. The primary differences were that 3-element vector types 5864 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5865 // accepts that legacy behavior for Android only. 5866 // Check whether VT is legal. 5867 unsigned NumElements = VT->getNumElements(); 5868 // NumElements should be power of 2 or equal to 3. 5869 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5870 return true; 5871 } else { 5872 // Check whether VT is legal. 5873 unsigned NumElements = VT->getNumElements(); 5874 uint64_t Size = getContext().getTypeSize(VT); 5875 // NumElements should be power of 2. 5876 if (!llvm::isPowerOf2_32(NumElements)) 5877 return true; 5878 // Size should be greater than 32 bits. 5879 return Size <= 32; 5880 } 5881 } 5882 return false; 5883 } 5884 5885 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5886 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5887 // double, or 64-bit or 128-bit vectors. 5888 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5889 if (BT->getKind() == BuiltinType::Float || 5890 BT->getKind() == BuiltinType::Double || 5891 BT->getKind() == BuiltinType::LongDouble) 5892 return true; 5893 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5894 unsigned VecSize = getContext().getTypeSize(VT); 5895 if (VecSize == 64 || VecSize == 128) 5896 return true; 5897 } 5898 return false; 5899 } 5900 5901 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5902 uint64_t Members) const { 5903 return Members <= 4; 5904 } 5905 5906 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5907 QualType Ty) const { 5908 CharUnits SlotSize = CharUnits::fromQuantity(4); 5909 5910 // Empty records are ignored for parameter passing purposes. 5911 if (isEmptyRecord(getContext(), Ty, true)) { 5912 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5913 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5914 return Addr; 5915 } 5916 5917 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5918 CharUnits TyAlignForABI = TyInfo.second; 5919 5920 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5921 bool IsIndirect = false; 5922 const Type *Base = nullptr; 5923 uint64_t Members = 0; 5924 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5925 IsIndirect = true; 5926 5927 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5928 // allocated by the caller. 5929 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5930 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5931 !isHomogeneousAggregate(Ty, Base, Members)) { 5932 IsIndirect = true; 5933 5934 // Otherwise, bound the type's ABI alignment. 5935 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5936 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5937 // Our callers should be prepared to handle an under-aligned address. 5938 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5939 getABIKind() == ARMABIInfo::AAPCS) { 5940 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5941 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5942 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5943 // ARMv7k allows type alignment up to 16 bytes. 5944 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5945 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5946 } else { 5947 TyAlignForABI = CharUnits::fromQuantity(4); 5948 } 5949 TyInfo.second = TyAlignForABI; 5950 5951 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5952 SlotSize, /*AllowHigherAlign*/ true); 5953 } 5954 5955 //===----------------------------------------------------------------------===// 5956 // NVPTX ABI Implementation 5957 //===----------------------------------------------------------------------===// 5958 5959 namespace { 5960 5961 class NVPTXABIInfo : public ABIInfo { 5962 public: 5963 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5964 5965 ABIArgInfo classifyReturnType(QualType RetTy) const; 5966 ABIArgInfo classifyArgumentType(QualType Ty) const; 5967 5968 void computeInfo(CGFunctionInfo &FI) const override; 5969 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5970 QualType Ty) const override; 5971 }; 5972 5973 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5974 public: 5975 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5976 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5977 5978 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5979 CodeGen::CodeGenModule &M) const override; 5980 private: 5981 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5982 // resulting MDNode to the nvvm.annotations MDNode. 5983 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5984 }; 5985 5986 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5987 if (RetTy->isVoidType()) 5988 return ABIArgInfo::getIgnore(); 5989 5990 // note: this is different from default ABI 5991 if (!RetTy->isScalarType()) 5992 return ABIArgInfo::getDirect(); 5993 5994 // Treat an enum type as its underlying type. 5995 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5996 RetTy = EnumTy->getDecl()->getIntegerType(); 5997 5998 return (RetTy->isPromotableIntegerType() ? 5999 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6000 } 6001 6002 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6003 // Treat an enum type as its underlying type. 6004 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6005 Ty = EnumTy->getDecl()->getIntegerType(); 6006 6007 // Return aggregates type as indirect by value 6008 if (isAggregateTypeForABI(Ty)) 6009 return getNaturalAlignIndirect(Ty, /* byval */ true); 6010 6011 return (Ty->isPromotableIntegerType() ? 6012 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6013 } 6014 6015 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6016 if (!getCXXABI().classifyReturnType(FI)) 6017 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6018 for (auto &I : FI.arguments()) 6019 I.info = classifyArgumentType(I.type); 6020 6021 // Always honor user-specified calling convention. 6022 if (FI.getCallingConvention() != llvm::CallingConv::C) 6023 return; 6024 6025 FI.setEffectiveCallingConvention(getRuntimeCC()); 6026 } 6027 6028 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6029 QualType Ty) const { 6030 llvm_unreachable("NVPTX does not support varargs"); 6031 } 6032 6033 void NVPTXTargetCodeGenInfo:: 6034 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6035 CodeGen::CodeGenModule &M) const{ 6036 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6037 if (!FD) return; 6038 6039 llvm::Function *F = cast<llvm::Function>(GV); 6040 6041 // Perform special handling in OpenCL mode 6042 if (M.getLangOpts().OpenCL) { 6043 // Use OpenCL function attributes to check for kernel functions 6044 // By default, all functions are device functions 6045 if (FD->hasAttr<OpenCLKernelAttr>()) { 6046 // OpenCL __kernel functions get kernel metadata 6047 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6048 addNVVMMetadata(F, "kernel", 1); 6049 // And kernel functions are not subject to inlining 6050 F->addFnAttr(llvm::Attribute::NoInline); 6051 } 6052 } 6053 6054 // Perform special handling in CUDA mode. 6055 if (M.getLangOpts().CUDA) { 6056 // CUDA __global__ functions get a kernel metadata entry. Since 6057 // __global__ functions cannot be called from the device, we do not 6058 // need to set the noinline attribute. 6059 if (FD->hasAttr<CUDAGlobalAttr>()) { 6060 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6061 addNVVMMetadata(F, "kernel", 1); 6062 } 6063 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6064 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6065 llvm::APSInt MaxThreads(32); 6066 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6067 if (MaxThreads > 0) 6068 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6069 6070 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6071 // not specified in __launch_bounds__ or if the user specified a 0 value, 6072 // we don't have to add a PTX directive. 6073 if (Attr->getMinBlocks()) { 6074 llvm::APSInt MinBlocks(32); 6075 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6076 if (MinBlocks > 0) 6077 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6078 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6079 } 6080 } 6081 } 6082 } 6083 6084 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6085 int Operand) { 6086 llvm::Module *M = F->getParent(); 6087 llvm::LLVMContext &Ctx = M->getContext(); 6088 6089 // Get "nvvm.annotations" metadata node 6090 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6091 6092 llvm::Metadata *MDVals[] = { 6093 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6094 llvm::ConstantAsMetadata::get( 6095 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6096 // Append metadata to nvvm.annotations 6097 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6098 } 6099 } 6100 6101 //===----------------------------------------------------------------------===// 6102 // SystemZ ABI Implementation 6103 //===----------------------------------------------------------------------===// 6104 6105 namespace { 6106 6107 class SystemZABIInfo : public SwiftABIInfo { 6108 bool HasVector; 6109 6110 public: 6111 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6112 : SwiftABIInfo(CGT), HasVector(HV) {} 6113 6114 bool isPromotableIntegerType(QualType Ty) const; 6115 bool isCompoundType(QualType Ty) const; 6116 bool isVectorArgumentType(QualType Ty) const; 6117 bool isFPArgumentType(QualType Ty) const; 6118 QualType GetSingleElementType(QualType Ty) const; 6119 6120 ABIArgInfo classifyReturnType(QualType RetTy) const; 6121 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6122 6123 void computeInfo(CGFunctionInfo &FI) const override { 6124 if (!getCXXABI().classifyReturnType(FI)) 6125 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6126 for (auto &I : FI.arguments()) 6127 I.info = classifyArgumentType(I.type); 6128 } 6129 6130 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6131 QualType Ty) const override; 6132 6133 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 6134 ArrayRef<llvm::Type*> scalars, 6135 bool asReturnValue) const override { 6136 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6137 } 6138 bool isSwiftErrorInRegister() const override { 6139 return true; 6140 } 6141 }; 6142 6143 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6144 public: 6145 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6146 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6147 }; 6148 6149 } 6150 6151 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6152 // Treat an enum type as its underlying type. 6153 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6154 Ty = EnumTy->getDecl()->getIntegerType(); 6155 6156 // Promotable integer types are required to be promoted by the ABI. 6157 if (Ty->isPromotableIntegerType()) 6158 return true; 6159 6160 // 32-bit values must also be promoted. 6161 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6162 switch (BT->getKind()) { 6163 case BuiltinType::Int: 6164 case BuiltinType::UInt: 6165 return true; 6166 default: 6167 return false; 6168 } 6169 return false; 6170 } 6171 6172 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6173 return (Ty->isAnyComplexType() || 6174 Ty->isVectorType() || 6175 isAggregateTypeForABI(Ty)); 6176 } 6177 6178 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6179 return (HasVector && 6180 Ty->isVectorType() && 6181 getContext().getTypeSize(Ty) <= 128); 6182 } 6183 6184 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6185 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6186 switch (BT->getKind()) { 6187 case BuiltinType::Float: 6188 case BuiltinType::Double: 6189 return true; 6190 default: 6191 return false; 6192 } 6193 6194 return false; 6195 } 6196 6197 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6198 if (const RecordType *RT = Ty->getAsStructureType()) { 6199 const RecordDecl *RD = RT->getDecl(); 6200 QualType Found; 6201 6202 // If this is a C++ record, check the bases first. 