1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 396 QualType Ty, CharUnits SlotSize, 397 CharUnits EltSize, const ComplexType *CTy) { 398 Address Addr = 399 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 400 SlotSize, SlotSize, /*AllowHigher*/ true); 401 402 Address RealAddr = Addr; 403 Address ImagAddr = RealAddr; 404 if (CGF.CGM.getDataLayout().isBigEndian()) { 405 RealAddr = 406 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 407 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 408 2 * SlotSize - EltSize); 409 } else { 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 411 } 412 413 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 414 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 415 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 416 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 417 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 418 419 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 420 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 421 /*init*/ true); 422 return Temp; 423 } 424 425 static Address emitMergePHI(CodeGenFunction &CGF, 426 Address Addr1, llvm::BasicBlock *Block1, 427 Address Addr2, llvm::BasicBlock *Block2, 428 const llvm::Twine &Name = "") { 429 assert(Addr1.getType() == Addr2.getType()); 430 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 431 PHI->addIncoming(Addr1.getPointer(), Block1); 432 PHI->addIncoming(Addr2.getPointer(), Block2); 433 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 434 return Address(PHI, Align); 435 } 436 437 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 438 439 // If someone can figure out a general rule for this, that would be great. 440 // It's probably just doomed to be platform-dependent, though. 441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 442 // Verified for: 443 // x86-64 FreeBSD, Linux, Darwin 444 // x86-32 FreeBSD, Linux, Darwin 445 // PowerPC Linux, Darwin 446 // ARM Darwin (*not* EABI) 447 // AArch64 Linux 448 return 32; 449 } 450 451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 452 const FunctionNoProtoType *fnType) const { 453 // The following conventions are known to require this to be false: 454 // x86_stdcall 455 // MIPS 456 // For everything else, we just prefer false unless we opt out. 457 return false; 458 } 459 460 void 461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 462 llvm::SmallString<24> &Opt) const { 463 // This assumes the user is passing a library name like "rt" instead of a 464 // filename like "librt.a/so", and that they don't care whether it's static or 465 // dynamic. 466 Opt = "-l"; 467 Opt += Lib; 468 } 469 470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 471 // OpenCL kernels are called via an explicit runtime API with arguments 472 // set with clSetKernelArg(), not as normal sub-functions. 473 // Return SPIR_KERNEL by default as the kernel calling convention to 474 // ensure the fingerprint is fixed such way that each OpenCL argument 475 // gets one matching argument in the produced kernel function argument 476 // list to enable feasible implementation of clSetKernelArg() with 477 // aggregates etc. In case we would use the default C calling conv here, 478 // clSetKernelArg() might break depending on the target-specific 479 // conventions; different targets might split structs passed as values 480 // to multiple function arguments etc. 481 return llvm::CallingConv::SPIR_KERNEL; 482 } 483 484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 485 llvm::PointerType *T, QualType QT) const { 486 return llvm::ConstantPointerNull::get(T); 487 } 488 489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 490 const VarDecl *D) const { 491 assert(!CGM.getLangOpts().OpenCL && 492 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 493 "Address space agnostic languages only"); 494 return D ? D->getType().getAddressSpace() : LangAS::Default; 495 } 496 497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 498 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 499 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 500 // Since target may map different address spaces in AST to the same address 501 // space, an address space conversion may end up as a bitcast. 502 if (auto *C = dyn_cast<llvm::Constant>(Src)) 503 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 504 // Try to preserve the source's name to make IR more readable. 505 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 506 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 507 } 508 509 llvm::Constant * 510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 511 LangAS SrcAddr, LangAS DestAddr, 512 llvm::Type *DestTy) const { 513 // Since target may map different address spaces in AST to the same address 514 // space, an address space conversion may end up as a bitcast. 515 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 516 } 517 518 llvm::SyncScope::ID 519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 520 SyncScope Scope, 521 llvm::AtomicOrdering Ordering, 522 llvm::LLVMContext &Ctx) const { 523 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 524 } 525 526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 527 528 /// isEmptyField - Return true iff a the field is "empty", that is it 529 /// is an unnamed bit-field or an (array of) empty record(s). 530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 531 bool AllowArrays) { 532 if (FD->isUnnamedBitfield()) 533 return true; 534 535 QualType FT = FD->getType(); 536 537 // Constant arrays of empty records count as empty, strip them off. 538 // Constant arrays of zero length always count as empty. 539 bool WasArray = false; 540 if (AllowArrays) 541 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 542 if (AT->getSize() == 0) 543 return true; 544 FT = AT->getElementType(); 545 // The [[no_unique_address]] special case below does not apply to 546 // arrays of C++ empty records, so we need to remember this fact. 547 WasArray = true; 548 } 549 550 const RecordType *RT = FT->getAs<RecordType>(); 551 if (!RT) 552 return false; 553 554 // C++ record fields are never empty, at least in the Itanium ABI. 555 // 556 // FIXME: We should use a predicate for whether this behavior is true in the 557 // current ABI. 558 // 559 // The exception to the above rule are fields marked with the 560 // [[no_unique_address]] attribute (since C++20). Those do count as empty 561 // according to the Itanium ABI. The exception applies only to records, 562 // not arrays of records, so we must also check whether we stripped off an 563 // array type above. 564 if (isa<CXXRecordDecl>(RT->getDecl()) && 565 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 566 return false; 567 568 return isEmptyRecord(Context, FT, AllowArrays); 569 } 570 571 /// isEmptyRecord - Return true iff a structure contains only empty 572 /// fields. Note that a structure with a flexible array member is not 573 /// considered empty. 574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 575 const RecordType *RT = T->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 const RecordDecl *RD = RT->getDecl(); 579 if (RD->hasFlexibleArrayMember()) 580 return false; 581 582 // If this is a C++ record, check the bases first. 583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 584 for (const auto &I : CXXRD->bases()) 585 if (!isEmptyRecord(Context, I.getType(), true)) 586 return false; 587 588 for (const auto *I : RD->fields()) 589 if (!isEmptyField(Context, I, AllowArrays)) 590 return false; 591 return true; 592 } 593 594 /// isSingleElementStruct - Determine if a structure is a "single 595 /// element struct", i.e. it has exactly one non-empty field or 596 /// exactly one field which is itself a single element 597 /// struct. Structures with flexible array members are never 598 /// considered single element structs. 599 /// 600 /// \return The field declaration for the single non-empty field, if 601 /// it exists. 602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 603 const RecordType *RT = T->getAs<RecordType>(); 604 if (!RT) 605 return nullptr; 606 607 const RecordDecl *RD = RT->getDecl(); 608 if (RD->hasFlexibleArrayMember()) 609 return nullptr; 610 611 const Type *Found = nullptr; 612 613 // If this is a C++ record, check the bases first. 614 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 615 for (const auto &I : CXXRD->bases()) { 616 // Ignore empty records. 617 if (isEmptyRecord(Context, I.getType(), true)) 618 continue; 619 620 // If we already found an element then this isn't a single-element struct. 621 if (Found) 622 return nullptr; 623 624 // If this is non-empty and not a single element struct, the composite 625 // cannot be a single element struct. 626 Found = isSingleElementStruct(I.getType(), Context); 627 if (!Found) 628 return nullptr; 629 } 630 } 631 632 // Check for single element. 633 for (const auto *FD : RD->fields()) { 634 QualType FT = FD->getType(); 635 636 // Ignore empty fields. 637 if (isEmptyField(Context, FD, true)) 638 continue; 639 640 // If we already found an element then this isn't a single-element 641 // struct. 642 if (Found) 643 return nullptr; 644 645 // Treat single element arrays as the element. 646 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 647 if (AT->getSize().getZExtValue() != 1) 648 break; 649 FT = AT->getElementType(); 650 } 651 652 if (!isAggregateTypeForABI(FT)) { 653 Found = FT.getTypePtr(); 654 } else { 655 Found = isSingleElementStruct(FT, Context); 656 if (!Found) 657 return nullptr; 658 } 659 } 660 661 // We don't consider a struct a single-element struct if it has 662 // padding beyond the element type. 663 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 664 return nullptr; 665 666 return Found; 667 } 668 669 namespace { 670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 671 const ABIArgInfo &AI) { 672 // This default implementation defers to the llvm backend's va_arg 673 // instruction. It can handle only passing arguments directly 674 // (typically only handled in the backend for primitive types), or 675 // aggregates passed indirectly by pointer (NOTE: if the "byval" 676 // flag has ABI impact in the callee, this implementation cannot 677 // work.) 678 679 // Only a few cases are covered here at the moment -- those needed 680 // by the default abi. 681 llvm::Value *Val; 682 683 if (AI.isIndirect()) { 684 assert(!AI.getPaddingType() && 685 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 686 assert( 687 !AI.getIndirectRealign() && 688 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 689 690 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 691 CharUnits TyAlignForABI = TyInfo.Align; 692 693 llvm::Type *BaseTy = 694 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 695 llvm::Value *Addr = 696 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 697 return Address(Addr, TyAlignForABI); 698 } else { 699 assert((AI.isDirect() || AI.isExtend()) && 700 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 701 702 assert(!AI.getInReg() && 703 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getPaddingType() && 705 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getDirectOffset() && 707 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getCoerceToType() && 709 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 710 711 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 712 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 713 CGF.Builder.CreateStore(Val, Temp); 714 return Temp; 715 } 716 } 717 718 /// DefaultABIInfo - The default implementation for ABI specific 719 /// details. This implementation provides information which results in 720 /// self-consistent and sensible LLVM IR generation, but does not 721 /// conform to any particular ABI. 722 class DefaultABIInfo : public ABIInfo { 723 public: 724 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override { 730 if (!getCXXABI().classifyReturnType(FI)) 731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 732 for (auto &I : FI.arguments()) 733 I.info = classifyArgumentType(I.type); 734 } 735 736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 737 QualType Ty) const override { 738 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 739 } 740 }; 741 742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 743 public: 744 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 745 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 746 }; 747 748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 749 Ty = useFirstFieldIfTransparentUnion(Ty); 750 751 if (isAggregateTypeForABI(Ty)) { 752 // Records with non-trivial destructors/copy-constructors should not be 753 // passed by value. 754 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 755 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 756 757 return getNaturalAlignIndirect(Ty); 758 } 759 760 // Treat an enum type as its underlying type. 761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 762 Ty = EnumTy->getDecl()->getIntegerType(); 763 764 ASTContext &Context = getContext(); 765 if (const auto *EIT = Ty->getAs<ExtIntType>()) 766 if (EIT->getNumBits() > 767 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 768 ? Context.Int128Ty 769 : Context.LongLongTy)) 770 return getNaturalAlignIndirect(Ty); 771 772 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 773 : ABIArgInfo::getDirect()); 774 } 775 776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 777 if (RetTy->isVoidType()) 778 return ABIArgInfo::getIgnore(); 779 780 if (isAggregateTypeForABI(RetTy)) 781 return getNaturalAlignIndirect(RetTy); 782 783 // Treat an enum type as its underlying type. 784 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 785 RetTy = EnumTy->getDecl()->getIntegerType(); 786 787 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 788 if (EIT->getNumBits() > 789 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 790 ? getContext().Int128Ty 791 : getContext().LongLongTy)) 792 return getNaturalAlignIndirect(RetTy); 793 794 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 795 : ABIArgInfo::getDirect()); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // WebAssembly ABI Implementation 800 // 801 // This is a very simple ABI that relies a lot on DefaultABIInfo. 802 //===----------------------------------------------------------------------===// 803 804 class WebAssemblyABIInfo final : public SwiftABIInfo { 805 public: 806 enum ABIKind { 807 MVP = 0, 808 ExperimentalMV = 1, 809 }; 810 811 private: 812 DefaultABIInfo defaultInfo; 813 ABIKind Kind; 814 815 public: 816 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 817 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 818 819 private: 820 ABIArgInfo classifyReturnType(QualType RetTy) const; 821 ABIArgInfo classifyArgumentType(QualType Ty) const; 822 823 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 824 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 825 // overload them. 826 void computeInfo(CGFunctionInfo &FI) const override { 827 if (!getCXXABI().classifyReturnType(FI)) 828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 829 for (auto &Arg : FI.arguments()) 830 Arg.info = classifyArgumentType(Arg.type); 831 } 832 833 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 834 QualType Ty) const override; 835 836 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 837 bool asReturnValue) const override { 838 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 839 } 840 841 bool isSwiftErrorInRegister() const override { 842 return false; 843 } 844 }; 845 846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 847 public: 848 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 849 WebAssemblyABIInfo::ABIKind K) 850 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 851 852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 853 CodeGen::CodeGenModule &CGM) const override { 854 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 855 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 857 llvm::Function *Fn = cast<llvm::Function>(GV); 858 llvm::AttrBuilder B; 859 B.addAttribute("wasm-import-module", Attr->getImportModule()); 860 Fn->addFnAttrs(B); 861 } 862 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 863 llvm::Function *Fn = cast<llvm::Function>(GV); 864 llvm::AttrBuilder B; 865 B.addAttribute("wasm-import-name", Attr->getImportName()); 866 Fn->addFnAttrs(B); 867 } 868 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 869 llvm::Function *Fn = cast<llvm::Function>(GV); 870 llvm::AttrBuilder B; 871 B.addAttribute("wasm-export-name", Attr->getExportName()); 872 Fn->addFnAttrs(B); 873 } 874 } 875 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 879 Fn->addFnAttr("no-prototype"); 880 } 881 } 882 }; 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 886 Ty = useFirstFieldIfTransparentUnion(Ty); 887 888 if (isAggregateTypeForABI(Ty)) { 889 // Records with non-trivial destructors/copy-constructors should not be 890 // passed by value. 891 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 892 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 893 // Ignore empty structs/unions. 894 if (isEmptyRecord(getContext(), Ty, true)) 895 return ABIArgInfo::getIgnore(); 896 // Lower single-element structs to just pass a regular value. TODO: We 897 // could do reasonable-size multiple-element structs too, using getExpand(), 898 // though watch out for things like bitfields. 899 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 900 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 901 // For the experimental multivalue ABI, fully expand all other aggregates 902 if (Kind == ABIKind::ExperimentalMV) { 903 const RecordType *RT = Ty->getAs<RecordType>(); 904 assert(RT); 905 bool HasBitField = false; 906 for (auto *Field : RT->getDecl()->fields()) { 907 if (Field->isBitField()) { 908 HasBitField = true; 909 break; 910 } 911 } 912 if (!HasBitField) 913 return ABIArgInfo::getExpand(); 914 } 915 } 916 917 // Otherwise just do the default thing. 918 return defaultInfo.classifyArgumentType(Ty); 919 } 920 921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 922 if (isAggregateTypeForABI(RetTy)) { 923 // Records with non-trivial destructors/copy-constructors should not be 924 // returned by value. 925 if (!getRecordArgABI(RetTy, getCXXABI())) { 926 // Ignore empty structs/unions. 927 if (isEmptyRecord(getContext(), RetTy, true)) 928 return ABIArgInfo::getIgnore(); 929 // Lower single-element structs to just return a regular value. TODO: We 930 // could do reasonable-size multiple-element structs too, using 931 // ABIArgInfo::getDirect(). 932 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 933 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 934 // For the experimental multivalue ABI, return all other aggregates 935 if (Kind == ABIKind::ExperimentalMV) 936 return ABIArgInfo::getDirect(); 937 } 938 } 939 940 // Otherwise just do the default thing. 941 return defaultInfo.classifyReturnType(RetTy); 942 } 943 944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 945 QualType Ty) const { 946 bool IsIndirect = isAggregateTypeForABI(Ty) && 947 !isEmptyRecord(getContext(), Ty, true) && 948 !isSingleElementStruct(Ty, getContext()); 949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 950 getContext().getTypeInfoInChars(Ty), 951 CharUnits::fromQuantity(4), 952 /*AllowHigherAlign=*/true); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // le32/PNaCl bitcode ABI Implementation 957 // 958 // This is a simplified version of the x86_32 ABI. Arguments and return values 959 // are always passed on the stack. 960 //===----------------------------------------------------------------------===// 961 962 class PNaClABIInfo : public ABIInfo { 963 public: 964 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 965 966 ABIArgInfo classifyReturnType(QualType RetTy) const; 967 ABIArgInfo classifyArgumentType(QualType RetTy) const; 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, 971 Address VAListAddr, QualType Ty) const override; 972 }; 973 974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 975 public: 976 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 977 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 978 }; 979 980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 981 if (!getCXXABI().classifyReturnType(FI)) 982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 983 984 for (auto &I : FI.arguments()) 985 I.info = classifyArgumentType(I.type); 986 } 987 988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 989 QualType Ty) const { 990 // The PNaCL ABI is a bit odd, in that varargs don't use normal 991 // function classification. Structs get passed directly for varargs 992 // functions, through a rewriting transform in 993 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 994 // this target to actually support a va_arg instructions with an 995 // aggregate type, unlike other targets. 996 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 997 } 998 999 /// Classify argument of given type \p Ty. 1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1001 if (isAggregateTypeForABI(Ty)) { 1002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1004 return getNaturalAlignIndirect(Ty); 1005 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1006 // Treat an enum type as its underlying type. 1007 Ty = EnumTy->getDecl()->getIntegerType(); 1008 } else if (Ty->isFloatingType()) { 1009 // Floating-point types don't go inreg. 1010 return ABIArgInfo::getDirect(); 1011 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 1012 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1013 if (EIT->getNumBits() > 64) 1014 return getNaturalAlignIndirect(Ty); 1015 return ABIArgInfo::getDirect(); 1016 } 1017 1018 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1019 : ABIArgInfo::getDirect()); 1020 } 1021 1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1023 if (RetTy->isVoidType()) 1024 return ABIArgInfo::getIgnore(); 1025 1026 // In the PNaCl ABI we always return records/structures on the stack. 1027 if (isAggregateTypeForABI(RetTy)) 1028 return getNaturalAlignIndirect(RetTy); 1029 1030 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1031 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1032 if (EIT->getNumBits() > 64) 1033 return getNaturalAlignIndirect(RetTy); 1034 return ABIArgInfo::getDirect(); 1035 } 1036 1037 // Treat an enum type as its underlying type. 1038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1039 RetTy = EnumTy->getDecl()->getIntegerType(); 1040 1041 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1042 : ABIArgInfo::getDirect()); 1043 } 1044 1045 /// IsX86_MMXType - Return true if this is an MMX type. 1046 bool IsX86_MMXType(llvm::Type *IRType) { 1047 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1048 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1049 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1050 IRType->getScalarSizeInBits() != 64; 1051 } 1052 1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1054 StringRef Constraint, 1055 llvm::Type* Ty) { 1056 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1057 .Cases("y", "&y", "^Ym", true) 1058 .Default(false); 1059 if (IsMMXCons && Ty->isVectorTy()) { 1060 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1061 64) { 1062 // Invalid MMX constraint 1063 return nullptr; 1064 } 1065 1066 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1067 } 1068 1069 // No operation needed 1070 return Ty; 1071 } 1072 1073 /// Returns true if this type can be passed in SSE registers with the 1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1076 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1077 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1078 if (BT->getKind() == BuiltinType::LongDouble) { 1079 if (&Context.getTargetInfo().getLongDoubleFormat() == 1080 &llvm::APFloat::x87DoubleExtended()) 1081 return false; 1082 } 1083 return true; 1084 } 1085 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1086 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1087 // registers specially. 1088 unsigned VecSize = Context.getTypeSize(VT); 1089 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 /// Returns true if this aggregate is small enough to be passed in SSE registers 1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1098 return NumMembers <= 4; 1099 } 1100 1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1103 auto AI = ABIArgInfo::getDirect(T); 1104 AI.setInReg(true); 1105 AI.setCanBeFlattened(false); 1106 return AI; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // X86-32 ABI Implementation 1111 //===----------------------------------------------------------------------===// 1112 1113 /// Similar to llvm::CCState, but for Clang. 1114 struct CCState { 1115 CCState(CGFunctionInfo &FI) 1116 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1117 1118 llvm::SmallBitVector IsPreassigned; 1119 unsigned CC = CallingConv::CC_C; 1120 unsigned FreeRegs = 0; 1121 unsigned FreeSSERegs = 0; 1122 }; 1123 1124 /// X86_32ABIInfo - The X86-32 ABI information. 1125 class X86_32ABIInfo : public SwiftABIInfo { 1126 enum Class { 1127 Integer, 1128 Float 1129 }; 1130 1131 static const unsigned MinABIStackAlignInBytes = 4; 1132 1133 bool IsDarwinVectorABI; 1134 bool IsRetSmallStructInRegABI; 1135 bool IsWin32StructABI; 1136 bool IsSoftFloatABI; 1137 bool IsMCUABI; 1138 bool IsLinuxABI; 1139 unsigned DefaultNumRegisterParameters; 1140 1141 static bool isRegisterSize(unsigned Size) { 1142 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1143 } 1144 1145 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1146 // FIXME: Assumes vectorcall is in use. 1147 return isX86VectorTypeForVectorCall(getContext(), Ty); 1148 } 1149 1150 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1151 uint64_t NumMembers) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorCallAggregateSmallEnough(NumMembers); 1154 } 1155 1156 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1157 1158 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1159 /// such that the argument will be passed in memory. 1160 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1161 1162 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1163 1164 /// Return the alignment to use for the given type on the stack. 1165 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1166 1167 Class classify(QualType Ty) const; 1168 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1169 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1170 1171 /// Updates the number of available free registers, returns 1172 /// true if any registers were allocated. 1173 bool updateFreeRegs(QualType Ty, CCState &State) const; 1174 1175 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1176 bool &NeedsPadding) const; 1177 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1178 1179 bool canExpandIndirectArgument(QualType Ty) const; 1180 1181 /// Rewrite the function info so that all memory arguments use 1182 /// inalloca. 1183 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1184 1185 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1186 CharUnits &StackOffset, ABIArgInfo &Info, 1187 QualType Type) const; 1188 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1189 1190 public: 1191 1192 void computeInfo(CGFunctionInfo &FI) const override; 1193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1194 QualType Ty) const override; 1195 1196 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1197 bool RetSmallStructInRegABI, bool Win32StructABI, 1198 unsigned NumRegisterParameters, bool SoftFloatABI) 1199 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1200 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1201 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1202 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1203 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1204 CGT.getTarget().getTriple().isOSCygMing()), 1205 DefaultNumRegisterParameters(NumRegisterParameters) {} 1206 1207 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1208 bool asReturnValue) const override { 1209 // LLVM's x86-32 lowering currently only assigns up to three 1210 // integer registers and three fp registers. Oddly, it'll use up to 1211 // four vector registers for vectors, but those can overlap with the 1212 // scalar registers. 1213 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1214 } 1215 1216 bool isSwiftErrorInRegister() const override { 1217 // x86-32 lowering does not support passing swifterror in a register. 1218 return false; 1219 } 1220 }; 1221 1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1223 public: 1224 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1225 bool RetSmallStructInRegABI, bool Win32StructABI, 1226 unsigned NumRegisterParameters, bool SoftFloatABI) 1227 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1228 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1229 NumRegisterParameters, SoftFloatABI)) {} 1230 1231 static bool isStructReturnInRegABI( 1232 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1233 1234 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1235 CodeGen::CodeGenModule &CGM) const override; 1236 1237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1238 // Darwin uses different dwarf register numbers for EH. 1239 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1240 return 4; 1241 } 1242 1243 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *Address) const override; 1245 1246 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1247 StringRef Constraint, 1248 llvm::Type* Ty) const override { 1249 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1250 } 1251 1252 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1253 std::string &Constraints, 1254 std::vector<llvm::Type *> &ResultRegTypes, 1255 std::vector<llvm::Type *> &ResultTruncRegTypes, 1256 std::vector<LValue> &ResultRegDests, 1257 std::string &AsmString, 1258 unsigned NumOutputs) const override; 1259 1260 llvm::Constant * 1261 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1262 unsigned Sig = (0xeb << 0) | // jmp rel8 1263 (0x06 << 8) | // .+0x08 1264 ('v' << 16) | 1265 ('2' << 24); 1266 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1267 } 1268 1269 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1270 return "movl\t%ebp, %ebp" 1271 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1272 } 1273 }; 1274 1275 } 1276 1277 /// Rewrite input constraint references after adding some output constraints. 1278 /// In the case where there is one output and one input and we add one output, 1279 /// we need to replace all operand references greater than or equal to 1: 1280 /// mov $0, $1 1281 /// mov eax, $1 1282 /// The result will be: 1283 /// mov $0, $2 1284 /// mov eax, $2 1285 static void rewriteInputConstraintReferences(unsigned FirstIn, 1286 unsigned NumNewOuts, 1287 std::string &AsmString) { 1288 std::string Buf; 1289 llvm::raw_string_ostream OS(Buf); 1290 size_t Pos = 0; 1291 while (Pos < AsmString.size()) { 1292 size_t DollarStart = AsmString.find('$', Pos); 1293 if (DollarStart == std::string::npos) 1294 DollarStart = AsmString.size(); 1295 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1296 if (DollarEnd == std::string::npos) 1297 DollarEnd = AsmString.size(); 1298 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1299 Pos = DollarEnd; 1300 size_t NumDollars = DollarEnd - DollarStart; 1301 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1302 // We have an operand reference. 1303 size_t DigitStart = Pos; 1304 if (AsmString[DigitStart] == '{') { 1305 OS << '{'; 1306 ++DigitStart; 1307 } 1308 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1309 if (DigitEnd == std::string::npos) 1310 DigitEnd = AsmString.size(); 1311 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1312 unsigned OperandIndex; 1313 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1314 if (OperandIndex >= FirstIn) 1315 OperandIndex += NumNewOuts; 1316 OS << OperandIndex; 1317 } else { 1318 OS << OperandStr; 1319 } 1320 Pos = DigitEnd; 1321 } 1322 } 1323 AsmString = std::move(OS.str()); 1324 } 1325 1326 /// Add output constraints for EAX:EDX because they are return registers. 1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1328 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1329 std::vector<llvm::Type *> &ResultRegTypes, 1330 std::vector<llvm::Type *> &ResultTruncRegTypes, 1331 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1332 unsigned NumOutputs) const { 1333 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1334 1335 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1336 // larger. 1337 if (!Constraints.empty()) 1338 Constraints += ','; 1339 if (RetWidth <= 32) { 1340 Constraints += "={eax}"; 1341 ResultRegTypes.push_back(CGF.Int32Ty); 1342 } else { 1343 // Use the 'A' constraint for EAX:EDX. 1344 Constraints += "=A"; 1345 ResultRegTypes.push_back(CGF.Int64Ty); 1346 } 1347 1348 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1349 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1350 ResultTruncRegTypes.push_back(CoerceTy); 1351 1352 // Coerce the integer by bitcasting the return slot pointer. 1353 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1354 CoerceTy->getPointerTo())); 1355 ResultRegDests.push_back(ReturnSlot); 1356 1357 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1358 } 1359 1360 /// shouldReturnTypeInRegister - Determine if the given type should be 1361 /// returned in a register (for the Darwin and MCU ABI). 1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1363 ASTContext &Context) const { 1364 uint64_t Size = Context.getTypeSize(Ty); 1365 1366 // For i386, type must be register sized. 1367 // For the MCU ABI, it only needs to be <= 8-byte 1368 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1369 return false; 1370 1371 if (Ty->isVectorType()) { 1372 // 64- and 128- bit vectors inside structures are not returned in 1373 // registers. 1374 if (Size == 64 || Size == 128) 1375 return false; 1376 1377 return true; 1378 } 1379 1380 // If this is a builtin, pointer, enum, complex type, member pointer, or 1381 // member function pointer it is ok. 1382 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1383 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1384 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1385 return true; 1386 1387 // Arrays are treated like records. 1388 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1389 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1390 1391 // Otherwise, it must be a record type. 1392 const RecordType *RT = Ty->getAs<RecordType>(); 1393 if (!RT) return false; 1394 1395 // FIXME: Traverse bases here too. 1396 1397 // Structure types are passed in register if all fields would be 1398 // passed in a register. 1399 for (const auto *FD : RT->getDecl()->fields()) { 1400 // Empty fields are ignored. 1401 if (isEmptyField(Context, FD, true)) 1402 continue; 1403 1404 // Check fields recursively. 1405 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1412 // Treat complex types as the element type. 1413 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1414 Ty = CTy->getElementType(); 1415 1416 // Check for a type which we know has a simple scalar argument-passing 1417 // convention without any padding. (We're specifically looking for 32 1418 // and 64-bit integer and integer-equivalents, float, and double.) 