1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
102 
103 /// isEmptyField - Return true iff a the field is "empty", that is it
104 /// is an unnamed bit-field or an (array of) empty record(s).
105 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
106                          bool AllowArrays) {
107   if (FD->isUnnamedBitfield())
108     return true;
109 
110   QualType FT = FD->getType();
111 
112     // Constant arrays of empty records count as empty, strip them off.
113   if (AllowArrays)
114     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
115       FT = AT->getElementType();
116 
117   const RecordType *RT = FT->getAs<RecordType>();
118   if (!RT)
119     return false;
120 
121   // C++ record fields are never empty, at least in the Itanium ABI.
122   //
123   // FIXME: We should use a predicate for whether this behavior is true in the
124   // current ABI.
125   if (isa<CXXRecordDecl>(RT->getDecl()))
126     return false;
127 
128   return isEmptyRecord(Context, FT, AllowArrays);
129 }
130 
131 /// isEmptyRecord - Return true iff a structure contains only empty
132 /// fields. Note that a structure with a flexible array member is not
133 /// considered empty.
134 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
135   const RecordType *RT = T->getAs<RecordType>();
136   if (!RT)
137     return 0;
138   const RecordDecl *RD = RT->getDecl();
139   if (RD->hasFlexibleArrayMember())
140     return false;
141 
142   // If this is a C++ record, check the bases first.
143   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
144     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
145            e = CXXRD->bases_end(); i != e; ++i)
146       if (!isEmptyRecord(Context, i->getType(), true))
147         return false;
148 
149   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
150          i != e; ++i)
151     if (!isEmptyField(Context, *i, AllowArrays))
152       return false;
153   return true;
154 }
155 
156 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
157 /// a non-trivial destructor or a non-trivial copy constructor.
158 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
159   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
160   if (!RD)
161     return false;
162 
163   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
164 }
165 
166 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
167 /// a record type with either a non-trivial destructor or a non-trivial copy
168 /// constructor.
169 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
170   const RecordType *RT = T->getAs<RecordType>();
171   if (!RT)
172     return false;
173 
174   return hasNonTrivialDestructorOrCopyConstructor(RT);
175 }
176 
177 /// isSingleElementStruct - Determine if a structure is a "single
178 /// element struct", i.e. it has exactly one non-empty field or
179 /// exactly one field which is itself a single element
180 /// struct. Structures with flexible array members are never
181 /// considered single element structs.
182 ///
183 /// \return The field declaration for the single non-empty field, if
184 /// it exists.
185 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
186   const RecordType *RT = T->getAsStructureType();
187   if (!RT)
188     return 0;
189 
190   const RecordDecl *RD = RT->getDecl();
191   if (RD->hasFlexibleArrayMember())
192     return 0;
193 
194   const Type *Found = 0;
195 
196   // If this is a C++ record, check the bases first.
197   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
198     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
199            e = CXXRD->bases_end(); i != e; ++i) {
200       // Ignore empty records.
201       if (isEmptyRecord(Context, i->getType(), true))
202         continue;
203 
204       // If we already found an element then this isn't a single-element struct.
205       if (Found)
206         return 0;
207 
208       // If this is non-empty and not a single element struct, the composite
209       // cannot be a single element struct.
210       Found = isSingleElementStruct(i->getType(), Context);
211       if (!Found)
212         return 0;
213     }
214   }
215 
216   // Check for single element.
217   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
218          i != e; ++i) {
219     const FieldDecl *FD = *i;
220     QualType FT = FD->getType();
221 
222     // Ignore empty fields.
223     if (isEmptyField(Context, FD, true))
224       continue;
225 
226     // If we already found an element then this isn't a single-element
227     // struct.
228     if (Found)
229       return 0;
230 
231     // Treat single element arrays as the element.
232     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
233       if (AT->getSize().getZExtValue() != 1)
234         break;
235       FT = AT->getElementType();
236     }
237 
238     if (!isAggregateTypeForABI(FT)) {
239       Found = FT.getTypePtr();
240     } else {
241       Found = isSingleElementStruct(FT, Context);
242       if (!Found)
243         return 0;
244     }
245   }
246 
247   return Found;
248 }
249 
250 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
251   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
252       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
253       !Ty->isBlockPointerType())
254     return false;
255 
256   uint64_t Size = Context.getTypeSize(Ty);
257   return Size == 32 || Size == 64;
258 }
259 
260 /// canExpandIndirectArgument - Test whether an argument type which is to be
261 /// passed indirectly (on the stack) would have the equivalent layout if it was
262 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
263 /// inhibiting optimizations.
264 ///
265 // FIXME: This predicate is missing many cases, currently it just follows
266 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
267 // should probably make this smarter, or better yet make the LLVM backend
268 // capable of handling it.
269 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
270   // We can only expand structure types.
271   const RecordType *RT = Ty->getAs<RecordType>();
272   if (!RT)
273     return false;
274 
275   // We can only expand (C) structures.
276   //
277   // FIXME: This needs to be generalized to handle classes as well.
278   const RecordDecl *RD = RT->getDecl();
279   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
280     return false;
281 
282   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
283          i != e; ++i) {
284     const FieldDecl *FD = *i;
285 
286     if (!is32Or64BitBasicType(FD->getType(), Context))
287       return false;
288 
289     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
290     // how to expand them yet, and the predicate for telling if a bitfield still
291     // counts as "basic" is more complicated than what we were doing previously.
292     if (FD->isBitField())
293       return false;
294   }
295 
296   return true;
297 }
298 
299 namespace {
300 /// DefaultABIInfo - The default implementation for ABI specific
301 /// details. This implementation provides information which results in
302 /// self-consistent and sensible LLVM IR generation, but does not
303 /// conform to any particular ABI.
304 class DefaultABIInfo : public ABIInfo {
305 public:
306   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
307 
308   ABIArgInfo classifyReturnType(QualType RetTy) const;
309   ABIArgInfo classifyArgumentType(QualType RetTy) const;
310 
311   virtual void computeInfo(CGFunctionInfo &FI) const {
312     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
313     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
314          it != ie; ++it)
315       it->info = classifyArgumentType(it->type);
316   }
317 
318   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
319                                  CodeGenFunction &CGF) const;
320 };
321 
322 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
323 public:
324   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
325     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
326 };
327 
328 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
329                                        CodeGenFunction &CGF) const {
330   return 0;
331 }
332 
333 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
334   if (isAggregateTypeForABI(Ty))
335     return ABIArgInfo::getIndirect(0);
336 
337   // Treat an enum type as its underlying type.
338   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
339     Ty = EnumTy->getDecl()->getIntegerType();
340 
341   return (Ty->isPromotableIntegerType() ?
342           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
343 }
344 
345 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
346   if (RetTy->isVoidType())
347     return ABIArgInfo::getIgnore();
348 
349   if (isAggregateTypeForABI(RetTy))
350     return ABIArgInfo::getIndirect(0);
351 
352   // Treat an enum type as its underlying type.
353   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
354     RetTy = EnumTy->getDecl()->getIntegerType();
355 
356   return (RetTy->isPromotableIntegerType() ?
357           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
358 }
359 
360 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
361 /// x86_mmx type.
362 bool UseX86_MMXType(llvm::Type *IRType) {
363   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
364   // special x86_mmx type.
365   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
366     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
367     IRType->getScalarSizeInBits() != 64;
368 }
369 
370 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
371                                           StringRef Constraint,
372                                           llvm::Type* Ty) {
373   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
374     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
375   return Ty;
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // X86-32 ABI Implementation
380 //===----------------------------------------------------------------------===//
381 
382 /// X86_32ABIInfo - The X86-32 ABI information.
383 class X86_32ABIInfo : public ABIInfo {
384   static const unsigned MinABIStackAlignInBytes = 4;
385 
386   bool IsDarwinVectorABI;
387   bool IsSmallStructInRegABI;
388   bool IsMMXDisabled;
389 
390   static bool isRegisterSize(unsigned Size) {
391     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
392   }
393 
394   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
395 
396   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
397   /// such that the argument will be passed in memory.
398   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
399 
400   /// \brief Return the alignment to use for the given type on the stack.
401   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
402 
403 public:
404 
405   ABIArgInfo classifyReturnType(QualType RetTy) const;
406   ABIArgInfo classifyArgumentType(QualType RetTy) const;
407 
408   virtual void computeInfo(CGFunctionInfo &FI) const {
409     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
410     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
411          it != ie; ++it)
412       it->info = classifyArgumentType(it->type);
413   }
414 
415   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
416                                  CodeGenFunction &CGF) const;
417 
418   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
419     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
420       IsMMXDisabled(m) {}
421 };
422 
423 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
424 public:
425   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
426     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
427 
428   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
429                            CodeGen::CodeGenModule &CGM) const;
430 
431   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
432     // Darwin uses different dwarf register numbers for EH.
433     if (CGM.isTargetDarwin()) return 5;
434 
435     return 4;
436   }
437 
438   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
439                                llvm::Value *Address) const;
440 
441   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
442                                   StringRef Constraint,
443                                   llvm::Type* Ty) const {
444     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
445   }
446 
447 };
448 
449 }
450 
451 /// shouldReturnTypeInRegister - Determine if the given type should be
452 /// passed in a register (for the Darwin ABI).
453 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
454                                                ASTContext &Context) {
455   uint64_t Size = Context.getTypeSize(Ty);
456 
457   // Type must be register sized.
458   if (!isRegisterSize(Size))
459     return false;
460 
461   if (Ty->isVectorType()) {
462     // 64- and 128- bit vectors inside structures are not returned in
463     // registers.
464     if (Size == 64 || Size == 128)
465       return false;
466 
467     return true;
468   }
469 
470   // If this is a builtin, pointer, enum, complex type, member pointer, or
471   // member function pointer it is ok.
472   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
473       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
474       Ty->isBlockPointerType() || Ty->isMemberPointerType())
475     return true;
476 
477   // Arrays are treated like records.
478   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
479     return shouldReturnTypeInRegister(AT->getElementType(), Context);
480 
481   // Otherwise, it must be a record type.
482   const RecordType *RT = Ty->getAs<RecordType>();
483   if (!RT) return false;
484 
485   // FIXME: Traverse bases here too.
486 
487   // Structure types are passed in register if all fields would be
488   // passed in a register.
489   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
490          e = RT->getDecl()->field_end(); i != e; ++i) {
491     const FieldDecl *FD = *i;
492 
493     // Empty fields are ignored.
494     if (isEmptyField(Context, FD, true))
495       continue;
496 
497     // Check fields recursively.
498     if (!shouldReturnTypeInRegister(FD->getType(), Context))
499       return false;
500   }
501 
502   return true;
503 }
504 
505 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
506   if (RetTy->isVoidType())
507     return ABIArgInfo::getIgnore();
508 
509   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
510     // On Darwin, some vectors are returned in registers.