6203 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6204 for (const auto &I : CXXRD->bases()) { 6205 QualType Base = I.getType(); 6206 6207 // Empty bases don't affect things either way. 6208 if (isEmptyRecord(getContext(), Base, true)) 6209 continue; 6210 6211 if (!Found.isNull()) 6212 return Ty; 6213 Found = GetSingleElementType(Base); 6214 } 6215 6216 // Check the fields. 6217 for (const auto *FD : RD->fields()) { 6218 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6219 // Unlike isSingleElementStruct(), empty structure and array fields 6220 // do count. So do anonymous bitfields that aren't zero-sized. 6221 if (getContext().getLangOpts().CPlusPlus && 6222 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6223 continue; 6224 6225 // Unlike isSingleElementStruct(), arrays do not count. 6226 // Nested structures still do though. 6227 if (!Found.isNull()) 6228 return Ty; 6229 Found = GetSingleElementType(FD->getType()); 6230 } 6231 6232 // Unlike isSingleElementStruct(), trailing padding is allowed. 6233 // An 8-byte aligned struct s { float f; } is passed as a double. 6234 if (!Found.isNull()) 6235 return Found; 6236 } 6237 6238 return Ty; 6239 } 6240 6241 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6242 QualType Ty) const { 6243 // Assume that va_list type is correct; should be pointer to LLVM type: 6244 // struct { 6245 // i64 __gpr; 6246 // i64 __fpr; 6247 // i8 *__overflow_arg_area; 6248 // i8 *__reg_save_area; 6249 // }; 6250 6251 // Every non-vector argument occupies 8 bytes and is passed by preference 6252 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6253 // always passed on the stack. 6254 Ty = getContext().getCanonicalType(Ty); 6255 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6256 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6257 llvm::Type *DirectTy = ArgTy; 6258 ABIArgInfo AI = classifyArgumentType(Ty); 6259 bool IsIndirect = AI.isIndirect(); 6260 bool InFPRs = false; 6261 bool IsVector = false; 6262 CharUnits UnpaddedSize; 6263 CharUnits DirectAlign; 6264 if (IsIndirect) { 6265 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6266 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6267 } else { 6268 if (AI.getCoerceToType()) 6269 ArgTy = AI.getCoerceToType(); 6270 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6271 IsVector = ArgTy->isVectorTy(); 6272 UnpaddedSize = TyInfo.first; 6273 DirectAlign = TyInfo.second; 6274 } 6275 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6276 if (IsVector && UnpaddedSize > PaddedSize) 6277 PaddedSize = CharUnits::fromQuantity(16); 6278 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6279 6280 CharUnits Padding = (PaddedSize - UnpaddedSize); 6281 6282 llvm::Type *IndexTy = CGF.Int64Ty; 6283 llvm::Value *PaddedSizeV = 6284 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6285 6286 if (IsVector) { 6287 // Work out the address of a vector argument on the stack. 6288 // Vector arguments are always passed in the high bits of a 6289 // single (8 byte) or double (16 byte) stack slot. 6290 Address OverflowArgAreaPtr = 6291 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6292 "overflow_arg_area_ptr"); 6293 Address OverflowArgArea = 6294 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6295 TyInfo.second); 6296 Address MemAddr = 6297 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6298 6299 // Update overflow_arg_area_ptr pointer 6300 llvm::Value *NewOverflowArgArea = 6301 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6302 "overflow_arg_area"); 6303 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6304 6305 return MemAddr; 6306 } 6307 6308 assert(PaddedSize.getQuantity() == 8); 6309 6310 unsigned MaxRegs, RegCountField, RegSaveIndex; 6311 CharUnits RegPadding; 6312 if (InFPRs) { 6313 MaxRegs = 4; // Maximum of 4 FPR arguments 6314 RegCountField = 1; // __fpr 6315 RegSaveIndex = 16; // save offset for f0 6316 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6317 } else { 6318 MaxRegs = 5; // Maximum of 5 GPR arguments 6319 RegCountField = 0; // __gpr 6320 RegSaveIndex = 2; // save offset for r2 6321 RegPadding = Padding; // values are passed in the low bits of a GPR 6322 } 6323 6324 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6325 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6326 "reg_count_ptr"); 6327 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6328 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6329 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6330 "fits_in_regs"); 6331 6332 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6333 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6334 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6335 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6336 6337 // Emit code to load the value if it was passed in registers. 6338 CGF.EmitBlock(InRegBlock); 6339 6340 // Work out the address of an argument register. 6341 llvm::Value *ScaledRegCount = 6342 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6343 llvm::Value *RegBase = 6344 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6345 + RegPadding.getQuantity()); 6346 llvm::Value *RegOffset = 6347 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6348 Address RegSaveAreaPtr = 6349 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6350 "reg_save_area_ptr"); 6351 llvm::Value *RegSaveArea = 6352 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6353 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6354 "raw_reg_addr"), 6355 PaddedSize); 6356 Address RegAddr = 6357 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6358 6359 // Update the register count 6360 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6361 llvm::Value *NewRegCount = 6362 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6363 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6364 CGF.EmitBranch(ContBlock); 6365 6366 // Emit code to load the value if it was passed in memory. 6367 CGF.EmitBlock(InMemBlock); 6368 6369 // Work out the address of a stack argument. 6370 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6371 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6372 Address OverflowArgArea = 6373 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6374 PaddedSize); 6375 Address RawMemAddr = 6376 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6377 Address MemAddr = 6378 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6379 6380 // Update overflow_arg_area_ptr pointer 6381 llvm::Value *NewOverflowArgArea = 6382 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6383 "overflow_arg_area"); 6384 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6385 CGF.EmitBranch(ContBlock); 6386 6387 // Return the appropriate result. 6388 CGF.EmitBlock(ContBlock); 6389 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6390 MemAddr, InMemBlock, "va_arg.addr"); 6391 6392 if (IsIndirect) 6393 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6394 TyInfo.second); 6395 6396 return ResAddr; 6397 } 6398 6399 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6400 if (RetTy->isVoidType()) 6401 return ABIArgInfo::getIgnore(); 6402 if (isVectorArgumentType(RetTy)) 6403 return ABIArgInfo::getDirect(); 6404 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6405 return getNaturalAlignIndirect(RetTy); 6406 return (isPromotableIntegerType(RetTy) ? 6407 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6408 } 6409 6410 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6411 // Handle the generic C++ ABI. 6412 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6413 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6414 6415 // Integers and enums are extended to full register width. 6416 if (isPromotableIntegerType(Ty)) 6417 return ABIArgInfo::getExtend(); 6418 6419 // Handle vector types and vector-like structure types. Note that 6420 // as opposed to float-like structure types, we do not allow any 6421 // padding for vector-like structures, so verify the sizes match. 6422 uint64_t Size = getContext().getTypeSize(Ty); 6423 QualType SingleElementTy = GetSingleElementType(Ty); 6424 if (isVectorArgumentType(SingleElementTy) && 6425 getContext().getTypeSize(SingleElementTy) == Size) 6426 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6427 6428 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6429 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6430 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6431 6432 // Handle small structures. 6433 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6434 // Structures with flexible arrays have variable length, so really 6435 // fail the size test above. 6436 const RecordDecl *RD = RT->getDecl(); 6437 if (RD->hasFlexibleArrayMember()) 6438 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6439 6440 // The structure is passed as an unextended integer, a float, or a double. 6441 llvm::Type *PassTy; 6442 if (isFPArgumentType(SingleElementTy)) { 6443 assert(Size == 32 || Size == 64); 6444 if (Size == 32) 6445 PassTy = llvm::Type::getFloatTy(getVMContext()); 6446 else 6447 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6448 } else 6449 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6450 return ABIArgInfo::getDirect(PassTy); 6451 } 6452 6453 // Non-structure compounds are passed indirectly. 6454 if (isCompoundType(Ty)) 6455 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6456 6457 return ABIArgInfo::getDirect(nullptr); 6458 } 6459 6460 //===----------------------------------------------------------------------===// 6461 // MSP430 ABI Implementation 6462 //===----------------------------------------------------------------------===// 6463 6464 namespace { 6465 6466 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6467 public: 6468 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6469 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6471 CodeGen::CodeGenModule &M) const override; 6472 }; 6473 6474 } 6475 6476 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6477 llvm::GlobalValue *GV, 6478 CodeGen::CodeGenModule &M) const { 6479 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6480 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6481 // Handle 'interrupt' attribute: 6482 llvm::Function *F = cast<llvm::Function>(GV); 6483 6484 // Step 1: Set ISR calling convention. 6485 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6486 6487 // Step 2: Add attributes goodness. 6488 F->addFnAttr(llvm::Attribute::NoInline); 6489 6490 // Step 3: Emit ISR vector alias. 6491 unsigned Num = attr->getNumber() / 2; 6492 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6493 "__isr_" + Twine(Num), F); 6494 } 6495 } 6496 } 6497 6498 //===----------------------------------------------------------------------===// 6499 // MIPS ABI Implementation. This works for both little-endian and 6500 // big-endian variants. 6501 //===----------------------------------------------------------------------===// 6502 6503 namespace { 6504 class MipsABIInfo : public ABIInfo { 6505 bool IsO32; 6506 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6507 void CoerceToIntArgs(uint64_t TySize, 6508 SmallVectorImpl<llvm::Type *> &ArgList) const; 6509 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6510 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6511 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6512 public: 6513 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6514 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6515 StackAlignInBytes(IsO32 ? 