1419 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1420 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1421 return false; 1422 1423 uint64_t Size = Context.getTypeSize(Ty); 1424 return Size == 32 || Size == 64; 1425 } 1426 1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1428 uint64_t &Size) { 1429 for (const auto *FD : RD->fields()) { 1430 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1431 // argument is smaller than 32-bits, expanding the struct will create 1432 // alignment padding. 1433 if (!is32Or64BitBasicType(FD->getType(), Context)) 1434 return false; 1435 1436 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1437 // how to expand them yet, and the predicate for telling if a bitfield still 1438 // counts as "basic" is more complicated than what we were doing previously. 1439 if (FD->isBitField()) 1440 return false; 1441 1442 Size += Context.getTypeSize(FD->getType()); 1443 } 1444 return true; 1445 } 1446 1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1448 uint64_t &Size) { 1449 // Don't do this if there are any non-empty bases. 1450 for (const CXXBaseSpecifier &Base : RD->bases()) { 1451 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1452 Size)) 1453 return false; 1454 } 1455 if (!addFieldSizes(Context, RD, Size)) 1456 return false; 1457 return true; 1458 } 1459 1460 /// Test whether an argument type which is to be passed indirectly (on the 1461 /// stack) would have the equivalent layout if it was expanded into separate 1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1463 /// optimizations. 1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1465 // We can only expand structure types. 1466 const RecordType *RT = Ty->getAs<RecordType>(); 1467 if (!RT) 1468 return false; 1469 const RecordDecl *RD = RT->getDecl(); 1470 uint64_t Size = 0; 1471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1472 if (!IsWin32StructABI) { 1473 // On non-Windows, we have to conservatively match our old bitcode 1474 // prototypes in order to be ABI-compatible at the bitcode level. 1475 if (!CXXRD->isCLike()) 1476 return false; 1477 } else { 1478 // Don't do this for dynamic classes. 1479 if (CXXRD->isDynamicClass()) 1480 return false; 1481 } 1482 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1483 return false; 1484 } else { 1485 if (!addFieldSizes(getContext(), RD, Size)) 1486 return false; 1487 } 1488 1489 // We can do this if there was no alignment padding. 1490 return Size == getContext().getTypeSize(Ty); 1491 } 1492 1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1494 // If the return value is indirect, then the hidden argument is consuming one 1495 // integer register. 1496 if (State.FreeRegs) { 1497 --State.FreeRegs; 1498 if (!IsMCUABI) 1499 return getNaturalAlignIndirectInReg(RetTy); 1500 } 1501 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1505 CCState &State) const { 1506 if (RetTy->isVoidType()) 1507 return ABIArgInfo::getIgnore(); 1508 1509 const Type *Base = nullptr; 1510 uint64_t NumElts = 0; 1511 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1512 State.CC == llvm::CallingConv::X86_RegCall) && 1513 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1514 // The LLVM struct type for such an aggregate should lower properly. 1515 return ABIArgInfo::getDirect(); 1516 } 1517 1518 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1519 // On Darwin, some vectors are returned in registers. 1520 if (IsDarwinVectorABI) { 1521 uint64_t Size = getContext().getTypeSize(RetTy); 1522 1523 // 128-bit vectors are a special case; they are returned in 1524 // registers and we need to make sure to pick a type the LLVM 1525 // backend will like. 1526 if (Size == 128) 1527 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1528 llvm::Type::getInt64Ty(getVMContext()), 2)); 1529 1530 // Always return in register if it fits in a general purpose 1531 // register, or if it is 64 bits and has a single element. 1532 if ((Size == 8 || Size == 16 || Size == 32) || 1533 (Size == 64 && VT->getNumElements() == 1)) 1534 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1535 Size)); 1536 1537 return getIndirectReturnResult(RetTy, State); 1538 } 1539 1540 return ABIArgInfo::getDirect(); 1541 } 1542 1543 if (isAggregateTypeForABI(RetTy)) { 1544 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1545 // Structures with flexible arrays are always indirect. 1546 if (RT->getDecl()->hasFlexibleArrayMember()) 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // If specified, structs and unions are always indirect. 1551 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1552 return getIndirectReturnResult(RetTy, State); 1553 1554 // Ignore empty structs/unions. 1555 if (isEmptyRecord(getContext(), RetTy, true)) 1556 return ABIArgInfo::getIgnore(); 1557 1558 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1559 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1560 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1561 if (ET->isFloat16Type()) 1562 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1563 llvm::Type::getHalfTy(getVMContext()), 2)); 1564 } 1565 1566 // Small structures which are register sized are generally returned 1567 // in a register. 1568 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1569 uint64_t Size = getContext().getTypeSize(RetTy); 1570 1571 // As a special-case, if the struct is a "single-element" struct, and 1572 // the field is of type "float" or "double", return it in a 1573 // floating-point register. (MSVC does not apply this special case.) 1574 // We apply a similar transformation for pointer types to improve the 1575 // quality of the generated IR. 1576 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1577 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1578 || SeltTy->hasPointerRepresentation()) 1579 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1580 1581 // FIXME: We should be able to narrow this integer in cases with dead 1582 // padding. 1583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1584 } 1585 1586 return getIndirectReturnResult(RetTy, State); 1587 } 1588 1589 // Treat an enum type as its underlying type. 1590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1591 RetTy = EnumTy->getDecl()->getIntegerType(); 1592 1593 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1594 if (EIT->getNumBits() > 64) 1595 return getIndirectReturnResult(RetTy, State); 1596 1597 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1598 : ABIArgInfo::getDirect()); 1599 } 1600 1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1602 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1603 } 1604 1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (!RT) 1608 return 0; 1609 const RecordDecl *RD = RT->getDecl(); 1610 1611 // If this is a C++ record, check the bases first. 1612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1613 for (const auto &I : CXXRD->bases()) 1614 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1615 return false; 1616 1617 for (const auto *i : RD->fields()) { 1618 QualType FT = i->getType(); 1619 1620 if (isSIMDVectorType(Context, FT)) 1621 return true; 1622 1623 if (isRecordWithSIMDVectorType(Context, FT)) 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1631 unsigned Align) const { 1632 // Otherwise, if the alignment is less than or equal to the minimum ABI 1633 // alignment, just use the default; the backend will handle this. 1634 if (Align <= MinABIStackAlignInBytes) 1635 return 0; // Use default alignment. 1636 1637 if (IsLinuxABI) { 1638 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1639 // want to spend any effort dealing with the ramifications of ABI breaks. 1640 // 1641 // If the vector type is __m128/__m256/__m512, return the default alignment. 1642 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1643 return Align; 1644 } 1645 // On non-Darwin, the stack type alignment is always 4. 1646 if (!IsDarwinVectorABI) { 1647 // Set explicit alignment, since we may need to realign the top. 1648 return MinABIStackAlignInBytes; 1649 } 1650 1651 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1652 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1653 isRecordWithSIMDVectorType(getContext(), Ty))) 1654 return 16; 1655 1656 return MinABIStackAlignInBytes; 1657 } 1658 1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1660 CCState &State) const { 1661 if (!ByVal) { 1662 if (State.FreeRegs) { 1663 --State.FreeRegs; // Non-byval indirects just use one pointer. 1664 if (!IsMCUABI) 1665 return getNaturalAlignIndirectInReg(Ty); 1666 } 1667 return getNaturalAlignIndirect(Ty, false); 1668 } 1669 1670 // Compute the byval alignment. 1671 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1672 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1673 if (StackAlign == 0) 1674 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1675 1676 // If the stack alignment is less than the type alignment, realign the 1677 // argument. 1678 bool Realign = TypeAlign > StackAlign; 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1680 /*ByVal=*/true, Realign); 1681 } 1682 1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1684 const Type *T = isSingleElementStruct(Ty, getContext()); 1685 if (!T) 1686 T = Ty.getTypePtr(); 1687 1688 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1689 BuiltinType::Kind K = BT->getKind(); 1690 if (K == BuiltinType::Float || K == BuiltinType::Double) 1691 return Float; 1692 } 1693 return Integer; 1694 } 1695 1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1697 if (!IsSoftFloatABI) { 1698 Class C = classify(Ty); 1699 if (C == Float) 1700 return false; 1701 } 1702 1703 unsigned Size = getContext().getTypeSize(Ty); 1704 unsigned SizeInRegs = (Size + 31) / 32; 1705 1706 if (SizeInRegs == 0) 1707 return false; 1708 1709 if (!IsMCUABI) { 1710 if (SizeInRegs > State.FreeRegs) { 1711 State.FreeRegs = 0; 1712 return false; 1713 } 1714 } else { 1715 // The MCU psABI allows passing parameters in-reg even if there are 1716 // earlier parameters that are passed on the stack. Also, 1717 // it does not allow passing >8-byte structs in-register, 1718 // even if there are 3 free registers available. 1719 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1720 return false; 1721 } 1722 1723 State.FreeRegs -= SizeInRegs; 1724 return true; 1725 } 1726 1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1728 bool &InReg, 1729 bool &NeedsPadding) const { 1730 // On Windows, aggregates other than HFAs are never passed in registers, and 1731 // they do not consume register slots. Homogenous floating-point aggregates 1732 // (HFAs) have already been dealt with at this point. 1733 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1734 return false; 1735 1736 NeedsPadding = false; 1737 InReg = !IsMCUABI; 1738 1739 if (!updateFreeRegs(Ty, State)) 1740 return false; 1741 1742 if (IsMCUABI) 1743 return true; 1744 1745 if (State.CC == llvm::CallingConv::X86_FastCall || 1746 State.CC == llvm::CallingConv::X86_VectorCall || 1747 State.CC == llvm::CallingConv::X86_RegCall) { 1748 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1749 NeedsPadding = true; 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1758 if (!updateFreeRegs(Ty, State)) 1759 return false; 1760 1761 if (IsMCUABI) 1762 return false; 1763 1764 if (State.CC == llvm::CallingConv::X86_FastCall || 1765 State.CC == llvm::CallingConv::X86_VectorCall || 1766 State.CC == llvm::CallingConv::X86_RegCall) { 1767 if (getContext().getTypeSize(Ty) > 32) 1768 return false; 1769 1770 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1771 Ty->isReferenceType()); 1772 } 1773 1774 return true; 1775 } 1776 1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1778 // Vectorcall x86 works subtly different than in x64, so the format is 1779 // a bit different than the x64 version. First, all vector types (not HVAs) 1780 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1781 // This differs from the x64 implementation, where the first 6 by INDEX get 1782 // registers. 1783 // In the second pass over the arguments, HVAs are passed in the remaining 1784 // vector registers if possible, or indirectly by address. The address will be 1785 // passed in ECX/EDX if available. Any other arguments are passed according to 1786 // the usual fastcall rules. 1787 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1788 for (int I = 0, E = Args.size(); I < E; ++I) { 1789 const Type *Base = nullptr; 1790 uint64_t NumElts = 0; 1791 const QualType &Ty = Args[I].type; 1792 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1793 isHomogeneousAggregate(Ty, Base, NumElts)) { 1794 if (State.FreeSSERegs >= NumElts) { 1795 State.FreeSSERegs -= NumElts; 1796 Args[I].info = ABIArgInfo::getDirectInReg(); 1797 State.IsPreassigned.set(I); 1798 } 1799 } 1800 } 1801 } 1802 1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1804 CCState &State) const { 1805 // FIXME: Set alignment on indirect arguments. 1806 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1807 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1808 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1809 1810 Ty = useFirstFieldIfTransparentUnion(Ty); 1811 TypeInfo TI = getContext().getTypeInfo(Ty); 1812 1813 // Check with the C++ ABI first. 1814 const RecordType *RT = Ty->getAs<RecordType>(); 1815 if (RT) { 1816 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1817 if (RAA == CGCXXABI::RAA_Indirect) { 1818 return getIndirectResult(Ty, false, State); 1819 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1820 // The field index doesn't matter, we'll fix it up later. 1821 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1822 } 1823 } 1824 1825 // Regcall uses the concept of a homogenous vector aggregate, similar 1826 // to other targets. 1827 const Type *Base = nullptr; 1828 uint64_t NumElts = 0; 1829 if ((IsRegCall || IsVectorCall) && 1830 isHomogeneousAggregate(Ty, Base, NumElts)) { 1831 if (State.FreeSSERegs >= NumElts) { 1832 State.FreeSSERegs -= NumElts; 1833 1834 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1835 // does. 1836 if (IsVectorCall) 1837 return getDirectX86Hva(); 1838 1839 if (Ty->isBuiltinType() || Ty->isVectorType()) 1840 return ABIArgInfo::getDirect(); 1841 return ABIArgInfo::getExpand(); 1842 } 1843 return getIndirectResult(Ty, /*ByVal=*/false, State); 1844 } 1845 1846 if (isAggregateTypeForABI(Ty)) { 1847 // Structures with flexible arrays are always indirect. 1848 // FIXME: This should not be byval! 1849 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1850 return getIndirectResult(Ty, true, State); 1851 1852 // Ignore empty structs/unions on non-Windows. 1853 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1854 return ABIArgInfo::getIgnore(); 1855 1856 llvm::LLVMContext &LLVMContext = getVMContext(); 1857 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1858 bool NeedsPadding = false; 1859 bool InReg; 1860 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1861 unsigned SizeInRegs = (TI.Width + 31) / 32; 1862 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1863 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1864 if (InReg) 1865 return ABIArgInfo::getDirectInReg(Result); 1866 else 1867 return ABIArgInfo::getDirect(Result); 1868 } 1869 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1870 1871 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1872 // added in MSVC 2015. 1873 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1874 return getIndirectResult(Ty, /*ByVal=*/false, State); 1875 1876 // Expand small (<= 128-bit) record types when we know that the stack layout 1877 // of those arguments will match the struct. This is important because the 1878 // LLVM backend isn't smart enough to remove byval, which inhibits many 1879 // optimizations. 1880 // Don't do this for the MCU if there are still free integer registers 1881 // (see X86_64 ABI for full explanation). 1882 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1883 canExpandIndirectArgument(Ty)) 1884 return ABIArgInfo::getExpandWithPadding( 1885 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1886 1887 return getIndirectResult(Ty, true, State); 1888 } 1889 1890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1891 // On Windows, vectors are passed directly if registers are available, or 1892 // indirectly if not. This avoids the need to align argument memory. Pass 1893 // user-defined vector types larger than 512 bits indirectly for simplicity. 1894 if (IsWin32StructABI) { 1895 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1896 --State.FreeSSERegs; 1897 return ABIArgInfo::getDirectInReg(); 1898 } 1899 return getIndirectResult(Ty, /*ByVal=*/false, State); 1900 } 1901 1902 // On Darwin, some vectors are passed in memory, we handle this by passing 1903 // it as an i8/i16/i32/i64. 1904 if (IsDarwinVectorABI) { 1905 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1906 (TI.Width == 64 && VT->getNumElements() == 1)) 1907 return ABIArgInfo::getDirect( 1908 llvm::IntegerType::get(getVMContext(), TI.Width)); 1909 } 1910 1911 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1913 1914 return ABIArgInfo::getDirect(); 1915 } 1916 1917 1918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1919 Ty = EnumTy->getDecl()->getIntegerType(); 1920 1921 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1922 1923 if (isPromotableIntegerTypeForABI(Ty)) { 1924 if (InReg) 1925 return ABIArgInfo::getExtendInReg(Ty); 1926 return ABIArgInfo::getExtend(Ty); 1927 } 1928 1929 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1930 if (EIT->getNumBits() <= 64) { 1931 if (InReg) 1932 return ABIArgInfo::getDirectInReg(); 1933 return ABIArgInfo::getDirect(); 1934 } 1935 return getIndirectResult(Ty, /*ByVal=*/false, State); 1936 } 1937 1938 if (InReg) 1939 return ABIArgInfo::getDirectInReg(); 1940 return ABIArgInfo::getDirect(); 1941 } 1942 1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 CCState State(FI); 1945 if (IsMCUABI) 1946 State.FreeRegs = 3; 1947 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1948 State.FreeRegs = 2; 1949 State.FreeSSERegs = 3; 1950 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1951 State.FreeRegs = 2; 1952 State.FreeSSERegs = 6; 1953 } else if (FI.getHasRegParm()) 1954 State.FreeRegs = FI.getRegParm(); 1955 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1956 State.FreeRegs = 5; 1957 State.FreeSSERegs = 8; 1958 } else if (IsWin32StructABI) { 1959 // Since MSVC 2015, the first three SSE vectors have been passed in 1960 // registers. The rest are passed indirectly. 1961 State.FreeRegs = DefaultNumRegisterParameters; 1962 State.FreeSSERegs = 3; 1963 } else 1964 State.FreeRegs = DefaultNumRegisterParameters; 1965 1966 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1968 } else if (FI.getReturnInfo().isIndirect()) { 1969 // The C++ ABI is not aware of register usage, so we have to check if the 1970 // return value was sret and put it in a register ourselves if appropriate. 1971 if (State.FreeRegs) { 1972 --State.FreeRegs; // The sret parameter consumes a register. 1973 if (!IsMCUABI) 1974 FI.getReturnInfo().setInReg(true); 1975 } 1976 } 1977 1978 // The chain argument effectively gives us another free register. 1979 if (FI.isChainCall()) 1980 ++State.FreeRegs; 1981 1982 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1983 // arguments to XMM registers as available. 1984 if (State.CC == llvm::CallingConv::X86_VectorCall) 1985 runVectorCallFirstPass(FI, State); 1986 1987 bool UsedInAlloca = false; 1988 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1989 for (int I = 0, E = Args.size(); I < E; ++I) { 1990 // Skip arguments that have already been assigned. 1991 if (State.IsPreassigned.test(I)) 1992 continue; 1993 1994 Args[I].info = classifyArgumentType(Args[I].type, State); 1995 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1996 } 1997 1998 // If we needed to use inalloca for any argument, do a second pass and rewrite 1999 // all the memory arguments to use inalloca. 2000 if (UsedInAlloca) 2001 rewriteWithInAlloca(FI); 2002 } 2003 2004 void 2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2006 CharUnits &StackOffset, ABIArgInfo &Info, 2007 QualType Type) const { 2008 // Arguments are always 4-byte-aligned. 2009 CharUnits WordSize = CharUnits::fromQuantity(4); 2010 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2011 2012 // sret pointers and indirect things will require an extra pointer 2013 // indirection, unless they are byval. Most things are byval, and will not 2014 // require this indirection. 2015 bool IsIndirect = false; 2016 if (Info.isIndirect() && !Info.getIndirectByVal()) 2017 IsIndirect = true; 2018 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2019 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2020 if (IsIndirect) 2021 LLTy = LLTy->getPointerTo(0); 2022 FrameFields.push_back(LLTy); 2023 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2024 2025 // Insert padding bytes to respect alignment. 2026 CharUnits FieldEnd = StackOffset; 2027 StackOffset = FieldEnd.alignTo(WordSize); 2028 if (StackOffset != FieldEnd) { 2029 CharUnits NumBytes = StackOffset - FieldEnd; 2030 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2031 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2032 FrameFields.push_back(Ty); 2033 } 2034 } 2035 2036 static bool isArgInAlloca(const ABIArgInfo &Info) { 2037 // Leave ignored and inreg arguments alone. 2038 switch (Info.getKind()) { 2039 case ABIArgInfo::InAlloca: 2040 return true; 2041 case ABIArgInfo::Ignore: 2042 case ABIArgInfo::IndirectAliased: 2043 return false; 2044 case ABIArgInfo::Indirect: 2045 case ABIArgInfo::Direct: 2046 case ABIArgInfo::Extend: 2047 return !Info.getInReg(); 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 // These are aggregate types which are never passed in registers when 2051 // inalloca is involved. 2052 return true; 2053 } 2054 llvm_unreachable("invalid enum"); 2055 } 2056 2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2058 assert(IsWin32StructABI && "inalloca only supported on win32"); 2059 2060 // Build a packed struct type for all of the arguments in memory. 2061 SmallVector<llvm::Type *, 6> FrameFields; 2062 2063 // The stack alignment is always 4. 2064 CharUnits StackAlign = CharUnits::fromQuantity(4); 2065 2066 CharUnits StackOffset; 2067 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2068 2069 // Put 'this' into the struct before 'sret', if necessary. 2070 bool IsThisCall = 2071 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2072 ABIArgInfo &Ret = FI.getReturnInfo(); 2073 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2074 isArgInAlloca(I->info)) { 2075 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2076 ++I; 2077 } 2078 2079 // Put the sret parameter into the inalloca struct if it's in memory. 2080 if (Ret.isIndirect() && !Ret.getInReg()) { 2081 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2082 // On Windows, the hidden sret parameter is always returned in eax. 2083 Ret.setInAllocaSRet(IsWin32StructABI); 2084 } 2085 2086 // Skip the 'this' parameter in ecx. 2087 if (IsThisCall) 2088 ++I; 2089 2090 // Put arguments passed in memory into the struct. 2091 for (; I != E; ++I) { 2092 if (isArgInAlloca(I->info)) 2093 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2094 } 2095 2096 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2097 /*isPacked=*/true), 2098 StackAlign); 2099 } 2100 2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2102 Address VAListAddr, QualType Ty) const { 2103 2104 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2105 2106 // x86-32 changes the alignment of certain arguments on the stack. 2107 // 2108 // Just messing with TypeInfo like this works because we never pass 2109 // anything indirectly. 2110 TypeInfo.Align = CharUnits::fromQuantity( 2111 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2112 2113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2114 TypeInfo, CharUnits::fromQuantity(4), 2115 /*AllowHigherAlign*/ true); 2116 } 2117 2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2119 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2120 assert(Triple.getArch() == llvm::Triple::x86); 2121 2122 switch (Opts.getStructReturnConvention()) { 2123 case CodeGenOptions::SRCK_Default: 2124 break; 2125 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2126 return false; 2127 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2128 return true; 2129 } 2130 2131 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2132 return true; 2133 2134 switch (Triple.getOS()) { 2135 case llvm::Triple::DragonFly: 2136 case llvm::Triple::FreeBSD: 2137 case llvm::Triple::OpenBSD: 2138 case llvm::Triple::Win32: 2139 return true; 2140 default: 2141 return false; 2142 } 2143 } 2144 2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2146 CodeGen::CodeGenModule &CGM) { 2147 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2148 return; 2149 2150 llvm::Function *Fn = cast<llvm::Function>(GV); 2151 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2152 if (FD->getNumParams() == 0) 2153 return; 2154 2155 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2156 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2157 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2158 Fn->getContext(), ByValTy); 2159 Fn->addParamAttr(0, NewAttr); 2160 } 2161 2162 void X86_32TargetCodeGenInfo::setTargetAttributes( 2163 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2164 if (GV->isDeclaration()) 2165 return; 2166 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2167 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2168 llvm::Function *Fn = cast<llvm::Function>(GV); 2169 Fn->addFnAttr("stackrealign"); 2170 } 2171 2172 addX86InterruptAttrs(FD, GV, CGM); 2173 } 2174 } 2175 2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2177 CodeGen::CodeGenFunction &CGF, 2178 llvm::Value *Address) const { 2179 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2180 2181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2182 2183 // 0-7 are the eight integer registers; the order is different 2184 // on Darwin (for EH), but the range is the same. 2185 // 8 is %eip. 2186 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2187 2188 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2189 // 12-16 are st(0..4). Not sure why we stop at 4. 2190 // These have size 16, which is sizeof(long double) on 2191 // platforms with 8-byte alignment for that type. 2192 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2193 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2194 2195 } else { 2196 // 9 is %eflags, which doesn't get a size on Darwin for some 2197 // reason. 2198 Builder.CreateAlignedStore( 2199 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2200 CharUnits::One()); 2201 2202 // 11-16 are st(0..5). Not sure why we stop at 5. 2203 // These have size 12, which is sizeof(long double) on 2204 // platforms with 4-byte alignment for that type. 2205 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2206 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2207 } 2208 2209 return false; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // X86-64 ABI Implementation 2214 //===----------------------------------------------------------------------===// 2215 2216 2217 namespace { 2218 /// The AVX ABI level for X86 targets. 2219 enum class X86AVXABILevel { 2220 None, 2221 AVX, 2222 AVX512 2223 }; 2224 2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2227 switch (AVXLevel) { 2228 case X86AVXABILevel::AVX512: 2229 return 512; 2230 case X86AVXABILevel::AVX: 2231 return 256; 2232 case X86AVXABILevel::None: 2233 return 128; 2234 } 2235 llvm_unreachable("Unknown AVXLevel"); 2236 } 2237 2238 /// X86_64ABIInfo - The X86_64 ABI information. 2239 class X86_64ABIInfo : public SwiftABIInfo { 2240 enum Class { 2241 Integer = 0, 2242 SSE, 2243 SSEUp, 2244 X87, 2245 X87Up, 2246 ComplexX87, 2247 NoClass, 2248 Memory 2249 }; 2250 2251 /// merge - Implement the X86_64 ABI merging algorithm. 2252 /// 2253 /// Merge an accumulating classification \arg Accum with a field 2254 /// classification \arg Field. 2255 /// 2256 /// \param Accum - The accumulating classification. This should 2257 /// always be either NoClass or the result of a previous merge 2258 /// call. In addition, this should never be Memory (the caller 2259 /// should just return Memory for the aggregate). 2260 static Class merge(Class Accum, Class Field); 2261 2262 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2263 /// 2264 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2265 /// final MEMORY or SSE classes when necessary. 2266 /// 2267 /// \param AggregateSize - The size of the current aggregate in 2268 /// the classification process. 2269 /// 2270 /// \param Lo - The classification for the parts of the type 2271 /// residing in the low word of the containing object. 2272 /// 2273 /// \param Hi - The classification for the parts of the type 2274 /// residing in the higher words of the containing object. 2275 /// 2276 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2277 2278 /// classify - Determine the x86_64 register classes in which the 2279 /// given type T should be passed. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the high word of the containing object. 2286 /// 2287 /// \param OffsetBase - The bit offset of this type in the 2288 /// containing object. Some parameters are classified different 2289 /// depending on whether they straddle an eightbyte boundary. 2290 /// 2291 /// \param isNamedArg - Whether the argument in question is a "named" 2292 /// argument, as used in AMD64-ABI 3.5.7. 2293 /// 2294 /// If a word is unused its result will be NoClass; if a type should 2295 /// be passed in Memory then at least the classification of \arg Lo 2296 /// will be Memory. 2297 /// 2298 /// The \arg Lo class will be NoClass iff the argument is ignored. 2299 /// 2300 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2301 /// also be ComplexX87. 2302 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2303 bool isNamedArg) const; 2304 2305 llvm::Type *GetByteVectorType(QualType Ty) const; 2306 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2307 unsigned IROffset, QualType SourceTy, 2308 unsigned SourceOffset) const; 2309 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2310 unsigned IROffset, QualType SourceTy, 2311 unsigned SourceOffset) const; 2312 2313 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2314 /// such that the argument will be returned in memory. 2315 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2316 2317 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2318 /// such that the argument will be passed in memory. 2319 /// 2320 /// \param freeIntRegs - The number of free integer registers remaining 2321 /// available. 2322 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2323 2324 ABIArgInfo classifyReturnType(QualType RetTy) const; 2325 2326 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2327 unsigned &neededInt, unsigned &neededSSE, 2328 bool isNamedArg) const; 2329 2330 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2331 unsigned &NeededSSE) const; 2332 2333 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2334 unsigned &NeededSSE) const; 2335 2336 bool IsIllegalVectorType(QualType Ty) const; 2337 2338 /// The 0.98 ABI revision clarified a lot of ambiguities, 2339 /// unfortunately in ways that were not always consistent with 2340 /// certain previous compilers. In particular, platforms which 2341 /// required strict binary compatibility with older versions of GCC 2342 /// may need to exempt themselves. 2343 bool honorsRevision0_98() const { 2344 return !getTarget().getTriple().isOSDarwin(); 2345 } 2346 2347 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2348 /// classify it as INTEGER (for compatibility with older clang compilers). 2349 bool classifyIntegerMMXAsSSE() const { 2350 // Clang <= 3.8 did not do this. 2351 if (getContext().getLangOpts().getClangABICompat() <= 2352 LangOptions::ClangABI::Ver3_8) 2353 return false; 2354 2355 const llvm::Triple &Triple = getTarget().getTriple(); 2356 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2357 return false; 2358 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2359 return false; 2360 return true; 2361 } 2362 2363 // GCC classifies vectors of __int128 as memory. 2364 bool passInt128VectorsInMem() const { 2365 // Clang <= 9.0 did not do this. 2366 if (getContext().getLangOpts().getClangABICompat() <= 2367 LangOptions::ClangABI::Ver9) 2368 return false; 2369 2370 const llvm::Triple &T = getTarget().getTriple(); 2371 return T.isOSLinux() || T.isOSNetBSD(); 2372 } 2373 2374 X86AVXABILevel AVXLevel; 2375 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2376 // 64-bit hardware. 2377 bool Has64BitPointers; 2378 2379 public: 2380 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2381 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2382 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2383 } 2384 2385 bool isPassedUsingAVXType(QualType type) const { 2386 unsigned neededInt, neededSSE; 2387 // The freeIntRegs argument doesn't matter here. 2388 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2389 /*isNamedArg*/true); 2390 if (info.isDirect()) { 2391 llvm::Type *ty = info.getCoerceToType(); 2392 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2393 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2394 } 2395 return false; 2396 } 2397 2398 void computeInfo(CGFunctionInfo &FI) const override; 2399 2400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2401 QualType Ty) const override; 2402 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2403 QualType Ty) const override; 2404 2405 bool has64BitPointers() const { 2406 return Has64BitPointers; 2407 } 2408 2409 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2410 bool asReturnValue) const override { 2411 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2412 } 2413 bool isSwiftErrorInRegister() const override { 2414 return true; 2415 } 2416 }; 2417 2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2419 class WinX86_64ABIInfo : public SwiftABIInfo { 2420 public: 2421 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2422 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2423 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2424 2425 void computeInfo(CGFunctionInfo &FI) const override; 2426 2427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2431 // FIXME: Assumes vectorcall is in use. 2432 return isX86VectorTypeForVectorCall(getContext(), Ty); 2433 } 2434 2435 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2436 uint64_t NumMembers) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorCallAggregateSmallEnough(NumMembers); 2439 } 2440 2441 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2442 bool asReturnValue) const override { 2443 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2444 } 2445 2446 bool isSwiftErrorInRegister() const override { 2447 return true; 2448 } 2449 2450 private: 2451 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2452 bool IsVectorCall, bool IsRegCall) const; 2453 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2454 const ABIArgInfo ¤t) const; 2455 2456 X86AVXABILevel AVXLevel; 2457 2458 bool IsMingw64; 2459 }; 2460 2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2462 public: 2463 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2464 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2465 2466 const X86_64ABIInfo &getABIInfo() const { 2467 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2468 } 2469 2470 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2471 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2472 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2473 2474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2475 return 7; 2476 } 2477 2478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2479 llvm::Value *Address) const override { 2480 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2481 2482 // 0-15 are the 16 integer registers. 