511     if (IsDarwinVectorABI) {
512       uint64_t Size = getContext().getTypeSize(RetTy);
513 
514       // 128-bit vectors are a special case; they are returned in
515       // registers and we need to make sure to pick a type the LLVM
516       // backend will like.
517       if (Size == 128)
518         return ABIArgInfo::getDirect(llvm::VectorType::get(
519                   llvm::Type::getInt64Ty(getVMContext()), 2));
520 
521       // Always return in register if it fits in a general purpose
522       // register, or if it is 64 bits and has a single element.
523       if ((Size == 8 || Size == 16 || Size == 32) ||
524           (Size == 64 && VT->getNumElements() == 1))
525         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
526                                                             Size));
527 
528       return ABIArgInfo::getIndirect(0);
529     }
530 
531     return ABIArgInfo::getDirect();
532   }
533 
534   if (isAggregateTypeForABI(RetTy)) {
535     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
536       // Structures with either a non-trivial destructor or a non-trivial
537       // copy constructor are always indirect.
538       if (hasNonTrivialDestructorOrCopyConstructor(RT))
539         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
540 
541       // Structures with flexible arrays are always indirect.
542       if (RT->getDecl()->hasFlexibleArrayMember())
543         return ABIArgInfo::getIndirect(0);
544     }
545 
546     // If specified, structs and unions are always indirect.
547     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
548       return ABIArgInfo::getIndirect(0);
549 
550     // Classify "single element" structs as their element type.
551     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
552       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
553         if (BT->isIntegerType()) {
554           // We need to use the size of the structure, padding
555           // bit-fields can adjust that to be larger than the single
556           // element type.
557           uint64_t Size = getContext().getTypeSize(RetTy);
558           return ABIArgInfo::getDirect(
559             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
560         }
561 
562         if (BT->getKind() == BuiltinType::Float) {
563           assert(getContext().getTypeSize(RetTy) ==
564                  getContext().getTypeSize(SeltTy) &&
565                  "Unexpect single element structure size!");
566           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
567         }
568 
569         if (BT->getKind() == BuiltinType::Double) {
570           assert(getContext().getTypeSize(RetTy) ==
571                  getContext().getTypeSize(SeltTy) &&
572                  "Unexpect single element structure size!");
573           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
574         }
575       } else if (SeltTy->isPointerType()) {
576         // FIXME: It would be really nice if this could come out as the proper
577         // pointer type.
578         llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
579         return ABIArgInfo::getDirect(PtrTy);
580       } else if (SeltTy->isVectorType()) {
581         // 64- and 128-bit vectors are never returned in a
582         // register when inside a structure.
583         uint64_t Size = getContext().getTypeSize(RetTy);
584         if (Size == 64 || Size == 128)
585           return ABIArgInfo::getIndirect(0);
586 
587         return classifyReturnType(QualType(SeltTy, 0));
588       }
589     }
590 
591     // Small structures which are register sized are generally returned
592     // in a register.
593     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
594       uint64_t Size = getContext().getTypeSize(RetTy);
595       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
596     }
597 
598     return ABIArgInfo::getIndirect(0);
599   }
600 
601   // Treat an enum type as its underlying type.
602   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
603     RetTy = EnumTy->getDecl()->getIntegerType();
604 
605   return (RetTy->isPromotableIntegerType() ?
606           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
607 }
608 
609 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
610   const RecordType *RT = Ty->getAs<RecordType>();
611   if (!RT)
612     return 0;
613   const RecordDecl *RD = RT->getDecl();
614 
615   // If this is a C++ record, check the bases first.
616   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
617     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
618            e = CXXRD->bases_end(); i != e; ++i)
619       if (!isRecordWithSSEVectorType(Context, i->getType()))
620         return false;
621 
622   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
623        i != e; ++i) {
624     QualType FT = i->getType();
625 
626     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
627       return true;
628 
629     if (isRecordWithSSEVectorType(Context, FT))
630       return true;
631   }
632 
633   return false;
634 }
635 
636 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
637                                                  unsigned Align) const {
638   // Otherwise, if the alignment is less than or equal to the minimum ABI
639   // alignment, just use the default; the backend will handle this.
640   if (Align <= MinABIStackAlignInBytes)
641     return 0; // Use default alignment.
642 
643   // On non-Darwin, the stack type alignment is always 4.
644   if (!IsDarwinVectorABI) {
645     // Set explicit alignment, since we may need to realign the top.
646     return MinABIStackAlignInBytes;
647   }
648 
649   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
650   if (isRecordWithSSEVectorType(getContext(), Ty))
651     return 16;
652 
653   return MinABIStackAlignInBytes;
654 }
655 
656 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
657   if (!ByVal)
658     return ABIArgInfo::getIndirect(0, false);
659 
660   // Compute the byval alignment.
661   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
662   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
663   if (StackAlign == 0)
664     return ABIArgInfo::getIndirect(4);
665 
666   // If the stack alignment is less than the type alignment, realign the
667   // argument.
668   if (StackAlign < TypeAlign)
669     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
670                                    /*Realign=*/true);
671 
672   return ABIArgInfo::getIndirect(StackAlign);
673 }
674 
675 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
676   // FIXME: Set alignment on indirect arguments.
677   if (isAggregateTypeForABI(Ty)) {
678     // Structures with flexible arrays are always indirect.
679     if (const RecordType *RT = Ty->getAs<RecordType>()) {
680       // Structures with either a non-trivial destructor or a non-trivial
681       // copy constructor are always indirect.
682       if (hasNonTrivialDestructorOrCopyConstructor(RT))
683         return getIndirectResult(Ty, /*ByVal=*/false);
684 
685       if (RT->getDecl()->hasFlexibleArrayMember())
686         return getIndirectResult(Ty);
687     }
688 
689     // Ignore empty structs.
690     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
691       return ABIArgInfo::getIgnore();
692 
693     // Expand small (<= 128-bit) record types when we know that the stack layout
694     // of those arguments will match the struct. This is important because the
695     // LLVM backend isn't smart enough to remove byval, which inhibits many
696     // optimizations.
697     if (getContext().getTypeSize(Ty) <= 4*32 &&
698         canExpandIndirectArgument(Ty, getContext()))
699       return ABIArgInfo::getExpand();
700 
701     return getIndirectResult(Ty);
702   }
703 
704   if (const VectorType *VT = Ty->getAs<VectorType>()) {
705     // On Darwin, some vectors are passed in memory, we handle this by passing
706     // it as an i8/i16/i32/i64.
707     if (IsDarwinVectorABI) {
708       uint64_t Size = getContext().getTypeSize(Ty);
709       if ((Size == 8 || Size == 16 || Size == 32) ||
710           (Size == 64 && VT->getNumElements() == 1))
711         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
712                                                             Size));
713     }
714 
715     llvm::Type *IRType = CGT.ConvertType(Ty);
716     if (UseX86_MMXType(IRType)) {
717       if (IsMMXDisabled)
718         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
719                                                             64));
720       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
721       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
722       return AAI;
723     }
724 
725     return ABIArgInfo::getDirect();
726   }
727 
728 
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   return (Ty->isPromotableIntegerType() ?
733           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
734 }
735 
736 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
737                                       CodeGenFunction &CGF) const {
738   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
739   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
740 
741   CGBuilderTy &Builder = CGF.Builder;
742   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
743                                                        "ap");
744   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
745   llvm::Type *PTy =
746     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
747   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
748 
749   uint64_t Offset =
750     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
751   llvm::Value *NextAddr =
752     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
753                       "ap.next");
754   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
755 
756   return AddrTyped;
757 }
758 
759 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
760                                                   llvm::GlobalValue *GV,
761                                             CodeGen::CodeGenModule &CGM) const {
762   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
763     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
764       // Get the LLVM function.
765       llvm::Function *Fn = cast<llvm::Function>(GV);
766 
767       // Now add the 'alignstack' attribute with a value of 16.
768       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
769     }
770   }
771 }
772 
773 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
774                                                CodeGen::CodeGenFunction &CGF,
775                                                llvm::Value *Address) const {
776   CodeGen::CGBuilderTy &Builder = CGF.Builder;
777   llvm::LLVMContext &Context = CGF.getLLVMContext();
778 
779   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
780   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
781 
782   // 0-7 are the eight integer registers;  the order is different
783   //   on Darwin (for EH), but the range is the same.
784   // 8 is %eip.
785   AssignToArrayRange(Builder, Address, Four8, 0, 8);
786 
787   if (CGF.CGM.isTargetDarwin()) {
788     // 12-16 are st(0..4).  Not sure why we stop at 4.
789     // These have size 16, which is sizeof(long double) on
790     // platforms with 8-byte alignment for that type.
791     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
792     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
793 
794   } else {
795     // 9 is %eflags, which doesn't get a size on Darwin for some
796     // reason.
797     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
798 
799     // 11-16 are st(0..5).  Not sure why we stop at 5.
800     // These have size 12, which is sizeof(long double) on
801     // platforms with 4-byte alignment for that type.
802     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
803     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
804   }
805 
806   return false;
807 }
808 
809 //===----------------------------------------------------------------------===//
810 // X86-64 ABI Implementation
811 //===----------------------------------------------------------------------===//
812 
813 
814 namespace {
815 /// X86_64ABIInfo - The X86_64 ABI information.
816 class X86_64ABIInfo : public ABIInfo {
817   enum Class {
818     Integer = 0,
819     SSE,
820     SSEUp,
821     X87,
822     X87Up,
823     ComplexX87,
824     NoClass,
825     Memory
826   };
827 
828   /// merge - Implement the X86_64 ABI merging algorithm.
829   ///
830   /// Merge an accumulating classification \arg Accum with a field
831   /// classification \arg Field.
832   ///
833   /// \param Accum - The accumulating classification. This should
834   /// always be either NoClass or the result of a previous merge
835   /// call. In addition, this should never be Memory (the caller
836   /// should just return Memory for the aggregate).
837   static Class merge(Class Accum, Class Field);
838 
839   /// postMerge - Implement the X86_64 ABI post merging algorithm.
840   ///
841   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
842   /// final MEMORY or SSE classes when necessary.
843   ///
844   /// \param AggregateSize - The size of the current aggregate in
845   /// the classification process.
846   ///
847   /// \param Lo - The classification for the parts of the type
848   /// residing in the low word of the containing object.
849   ///
850   /// \param Hi - The classification for the parts of the type
851   /// residing in the higher words of the containing object.
852   ///
853   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
854 
855   /// classify - Determine the x86_64 register classes in which the
856   /// given type T should be passed.
857   ///
858   /// \param Lo - The classification for the parts of the type
859   /// residing in the low word of the containing object.
860   ///
861   /// \param Hi - The classification for the parts of the type
862   /// residing in the high word of the containing object.
863   ///
864   /// \param OffsetBase - The bit offset of this type in the
865   /// containing object.  Some parameters are classified different
866   /// depending on whether they straddle an eightbyte boundary.