8 : 16) {} 6516 6517 ABIArgInfo classifyReturnType(QualType RetTy) const; 6518 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6519 void computeInfo(CGFunctionInfo &FI) const override; 6520 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6521 QualType Ty) const override; 6522 bool shouldSignExtUnsignedType(QualType Ty) const override; 6523 }; 6524 6525 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6526 unsigned SizeOfUnwindException; 6527 public: 6528 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6529 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6530 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6531 6532 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6533 return 29; 6534 } 6535 6536 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6537 CodeGen::CodeGenModule &CGM) const override { 6538 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6539 if (!FD) return; 6540 llvm::Function *Fn = cast<llvm::Function>(GV); 6541 if (FD->hasAttr<Mips16Attr>()) { 6542 Fn->addFnAttr("mips16"); 6543 } 6544 else if (FD->hasAttr<NoMips16Attr>()) { 6545 Fn->addFnAttr("nomips16"); 6546 } 6547 6548 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6549 if (!Attr) 6550 return; 6551 6552 const char *Kind; 6553 switch (Attr->getInterrupt()) { 6554 case MipsInterruptAttr::eic: Kind = "eic"; break; 6555 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6556 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6557 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6558 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6559 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6560 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6561 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6562 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6563 } 6564 6565 Fn->addFnAttr("interrupt", Kind); 6566 6567 } 6568 6569 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6570 llvm::Value *Address) const override; 6571 6572 unsigned getSizeOfUnwindException() const override { 6573 return SizeOfUnwindException; 6574 } 6575 }; 6576 } 6577 6578 void MipsABIInfo::CoerceToIntArgs( 6579 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6580 llvm::IntegerType *IntTy = 6581 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6582 6583 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6584 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6585 ArgList.push_back(IntTy); 6586 6587 // If necessary, add one more integer type to ArgList. 6588 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6589 6590 if (R) 6591 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6592 } 6593 6594 // In N32/64, an aligned double precision floating point field is passed in 6595 // a register. 6596 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6597 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6598 6599 if (IsO32) { 6600 CoerceToIntArgs(TySize, ArgList); 6601 return llvm::StructType::get(getVMContext(), ArgList); 6602 } 6603 6604 if (Ty->isComplexType()) 6605 return CGT.ConvertType(Ty); 6606 6607 const RecordType *RT = Ty->getAs<RecordType>(); 6608 6609 // Unions/vectors are passed in integer registers. 6610 if (!RT || !RT->isStructureOrClassType()) { 6611 CoerceToIntArgs(TySize, ArgList); 6612 return llvm::StructType::get(getVMContext(), ArgList); 6613 } 6614 6615 const RecordDecl *RD = RT->getDecl(); 6616 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6617 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6618 6619 uint64_t LastOffset = 0; 6620 unsigned idx = 0; 6621 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6622 6623 // Iterate over fields in the struct/class and check if there are any aligned 6624 // double fields. 6625 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6626 i != e; ++i, ++idx) { 6627 const QualType Ty = i->getType(); 6628 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6629 6630 if (!BT || BT->getKind() != BuiltinType::Double) 6631 continue; 6632 6633 uint64_t Offset = Layout.getFieldOffset(idx); 6634 if (Offset % 64) // Ignore doubles that are not aligned. 6635 continue; 6636 6637 // Add ((Offset - LastOffset) / 64) args of type i64. 6638 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6639 ArgList.push_back(I64); 6640 6641 // Add double type. 6642 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6643 LastOffset = Offset + 64; 6644 } 6645 6646 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6647 ArgList.append(IntArgList.begin(), IntArgList.end()); 6648 6649 return llvm::StructType::get(getVMContext(), ArgList); 6650 } 6651 6652 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6653 uint64_t Offset) const { 6654 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6655 return nullptr; 6656 6657 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6658 } 6659 6660 ABIArgInfo 6661 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6662 Ty = useFirstFieldIfTransparentUnion(Ty); 6663 6664 uint64_t OrigOffset = Offset; 6665 uint64_t TySize = getContext().getTypeSize(Ty); 6666 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6667 6668 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6669 (uint64_t)StackAlignInBytes); 6670 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6671 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6672 6673 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6674 // Ignore empty aggregates. 6675 if (TySize == 0) 6676 return ABIArgInfo::getIgnore(); 6677 6678 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6679 Offset = OrigOffset + MinABIStackAlignInBytes; 6680 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6681 } 6682 6683 // If we have reached here, aggregates are passed directly by coercing to 6684 // another structure type. Padding is inserted if the offset of the 6685 // aggregate is unaligned. 6686 ABIArgInfo ArgInfo = 6687 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6688 getPaddingType(OrigOffset, CurrOffset)); 6689 ArgInfo.setInReg(true); 6690 return ArgInfo; 6691 } 6692 6693 // Treat an enum type as its underlying type. 6694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6695 Ty = EnumTy->getDecl()->getIntegerType(); 6696 6697 // All integral types are promoted to the GPR width. 6698 if (Ty->isIntegralOrEnumerationType()) 6699 return ABIArgInfo::getExtend(); 6700 6701 return ABIArgInfo::getDirect( 6702 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6703 } 6704 6705 llvm::Type* 6706 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6707 const RecordType *RT = RetTy->getAs<RecordType>(); 6708 SmallVector<llvm::Type*, 8> RTList; 6709 6710 if (RT && RT->isStructureOrClassType()) { 6711 const RecordDecl *RD = RT->getDecl(); 6712 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6713 unsigned FieldCnt = Layout.getFieldCount(); 6714 6715 // N32/64 returns struct/classes in floating point registers if the 6716 // following conditions are met: 6717 // 1. The size of the struct/class is no larger than 128-bit. 6718 // 2. The struct/class has one or two fields all of which are floating 6719 // point types. 6720 // 3. The offset of the first field is zero (this follows what gcc does). 6721 // 6722 // Any other composite results are returned in integer registers. 6723 // 6724 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6725 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6726 for (; b != e; ++b) { 6727 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6728 6729 if (!BT || !BT->isFloatingPoint()) 6730 break; 6731 6732 RTList.push_back(CGT.ConvertType(b->getType())); 6733 } 6734 6735 if (b == e) 6736 return llvm::StructType::get(getVMContext(), RTList, 6737 RD->hasAttr<PackedAttr>()); 6738 6739 RTList.clear(); 6740 } 6741 } 6742 6743 CoerceToIntArgs(Size, RTList); 6744 return llvm::StructType::get(getVMContext(), RTList); 6745 } 6746 6747 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6748 uint64_t Size = getContext().getTypeSize(RetTy); 6749 6750 if (RetTy->isVoidType()) 6751 return ABIArgInfo::getIgnore(); 6752 6753 // O32 doesn't treat zero-sized structs differently from other structs. 6754 // However, N32/N64 ignores zero sized return values. 6755 if (!IsO32 && Size == 0) 6756 return ABIArgInfo::getIgnore(); 6757 6758 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6759 if (Size <= 128) { 6760 if (RetTy->isAnyComplexType()) 6761 return ABIArgInfo::getDirect(); 6762 6763 // O32 returns integer vectors in registers and N32/N64 returns all small 6764 // aggregates in registers. 6765 if (!IsO32 || 6766 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6767 ABIArgInfo ArgInfo = 6768 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6769 ArgInfo.setInReg(true); 6770 return ArgInfo; 6771 } 6772 } 6773 6774 return getNaturalAlignIndirect(RetTy); 6775 } 6776 6777 // Treat an enum type as its underlying type. 6778 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6779 RetTy = EnumTy->getDecl()->getIntegerType(); 6780 6781 return (RetTy->isPromotableIntegerType() ? 6782 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6783 } 6784 6785 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6786 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6787 if (!getCXXABI().classifyReturnType(FI)) 6788 RetInfo = classifyReturnType(FI.getReturnType()); 6789 6790 // Check if a pointer to an aggregate is passed as a hidden argument. 6791 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6792 6793 for (auto &I : FI.arguments()) 6794 I.info = classifyArgumentType(I.type, Offset); 6795 } 6796 6797 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6798 QualType OrigTy) const { 6799 QualType Ty = OrigTy; 6800 6801 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6802 // Pointers are also promoted in the same way but this only matters for N32. 6803 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6804 unsigned PtrWidth = getTarget().getPointerWidth(0); 6805 bool DidPromote = false; 6806 if ((Ty->isIntegerType() && 6807 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6808 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6809 DidPromote = true; 6810 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6811 Ty->isSignedIntegerType()); 6812 } 6813 6814 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6815 6816 // The alignment of things in the argument area is never larger than 6817 // StackAlignInBytes. 6818 TyInfo.second = 6819 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6820 6821 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6822 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6823 6824 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6825 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6826 6827 6828 // If there was a promotion, "unpromote" into a temporary. 6829 // TODO: can we just use a pointer into a subset of the original slot? 6830 if (DidPromote) { 6831 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6832 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6833 6834 // Truncate down to the right width. 