2483 // 16 is %rip. 2484 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2485 return false; 2486 } 2487 2488 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2489 StringRef Constraint, 2490 llvm::Type* Ty) const override { 2491 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2492 } 2493 2494 bool isNoProtoCallVariadic(const CallArgList &args, 2495 const FunctionNoProtoType *fnType) const override { 2496 // The default CC on x86-64 sets %al to the number of SSA 2497 // registers used, and GCC sets this when calling an unprototyped 2498 // function, so we override the default behavior. However, don't do 2499 // that when AVX types are involved: the ABI explicitly states it is 2500 // undefined, and it doesn't work in practice because of how the ABI 2501 // defines varargs anyway. 2502 if (fnType->getCallConv() == CC_C) { 2503 bool HasAVXType = false; 2504 for (CallArgList::const_iterator 2505 it = args.begin(), ie = args.end(); it != ie; ++it) { 2506 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2507 HasAVXType = true; 2508 break; 2509 } 2510 } 2511 2512 if (!HasAVXType) 2513 return true; 2514 } 2515 2516 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2517 } 2518 2519 llvm::Constant * 2520 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2521 unsigned Sig = (0xeb << 0) | // jmp rel8 2522 (0x06 << 8) | // .+0x08 2523 ('v' << 16) | 2524 ('2' << 24); 2525 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2526 } 2527 2528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2529 CodeGen::CodeGenModule &CGM) const override { 2530 if (GV->isDeclaration()) 2531 return; 2532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2533 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2534 llvm::Function *Fn = cast<llvm::Function>(GV); 2535 Fn->addFnAttr("stackrealign"); 2536 } 2537 2538 addX86InterruptAttrs(FD, GV, CGM); 2539 } 2540 } 2541 2542 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2543 const FunctionDecl *Caller, 2544 const FunctionDecl *Callee, 2545 const CallArgList &Args) const override; 2546 }; 2547 2548 static void initFeatureMaps(const ASTContext &Ctx, 2549 llvm::StringMap<bool> &CallerMap, 2550 const FunctionDecl *Caller, 2551 llvm::StringMap<bool> &CalleeMap, 2552 const FunctionDecl *Callee) { 2553 if (CalleeMap.empty() && CallerMap.empty()) { 2554 // The caller is potentially nullptr in the case where the call isn't in a 2555 // function. In this case, the getFunctionFeatureMap ensures we just get 2556 // the TU level setting (since it cannot be modified by 'target'.. 2557 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2558 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2559 } 2560 } 2561 2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2563 SourceLocation CallLoc, 2564 const llvm::StringMap<bool> &CallerMap, 2565 const llvm::StringMap<bool> &CalleeMap, 2566 QualType Ty, StringRef Feature, 2567 bool IsArgument) { 2568 bool CallerHasFeat = CallerMap.lookup(Feature); 2569 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2570 if (!CallerHasFeat && !CalleeHasFeat) 2571 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2572 << IsArgument << Ty << Feature; 2573 2574 // Mixing calling conventions here is very clearly an error. 2575 if (!CallerHasFeat || !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Else, both caller and callee have the required feature, so there is no need 2580 // to diagnose. 2581 return false; 2582 } 2583 2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2585 SourceLocation CallLoc, 2586 const llvm::StringMap<bool> &CallerMap, 2587 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2588 bool IsArgument) { 2589 uint64_t Size = Ctx.getTypeSize(Ty); 2590 if (Size > 256) 2591 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2592 "avx512f", IsArgument); 2593 2594 if (Size > 128) 2595 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2596 IsArgument); 2597 2598 return false; 2599 } 2600 2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2602 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2603 const FunctionDecl *Callee, const CallArgList &Args) const { 2604 llvm::StringMap<bool> CallerMap; 2605 llvm::StringMap<bool> CalleeMap; 2606 unsigned ArgIndex = 0; 2607 2608 // We need to loop through the actual call arguments rather than the the 2609 // function's parameters, in case this variadic. 2610 for (const CallArg &Arg : Args) { 2611 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2612 // additionally changes how vectors >256 in size are passed. Like GCC, we 2613 // warn when a function is called with an argument where this will change. 2614 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2615 // the caller and callee features are mismatched. 2616 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2617 // change its ABI with attribute-target after this call. 2618 if (Arg.getType()->isVectorType() && 2619 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2620 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2621 QualType Ty = Arg.getType(); 2622 // The CallArg seems to have desugared the type already, so for clearer 2623 // diagnostics, replace it with the type in the FunctionDecl if possible. 2624 if (ArgIndex < Callee->getNumParams()) 2625 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2626 2627 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2628 CalleeMap, Ty, /*IsArgument*/ true)) 2629 return; 2630 } 2631 ++ArgIndex; 2632 } 2633 2634 // Check return always, as we don't have a good way of knowing in codegen 2635 // whether this value is used, tail-called, etc. 2636 if (Callee->getReturnType()->isVectorType() && 2637 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2638 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2639 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2640 CalleeMap, Callee->getReturnType(), 2641 /*IsArgument*/ false); 2642 } 2643 } 2644 2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2646 // If the argument does not end in .lib, automatically add the suffix. 2647 // If the argument contains a space, enclose it in quotes. 2648 // This matches the behavior of MSVC. 2649 bool Quote = Lib.contains(' '); 2650 std::string ArgStr = Quote ? "\"" : ""; 2651 ArgStr += Lib; 2652 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2653 ArgStr += ".lib"; 2654 ArgStr += Quote ? "\"" : ""; 2655 return ArgStr; 2656 } 2657 2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2659 public: 2660 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2661 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2662 unsigned NumRegisterParameters) 2663 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2664 Win32StructABI, NumRegisterParameters, false) {} 2665 2666 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2667 CodeGen::CodeGenModule &CGM) const override; 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) { 2684 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2685 2686 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2687 Fn->addFnAttr("stack-probe-size", 2688 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2689 if (CGM.getCodeGenOpts().NoStackArgProbe) 2690 Fn->addFnAttr("no-stack-arg-probe"); 2691 } 2692 } 2693 2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2695 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2696 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2697 if (GV->isDeclaration()) 2698 return; 2699 addStackProbeTargetAttributes(D, GV, CGM); 2700 } 2701 2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2703 public: 2704 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2705 X86AVXABILevel AVXLevel) 2706 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2707 2708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2709 CodeGen::CodeGenModule &CGM) const override; 2710 2711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2712 return 7; 2713 } 2714 2715 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2716 llvm::Value *Address) const override { 2717 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2718 2719 // 0-15 are the 16 integer registers. 2720 // 16 is %rip. 2721 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2722 return false; 2723 } 2724 2725 void getDependentLibraryOption(llvm::StringRef Lib, 2726 llvm::SmallString<24> &Opt) const override { 2727 Opt = "/DEFAULTLIB:"; 2728 Opt += qualifyWindowsLibrary(Lib); 2729 } 2730 2731 void getDetectMismatchOption(llvm::StringRef Name, 2732 llvm::StringRef Value, 2733 llvm::SmallString<32> &Opt) const override { 2734 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2735 } 2736 }; 2737 2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2739 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2740 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2741 if (GV->isDeclaration()) 2742 return; 2743 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2744 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2745 llvm::Function *Fn = cast<llvm::Function>(GV); 2746 Fn->addFnAttr("stackrealign"); 2747 } 2748 2749 addX86InterruptAttrs(FD, GV, CGM); 2750 } 2751 2752 addStackProbeTargetAttributes(D, GV, CGM); 2753 } 2754 } 2755 2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2757 Class &Hi) const { 2758 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2759 // 2760 // (a) If one of the classes is Memory, the whole argument is passed in 2761 // memory. 2762 // 2763 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2764 // memory. 2765 // 2766 // (c) If the size of the aggregate exceeds two eightbytes and the first 2767 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2768 // argument is passed in memory. NOTE: This is necessary to keep the 2769 // ABI working for processors that don't support the __m256 type. 2770 // 2771 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2772 // 2773 // Some of these are enforced by the merging logic. Others can arise 2774 // only with unions; for example: 2775 // union { _Complex double; unsigned; } 2776 // 2777 // Note that clauses (b) and (c) were added in 0.98. 2778 // 2779 if (Hi == Memory) 2780 Lo = Memory; 2781 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2782 Lo = Memory; 2783 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2784 Lo = Memory; 2785 if (Hi == SSEUp && Lo != SSE) 2786 Hi = SSE; 2787 } 2788 2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2790 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2791 // classified recursively so that always two fields are 2792 // considered. The resulting class is calculated according to 2793 // the classes of the fields in the eightbyte: 2794 // 2795 // (a) If both classes are equal, this is the resulting class. 2796 // 2797 // (b) If one of the classes is NO_CLASS, the resulting class is 2798 // the other class. 2799 // 2800 // (c) If one of the classes is MEMORY, the result is the MEMORY 2801 // class. 2802 // 2803 // (d) If one of the classes is INTEGER, the result is the 2804 // INTEGER. 2805 // 2806 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2807 // MEMORY is used as class. 2808 // 2809 // (f) Otherwise class SSE is used. 2810 2811 // Accum should never be memory (we should have returned) or 2812 // ComplexX87 (because this cannot be passed in a structure). 2813 assert((Accum != Memory && Accum != ComplexX87) && 2814 "Invalid accumulated classification during merge."); 2815 if (Accum == Field || Field == NoClass) 2816 return Accum; 2817 if (Field == Memory) 2818 return Memory; 2819 if (Accum == NoClass) 2820 return Field; 2821 if (Accum == Integer || Field == Integer) 2822 return Integer; 2823 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2824 Accum == X87 || Accum == X87Up) 2825 return Memory; 2826 return SSE; 2827 } 2828 2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2830 Class &Lo, Class &Hi, bool isNamedArg) const { 2831 // FIXME: This code can be simplified by introducing a simple value class for 2832 // Class pairs with appropriate constructor methods for the various 2833 // situations. 2834 2835 // FIXME: Some of the split computations are wrong; unaligned vectors 2836 // shouldn't be passed in registers for example, so there is no chance they 2837 // can straddle an eightbyte. Verify & simplify. 2838 2839 Lo = Hi = NoClass; 2840 2841 Class &Current = OffsetBase < 64 ? Lo : Hi; 2842 Current = Memory; 2843 2844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2845 BuiltinType::Kind k = BT->getKind(); 2846 2847 if (k == BuiltinType::Void) { 2848 Current = NoClass; 2849 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2850 Lo = Integer; 2851 Hi = Integer; 2852 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2853 Current = Integer; 2854 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2855 k == BuiltinType::Float16) { 2856 Current = SSE; 2857 } else if (k == BuiltinType::LongDouble) { 2858 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2859 if (LDF == &llvm::APFloat::IEEEquad()) { 2860 Lo = SSE; 2861 Hi = SSEUp; 2862 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2863 Lo = X87; 2864 Hi = X87Up; 2865 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2866 Current = SSE; 2867 } else 2868 llvm_unreachable("unexpected long double representation!"); 2869 } 2870 // FIXME: _Decimal32 and _Decimal64 are SSE. 2871 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2872 return; 2873 } 2874 2875 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2876 // Classify the underlying integer type. 2877 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2878 return; 2879 } 2880 2881 if (Ty->hasPointerRepresentation()) { 2882 Current = Integer; 2883 return; 2884 } 2885 2886 if (Ty->isMemberPointerType()) { 2887 if (Ty->isMemberFunctionPointerType()) { 2888 if (Has64BitPointers) { 2889 // If Has64BitPointers, this is an {i64, i64}, so classify both 2890 // Lo and Hi now. 2891 Lo = Hi = Integer; 2892 } else { 2893 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2894 // straddles an eightbyte boundary, Hi should be classified as well. 2895 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2896 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2897 if (EB_FuncPtr != EB_ThisAdj) { 2898 Lo = Hi = Integer; 2899 } else { 2900 Current = Integer; 2901 } 2902 } 2903 } else { 2904 Current = Integer; 2905 } 2906 return; 2907 } 2908 2909 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VT); 2911 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2912 // gcc passes the following as integer: 2913 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2914 // 2 bytes - <2 x char>, <1 x short> 2915 // 1 byte - <1 x char> 2916 Current = Integer; 2917 2918 // If this type crosses an eightbyte boundary, it should be 2919 // split. 2920 uint64_t EB_Lo = (OffsetBase) / 64; 2921 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2922 if (EB_Lo != EB_Hi) 2923 Hi = Lo; 2924 } else if (Size == 64) { 2925 QualType ElementType = VT->getElementType(); 2926 2927 // gcc passes <1 x double> in memory. :( 2928 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2929 return; 2930 2931 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2932 // pass them as integer. For platforms where clang is the de facto 2933 // platform compiler, we must continue to use integer. 2934 if (!classifyIntegerMMXAsSSE() && 2935 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2936 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2939 Current = Integer; 2940 else 2941 Current = SSE; 2942 2943 // If this type crosses an eightbyte boundary, it should be 2944 // split. 2945 if (OffsetBase && OffsetBase != 64) 2946 Hi = Lo; 2947 } else if (Size == 128 || 2948 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2949 QualType ElementType = VT->getElementType(); 2950 2951 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2952 if (passInt128VectorsInMem() && Size != 128 && 2953 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2955 return; 2956 2957 // Arguments of 256-bits are split into four eightbyte chunks. The 2958 // least significant one belongs to class SSE and all the others to class 2959 // SSEUP. The original Lo and Hi design considers that types can't be 2960 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2961 // This design isn't correct for 256-bits, but since there're no cases 2962 // where the upper parts would need to be inspected, avoid adding 2963 // complexity and just consider Hi to match the 64-256 part. 2964 // 2965 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2966 // registers if they are "named", i.e. not part of the "..." of a 2967 // variadic function. 2968 // 2969 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2970 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2971 Lo = SSE; 2972 Hi = SSEUp; 2973 } 2974 return; 2975 } 2976 2977 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2978 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 if (ET->isIntegralOrEnumerationType()) { 2982 if (Size <= 64) 2983 Current = Integer; 2984 else if (Size <= 128) 2985 Lo = Hi = Integer; 2986 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2987 Current = SSE; 2988 } else if (ET == getContext().DoubleTy) { 2989 Lo = Hi = SSE; 2990 } else if (ET == getContext().LongDoubleTy) { 2991 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2992 if (LDF == &llvm::APFloat::IEEEquad()) 2993 Current = Memory; 2994 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2995 Current = ComplexX87; 2996 else if (LDF == &llvm::APFloat::IEEEdouble()) 2997 Lo = Hi = SSE; 2998 else 2999 llvm_unreachable("unexpected long double representation!"); 3000 } 3001 3002 // If this complex type crosses an eightbyte boundary then it 3003 // should be split. 3004 uint64_t EB_Real = (OffsetBase) / 64; 3005 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3006 if (Hi == NoClass && EB_Real != EB_Imag) 3007 Hi = Lo; 3008 3009 return; 3010 } 3011 3012 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 3013 if (EITy->getNumBits() <= 64) 3014 Current = Integer; 3015 else if (EITy->getNumBits() <= 128) 3016 Lo = Hi = Integer; 3017 // Larger values need to get passed in memory. 3018 return; 3019 } 3020 3021 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3022 // Arrays are treated like structures. 3023 3024 uint64_t Size = getContext().getTypeSize(Ty); 3025 3026 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3027 // than eight eightbytes, ..., it has class MEMORY. 3028 if (Size > 512) 3029 return; 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3032 // fields, it has class MEMORY. 3033 // 3034 // Only need to check alignment of array base. 3035 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3036 return; 3037 3038 // Otherwise implement simplified merge. We could be smarter about 3039 // this, but it isn't worth it and would be harder to verify. 3040 Current = NoClass; 3041 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3042 uint64_t ArraySize = AT->getSize().getZExtValue(); 3043 3044 // The only case a 256-bit wide vector could be used is when the array 3045 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3046 // to work for sizes wider than 128, early check and fallback to memory. 3047 // 3048 if (Size > 128 && 3049 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3050 return; 3051 3052 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3053 Class FieldLo, FieldHi; 3054 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3055 Lo = merge(Lo, FieldLo); 3056 Hi = merge(Hi, FieldHi); 3057 if (Lo == Memory || Hi == Memory) 3058 break; 3059 } 3060 3061 postMerge(Size, Lo, Hi); 3062 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3063 return; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 uint64_t Size = getContext().getTypeSize(Ty); 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3070 // than eight eightbytes, ..., it has class MEMORY. 3071 if (Size > 512) 3072 return; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3075 // copy constructor or a non-trivial destructor, it is passed by invisible 3076 // reference. 3077 if (getRecordArgABI(RT, getCXXABI())) 3078 return; 3079 3080 const RecordDecl *RD = RT->getDecl(); 3081 3082 // Assume variable sized types are passed in memory. 3083 if (RD->hasFlexibleArrayMember()) 3084 return; 3085 3086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3087 3088 // Reset Lo class, this will be recomputed. 3089 Current = NoClass; 3090 3091 // If this is a C++ record, classify the bases first. 3092 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3093 for (const auto &I : CXXRD->bases()) { 3094 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3095 "Unexpected base class!"); 3096 const auto *Base = 3097 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3098 3099 // Classify this field. 3100 // 3101 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3102 // single eightbyte, each is classified separately. Each eightbyte gets 3103 // initialized to class NO_CLASS. 3104 Class FieldLo, FieldHi; 3105 uint64_t Offset = 3106 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3107 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3108 Lo = merge(Lo, FieldLo); 3109 Hi = merge(Hi, FieldHi); 3110 if (Lo == Memory || Hi == Memory) { 3111 postMerge(Size, Lo, Hi); 3112 return; 3113 } 3114 } 3115 } 3116 3117 // Classify the fields one at a time, merging the results. 3118 unsigned idx = 0; 3119 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3120 LangOptions::ClangABI::Ver11 || 3121 getContext().getTargetInfo().getTriple().isPS4(); 3122 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3123 3124 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3125 i != e; ++i, ++idx) { 3126 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3127 bool BitField = i->isBitField(); 3128 3129 // Ignore padding bit-fields. 3130 if (BitField && i->isUnnamedBitfield()) 3131 continue; 3132 3133 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3134 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3135 // 3136 // The only case a 256-bit or a 512-bit wide vector could be used is when 3137 // the struct contains a single 256-bit or 512-bit element. Early check 3138 // and fallback to memory. 3139 // 3140 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3141 // than 128. 3142 if (Size > 128 && 3143 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3144 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3145 Lo = Memory; 3146 postMerge(Size, Lo, Hi); 3147 return; 3148 } 3149 // Note, skip this test for bit-fields, see below. 3150 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 3156 // Classify this field. 3157 // 3158 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3159 // exceeds a single eightbyte, each is classified 3160 // separately. Each eightbyte gets initialized to class 3161 // NO_CLASS. 3162 Class FieldLo, FieldHi; 3163 3164 // Bit-fields require special handling, they do not force the 3165 // structure to be passed in memory even if unaligned, and 3166 // therefore they can straddle an eightbyte. 3167 if (BitField) { 3168 assert(!i->isUnnamedBitfield()); 3169 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3170 uint64_t Size = i->getBitWidthValue(getContext()); 3171 3172 uint64_t EB_Lo = Offset / 64; 3173 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3174 3175 if (EB_Lo) { 3176 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3177 FieldLo = NoClass; 3178 FieldHi = Integer; 3179 } else { 3180 FieldLo = Integer; 3181 FieldHi = EB_Hi ? Integer : NoClass; 3182 } 3183 } else 3184 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3185 Lo = merge(Lo, FieldLo); 3186 Hi = merge(Hi, FieldHi); 3187 if (Lo == Memory || Hi == Memory) 3188 break; 3189 } 3190 3191 postMerge(Size, Lo, Hi); 3192 } 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3196 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3197 // place naturally. 3198 if (!isAggregateTypeForABI(Ty)) { 3199 // Treat an enum type as its underlying type. 3200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3201 Ty = EnumTy->getDecl()->getIntegerType(); 3202 3203 if (Ty->isExtIntType()) 3204 return getNaturalAlignIndirect(Ty); 3205 3206 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3207 : ABIArgInfo::getDirect()); 3208 } 3209 3210 return getNaturalAlignIndirect(Ty); 3211 } 3212 3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3214 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3215 uint64_t Size = getContext().getTypeSize(VecTy); 3216 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3217 if (Size <= 64 || Size > LargestVector) 3218 return true; 3219 QualType EltTy = VecTy->getElementType(); 3220 if (passInt128VectorsInMem() && 3221 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3222 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3230 unsigned freeIntRegs) const { 3231 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3232 // place naturally. 3233 // 3234 // This assumption is optimistic, as there could be free registers available 3235 // when we need to pass this argument in memory, and LLVM could try to pass 3236 // the argument in the free register. This does not seem to happen currently, 3237 // but this code would be much safer if we could mark the argument with 3238 // 'onstack'. See PR12193. 3239 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3240 !Ty->isExtIntType()) { 3241 // Treat an enum type as its underlying type. 3242 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3243 Ty = EnumTy->getDecl()->getIntegerType(); 3244 3245 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3246 : ABIArgInfo::getDirect()); 3247 } 3248 3249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3251 3252 // Compute the byval alignment. We specify the alignment of the byval in all 3253 // cases so that the mid-level optimizer knows the alignment of the byval. 3254 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3255 3256 // Attempt to avoid passing indirect results using byval when possible. This 3257 // is important for good codegen. 3258 // 3259 // We do this by coercing the value into a scalar type which the backend can 3260 // handle naturally (i.e., without using byval). 3261 // 3262 // For simplicity, we currently only do this when we have exhausted all of the 3263 // free integer registers. Doing this when there are free integer registers 3264 // would require more care, as we would have to ensure that the coerced value 3265 // did not claim the unused register. That would require either reording the 3266 // arguments to the function (so that any subsequent inreg values came first), 3267 // or only doing this optimization when there were no following arguments that 3268 // might be inreg. 3269 // 3270 // We currently expect it to be rare (particularly in well written code) for 3271 // arguments to be passed on the stack when there are still free integer 3272 // registers available (this would typically imply large structs being passed 3273 // by value), so this seems like a fair tradeoff for now. 3274 // 3275 // We can revisit this if the backend grows support for 'onstack' parameter 3276 // attributes. See PR12193. 3277 if (freeIntRegs == 0) { 3278 uint64_t Size = getContext().getTypeSize(Ty); 3279 3280 // If this type fits in an eightbyte, coerce it into the matching integral 3281 // type, which will end up on the stack (with alignment 8). 3282 if (Align == 8 && Size <= 64) 3283 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3284 Size)); 3285 } 3286 3287 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3288 } 3289 3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3291 /// register. Pick an LLVM IR type that will be passed as a vector register. 3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3293 // Wrapper structs/arrays that only contain vectors are passed just like 3294 // vectors; strip them off if present. 3295 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3296 Ty = QualType(InnerTy, 0); 3297 3298 llvm::Type *IRType = CGT.ConvertType(Ty); 3299 if (isa<llvm::VectorType>(IRType)) { 3300 // Don't pass vXi128 vectors in their native type, the backend can't 3301 // legalize them. 3302 if (passInt128VectorsInMem() && 3303 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3304 // Use a vXi64 vector. 3305 uint64_t Size = getContext().getTypeSize(Ty); 3306 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3307 Size / 64); 3308 } 3309 3310 return IRType; 3311 } 3312 3313 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3314 return IRType; 3315 3316 // We couldn't find the preferred IR vector type for 'Ty'. 3317 uint64_t Size = getContext().getTypeSize(Ty); 3318 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3319 3320 3321 // Return a LLVM IR vector type based on the size of 'Ty'. 3322 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3323 Size / 64); 3324 } 3325 3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3327 /// is known to either be off the end of the specified type or being in 3328 /// alignment padding. The user type specified is known to be at most 128 bits 3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3330 /// classification that put one of the two halves in the INTEGER class. 3331 /// 3332 /// It is conservatively correct to return false. 3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3334 unsigned EndBit, ASTContext &Context) { 3335 // If the bytes being queried are off the end of the type, there is no user 3336 // data hiding here. This handles analysis of builtins, vectors and other 3337 // types that don't contain interesting padding. 3338 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3339 if (TySize <= StartBit) 3340 return true; 3341 3342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3343 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3344 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3345 3346 // Check each element to see if the element overlaps with the queried range. 3347 for (unsigned i = 0; i != NumElts; ++i) { 3348 // If the element is after the span we care about, then we're done.. 3349 unsigned EltOffset = i*EltSize; 3350 if (EltOffset >= EndBit) break; 3351 3352 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3353 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3354 EndBit-EltOffset, Context)) 3355 return false; 3356 } 3357 // If it overlaps no elements, then it is safe to process as padding. 3358 return true; 3359 } 3360 3361 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3364 3365 // If this is a C++ record, check the bases first. 3366 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3367 for (const auto &I : CXXRD->bases()) { 3368 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3369 "Unexpected base class!"); 3370 const auto *Base = 3371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3372 3373 // If the base is after the span we care about, ignore it. 3374 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3375 if (BaseOffset >= EndBit) continue; 3376 3377 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3378 if (!BitsContainNoUserData(I.getType(), BaseStart, 3379 EndBit-BaseOffset, Context)) 3380 return false; 3381 } 3382 } 3383 3384 // Verify that no field has data that overlaps the region of interest. Yes 3385 // this could be sped up a lot by being smarter about queried fields, 3386 // however we're only looking at structs up to 16 bytes, so we don't care 3387 // much. 3388 unsigned idx = 0; 3389 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3390 i != e; ++i, ++idx) { 3391 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3392 3393 // If we found a field after the region we care about, then we're done. 3394 if (FieldOffset >= EndBit) break; 3395 3396 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3397 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3398 Context)) 3399 return false; 3400 } 3401 3402 // If nothing in this record overlapped the area of interest, then we're 3403 // clean. 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3412 const llvm::DataLayout &TD) { 3413 if (IROffset == 0 && IRType->isFloatingPointTy()) 3414 return IRType; 3415 3416 // If this is a struct, recurse into the field at the specified offset. 3417 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3418 if (!STy->getNumContainedTypes()) 3419 return nullptr; 3420 3421 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3422 unsigned Elt = SL->getElementContainingOffset(IROffset); 3423 IROffset -= SL->getElementOffset(Elt); 3424 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3425 } 3426 3427 // If this is an array, recurse into the field at the specified offset. 3428 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3429 llvm::Type *EltTy = ATy->getElementType(); 3430 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3431 IROffset -= IROffset / EltSize * EltSize; 3432 return getFPTypeAtOffset(EltTy, IROffset, TD); 3433 } 3434 3435 return nullptr; 3436 } 3437 3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3439 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3440 llvm::Type *X86_64ABIInfo:: 3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3442 QualType SourceTy, unsigned SourceOffset) const { 3443 const llvm::DataLayout &TD = getDataLayout(); 3444 unsigned SourceSize = 3445 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3446 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3447 if (!T0 || T0->isDoubleTy()) 3448 return llvm::Type::getDoubleTy(getVMContext()); 3449 3450 // Get the adjacent FP type. 3451 llvm::Type *T1 = nullptr; 3452 unsigned T0Size = TD.getTypeAllocSize(T0); 3453 if (SourceSize > T0Size) 3454 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3455 if (T1 == nullptr) { 3456 // Check if IRType is a half + float. float type will be in IROffset+4 due 3457 // to its alignment. 3458 if (T0->isHalfTy() && SourceSize > 4) 3459 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3460 // If we can't get a second FP type, return a simple half or float. 3461 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3462 // {float, i8} too. 3463 if (T1 == nullptr) 3464 return T0; 3465 } 3466 3467 if (T0->isFloatTy() && T1->isFloatTy()) 3468 return llvm::FixedVectorType::get(T0, 2); 3469 3470 if (T0->isHalfTy() && T1->isHalfTy()) { 3471 llvm::Type *T2 = nullptr; 3472 if (SourceSize > 4) 3473 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3474 if (T2 == nullptr) 3475 return llvm::FixedVectorType::get(T0, 2); 3476 return llvm::FixedVectorType::get(T0, 4); 3477 } 3478 3479 if (T0->isHalfTy() || T1->isHalfTy()) 3480 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3481 3482 return llvm::Type::getDoubleTy(getVMContext()); 3483 } 3484 3485 3486 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3487 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3488 /// about the high or low part of an up-to-16-byte struct. This routine picks 3489 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3490 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3491 /// etc). 3492 /// 3493 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3494 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3495 /// the 8-byte value references. PrefType may be null. 3496 /// 3497 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3498 /// an offset into this that we're processing (which is always either 0 or 8). 