867   ///
868   /// If a word is unused its result will be NoClass; if a type should
869   /// be passed in Memory then at least the classification of \arg Lo
870   /// will be Memory.
871   ///
872   /// The \arg Lo class will be NoClass iff the argument is ignored.
873   ///
874   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
875   /// also be ComplexX87.
876   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
877 
878   llvm::Type *GetByteVectorType(QualType Ty) const;
879   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
880                                  unsigned IROffset, QualType SourceTy,
881                                  unsigned SourceOffset) const;
882   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
883                                      unsigned IROffset, QualType SourceTy,
884                                      unsigned SourceOffset) const;
885 
886   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
887   /// such that the argument will be returned in memory.
888   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
889 
890   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
891   /// such that the argument will be passed in memory.
892   ABIArgInfo getIndirectResult(QualType Ty) const;
893 
894   ABIArgInfo classifyReturnType(QualType RetTy) const;
895 
896   ABIArgInfo classifyArgumentType(QualType Ty,
897                                   unsigned &neededInt,
898                                   unsigned &neededSSE) const;
899 
900   /// The 0.98 ABI revision clarified a lot of ambiguities,
901   /// unfortunately in ways that were not always consistent with
902   /// certain previous compilers.  In particular, platforms which
903   /// required strict binary compatibility with older versions of GCC
904   /// may need to exempt themselves.
905   bool honorsRevision0_98() const {
906     return !getContext().getTargetInfo().getTriple().isOSDarwin();
907   }
908 
909 public:
910   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
911 
912   virtual void computeInfo(CGFunctionInfo &FI) const;
913 
914   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
915                                  CodeGenFunction &CGF) const;
916 };
917 
918 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
919 class WinX86_64ABIInfo : public ABIInfo {
920 
921   ABIArgInfo classify(QualType Ty) const;
922 
923 public:
924   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
925 
926   virtual void computeInfo(CGFunctionInfo &FI) const;
927 
928   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
929                                  CodeGenFunction &CGF) const;
930 };
931 
932 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
933 public:
934   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
935     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
936 
937   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
938     return 7;
939   }
940 
941   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
942                                llvm::Value *Address) const {
943     CodeGen::CGBuilderTy &Builder = CGF.Builder;
944     llvm::LLVMContext &Context = CGF.getLLVMContext();
945 
946     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
947     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
948 
949     // 0-15 are the 16 integer registers.
950     // 16 is %rip.
951     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
952 
953     return false;
954   }
955 
956   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
957                                   StringRef Constraint,
958                                   llvm::Type* Ty) const {
959     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
960   }
961 
962 };
963 
964 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
965 public:
966   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
967     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
968 
969   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
970     return 7;
971   }
972 
973   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
974                                llvm::Value *Address) const {
975     CodeGen::CGBuilderTy &Builder = CGF.Builder;
976     llvm::LLVMContext &Context = CGF.getLLVMContext();
977 
978     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
979     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
980 
981     // 0-15 are the 16 integer registers.
982     // 16 is %rip.
983     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
984 
985     return false;
986   }
987 };
988 
989 }
990 
991 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
992                               Class &Hi) const {
993   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
994   //
995   // (a) If one of the classes is Memory, the whole argument is passed in
996   //     memory.
997   //
998   // (b) If X87UP is not preceded by X87, the whole argument is passed in
999   //     memory.
1000   //
1001   // (c) If the size of the aggregate exceeds two eightbytes and the first
1002   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1003   //     argument is passed in memory. NOTE: This is necessary to keep the
1004   //     ABI working for processors that don't support the __m256 type.
1005   //
1006   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1007   //
1008   // Some of these are enforced by the merging logic.  Others can arise
1009   // only with unions; for example:
1010   //   union { _Complex double; unsigned; }
1011   //
1012   // Note that clauses (b) and (c) were added in 0.98.
1013   //
1014   if (Hi == Memory)
1015     Lo = Memory;
1016   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1017     Lo = Memory;
1018   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1019     Lo = Memory;
1020   if (Hi == SSEUp && Lo != SSE)
1021     Hi = SSE;
1022 }
1023 
1024 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1025   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1026   // classified recursively so that always two fields are
1027   // considered. The resulting class is calculated according to
1028   // the classes of the fields in the eightbyte:
1029   //
1030   // (a) If both classes are equal, this is the resulting class.
1031   //
1032   // (b) If one of the classes is NO_CLASS, the resulting class is
1033   // the other class.
1034   //
1035   // (c) If one of the classes is MEMORY, the result is the MEMORY
1036   // class.
1037   //
1038   // (d) If one of the classes is INTEGER, the result is the
1039   // INTEGER.
1040   //
1041   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1042   // MEMORY is used as class.
1043   //
1044   // (f) Otherwise class SSE is used.
1045 
1046   // Accum should never be memory (we should have returned) or
1047   // ComplexX87 (because this cannot be passed in a structure).
1048   assert((Accum != Memory && Accum != ComplexX87) &&
1049          "Invalid accumulated classification during merge.");
1050   if (Accum == Field || Field == NoClass)
1051     return Accum;
1052   if (Field == Memory)
1053     return Memory;
1054   if (Accum == NoClass)
1055     return Field;
1056   if (Accum == Integer || Field == Integer)
1057     return Integer;
1058   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1059       Accum == X87 || Accum == X87Up)
1060     return Memory;
1061   return SSE;
1062 }
1063 
1064 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1065                              Class &Lo, Class &Hi) const {
1066   // FIXME: This code can be simplified by introducing a simple value class for
1067   // Class pairs with appropriate constructor methods for the various
1068   // situations.
1069 
1070   // FIXME: Some of the split computations are wrong; unaligned vectors
1071   // shouldn't be passed in registers for example, so there is no chance they
1072   // can straddle an eightbyte. Verify & simplify.
1073 
1074   Lo = Hi = NoClass;
1075 
1076   Class &Current = OffsetBase < 64 ? Lo : Hi;
1077   Current = Memory;
1078 
1079   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1080     BuiltinType::Kind k = BT->getKind();
1081 
1082     if (k == BuiltinType::Void) {
1083       Current = NoClass;
1084     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1085       Lo = Integer;
1086       Hi = Integer;
1087     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1088       Current = Integer;
1089     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1090       Current = SSE;
1091     } else if (k == BuiltinType::LongDouble) {
1092       Lo = X87;
1093       Hi = X87Up;
1094     }
1095     // FIXME: _Decimal32 and _Decimal64 are SSE.
1096     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1097     return;
1098   }
1099 
1100   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1101     // Classify the underlying integer type.
1102     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1103     return;
1104   }
1105 
1106   if (Ty->hasPointerRepresentation()) {
1107     Current = Integer;
1108     return;
1109   }
1110 
1111   if (Ty->isMemberPointerType()) {
1112     if (Ty->isMemberFunctionPointerType())
1113       Lo = Hi = Integer;
1114     else
1115       Current = Integer;
1116     return;
1117   }
1118 
1119   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1120     uint64_t Size = getContext().getTypeSize(VT);
1121     if (Size == 32) {
1122       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1123       // float> as integer.
1124       Current = Integer;
1125 
1126       // If this type crosses an eightbyte boundary, it should be
1127       // split.
1128       uint64_t EB_Real = (OffsetBase) / 64;
1129       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1130       if (EB_Real != EB_Imag)
1131         Hi = Lo;
1132     } else if (Size == 64) {
1133       // gcc passes <1 x double> in memory. :(
1134       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1135         return;
1136 
1137       // gcc passes <1 x long long> as INTEGER.
1138       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1139           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1140           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1141           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1142         Current = Integer;
1143       else
1144         Current = SSE;
1145 
1146       // If this type crosses an eightbyte boundary, it should be
1147       // split.
1148       if (OffsetBase && OffsetBase != 64)
1149         Hi = Lo;
1150     } else if (Size == 128 || Size == 256) {
1151       // Arguments of 256-bits are split into four eightbyte chunks. The
1152       // least significant one belongs to class SSE and all the others to class
1153       // SSEUP. The original Lo and Hi design considers that types can't be
1154       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1155       // This design isn't correct for 256-bits, but since there're no cases
1156       // where the upper parts would need to be inspected, avoid adding
1157       // complexity and just consider Hi to match the 64-256 part.
1158       Lo = SSE;
1159       Hi = SSEUp;
1160     }
1161     return;
1162   }
1163 
1164   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1165     QualType ET = getContext().getCanonicalType(CT->getElementType());
1166 
1167     uint64_t Size = getContext().getTypeSize(Ty);
1168     if (ET->isIntegralOrEnumerationType()) {
1169       if (Size <= 64)
1170         Current = Integer;
1171       else if (Size <= 128)
1172         Lo = Hi = Integer;
1173     } else if (ET == getContext().FloatTy)
1174       Current = SSE;
1175     else if (ET == getContext().DoubleTy)
1176       Lo = Hi = SSE;
1177     else if (ET == getContext().LongDoubleTy)
1178       Current = ComplexX87;
1179 
1180     // If this complex type crosses an eightbyte boundary then it
1181     // should be split.
1182     uint64_t EB_Real = (OffsetBase) / 64;
1183     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1184     if (Hi == NoClass && EB_Real != EB_Imag)
1185       Hi = Lo;
1186 
1187     return;
1188   }
1189 
1190   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1191     // Arrays are treated like structures.
1192 
1193     uint64_t Size = getContext().getTypeSize(Ty);
1194 
1195     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1196     // than four eightbytes, ..., it has class MEMORY.
1197     if (Size > 256)
1198       return;
1199 
1200     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1201     // fields, it has class MEMORY.
1202     //
1203     // Only need to check alignment of array base.
1204     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1205       return;
1206 
1207     // Otherwise implement simplified merge. We could be smarter about
1208     // this, but it isn't worth it and would be harder to verify.
1209     Current = NoClass;
1210     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1211     uint64_t ArraySize = AT->getSize().getZExtValue();
1212 
1213     // The only case a 256-bit wide vector could be used is when the array
1214     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1215     // to work for sizes wider than 128, early check and fallback to memory.
1216     if (Size > 128 && EltSize != 256)
1217       return;
1218 
1219     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1220       Class FieldLo, FieldHi;
1221       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1222       Lo = merge(Lo, FieldLo);
1223       Hi = merge(Hi, FieldHi);
1224       if (Lo == Memory || Hi == Memory)
1225         break;
1226     }
1227 
1228     postMerge(Size, Lo, Hi);
1229     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1230     return;
1231   }
1232 
1233   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1234     uint64_t Size = getContext().getTypeSize(Ty);
1235 
1236     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1237     // than four eightbytes, ..., it has class MEMORY.
1238     if (Size > 256)
1239       return;
1240 
1241     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1242     // copy constructor or a non-trivial destructor, it is passed by invisible
1243     // reference.
1244     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1245       return;
1246 
1247     const RecordDecl *RD = RT->getDecl();
1248 
1249     // Assume variable sized types are passed in memory.