6835 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6836 : CGF.IntPtrTy); 6837 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6838 if (OrigTy->isPointerType()) 6839 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6840 6841 CGF.Builder.CreateStore(V, Temp); 6842 Addr = Temp; 6843 } 6844 6845 return Addr; 6846 } 6847 6848 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6849 int TySize = getContext().getTypeSize(Ty); 6850 6851 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6852 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6853 return true; 6854 6855 return false; 6856 } 6857 6858 bool 6859 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6860 llvm::Value *Address) const { 6861 // This information comes from gcc's implementation, which seems to 6862 // as canonical as it gets. 6863 6864 // Everything on MIPS is 4 bytes. Double-precision FP registers 6865 // are aliased to pairs of single-precision FP registers. 6866 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6867 6868 // 0-31 are the general purpose registers, $0 - $31. 6869 // 32-63 are the floating-point registers, $f0 - $f31. 6870 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6871 // 66 is the (notional, I think) register for signal-handler return. 6872 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6873 6874 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6875 // They are one bit wide and ignored here. 6876 6877 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6878 // (coprocessor 1 is the FP unit) 6879 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6880 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6881 // 176-181 are the DSP accumulator registers. 6882 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6883 return false; 6884 } 6885 6886 //===----------------------------------------------------------------------===// 6887 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6888 // Currently subclassed only to implement custom OpenCL C function attribute 6889 // handling. 6890 //===----------------------------------------------------------------------===// 6891 6892 namespace { 6893 6894 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6895 public: 6896 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6897 : DefaultTargetCodeGenInfo(CGT) {} 6898 6899 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6900 CodeGen::CodeGenModule &M) const override; 6901 }; 6902 6903 void TCETargetCodeGenInfo::setTargetAttributes( 6904 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6905 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6906 if (!FD) return; 6907 6908 llvm::Function *F = cast<llvm::Function>(GV); 6909 6910 if (M.getLangOpts().OpenCL) { 6911 if (FD->hasAttr<OpenCLKernelAttr>()) { 6912 // OpenCL C Kernel functions are not subject to inlining 6913 F->addFnAttr(llvm::Attribute::NoInline); 6914 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6915 if (Attr) { 6916 // Convert the reqd_work_group_size() attributes to metadata. 6917 llvm::LLVMContext &Context = F->getContext(); 6918 llvm::NamedMDNode *OpenCLMetadata = 6919 M.getModule().getOrInsertNamedMetadata( 6920 "opencl.kernel_wg_size_info"); 6921 6922 SmallVector<llvm::Metadata *, 5> Operands; 6923 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6924 6925 Operands.push_back( 6926 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6927 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6928 Operands.push_back( 6929 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6930 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6931 Operands.push_back( 6932 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6933 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6934 6935 // Add a boolean constant operand for "required" (true) or "hint" 6936 // (false) for implementing the work_group_size_hint attr later. 6937 // Currently always true as the hint is not yet implemented. 6938 Operands.push_back( 6939 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6940 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6941 } 6942 } 6943 } 6944 } 6945 6946 } 6947 6948 //===----------------------------------------------------------------------===// 6949 // Hexagon ABI Implementation 6950 //===----------------------------------------------------------------------===// 6951 6952 namespace { 6953 6954 class HexagonABIInfo : public ABIInfo { 6955 6956 6957 public: 6958 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6959 6960 private: 6961 6962 ABIArgInfo classifyReturnType(QualType RetTy) const; 6963 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6964 6965 void computeInfo(CGFunctionInfo &FI) const override; 6966 6967 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6968 QualType Ty) const override; 6969 }; 6970 6971 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6972 public: 6973 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6974 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6975 6976 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6977 return 29; 6978 } 6979 }; 6980 6981 } 6982 6983 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6984 if (!getCXXABI().classifyReturnType(FI)) 6985 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6986 for (auto &I : FI.arguments()) 6987 I.info = classifyArgumentType(I.type); 6988 } 6989 6990 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6991 if (!isAggregateTypeForABI(Ty)) { 6992 // Treat an enum type as its underlying type. 6993 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6994 Ty = EnumTy->getDecl()->getIntegerType(); 6995 6996 return (Ty->isPromotableIntegerType() ? 6997 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6998 } 6999 7000 // Ignore empty records. 7001 if (isEmptyRecord(getContext(), Ty, true)) 7002 return ABIArgInfo::getIgnore(); 7003 7004 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7005 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7006 7007 uint64_t Size = getContext().getTypeSize(Ty); 7008 if (Size > 64) 7009 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7010 // Pass in the smallest viable integer type. 7011 else if (Size > 32) 7012 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7013 else if (Size > 16) 7014 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7015 else if (Size > 8) 7016 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7017 else 7018 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7019 } 7020 7021 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7022 if (RetTy->isVoidType()) 7023 return ABIArgInfo::getIgnore(); 7024 7025 // Large vector types should be returned via memory. 7026 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7027 return getNaturalAlignIndirect(RetTy); 7028 7029 if (!isAggregateTypeForABI(RetTy)) { 7030 // Treat an enum type as its underlying type. 7031 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7032 RetTy = EnumTy->getDecl()->getIntegerType(); 7033 7034 return (RetTy->isPromotableIntegerType() ? 7035 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7036 } 7037 7038 if (isEmptyRecord(getContext(), RetTy, true)) 7039 return ABIArgInfo::getIgnore(); 7040 7041 // Aggregates <= 8 bytes are returned in r0; other aggregates 7042 // are returned indirectly. 7043 uint64_t Size = getContext().getTypeSize(RetTy); 7044 if (Size <= 64) { 7045 // Return in the smallest viable integer type. 7046 if (Size <= 8) 7047 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7048 if (Size <= 16) 7049 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7050 if (Size <= 32) 7051 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7052 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7053 } 7054 7055 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7056 } 7057 7058 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7059 QualType Ty) const { 7060 // FIXME: Someone needs to audit that this handle alignment correctly. 7061 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7062 getContext().getTypeInfoInChars(Ty), 7063 CharUnits::fromQuantity(4), 7064 /*AllowHigherAlign*/ true); 7065 } 7066 7067 //===----------------------------------------------------------------------===// 7068 // Lanai ABI Implementation 7069 //===----------------------------------------------------------------------===// 7070 7071 namespace { 7072 class LanaiABIInfo : public DefaultABIInfo { 7073 public: 7074 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7075 7076 bool shouldUseInReg(QualType Ty, CCState &State) const; 7077 7078 void computeInfo(CGFunctionInfo &FI) const override { 7079 CCState State(FI.getCallingConvention()); 7080 // Lanai uses 4 registers to pass arguments unless the function has the 7081 // regparm attribute set. 7082 if (FI.getHasRegParm()) { 7083 State.FreeRegs = FI.getRegParm(); 7084 } else { 7085 State.FreeRegs = 4; 7086 } 7087 7088 if (!getCXXABI().classifyReturnType(FI)) 7089 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7090 for (auto &I : FI.arguments()) 7091 I.info = classifyArgumentType(I.type, State); 7092 } 7093 7094 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7095 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7096 }; 7097 } // end anonymous namespace 7098 7099 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7100 unsigned Size = getContext().getTypeSize(Ty); 7101 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7102 7103 if (SizeInRegs == 0) 7104 return false; 7105 7106 if (SizeInRegs > State.FreeRegs) { 7107 State.FreeRegs = 0; 7108 return false; 7109 } 7110 7111 State.FreeRegs -= SizeInRegs; 7112 7113 return true; 7114 } 7115 7116 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7117 CCState &State) const { 7118 if (!ByVal) { 7119 if (State.FreeRegs) { 7120 --State.FreeRegs; // Non-byval indirects just use one pointer. 7121 return getNaturalAlignIndirectInReg(Ty); 7122 } 7123 return getNaturalAlignIndirect(Ty, false); 7124 } 7125 7126 // Compute the byval alignment. 7127 const unsigned MinABIStackAlignInBytes = 4; 7128 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7129 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7130 /*Realign=*/TypeAlign > 7131 MinABIStackAlignInBytes); 7132 } 7133 7134 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7135 CCState &State) const { 7136 // Check with the C++ ABI first. 7137 const RecordType *RT = Ty->getAs<RecordType>(); 7138 if (RT) { 7139 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7140 if (RAA == CGCXXABI::RAA_Indirect) { 7141 return getIndirectResult(Ty, /*ByVal=*/false, State); 7142 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7143 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7144 } 7145 } 7146 7147 if (isAggregateTypeForABI(Ty)) { 7148 // Structures with flexible arrays are always indirect. 7149 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7150 return getIndirectResult(Ty, /*ByVal=*/true, State); 7151 7152 // Ignore empty structs/unions. 