3499 /// 3500 llvm::Type *X86_64ABIInfo:: 3501 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3502 QualType SourceTy, unsigned SourceOffset) const { 3503 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3504 // returning an 8-byte unit starting with it. See if we can safely use it. 3505 if (IROffset == 0) { 3506 // Pointers and int64's always fill the 8-byte unit. 3507 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3508 IRType->isIntegerTy(64)) 3509 return IRType; 3510 3511 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3512 // goodness in the source type is just tail padding. This is allowed to 3513 // kick in for struct {double,int} on the int, but not on 3514 // struct{double,int,int} because we wouldn't return the second int. We 3515 // have to do this analysis on the source type because we can't depend on 3516 // unions being lowered a specific way etc. 3517 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3518 IRType->isIntegerTy(32) || 3519 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3520 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3521 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3522 3523 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3524 SourceOffset*8+64, getContext())) 3525 return IRType; 3526 } 3527 } 3528 3529 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3530 // If this is a struct, recurse into the field at the specified offset. 3531 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3532 if (IROffset < SL->getSizeInBytes()) { 3533 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3534 IROffset -= SL->getElementOffset(FieldIdx); 3535 3536 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3537 SourceTy, SourceOffset); 3538 } 3539 } 3540 3541 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3542 llvm::Type *EltTy = ATy->getElementType(); 3543 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3544 unsigned EltOffset = IROffset/EltSize*EltSize; 3545 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3546 SourceOffset); 3547 } 3548 3549 // Okay, we don't have any better idea of what to pass, so we pass this in an 3550 // integer register that isn't too big to fit the rest of the struct. 3551 unsigned TySizeInBytes = 3552 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3553 3554 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3555 3556 // It is always safe to classify this as an integer type up to i64 that 3557 // isn't larger than the structure. 3558 return llvm::IntegerType::get(getVMContext(), 3559 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3560 } 3561 3562 3563 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3564 /// be used as elements of a two register pair to pass or return, return a 3565 /// first class aggregate to represent them. For example, if the low part of 3566 /// a by-value argument should be passed as i32* and the high part as float, 3567 /// return {i32*, float}. 3568 static llvm::Type * 3569 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3570 const llvm::DataLayout &TD) { 3571 // In order to correctly satisfy the ABI, we need to the high part to start 3572 // at offset 8. If the high and low parts we inferred are both 4-byte types 3573 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3574 // the second element at offset 8. Check for this: 3575 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3576 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3577 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3578 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3579 3580 // To handle this, we have to increase the size of the low part so that the 3581 // second element will start at an 8 byte offset. We can't increase the size 3582 // of the second element because it might make us access off the end of the 3583 // struct. 3584 if (HiStart != 8) { 3585 // There are usually two sorts of types the ABI generation code can produce 3586 // for the low part of a pair that aren't 8 bytes in size: half, float or 3587 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3588 // NaCl). 3589 // Promote these to a larger type. 3590 if (Lo->isHalfTy() || Lo->isFloatTy()) 3591 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3592 else { 3593 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3594 && "Invalid/unknown lo type"); 3595 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3596 } 3597 } 3598 3599 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3600 3601 // Verify that the second element is at an 8-byte offset. 3602 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3603 "Invalid x86-64 argument pair!"); 3604 return Result; 3605 } 3606 3607 ABIArgInfo X86_64ABIInfo:: 3608 classifyReturnType(QualType RetTy) const { 3609 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3610 // classification algorithm. 3611 X86_64ABIInfo::Class Lo, Hi; 3612 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3613 3614 // Check some invariants. 3615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3617 3618 llvm::Type *ResType = nullptr; 3619 switch (Lo) { 3620 case NoClass: 3621 if (Hi == NoClass) 3622 return ABIArgInfo::getIgnore(); 3623 // If the low part is just padding, it takes no register, leave ResType 3624 // null. 3625 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3626 "Unknown missing lo part"); 3627 break; 3628 3629 case SSEUp: 3630 case X87Up: 3631 llvm_unreachable("Invalid classification for lo word."); 3632 3633 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3634 // hidden argument. 3635 case Memory: 3636 return getIndirectReturnResult(RetTy); 3637 3638 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3639 // available register of the sequence %rax, %rdx is used. 3640 case Integer: 3641 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3642 3643 // If we have a sign or zero extended integer, make sure to return Extend 3644 // so that the parameter gets the right LLVM IR attributes. 3645 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3646 // Treat an enum type as its underlying type. 3647 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3648 RetTy = EnumTy->getDecl()->getIntegerType(); 3649 3650 if (RetTy->isIntegralOrEnumerationType() && 3651 isPromotableIntegerTypeForABI(RetTy)) 3652 return ABIArgInfo::getExtend(RetTy); 3653 } 3654 break; 3655 3656 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3657 // available SSE register of the sequence %xmm0, %xmm1 is used. 3658 case SSE: 3659 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3660 break; 3661 3662 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3663 // returned on the X87 stack in %st0 as 80-bit x87 number. 3664 case X87: 3665 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3666 break; 3667 3668 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3669 // part of the value is returned in %st0 and the imaginary part in 3670 // %st1. 3671 case ComplexX87: 3672 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3673 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3674 llvm::Type::getX86_FP80Ty(getVMContext())); 3675 break; 3676 } 3677 3678 llvm::Type *HighPart = nullptr; 3679 switch (Hi) { 3680 // Memory was handled previously and X87 should 3681 // never occur as a hi class. 3682 case Memory: 3683 case X87: 3684 llvm_unreachable("Invalid classification for hi word."); 3685 3686 case ComplexX87: // Previously handled. 3687 case NoClass: 3688 break; 3689 3690 case Integer: 3691 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3692 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3693 return ABIArgInfo::getDirect(HighPart, 8); 3694 break; 3695 case SSE: 3696 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3697 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3698 return ABIArgInfo::getDirect(HighPart, 8); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3702 // is passed in the next available eightbyte chunk if the last used 3703 // vector register. 3704 // 3705 // SSEUP should always be preceded by SSE, just widen. 3706 case SSEUp: 3707 assert(Lo == SSE && "Unexpected SSEUp classification."); 3708 ResType = GetByteVectorType(RetTy); 3709 break; 3710 3711 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3712 // returned together with the previous X87 value in %st0. 3713 case X87Up: 3714 // If X87Up is preceded by X87, we don't need to do 3715 // anything. However, in some cases with unions it may not be 3716 // preceded by X87. In such situations we follow gcc and pass the 3717 // extra bits in an SSE reg. 3718 if (Lo != X87) { 3719 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3720 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3721 return ABIArgInfo::getDirect(HighPart, 8); 3722 } 3723 break; 3724 } 3725 3726 // If a high part was specified, merge it together with the low part. It is 3727 // known to pass in the high eightbyte of the result. We do this by forming a 3728 // first class struct aggregate with the high and low part: {low, high} 3729 if (HighPart) 3730 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3731 3732 return ABIArgInfo::getDirect(ResType); 3733 } 3734 3735 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3736 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3737 bool isNamedArg) 3738 const 3739 { 3740 Ty = useFirstFieldIfTransparentUnion(Ty); 3741 3742 X86_64ABIInfo::Class Lo, Hi; 3743 classify(Ty, 0, Lo, Hi, isNamedArg); 3744 3745 // Check some invariants. 3746 // FIXME: Enforce these by construction. 3747 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3748 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3749 3750 neededInt = 0; 3751 neededSSE = 0; 3752 llvm::Type *ResType = nullptr; 3753 switch (Lo) { 3754 case NoClass: 3755 if (Hi == NoClass) 3756 return ABIArgInfo::getIgnore(); 3757 // If the low part is just padding, it takes no register, leave ResType 3758 // null. 3759 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3760 "Unknown missing lo part"); 3761 break; 3762 3763 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3764 // on the stack. 3765 case Memory: 3766 3767 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3768 // COMPLEX_X87, it is passed in memory. 3769 case X87: 3770 case ComplexX87: 3771 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3772 ++neededInt; 3773 return getIndirectResult(Ty, freeIntRegs); 3774 3775 case SSEUp: 3776 case X87Up: 3777 llvm_unreachable("Invalid classification for lo word."); 3778 3779 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3780 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3781 // and %r9 is used. 3782 case Integer: 3783 ++neededInt; 3784 3785 // Pick an 8-byte type based on the preferred type. 3786 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3787 3788 // If we have a sign or zero extended integer, make sure to return Extend 3789 // so that the parameter gets the right LLVM IR attributes. 3790 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3791 // Treat an enum type as its underlying type. 3792 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3793 Ty = EnumTy->getDecl()->getIntegerType(); 3794 3795 if (Ty->isIntegralOrEnumerationType() && 3796 isPromotableIntegerTypeForABI(Ty)) 3797 return ABIArgInfo::getExtend(Ty); 3798 } 3799 3800 break; 3801 3802 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3803 // available SSE register is used, the registers are taken in the 3804 // order from %xmm0 to %xmm7. 3805 case SSE: { 3806 llvm::Type *IRType = CGT.ConvertType(Ty); 3807 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3808 ++neededSSE; 3809 break; 3810 } 3811 } 3812 3813 llvm::Type *HighPart = nullptr; 3814 switch (Hi) { 3815 // Memory was handled previously, ComplexX87 and X87 should 3816 // never occur as hi classes, and X87Up must be preceded by X87, 3817 // which is passed in memory. 3818 case Memory: 3819 case X87: 3820 case ComplexX87: 3821 llvm_unreachable("Invalid classification for hi word."); 3822 3823 case NoClass: break; 3824 3825 case Integer: 3826 ++neededInt; 3827 // Pick an 8-byte type based on the preferred type. 3828 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3829 3830 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3831 return ABIArgInfo::getDirect(HighPart, 8); 3832 break; 3833 3834 // X87Up generally doesn't occur here (long double is passed in 3835 // memory), except in situations involving unions. 3836 case X87Up: 3837 case SSE: 3838 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3839 3840 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3841 return ABIArgInfo::getDirect(HighPart, 8); 3842 3843 ++neededSSE; 3844 break; 3845 3846 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3847 // eightbyte is passed in the upper half of the last used SSE 3848 // register. This only happens when 128-bit vectors are passed. 3849 case SSEUp: 3850 assert(Lo == SSE && "Unexpected SSEUp classification"); 3851 ResType = GetByteVectorType(Ty); 3852 break; 3853 } 3854 3855 // If a high part was specified, merge it together with the low part. It is 3856 // known to pass in the high eightbyte of the result. We do this by forming a 3857 // first class struct aggregate with the high and low part: {low, high} 3858 if (HighPart) 3859 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3860 3861 return ABIArgInfo::getDirect(ResType); 3862 } 3863 3864 ABIArgInfo 3865 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3866 unsigned &NeededSSE) const { 3867 auto RT = Ty->getAs<RecordType>(); 3868 assert(RT && "classifyRegCallStructType only valid with struct types"); 3869 3870 if (RT->getDecl()->hasFlexibleArrayMember()) 3871 return getIndirectReturnResult(Ty); 3872 3873 // Sum up bases 3874 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3875 if (CXXRD->isDynamicClass()) { 3876 NeededInt = NeededSSE = 0; 3877 return getIndirectReturnResult(Ty); 3878 } 3879 3880 for (const auto &I : CXXRD->bases()) 3881 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3882 .isIndirect()) { 3883 NeededInt = NeededSSE = 0; 3884 return getIndirectReturnResult(Ty); 3885 } 3886 } 3887 3888 // Sum up members 3889 for (const auto *FD : RT->getDecl()->fields()) { 3890 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3891 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3892 .isIndirect()) { 3893 NeededInt = NeededSSE = 0; 3894 return getIndirectReturnResult(Ty); 3895 } 3896 } else { 3897 unsigned LocalNeededInt, LocalNeededSSE; 3898 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3899 LocalNeededSSE, true) 3900 .isIndirect()) { 3901 NeededInt = NeededSSE = 0; 3902 return getIndirectReturnResult(Ty); 3903 } 3904 NeededInt += LocalNeededInt; 3905 NeededSSE += LocalNeededSSE; 3906 } 3907 } 3908 3909 return ABIArgInfo::getDirect(); 3910 } 3911 3912 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3913 unsigned &NeededInt, 3914 unsigned &NeededSSE) const { 3915 3916 NeededInt = 0; 3917 NeededSSE = 0; 3918 3919 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3920 } 3921 3922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3923 3924 const unsigned CallingConv = FI.getCallingConvention(); 3925 // It is possible to force Win64 calling convention on any x86_64 target by 3926 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3927 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3928 if (CallingConv == llvm::CallingConv::Win64) { 3929 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3930 Win64ABIInfo.computeInfo(FI); 3931 return; 3932 } 3933 3934 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3935 3936 // Keep track of the number of assigned registers. 3937 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3938 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3939 unsigned NeededInt, NeededSSE; 3940 3941 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3942 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3943 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3944 FI.getReturnInfo() = 3945 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3946 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3947 FreeIntRegs -= NeededInt; 3948 FreeSSERegs -= NeededSSE; 3949 } else { 3950 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3951 } 3952 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3953 getContext().getCanonicalType(FI.getReturnType() 3954 ->getAs<ComplexType>() 3955 ->getElementType()) == 3956 getContext().LongDoubleTy) 3957 // Complex Long Double Type is passed in Memory when Regcall 3958 // calling convention is used. 3959 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3960 else 3961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3962 } 3963 3964 // If the return value is indirect, then the hidden argument is consuming one 3965 // integer register. 3966 if (FI.getReturnInfo().isIndirect()) 3967 --FreeIntRegs; 3968 3969 // The chain argument effectively gives us another free register. 3970 if (FI.isChainCall()) 3971 ++FreeIntRegs; 3972 3973 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3974 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3975 // get assigned (in left-to-right order) for passing as follows... 3976 unsigned ArgNo = 0; 3977 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3978 it != ie; ++it, ++ArgNo) { 3979 bool IsNamedArg = ArgNo < NumRequiredArgs; 3980 3981 if (IsRegCall && it->type->isStructureOrClassType()) 3982 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3983 else 3984 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3985 NeededSSE, IsNamedArg); 3986 3987 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3988 // eightbyte of an argument, the whole argument is passed on the 3989 // stack. If registers have already been assigned for some 3990 // eightbytes of such an argument, the assignments get reverted. 3991 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3992 FreeIntRegs -= NeededInt; 3993 FreeSSERegs -= NeededSSE; 3994 } else { 3995 it->info = getIndirectResult(it->type, FreeIntRegs); 3996 } 3997 } 3998 } 3999 4000 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4001 Address VAListAddr, QualType Ty) { 4002 Address overflow_arg_area_p = 4003 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4004 llvm::Value *overflow_arg_area = 4005 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4006 4007 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4008 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4009 // It isn't stated explicitly in the standard, but in practice we use 4010 // alignment greater than 16 where necessary. 4011 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4012 if (Align > CharUnits::fromQuantity(8)) { 4013 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4014 Align); 4015 } 4016 4017 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4018 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4019 llvm::Value *Res = 4020 CGF.Builder.CreateBitCast(overflow_arg_area, 4021 llvm::PointerType::getUnqual(LTy)); 4022 4023 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4024 // l->overflow_arg_area + sizeof(type). 4025 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4026 // an 8 byte boundary. 4027 4028 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4029 llvm::Value *Offset = 4030 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4031 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4032 Offset, "overflow_arg_area.next"); 4033 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4034 4035 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4036 return Address(Res, Align); 4037 } 4038 4039 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4040 QualType Ty) const { 4041 // Assume that va_list type is correct; should be pointer to LLVM type: 4042 // struct { 4043 // i32 gp_offset; 4044 // i32 fp_offset; 4045 // i8* overflow_arg_area; 4046 // i8* reg_save_area; 4047 // }; 4048 unsigned neededInt, neededSSE; 4049 4050 Ty = getContext().getCanonicalType(Ty); 4051 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4052 /*isNamedArg*/false); 4053 4054 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4055 // in the registers. If not go to step 7. 4056 if (!neededInt && !neededSSE) 4057 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4058 4059 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4060 // general purpose registers needed to pass type and num_fp to hold 4061 // the number of floating point registers needed. 4062 4063 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4064 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4065 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4066 // 4067 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4068 // register save space). 4069 4070 llvm::Value *InRegs = nullptr; 4071 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4072 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4073 if (neededInt) { 4074 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4075 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4076 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4077 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4078 } 4079 4080 if (neededSSE) { 4081 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4082 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4083 llvm::Value *FitsInFP = 4084 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4085 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4086 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4087 } 4088 4089 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4090 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4091 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4092 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4093 4094 // Emit code to load the value if it was passed in registers. 4095 4096 CGF.EmitBlock(InRegBlock); 4097 4098 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4099 // an offset of l->gp_offset and/or l->fp_offset. This may require 4100 // copying to a temporary location in case the parameter is passed 4101 // in different register classes or requires an alignment greater 4102 // than 8 for general purpose registers and 16 for XMM registers. 4103 // 4104 // FIXME: This really results in shameful code when we end up needing to 4105 // collect arguments from different places; often what should result in a 4106 // simple assembling of a structure from scattered addresses has many more 4107 // loads than necessary. Can we clean this up? 4108 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4109 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4110 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4111 4112 Address RegAddr = Address::invalid(); 4113 if (neededInt && neededSSE) { 4114 // FIXME: Cleanup. 4115 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4116 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4117 Address Tmp = CGF.CreateMemTemp(Ty); 4118 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4119 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4120 llvm::Type *TyLo = ST->getElementType(0); 4121 llvm::Type *TyHi = ST->getElementType(1); 4122 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4123 "Unexpected ABI info for mixed regs"); 4124 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4125 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4126 llvm::Value *GPAddr = 4127 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4128 llvm::Value *FPAddr = 4129 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4130 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4131 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4132 4133 // Copy the first element. 4134 // FIXME: Our choice of alignment here and below is probably pessimistic. 4135 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4136 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4137 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4138 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4139 4140 // Copy the second element. 4141 V = CGF.Builder.CreateAlignedLoad( 4142 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4143 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4144 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4145 4146 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4147 } else if (neededInt) { 4148 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4149 CharUnits::fromQuantity(8)); 4150 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4151 4152 // Copy to a temporary if necessary to ensure the appropriate alignment. 4153 auto TInfo = getContext().getTypeInfoInChars(Ty); 4154 uint64_t TySize = TInfo.Width.getQuantity(); 4155 CharUnits TyAlign = TInfo.Align; 4156 4157 // Copy into a temporary if the type is more aligned than the 4158 // register save area. 4159 if (TyAlign.getQuantity() > 8) { 4160 Address Tmp = CGF.CreateMemTemp(Ty); 4161 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4162 RegAddr = Tmp; 4163 } 4164 4165 } else if (neededSSE == 1) { 4166 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4167 CharUnits::fromQuantity(16)); 4168 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4169 } else { 4170 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4171 // SSE registers are spaced 16 bytes apart in the register save 4172 // area, we need to collect the two eightbytes together. 4173 // The ABI isn't explicit about this, but it seems reasonable 4174 // to assume that the slots are 16-byte aligned, since the stack is 4175 // naturally 16-byte aligned and the prologue is expected to store 4176 // all the SSE registers to the RSA. 4177 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4178 fp_offset), 4179 CharUnits::fromQuantity(16)); 4180 Address RegAddrHi = 4181 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4182 CharUnits::fromQuantity(16)); 4183 llvm::Type *ST = AI.canHaveCoerceToType() 4184 ? AI.getCoerceToType() 4185 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4186 llvm::Value *V; 4187 Address Tmp = CGF.CreateMemTemp(Ty); 4188 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4189 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4190 RegAddrLo, ST->getStructElementType(0))); 4191 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4192 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4193 RegAddrHi, ST->getStructElementType(1))); 4194 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4195 4196 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4197 } 4198 4199 // AMD64-ABI 3.5.7p5: Step 5. Set: 4200 // l->gp_offset = l->gp_offset + num_gp * 8 4201 // l->fp_offset = l->fp_offset + num_fp * 16. 4202 if (neededInt) { 4203 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4204 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4205 gp_offset_p); 4206 } 4207 if (neededSSE) { 4208 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4209 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4210 fp_offset_p); 4211 } 4212 CGF.EmitBranch(ContBlock); 4213 4214 // Emit code to load the value if it was passed in memory. 4215 4216 CGF.EmitBlock(InMemBlock); 4217 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4218 4219 // Return the appropriate result. 4220 4221 CGF.EmitBlock(ContBlock); 4222 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4223 "vaarg.addr"); 4224 return ResAddr; 4225 } 4226 4227 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4228 QualType Ty) const { 4229 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4230 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4231 uint64_t Width = getContext().getTypeSize(Ty); 4232 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4233 4234 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4235 CGF.getContext().getTypeInfoInChars(Ty), 4236 CharUnits::fromQuantity(8), 4237 /*allowHigherAlign*/ false); 4238 } 4239 4240 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4241 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4242 const Type *Base = nullptr; 4243 uint64_t NumElts = 0; 4244 4245 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4246 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4247 FreeSSERegs -= NumElts; 4248 return getDirectX86Hva(); 4249 } 4250 return current; 4251 } 4252 4253 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4254 bool IsReturnType, bool IsVectorCall, 4255 bool IsRegCall) const { 4256 4257 if (Ty->isVoidType()) 4258 return ABIArgInfo::getIgnore(); 4259 4260 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4261 Ty = EnumTy->getDecl()->getIntegerType(); 4262 4263 TypeInfo Info = getContext().getTypeInfo(Ty); 4264 uint64_t Width = Info.Width; 4265 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4266 4267 const RecordType *RT = Ty->getAs<RecordType>(); 4268 if (RT) { 4269 if (!IsReturnType) { 4270 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4271 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4272 } 4273 4274 if (RT->getDecl()->hasFlexibleArrayMember()) 4275 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4276 4277 } 4278 4279 const Type *Base = nullptr; 4280 uint64_t NumElts = 0; 4281 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4282 // other targets. 4283 if ((IsVectorCall || IsRegCall) && 4284 isHomogeneousAggregate(Ty, Base, NumElts)) { 4285 if (IsRegCall) { 4286 if (FreeSSERegs >= NumElts) { 4287 FreeSSERegs -= NumElts; 4288 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4289 return ABIArgInfo::getDirect(); 4290 return ABIArgInfo::getExpand(); 4291 } 4292 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4293 } else if (IsVectorCall) { 4294 if (FreeSSERegs >= NumElts && 4295 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4296 FreeSSERegs -= NumElts; 4297 return ABIArgInfo::getDirect(); 4298 } else if (IsReturnType) { 4299 return ABIArgInfo::getExpand(); 4300 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4301 // HVAs are delayed and reclassified in the 2nd step. 4302 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4303 } 4304 } 4305 } 4306 4307 if (Ty->isMemberPointerType()) { 4308 // If the member pointer is represented by an LLVM int or ptr, pass it 4309 // directly. 4310 llvm::Type *LLTy = CGT.ConvertType(Ty); 4311 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4312 return ABIArgInfo::getDirect(); 4313 } 4314 4315 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4316 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4317 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4318 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4319 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4320 4321 // Otherwise, coerce it to a small integer. 4322 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4323 } 4324 4325 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4326 switch (BT->getKind()) { 4327 case BuiltinType::Bool: 4328 // Bool type is always extended to the ABI, other builtin types are not 4329 // extended. 4330 return ABIArgInfo::getExtend(Ty); 4331 4332 case BuiltinType::LongDouble: 4333 // Mingw64 GCC uses the old 80 bit extended precision floating point 4334 // unit. It passes them indirectly through memory. 4335 if (IsMingw64) { 4336 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4337 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4338 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4339 } 4340 break; 4341 4342 case BuiltinType::Int128: 4343 case BuiltinType::UInt128: 4344 // If it's a parameter type, the normal ABI rule is that arguments larger 4345 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4346 // even though it isn't particularly efficient. 4347 if (!IsReturnType) 4348 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4349 4350 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4351 // Clang matches them for compatibility. 4352 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4353 llvm::Type::getInt64Ty(getVMContext()), 2)); 4354 4355 default: 4356 break; 4357 } 4358 } 4359 4360 if (Ty->isExtIntType()) { 4361 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4362 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4363 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4364 // anyway as long is it fits in them, so we don't have to check the power of 4365 // 2. 4366 if (Width <= 64) 4367 return ABIArgInfo::getDirect(); 4368 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4369 } 4370 4371 return ABIArgInfo::getDirect(); 4372 } 4373 4374 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4375 const unsigned CC = FI.getCallingConvention(); 4376 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4377 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4378 4379 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4380 // classification rules. 4381 if (CC == llvm::CallingConv::X86_64_SysV) { 4382 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4383 SysVABIInfo.computeInfo(FI); 4384 return; 4385 } 4386 4387 unsigned FreeSSERegs = 0; 4388 if (IsVectorCall) { 4389 // We can use up to 4 SSE return registers with vectorcall. 4390 FreeSSERegs = 4; 4391 } else if (IsRegCall) { 4392 // RegCall gives us 16 SSE registers. 4393 FreeSSERegs = 16; 4394 } 4395 4396 if (!getCXXABI().classifyReturnType(FI)) 4397 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4398 IsVectorCall, IsRegCall); 4399 4400 if (IsVectorCall) { 4401 // We can use up to 6 SSE register parameters with vectorcall. 4402 FreeSSERegs = 6; 4403 } else if (IsRegCall) { 4404 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4405 FreeSSERegs = 16; 4406 } 4407 4408 unsigned ArgNum = 0; 4409 unsigned ZeroSSERegs = 0; 4410 for (auto &I : FI.arguments()) { 4411 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4412 // XMM/YMM registers. After the sixth argument, pretend no vector 4413 // registers are left. 4414 unsigned *MaybeFreeSSERegs = 4415 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4416 I.info = 4417 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4418 ++ArgNum; 4419 } 4420 4421 if (IsVectorCall) { 4422 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4423 // second pass. 4424 for (auto &I : FI.arguments()) 4425 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4426 } 4427 } 4428 4429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4430 QualType Ty) const { 4431 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4432 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4433 uint64_t Width = getContext().getTypeSize(Ty); 4434 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4435 4436 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4437 CGF.getContext().getTypeInfoInChars(Ty), 4438 CharUnits::fromQuantity(8), 4439 /*allowHigherAlign*/ false); 4440 } 4441 4442 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4443 llvm::Value *Address, bool Is64Bit, 4444 bool IsAIX) { 4445 // This is calculated from the LLVM and GCC tables and verified 4446 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4447 4448 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4449 4450 llvm::IntegerType *i8 = CGF.Int8Ty; 4451 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4452 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4453 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4454 4455 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4456 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4457 4458 // 32-63: fp0-31, the 8-byte floating-point registers 4459 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4460 4461 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4462 // 64: mq 4463 // 65: lr 4464 // 66: ctr 4465 // 67: ap 4466 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4467 4468 // 68-76 are various 4-byte special-purpose registers: 4469 // 68-75 cr0-7 4470 // 76: xer 4471 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4472 4473 // 77-108: v0-31, the 16-byte vector registers 4474 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4475 4476 // 109: vrsave 4477 // 110: vscr 4478 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4479 4480 // AIX does not utilize the rest of the registers. 