1250     if (RD->hasFlexibleArrayMember())
1251       return;
1252 
1253     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1254 
1255     // Reset Lo class, this will be recomputed.
1256     Current = NoClass;
1257 
1258     // If this is a C++ record, classify the bases first.
1259     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1260       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1261              e = CXXRD->bases_end(); i != e; ++i) {
1262         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1263                "Unexpected base class!");
1264         const CXXRecordDecl *Base =
1265           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1266 
1267         // Classify this field.
1268         //
1269         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1270         // single eightbyte, each is classified separately. Each eightbyte gets
1271         // initialized to class NO_CLASS.
1272         Class FieldLo, FieldHi;
1273         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1274         classify(i->getType(), Offset, FieldLo, FieldHi);
1275         Lo = merge(Lo, FieldLo);
1276         Hi = merge(Hi, FieldHi);
1277         if (Lo == Memory || Hi == Memory)
1278           break;
1279       }
1280     }
1281 
1282     // Classify the fields one at a time, merging the results.
1283     unsigned idx = 0;
1284     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1285            i != e; ++i, ++idx) {
1286       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1287       bool BitField = i->isBitField();
1288 
1289       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1290       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1291       //
1292       // The only case a 256-bit wide vector could be used is when the struct
1293       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1294       // to work for sizes wider than 128, early check and fallback to memory.
1295       //
1296       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1297         Lo = Memory;
1298         return;
1299       }
1300       // Note, skip this test for bit-fields, see below.
1301       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1302         Lo = Memory;
1303         return;
1304       }
1305 
1306       // Classify this field.
1307       //
1308       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1309       // exceeds a single eightbyte, each is classified
1310       // separately. Each eightbyte gets initialized to class
1311       // NO_CLASS.
1312       Class FieldLo, FieldHi;
1313 
1314       // Bit-fields require special handling, they do not force the
1315       // structure to be passed in memory even if unaligned, and
1316       // therefore they can straddle an eightbyte.
1317       if (BitField) {
1318         // Ignore padding bit-fields.
1319         if (i->isUnnamedBitfield())
1320           continue;
1321 
1322         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1323         uint64_t Size =
1324           i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1325 
1326         uint64_t EB_Lo = Offset / 64;
1327         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1328         FieldLo = FieldHi = NoClass;
1329         if (EB_Lo) {
1330           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1331           FieldLo = NoClass;
1332           FieldHi = Integer;
1333         } else {
1334           FieldLo = Integer;
1335           FieldHi = EB_Hi ? Integer : NoClass;
1336         }
1337       } else
1338         classify(i->getType(), Offset, FieldLo, FieldHi);
1339       Lo = merge(Lo, FieldLo);
1340       Hi = merge(Hi, FieldHi);
1341       if (Lo == Memory || Hi == Memory)
1342         break;
1343     }
1344 
1345     postMerge(Size, Lo, Hi);
1346   }
1347 }
1348 
1349 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1350   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1351   // place naturally.
1352   if (!isAggregateTypeForABI(Ty)) {
1353     // Treat an enum type as its underlying type.
1354     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1355       Ty = EnumTy->getDecl()->getIntegerType();
1356 
1357     return (Ty->isPromotableIntegerType() ?
1358             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1359   }
1360 
1361   return ABIArgInfo::getIndirect(0);
1362 }
1363 
1364 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1365   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1366   // place naturally.
1367   if (!isAggregateTypeForABI(Ty)) {
1368     // Treat an enum type as its underlying type.
1369     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1370       Ty = EnumTy->getDecl()->getIntegerType();
1371 
1372     return (Ty->isPromotableIntegerType() ?
1373             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1374   }
1375 
1376   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1377     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1378 
1379   // Compute the byval alignment. We specify the alignment of the byval in all
1380   // cases so that the mid-level optimizer knows the alignment of the byval.
1381   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1382   return ABIArgInfo::getIndirect(Align);
1383 }
1384 
1385 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1386 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1387 /// vector register.
1388 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1389   llvm::Type *IRType = CGT.ConvertType(Ty);
1390 
1391   // Wrapper structs that just contain vectors are passed just like vectors,
1392   // strip them off if present.
1393   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1394   while (STy && STy->getNumElements() == 1) {
1395     IRType = STy->getElementType(0);
1396     STy = dyn_cast<llvm::StructType>(IRType);
1397   }
1398 
1399   // If the preferred type is a 16-byte vector, prefer to pass it.
1400   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1401     llvm::Type *EltTy = VT->getElementType();
1402     unsigned BitWidth = VT->getBitWidth();
1403     if ((BitWidth == 128 || BitWidth == 256) &&
1404         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1405          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1406          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1407          EltTy->isIntegerTy(128)))
1408       return VT;
1409   }
1410 
1411   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1412 }
1413 
1414 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1415 /// is known to either be off the end of the specified type or being in
1416 /// alignment padding.  The user type specified is known to be at most 128 bits
1417 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1418 /// classification that put one of the two halves in the INTEGER class.
1419 ///
1420 /// It is conservatively correct to return false.
1421 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1422                                   unsigned EndBit, ASTContext &Context) {
1423   // If the bytes being queried are off the end of the type, there is no user
1424   // data hiding here.  This handles analysis of builtins, vectors and other
1425   // types that don't contain interesting padding.
1426   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1427   if (TySize <= StartBit)
1428     return true;
1429 
1430   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1431     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1432     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1433 
1434     // Check each element to see if the element overlaps with the queried range.
1435     for (unsigned i = 0; i != NumElts; ++i) {
1436       // If the element is after the span we care about, then we're done..
1437       unsigned EltOffset = i*EltSize;
1438       if (EltOffset >= EndBit) break;
1439 
1440       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1441       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1442                                  EndBit-EltOffset, Context))
1443         return false;
1444     }
1445     // If it overlaps no elements, then it is safe to process as padding.
1446     return true;
1447   }
1448 
1449   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1450     const RecordDecl *RD = RT->getDecl();
1451     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1452 
1453     // If this is a C++ record, check the bases first.
1454     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1455       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1456            e = CXXRD->bases_end(); i != e; ++i) {
1457         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1458                "Unexpected base class!");
1459         const CXXRecordDecl *Base =
1460           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1461 
1462         // If the base is after the span we care about, ignore it.
1463         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1464         if (BaseOffset >= EndBit) continue;
1465 
1466         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1467         if (!BitsContainNoUserData(i->getType(), BaseStart,
1468                                    EndBit-BaseOffset, Context))
1469           return false;
1470       }
1471     }
1472 
1473     // Verify that no field has data that overlaps the region of interest.  Yes
1474     // this could be sped up a lot by being smarter about queried fields,
1475     // however we're only looking at structs up to 16 bytes, so we don't care
1476     // much.
1477     unsigned idx = 0;
1478     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1479          i != e; ++i, ++idx) {
1480       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1481 
1482       // If we found a field after the region we care about, then we're done.
1483       if (FieldOffset >= EndBit) break;
1484 
1485       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1486       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1487                                  Context))
1488         return false;
1489     }
1490 
1491     // If nothing in this record overlapped the area of interest, then we're
1492     // clean.
1493     return true;
1494   }
1495 
1496   return false;
1497 }
1498 
1499 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1500 /// float member at the specified offset.  For example, {int,{float}} has a
1501 /// float at offset 4.  It is conservatively correct for this routine to return
1502 /// false.
1503 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1504                                   const llvm::TargetData &TD) {
1505   // Base case if we find a float.
1506   if (IROffset == 0 && IRType->isFloatTy())
1507     return true;
1508 
1509   // If this is a struct, recurse into the field at the specified offset.
1510   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1511     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1512     unsigned Elt = SL->getElementContainingOffset(IROffset);
1513     IROffset -= SL->getElementOffset(Elt);
1514     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1515   }
1516 
1517   // If this is an array, recurse into the field at the specified offset.
1518   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1519     llvm::Type *EltTy = ATy->getElementType();
1520     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1521     IROffset -= IROffset/EltSize*EltSize;
1522     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1523   }
1524 
1525   return false;
1526 }
1527 
1528 
1529 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1530 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1531 llvm::Type *X86_64ABIInfo::
1532 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1533                    QualType SourceTy, unsigned SourceOffset) const {
1534   // The only three choices we have are either double, <2 x float>, or float. We
1535   // pass as float if the last 4 bytes is just padding.  This happens for
1536   // structs that contain 3 floats.
1537   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1538                             SourceOffset*8+64, getContext()))
1539     return llvm::Type::getFloatTy(getVMContext());
1540 
1541   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1542   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1543   // case.
1544   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1545       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1546     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1547 
1548   return llvm::Type::getDoubleTy(getVMContext());
1549 }
1550 
1551 
1552 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1553 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1554 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1555 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1556 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1557 /// etc).
1558 ///
1559 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1560 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1561 /// the 8-byte value references.  PrefType may be null.
1562 ///
1563 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1564 /// an offset into this that we're processing (which is always either 0 or 8).
1565 ///
1566 llvm::Type *X86_64ABIInfo::
1567 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1568                        QualType SourceTy, unsigned SourceOffset) const {
1569   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1570   // returning an 8-byte unit starting with it.  See if we can safely use it.
1571   if (IROffset == 0) {
1572     // Pointers and int64's always fill the 8-byte unit.
1573     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1574       return IRType;
1575 
1576     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1577     // goodness in the source type is just tail padding.  This is allowed to
1578     // kick in for struct {double,int} on the int, but not on
1579     // struct{double,int,int} because we wouldn't return the second int.  We
1580     // have to do this analysis on the source type because we can't depend on
1581     // unions being lowered a specific way etc.
1582     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1583         IRType->isIntegerTy(32)) {
1584       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1585 
1586       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1587                                 SourceOffset*8+64, getContext()))
1588         return IRType;
1589     }
1590   }
1591 
1592   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1593     // If this is a struct, recurse into the field at the specified offset.
1594     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1595     if (IROffset < SL->getSizeInBytes()) {
1596       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1597       IROffset -= SL->getElementOffset(FieldIdx);
1598 
1599       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1600                                     SourceTy, SourceOffset);
1601     }
1602   }
1603 
1604   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1605     llvm::Type *EltTy = ATy->getElementType();
1606     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1607     unsigned EltOffset = IROffset/EltSize*EltSize;
1608     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1609                                   SourceOffset);
1610   }
1611 
1612   // Okay, we don't have any better idea of what to pass, so we pass this in an
1613   // integer register that isn't too big to fit the rest of the struct.
1614   unsigned TySizeInBytes =
1615     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1616 
1617   assert(TySizeInBytes != SourceOffset && "Empty field?");
1618 
1619   // It is always safe to classify this as an integer type up to i64 that
1620   // isn't larger than the structure.
1621   return llvm::IntegerType::get(getVMContext(),
1622                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1623 }
1624 
1625 
1626 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1627 /// be used as elements of a two register pair to pass or return, return a
1628 /// first class aggregate to represent them.  For example, if the low part of
1629 /// a by-value argument should be passed as i32* and the high part as float,
1630 /// return {i32*, float}.