7153 if (isEmptyRecord(getContext(), Ty, true)) 7154 return ABIArgInfo::getIgnore(); 7155 7156 llvm::LLVMContext &LLVMContext = getVMContext(); 7157 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7158 if (SizeInRegs <= State.FreeRegs) { 7159 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7160 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7161 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7162 State.FreeRegs -= SizeInRegs; 7163 return ABIArgInfo::getDirectInReg(Result); 7164 } else { 7165 State.FreeRegs = 0; 7166 } 7167 return getIndirectResult(Ty, true, State); 7168 } 7169 7170 // Treat an enum type as its underlying type. 7171 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7172 Ty = EnumTy->getDecl()->getIntegerType(); 7173 7174 bool InReg = shouldUseInReg(Ty, State); 7175 if (Ty->isPromotableIntegerType()) { 7176 if (InReg) 7177 return ABIArgInfo::getDirectInReg(); 7178 return ABIArgInfo::getExtend(); 7179 } 7180 if (InReg) 7181 return ABIArgInfo::getDirectInReg(); 7182 return ABIArgInfo::getDirect(); 7183 } 7184 7185 namespace { 7186 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7187 public: 7188 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7189 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7190 }; 7191 } 7192 7193 //===----------------------------------------------------------------------===// 7194 // AMDGPU ABI Implementation 7195 //===----------------------------------------------------------------------===// 7196 7197 namespace { 7198 7199 class AMDGPUABIInfo final : public DefaultABIInfo { 7200 public: 7201 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7202 7203 private: 7204 ABIArgInfo classifyArgumentType(QualType Ty) const; 7205 7206 void computeInfo(CGFunctionInfo &FI) const override; 7207 }; 7208 7209 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7210 if (!getCXXABI().classifyReturnType(FI)) 7211 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7212 7213 unsigned CC = FI.getCallingConvention(); 7214 for (auto &Arg : FI.arguments()) 7215 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7216 Arg.info = classifyArgumentType(Arg.type); 7217 else 7218 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7219 } 7220 7221 /// \brief Classify argument of given type \p Ty. 7222 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7223 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7224 if (!StrTy) { 7225 return DefaultABIInfo::classifyArgumentType(Ty); 7226 } 7227 7228 // Coerce single element structs to its element. 7229 if (StrTy->getNumElements() == 1) { 7230 return ABIArgInfo::getDirect(); 7231 } 7232 7233 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7234 // individual elements, which confuses the Clover OpenCL backend; therefore we 7235 // have to set it to false here. Other args of getDirect() are just defaults. 7236 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7237 } 7238 7239 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7240 public: 7241 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7242 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7243 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7244 CodeGen::CodeGenModule &M) const override; 7245 unsigned getOpenCLKernelCallingConv() const override; 7246 7247 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7248 llvm::PointerType *T, QualType QT) const override; 7249 }; 7250 } 7251 7252 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7253 7254 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7255 const Decl *D, 7256 llvm::GlobalValue *GV, 7257 CodeGen::CodeGenModule &M) const { 7258 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7259 if (!FD) 7260 return; 7261 7262 llvm::Function *F = cast<llvm::Function>(GV); 7263 7264 if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7265 unsigned Min = Attr->getMin(); 7266 unsigned Max = Attr->getMax(); 7267 7268 if (Min != 0) { 7269 assert(Min <= Max && "Min must be less than or equal Max"); 7270 7271 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7272 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7273 } else 7274 assert(Max == 0 && "Max must be zero"); 7275 } 7276 7277 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7278 unsigned Min = Attr->getMin(); 7279 unsigned Max = Attr->getMax(); 7280 7281 if (Min != 0) { 7282 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7283 7284 std::string AttrVal = llvm::utostr(Min); 7285 if (Max != 0) 7286 AttrVal = AttrVal + "," + llvm::utostr(Max); 7287 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7288 } else 7289 assert(Max == 0 && "Max must be zero"); 7290 } 7291 7292 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7293 unsigned NumSGPR = Attr->getNumSGPR(); 7294 7295 if (NumSGPR != 0) 7296 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7297 } 7298 7299 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7300 uint32_t NumVGPR = Attr->getNumVGPR(); 7301 7302 if (NumVGPR != 0) 7303 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7304 } 7305 7306 appendOpenCLVersionMD(M); 7307 } 7308 7309 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7310 return llvm::CallingConv::AMDGPU_KERNEL; 7311 } 7312 7313 // Currently LLVM assumes null pointers always have value 0, 7314 // which results in incorrectly transformed IR. Therefore, instead of 7315 // emitting null pointers in private and local address spaces, a null 7316 // pointer in generic address space is emitted which is casted to a 7317 // pointer in local or private address space. 7318 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7319 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7320 QualType QT) const { 7321 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7322 return llvm::ConstantPointerNull::get(PT); 7323 7324 auto &Ctx = CGM.getContext(); 7325 auto NPT = llvm::PointerType::get(PT->getElementType(), 7326 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7327 return llvm::ConstantExpr::getAddrSpaceCast( 7328 llvm::ConstantPointerNull::get(NPT), PT); 7329 } 7330 7331 //===----------------------------------------------------------------------===// 7332 // SPARC v8 ABI Implementation. 7333 // Based on the SPARC Compliance Definition version 2.4.1. 7334 // 7335 // Ensures that complex values are passed in registers. 7336 // 7337 namespace { 7338 class SparcV8ABIInfo : public DefaultABIInfo { 7339 public: 7340 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7341 7342 private: 7343 ABIArgInfo classifyReturnType(QualType RetTy) const; 7344 void computeInfo(CGFunctionInfo &FI) const override; 7345 }; 7346 } // end anonymous namespace 7347 7348 7349 ABIArgInfo 7350 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7351 if (Ty->isAnyComplexType()) { 7352 return ABIArgInfo::getDirect(); 7353 } 7354 else { 7355 return DefaultABIInfo::classifyReturnType(Ty); 7356 } 7357 } 7358 7359 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7360 7361 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7362 for (auto &Arg : FI.arguments()) 7363 Arg.info = classifyArgumentType(Arg.type); 7364 } 7365 7366 namespace { 7367 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7368 public: 7369 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7370 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7371 }; 7372 } // end anonymous namespace 7373 7374 //===----------------------------------------------------------------------===// 7375 // SPARC v9 ABI Implementation. 7376 // Based on the SPARC Compliance Definition version 2.4.1. 7377 // 7378 // Function arguments a mapped to a nominal "parameter array" and promoted to 7379 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7380 // the array, structs larger than 16 bytes are passed indirectly. 7381 // 7382 // One case requires special care: 7383 // 7384 // struct mixed { 7385 // int i; 7386 // float f; 7387 // }; 7388 // 7389 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7390 // parameter array, but the int is passed in an integer register, and the float 7391 // is passed in a floating point register. This is represented as two arguments 7392 // with the LLVM IR inreg attribute: 7393 // 7394 // declare void f(i32 inreg %i, float inreg %f) 7395 // 7396 // The code generator will only allocate 4 bytes from the parameter array for 7397 // the inreg arguments. All other arguments are allocated a multiple of 8 7398 // bytes. 7399 // 7400 namespace { 7401 class SparcV9ABIInfo : public ABIInfo { 7402 public: 7403 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7404 7405 private: 7406 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7407 void computeInfo(CGFunctionInfo &FI) const override; 7408 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7409 QualType Ty) const override; 7410 7411 // Coercion type builder for structs passed in registers. The coercion type 7412 // serves two purposes: 7413 // 7414 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7415 // in registers. 7416 // 2. Expose aligned floating point elements as first-level elements, so the 7417 // code generator knows to pass them in floating point registers. 7418 // 7419 // We also compute the InReg flag which indicates that the struct contains 7420 // aligned 32-bit floats. 7421 // 7422 struct CoerceBuilder { 7423 llvm::LLVMContext &Context; 7424 const llvm::DataLayout &DL; 7425 SmallVector<llvm::Type*, 8> Elems; 7426 uint64_t Size; 7427 bool InReg; 7428 7429 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7430 : Context(c), DL(dl), Size(0), InReg(false) {} 7431 7432 // Pad Elems with integers until Size is ToSize. 7433 void pad(uint64_t ToSize) { 7434 assert(ToSize >= Size && "Cannot remove elements"); 7435 if (ToSize == Size) 7436 return; 7437 7438 // Finish the current 64-bit word. 7439 uint64_t Aligned = llvm::alignTo(Size, 64); 7440 if (Aligned > Size && Aligned <= ToSize) { 7441 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7442 Size = Aligned; 7443 } 7444 7445 // Add whole 64-bit words. 7446 while (Size + 64 <= ToSize) { 7447 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7448 Size += 64; 7449 } 7450 7451 // Final in-word padding. 7452 if (Size < ToSize) { 7453 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7454 Size = ToSize; 7455 } 7456 } 7457 7458 // Add a floating point element at Offset. 7459 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7460 // Unaligned floats are treated as integers. 7461 if (Offset % Bits) 7462 return; 7463 // The InReg flag is only required if there are any floats < 64 bits. 7464 if (Bits < 64) 7465 InReg = true; 7466 pad(Offset); 7467 Elems.push_back(Ty); 7468 Size = Offset + Bits; 7469 } 7470 7471 // Add a struct type to the coercion type, starting at Offset (in bits). 7472 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7473 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7474 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7475 llvm::Type *ElemTy = StrTy->getElementType(i); 7476 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7477 switch (ElemTy->getTypeID()) { 7478 case llvm::Type::StructTyID: 7479 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7480 break; 7481 case llvm::Type::FloatTyID: 7482 addFloat(ElemOffset, ElemTy, 32); 7483 break; 7484 case llvm::Type::DoubleTyID: 7485 addFloat(ElemOffset, ElemTy, 64); 7486 break; 7487 case llvm::Type::FP128TyID: 7488 addFloat(ElemOffset, ElemTy, 128); 7489 break; 7490 case llvm::Type::PointerTyID: 7491 if (ElemOffset % 64 == 0) { 7492 pad(ElemOffset); 7493 Elems.push_back(ElemTy); 7494 Size += 64; 7495 } 7496 break; 7497 default: 7498 break; 7499 } 7500 } 7501 } 7502 7503 // Check if Ty is a usable substitute for the coercion type. 7504 bool isUsableType(llvm::StructType *Ty) const { 7505 return llvm::makeArrayRef(Elems) == Ty->elements(); 7506 } 7507 7508 // Get the coercion type as a literal struct type. 7509 llvm::Type *getType() const { 7510 if (Elems.size() == 1) 7511 return Elems.front(); 7512 else 7513 return llvm::StructType::get(Context, Elems); 7514 } 7515 }; 7516 }; 7517 } // end anonymous namespace 7518 7519 ABIArgInfo 7520 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7521 if (Ty->isVoidType()) 7522 return ABIArgInfo::getIgnore(); 7523 7524 uint64_t Size = getContext().getTypeSize(Ty); 7525 7526 // Anything too big to fit in registers is passed with an explicit indirect 7527 // pointer / sret pointer. 7528 if (Size > SizeLimit) 7529 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7530 7531 // Treat an enum type as its underlying type. 7532 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7533 Ty = EnumTy->getDecl()->getIntegerType(); 7534 7535 // Integer types smaller than a register are extended. 7536 if (Size < 64 && Ty->isIntegerType()) 7537 return ABIArgInfo::getExtend(); 7538 7539 // Other non-aggregates go in registers. 