4481 if (IsAIX) 4482 return false; 4483 4484 // 111: spe_acc 4485 // 112: spefscr 4486 // 113: sfp 4487 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4488 4489 if (!Is64Bit) 4490 return false; 4491 4492 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4493 // or above CPU. 4494 // 64-bit only registers: 4495 // 114: tfhar 4496 // 115: tfiar 4497 // 116: texasr 4498 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4499 4500 return false; 4501 } 4502 4503 // AIX 4504 namespace { 4505 /// AIXABIInfo - The AIX XCOFF ABI information. 4506 class AIXABIInfo : public ABIInfo { 4507 const bool Is64Bit; 4508 const unsigned PtrByteSize; 4509 CharUnits getParamTypeAlignment(QualType Ty) const; 4510 4511 public: 4512 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4513 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4514 4515 bool isPromotableTypeForABI(QualType Ty) const; 4516 4517 ABIArgInfo classifyReturnType(QualType RetTy) const; 4518 ABIArgInfo classifyArgumentType(QualType Ty) const; 4519 4520 void computeInfo(CGFunctionInfo &FI) const override { 4521 if (!getCXXABI().classifyReturnType(FI)) 4522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4523 4524 for (auto &I : FI.arguments()) 4525 I.info = classifyArgumentType(I.type); 4526 } 4527 4528 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4529 QualType Ty) const override; 4530 }; 4531 4532 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4533 const bool Is64Bit; 4534 4535 public: 4536 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4537 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4538 Is64Bit(Is64Bit) {} 4539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4540 return 1; // r1 is the dedicated stack pointer 4541 } 4542 4543 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4544 llvm::Value *Address) const override; 4545 }; 4546 } // namespace 4547 4548 // Return true if the ABI requires Ty to be passed sign- or zero- 4549 // extended to 32/64 bits. 4550 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4551 // Treat an enum type as its underlying type. 4552 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4553 Ty = EnumTy->getDecl()->getIntegerType(); 4554 4555 // Promotable integer types are required to be promoted by the ABI. 4556 if (Ty->isPromotableIntegerType()) 4557 return true; 4558 4559 if (!Is64Bit) 4560 return false; 4561 4562 // For 64 bit mode, in addition to the usual promotable integer types, we also 4563 // need to extend all 32-bit types, since the ABI requires promotion to 64 4564 // bits. 4565 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4566 switch (BT->getKind()) { 4567 case BuiltinType::Int: 4568 case BuiltinType::UInt: 4569 return true; 4570 default: 4571 break; 4572 } 4573 4574 return false; 4575 } 4576 4577 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4578 if (RetTy->isAnyComplexType()) 4579 return ABIArgInfo::getDirect(); 4580 4581 if (RetTy->isVectorType()) 4582 return ABIArgInfo::getDirect(); 4583 4584 if (RetTy->isVoidType()) 4585 return ABIArgInfo::getIgnore(); 4586 4587 if (isAggregateTypeForABI(RetTy)) 4588 return getNaturalAlignIndirect(RetTy); 4589 4590 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4591 : ABIArgInfo::getDirect()); 4592 } 4593 4594 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4595 Ty = useFirstFieldIfTransparentUnion(Ty); 4596 4597 if (Ty->isAnyComplexType()) 4598 return ABIArgInfo::getDirect(); 4599 4600 if (Ty->isVectorType()) 4601 return ABIArgInfo::getDirect(); 4602 4603 if (isAggregateTypeForABI(Ty)) { 4604 // Records with non-trivial destructors/copy-constructors should not be 4605 // passed by value. 4606 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4607 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4608 4609 CharUnits CCAlign = getParamTypeAlignment(Ty); 4610 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4611 4612 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4613 /*Realign*/ TyAlign > CCAlign); 4614 } 4615 4616 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4617 : ABIArgInfo::getDirect()); 4618 } 4619 4620 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4621 // Complex types are passed just like their elements. 4622 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4623 Ty = CTy->getElementType(); 4624 4625 if (Ty->isVectorType()) 4626 return CharUnits::fromQuantity(16); 4627 4628 // If the structure contains a vector type, the alignment is 16. 4629 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4630 return CharUnits::fromQuantity(16); 4631 4632 return CharUnits::fromQuantity(PtrByteSize); 4633 } 4634 4635 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4636 QualType Ty) const { 4637 4638 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4639 TypeInfo.Align = getParamTypeAlignment(Ty); 4640 4641 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4642 4643 // If we have a complex type and the base type is smaller than the register 4644 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4645 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4646 // Clang expects us to produce a pointer to a structure with the two parts 4647 // packed tightly. So generate loads of the real and imaginary parts relative 4648 // to the va_list pointer, and store them to a temporary structure. We do the 4649 // same as the PPC64ABI here. 4650 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4651 CharUnits EltSize = TypeInfo.Width / 2; 4652 if (EltSize < SlotSize) 4653 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4654 } 4655 4656 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4657 SlotSize, /*AllowHigher*/ true); 4658 } 4659 4660 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4661 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4662 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4663 } 4664 4665 // PowerPC-32 4666 namespace { 4667 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4668 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4669 bool IsSoftFloatABI; 4670 bool IsRetSmallStructInRegABI; 4671 4672 CharUnits getParamTypeAlignment(QualType Ty) const; 4673 4674 public: 4675 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4676 bool RetSmallStructInRegABI) 4677 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4678 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4679 4680 ABIArgInfo classifyReturnType(QualType RetTy) const; 4681 4682 void computeInfo(CGFunctionInfo &FI) const override { 4683 if (!getCXXABI().classifyReturnType(FI)) 4684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4685 for (auto &I : FI.arguments()) 4686 I.info = classifyArgumentType(I.type); 4687 } 4688 4689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4690 QualType Ty) const override; 4691 }; 4692 4693 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4694 public: 4695 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4696 bool RetSmallStructInRegABI) 4697 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4698 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4699 4700 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4701 const CodeGenOptions &Opts); 4702 4703 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4704 // This is recovered from gcc output. 4705 return 1; // r1 is the dedicated stack pointer 4706 } 4707 4708 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4709 llvm::Value *Address) const override; 4710 }; 4711 } 4712 4713 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4714 // Complex types are passed just like their elements. 4715 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4716 Ty = CTy->getElementType(); 4717 4718 if (Ty->isVectorType()) 4719 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4720 : 4); 4721 4722 // For single-element float/vector structs, we consider the whole type 4723 // to have the same alignment requirements as its single element. 4724 const Type *AlignTy = nullptr; 4725 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4726 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4727 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4728 (BT && BT->isFloatingPoint())) 4729 AlignTy = EltType; 4730 } 4731 4732 if (AlignTy) 4733 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4734 return CharUnits::fromQuantity(4); 4735 } 4736 4737 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4738 uint64_t Size; 4739 4740 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4741 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4742 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4743 // System V ABI (1995), page 3-22, specified: 4744 // > A structure or union whose size is less than or equal to 8 bytes 4745 // > shall be returned in r3 and r4, as if it were first stored in the 4746 // > 8-byte aligned memory area and then the low addressed word were 4747 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4748 // > the last member of the structure or union are not defined. 4749 // 4750 // GCC for big-endian PPC32 inserts the pad before the first member, 4751 // not "beyond the last member" of the struct. To stay compatible 4752 // with GCC, we coerce the struct to an integer of the same size. 4753 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4754 if (Size == 0) 4755 return ABIArgInfo::getIgnore(); 4756 else { 4757 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4758 return ABIArgInfo::getDirect(CoerceTy); 4759 } 4760 } 4761 4762 return DefaultABIInfo::classifyReturnType(RetTy); 4763 } 4764 4765 // TODO: this implementation is now likely redundant with 4766 // DefaultABIInfo::EmitVAArg. 4767 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4768 QualType Ty) const { 4769 if (getTarget().getTriple().isOSDarwin()) { 4770 auto TI = getContext().getTypeInfoInChars(Ty); 4771 TI.Align = getParamTypeAlignment(Ty); 4772 4773 CharUnits SlotSize = CharUnits::fromQuantity(4); 4774 return emitVoidPtrVAArg(CGF, VAList, Ty, 4775 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4776 /*AllowHigherAlign=*/true); 4777 } 4778 4779 const unsigned OverflowLimit = 8; 4780 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4781 // TODO: Implement this. For now ignore. 4782 (void)CTy; 4783 return Address::invalid(); // FIXME? 4784 } 4785 4786 // struct __va_list_tag { 4787 // unsigned char gpr; 4788 // unsigned char fpr; 4789 // unsigned short reserved; 4790 // void *overflow_arg_area; 4791 // void *reg_save_area; 4792 // }; 4793 4794 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4795 bool isInt = !Ty->isFloatingType(); 4796 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4797 4798 // All aggregates are passed indirectly? That doesn't seem consistent 4799 // with the argument-lowering code. 4800 bool isIndirect = isAggregateTypeForABI(Ty); 4801 4802 CGBuilderTy &Builder = CGF.Builder; 4803 4804 // The calling convention either uses 1-2 GPRs or 1 FPR. 4805 Address NumRegsAddr = Address::invalid(); 4806 if (isInt || IsSoftFloatABI) { 4807 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4808 } else { 4809 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4810 } 4811 4812 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4813 4814 // "Align" the register count when TY is i64. 4815 if (isI64 || (isF64 && IsSoftFloatABI)) { 4816 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4817 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4818 } 4819 4820 llvm::Value *CC = 4821 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4822 4823 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4824 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4825 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4826 4827 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4828 4829 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4830 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4831 4832 // Case 1: consume registers. 4833 Address RegAddr = Address::invalid(); 4834 { 4835 CGF.EmitBlock(UsingRegs); 4836 4837 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4838 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4839 CharUnits::fromQuantity(8)); 4840 assert(RegAddr.getElementType() == CGF.Int8Ty); 4841 4842 // Floating-point registers start after the general-purpose registers. 4843 if (!(isInt || IsSoftFloatABI)) { 4844 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4845 CharUnits::fromQuantity(32)); 4846 } 4847 4848 // Get the address of the saved value by scaling the number of 4849 // registers we've used by the number of 4850 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4851 llvm::Value *RegOffset = 4852 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4853 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4854 RegAddr.getPointer(), RegOffset), 4855 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4856 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4857 4858 // Increase the used-register count. 4859 NumRegs = 4860 Builder.CreateAdd(NumRegs, 4861 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4862 Builder.CreateStore(NumRegs, NumRegsAddr); 4863 4864 CGF.EmitBranch(Cont); 4865 } 4866 4867 // Case 2: consume space in the overflow area. 4868 Address MemAddr = Address::invalid(); 4869 { 4870 CGF.EmitBlock(UsingOverflow); 4871 4872 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4873 4874 // Everything in the overflow area is rounded up to a size of at least 4. 4875 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4876 4877 CharUnits Size; 4878 if (!isIndirect) { 4879 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4880 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4881 } else { 4882 Size = CGF.getPointerSize(); 4883 } 4884 4885 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4886 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4887 OverflowAreaAlign); 4888 // Round up address of argument to alignment 4889 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4890 if (Align > OverflowAreaAlign) { 4891 llvm::Value *Ptr = OverflowArea.getPointer(); 4892 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4893 Align); 4894 } 4895 4896 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4897 4898 // Increase the overflow area. 4899 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4900 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4901 CGF.EmitBranch(Cont); 4902 } 4903 4904 CGF.EmitBlock(Cont); 4905 4906 // Merge the cases with a phi. 4907 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4908 "vaarg.addr"); 4909 4910 // Load the pointer if the argument was passed indirectly. 4911 if (isIndirect) { 4912 Result = Address(Builder.CreateLoad(Result, "aggr"), 4913 getContext().getTypeAlignInChars(Ty)); 4914 } 4915 4916 return Result; 4917 } 4918 4919 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4920 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4921 assert(Triple.isPPC32()); 4922 4923 switch (Opts.getStructReturnConvention()) { 4924 case CodeGenOptions::SRCK_Default: 4925 break; 4926 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4927 return false; 4928 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4929 return true; 4930 } 4931 4932 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4933 return true; 4934 4935 return false; 4936 } 4937 4938 bool 4939 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4940 llvm::Value *Address) const { 4941 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4942 /*IsAIX*/ false); 4943 } 4944 4945 // PowerPC-64 4946 4947 namespace { 4948 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4949 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4950 public: 4951 enum ABIKind { 4952 ELFv1 = 0, 4953 ELFv2 4954 }; 4955 4956 private: 4957 static const unsigned GPRBits = 64; 4958 ABIKind Kind; 4959 bool IsSoftFloatABI; 4960 4961 public: 4962 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4963 bool SoftFloatABI) 4964 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4965 4966 bool isPromotableTypeForABI(QualType Ty) const; 4967 CharUnits getParamTypeAlignment(QualType Ty) const; 4968 4969 ABIArgInfo classifyReturnType(QualType RetTy) const; 4970 ABIArgInfo classifyArgumentType(QualType Ty) const; 4971 4972 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4973 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4974 uint64_t Members) const override; 4975 4976 // TODO: We can add more logic to computeInfo to improve performance. 4977 // Example: For aggregate arguments that fit in a register, we could 4978 // use getDirectInReg (as is done below for structs containing a single 4979 // floating-point value) to avoid pushing them to memory on function 4980 // entry. This would require changing the logic in PPCISelLowering 4981 // when lowering the parameters in the caller and args in the callee. 4982 void computeInfo(CGFunctionInfo &FI) const override { 4983 if (!getCXXABI().classifyReturnType(FI)) 4984 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4985 for (auto &I : FI.arguments()) { 4986 // We rely on the default argument classification for the most part. 4987 // One exception: An aggregate containing a single floating-point 4988 // or vector item must be passed in a register if one is available. 4989 const Type *T = isSingleElementStruct(I.type, getContext()); 4990 if (T) { 4991 const BuiltinType *BT = T->getAs<BuiltinType>(); 4992 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4993 (BT && BT->isFloatingPoint())) { 4994 QualType QT(T, 0); 4995 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4996 continue; 4997 } 4998 } 4999 I.info = classifyArgumentType(I.type); 5000 } 5001 } 5002 5003 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5004 QualType Ty) const override; 5005 5006 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5007 bool asReturnValue) const override { 5008 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5009 } 5010 5011 bool isSwiftErrorInRegister() const override { 5012 return false; 5013 } 5014 }; 5015 5016 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5017 5018 public: 5019 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5020 PPC64_SVR4_ABIInfo::ABIKind Kind, 5021 bool SoftFloatABI) 5022 : TargetCodeGenInfo( 5023 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5024 5025 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5026 // This is recovered from gcc output. 5027 return 1; // r1 is the dedicated stack pointer 5028 } 5029 5030 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5031 llvm::Value *Address) const override; 5032 }; 5033 5034 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5035 public: 5036 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5037 5038 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5039 // This is recovered from gcc output. 5040 return 1; // r1 is the dedicated stack pointer 5041 } 5042 5043 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5044 llvm::Value *Address) const override; 5045 }; 5046 5047 } 5048 5049 // Return true if the ABI requires Ty to be passed sign- or zero- 5050 // extended to 64 bits. 5051 bool 5052 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5053 // Treat an enum type as its underlying type. 5054 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5055 Ty = EnumTy->getDecl()->getIntegerType(); 5056 5057 // Promotable integer types are required to be promoted by the ABI. 5058 if (isPromotableIntegerTypeForABI(Ty)) 5059 return true; 5060 5061 // In addition to the usual promotable integer types, we also need to 5062 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5063 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5064 switch (BT->getKind()) { 5065 case BuiltinType::Int: 5066 case BuiltinType::UInt: 5067 return true; 5068 default: 5069 break; 5070 } 5071 5072 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5073 if (EIT->getNumBits() < 64) 5074 return true; 5075 5076 return false; 5077 } 5078 5079 /// isAlignedParamType - Determine whether a type requires 16-byte or 5080 /// higher alignment in the parameter area. Always returns at least 8. 5081 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5082 // Complex types are passed just like their elements. 5083 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5084 Ty = CTy->getElementType(); 5085 5086 auto FloatUsesVector = [this](QualType Ty){ 5087 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5088 Ty) == &llvm::APFloat::IEEEquad(); 5089 }; 5090 5091 // Only vector types of size 16 bytes need alignment (larger types are 5092 // passed via reference, smaller types are not aligned). 5093 if (Ty->isVectorType()) { 5094 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5095 } else if (FloatUsesVector(Ty)) { 5096 // According to ABI document section 'Optional Save Areas': If extended 5097 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5098 // format are supported, map them to a single quadword, quadword aligned. 5099 return CharUnits::fromQuantity(16); 5100 } 5101 5102 // For single-element float/vector structs, we consider the whole type 5103 // to have the same alignment requirements as its single element. 5104 const Type *AlignAsType = nullptr; 5105 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5106 if (EltType) { 5107 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5108 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5109 (BT && BT->isFloatingPoint())) 5110 AlignAsType = EltType; 5111 } 5112 5113 // Likewise for ELFv2 homogeneous aggregates. 5114 const Type *Base = nullptr; 5115 uint64_t Members = 0; 5116 if (!AlignAsType && Kind == ELFv2 && 5117 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5118 AlignAsType = Base; 5119 5120 // With special case aggregates, only vector base types need alignment. 5121 if (AlignAsType) { 5122 bool UsesVector = AlignAsType->isVectorType() || 5123 FloatUsesVector(QualType(AlignAsType, 0)); 5124 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5125 } 5126 5127 // Otherwise, we only need alignment for any aggregate type that 5128 // has an alignment requirement of >= 16 bytes. 5129 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5130 return CharUnits::fromQuantity(16); 5131 } 5132 5133 return CharUnits::fromQuantity(8); 5134 } 5135 5136 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5137 /// aggregate. Base is set to the base element type, and Members is set 5138 /// to the number of base elements. 5139 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5140 uint64_t &Members) const { 5141 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5142 uint64_t NElements = AT->getSize().getZExtValue(); 5143 if (NElements == 0) 5144 return false; 5145 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5146 return false; 5147 Members *= NElements; 5148 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5149 const RecordDecl *RD = RT->getDecl(); 5150 if (RD->hasFlexibleArrayMember()) 5151 return false; 5152 5153 Members = 0; 5154 5155 // If this is a C++ record, check the properties of the record such as 5156 // bases and ABI specific restrictions 5157 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5158 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5159 return false; 5160 5161 for (const auto &I : CXXRD->bases()) { 5162 // Ignore empty records. 5163 if (isEmptyRecord(getContext(), I.getType(), true)) 5164 continue; 5165 5166 uint64_t FldMembers; 5167 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5168 return false; 5169 5170 Members += FldMembers; 5171 } 5172 } 5173 5174 for (const auto *FD : RD->fields()) { 5175 // Ignore (non-zero arrays of) empty records. 5176 QualType FT = FD->getType(); 5177 while (const ConstantArrayType *AT = 5178 getContext().getAsConstantArrayType(FT)) { 5179 if (AT->getSize().getZExtValue() == 0) 5180 return false; 5181 FT = AT->getElementType(); 5182 } 5183 if (isEmptyRecord(getContext(), FT, true)) 5184 continue; 5185 5186 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5187 if (getContext().getLangOpts().CPlusPlus && 5188 FD->isZeroLengthBitField(getContext())) 5189 continue; 5190 5191 uint64_t FldMembers; 5192 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5193 return false; 5194 5195 Members = (RD->isUnion() ? 5196 std::max(Members, FldMembers) : Members + FldMembers); 5197 } 5198 5199 if (!Base) 5200 return false; 5201 5202 // Ensure there is no padding. 5203 if (getContext().getTypeSize(Base) * Members != 5204 getContext().getTypeSize(Ty)) 5205 return false; 5206 } else { 5207 Members = 1; 5208 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5209 Members = 2; 5210 Ty = CT->getElementType(); 5211 } 5212 5213 // Most ABIs only support float, double, and some vector type widths. 5214 if (!isHomogeneousAggregateBaseType(Ty)) 5215 return false; 5216 5217 // The base type must be the same for all members. Types that 5218 // agree in both total size and mode (float vs. vector) are 5219 // treated as being equivalent here. 5220 const Type *TyPtr = Ty.getTypePtr(); 5221 if (!Base) { 5222 Base = TyPtr; 5223 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5224 // so make sure to widen it explicitly. 5225 if (const VectorType *VT = Base->getAs<VectorType>()) { 5226 QualType EltTy = VT->getElementType(); 5227 unsigned NumElements = 5228 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5229 Base = getContext() 5230 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5231 .getTypePtr(); 5232 } 5233 } 5234 5235 if (Base->isVectorType() != TyPtr->isVectorType() || 5236 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5237 return false; 5238 } 5239 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5240 } 5241 5242 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5243 // Homogeneous aggregates for ELFv2 must have base types of float, 5244 // double, long double, or 128-bit vectors. 5245 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5246 if (BT->getKind() == BuiltinType::Float || 5247 BT->getKind() == BuiltinType::Double || 5248 BT->getKind() == BuiltinType::LongDouble || 5249 BT->getKind() == BuiltinType::Ibm128 || 5250 (getContext().getTargetInfo().hasFloat128Type() && 5251 (BT->getKind() == BuiltinType::Float128))) { 5252 if (IsSoftFloatABI) 5253 return false; 5254 return true; 5255 } 5256 } 5257 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5258 if (getContext().getTypeSize(VT) == 128) 5259 return true; 5260 } 5261 return false; 5262 } 5263 5264 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5265 const Type *Base, uint64_t Members) const { 5266 // Vector and fp128 types require one register, other floating point types 5267 // require one or two registers depending on their size. 5268 uint32_t NumRegs = 5269 ((getContext().getTargetInfo().hasFloat128Type() && 5270 Base->isFloat128Type()) || 5271 Base->isVectorType()) ? 1 5272 : (getContext().getTypeSize(Base) + 63) / 64; 5273 5274 // Homogeneous Aggregates may occupy at most 8 registers. 5275 return Members * NumRegs <= 8; 5276 } 5277 5278 ABIArgInfo 5279 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5280 Ty = useFirstFieldIfTransparentUnion(Ty); 5281 5282 if (Ty->isAnyComplexType()) 5283 return ABIArgInfo::getDirect(); 5284 5285 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5286 // or via reference (larger than 16 bytes). 5287 if (Ty->isVectorType()) { 5288 uint64_t Size = getContext().getTypeSize(Ty); 5289 if (Size > 128) 5290 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5291 else if (Size < 128) { 5292 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5293 return ABIArgInfo::getDirect(CoerceTy); 5294 } 5295 } 5296 5297 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5298 if (EIT->getNumBits() > 128) 5299 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5300 5301 if (isAggregateTypeForABI(Ty)) { 5302 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5303 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5304 5305 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5306 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5307 5308 // ELFv2 homogeneous aggregates are passed as array types. 5309 const Type *Base = nullptr; 5310 uint64_t Members = 0; 5311 if (Kind == ELFv2 && 5312 isHomogeneousAggregate(Ty, Base, Members)) { 5313 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5314 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5315 return ABIArgInfo::getDirect(CoerceTy); 5316 } 5317 5318 // If an aggregate may end up fully in registers, we do not 5319 // use the ByVal method, but pass the aggregate as array. 5320 // This is usually beneficial since we avoid forcing the 5321 // back-end to store the argument to memory. 5322 uint64_t Bits = getContext().getTypeSize(Ty); 5323 if (Bits > 0 && Bits <= 8 * GPRBits) { 5324 llvm::Type *CoerceTy; 5325 5326 // Types up to 8 bytes are passed as integer type (which will be 5327 // properly aligned in the argument save area doubleword). 5328 if (Bits <= GPRBits) 5329 CoerceTy = 5330 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5331 // Larger types are passed as arrays, with the base type selected 5332 // according to the required alignment in the save area. 5333 else { 5334 uint64_t RegBits = ABIAlign * 8; 5335 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5336 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5337 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5338 } 5339 5340 return ABIArgInfo::getDirect(CoerceTy); 5341 } 5342 5343 // All other aggregates are passed ByVal. 5344 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5345 /*ByVal=*/true, 5346 /*Realign=*/TyAlign > ABIAlign); 5347 } 5348 5349 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5350 : ABIArgInfo::getDirect()); 5351 } 5352 5353 ABIArgInfo 5354 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5355 if (RetTy->isVoidType()) 5356 return ABIArgInfo::getIgnore(); 5357 5358 if (RetTy->isAnyComplexType()) 5359 return ABIArgInfo::getDirect(); 5360 5361 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5362 // or via reference (larger than 16 bytes). 5363 if (RetTy->isVectorType()) { 5364 uint64_t Size = getContext().getTypeSize(RetTy); 5365 if (Size > 128) 5366 return getNaturalAlignIndirect(RetTy); 5367 else if (Size < 128) { 5368 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5369 return ABIArgInfo::getDirect(CoerceTy); 5370 } 5371 } 5372 5373 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5374 if (EIT->getNumBits() > 128) 5375 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5376 5377 if (isAggregateTypeForABI(RetTy)) { 5378 // ELFv2 homogeneous aggregates are returned as array types. 5379 const Type *Base = nullptr; 5380 uint64_t Members = 0; 5381 if (Kind == ELFv2 && 5382 isHomogeneousAggregate(RetTy, Base, Members)) { 5383 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5384 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5385 return ABIArgInfo::getDirect(CoerceTy); 5386 } 5387 5388 // ELFv2 small aggregates are returned in up to two registers. 5389 uint64_t Bits = getContext().getTypeSize(RetTy); 5390 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5391 if (Bits == 0) 5392 return ABIArgInfo::getIgnore(); 5393 5394 llvm::Type *CoerceTy; 5395 if (Bits > GPRBits) { 5396 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5397 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5398 } else 5399 CoerceTy = 5400 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5401 return ABIArgInfo::getDirect(CoerceTy); 5402 } 5403 5404 // All other aggregates are returned indirectly. 5405 return getNaturalAlignIndirect(RetTy); 5406 } 5407 5408 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5409 : ABIArgInfo::getDirect()); 5410 } 5411 5412 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5413 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5414 QualType Ty) const { 5415 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5416 TypeInfo.Align = getParamTypeAlignment(Ty); 5417 5418 CharUnits SlotSize = CharUnits::fromQuantity(8); 5419 5420 // If we have a complex type and the base type is smaller than 8 bytes, 5421 // the ABI calls for the real and imaginary parts to be right-adjusted 5422 // in separate doublewords. However, Clang expects us to produce a 5423 // pointer to a structure with the two parts packed tightly. So generate 5424 // loads of the real and imaginary parts relative to the va_list pointer, 5425 // and store them to a temporary structure. 