1631 static llvm::Type *
1632 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1633                            const llvm::TargetData &TD) {
1634   // In order to correctly satisfy the ABI, we need to the high part to start
1635   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1636   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1637   // the second element at offset 8.  Check for this:
1638   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1639   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1640   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1641   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1642 
1643   // To handle this, we have to increase the size of the low part so that the
1644   // second element will start at an 8 byte offset.  We can't increase the size
1645   // of the second element because it might make us access off the end of the
1646   // struct.
1647   if (HiStart != 8) {
1648     // There are only two sorts of types the ABI generation code can produce for
1649     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1650     // Promote these to a larger type.
1651     if (Lo->isFloatTy())
1652       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1653     else {
1654       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1655       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1656     }
1657   }
1658 
1659   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1660 
1661 
1662   // Verify that the second element is at an 8-byte offset.
1663   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1664          "Invalid x86-64 argument pair!");
1665   return Result;
1666 }
1667 
1668 ABIArgInfo X86_64ABIInfo::
1669 classifyReturnType(QualType RetTy) const {
1670   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1671   // classification algorithm.
1672   X86_64ABIInfo::Class Lo, Hi;
1673   classify(RetTy, 0, Lo, Hi);
1674 
1675   // Check some invariants.
1676   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1677   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1678 
1679   llvm::Type *ResType = 0;
1680   switch (Lo) {
1681   case NoClass:
1682     if (Hi == NoClass)
1683       return ABIArgInfo::getIgnore();
1684     // If the low part is just padding, it takes no register, leave ResType
1685     // null.
1686     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1687            "Unknown missing lo part");
1688     break;
1689 
1690   case SSEUp:
1691   case X87Up:
1692     assert(0 && "Invalid classification for lo word.");
1693 
1694     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1695     // hidden argument.
1696   case Memory:
1697     return getIndirectReturnResult(RetTy);
1698 
1699     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1700     // available register of the sequence %rax, %rdx is used.
1701   case Integer:
1702     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1703 
1704     // If we have a sign or zero extended integer, make sure to return Extend
1705     // so that the parameter gets the right LLVM IR attributes.
1706     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1707       // Treat an enum type as its underlying type.
1708       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1709         RetTy = EnumTy->getDecl()->getIntegerType();
1710 
1711       if (RetTy->isIntegralOrEnumerationType() &&
1712           RetTy->isPromotableIntegerType())
1713         return ABIArgInfo::getExtend();
1714     }
1715     break;
1716 
1717     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1718     // available SSE register of the sequence %xmm0, %xmm1 is used.
1719   case SSE:
1720     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1721     break;
1722 
1723     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1724     // returned on the X87 stack in %st0 as 80-bit x87 number.
1725   case X87:
1726     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1727     break;
1728 
1729     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1730     // part of the value is returned in %st0 and the imaginary part in
1731     // %st1.
1732   case ComplexX87:
1733     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1734     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1735                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1736                                     NULL);
1737     break;
1738   }
1739 
1740   llvm::Type *HighPart = 0;
1741   switch (Hi) {
1742     // Memory was handled previously and X87 should
1743     // never occur as a hi class.
1744   case Memory:
1745   case X87:
1746     assert(0 && "Invalid classification for hi word.");
1747 
1748   case ComplexX87: // Previously handled.
1749   case NoClass:
1750     break;
1751 
1752   case Integer:
1753     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1754     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1755       return ABIArgInfo::getDirect(HighPart, 8);
1756     break;
1757   case SSE:
1758     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1759     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1760       return ABIArgInfo::getDirect(HighPart, 8);
1761     break;
1762 
1763     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1764     // is passed in the next available eightbyte chunk if the last used
1765     // vector register.
1766     //
1767     // SSEUP should always be preceded by SSE, just widen.
1768   case SSEUp:
1769     assert(Lo == SSE && "Unexpected SSEUp classification.");
1770     ResType = GetByteVectorType(RetTy);
1771     break;
1772 
1773     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1774     // returned together with the previous X87 value in %st0.
1775   case X87Up:
1776     // If X87Up is preceded by X87, we don't need to do
1777     // anything. However, in some cases with unions it may not be
1778     // preceded by X87. In such situations we follow gcc and pass the
1779     // extra bits in an SSE reg.
1780     if (Lo != X87) {
1781       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1782       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1783         return ABIArgInfo::getDirect(HighPart, 8);
1784     }
1785     break;
1786   }
1787 
1788   // If a high part was specified, merge it together with the low part.  It is
1789   // known to pass in the high eightbyte of the result.  We do this by forming a
1790   // first class struct aggregate with the high and low part: {low, high}
1791   if (HighPart)
1792     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1793 
1794   return ABIArgInfo::getDirect(ResType);
1795 }
1796 
1797 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1798                                                unsigned &neededSSE) const {
1799   X86_64ABIInfo::Class Lo, Hi;
1800   classify(Ty, 0, Lo, Hi);
1801 
1802   // Check some invariants.
1803   // FIXME: Enforce these by construction.
1804   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1805   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1806 
1807   neededInt = 0;
1808   neededSSE = 0;
1809   llvm::Type *ResType = 0;
1810   switch (Lo) {
1811   case NoClass:
1812     if (Hi == NoClass)
1813       return ABIArgInfo::getIgnore();
1814     // If the low part is just padding, it takes no register, leave ResType
1815     // null.
1816     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1817            "Unknown missing lo part");
1818     break;
1819 
1820     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1821     // on the stack.
1822   case Memory:
1823 
1824     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1825     // COMPLEX_X87, it is passed in memory.
1826   case X87:
1827   case ComplexX87:
1828     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1829       ++neededInt;
1830     return getIndirectResult(Ty);
1831 
1832   case SSEUp:
1833   case X87Up:
1834     assert(0 && "Invalid classification for lo word.");
1835 
1836     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1837     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1838     // and %r9 is used.
1839   case Integer:
1840     ++neededInt;
1841 
1842     // Pick an 8-byte type based on the preferred type.
1843     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1844 
1845     // If we have a sign or zero extended integer, make sure to return Extend
1846     // so that the parameter gets the right LLVM IR attributes.
1847     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1848       // Treat an enum type as its underlying type.
1849       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1850         Ty = EnumTy->getDecl()->getIntegerType();
1851 
1852       if (Ty->isIntegralOrEnumerationType() &&
1853           Ty->isPromotableIntegerType())
1854         return ABIArgInfo::getExtend();
1855     }
1856 
1857     break;
1858 
1859     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1860     // available SSE register is used, the registers are taken in the
1861     // order from %xmm0 to %xmm7.
1862   case SSE: {
1863     llvm::Type *IRType = CGT.ConvertType(Ty);
1864     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1865     ++neededSSE;
1866     break;
1867   }
1868   }
1869 
1870   llvm::Type *HighPart = 0;
1871   switch (Hi) {
1872     // Memory was handled previously, ComplexX87 and X87 should
1873     // never occur as hi classes, and X87Up must be preceded by X87,
1874     // which is passed in memory.
1875   case Memory:
1876   case X87:
1877   case ComplexX87:
1878     assert(0 && "Invalid classification for hi word.");
1879     break;
1880 
1881   case NoClass: break;
1882 
1883   case Integer:
1884     ++neededInt;
1885     // Pick an 8-byte type based on the preferred type.
1886     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1887 
1888     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1889       return ABIArgInfo::getDirect(HighPart, 8);
1890     break;
1891 
1892     // X87Up generally doesn't occur here (long double is passed in
1893     // memory), except in situations involving unions.
1894   case X87Up:
1895   case SSE:
1896     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1897 
1898     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1899       return ABIArgInfo::getDirect(HighPart, 8);
1900 
1901     ++neededSSE;
1902     break;
1903 
1904     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1905     // eightbyte is passed in the upper half of the last used SSE
1906     // register.  This only happens when 128-bit vectors are passed.
1907   case SSEUp:
1908     assert(Lo == SSE && "Unexpected SSEUp classification");
1909     ResType = GetByteVectorType(Ty);
1910     break;
1911   }
1912 
1913   // If a high part was specified, merge it together with the low part.  It is
1914   // known to pass in the high eightbyte of the result.  We do this by forming a
1915   // first class struct aggregate with the high and low part: {low, high}
1916   if (HighPart)
1917     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1918 
1919   return ABIArgInfo::getDirect(ResType);
1920 }
1921 
1922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1923 
1924   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1925 
1926   // Keep track of the number of assigned registers.
1927   unsigned freeIntRegs = 6, freeSSERegs = 8;
1928 
1929   // If the return value is indirect, then the hidden argument is consuming one
1930   // integer register.
1931   if (FI.getReturnInfo().isIndirect())
1932     --freeIntRegs;
1933 
1934   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1935   // get assigned (in left-to-right order) for passing as follows...
1936   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1937        it != ie; ++it) {
1938     unsigned neededInt, neededSSE;
1939     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1940 
1941     // AMD64-ABI 3.2.3p3: If there are no registers available for any
1942     // eightbyte of an argument, the whole argument is passed on the
1943     // stack. If registers have already been assigned for some
1944     // eightbytes of such an argument, the assignments get reverted.
1945     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1946       freeIntRegs -= neededInt;
1947       freeSSERegs -= neededSSE;
1948     } else {
1949       it->info = getIndirectResult(it->type);
1950     }
1951   }
1952 }
1953 
1954 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1955                                         QualType Ty,
1956                                         CodeGenFunction &CGF) {
1957   llvm::Value *overflow_arg_area_p =
1958     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1959   llvm::Value *overflow_arg_area =
1960     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1961 
1962   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1963   // byte boundary if alignment needed by type exceeds 8 byte boundary.
1964   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1965   if (Align > 8) {
1966     // Note that we follow the ABI & gcc here, even though the type
1967     // could in theory have an alignment greater than 16. This case
1968     // shouldn't ever matter in practice.
1969 
1970     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1971     llvm::Value *Offset =
1972       llvm::ConstantInt::get(CGF.Int32Ty, 15);
1973     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1974     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1975                                                     CGF.Int64Ty);
1976     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1977     overflow_arg_area =
1978       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1979                                  overflow_arg_area->getType(),
1980                                  "overflow_arg_area.align");
1981   }
1982 
1983   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1984   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1985   llvm::Value *Res =
1986     CGF.Builder.CreateBitCast(overflow_arg_area,
1987                               llvm::PointerType::getUnqual(LTy));
1988 
1989   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1990   // l->overflow_arg_area + sizeof(type).
1991   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1992   // an 8 byte boundary.