7540 if (!isAggregateTypeForABI(Ty)) 7541 return ABIArgInfo::getDirect(); 7542 7543 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7544 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7545 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7546 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7547 7548 // This is a small aggregate type that should be passed in registers. 7549 // Build a coercion type from the LLVM struct type. 7550 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7551 if (!StrTy) 7552 return ABIArgInfo::getDirect(); 7553 7554 CoerceBuilder CB(getVMContext(), getDataLayout()); 7555 CB.addStruct(0, StrTy); 7556 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7557 7558 // Try to use the original type for coercion. 7559 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7560 7561 if (CB.InReg) 7562 return ABIArgInfo::getDirectInReg(CoerceTy); 7563 else 7564 return ABIArgInfo::getDirect(CoerceTy); 7565 } 7566 7567 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7568 QualType Ty) const { 7569 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7570 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7571 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7572 AI.setCoerceToType(ArgTy); 7573 7574 CharUnits SlotSize = CharUnits::fromQuantity(8); 7575 7576 CGBuilderTy &Builder = CGF.Builder; 7577 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7578 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7579 7580 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7581 7582 Address ArgAddr = Address::invalid(); 7583 CharUnits Stride; 7584 switch (AI.getKind()) { 7585 case ABIArgInfo::Expand: 7586 case ABIArgInfo::CoerceAndExpand: 7587 case ABIArgInfo::InAlloca: 7588 llvm_unreachable("Unsupported ABI kind for va_arg"); 7589 7590 case ABIArgInfo::Extend: { 7591 Stride = SlotSize; 7592 CharUnits Offset = SlotSize - TypeInfo.first; 7593 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7594 break; 7595 } 7596 7597 case ABIArgInfo::Direct: { 7598 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7599 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7600 ArgAddr = Addr; 7601 break; 7602 } 7603 7604 case ABIArgInfo::Indirect: 7605 Stride = SlotSize; 7606 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7607 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7608 TypeInfo.second); 7609 break; 7610 7611 case ABIArgInfo::Ignore: 7612 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7613 } 7614 7615 // Update VAList. 7616 llvm::Value *NextPtr = 7617 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7618 Builder.CreateStore(NextPtr, VAListAddr); 7619 7620 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7621 } 7622 7623 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7624 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7625 for (auto &I : FI.arguments()) 7626 I.info = classifyType(I.type, 16 * 8); 7627 } 7628 7629 namespace { 7630 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7631 public: 7632 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7633 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7634 7635 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7636 return 14; 7637 } 7638 7639 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7640 llvm::Value *Address) const override; 7641 }; 7642 } // end anonymous namespace 7643 7644 bool 7645 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7646 llvm::Value *Address) const { 7647 // This is calculated from the LLVM and GCC tables and verified 7648 // against gcc output. AFAIK all ABIs use the same encoding. 7649 7650 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7651 7652 llvm::IntegerType *i8 = CGF.Int8Ty; 7653 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7654 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7655 7656 // 0-31: the 8-byte general-purpose registers 7657 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7658 7659 // 32-63: f0-31, the 4-byte floating-point registers 7660 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7661 7662 // Y = 64 7663 // PSR = 65 7664 // WIM = 66 7665 // TBR = 67 7666 // PC = 68 7667 // NPC = 69 7668 // FSR = 70 7669 // CSR = 71 7670 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7671 7672 // 72-87: d0-15, the 8-byte floating-point registers 7673 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7674 7675 return false; 7676 } 7677 7678 7679 //===----------------------------------------------------------------------===// 7680 // XCore ABI Implementation 7681 //===----------------------------------------------------------------------===// 7682 7683 namespace { 7684 7685 /// A SmallStringEnc instance is used to build up the TypeString by passing 7686 /// it by reference between functions that append to it. 7687 typedef llvm::SmallString<128> SmallStringEnc; 7688 7689 /// TypeStringCache caches the meta encodings of Types. 7690 /// 7691 /// The reason for caching TypeStrings is two fold: 7692 /// 1. To cache a type's encoding for later uses; 7693 /// 2. As a means to break recursive member type inclusion. 7694 /// 7695 /// A cache Entry can have a Status of: 7696 /// NonRecursive: The type encoding is not recursive; 7697 /// Recursive: The type encoding is recursive; 7698 /// Incomplete: An incomplete TypeString; 7699 /// IncompleteUsed: An incomplete TypeString that has been used in a 7700 /// Recursive type encoding. 7701 /// 7702 /// A NonRecursive entry will have all of its sub-members expanded as fully 7703 /// as possible. Whilst it may contain types which are recursive, the type 7704 /// itself is not recursive and thus its encoding may be safely used whenever 7705 /// the type is encountered. 7706 /// 7707 /// A Recursive entry will have all of its sub-members expanded as fully as 7708 /// possible. The type itself is recursive and it may contain other types which 7709 /// are recursive. The Recursive encoding must not be used during the expansion 7710 /// of a recursive type's recursive branch. For simplicity the code uses 7711 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7712 /// 7713 /// An Incomplete entry is always a RecordType and only encodes its 7714 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7715 /// are placed into the cache during type expansion as a means to identify and 7716 /// handle recursive inclusion of types as sub-members. If there is recursion 7717 /// the entry becomes IncompleteUsed. 7718 /// 7719 /// During the expansion of a RecordType's members: 7720 /// 7721 /// If the cache contains a NonRecursive encoding for the member type, the 7722 /// cached encoding is used; 7723 /// 7724 /// If the cache contains a Recursive encoding for the member type, the 7725 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7726 /// 7727 /// If the member is a RecordType, an Incomplete encoding is placed into the 7728 /// cache to break potential recursive inclusion of itself as a sub-member; 7729 /// 7730 /// Once a member RecordType has been expanded, its temporary incomplete 7731 /// entry is removed from the cache. If a Recursive encoding was swapped out 7732 /// it is swapped back in; 7733 /// 7734 /// If an incomplete entry is used to expand a sub-member, the incomplete 7735 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7736 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7737 /// 7738 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7739 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7740 /// Else the member is part of a recursive type and thus the recursion has 7741 /// been exited too soon for the encoding to be correct for the member. 7742 /// 7743 class TypeStringCache { 7744 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7745 struct Entry { 7746 std::string Str; // The encoded TypeString for the type. 7747 enum Status State; // Information about the encoding in 'Str'. 7748 std::string Swapped; // A temporary place holder for a Recursive encoding 7749 // during the expansion of RecordType's members. 7750 }; 7751 std::map<const IdentifierInfo *, struct Entry> Map; 7752 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7753 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7754 public: 7755 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7756 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7757 bool removeIncomplete(const IdentifierInfo *ID); 7758 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7759 bool IsRecursive); 7760 StringRef lookupStr(const IdentifierInfo *ID); 7761 }; 7762 7763 /// TypeString encodings for enum & union fields must be order. 7764 /// FieldEncoding is a helper for this ordering process. 7765 class FieldEncoding { 7766 bool HasName; 7767 std::string Enc; 7768 public: 7769 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7770 StringRef str() { return Enc; } 7771 bool operator<(const FieldEncoding &rhs) const { 7772 if (HasName != rhs.HasName) return HasName; 7773 return Enc < rhs.Enc; 7774 } 7775 }; 7776 7777 class XCoreABIInfo : public DefaultABIInfo { 7778 public: 7779 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7780 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7781 QualType Ty) const override; 7782 }; 7783 7784 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7785 mutable TypeStringCache TSC; 7786 public: 7787 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7788 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7789 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7790 CodeGen::CodeGenModule &M) const override; 7791 }; 7792 7793 } // End anonymous namespace. 7794 7795 // TODO: this implementation is likely now redundant with the default 7796 // EmitVAArg. 7797 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7798 QualType Ty) const { 7799 CGBuilderTy &Builder = CGF.Builder; 7800 7801 // Get the VAList. 7802 CharUnits SlotSize = CharUnits::fromQuantity(4); 7803 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7804 7805 // Handle the argument. 7806 ABIArgInfo AI = classifyArgumentType(Ty); 7807 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7808 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7809 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7810 AI.setCoerceToType(ArgTy); 7811 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7812 7813 Address Val = Address::invalid(); 7814 CharUnits ArgSize = CharUnits::Zero(); 7815 switch (AI.getKind()) { 7816 case ABIArgInfo::Expand: 7817 case ABIArgInfo::CoerceAndExpand: 7818 case ABIArgInfo::InAlloca: 7819 llvm_unreachable("Unsupported ABI kind for va_arg"); 7820 case ABIArgInfo::Ignore: 7821 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7822 ArgSize = CharUnits::Zero(); 7823 break; 7824 case ABIArgInfo::Extend: 7825 case ABIArgInfo::Direct: 7826 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7827 ArgSize = CharUnits::fromQuantity( 7828 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7829 ArgSize = ArgSize.alignTo(SlotSize); 7830 break; 7831 case ABIArgInfo::Indirect: 7832 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7833 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7834 ArgSize = SlotSize; 7835 break; 7836 } 7837 7838 // Increment the VAList. 7839 if (!ArgSize.isZero()) { 7840 llvm::Value *APN = 7841 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7842 Builder.CreateStore(APN, VAListAddr); 7843 } 7844 7845 return Val; 7846 } 7847 7848 /// During the expansion of a RecordType, an incomplete TypeString is placed 7849 /// into the cache as a means to identify and break recursion. 