5426 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5427 CharUnits EltSize = TypeInfo.Width / 2; 5428 if (EltSize < SlotSize) 5429 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5430 } 5431 5432 // Otherwise, just use the general rule. 5433 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5434 TypeInfo, SlotSize, /*AllowHigher*/ true); 5435 } 5436 5437 bool 5438 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5439 CodeGen::CodeGenFunction &CGF, 5440 llvm::Value *Address) const { 5441 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5442 /*IsAIX*/ false); 5443 } 5444 5445 bool 5446 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5447 llvm::Value *Address) const { 5448 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5449 /*IsAIX*/ false); 5450 } 5451 5452 //===----------------------------------------------------------------------===// 5453 // AArch64 ABI Implementation 5454 //===----------------------------------------------------------------------===// 5455 5456 namespace { 5457 5458 class AArch64ABIInfo : public SwiftABIInfo { 5459 public: 5460 enum ABIKind { 5461 AAPCS = 0, 5462 DarwinPCS, 5463 Win64 5464 }; 5465 5466 private: 5467 ABIKind Kind; 5468 5469 public: 5470 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5471 : SwiftABIInfo(CGT), Kind(Kind) {} 5472 5473 private: 5474 ABIKind getABIKind() const { return Kind; } 5475 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5476 5477 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5478 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5479 unsigned CallingConvention) const; 5480 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5481 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5482 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5483 uint64_t Members) const override; 5484 5485 bool isIllegalVectorType(QualType Ty) const; 5486 5487 void computeInfo(CGFunctionInfo &FI) const override { 5488 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5489 FI.getReturnInfo() = 5490 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5491 5492 for (auto &it : FI.arguments()) 5493 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5494 FI.getCallingConvention()); 5495 } 5496 5497 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5498 CodeGenFunction &CGF) const; 5499 5500 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5501 CodeGenFunction &CGF) const; 5502 5503 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5504 QualType Ty) const override { 5505 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5506 if (isa<llvm::ScalableVectorType>(BaseTy)) 5507 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5508 "currently not supported"); 5509 5510 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5511 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5512 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5513 } 5514 5515 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5516 QualType Ty) const override; 5517 5518 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5519 bool asReturnValue) const override { 5520 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5521 } 5522 bool isSwiftErrorInRegister() const override { 5523 return true; 5524 } 5525 5526 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5527 unsigned elts) const override; 5528 5529 bool allowBFloatArgsAndRet() const override { 5530 return getTarget().hasBFloat16Type(); 5531 } 5532 }; 5533 5534 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5535 public: 5536 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5537 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5538 5539 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5540 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5541 } 5542 5543 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5544 return 31; 5545 } 5546 5547 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5548 5549 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5550 CodeGen::CodeGenModule &CGM) const override { 5551 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5552 if (!FD) 5553 return; 5554 5555 const auto *TA = FD->getAttr<TargetAttr>(); 5556 if (TA == nullptr) 5557 return; 5558 5559 ParsedTargetAttr Attr = TA->parse(); 5560 if (Attr.BranchProtection.empty()) 5561 return; 5562 5563 TargetInfo::BranchProtectionInfo BPI; 5564 StringRef Error; 5565 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5566 BPI, Error); 5567 assert(Error.empty()); 5568 5569 auto *Fn = cast<llvm::Function>(GV); 5570 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5571 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5572 5573 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5574 Fn->addFnAttr("sign-return-address-key", 5575 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5576 ? "a_key" 5577 : "b_key"); 5578 } 5579 5580 Fn->addFnAttr("branch-target-enforcement", 5581 BPI.BranchTargetEnforcement ? "true" : "false"); 5582 } 5583 5584 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5585 llvm::Type *Ty) const override { 5586 if (CGF.getTarget().hasFeature("ls64")) { 5587 auto *ST = dyn_cast<llvm::StructType>(Ty); 5588 if (ST && ST->getNumElements() == 1) { 5589 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5590 if (AT && AT->getNumElements() == 8 && 5591 AT->getElementType()->isIntegerTy(64)) 5592 return true; 5593 } 5594 } 5595 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5596 } 5597 }; 5598 5599 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5600 public: 5601 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5602 : AArch64TargetCodeGenInfo(CGT, K) {} 5603 5604 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5605 CodeGen::CodeGenModule &CGM) const override; 5606 5607 void getDependentLibraryOption(llvm::StringRef Lib, 5608 llvm::SmallString<24> &Opt) const override { 5609 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5610 } 5611 5612 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5613 llvm::SmallString<32> &Opt) const override { 5614 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5615 } 5616 }; 5617 5618 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5619 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5620 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5621 if (GV->isDeclaration()) 5622 return; 5623 addStackProbeTargetAttributes(D, GV, CGM); 5624 } 5625 } 5626 5627 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5628 assert(Ty->isVectorType() && "expected vector type!"); 5629 5630 const auto *VT = Ty->castAs<VectorType>(); 5631 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5632 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5633 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5634 BuiltinType::UChar && 5635 "unexpected builtin type for SVE predicate!"); 5636 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5637 llvm::Type::getInt1Ty(getVMContext()), 16)); 5638 } 5639 5640 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5641 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5642 5643 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5644 llvm::ScalableVectorType *ResType = nullptr; 5645 switch (BT->getKind()) { 5646 default: 5647 llvm_unreachable("unexpected builtin type for SVE vector!"); 5648 case BuiltinType::SChar: 5649 case BuiltinType::UChar: 5650 ResType = llvm::ScalableVectorType::get( 5651 llvm::Type::getInt8Ty(getVMContext()), 16); 5652 break; 5653 case BuiltinType::Short: 5654 case BuiltinType::UShort: 5655 ResType = llvm::ScalableVectorType::get( 5656 llvm::Type::getInt16Ty(getVMContext()), 8); 5657 break; 5658 case BuiltinType::Int: 5659 case BuiltinType::UInt: 5660 ResType = llvm::ScalableVectorType::get( 5661 llvm::Type::getInt32Ty(getVMContext()), 4); 5662 break; 5663 case BuiltinType::Long: 5664 case BuiltinType::ULong: 5665 ResType = llvm::ScalableVectorType::get( 5666 llvm::Type::getInt64Ty(getVMContext()), 2); 5667 break; 5668 case BuiltinType::Half: 5669 ResType = llvm::ScalableVectorType::get( 5670 llvm::Type::getHalfTy(getVMContext()), 8); 5671 break; 5672 case BuiltinType::Float: 5673 ResType = llvm::ScalableVectorType::get( 5674 llvm::Type::getFloatTy(getVMContext()), 4); 5675 break; 5676 case BuiltinType::Double: 5677 ResType = llvm::ScalableVectorType::get( 5678 llvm::Type::getDoubleTy(getVMContext()), 2); 5679 break; 5680 case BuiltinType::BFloat16: 5681 ResType = llvm::ScalableVectorType::get( 5682 llvm::Type::getBFloatTy(getVMContext()), 8); 5683 break; 5684 } 5685 return ABIArgInfo::getDirect(ResType); 5686 } 5687 5688 uint64_t Size = getContext().getTypeSize(Ty); 5689 // Android promotes <2 x i8> to i16, not i32 5690 if (isAndroid() && (Size <= 16)) { 5691 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5692 return ABIArgInfo::getDirect(ResType); 5693 } 5694 if (Size <= 32) { 5695 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5696 return ABIArgInfo::getDirect(ResType); 5697 } 5698 if (Size == 64) { 5699 auto *ResType = 5700 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5701 return ABIArgInfo::getDirect(ResType); 5702 } 5703 if (Size == 128) { 5704 auto *ResType = 5705 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5706 return ABIArgInfo::getDirect(ResType); 5707 } 5708 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5709 } 5710 5711 ABIArgInfo 5712 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5713 unsigned CallingConvention) const { 5714 Ty = useFirstFieldIfTransparentUnion(Ty); 5715 5716 // Handle illegal vector types here. 5717 if (isIllegalVectorType(Ty)) 5718 return coerceIllegalVector(Ty); 5719 5720 if (!isAggregateTypeForABI(Ty)) { 5721 // Treat an enum type as its underlying type. 5722 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5723 Ty = EnumTy->getDecl()->getIntegerType(); 5724 5725 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5726 if (EIT->getNumBits() > 128) 5727 return getNaturalAlignIndirect(Ty); 5728 5729 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5730 ? ABIArgInfo::getExtend(Ty) 5731 : ABIArgInfo::getDirect()); 5732 } 5733 5734 // Structures with either a non-trivial destructor or a non-trivial 5735 // copy constructor are always indirect. 5736 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5737 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5738 CGCXXABI::RAA_DirectInMemory); 5739 } 5740 5741 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5742 // elsewhere for GNU compatibility. 5743 uint64_t Size = getContext().getTypeSize(Ty); 5744 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5745 if (IsEmpty || Size == 0) { 5746 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5747 return ABIArgInfo::getIgnore(); 5748 5749 // GNU C mode. The only argument that gets ignored is an empty one with size 5750 // 0. 5751 if (IsEmpty && Size == 0) 5752 return ABIArgInfo::getIgnore(); 5753 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5754 } 5755 5756 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5757 const Type *Base = nullptr; 5758 uint64_t Members = 0; 5759 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5760 bool IsWinVariadic = IsWin64 && IsVariadic; 5761 // In variadic functions on Windows, all composite types are treated alike, 5762 // no special handling of HFAs/HVAs. 5763 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5764 if (Kind != AArch64ABIInfo::AAPCS) 5765 return ABIArgInfo::getDirect( 5766 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5767 5768 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5769 // default otherwise. 5770 unsigned Align = 5771 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5772 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5773 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5774 return ABIArgInfo::getDirect( 5775 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5776 nullptr, true, Align); 5777 } 5778 5779 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5780 if (Size <= 128) { 5781 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5782 // same size and alignment. 5783 if (getTarget().isRenderScriptTarget()) { 5784 return coerceToIntArray(Ty, getContext(), getVMContext()); 5785 } 5786 unsigned Alignment; 5787 if (Kind == AArch64ABIInfo::AAPCS) { 5788 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5789 Alignment = Alignment < 128 ? 64 : 128; 5790 } else { 5791 Alignment = std::max(getContext().getTypeAlign(Ty), 5792 (unsigned)getTarget().getPointerWidth(0)); 5793 } 5794 Size = llvm::alignTo(Size, Alignment); 5795 5796 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5797 // For aggregates with 16-byte alignment, we use i128. 5798 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5799 return ABIArgInfo::getDirect( 5800 Size == Alignment ? BaseTy 5801 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5802 } 5803 5804 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5805 } 5806 5807 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5808 bool IsVariadic) const { 5809 if (RetTy->isVoidType()) 5810 return ABIArgInfo::getIgnore(); 5811 5812 if (const auto *VT = RetTy->getAs<VectorType>()) { 5813 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5814 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5815 return coerceIllegalVector(RetTy); 5816 } 5817 5818 // Large vector types should be returned via memory. 5819 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5820 return getNaturalAlignIndirect(RetTy); 5821 5822 if (!isAggregateTypeForABI(RetTy)) { 5823 // Treat an enum type as its underlying type. 5824 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5825 RetTy = EnumTy->getDecl()->getIntegerType(); 5826 5827 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5828 if (EIT->getNumBits() > 128) 5829 return getNaturalAlignIndirect(RetTy); 5830 5831 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5832 ? ABIArgInfo::getExtend(RetTy) 5833 : ABIArgInfo::getDirect()); 5834 } 5835 5836 uint64_t Size = getContext().getTypeSize(RetTy); 5837 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5838 return ABIArgInfo::getIgnore(); 5839 5840 const Type *Base = nullptr; 5841 uint64_t Members = 0; 5842 if (isHomogeneousAggregate(RetTy, Base, Members) && 5843 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5844 IsVariadic)) 5845 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5846 return ABIArgInfo::getDirect(); 5847 5848 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5849 if (Size <= 128) { 5850 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5851 // same size and alignment. 5852 if (getTarget().isRenderScriptTarget()) { 5853 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5854 } 5855 5856 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5857 // Composite types are returned in lower bits of a 64-bit register for LE, 5858 // and in higher bits for BE. However, integer types are always returned 5859 // in lower bits for both LE and BE, and they are not rounded up to 5860 // 64-bits. We can skip rounding up of composite types for LE, but not for 5861 // BE, otherwise composite types will be indistinguishable from integer 5862 // types. 5863 return ABIArgInfo::getDirect( 5864 llvm::IntegerType::get(getVMContext(), Size)); 5865 } 5866 5867 unsigned Alignment = getContext().getTypeAlign(RetTy); 5868 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5869 5870 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5871 // For aggregates with 16-byte alignment, we use i128. 5872 if (Alignment < 128 && Size == 128) { 5873 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5874 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5875 } 5876 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5877 } 5878 5879 return getNaturalAlignIndirect(RetTy); 5880 } 5881 5882 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5883 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5884 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5885 // Check whether VT is a fixed-length SVE vector. These types are 5886 // represented as scalable vectors in function args/return and must be 5887 // coerced from fixed vectors. 5888 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5889 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5890 return true; 5891 5892 // Check whether VT is legal. 5893 unsigned NumElements = VT->getNumElements(); 5894 uint64_t Size = getContext().getTypeSize(VT); 5895 // NumElements should be power of 2. 5896 if (!llvm::isPowerOf2_32(NumElements)) 5897 return true; 5898 5899 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5900 // vectors for some reason. 5901 llvm::Triple Triple = getTarget().getTriple(); 5902 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5903 Triple.isOSBinFormatMachO()) 5904 return Size <= 32; 5905 5906 return Size != 64 && (Size != 128 || NumElements == 1); 5907 } 5908 return false; 5909 } 5910 5911 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5912 llvm::Type *eltTy, 5913 unsigned elts) const { 5914 if (!llvm::isPowerOf2_32(elts)) 5915 return false; 5916 if (totalSize.getQuantity() != 8 && 5917 (totalSize.getQuantity() != 16 || elts == 1)) 5918 return false; 5919 return true; 5920 } 5921 5922 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5923 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5924 // point type or a short-vector type. This is the same as the 32-bit ABI, 5925 // but with the difference that any floating-point type is allowed, 5926 // including __fp16. 5927 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5928 if (BT->isFloatingPoint()) 5929 return true; 5930 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5931 unsigned VecSize = getContext().getTypeSize(VT); 5932 if (VecSize == 64 || VecSize == 128) 5933 return true; 5934 } 5935 return false; 5936 } 5937 5938 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5939 uint64_t Members) const { 5940 return Members <= 4; 5941 } 5942 5943 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5944 CodeGenFunction &CGF) const { 5945 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5946 CGF.CurFnInfo->getCallingConvention()); 5947 bool IsIndirect = AI.isIndirect(); 5948 5949 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5950 if (IsIndirect) 5951 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5952 else if (AI.getCoerceToType()) 5953 BaseTy = AI.getCoerceToType(); 5954 5955 unsigned NumRegs = 1; 5956 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5957 BaseTy = ArrTy->getElementType(); 5958 NumRegs = ArrTy->getNumElements(); 5959 } 5960 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5961 5962 // The AArch64 va_list type and handling is specified in the Procedure Call 5963 // Standard, section B.4: 5964 // 5965 // struct { 5966 // void *__stack; 5967 // void *__gr_top; 5968 // void *__vr_top; 5969 // int __gr_offs; 5970 // int __vr_offs; 5971 // }; 5972 5973 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5974 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5975 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5976 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5977 5978 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5979 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5980 5981 Address reg_offs_p = Address::invalid(); 5982 llvm::Value *reg_offs = nullptr; 5983 int reg_top_index; 5984 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5985 if (!IsFPR) { 5986 // 3 is the field number of __gr_offs 5987 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5988 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5989 reg_top_index = 1; // field number for __gr_top 5990 RegSize = llvm::alignTo(RegSize, 8); 5991 } else { 5992 // 4 is the field number of __vr_offs. 5993 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5994 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5995 reg_top_index = 2; // field number for __vr_top 5996 RegSize = 16 * NumRegs; 5997 } 5998 5999 //======================================= 6000 // Find out where argument was passed 6001 //======================================= 6002 6003 // If reg_offs >= 0 we're already using the stack for this type of 6004 // argument. We don't want to keep updating reg_offs (in case it overflows, 6005 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6006 // whatever they get). 6007 llvm::Value *UsingStack = nullptr; 6008 UsingStack = CGF.Builder.CreateICmpSGE( 6009 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6010 6011 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6012 6013 // Otherwise, at least some kind of argument could go in these registers, the 6014 // question is whether this particular type is too big. 6015 CGF.EmitBlock(MaybeRegBlock); 6016 6017 // Integer arguments may need to correct register alignment (for example a 6018 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6019 // align __gr_offs to calculate the potential address. 6020 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6021 int Align = TyAlign.getQuantity(); 6022 6023 reg_offs = CGF.Builder.CreateAdd( 6024 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6025 "align_regoffs"); 6026 reg_offs = CGF.Builder.CreateAnd( 6027 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6028 "aligned_regoffs"); 6029 } 6030 6031 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6032 // The fact that this is done unconditionally reflects the fact that 6033 // allocating an argument to the stack also uses up all the remaining 6034 // registers of the appropriate kind. 6035 llvm::Value *NewOffset = nullptr; 6036 NewOffset = CGF.Builder.CreateAdd( 6037 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6038 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6039 6040 // Now we're in a position to decide whether this argument really was in 6041 // registers or not. 6042 llvm::Value *InRegs = nullptr; 6043 InRegs = CGF.Builder.CreateICmpSLE( 6044 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6045 6046 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6047 6048 //======================================= 6049 // Argument was in registers 6050 //======================================= 6051 6052 // Now we emit the code for if the argument was originally passed in 6053 // registers. First start the appropriate block: 6054 CGF.EmitBlock(InRegBlock); 6055 6056 llvm::Value *reg_top = nullptr; 6057 Address reg_top_p = 6058 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6059 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6060 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6061 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6062 Address RegAddr = Address::invalid(); 6063 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6064 6065 if (IsIndirect) { 6066 // If it's been passed indirectly (actually a struct), whatever we find from 6067 // stored registers or on the stack will actually be a struct **. 6068 MemTy = llvm::PointerType::getUnqual(MemTy); 6069 } 6070 6071 const Type *Base = nullptr; 6072 uint64_t NumMembers = 0; 6073 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6074 if (IsHFA && NumMembers > 1) { 6075 // Homogeneous aggregates passed in registers will have their elements split 6076 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6077 // qN+1, ...). We reload and store into a temporary local variable 6078 // contiguously. 6079 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6080 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6081 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6082 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6083 Address Tmp = CGF.CreateTempAlloca(HFATy, 6084 std::max(TyAlign, BaseTyInfo.Align)); 6085 6086 // On big-endian platforms, the value will be right-aligned in its slot. 6087 int Offset = 0; 6088 if (CGF.CGM.getDataLayout().isBigEndian() && 6089 BaseTyInfo.Width.getQuantity() < 16) 6090 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6091 6092 for (unsigned i = 0; i < NumMembers; ++i) { 6093 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6094 Address LoadAddr = 6095 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6096 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6097 6098 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6099 6100 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6101 CGF.Builder.CreateStore(Elem, StoreAddr); 6102 } 6103 6104 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6105 } else { 6106 // Otherwise the object is contiguous in memory. 6107 6108 // It might be right-aligned in its slot. 6109 CharUnits SlotSize = BaseAddr.getAlignment(); 6110 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6111 (IsHFA || !isAggregateTypeForABI(Ty)) && 6112 TySize < SlotSize) { 6113 CharUnits Offset = SlotSize - TySize; 6114 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6115 } 6116 6117 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6118 } 6119 6120 CGF.EmitBranch(ContBlock); 6121 6122 //======================================= 6123 // Argument was on the stack 6124 //======================================= 6125 CGF.EmitBlock(OnStackBlock); 6126 6127 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6128 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6129 6130 // Again, stack arguments may need realignment. In this case both integer and 6131 // floating-point ones might be affected. 6132 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6133 int Align = TyAlign.getQuantity(); 6134 6135 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6136 6137 OnStackPtr = CGF.Builder.CreateAdd( 6138 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6139 "align_stack"); 6140 OnStackPtr = CGF.Builder.CreateAnd( 6141 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6142 "align_stack"); 6143 6144 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6145 } 6146 Address OnStackAddr(OnStackPtr, 6147 std::max(CharUnits::fromQuantity(8), TyAlign)); 6148 6149 // All stack slots are multiples of 8 bytes. 6150 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6151 CharUnits StackSize; 6152 if (IsIndirect) 6153 StackSize = StackSlotSize; 6154 else 6155 StackSize = TySize.alignTo(StackSlotSize); 6156 6157 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6158 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6159 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6160 6161 // Write the new value of __stack for the next call to va_arg 6162 CGF.Builder.CreateStore(NewStack, stack_p); 6163 6164 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6165 TySize < StackSlotSize) { 6166 CharUnits Offset = StackSlotSize - TySize; 6167 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6168 } 6169 6170 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6171 6172 CGF.EmitBranch(ContBlock); 6173 6174 //======================================= 6175 // Tidy up 6176 //======================================= 6177 CGF.EmitBlock(ContBlock); 6178 6179 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6180 OnStackAddr, OnStackBlock, "vaargs.addr"); 6181 6182 if (IsIndirect) 6183 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6184 TyAlign); 6185 6186 return ResAddr; 6187 } 6188 6189 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6190 CodeGenFunction &CGF) const { 6191 // The backend's lowering doesn't support va_arg for aggregates or 6192 // illegal vector types. Lower VAArg here for these cases and use 6193 // the LLVM va_arg instruction for everything else. 6194 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6195 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6196 6197 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6198 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6199 6200 // Empty records are ignored for parameter passing purposes. 6201 if (isEmptyRecord(getContext(), Ty, true)) { 6202 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6203 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6204 return Addr; 6205 } 6206 6207 // The size of the actual thing passed, which might end up just 6208 // being a pointer for indirect types. 6209 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6210 6211 // Arguments bigger than 16 bytes which aren't homogeneous 6212 // aggregates should be passed indirectly. 6213 bool IsIndirect = false; 6214 if (TyInfo.Width.getQuantity() > 16) { 6215 const Type *Base = nullptr; 6216 uint64_t Members = 0; 6217 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6218 } 6219 6220 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6221 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6222 } 6223 6224 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6225 QualType Ty) const { 6226 bool IsIndirect = false; 6227 6228 // Composites larger than 16 bytes are passed by reference. 6229 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6230 IsIndirect = true; 6231 6232 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6233 CGF.getContext().getTypeInfoInChars(Ty), 6234 CharUnits::fromQuantity(8), 6235 /*allowHigherAlign*/ false); 6236 } 6237 6238 //===----------------------------------------------------------------------===// 6239 // ARM ABI Implementation 6240 //===----------------------------------------------------------------------===// 6241 6242 namespace { 6243 6244 class ARMABIInfo : public SwiftABIInfo { 6245 public: 6246 enum ABIKind { 6247 APCS = 0, 6248 AAPCS = 1, 6249 AAPCS_VFP = 2, 6250 AAPCS16_VFP = 3, 6251 }; 6252 6253 private: 6254 ABIKind Kind; 6255 bool IsFloatABISoftFP; 6256 6257 public: 6258 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6259 : SwiftABIInfo(CGT), Kind(_Kind) { 6260 setCCs(); 6261 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6262 CGT.getCodeGenOpts().FloatABI == ""; // default 6263 } 6264 6265 bool isEABI() const { 6266 switch (getTarget().getTriple().getEnvironment()) { 6267 case llvm::Triple::Android: 6268 case llvm::Triple::EABI: 6269 case llvm::Triple::EABIHF: 6270 case llvm::Triple::GNUEABI: 6271 case llvm::Triple::GNUEABIHF: 6272 case llvm::Triple::MuslEABI: 6273 case llvm::Triple::MuslEABIHF: 6274 return true; 6275 default: 6276 return false; 6277 } 6278 } 6279 6280 bool isEABIHF() const { 6281 switch (getTarget().getTriple().getEnvironment()) { 6282 case llvm::Triple::EABIHF: 6283 case llvm::Triple::GNUEABIHF: 6284 case llvm::Triple::MuslEABIHF: 6285 return true; 6286 default: 6287 return false; 6288 } 6289 } 6290 6291 ABIKind getABIKind() const { return Kind; } 6292 6293 bool allowBFloatArgsAndRet() const override { 6294 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6295 } 6296 6297 private: 6298 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6299 unsigned functionCallConv) const; 6300 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6301 unsigned functionCallConv) const; 6302 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6303 uint64_t Members) const; 6304 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6305 bool isIllegalVectorType(QualType Ty) const; 6306 bool containsAnyFP16Vectors(QualType Ty) const; 6307 6308 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6309 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6310 uint64_t Members) const override; 6311 6312 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6313 6314 void computeInfo(CGFunctionInfo &FI) const override; 6315 6316 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6317 QualType Ty) const override; 6318 6319 llvm::CallingConv::ID getLLVMDefaultCC() const; 6320 llvm::CallingConv::ID getABIDefaultCC() const; 6321 void setCCs(); 6322 6323 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6324 bool asReturnValue) const override { 6325 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6326 } 6327 bool isSwiftErrorInRegister() const override { 6328 return true; 6329 } 6330 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6331 unsigned elts) const override; 6332 }; 6333 6334 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6335 public: 6336 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6337 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6338 6339 const ARMABIInfo &getABIInfo() const { 6340 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6341 } 6342 6343 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6344 return 13; 6345 } 6346 6347 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6348 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6349 } 6350 6351 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6352 llvm::Value *Address) const override { 6353 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6354 6355 // 0-15 are the 16 integer registers. 6356 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6357 return false; 6358 } 6359 6360 unsigned getSizeOfUnwindException() const override { 6361 if (getABIInfo().isEABI()) return 88; 6362 return TargetCodeGenInfo::getSizeOfUnwindException(); 6363 } 6364 6365 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6366 CodeGen::CodeGenModule &CGM) const override { 6367 if (GV->isDeclaration()) 6368 return; 6369 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6370 if (!FD) 6371 return; 6372 auto *Fn = cast<llvm::Function>(GV); 6373 6374 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6375 ParsedTargetAttr Attr = TA->parse(); 6376 if (!Attr.BranchProtection.empty()) { 6377 TargetInfo::BranchProtectionInfo BPI; 6378 StringRef DiagMsg; 6379 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6380 BPI, DiagMsg); 6381 6382 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6383 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6384 "Unexpected SignReturnAddressScopeKind"); 6385 Fn->addFnAttr("sign-return-address", 6386 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6387 6388 Fn->addFnAttr("branch-target-enforcement", 6389 BPI.BranchTargetEnforcement ? "true" : "false"); 6390 } 6391 } 6392 6393 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6394 if (!Attr) 6395 return; 6396 6397 const char *Kind; 6398 switch (Attr->getInterrupt()) { 6399 case ARMInterruptAttr::Generic: Kind = ""; break; 6400 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6401 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6402 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6403 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6404 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6405 } 6406 6407 Fn->addFnAttr("interrupt", Kind); 6408 6409 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6410 if (ABI == ARMABIInfo::APCS) 6411 return; 6412 6413 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6414 // however this is not necessarily true on taking any interrupt. Instruct 6415 // the backend to perform a realignment as part of the function prologue. 6416 llvm::AttrBuilder B; 6417 B.addStackAlignmentAttr(8); 6418 Fn->addFnAttrs(B); 6419 } 6420 }; 6421 6422 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6423 public: 6424 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6425 : ARMTargetCodeGenInfo(CGT, K) {} 6426 6427 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6428 CodeGen::CodeGenModule &CGM) const override; 6429 6430 void getDependentLibraryOption(llvm::StringRef Lib, 6431 llvm::SmallString<24> &Opt) const override { 6432 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6433 } 6434 6435 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6436 llvm::SmallString<32> &Opt) const override { 6437 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6438 } 6439 }; 6440 6441 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6442 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6443 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6444 if (GV->isDeclaration()) 6445 return; 6446 addStackProbeTargetAttributes(D, GV, CGM); 6447 } 6448 } 6449 6450 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6451 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6452 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6453 FI.getCallingConvention()); 6454 6455 for (auto &I : FI.arguments()) 6456 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6457 FI.getCallingConvention()); 6458 6459 6460 // Always honor user-specified calling convention. 6461 if (FI.getCallingConvention() != llvm::CallingConv::C) 6462 return; 6463 6464 llvm::CallingConv::ID cc = getRuntimeCC(); 6465 if (cc != llvm::CallingConv::C) 6466 FI.setEffectiveCallingConvention(cc); 6467 } 6468 6469 /// Return the default calling convention that LLVM will use. 6470 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6471 // The default calling convention that LLVM will infer. 6472 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6473 return llvm::CallingConv::ARM_AAPCS_VFP; 6474 else if (isEABI()) 6475 return llvm::CallingConv::ARM_AAPCS; 6476 else 6477 return llvm::CallingConv::ARM_APCS; 6478 } 6479 6480 /// Return the calling convention that our ABI would like us to use 6481 /// as the C calling convention. 6482 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6483 switch (getABIKind()) { 6484 case APCS: return llvm::CallingConv::ARM_APCS; 6485 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6486 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6487 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6488 } 6489 llvm_unreachable("bad ABI kind"); 6490 } 6491 6492 void ARMABIInfo::setCCs() { 6493 assert(getRuntimeCC() == llvm::CallingConv::C); 6494 6495 // Don't muddy up the IR with a ton of explicit annotations if 6496 // they'd just match what LLVM will infer from the triple. 6497 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6498 if (abiCC != getLLVMDefaultCC()) 6499 RuntimeCC = abiCC; 6500 } 6501 6502 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6503 uint64_t Size = getContext().getTypeSize(Ty); 6504 if (Size <= 32) { 6505 llvm::Type *ResType = 6506 llvm::Type::getInt32Ty(getVMContext()); 6507 return ABIArgInfo::getDirect(ResType); 6508 } 6509 if (Size == 64 || Size == 128) { 6510 auto *ResType = llvm::FixedVectorType::get( 6511 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6512 return ABIArgInfo::getDirect(ResType); 6513 } 6514 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6515 } 6516 6517 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6518 const Type *Base, 6519 uint64_t Members) const { 6520 assert(Base && "Base class should be set for homogeneous aggregate"); 6521 // Base can be a floating-point or a vector. 