1993 
1994   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1995   llvm::Value *Offset =
1996       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1997   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1998                                             "overflow_arg_area.next");
1999   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2000 
2001   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2002   return Res;
2003 }
2004 
2005 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2006                                       CodeGenFunction &CGF) const {
2007   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2008 
2009   // Assume that va_list type is correct; should be pointer to LLVM type:
2010   // struct {
2011   //   i32 gp_offset;
2012   //   i32 fp_offset;
2013   //   i8* overflow_arg_area;
2014   //   i8* reg_save_area;
2015   // };
2016   unsigned neededInt, neededSSE;
2017 
2018   Ty = CGF.getContext().getCanonicalType(Ty);
2019   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2020 
2021   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2022   // in the registers. If not go to step 7.
2023   if (!neededInt && !neededSSE)
2024     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2025 
2026   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2027   // general purpose registers needed to pass type and num_fp to hold
2028   // the number of floating point registers needed.
2029 
2030   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2031   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2032   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2033   //
2034   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2035   // register save space).
2036 
2037   llvm::Value *InRegs = 0;
2038   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2039   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2040   if (neededInt) {
2041     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2042     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2043     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2044     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2045   }
2046 
2047   if (neededSSE) {
2048     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2049     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2050     llvm::Value *FitsInFP =
2051       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2052     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2053     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2054   }
2055 
2056   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2057   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2058   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2059   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2060 
2061   // Emit code to load the value if it was passed in registers.
2062 
2063   CGF.EmitBlock(InRegBlock);
2064 
2065   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2066   // an offset of l->gp_offset and/or l->fp_offset. This may require
2067   // copying to a temporary location in case the parameter is passed
2068   // in different register classes or requires an alignment greater
2069   // than 8 for general purpose registers and 16 for XMM registers.
2070   //
2071   // FIXME: This really results in shameful code when we end up needing to
2072   // collect arguments from different places; often what should result in a
2073   // simple assembling of a structure from scattered addresses has many more
2074   // loads than necessary. Can we clean this up?
2075   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2076   llvm::Value *RegAddr =
2077     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2078                            "reg_save_area");
2079   if (neededInt && neededSSE) {
2080     // FIXME: Cleanup.
2081     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2082     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2083     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2084     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2085     llvm::Type *TyLo = ST->getElementType(0);
2086     llvm::Type *TyHi = ST->getElementType(1);
2087     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2088            "Unexpected ABI info for mixed regs");
2089     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2090     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2091     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2092     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2093     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2094     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2095     llvm::Value *V =
2096       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2097     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2098     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2099     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2100 
2101     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2102                                         llvm::PointerType::getUnqual(LTy));
2103   } else if (neededInt) {
2104     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2105     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2106                                         llvm::PointerType::getUnqual(LTy));
2107   } else if (neededSSE == 1) {
2108     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2109     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2110                                         llvm::PointerType::getUnqual(LTy));
2111   } else {
2112     assert(neededSSE == 2 && "Invalid number of needed registers!");
2113     // SSE registers are spaced 16 bytes apart in the register save
2114     // area, we need to collect the two eightbytes together.
2115     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2116     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2117     llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2118     llvm::Type *DblPtrTy =
2119       llvm::PointerType::getUnqual(DoubleTy);
2120     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2121                                                        DoubleTy, NULL);
2122     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2123     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2124                                                          DblPtrTy));
2125     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2126     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2127                                                          DblPtrTy));
2128     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2129     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2130                                         llvm::PointerType::getUnqual(LTy));
2131   }
2132 
2133   // AMD64-ABI 3.5.7p5: Step 5. Set:
2134   // l->gp_offset = l->gp_offset + num_gp * 8
2135   // l->fp_offset = l->fp_offset + num_fp * 16.
2136   if (neededInt) {
2137     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2138     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2139                             gp_offset_p);
2140   }
2141   if (neededSSE) {
2142     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2143     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2144                             fp_offset_p);
2145   }
2146   CGF.EmitBranch(ContBlock);
2147 
2148   // Emit code to load the value if it was passed in memory.
2149 
2150   CGF.EmitBlock(InMemBlock);
2151   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2152 
2153   // Return the appropriate result.
2154 
2155   CGF.EmitBlock(ContBlock);
2156   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2157                                                  "vaarg.addr");
2158   ResAddr->addIncoming(RegAddr, InRegBlock);
2159   ResAddr->addIncoming(MemAddr, InMemBlock);
2160   return ResAddr;
2161 }
2162 
2163 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2164 
2165   if (Ty->isVoidType())
2166     return ABIArgInfo::getIgnore();
2167 
2168   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2169     Ty = EnumTy->getDecl()->getIntegerType();
2170 
2171   uint64_t Size = getContext().getTypeSize(Ty);
2172 
2173   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2174     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2175         RT->getDecl()->hasFlexibleArrayMember())
2176       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2177 
2178     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2179     if (Size == 128 &&
2180         getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32)
2181       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2182                                                           Size));
2183 
2184     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2185     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2186     if (Size <= 64 &&
2187         (Size & (Size - 1)) == 0)
2188       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2189                                                           Size));
2190 
2191     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2192   }
2193 
2194   if (Ty->isPromotableIntegerType())
2195     return ABIArgInfo::getExtend();
2196 
2197   return ABIArgInfo::getDirect();
2198 }
2199 
2200 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2201 
2202   QualType RetTy = FI.getReturnType();
2203   FI.getReturnInfo() = classify(RetTy);
2204 
2205   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2206        it != ie; ++it)
2207     it->info = classify(it->type);
2208 }
2209 
2210 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2211                                       CodeGenFunction &CGF) const {
2212   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2213   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2214 
2215   CGBuilderTy &Builder = CGF.Builder;
2216   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2217                                                        "ap");
2218   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2219   llvm::Type *PTy =
2220     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2221   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2222 
2223   uint64_t Offset =
2224     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2225   llvm::Value *NextAddr =
2226     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2227                       "ap.next");
2228   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2229 
2230   return AddrTyped;
2231 }
2232 
2233 // PowerPC-32
2234 
2235 namespace {
2236 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2237 public:
2238   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2239 
2240   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2241     // This is recovered from gcc output.
2242     return 1; // r1 is the dedicated stack pointer
2243   }
2244 
2245   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2246                                llvm::Value *Address) const;
2247 };
2248 
2249 }
2250 
2251 bool
2252 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2253                                                 llvm::Value *Address) const {
2254   // This is calculated from the LLVM and GCC tables and verified
2255   // against gcc output.  AFAIK all ABIs use the same encoding.
2256 
2257   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2258   llvm::LLVMContext &Context = CGF.getLLVMContext();
2259 
2260   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2261   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2262   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2263   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2264 
2265   // 0-31: r0-31, the 4-byte general-purpose registers
2266   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2267 
2268   // 32-63: fp0-31, the 8-byte floating-point registers
2269   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2270 
2271   // 64-76 are various 4-byte special-purpose registers:
2272   // 64: mq
2273   // 65: lr
2274   // 66: ctr
2275   // 67: ap
2276   // 68-75 cr0-7
2277   // 76: xer
2278   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2279 
2280   // 77-108: v0-31, the 16-byte vector registers
2281   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2282 
2283   // 109: vrsave
2284   // 110: vscr
2285   // 111: spe_acc
2286   // 112: spefscr
2287   // 113: sfp
2288   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2289 
2290   return false;
2291 }
2292 
2293 
2294 //===----------------------------------------------------------------------===//
2295 // ARM ABI Implementation
2296 //===----------------------------------------------------------------------===//
2297 
2298 namespace {
2299 
2300 class ARMABIInfo : public ABIInfo {
2301 public:
2302   enum ABIKind {
2303     APCS = 0,
2304     AAPCS = 1,
2305     AAPCS_VFP
2306   };
2307 
2308 private:
2309   ABIKind Kind;
2310 
2311 public:
2312   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2313 
2314   bool isEABI() const {
2315     StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
2316     return (Env == "gnueabi" || Env == "eabi");
2317   }
2318 
2319 private:
2320   ABIKind getABIKind() const { return Kind; }
2321 
2322   ABIArgInfo classifyReturnType(QualType RetTy) const;
2323   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2324 
2325   virtual void computeInfo(CGFunctionInfo &FI) const;
2326 
2327   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2328                                  CodeGenFunction &CGF) const;
2329 };
2330 
2331 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2332 public:
2333   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2334     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2335 
2336   const ARMABIInfo &getABIInfo() const {
2337     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2338   }
2339 
2340   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2341     return 13;
2342   }
2343 
2344   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2345     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2346   }
2347 
2348   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2349                                llvm::Value *Address) const {
2350     CodeGen::CGBuilderTy &Builder = CGF.Builder;
2351     llvm::LLVMContext &Context = CGF.getLLVMContext();
2352 
2353     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2354     llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2355 
2356     // 0-15 are the 16 integer registers.
2357     AssignToArrayRange(Builder, Address, Four8, 0, 15);
2358 
2359     return false;
2360   }
2361 
2362   unsigned getSizeOfUnwindException() const {
2363     if (getABIInfo().isEABI()) return 88;
2364     return TargetCodeGenInfo::getSizeOfUnwindException();
2365   }
2366 };
2367 
2368 }
2369 
2370 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2371   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2372   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2373        it != ie; ++it)
2374     it->info = classifyArgumentType(it->type);
2375 
2376   // Always honor user-specified calling convention.
2377   if (FI.getCallingConvention() != llvm::CallingConv::C)
2378     return;
2379 
2380   // Calling convention as default by an ABI.
2381   llvm::CallingConv::ID DefaultCC;
2382   if (isEABI())
2383     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2384   else
2385     DefaultCC = llvm::CallingConv::ARM_APCS;
2386 
2387   // If user did not ask for specific calling convention explicitly (e.g. via
2388   // pcs attribute), set effective calling convention if it's different than ABI
2389   // default.
2390   switch (getABIKind()) {
2391   case APCS:
2392     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2393       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2394     break;
2395   case AAPCS:
2396     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2397       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2398     break;
2399   case AAPCS_VFP:
2400     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2401       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2402     break;
2403   }
2404 }
2405 
2406 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2407 /// aggregate.  If HAMembers is non-null, the number of base elements
2408 /// contained in the type is returned through it; this is used for the
2409 /// recursive calls that check aggregate component types.
2410 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2411                                    ASTContext &Context,
2412                                    uint64_t *HAMembers = 0) {
2413   uint64_t Members;
2414   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2415     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2416       return false;
2417     Members *= AT->getSize().getZExtValue();
2418   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2419     const RecordDecl *RD = RT->getDecl();
2420     if (RD->isUnion() || RD->hasFlexibleArrayMember())
2421       return false;
2422     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2423       if (!CXXRD->isAggregate())
2424         return false;
2425     }
2426     Members = 0;
2427     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2428          i != e; ++i) {
2429       const FieldDecl *FD = *i;
2430       uint64_t FldMembers;
2431       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2432         return false;
2433       Members += FldMembers;
2434     }
2435   } else {
2436     Members = 1;
2437     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2438       Members = 2;
2439       Ty = CT->getElementType();
2440     }
2441 
2442     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2443     // double, or 64-bit or 128-bit vectors.