7850 /// If there is a Recursive encoding in the cache, it is swapped out and will 7851 /// be reinserted by removeIncomplete(). 7852 /// All other types of encoding should have been used rather than arriving here. 7853 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7854 std::string StubEnc) { 7855 if (!ID) 7856 return; 7857 Entry &E = Map[ID]; 7858 assert( (E.Str.empty() || E.State == Recursive) && 7859 "Incorrectly use of addIncomplete"); 7860 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7861 E.Swapped.swap(E.Str); // swap out the Recursive 7862 E.Str.swap(StubEnc); 7863 E.State = Incomplete; 7864 ++IncompleteCount; 7865 } 7866 7867 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7868 /// must be removed from the cache. 7869 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7870 /// Returns true if the RecordType was defined recursively. 7871 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7872 if (!ID) 7873 return false; 7874 auto I = Map.find(ID); 7875 assert(I != Map.end() && "Entry not present"); 7876 Entry &E = I->second; 7877 assert( (E.State == Incomplete || 7878 E.State == IncompleteUsed) && 7879 "Entry must be an incomplete type"); 7880 bool IsRecursive = false; 7881 if (E.State == IncompleteUsed) { 7882 // We made use of our Incomplete encoding, thus we are recursive. 7883 IsRecursive = true; 7884 --IncompleteUsedCount; 7885 } 7886 if (E.Swapped.empty()) 7887 Map.erase(I); 7888 else { 7889 // Swap the Recursive back. 7890 E.Swapped.swap(E.Str); 7891 E.Swapped.clear(); 7892 E.State = Recursive; 7893 } 7894 --IncompleteCount; 7895 return IsRecursive; 7896 } 7897 7898 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7899 /// Recursive (viz: all sub-members were expanded as fully as possible). 7900 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7901 bool IsRecursive) { 7902 if (!ID || IncompleteUsedCount) 7903 return; // No key or it is is an incomplete sub-type so don't add. 7904 Entry &E = Map[ID]; 7905 if (IsRecursive && !E.Str.empty()) { 7906 assert(E.State==Recursive && E.Str.size() == Str.size() && 7907 "This is not the same Recursive entry"); 7908 // The parent container was not recursive after all, so we could have used 7909 // this Recursive sub-member entry after all, but we assumed the worse when 7910 // we started viz: IncompleteCount!=0. 7911 return; 7912 } 7913 assert(E.Str.empty() && "Entry already present"); 7914 E.Str = Str.str(); 7915 E.State = IsRecursive? Recursive : NonRecursive; 7916 } 7917 7918 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7919 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7920 /// encoding is Recursive, return an empty StringRef. 7921 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7922 if (!ID) 7923 return StringRef(); // We have no key. 7924 auto I = Map.find(ID); 7925 if (I == Map.end()) 7926 return StringRef(); // We have no encoding. 7927 Entry &E = I->second; 7928 if (E.State == Recursive && IncompleteCount) 7929 return StringRef(); // We don't use Recursive encodings for member types. 7930 7931 if (E.State == Incomplete) { 7932 // The incomplete type is being used to break out of recursion. 7933 E.State = IncompleteUsed; 7934 ++IncompleteUsedCount; 7935 } 7936 return E.Str; 7937 } 7938 7939 /// The XCore ABI includes a type information section that communicates symbol 7940 /// type information to the linker. The linker uses this information to verify 7941 /// safety/correctness of things such as array bound and pointers et al. 7942 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7943 /// This type information (TypeString) is emitted into meta data for all global 7944 /// symbols: definitions, declarations, functions & variables. 7945 /// 7946 /// The TypeString carries type, qualifier, name, size & value details. 7947 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7948 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7949 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7950 /// 7951 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7952 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7953 7954 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7955 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7956 CodeGen::CodeGenModule &CGM) const { 7957 SmallStringEnc Enc; 7958 if (getTypeString(Enc, D, CGM, TSC)) { 7959 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7960 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7961 llvm::MDString::get(Ctx, Enc.str())}; 7962 llvm::NamedMDNode *MD = 7963 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7964 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7965 } 7966 } 7967 7968 //===----------------------------------------------------------------------===// 7969 // SPIR ABI Implementation 7970 //===----------------------------------------------------------------------===// 7971 7972 namespace { 7973 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7974 public: 7975 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7976 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7977 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7978 CodeGen::CodeGenModule &M) const override; 7979 unsigned getOpenCLKernelCallingConv() const override; 7980 }; 7981 } // End anonymous namespace. 7982 7983 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7984 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7985 CodeGen::CodeGenModule &CGM) const { 7986 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7987 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7988 llvm::Module &M = CGM.getModule(); 7989 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7990 // opencl.spir.version named metadata. 7991 llvm::Metadata *SPIRVerElts[] = { 7992 llvm::ConstantAsMetadata::get( 7993 llvm::ConstantInt::get(Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7994 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7995 Int32Ty, (CGM.getLangOpts().OpenCLVersion / 100 > 1) ? 0 : 2))}; 7996 llvm::NamedMDNode *SPIRVerMD = 7997 M.getOrInsertNamedMetadata("opencl.spir.version"); 7998 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7999 appendOpenCLVersionMD(CGM); 8000 } 8001 8002 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 8003 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8004 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 8005 llvm::Module &M = CGM.getModule(); 8006 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 8007 // opencl.ocl.version named metadata node. 8008 llvm::Metadata *OCLVerElts[] = { 8009 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8010 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 8011 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8012 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 8013 llvm::NamedMDNode *OCLVerMD = 8014 M.getOrInsertNamedMetadata("opencl.ocl.version"); 8015 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 8016 } 8017 8018 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8019 return llvm::CallingConv::SPIR_KERNEL; 8020 } 8021 8022 static bool appendType(SmallStringEnc &Enc, QualType QType, 8023 const CodeGen::CodeGenModule &CGM, 8024 TypeStringCache &TSC); 8025 8026 /// Helper function for appendRecordType(). 8027 /// Builds a SmallVector containing the encoded field types in declaration 8028 /// order. 8029 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8030 const RecordDecl *RD, 8031 const CodeGen::CodeGenModule &CGM, 8032 TypeStringCache &TSC) { 8033 for (const auto *Field : RD->fields()) { 8034 SmallStringEnc Enc; 8035 Enc += "m("; 8036 Enc += Field->getName(); 8037 Enc += "){"; 8038 if (Field->isBitField()) { 8039 Enc += "b("; 8040 llvm::raw_svector_ostream OS(Enc); 8041 OS << Field->getBitWidthValue(CGM.getContext()); 8042 Enc += ':'; 8043 } 8044 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8045 return false; 8046 if (Field->isBitField()) 8047 Enc += ')'; 8048 Enc += '}'; 8049 FE.emplace_back(!Field->getName().empty(), Enc); 8050 } 8051 return true; 8052 } 8053 8054 /// Appends structure and union types to Enc and adds encoding to cache. 8055 /// Recursively calls appendType (via extractFieldType) for each field. 8056 /// Union types have their fields ordered according to the ABI. 8057 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8058 const CodeGen::CodeGenModule &CGM, 8059 TypeStringCache &TSC, const IdentifierInfo *ID) { 8060 // Append the cached TypeString if we have one. 8061 StringRef TypeString = TSC.lookupStr(ID); 8062 if (!TypeString.empty()) { 8063 Enc += TypeString; 8064 return true; 8065 } 8066 8067 // Start to emit an incomplete TypeString. 8068 size_t Start = Enc.size(); 8069 Enc += (RT->isUnionType()? 'u' : 's'); 8070 Enc += '('; 8071 if (ID) 8072 Enc += ID->getName(); 8073 Enc += "){"; 8074 8075 // We collect all encoded fields and order as necessary. 8076 bool IsRecursive = false; 8077 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8078 if (RD && !RD->field_empty()) { 8079 // An incomplete TypeString stub is placed in the cache for this RecordType 8080 // so that recursive calls to this RecordType will use it whilst building a 8081 // complete TypeString for this RecordType. 8082 SmallVector<FieldEncoding, 16> FE; 8083 std::string StubEnc(Enc.substr(Start).str()); 8084 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8085 TSC.addIncomplete(ID, std::move(StubEnc)); 8086 if (!extractFieldType(FE, RD, CGM, TSC)) { 8087 (void) TSC.removeIncomplete(ID); 8088 return false; 8089 } 8090 IsRecursive = TSC.removeIncomplete(ID); 8091 // The ABI requires unions to be sorted but not structures. 8092 // See FieldEncoding::operator< for sort algorithm. 8093 if (RT->isUnionType()) 8094 std::sort(FE.begin(), FE.end()); 8095 // We can now complete the TypeString. 8096 unsigned E = FE.size(); 8097 for (unsigned I = 0; I != E; ++I) { 8098 if (I) 8099 Enc += ','; 8100 Enc += FE[I].str(); 8101 } 8102 } 8103 Enc += '}'; 8104 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8105 return true; 8106 } 8107 8108 /// Appends enum types to Enc and adds the encoding to the cache. 8109 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8110 TypeStringCache &TSC, 8111 const IdentifierInfo *ID) { 8112 // Append the cached TypeString if we have one. 8113 StringRef TypeString = TSC.lookupStr(ID); 8114 if (!TypeString.empty()) { 8115 Enc += TypeString; 8116 return true; 8117 } 8118 8119 size_t Start = Enc.size(); 8120 Enc += "e("; 8121 if (ID) 8122 Enc += ID->getName(); 8123 Enc += "){"; 8124 8125 // We collect all encoded enumerations and order them alphanumerically. 8126 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8127 SmallVector<FieldEncoding, 16> FE; 8128 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8129 ++I) { 8130 SmallStringEnc EnumEnc; 8131 EnumEnc += "m("; 8132 EnumEnc += I->getName(); 8133 EnumEnc += "){"; 8134 I->getInitVal().toString(EnumEnc); 8135 EnumEnc += '}'; 8136 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8137 } 8138 std::sort(FE.begin(), FE.end()); 8139 unsigned E = FE.size(); 8140 for (unsigned I = 0; I != E; ++I) { 8141 if (I) 8142 Enc += ','; 8143 Enc += FE[I].str(); 8144 } 8145 } 8146 Enc += '}'; 8147 TSC.addIfComplete(ID, Enc.substr(Start), false); 8148 return true; 8149 } 8150 8151 /// Appends type's qualifier to Enc. 8152 /// This is done prior to appending the type's encoding. 8153 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8154 // Qualifiers are emitted in alphabetical order. 