6522 if (const VectorType *VT = Base->getAs<VectorType>()) { 6523 // FP16 vectors should be converted to integer vectors 6524 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6525 uint64_t Size = getContext().getTypeSize(VT); 6526 auto *NewVecTy = llvm::FixedVectorType::get( 6527 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6528 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6529 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6530 } 6531 } 6532 unsigned Align = 0; 6533 if (getABIKind() == ARMABIInfo::AAPCS || 6534 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6535 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6536 // default otherwise. 6537 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6538 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6539 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6540 } 6541 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6542 } 6543 6544 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6545 unsigned functionCallConv) const { 6546 // 6.1.2.1 The following argument types are VFP CPRCs: 6547 // A single-precision floating-point type (including promoted 6548 // half-precision types); A double-precision floating-point type; 6549 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6550 // with a Base Type of a single- or double-precision floating-point type, 6551 // 64-bit containerized vectors or 128-bit containerized vectors with one 6552 // to four Elements. 6553 // Variadic functions should always marshal to the base standard. 6554 bool IsAAPCS_VFP = 6555 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6556 6557 Ty = useFirstFieldIfTransparentUnion(Ty); 6558 6559 // Handle illegal vector types here. 6560 if (isIllegalVectorType(Ty)) 6561 return coerceIllegalVector(Ty); 6562 6563 if (!isAggregateTypeForABI(Ty)) { 6564 // Treat an enum type as its underlying type. 6565 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6566 Ty = EnumTy->getDecl()->getIntegerType(); 6567 } 6568 6569 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6570 if (EIT->getNumBits() > 64) 6571 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6572 6573 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6574 : ABIArgInfo::getDirect()); 6575 } 6576 6577 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6578 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6579 } 6580 6581 // Ignore empty records. 6582 if (isEmptyRecord(getContext(), Ty, true)) 6583 return ABIArgInfo::getIgnore(); 6584 6585 if (IsAAPCS_VFP) { 6586 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6587 // into VFP registers. 6588 const Type *Base = nullptr; 6589 uint64_t Members = 0; 6590 if (isHomogeneousAggregate(Ty, Base, Members)) 6591 return classifyHomogeneousAggregate(Ty, Base, Members); 6592 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6593 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6594 // this convention even for a variadic function: the backend will use GPRs 6595 // if needed. 6596 const Type *Base = nullptr; 6597 uint64_t Members = 0; 6598 if (isHomogeneousAggregate(Ty, Base, Members)) { 6599 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6600 llvm::Type *Ty = 6601 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6602 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6603 } 6604 } 6605 6606 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6607 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6608 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6609 // bigger than 128-bits, they get placed in space allocated by the caller, 6610 // and a pointer is passed. 6611 return ABIArgInfo::getIndirect( 6612 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6613 } 6614 6615 // Support byval for ARM. 6616 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6617 // most 8-byte. We realign the indirect argument if type alignment is bigger 6618 // than ABI alignment. 6619 uint64_t ABIAlign = 4; 6620 uint64_t TyAlign; 6621 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6622 getABIKind() == ARMABIInfo::AAPCS) { 6623 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6624 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6625 } else { 6626 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6627 } 6628 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6629 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6630 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6631 /*ByVal=*/true, 6632 /*Realign=*/TyAlign > ABIAlign); 6633 } 6634 6635 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6636 // same size and alignment. 6637 if (getTarget().isRenderScriptTarget()) { 6638 return coerceToIntArray(Ty, getContext(), getVMContext()); 6639 } 6640 6641 // Otherwise, pass by coercing to a structure of the appropriate size. 6642 llvm::Type* ElemTy; 6643 unsigned SizeRegs; 6644 // FIXME: Try to match the types of the arguments more accurately where 6645 // we can. 6646 if (TyAlign <= 4) { 6647 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6648 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6649 } else { 6650 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6651 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6652 } 6653 6654 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6655 } 6656 6657 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6658 llvm::LLVMContext &VMContext) { 6659 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6660 // is called integer-like if its size is less than or equal to one word, and 6661 // the offset of each of its addressable sub-fields is zero. 6662 6663 uint64_t Size = Context.getTypeSize(Ty); 6664 6665 // Check that the type fits in a word. 6666 if (Size > 32) 6667 return false; 6668 6669 // FIXME: Handle vector types! 6670 if (Ty->isVectorType()) 6671 return false; 6672 6673 // Float types are never treated as "integer like". 6674 if (Ty->isRealFloatingType()) 6675 return false; 6676 6677 // If this is a builtin or pointer type then it is ok. 6678 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6679 return true; 6680 6681 // Small complex integer types are "integer like". 6682 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6683 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6684 6685 // Single element and zero sized arrays should be allowed, by the definition 6686 // above, but they are not. 6687 6688 // Otherwise, it must be a record type. 6689 const RecordType *RT = Ty->getAs<RecordType>(); 6690 if (!RT) return false; 6691 6692 // Ignore records with flexible arrays. 6693 const RecordDecl *RD = RT->getDecl(); 6694 if (RD->hasFlexibleArrayMember()) 6695 return false; 6696 6697 // Check that all sub-fields are at offset 0, and are themselves "integer 6698 // like". 6699 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6700 6701 bool HadField = false; 6702 unsigned idx = 0; 6703 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6704 i != e; ++i, ++idx) { 6705 const FieldDecl *FD = *i; 6706 6707 // Bit-fields are not addressable, we only need to verify they are "integer 6708 // like". We still have to disallow a subsequent non-bitfield, for example: 6709 // struct { int : 0; int x } 6710 // is non-integer like according to gcc. 6711 if (FD->isBitField()) { 6712 if (!RD->isUnion()) 6713 HadField = true; 6714 6715 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6716 return false; 6717 6718 continue; 6719 } 6720 6721 // Check if this field is at offset 0. 6722 if (Layout.getFieldOffset(idx) != 0) 6723 return false; 6724 6725 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6726 return false; 6727 6728 // Only allow at most one field in a structure. This doesn't match the 6729 // wording above, but follows gcc in situations with a field following an 6730 // empty structure. 6731 if (!RD->isUnion()) { 6732 if (HadField) 6733 return false; 6734 6735 HadField = true; 6736 } 6737 } 6738 6739 return true; 6740 } 6741 6742 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6743 unsigned functionCallConv) const { 6744 6745 // Variadic functions should always marshal to the base standard. 6746 bool IsAAPCS_VFP = 6747 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6748 6749 if (RetTy->isVoidType()) 6750 return ABIArgInfo::getIgnore(); 6751 6752 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6753 // Large vector types should be returned via memory. 6754 if (getContext().getTypeSize(RetTy) > 128) 6755 return getNaturalAlignIndirect(RetTy); 6756 // TODO: FP16/BF16 vectors should be converted to integer vectors 6757 // This check is similar to isIllegalVectorType - refactor? 6758 if ((!getTarget().hasLegalHalfType() && 6759 (VT->getElementType()->isFloat16Type() || 6760 VT->getElementType()->isHalfType())) || 6761 (IsFloatABISoftFP && 6762 VT->getElementType()->isBFloat16Type())) 6763 return coerceIllegalVector(RetTy); 6764 } 6765 6766 if (!isAggregateTypeForABI(RetTy)) { 6767 // Treat an enum type as its underlying type. 6768 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6769 RetTy = EnumTy->getDecl()->getIntegerType(); 6770 6771 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6772 if (EIT->getNumBits() > 64) 6773 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6774 6775 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6776 : ABIArgInfo::getDirect(); 6777 } 6778 6779 // Are we following APCS? 6780 if (getABIKind() == APCS) { 6781 if (isEmptyRecord(getContext(), RetTy, false)) 6782 return ABIArgInfo::getIgnore(); 6783 6784 // Complex types are all returned as packed integers. 6785 // 6786 // FIXME: Consider using 2 x vector types if the back end handles them 6787 // correctly. 6788 if (RetTy->isAnyComplexType()) 6789 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6790 getVMContext(), getContext().getTypeSize(RetTy))); 6791 6792 // Integer like structures are returned in r0. 6793 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6794 // Return in the smallest viable integer type. 6795 uint64_t Size = getContext().getTypeSize(RetTy); 6796 if (Size <= 8) 6797 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6798 if (Size <= 16) 6799 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6800 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6801 } 6802 6803 // Otherwise return in memory. 6804 return getNaturalAlignIndirect(RetTy); 6805 } 6806 6807 // Otherwise this is an AAPCS variant. 6808 6809 if (isEmptyRecord(getContext(), RetTy, true)) 6810 return ABIArgInfo::getIgnore(); 6811 6812 // Check for homogeneous aggregates with AAPCS-VFP. 6813 if (IsAAPCS_VFP) { 6814 const Type *Base = nullptr; 6815 uint64_t Members = 0; 6816 if (isHomogeneousAggregate(RetTy, Base, Members)) 6817 return classifyHomogeneousAggregate(RetTy, Base, Members); 6818 } 6819 6820 // Aggregates <= 4 bytes are returned in r0; other aggregates 6821 // are returned indirectly. 6822 uint64_t Size = getContext().getTypeSize(RetTy); 6823 if (Size <= 32) { 6824 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6825 // same size and alignment. 6826 if (getTarget().isRenderScriptTarget()) { 6827 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6828 } 6829 if (getDataLayout().isBigEndian()) 6830 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6831 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6832 6833 // Return in the smallest viable integer type. 6834 if (Size <= 8) 6835 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6836 if (Size <= 16) 6837 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6838 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6839 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6840 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6841 llvm::Type *CoerceTy = 6842 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6843 return ABIArgInfo::getDirect(CoerceTy); 6844 } 6845 6846 return getNaturalAlignIndirect(RetTy); 6847 } 6848 6849 /// isIllegalVector - check whether Ty is an illegal vector type. 6850 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6851 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6852 // On targets that don't support half, fp16 or bfloat, they are expanded 6853 // into float, and we don't want the ABI to depend on whether or not they 6854 // are supported in hardware. Thus return false to coerce vectors of these 6855 // types into integer vectors. 6856 // We do not depend on hasLegalHalfType for bfloat as it is a 6857 // separate IR type. 6858 if ((!getTarget().hasLegalHalfType() && 6859 (VT->getElementType()->isFloat16Type() || 6860 VT->getElementType()->isHalfType())) || 6861 (IsFloatABISoftFP && 6862 VT->getElementType()->isBFloat16Type())) 6863 return true; 6864 if (isAndroid()) { 6865 // Android shipped using Clang 3.1, which supported a slightly different 6866 // vector ABI. The primary differences were that 3-element vector types 6867 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6868 // accepts that legacy behavior for Android only. 6869 // Check whether VT is legal. 6870 unsigned NumElements = VT->getNumElements(); 6871 // NumElements should be power of 2 or equal to 3. 6872 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6873 return true; 6874 } else { 6875 // Check whether VT is legal. 6876 unsigned NumElements = VT->getNumElements(); 6877 uint64_t Size = getContext().getTypeSize(VT); 6878 // NumElements should be power of 2. 6879 if (!llvm::isPowerOf2_32(NumElements)) 6880 return true; 6881 // Size should be greater than 32 bits. 6882 return Size <= 32; 6883 } 6884 } 6885 return false; 6886 } 6887 6888 /// Return true if a type contains any 16-bit floating point vectors 6889 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6890 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6891 uint64_t NElements = AT->getSize().getZExtValue(); 6892 if (NElements == 0) 6893 return false; 6894 return containsAnyFP16Vectors(AT->getElementType()); 6895 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6896 const RecordDecl *RD = RT->getDecl(); 6897 6898 // If this is a C++ record, check the bases first. 6899 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6900 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6901 return containsAnyFP16Vectors(B.getType()); 6902 })) 6903 return true; 6904 6905 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6906 return FD && containsAnyFP16Vectors(FD->getType()); 6907 })) 6908 return true; 6909 6910 return false; 6911 } else { 6912 if (const VectorType *VT = Ty->getAs<VectorType>()) 6913 return (VT->getElementType()->isFloat16Type() || 6914 VT->getElementType()->isBFloat16Type() || 6915 VT->getElementType()->isHalfType()); 6916 return false; 6917 } 6918 } 6919 6920 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6921 llvm::Type *eltTy, 6922 unsigned numElts) const { 6923 if (!llvm::isPowerOf2_32(numElts)) 6924 return false; 6925 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6926 if (size > 64) 6927 return false; 6928 if (vectorSize.getQuantity() != 8 && 6929 (vectorSize.getQuantity() != 16 || numElts == 1)) 6930 return false; 6931 return true; 6932 } 6933 6934 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6935 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6936 // double, or 64-bit or 128-bit vectors. 6937 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6938 if (BT->getKind() == BuiltinType::Float || 6939 BT->getKind() == BuiltinType::Double || 6940 BT->getKind() == BuiltinType::LongDouble) 6941 return true; 6942 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6943 unsigned VecSize = getContext().getTypeSize(VT); 6944 if (VecSize == 64 || VecSize == 128) 6945 return true; 6946 } 6947 return false; 6948 } 6949 6950 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6951 uint64_t Members) const { 6952 return Members <= 4; 6953 } 6954 6955 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6956 bool acceptHalf) const { 6957 // Give precedence to user-specified calling conventions. 6958 if (callConvention != llvm::CallingConv::C) 6959 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6960 else 6961 return (getABIKind() == AAPCS_VFP) || 6962 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6963 } 6964 6965 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6966 QualType Ty) const { 6967 CharUnits SlotSize = CharUnits::fromQuantity(4); 6968 6969 // Empty records are ignored for parameter passing purposes. 6970 if (isEmptyRecord(getContext(), Ty, true)) { 6971 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6972 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6973 return Addr; 6974 } 6975 6976 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6977 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6978 6979 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6980 bool IsIndirect = false; 6981 const Type *Base = nullptr; 6982 uint64_t Members = 0; 6983 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6984 IsIndirect = true; 6985 6986 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6987 // allocated by the caller. 6988 } else if (TySize > CharUnits::fromQuantity(16) && 6989 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6990 !isHomogeneousAggregate(Ty, Base, Members)) { 6991 IsIndirect = true; 6992 6993 // Otherwise, bound the type's ABI alignment. 6994 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6995 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6996 // Our callers should be prepared to handle an under-aligned address. 6997 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6998 getABIKind() == ARMABIInfo::AAPCS) { 6999 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7000 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7001 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7002 // ARMv7k allows type alignment up to 16 bytes. 7003 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7004 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7005 } else { 7006 TyAlignForABI = CharUnits::fromQuantity(4); 7007 } 7008 7009 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7010 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7011 SlotSize, /*AllowHigherAlign*/ true); 7012 } 7013 7014 //===----------------------------------------------------------------------===// 7015 // NVPTX ABI Implementation 7016 //===----------------------------------------------------------------------===// 7017 7018 namespace { 7019 7020 class NVPTXTargetCodeGenInfo; 7021 7022 class NVPTXABIInfo : public ABIInfo { 7023 NVPTXTargetCodeGenInfo &CGInfo; 7024 7025 public: 7026 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7027 : ABIInfo(CGT), CGInfo(Info) {} 7028 7029 ABIArgInfo classifyReturnType(QualType RetTy) const; 7030 ABIArgInfo classifyArgumentType(QualType Ty) const; 7031 7032 void computeInfo(CGFunctionInfo &FI) const override; 7033 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7034 QualType Ty) const override; 7035 bool isUnsupportedType(QualType T) const; 7036 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7037 }; 7038 7039 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7040 public: 7041 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7042 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7043 7044 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7045 CodeGen::CodeGenModule &M) const override; 7046 bool shouldEmitStaticExternCAliases() const override; 7047 7048 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7049 // On the device side, surface reference is represented as an object handle 7050 // in 64-bit integer. 7051 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7052 } 7053 7054 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7055 // On the device side, texture reference is represented as an object handle 7056 // in 64-bit integer. 7057 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7058 } 7059 7060 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7061 LValue Src) const override { 7062 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7063 return true; 7064 } 7065 7066 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7067 LValue Src) const override { 7068 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7069 return true; 7070 } 7071 7072 private: 7073 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7074 // resulting MDNode to the nvvm.annotations MDNode. 7075 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7076 int Operand); 7077 7078 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7079 LValue Src) { 7080 llvm::Value *Handle = nullptr; 7081 llvm::Constant *C = 7082 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7083 // Lookup `addrspacecast` through the constant pointer if any. 7084 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7085 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7086 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7087 // Load the handle from the specific global variable using 7088 // `nvvm.texsurf.handle.internal` intrinsic. 7089 Handle = CGF.EmitRuntimeCall( 7090 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7091 {GV->getType()}), 7092 {GV}, "texsurf_handle"); 7093 } else 7094 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7095 CGF.EmitStoreOfScalar(Handle, Dst); 7096 } 7097 }; 7098 7099 /// Checks if the type is unsupported directly by the current target. 7100 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7101 ASTContext &Context = getContext(); 7102 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7103 return true; 7104 if (!Context.getTargetInfo().hasFloat128Type() && 7105 (T->isFloat128Type() || 7106 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7107 return true; 7108 if (const auto *EIT = T->getAs<ExtIntType>()) 7109 return EIT->getNumBits() > 7110 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7111 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7112 Context.getTypeSize(T) > 64U) 7113 return true; 7114 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7115 return isUnsupportedType(AT->getElementType()); 7116 const auto *RT = T->getAs<RecordType>(); 7117 if (!RT) 7118 return false; 7119 const RecordDecl *RD = RT->getDecl(); 7120 7121 // If this is a C++ record, check the bases first. 7122 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7123 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7124 if (isUnsupportedType(I.getType())) 7125 return true; 7126 7127 for (const FieldDecl *I : RD->fields()) 7128 if (isUnsupportedType(I->getType())) 7129 return true; 7130 return false; 7131 } 7132 7133 /// Coerce the given type into an array with maximum allowed size of elements. 7134 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7135 unsigned MaxSize) const { 7136 // Alignment and Size are measured in bits. 7137 const uint64_t Size = getContext().getTypeSize(Ty); 7138 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7139 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7140 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7141 const uint64_t NumElements = (Size + Div - 1) / Div; 7142 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7143 } 7144 7145 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7146 if (RetTy->isVoidType()) 7147 return ABIArgInfo::getIgnore(); 7148 7149 if (getContext().getLangOpts().OpenMP && 7150 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7151 return coerceToIntArrayWithLimit(RetTy, 64); 7152 7153 // note: this is different from default ABI 7154 if (!RetTy->isScalarType()) 7155 return ABIArgInfo::getDirect(); 7156 7157 // Treat an enum type as its underlying type. 7158 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7159 RetTy = EnumTy->getDecl()->getIntegerType(); 7160 7161 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7162 : ABIArgInfo::getDirect()); 7163 } 7164 7165 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7166 // Treat an enum type as its underlying type. 7167 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7168 Ty = EnumTy->getDecl()->getIntegerType(); 7169 7170 // Return aggregates type as indirect by value 7171 if (isAggregateTypeForABI(Ty)) { 7172 // Under CUDA device compilation, tex/surf builtin types are replaced with 7173 // object types and passed directly. 7174 if (getContext().getLangOpts().CUDAIsDevice) { 7175 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7176 return ABIArgInfo::getDirect( 7177 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7178 if (Ty->isCUDADeviceBuiltinTextureType()) 7179 return ABIArgInfo::getDirect( 7180 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7181 } 7182 return getNaturalAlignIndirect(Ty, /* byval */ true); 7183 } 7184 7185 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7186 if ((EIT->getNumBits() > 128) || 7187 (!getContext().getTargetInfo().hasInt128Type() && 7188 EIT->getNumBits() > 64)) 7189 return getNaturalAlignIndirect(Ty, /* byval */ true); 7190 } 7191 7192 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7193 : ABIArgInfo::getDirect()); 7194 } 7195 7196 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7197 if (!getCXXABI().classifyReturnType(FI)) 7198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7199 for (auto &I : FI.arguments()) 7200 I.info = classifyArgumentType(I.type); 7201 7202 // Always honor user-specified calling convention. 7203 if (FI.getCallingConvention() != llvm::CallingConv::C) 7204 return; 7205 7206 FI.setEffectiveCallingConvention(getRuntimeCC()); 7207 } 7208 7209 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7210 QualType Ty) const { 7211 llvm_unreachable("NVPTX does not support varargs"); 7212 } 7213 7214 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7215 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7216 if (GV->isDeclaration()) 7217 return; 7218 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7219 if (VD) { 7220 if (M.getLangOpts().CUDA) { 7221 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7222 addNVVMMetadata(GV, "surface", 1); 7223 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7224 addNVVMMetadata(GV, "texture", 1); 7225 return; 7226 } 7227 } 7228 7229 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7230 if (!FD) return; 7231 7232 llvm::Function *F = cast<llvm::Function>(GV); 7233 7234 // Perform special handling in OpenCL mode 7235 if (M.getLangOpts().OpenCL) { 7236 // Use OpenCL function attributes to check for kernel functions 7237 // By default, all functions are device functions 7238 if (FD->hasAttr<OpenCLKernelAttr>()) { 7239 // OpenCL __kernel functions get kernel metadata 7240 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7241 addNVVMMetadata(F, "kernel", 1); 7242 // And kernel functions are not subject to inlining 7243 F->addFnAttr(llvm::Attribute::NoInline); 7244 } 7245 } 7246 7247 // Perform special handling in CUDA mode. 7248 if (M.getLangOpts().CUDA) { 7249 // CUDA __global__ functions get a kernel metadata entry. Since 7250 // __global__ functions cannot be called from the device, we do not 7251 // need to set the noinline attribute. 7252 if (FD->hasAttr<CUDAGlobalAttr>()) { 7253 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7254 addNVVMMetadata(F, "kernel", 1); 7255 } 7256 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7257 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7258 llvm::APSInt MaxThreads(32); 7259 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7260 if (MaxThreads > 0) 7261 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7262 7263 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7264 // not specified in __launch_bounds__ or if the user specified a 0 value, 7265 // we don't have to add a PTX directive. 7266 if (Attr->getMinBlocks()) { 7267 llvm::APSInt MinBlocks(32); 7268 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7269 if (MinBlocks > 0) 7270 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7271 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7272 } 7273 } 7274 } 7275 } 7276 7277 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7278 StringRef Name, int Operand) { 7279 llvm::Module *M = GV->getParent(); 7280 llvm::LLVMContext &Ctx = M->getContext(); 7281 7282 // Get "nvvm.annotations" metadata node 7283 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7284 7285 llvm::Metadata *MDVals[] = { 7286 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7287 llvm::ConstantAsMetadata::get( 7288 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7289 // Append metadata to nvvm.annotations 7290 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7291 } 7292 7293 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7294 return false; 7295 } 7296 } 7297 7298 //===----------------------------------------------------------------------===// 7299 // SystemZ ABI Implementation 7300 //===----------------------------------------------------------------------===// 7301 7302 namespace { 7303 7304 class SystemZABIInfo : public SwiftABIInfo { 7305 bool HasVector; 7306 bool IsSoftFloatABI; 7307 7308 public: 7309 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7310 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7311 7312 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7313 bool isCompoundType(QualType Ty) const; 7314 bool isVectorArgumentType(QualType Ty) const; 7315 bool isFPArgumentType(QualType Ty) const; 7316 QualType GetSingleElementType(QualType Ty) const; 7317 7318 ABIArgInfo classifyReturnType(QualType RetTy) const; 7319 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7320 7321 void computeInfo(CGFunctionInfo &FI) const override { 7322 if (!getCXXABI().classifyReturnType(FI)) 7323 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7324 for (auto &I : FI.arguments()) 7325 I.info = classifyArgumentType(I.type); 7326 } 7327 7328 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7329 QualType Ty) const override; 7330 7331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7332 bool asReturnValue) const override { 7333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7334 } 7335 bool isSwiftErrorInRegister() const override { 7336 return false; 7337 } 7338 }; 7339 7340 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7341 public: 7342 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7343 : TargetCodeGenInfo( 7344 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7345 7346 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7347 CGBuilderTy &Builder, 7348 CodeGenModule &CGM) const override { 7349 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7350 // Only use TDC in constrained FP mode. 7351 if (!Builder.getIsFPConstrained()) 7352 return nullptr; 7353 7354 llvm::Type *Ty = V->getType(); 7355 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7356 llvm::Module &M = CGM.getModule(); 7357 auto &Ctx = M.getContext(); 7358 llvm::Function *TDCFunc = 7359 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7360 unsigned TDCBits = 0; 7361 switch (BuiltinID) { 7362 case Builtin::BI__builtin_isnan: 7363 TDCBits = 0xf; 7364 break; 7365 case Builtin::BIfinite: 7366 case Builtin::BI__finite: 7367 case Builtin::BIfinitef: 7368 case Builtin::BI__finitef: 7369 case Builtin::BIfinitel: 7370 case Builtin::BI__finitel: 7371 case Builtin::BI__builtin_isfinite: 7372 TDCBits = 0xfc0; 7373 break; 7374 case Builtin::BI__builtin_isinf: 7375 TDCBits = 0x30; 7376 break; 7377 default: 7378 break; 7379 } 7380 if (TDCBits) 7381 return Builder.CreateCall( 7382 TDCFunc, 7383 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7384 } 7385 return nullptr; 7386 } 7387 }; 7388 } 7389 7390 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7391 // Treat an enum type as its underlying type. 7392 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7393 Ty = EnumTy->getDecl()->getIntegerType(); 7394 7395 // Promotable integer types are required to be promoted by the ABI. 7396 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7397 return true; 7398 7399 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7400 if (EIT->getNumBits() < 64) 7401 return true; 7402 7403 // 32-bit values must also be promoted. 7404 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7405 switch (BT->getKind()) { 7406 case BuiltinType::Int: 7407 case BuiltinType::UInt: 7408 return true; 7409 default: 7410 return false; 7411 } 7412 return false; 7413 } 7414 7415 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7416 return (Ty->isAnyComplexType() || 7417 Ty->isVectorType() || 7418 isAggregateTypeForABI(Ty)); 7419 } 7420 7421 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7422 return (HasVector && 7423 Ty->isVectorType() && 7424 getContext().getTypeSize(Ty) <= 128); 7425 } 7426 7427 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7428 if (IsSoftFloatABI) 7429 return false; 7430 7431 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7432 switch (BT->getKind()) { 7433 case BuiltinType::Float: 7434 case BuiltinType::Double: 7435 return true; 7436 default: 7437 return false; 7438 } 7439 7440 return false; 7441 } 7442 7443 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7444 const RecordType *RT = Ty->getAs<RecordType>(); 7445 7446 if (RT && RT->isStructureOrClassType()) { 7447 const RecordDecl *RD = RT->getDecl(); 7448 QualType Found; 7449 7450 // If this is a C++ record, check the bases first. 7451 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7452 for (const auto &I : CXXRD->bases()) { 7453 QualType Base = I.getType(); 7454 7455 // Empty bases don't affect things either way. 7456 if (isEmptyRecord(getContext(), Base, true)) 7457 continue; 7458 7459 if (!Found.isNull()) 7460 return Ty; 7461 Found = GetSingleElementType(Base); 7462 } 7463 7464 // Check the fields. 7465 for (const auto *FD : RD->fields()) { 7466 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7467 // Unlike isSingleElementStruct(), empty structure and array fields 7468 // do count. So do anonymous bitfields that aren't zero-sized. 7469 if (getContext().getLangOpts().CPlusPlus && 7470 FD->isZeroLengthBitField(getContext())) 7471 continue; 7472 // Like isSingleElementStruct(), ignore C++20 empty data members. 7473 if (FD->hasAttr<NoUniqueAddressAttr>() && 7474 isEmptyRecord(getContext(), FD->getType(), true)) 7475 continue; 7476 7477 // Unlike isSingleElementStruct(), arrays do not count. 7478 // Nested structures still do though. 7479 if (!Found.isNull()) 7480 return Ty; 7481 Found = GetSingleElementType(FD->getType()); 7482 } 7483 7484 // Unlike isSingleElementStruct(), trailing padding is allowed. 7485 // An 8-byte aligned struct s { float f; } is passed as a double. 7486 if (!Found.isNull()) 7487 return Found; 7488 } 7489 7490 return Ty; 7491 } 7492 7493 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7494 QualType Ty) const { 7495 // Assume that va_list type is correct; should be pointer to LLVM type: 7496 // struct { 7497 // i64 __gpr; 7498 // i64 __fpr; 7499 // i8 *__overflow_arg_area; 7500 // i8 *__reg_save_area; 7501 // }; 7502 7503 // Every non-vector argument occupies 8 bytes and is passed by preference 7504 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7505 // always passed on the stack. 7506 Ty = getContext().getCanonicalType(Ty); 7507 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7508 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7509 llvm::Type *DirectTy = ArgTy; 7510 ABIArgInfo AI = classifyArgumentType(Ty); 7511 bool IsIndirect = AI.isIndirect(); 7512 bool InFPRs = false; 7513 bool IsVector = false; 7514 CharUnits UnpaddedSize; 7515 CharUnits DirectAlign; 7516 if (IsIndirect) { 7517 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7518 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7519 } else { 7520 if (AI.getCoerceToType()) 7521 ArgTy = AI.getCoerceToType(); 7522 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7523 IsVector = ArgTy->isVectorTy(); 7524 UnpaddedSize = TyInfo.Width; 7525 DirectAlign = TyInfo.Align; 7526 } 7527 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7528 if (IsVector && UnpaddedSize > PaddedSize) 7529 PaddedSize = CharUnits::fromQuantity(16); 7530 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7531 7532 CharUnits Padding = (PaddedSize - UnpaddedSize); 7533 7534 llvm::Type *IndexTy = CGF.Int64Ty; 7535 llvm::Value *PaddedSizeV = 7536 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7537 7538 if (IsVector) { 7539 // Work out the address of a vector argument on the stack. 