2444     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2445       if (BT->getKind() != BuiltinType::Float &&
2446           BT->getKind() != BuiltinType::Double)
2447         return false;
2448     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2449       unsigned VecSize = Context.getTypeSize(VT);
2450       if (VecSize != 64 && VecSize != 128)
2451         return false;
2452     } else {
2453       return false;
2454     }
2455 
2456     // The base type must be the same for all members.  Vector types of the
2457     // same total size are treated as being equivalent here.
2458     const Type *TyPtr = Ty.getTypePtr();
2459     if (!Base)
2460       Base = TyPtr;
2461     if (Base != TyPtr &&
2462         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2463          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2464       return false;
2465   }
2466 
2467   // Homogeneous Aggregates can have at most 4 members of the base type.
2468   if (HAMembers)
2469     *HAMembers = Members;
2470   return (Members <= 4);
2471 }
2472 
2473 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2474   if (!isAggregateTypeForABI(Ty)) {
2475     // Treat an enum type as its underlying type.
2476     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2477       Ty = EnumTy->getDecl()->getIntegerType();
2478 
2479     return (Ty->isPromotableIntegerType() ?
2480             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2481   }
2482 
2483   // Ignore empty records.
2484   if (isEmptyRecord(getContext(), Ty, true))
2485     return ABIArgInfo::getIgnore();
2486 
2487   // Structures with either a non-trivial destructor or a non-trivial
2488   // copy constructor are always indirect.
2489   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2490     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2491 
2492   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2493     // Homogeneous Aggregates need to be expanded.
2494     const Type *Base = 0;
2495     if (isHomogeneousAggregate(Ty, Base, getContext()))
2496       return ABIArgInfo::getExpand();
2497   }
2498 
2499   // Otherwise, pass by coercing to a structure of the appropriate size.
2500   //
2501   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2502   // backend doesn't support byval.
2503   // FIXME: This doesn't handle alignment > 64 bits.
2504   llvm::Type* ElemTy;
2505   unsigned SizeRegs;
2506   if (getContext().getTypeAlign(Ty) > 32) {
2507     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2508     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2509   } else {
2510     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2511     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2512   }
2513 
2514   llvm::Type *STy =
2515     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2516   return ABIArgInfo::getDirect(STy);
2517 }
2518 
2519 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2520                               llvm::LLVMContext &VMContext) {
2521   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2522   // is called integer-like if its size is less than or equal to one word, and
2523   // the offset of each of its addressable sub-fields is zero.
2524 
2525   uint64_t Size = Context.getTypeSize(Ty);
2526 
2527   // Check that the type fits in a word.
2528   if (Size > 32)
2529     return false;
2530 
2531   // FIXME: Handle vector types!
2532   if (Ty->isVectorType())
2533     return false;
2534 
2535   // Float types are never treated as "integer like".
2536   if (Ty->isRealFloatingType())
2537     return false;
2538 
2539   // If this is a builtin or pointer type then it is ok.
2540   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2541     return true;
2542 
2543   // Small complex integer types are "integer like".
2544   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2545     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2546 
2547   // Single element and zero sized arrays should be allowed, by the definition
2548   // above, but they are not.
2549 
2550   // Otherwise, it must be a record type.
2551   const RecordType *RT = Ty->getAs<RecordType>();
2552   if (!RT) return false;
2553 
2554   // Ignore records with flexible arrays.
2555   const RecordDecl *RD = RT->getDecl();
2556   if (RD->hasFlexibleArrayMember())
2557     return false;
2558 
2559   // Check that all sub-fields are at offset 0, and are themselves "integer
2560   // like".
2561   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2562 
2563   bool HadField = false;
2564   unsigned idx = 0;
2565   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2566        i != e; ++i, ++idx) {
2567     const FieldDecl *FD = *i;
2568 
2569     // Bit-fields are not addressable, we only need to verify they are "integer
2570     // like". We still have to disallow a subsequent non-bitfield, for example:
2571     //   struct { int : 0; int x }
2572     // is non-integer like according to gcc.
2573     if (FD->isBitField()) {
2574       if (!RD->isUnion())
2575         HadField = true;
2576 
2577       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2578         return false;
2579 
2580       continue;
2581     }
2582 
2583     // Check if this field is at offset 0.
2584     if (Layout.getFieldOffset(idx) != 0)
2585       return false;
2586 
2587     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2588       return false;
2589 
2590     // Only allow at most one field in a structure. This doesn't match the
2591     // wording above, but follows gcc in situations with a field following an
2592     // empty structure.
2593     if (!RD->isUnion()) {
2594       if (HadField)
2595         return false;
2596 
2597       HadField = true;
2598     }
2599   }
2600 
2601   return true;
2602 }
2603 
2604 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2605   if (RetTy->isVoidType())
2606     return ABIArgInfo::getIgnore();
2607 
2608   // Large vector types should be returned via memory.
2609   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2610     return ABIArgInfo::getIndirect(0);
2611 
2612   if (!isAggregateTypeForABI(RetTy)) {
2613     // Treat an enum type as its underlying type.
2614     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2615       RetTy = EnumTy->getDecl()->getIntegerType();
2616 
2617     return (RetTy->isPromotableIntegerType() ?
2618             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2619   }
2620 
2621   // Structures with either a non-trivial destructor or a non-trivial
2622   // copy constructor are always indirect.
2623   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2624     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2625 
2626   // Are we following APCS?
2627   if (getABIKind() == APCS) {
2628     if (isEmptyRecord(getContext(), RetTy, false))
2629       return ABIArgInfo::getIgnore();
2630 
2631     // Complex types are all returned as packed integers.
2632     //
2633     // FIXME: Consider using 2 x vector types if the back end handles them
2634     // correctly.
2635     if (RetTy->isAnyComplexType())
2636       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2637                                               getContext().getTypeSize(RetTy)));
2638 
2639     // Integer like structures are returned in r0.
2640     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2641       // Return in the smallest viable integer type.
2642       uint64_t Size = getContext().getTypeSize(RetTy);
2643       if (Size <= 8)
2644         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2645       if (Size <= 16)
2646         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2647       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2648     }
2649 
2650     // Otherwise return in memory.
2651     return ABIArgInfo::getIndirect(0);
2652   }
2653 
2654   // Otherwise this is an AAPCS variant.
2655 
2656   if (isEmptyRecord(getContext(), RetTy, true))
2657     return ABIArgInfo::getIgnore();
2658 
2659   // Aggregates <= 4 bytes are returned in r0; other aggregates
2660   // are returned indirectly.
2661   uint64_t Size = getContext().getTypeSize(RetTy);
2662   if (Size <= 32) {
2663     // Return in the smallest viable integer type.
2664     if (Size <= 8)
2665       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2666     if (Size <= 16)
2667       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2668     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2669   }
2670 
2671   return ABIArgInfo::getIndirect(0);
2672 }
2673 
2674 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2675                                    CodeGenFunction &CGF) const {
2676   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2677   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2678 
2679   CGBuilderTy &Builder = CGF.Builder;
2680   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2681                                                        "ap");
2682   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2683   // Handle address alignment for type alignment > 32 bits
2684   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2685   if (TyAlign > 4) {
2686     assert((TyAlign & (TyAlign - 1)) == 0 &&
2687            "Alignment is not power of 2!");
2688     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2689     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2690     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2691     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2692   }
2693   llvm::Type *PTy =
2694     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2695   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2696 
2697   uint64_t Offset =
2698     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2699   llvm::Value *NextAddr =
2700     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2701                       "ap.next");
2702   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2703 
2704   return AddrTyped;
2705 }
2706 
2707 //===----------------------------------------------------------------------===//
2708 // PTX ABI Implementation
2709 //===----------------------------------------------------------------------===//
2710 
2711 namespace {
2712 
2713 class PTXABIInfo : public ABIInfo {
2714 public:
2715   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2716 
2717   ABIArgInfo classifyReturnType(QualType RetTy) const;
2718   ABIArgInfo classifyArgumentType(QualType Ty) const;
2719 
2720   virtual void computeInfo(CGFunctionInfo &FI) const;
2721   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2722                                  CodeGenFunction &CFG) const;
2723 };
2724 
2725 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2726 public:
2727   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2728     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2729 };
2730 
2731 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2732   if (RetTy->isVoidType())
2733     return ABIArgInfo::getIgnore();
2734   if (isAggregateTypeForABI(RetTy))
2735     return ABIArgInfo::getIndirect(0);
2736   return ABIArgInfo::getDirect();
2737 }
2738 
2739 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2740   if (isAggregateTypeForABI(Ty))
2741     return ABIArgInfo::getIndirect(0);
2742 
2743   return ABIArgInfo::getDirect();
2744 }
2745 
2746 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2747   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2748   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2749        it != ie; ++it)
2750     it->info = classifyArgumentType(it->type);
2751 
2752   // Always honor user-specified calling convention.
2753   if (FI.getCallingConvention() != llvm::CallingConv::C)
2754     return;
2755 
2756   // Calling convention as default by an ABI.
2757   llvm::CallingConv::ID DefaultCC;
2758   StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
2759   if (Env == "device")
2760     DefaultCC = llvm::CallingConv::PTX_Device;
2761   else
2762     DefaultCC = llvm::CallingConv::PTX_Kernel;
2763 
2764   FI.setEffectiveCallingConvention(DefaultCC);
2765 }
2766 
2767 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2768                                    CodeGenFunction &CFG) const {
2769   llvm_unreachable("PTX does not support varargs");
2770   return 0;
2771 }
2772 
2773 }
2774 
2775 //===----------------------------------------------------------------------===//
2776 // SystemZ ABI Implementation
2777 //===----------------------------------------------------------------------===//
2778 
2779 namespace {
2780 
2781 class SystemZABIInfo : public ABIInfo {
2782 public:
2783   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2784 
2785   bool isPromotableIntegerType(QualType Ty) const;
2786 
2787   ABIArgInfo classifyReturnType(QualType RetTy) const;
2788   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2789 
2790   virtual void computeInfo(CGFunctionInfo &FI) const {
2791     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2792     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2793          it != ie; ++it)
2794       it->info = classifyArgumentType(it->type);
2795   }
2796 
2797   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2798                                  CodeGenFunction &CGF) const;
2799 };
2800 
2801 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2802 public:
2803   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2804     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2805 };
2806 
2807 }
2808 
2809 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2810   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2811   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2812     switch (BT->getKind()) {
2813     case BuiltinType::Bool:
2814     case BuiltinType::Char_S:
2815     case BuiltinType::Char_U:
2816     case BuiltinType::SChar:
2817     case BuiltinType::UChar:
2818     case BuiltinType::Short:
2819     case BuiltinType::UShort:
2820     case BuiltinType::Int:
2821     case BuiltinType::UInt:
2822       return true;
2823     default:
2824       return false;
2825     }
2826   return false;
2827 }
2828 
2829 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2830                                        CodeGenFunction &CGF) const {
2831   // FIXME: Implement
2832   return 0;
2833 }
2834 
2835 
2836 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2837   if (RetTy->isVoidType())
2838     return ABIArgInfo::getIgnore();
2839   if (isAggregateTypeForABI(RetTy))
2840     return ABIArgInfo::getIndirect(0);
2841 
2842   return (isPromotableIntegerType(RetTy) ?