8155 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8156 int Lookup = 0; 8157 if (QT.isConstQualified()) 8158 Lookup += 1<<0; 8159 if (QT.isRestrictQualified()) 8160 Lookup += 1<<1; 8161 if (QT.isVolatileQualified()) 8162 Lookup += 1<<2; 8163 Enc += Table[Lookup]; 8164 } 8165 8166 /// Appends built-in types to Enc. 8167 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8168 const char *EncType; 8169 switch (BT->getKind()) { 8170 case BuiltinType::Void: 8171 EncType = "0"; 8172 break; 8173 case BuiltinType::Bool: 8174 EncType = "b"; 8175 break; 8176 case BuiltinType::Char_U: 8177 EncType = "uc"; 8178 break; 8179 case BuiltinType::UChar: 8180 EncType = "uc"; 8181 break; 8182 case BuiltinType::SChar: 8183 EncType = "sc"; 8184 break; 8185 case BuiltinType::UShort: 8186 EncType = "us"; 8187 break; 8188 case BuiltinType::Short: 8189 EncType = "ss"; 8190 break; 8191 case BuiltinType::UInt: 8192 EncType = "ui"; 8193 break; 8194 case BuiltinType::Int: 8195 EncType = "si"; 8196 break; 8197 case BuiltinType::ULong: 8198 EncType = "ul"; 8199 break; 8200 case BuiltinType::Long: 8201 EncType = "sl"; 8202 break; 8203 case BuiltinType::ULongLong: 8204 EncType = "ull"; 8205 break; 8206 case BuiltinType::LongLong: 8207 EncType = "sll"; 8208 break; 8209 case BuiltinType::Float: 8210 EncType = "ft"; 8211 break; 8212 case BuiltinType::Double: 8213 EncType = "d"; 8214 break; 8215 case BuiltinType::LongDouble: 8216 EncType = "ld"; 8217 break; 8218 default: 8219 return false; 8220 } 8221 Enc += EncType; 8222 return true; 8223 } 8224 8225 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8226 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8227 const CodeGen::CodeGenModule &CGM, 8228 TypeStringCache &TSC) { 8229 Enc += "p("; 8230 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8231 return false; 8232 Enc += ')'; 8233 return true; 8234 } 8235 8236 /// Appends array encoding to Enc before calling appendType for the element. 8237 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8238 const ArrayType *AT, 8239 const CodeGen::CodeGenModule &CGM, 8240 TypeStringCache &TSC, StringRef NoSizeEnc) { 8241 if (AT->getSizeModifier() != ArrayType::Normal) 8242 return false; 8243 Enc += "a("; 8244 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8245 CAT->getSize().toStringUnsigned(Enc); 8246 else 8247 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8248 Enc += ':'; 8249 // The Qualifiers should be attached to the type rather than the array. 8250 appendQualifier(Enc, QT); 8251 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8252 return false; 8253 Enc += ')'; 8254 return true; 8255 } 8256 8257 /// Appends a function encoding to Enc, calling appendType for the return type 8258 /// and the arguments. 8259 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8260 const CodeGen::CodeGenModule &CGM, 8261 TypeStringCache &TSC) { 8262 Enc += "f{"; 8263 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8264 return false; 8265 Enc += "}("; 8266 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8267 // N.B. we are only interested in the adjusted param types. 8268 auto I = FPT->param_type_begin(); 8269 auto E = FPT->param_type_end(); 8270 if (I != E) { 8271 do { 8272 if (!appendType(Enc, *I, CGM, TSC)) 8273 return false; 8274 ++I; 8275 if (I != E) 8276 Enc += ','; 8277 } while (I != E); 8278 if (FPT->isVariadic()) 8279 Enc += ",va"; 8280 } else { 8281 if (FPT->isVariadic()) 8282 Enc += "va"; 8283 else 8284 Enc += '0'; 8285 } 8286 } 8287 Enc += ')'; 8288 return true; 8289 } 8290 8291 /// Handles the type's qualifier before dispatching a call to handle specific 8292 /// type encodings. 8293 static bool appendType(SmallStringEnc &Enc, QualType QType, 8294 const CodeGen::CodeGenModule &CGM, 8295 TypeStringCache &TSC) { 8296 8297 QualType QT = QType.getCanonicalType(); 8298 8299 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8300 // The Qualifiers should be attached to the type rather than the array. 8301 // Thus we don't call appendQualifier() here. 8302 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8303 8304 appendQualifier(Enc, QT); 8305 8306 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8307 return appendBuiltinType(Enc, BT); 8308 8309 if (const PointerType *PT = QT->getAs<PointerType>()) 8310 return appendPointerType(Enc, PT, CGM, TSC); 8311 8312 if (const EnumType *ET = QT->getAs<EnumType>()) 8313 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8314 8315 if (const RecordType *RT = QT->getAsStructureType()) 8316 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8317 8318 if (const RecordType *RT = QT->getAsUnionType()) 8319 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8320 8321 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8322 return appendFunctionType(Enc, FT, CGM, TSC); 8323 8324 return false; 8325 } 8326 8327 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8328 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8329 if (!D) 8330 return false; 8331 8332 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8333 if (FD->getLanguageLinkage() != CLanguageLinkage) 8334 return false; 8335 return appendType(Enc, FD->getType(), CGM, TSC); 8336 } 8337 8338 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8339 if (VD->getLanguageLinkage() != CLanguageLinkage) 8340 return false; 8341 QualType QT = VD->getType().getCanonicalType(); 8342 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8343 // Global ArrayTypes are given a size of '*' if the size is unknown. 8344 // The Qualifiers should be attached to the type rather than the array. 8345 // Thus we don't call appendQualifier() here. 8346 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8347 } 8348 return appendType(Enc, QT, CGM, TSC); 8349 } 8350 return false; 8351 } 8352 8353 8354 //===----------------------------------------------------------------------===// 8355 // Driver code 8356 //===----------------------------------------------------------------------===// 8357 8358 bool CodeGenModule::supportsCOMDAT() const { 8359 return getTriple().supportsCOMDAT(); 8360 } 8361 8362 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8363 if (TheTargetCodeGenInfo) 8364 return *TheTargetCodeGenInfo; 8365 8366 // Helper to set the unique_ptr while still keeping the return value. 8367 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8368 this->TheTargetCodeGenInfo.reset(P); 8369 return *P; 8370 }; 8371 8372 const llvm::Triple &Triple = getTarget().getTriple(); 8373 switch (Triple.getArch()) { 8374 default: 8375 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8376 8377 case llvm::Triple::le32: 8378 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8379 case llvm::Triple::mips: 8380 case llvm::Triple::mipsel: 8381 if (Triple.getOS() == llvm::Triple::NaCl) 8382 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8383 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8384 8385 case llvm::Triple::mips64: 8386 case llvm::Triple::mips64el: 8387 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8388 8389 case llvm::Triple::aarch64: 8390 case llvm::Triple::aarch64_be: { 8391 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8392 if (getTarget().getABI() == "darwinpcs") 8393 Kind = AArch64ABIInfo::DarwinPCS; 8394 8395 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8396 } 8397 8398 case llvm::Triple::wasm32: 8399 case llvm::Triple::wasm64: 8400 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8401 8402 case llvm::Triple::arm: 8403 case llvm::Triple::armeb: 8404 case llvm::Triple::thumb: 8405 case llvm::Triple::thumbeb: { 8406 if (Triple.getOS() == llvm::Triple::Win32) { 8407 return SetCGInfo( 8408 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8409 } 8410 8411 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8412 StringRef ABIStr = getTarget().getABI(); 8413 if (ABIStr == "apcs-gnu") 8414 Kind = ARMABIInfo::APCS; 8415 else if (ABIStr == "aapcs16") 8416 Kind = ARMABIInfo::AAPCS16_VFP; 8417 else if (CodeGenOpts.FloatABI == "hard" || 8418 (CodeGenOpts.FloatABI != "soft" && 8419 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8420 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8421 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8422 Kind = ARMABIInfo::AAPCS_VFP; 8423 8424 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8425 } 8426 8427 case llvm::Triple::ppc: 8428 return SetCGInfo( 8429 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8430 case llvm::Triple::ppc64: 8431 if (Triple.isOSBinFormatELF()) { 8432 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8433 if (getTarget().getABI() == "elfv2") 8434 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8435 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8436 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8437 8438 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8439 IsSoftFloat)); 8440 } else 8441 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8442 case llvm::Triple::ppc64le: { 8443 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8444 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8445 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8446 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8447 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8448 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8449 8450 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8451 IsSoftFloat)); 8452 } 8453 8454 case llvm::Triple::nvptx: 8455 case llvm::Triple::nvptx64: 8456 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8457 8458 case llvm::Triple::msp430: 8459 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8460 8461 case llvm::Triple::systemz: { 8462 bool HasVector = getTarget().getABI() == "vector"; 8463 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8464 } 8465 8466 case llvm::Triple::tce: 8467 case llvm::Triple::tcele: 8468 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8469 8470 case llvm::Triple::x86: { 8471 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8472 bool RetSmallStructInRegABI = 8473 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8474 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8475 8476 if (Triple.getOS() == llvm::Triple::Win32) { 8477 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8478 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8479 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8480 } else { 8481 return SetCGInfo(new X86_32TargetCodeGenInfo( 8482 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8483 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8484 CodeGenOpts.FloatABI == "soft")); 8485 } 8486 } 8487 8488 case llvm::Triple::x86_64: { 8489 StringRef ABI = getTarget().getABI(); 8490 X86AVXABILevel AVXLevel = 8491 (ABI == "avx512" 8492 ? X86AVXABILevel::AVX512 8493 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8494 8495 switch (Triple.getOS()) { 8496 case llvm::Triple::Win32: 8497 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8498 case llvm::Triple::PS4: 8499 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8500 default: 8501 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8502 } 8503 } 8504 case llvm::Triple::hexagon: 8505 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8506 case llvm::Triple::lanai: 8507 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8508 case llvm::Triple::r600: 8509 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8510 case llvm::Triple::amdgcn: 8511 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8512 case llvm::Triple::sparc: 8513 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8514 case llvm::Triple::sparcv9: 8515 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8516 case llvm::Triple::xcore: 8517 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8518 case llvm::Triple::spir: 8519 case llvm::Triple::spir64: 8520 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8521 } 8522 } 8523