2843           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2844 }
2845 
2846 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2847   if (isAggregateTypeForABI(Ty))
2848     return ABIArgInfo::getIndirect(0);
2849 
2850   return (isPromotableIntegerType(Ty) ?
2851           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2852 }
2853 
2854 //===----------------------------------------------------------------------===//
2855 // MBlaze ABI Implementation
2856 //===----------------------------------------------------------------------===//
2857 
2858 namespace {
2859 
2860 class MBlazeABIInfo : public ABIInfo {
2861 public:
2862   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2863 
2864   bool isPromotableIntegerType(QualType Ty) const;
2865 
2866   ABIArgInfo classifyReturnType(QualType RetTy) const;
2867   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2868 
2869   virtual void computeInfo(CGFunctionInfo &FI) const {
2870     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2871     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2872          it != ie; ++it)
2873       it->info = classifyArgumentType(it->type);
2874   }
2875 
2876   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2877                                  CodeGenFunction &CGF) const;
2878 };
2879 
2880 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2881 public:
2882   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2883     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2884   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2885                            CodeGen::CodeGenModule &M) const;
2886 };
2887 
2888 }
2889 
2890 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2891   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2892   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2893     switch (BT->getKind()) {
2894     case BuiltinType::Bool:
2895     case BuiltinType::Char_S:
2896     case BuiltinType::Char_U:
2897     case BuiltinType::SChar:
2898     case BuiltinType::UChar:
2899     case BuiltinType::Short:
2900     case BuiltinType::UShort:
2901       return true;
2902     default:
2903       return false;
2904     }
2905   return false;
2906 }
2907 
2908 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2909                                       CodeGenFunction &CGF) const {
2910   // FIXME: Implement
2911   return 0;
2912 }
2913 
2914 
2915 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2916   if (RetTy->isVoidType())
2917     return ABIArgInfo::getIgnore();
2918   if (isAggregateTypeForABI(RetTy))
2919     return ABIArgInfo::getIndirect(0);
2920 
2921   return (isPromotableIntegerType(RetTy) ?
2922           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2923 }
2924 
2925 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2926   if (isAggregateTypeForABI(Ty))
2927     return ABIArgInfo::getIndirect(0);
2928 
2929   return (isPromotableIntegerType(Ty) ?
2930           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2931 }
2932 
2933 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2934                                                   llvm::GlobalValue *GV,
2935                                                   CodeGen::CodeGenModule &M)
2936                                                   const {
2937   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2938   if (!FD) return;
2939 
2940   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2941   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2942     CC = llvm::CallingConv::MBLAZE_INTR;
2943   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2944     CC = llvm::CallingConv::MBLAZE_SVOL;
2945 
2946   if (CC != llvm::CallingConv::C) {
2947       // Handle 'interrupt_handler' attribute:
2948       llvm::Function *F = cast<llvm::Function>(GV);
2949 
2950       // Step 1: Set ISR calling convention.
2951       F->setCallingConv(CC);
2952 
2953       // Step 2: Add attributes goodness.
2954       F->addFnAttr(llvm::Attribute::NoInline);
2955   }
2956 
2957   // Step 3: Emit _interrupt_handler alias.
2958   if (CC == llvm::CallingConv::MBLAZE_INTR)
2959     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2960                           "_interrupt_handler", GV, &M.getModule());
2961 }
2962 
2963 
2964 //===----------------------------------------------------------------------===//
2965 // MSP430 ABI Implementation
2966 //===----------------------------------------------------------------------===//
2967 
2968 namespace {
2969 
2970 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2971 public:
2972   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2973     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2974   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2975                            CodeGen::CodeGenModule &M) const;
2976 };
2977 
2978 }
2979 
2980 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2981                                                   llvm::GlobalValue *GV,
2982                                              CodeGen::CodeGenModule &M) const {
2983   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2984     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2985       // Handle 'interrupt' attribute:
2986       llvm::Function *F = cast<llvm::Function>(GV);
2987 
2988       // Step 1: Set ISR calling convention.
2989       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2990 
2991       // Step 2: Add attributes goodness.
2992       F->addFnAttr(llvm::Attribute::NoInline);
2993 
2994       // Step 3: Emit ISR vector alias.
2995       unsigned Num = attr->getNumber() + 0xffe0;
2996       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2997                             "vector_" + Twine::utohexstr(Num),
2998                             GV, &M.getModule());
2999     }
3000   }
3001 }
3002 
3003 //===----------------------------------------------------------------------===//
3004 // MIPS ABI Implementation.  This works for both little-endian and
3005 // big-endian variants.
3006 //===----------------------------------------------------------------------===//
3007 
3008 namespace {
3009 class MipsABIInfo : public ABIInfo {
3010   static const unsigned MinABIStackAlignInBytes = 4;
3011 public:
3012   MipsABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3013 
3014   ABIArgInfo classifyReturnType(QualType RetTy) const;
3015   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3016   virtual void computeInfo(CGFunctionInfo &FI) const;
3017   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3018                                  CodeGenFunction &CGF) const;
3019 };
3020 
3021 const unsigned MipsABIInfo::MinABIStackAlignInBytes;
3022 
3023 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3024 public:
3025   MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
3026     : TargetCodeGenInfo(new MipsABIInfo(CGT)) {}
3027 
3028   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3029     return 29;
3030   }
3031 
3032   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3033                                llvm::Value *Address) const;
3034 
3035   unsigned getSizeOfUnwindException() const {
3036     return 24;
3037   }
3038 };
3039 }
3040 
3041 ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
3042   if (isAggregateTypeForABI(Ty)) {
3043     // Ignore empty aggregates.
3044     if (getContext().getTypeSize(Ty) == 0)
3045       return ABIArgInfo::getIgnore();
3046 
3047     // Records with non trivial destructors/constructors should not be passed
3048     // by value.
3049     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3050       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3051 
3052     return ABIArgInfo::getIndirect(0);
3053   }
3054 
3055   // Treat an enum type as its underlying type.
3056   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3057     Ty = EnumTy->getDecl()->getIntegerType();
3058 
3059   return (Ty->isPromotableIntegerType() ?
3060           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3061 }
3062 
3063 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3064   if (RetTy->isVoidType())
3065     return ABIArgInfo::getIgnore();
3066 
3067   if (isAggregateTypeForABI(RetTy)) {
3068     if (RetTy->isAnyComplexType())
3069       return ABIArgInfo::getDirect();
3070 
3071     return ABIArgInfo::getIndirect(0);
3072   }
3073 
3074   // Treat an enum type as its underlying type.
3075   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3076     RetTy = EnumTy->getDecl()->getIntegerType();
3077 
3078   return (RetTy->isPromotableIntegerType() ?
3079           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3080 }
3081 
3082 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3083   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3084   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3085        it != ie; ++it)
3086     it->info = classifyArgumentType(it->type);
3087 }
3088 
3089 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3090                                     CodeGenFunction &CGF) const {
3091   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3092   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3093 
3094   CGBuilderTy &Builder = CGF.Builder;
3095   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3096   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3097   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
3098   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3099   llvm::Value *AddrTyped;
3100 
3101   if (TypeAlign > MinABIStackAlignInBytes) {
3102     llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3103     llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
3104     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
3105     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
3106     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3107     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3108   }
3109   else
3110     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3111 
3112   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3113   TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
3114   uint64_t Offset =
3115     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3116   llvm::Value *NextAddr =
3117     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3118                       "ap.next");
3119   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3120 
3121   return AddrTyped;
3122 }
3123 
3124 bool
3125 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3126                                                llvm::Value *Address) const {
3127   // This information comes from gcc's implementation, which seems to
3128   // as canonical as it gets.
3129 
3130   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3131   llvm::LLVMContext &Context = CGF.getLLVMContext();
3132 
3133   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3134   // are aliased to pairs of single-precision FP registers.
3135   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3136   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3137 
3138   // 0-31 are the general purpose registers, $0 - $31.
3139   // 32-63 are the floating-point registers, $f0 - $f31.
3140   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3141   // 66 is the (notional, I think) register for signal-handler return.
3142   AssignToArrayRange(Builder, Address, Four8, 0, 65);
3143 
3144   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3145   // They are one bit wide and ignored here.
3146 
3147   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3148   // (coprocessor 1 is the FP unit)
3149   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3150   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3151   // 176-181 are the DSP accumulator registers.
3152   AssignToArrayRange(Builder, Address, Four8, 80, 181);
3153 
3154   return false;
3155 }
3156 
3157 
3158 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3159   if (TheTargetCodeGenInfo)
3160     return *TheTargetCodeGenInfo;
3161 
3162   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
3163   // free it.
3164 
3165   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3166   switch (Triple.getArch()) {
3167   default:
3168     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3169 
3170   case llvm::Triple::mips:
3171   case llvm::Triple::mipsel:
3172     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
3173 
3174   case llvm::Triple::arm:
3175   case llvm::Triple::thumb:
3176     {
3177       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3178 
3179       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3180         Kind = ARMABIInfo::APCS;
3181       else if (CodeGenOpts.FloatABI == "hard")
3182         Kind = ARMABIInfo::AAPCS_VFP;
3183 
3184       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3185     }
3186 
3187   case llvm::Triple::ppc:
3188     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3189 
3190   case llvm::Triple::ptx32:
3191   case llvm::Triple::ptx64:
3192     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3193 
3194   case llvm::Triple::systemz:
3195     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
3196 
3197   case llvm::Triple::mblaze:
3198     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3199 
3200   case llvm::Triple::msp430:
3201     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3202 
3203   case llvm::Triple::x86: {
3204     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3205 
3206     if (Triple.isOSDarwin())
3207       return *(TheTargetCodeGenInfo =
3208                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
3209 
3210     switch (Triple.getOS()) {
3211     case llvm::Triple::Cygwin:
3212     case llvm::Triple::MinGW32:
3213     case llvm::Triple::AuroraUX:
3214     case llvm::Triple::DragonFly:
3215     case llvm::Triple::FreeBSD:
3216     case llvm::Triple::OpenBSD:
3217     case llvm::Triple::NetBSD:
3218       return *(TheTargetCodeGenInfo =
3219                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
3220 
3221     default:
3222       return *(TheTargetCodeGenInfo =
3223                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
3224     }
3225   }
3226 
3227   case llvm::Triple::x86_64:
3228     switch (Triple.getOS()) {
3229     case llvm::Triple::Win32:
3230     case llvm::Triple::MinGW32:
3231     case llvm::Triple::Cygwin:
3232       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3233     default:
3234       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
3235     }
3236   }
3237 }
3238