7540 // Vector arguments are always passed in the high bits of a 7541 // single (8 byte) or double (16 byte) stack slot. 7542 Address OverflowArgAreaPtr = 7543 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7544 Address OverflowArgArea = 7545 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7546 TyInfo.Align); 7547 Address MemAddr = 7548 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7549 7550 // Update overflow_arg_area_ptr pointer 7551 llvm::Value *NewOverflowArgArea = 7552 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7553 OverflowArgArea.getPointer(), PaddedSizeV, 7554 "overflow_arg_area"); 7555 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7556 7557 return MemAddr; 7558 } 7559 7560 assert(PaddedSize.getQuantity() == 8); 7561 7562 unsigned MaxRegs, RegCountField, RegSaveIndex; 7563 CharUnits RegPadding; 7564 if (InFPRs) { 7565 MaxRegs = 4; // Maximum of 4 FPR arguments 7566 RegCountField = 1; // __fpr 7567 RegSaveIndex = 16; // save offset for f0 7568 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7569 } else { 7570 MaxRegs = 5; // Maximum of 5 GPR arguments 7571 RegCountField = 0; // __gpr 7572 RegSaveIndex = 2; // save offset for r2 7573 RegPadding = Padding; // values are passed in the low bits of a GPR 7574 } 7575 7576 Address RegCountPtr = 7577 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7578 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7579 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7580 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7581 "fits_in_regs"); 7582 7583 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7584 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7585 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7586 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7587 7588 // Emit code to load the value if it was passed in registers. 7589 CGF.EmitBlock(InRegBlock); 7590 7591 // Work out the address of an argument register. 7592 llvm::Value *ScaledRegCount = 7593 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7594 llvm::Value *RegBase = 7595 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7596 + RegPadding.getQuantity()); 7597 llvm::Value *RegOffset = 7598 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7599 Address RegSaveAreaPtr = 7600 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7601 llvm::Value *RegSaveArea = 7602 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7603 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7604 "raw_reg_addr"), 7605 PaddedSize); 7606 Address RegAddr = 7607 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7608 7609 // Update the register count 7610 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7611 llvm::Value *NewRegCount = 7612 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7613 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7614 CGF.EmitBranch(ContBlock); 7615 7616 // Emit code to load the value if it was passed in memory. 7617 CGF.EmitBlock(InMemBlock); 7618 7619 // Work out the address of a stack argument. 7620 Address OverflowArgAreaPtr = 7621 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7622 Address OverflowArgArea = 7623 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7624 PaddedSize); 7625 Address RawMemAddr = 7626 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7627 Address MemAddr = 7628 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7629 7630 // Update overflow_arg_area_ptr pointer 7631 llvm::Value *NewOverflowArgArea = 7632 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7633 OverflowArgArea.getPointer(), PaddedSizeV, 7634 "overflow_arg_area"); 7635 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7636 CGF.EmitBranch(ContBlock); 7637 7638 // Return the appropriate result. 7639 CGF.EmitBlock(ContBlock); 7640 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7641 MemAddr, InMemBlock, "va_arg.addr"); 7642 7643 if (IsIndirect) 7644 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7645 TyInfo.Align); 7646 7647 return ResAddr; 7648 } 7649 7650 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7651 if (RetTy->isVoidType()) 7652 return ABIArgInfo::getIgnore(); 7653 if (isVectorArgumentType(RetTy)) 7654 return ABIArgInfo::getDirect(); 7655 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7656 return getNaturalAlignIndirect(RetTy); 7657 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7658 : ABIArgInfo::getDirect()); 7659 } 7660 7661 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7662 // Handle the generic C++ ABI. 7663 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7664 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7665 7666 // Integers and enums are extended to full register width. 7667 if (isPromotableIntegerTypeForABI(Ty)) 7668 return ABIArgInfo::getExtend(Ty); 7669 7670 // Handle vector types and vector-like structure types. Note that 7671 // as opposed to float-like structure types, we do not allow any 7672 // padding for vector-like structures, so verify the sizes match. 7673 uint64_t Size = getContext().getTypeSize(Ty); 7674 QualType SingleElementTy = GetSingleElementType(Ty); 7675 if (isVectorArgumentType(SingleElementTy) && 7676 getContext().getTypeSize(SingleElementTy) == Size) 7677 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7678 7679 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7680 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7681 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7682 7683 // Handle small structures. 7684 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7685 // Structures with flexible arrays have variable length, so really 7686 // fail the size test above. 7687 const RecordDecl *RD = RT->getDecl(); 7688 if (RD->hasFlexibleArrayMember()) 7689 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7690 7691 // The structure is passed as an unextended integer, a float, or a double. 7692 llvm::Type *PassTy; 7693 if (isFPArgumentType(SingleElementTy)) { 7694 assert(Size == 32 || Size == 64); 7695 if (Size == 32) 7696 PassTy = llvm::Type::getFloatTy(getVMContext()); 7697 else 7698 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7699 } else 7700 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7701 return ABIArgInfo::getDirect(PassTy); 7702 } 7703 7704 // Non-structure compounds are passed indirectly. 7705 if (isCompoundType(Ty)) 7706 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7707 7708 return ABIArgInfo::getDirect(nullptr); 7709 } 7710 7711 //===----------------------------------------------------------------------===// 7712 // MSP430 ABI Implementation 7713 //===----------------------------------------------------------------------===// 7714 7715 namespace { 7716 7717 class MSP430ABIInfo : public DefaultABIInfo { 7718 static ABIArgInfo complexArgInfo() { 7719 ABIArgInfo Info = ABIArgInfo::getDirect(); 7720 Info.setCanBeFlattened(false); 7721 return Info; 7722 } 7723 7724 public: 7725 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7726 7727 ABIArgInfo classifyReturnType(QualType RetTy) const { 7728 if (RetTy->isAnyComplexType()) 7729 return complexArgInfo(); 7730 7731 return DefaultABIInfo::classifyReturnType(RetTy); 7732 } 7733 7734 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7735 if (RetTy->isAnyComplexType()) 7736 return complexArgInfo(); 7737 7738 return DefaultABIInfo::classifyArgumentType(RetTy); 7739 } 7740 7741 // Just copy the original implementations because 7742 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7743 void computeInfo(CGFunctionInfo &FI) const override { 7744 if (!getCXXABI().classifyReturnType(FI)) 7745 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7746 for (auto &I : FI.arguments()) 7747 I.info = classifyArgumentType(I.type); 7748 } 7749 7750 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7751 QualType Ty) const override { 7752 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7753 } 7754 }; 7755 7756 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7757 public: 7758 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7759 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7760 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7761 CodeGen::CodeGenModule &M) const override; 7762 }; 7763 7764 } 7765 7766 void MSP430TargetCodeGenInfo::setTargetAttributes( 7767 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7768 if (GV->isDeclaration()) 7769 return; 7770 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7771 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7772 if (!InterruptAttr) 7773 return; 7774 7775 // Handle 'interrupt' attribute: 7776 llvm::Function *F = cast<llvm::Function>(GV); 7777 7778 // Step 1: Set ISR calling convention. 7779 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7780 7781 // Step 2: Add attributes goodness. 7782 F->addFnAttr(llvm::Attribute::NoInline); 7783 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7784 } 7785 } 7786 7787 //===----------------------------------------------------------------------===// 7788 // MIPS ABI Implementation. This works for both little-endian and 7789 // big-endian variants. 7790 //===----------------------------------------------------------------------===// 7791 7792 namespace { 7793 class MipsABIInfo : public ABIInfo { 7794 bool IsO32; 7795 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7796 void CoerceToIntArgs(uint64_t TySize, 7797 SmallVectorImpl<llvm::Type *> &ArgList) const; 7798 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7799 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7800 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7801 public: 7802 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7803 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7804 StackAlignInBytes(IsO32 ? 8 : 16) {} 7805 7806 ABIArgInfo classifyReturnType(QualType RetTy) const; 7807 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7808 void computeInfo(CGFunctionInfo &FI) const override; 7809 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7810 QualType Ty) const override; 7811 ABIArgInfo extendType(QualType Ty) const; 7812 }; 7813 7814 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7815 unsigned SizeOfUnwindException; 7816 public: 7817 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7818 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7819 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7820 7821 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7822 return 29; 7823 } 7824 7825 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7826 CodeGen::CodeGenModule &CGM) const override { 7827 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7828 if (!FD) return; 7829 llvm::Function *Fn = cast<llvm::Function>(GV); 7830 7831 if (FD->hasAttr<MipsLongCallAttr>()) 7832 Fn->addFnAttr("long-call"); 7833 else if (FD->hasAttr<MipsShortCallAttr>()) 7834 Fn->addFnAttr("short-call"); 7835 7836 // Other attributes do not have a meaning for declarations. 7837 if (GV->isDeclaration()) 7838 return; 7839 7840 if (FD->hasAttr<Mips16Attr>()) { 7841 Fn->addFnAttr("mips16"); 7842 } 7843 else if (FD->hasAttr<NoMips16Attr>()) { 7844 Fn->addFnAttr("nomips16"); 7845 } 7846 7847 if (FD->hasAttr<MicroMipsAttr>()) 7848 Fn->addFnAttr("micromips"); 7849 else if (FD->hasAttr<NoMicroMipsAttr>()) 7850 Fn->addFnAttr("nomicromips"); 7851 7852 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7853 if (!Attr) 7854 return; 7855 7856 const char *Kind; 7857 switch (Attr->getInterrupt()) { 7858 case MipsInterruptAttr::eic: Kind = "eic"; break; 7859 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7860 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7861 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7862 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7863 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7864 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7865 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7866 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7867 } 7868 7869 Fn->addFnAttr("interrupt", Kind); 7870 7871 } 7872 7873 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7874 llvm::Value *Address) const override; 7875 7876 unsigned getSizeOfUnwindException() const override { 7877 return SizeOfUnwindException; 7878 } 7879 }; 7880 } 7881 7882 void MipsABIInfo::CoerceToIntArgs( 7883 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7884 llvm::IntegerType *IntTy = 7885 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7886 7887 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7888 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7889 ArgList.push_back(IntTy); 7890 7891 // If necessary, add one more integer type to ArgList. 7892 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7893 7894 if (R) 7895 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7896 } 7897 7898 // In N32/64, an aligned double precision floating point field is passed in 7899 // a register. 7900 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7901 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7902 7903 if (IsO32) { 7904 CoerceToIntArgs(TySize, ArgList); 7905 return llvm::StructType::get(getVMContext(), ArgList); 7906 } 7907 7908 if (Ty->isComplexType()) 7909 return CGT.ConvertType(Ty); 7910 7911 const RecordType *RT = Ty->getAs<RecordType>(); 7912 7913 // Unions/vectors are passed in integer registers. 7914 if (!RT || !RT->isStructureOrClassType()) { 7915 CoerceToIntArgs(TySize, ArgList); 7916 return llvm::StructType::get(getVMContext(), ArgList); 7917 } 7918 7919 const RecordDecl *RD = RT->getDecl(); 7920 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7921 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7922 7923 uint64_t LastOffset = 0; 7924 unsigned idx = 0; 7925 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7926 7927 // Iterate over fields in the struct/class and check if there are any aligned 7928 // double fields. 7929 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7930 i != e; ++i, ++idx) { 7931 const QualType Ty = i->getType(); 7932 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7933 7934 if (!BT || BT->getKind() != BuiltinType::Double) 7935 continue; 7936 7937 uint64_t Offset = Layout.getFieldOffset(idx); 7938 if (Offset % 64) // Ignore doubles that are not aligned. 7939 continue; 7940 7941 // Add ((Offset - LastOffset) / 64) args of type i64. 7942 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7943 ArgList.push_back(I64); 7944 7945 // Add double type. 7946 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7947 LastOffset = Offset + 64; 7948 } 7949 7950 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7951 ArgList.append(IntArgList.begin(), IntArgList.end()); 7952 7953 return llvm::StructType::get(getVMContext(), ArgList); 7954 } 7955 7956 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7957 uint64_t Offset) const { 7958 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7959 return nullptr; 7960 7961 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7962 } 7963 7964 ABIArgInfo 7965 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7966 Ty = useFirstFieldIfTransparentUnion(Ty); 7967 7968 uint64_t OrigOffset = Offset; 7969 uint64_t TySize = getContext().getTypeSize(Ty); 7970 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7971 7972 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7973 (uint64_t)StackAlignInBytes); 7974 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7975 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7976 7977 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7978 // Ignore empty aggregates. 7979 if (TySize == 0) 7980 return ABIArgInfo::getIgnore(); 7981 7982 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7983 Offset = OrigOffset + MinABIStackAlignInBytes; 7984 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7985 } 7986 7987 // If we have reached here, aggregates are passed directly by coercing to 7988 // another structure type. Padding is inserted if the offset of the 7989 // aggregate is unaligned. 7990 ABIArgInfo ArgInfo = 7991 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7992 getPaddingType(OrigOffset, CurrOffset)); 7993 ArgInfo.setInReg(true); 7994 return ArgInfo; 7995 } 7996 7997 // Treat an enum type as its underlying type. 7998 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7999 Ty = EnumTy->getDecl()->getIntegerType(); 8000 8001 // Make sure we pass indirectly things that are too large. 8002 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8003 if (EIT->getNumBits() > 128 || 8004 (EIT->getNumBits() > 64 && 8005 !getContext().getTargetInfo().hasInt128Type())) 8006 return getNaturalAlignIndirect(Ty); 8007 8008 // All integral types are promoted to the GPR width. 8009 if (Ty->isIntegralOrEnumerationType()) 8010 return extendType(Ty); 8011 8012 return ABIArgInfo::getDirect( 8013 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8014 } 8015 8016 llvm::Type* 8017 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8018 const RecordType *RT = RetTy->getAs<RecordType>(); 8019 SmallVector<llvm::Type*, 8> RTList; 8020 8021 if (RT && RT->isStructureOrClassType()) { 8022 const RecordDecl *RD = RT->getDecl(); 8023 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8024 unsigned FieldCnt = Layout.getFieldCount(); 8025 8026 // N32/64 returns struct/classes in floating point registers if the 8027 // following conditions are met: 8028 // 1. The size of the struct/class is no larger than 128-bit. 8029 // 2. The struct/class has one or two fields all of which are floating 8030 // point types. 8031 // 3. The offset of the first field is zero (this follows what gcc does). 8032 // 8033 // Any other composite results are returned in integer registers. 8034 // 8035 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8036 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8037 for (; b != e; ++b) { 8038 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8039 8040 if (!BT || !BT->isFloatingPoint()) 8041 break; 8042 8043 RTList.push_back(CGT.ConvertType(b->getType())); 8044 } 8045 8046 if (b == e) 8047 return llvm::StructType::get(getVMContext(), RTList, 8048 RD->hasAttr<PackedAttr>()); 8049 8050 RTList.clear(); 8051 } 8052 } 8053 8054 CoerceToIntArgs(Size, RTList); 8055 return llvm::StructType::get(getVMContext(), RTList); 8056 } 8057 8058 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8059 uint64_t Size = getContext().getTypeSize(RetTy); 8060 8061 if (RetTy->isVoidType()) 8062 return ABIArgInfo::getIgnore(); 8063 8064 // O32 doesn't treat zero-sized structs differently from other structs. 8065 // However, N32/N64 ignores zero sized return values. 8066 if (!IsO32 && Size == 0) 8067 return ABIArgInfo::getIgnore(); 8068 8069 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8070 if (Size <= 128) { 8071 if (RetTy->isAnyComplexType()) 8072 return ABIArgInfo::getDirect(); 8073 8074 // O32 returns integer vectors in registers and N32/N64 returns all small 8075 // aggregates in registers. 8076 if (!IsO32 || 8077 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8078 ABIArgInfo ArgInfo = 8079 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8080 ArgInfo.setInReg(true); 8081 return ArgInfo; 8082 } 8083 } 8084 8085 return getNaturalAlignIndirect(RetTy); 8086 } 8087 8088 // Treat an enum type as its underlying type. 8089 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8090 RetTy = EnumTy->getDecl()->getIntegerType(); 8091 8092 // Make sure we pass indirectly things that are too large. 8093 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 8094 if (EIT->getNumBits() > 128 || 8095 (EIT->getNumBits() > 64 && 8096 !getContext().getTargetInfo().hasInt128Type())) 8097 return getNaturalAlignIndirect(RetTy); 8098 8099 if (isPromotableIntegerTypeForABI(RetTy)) 8100 return ABIArgInfo::getExtend(RetTy); 8101 8102 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8103 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8104 return ABIArgInfo::getSignExtend(RetTy); 8105 8106 return ABIArgInfo::getDirect(); 8107 } 8108 8109 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8110 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8111 if (!getCXXABI().classifyReturnType(FI)) 8112 RetInfo = classifyReturnType(FI.getReturnType()); 8113 8114 // Check if a pointer to an aggregate is passed as a hidden argument. 8115 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8116 8117 for (auto &I : FI.arguments()) 8118 I.info = classifyArgumentType(I.type, Offset); 8119 } 8120 8121 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8122 QualType OrigTy) const { 8123 QualType Ty = OrigTy; 8124 8125 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8126 // Pointers are also promoted in the same way but this only matters for N32. 8127 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8128 unsigned PtrWidth = getTarget().getPointerWidth(0); 8129 bool DidPromote = false; 8130 if ((Ty->isIntegerType() && 8131 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8132 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8133 DidPromote = true; 8134 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8135 Ty->isSignedIntegerType()); 8136 } 8137 8138 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8139 8140 // The alignment of things in the argument area is never larger than 8141 // StackAlignInBytes. 8142 TyInfo.Align = 8143 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8144 8145 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8146 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8147 8148 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8149 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8150 8151 8152 // If there was a promotion, "unpromote" into a temporary. 8153 // TODO: can we just use a pointer into a subset of the original slot? 8154 if (DidPromote) { 8155 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8156 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8157 8158 // Truncate down to the right width. 8159 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8160 : CGF.IntPtrTy); 8161 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8162 if (OrigTy->isPointerType()) 8163 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8164 8165 CGF.Builder.CreateStore(V, Temp); 8166 Addr = Temp; 8167 } 8168 8169 return Addr; 8170 } 8171 8172 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8173 int TySize = getContext().getTypeSize(Ty); 8174 8175 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8176 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8177 return ABIArgInfo::getSignExtend(Ty); 8178 8179 return ABIArgInfo::getExtend(Ty); 8180 } 8181 8182 bool 8183 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8184 llvm::Value *Address) const { 8185 // This information comes from gcc's implementation, which seems to 8186 // as canonical as it gets. 8187 8188 // Everything on MIPS is 4 bytes. Double-precision FP registers 8189 // are aliased to pairs of single-precision FP registers. 8190 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8191 8192 // 0-31 are the general purpose registers, $0 - $31. 8193 // 32-63 are the floating-point registers, $f0 - $f31. 8194 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8195 // 66 is the (notional, I think) register for signal-handler return. 8196 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8197 8198 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8199 // They are one bit wide and ignored here. 8200 8201 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8202 // (coprocessor 1 is the FP unit) 8203 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8204 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8205 // 176-181 are the DSP accumulator registers. 8206 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8207 return false; 8208 } 8209 8210 //===----------------------------------------------------------------------===// 8211 // M68k ABI Implementation 8212 //===----------------------------------------------------------------------===// 8213 8214 namespace { 8215 8216 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8217 public: 8218 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8219 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8220 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8221 CodeGen::CodeGenModule &M) const override; 8222 }; 8223 8224 } // namespace 8225 8226 void M68kTargetCodeGenInfo::setTargetAttributes( 8227 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8228 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8229 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8230 // Handle 'interrupt' attribute: 8231 llvm::Function *F = cast<llvm::Function>(GV); 8232 8233 // Step 1: Set ISR calling convention. 8234 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8235 8236 // Step 2: Add attributes goodness. 8237 F->addFnAttr(llvm::Attribute::NoInline); 8238 8239 // Step 3: Emit ISR vector alias. 8240 unsigned Num = attr->getNumber() / 2; 8241 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8242 "__isr_" + Twine(Num), F); 8243 } 8244 } 8245 } 8246 8247 //===----------------------------------------------------------------------===// 8248 // AVR ABI Implementation. Documented at 8249 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8250 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8251 //===----------------------------------------------------------------------===// 8252 8253 namespace { 8254 class AVRABIInfo : public DefaultABIInfo { 8255 public: 8256 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8257 8258 ABIArgInfo classifyReturnType(QualType Ty) const { 8259 // A return struct with size less than or equal to 8 bytes is returned 8260 // directly via registers R18-R25. 8261 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8262 return ABIArgInfo::getDirect(); 8263 else 8264 return DefaultABIInfo::classifyReturnType(Ty); 8265 } 8266 8267 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8268 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8269 void computeInfo(CGFunctionInfo &FI) const override { 8270 if (!getCXXABI().classifyReturnType(FI)) 8271 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8272 for (auto &I : FI.arguments()) 8273 I.info = classifyArgumentType(I.type); 8274 } 8275 }; 8276 8277 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8278 public: 8279 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8280 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8281 8282 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8283 const VarDecl *D) const override { 8284 // Check if a global/static variable is defined within address space 1 8285 // but not constant. 8286 LangAS AS = D->getType().getAddressSpace(); 8287 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8288 !D->getType().isConstQualified()) 8289 CGM.getDiags().Report(D->getLocation(), 8290 diag::err_verify_nonconst_addrspace) 8291 << "__flash"; 8292 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8293 } 8294 8295 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8296 CodeGen::CodeGenModule &CGM) const override { 8297 if (GV->isDeclaration()) 8298 return; 8299 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8300 if (!FD) return; 8301 auto *Fn = cast<llvm::Function>(GV); 8302 8303 if (FD->getAttr<AVRInterruptAttr>()) 8304 Fn->addFnAttr("interrupt"); 8305 8306 if (FD->getAttr<AVRSignalAttr>()) 8307 Fn->addFnAttr("signal"); 8308 } 8309 }; 8310 } 8311 8312 //===----------------------------------------------------------------------===// 8313 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8314 // Currently subclassed only to implement custom OpenCL C function attribute 8315 // handling. 8316 //===----------------------------------------------------------------------===// 8317 8318 namespace { 8319 8320 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8321 public: 8322 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8323 : DefaultTargetCodeGenInfo(CGT) {} 8324 8325 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8326 CodeGen::CodeGenModule &M) const override; 8327 }; 8328 8329 void TCETargetCodeGenInfo::setTargetAttributes( 8330 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8331 if (GV->isDeclaration()) 8332 return; 8333 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8334 if (!FD) return; 8335 8336 llvm::Function *F = cast<llvm::Function>(GV); 8337 8338 if (M.getLangOpts().OpenCL) { 8339 if (FD->hasAttr<OpenCLKernelAttr>()) { 8340 // OpenCL C Kernel functions are not subject to inlining 8341 F->addFnAttr(llvm::Attribute::NoInline); 8342 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8343 if (Attr) { 8344 // Convert the reqd_work_group_size() attributes to metadata. 8345 llvm::LLVMContext &Context = F->getContext(); 8346 llvm::NamedMDNode *OpenCLMetadata = 8347 M.getModule().getOrInsertNamedMetadata( 8348 "opencl.kernel_wg_size_info"); 8349 8350 SmallVector<llvm::Metadata *, 5> Operands; 8351 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8352 8353 Operands.push_back( 8354 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8355 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8356 Operands.push_back( 8357 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8358 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8359 Operands.push_back( 8360 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8361 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8362 8363 // Add a boolean constant operand for "required" (true) or "hint" 8364 // (false) for implementing the work_group_size_hint attr later. 8365 // Currently always true as the hint is not yet implemented. 8366 Operands.push_back( 8367 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8368 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8369 } 8370 } 8371 } 8372 } 8373 8374 } 8375 8376 //===----------------------------------------------------------------------===// 8377 // Hexagon ABI Implementation 8378 //===----------------------------------------------------------------------===// 8379 8380 namespace { 8381 8382 class HexagonABIInfo : public DefaultABIInfo { 8383 public: 8384 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8385 8386 private: 8387 ABIArgInfo classifyReturnType(QualType RetTy) const; 8388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8389 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8390 8391 void computeInfo(CGFunctionInfo &FI) const override; 8392 8393 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8394 QualType Ty) const override; 8395 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8396 QualType Ty) const; 8397 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8398 QualType Ty) const; 8399 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8400 QualType Ty) const; 8401 }; 8402 8403 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8404 public: 8405 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8406 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8407 8408 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8409 return 29; 8410 } 8411 8412 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8413 CodeGen::CodeGenModule &GCM) const override { 8414 if (GV->isDeclaration()) 8415 return; 8416 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8417 if (!FD) 8418 return; 8419 } 8420 }; 8421 8422 } // namespace 8423 8424 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8425 unsigned RegsLeft = 6; 8426 if (!getCXXABI().classifyReturnType(FI)) 8427 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8428 for (auto &I : FI.arguments()) 8429 I.info = classifyArgumentType(I.type, &RegsLeft); 8430 } 8431 8432 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8433 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8434 " through registers"); 8435 8436 if (*RegsLeft == 0) 8437 return false; 8438 8439 if (Size <= 32) { 8440 (*RegsLeft)--; 8441 return true; 8442 } 8443 8444 if (2 <= (*RegsLeft & (~1U))) { 8445 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8446 return true; 8447 } 8448 8449 // Next available register was r5 but candidate was greater than 32-bits so it 8450 // has to go on the stack. However we still consume r5 8451 if (*RegsLeft == 1) 8452 *RegsLeft = 0; 8453 8454 return false; 8455 } 8456 8457 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8458 unsigned *RegsLeft) const { 8459 if (!isAggregateTypeForABI(Ty)) { 8460 // Treat an enum type as its underlying type. 8461 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8462 Ty = EnumTy->getDecl()->getIntegerType(); 8463 8464 uint64_t Size = getContext().getTypeSize(Ty); 8465 if (Size <= 64) 8466 HexagonAdjustRegsLeft(Size, RegsLeft); 8467 8468 if (Size > 64 && Ty->isExtIntType()) 8469 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8470 8471 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8472 : ABIArgInfo::getDirect(); 8473 } 8474 8475 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8476 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8477 8478 // Ignore empty records. 8479 if (isEmptyRecord(getContext(), Ty, true)) 8480 return ABIArgInfo::getIgnore(); 8481 8482 uint64_t Size = getContext().getTypeSize(Ty); 8483 unsigned Align = getContext().getTypeAlign(Ty); 8484 8485 if (Size > 64) 8486 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8487 8488 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8489 Align = Size <= 32 ? 32 : 64; 8490 if (Size <= Align) { 8491 // Pass in the smallest viable integer type. 8492 if (!llvm::isPowerOf2_64(Size)) 8493 Size = llvm::NextPowerOf2(Size); 8494 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8495 } 8496 return DefaultABIInfo::classifyArgumentType(Ty); 8497 } 8498 8499 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8500 if (RetTy->isVoidType()) 8501 return ABIArgInfo::getIgnore(); 8502 8503 const TargetInfo &T = CGT.getTarget(); 8504 uint64_t Size = getContext().getTypeSize(RetTy); 8505 8506 if (RetTy->getAs<VectorType>()) { 8507 // HVX vectors are returned in vector registers or register pairs. 8508 if (T.hasFeature("hvx")) { 8509 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8510 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8511 if (Size == VecSize || Size == 2*VecSize) 8512 return ABIArgInfo::getDirectInReg(); 8513 } 8514 // Large vector types should be returned via memory. 8515 if (Size > 64) 8516 return getNaturalAlignIndirect(RetTy); 8517 } 8518 8519 if (!isAggregateTypeForABI(RetTy)) { 8520 // Treat an enum type as its underlying type. 8521 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8522 RetTy = EnumTy->getDecl()->getIntegerType(); 8523 8524 if (Size > 64 && RetTy->isExtIntType()) 8525 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8526 8527 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8528 : ABIArgInfo::getDirect(); 8529 } 8530 8531 if (isEmptyRecord(getContext(), RetTy, true)) 8532 return ABIArgInfo::getIgnore(); 8533 8534 // Aggregates <= 8 bytes are returned in registers, other aggregates 8535 // are returned indirectly. 8536 if (Size <= 64) { 8537 // Return in the smallest viable integer type. 8538 if (!llvm::isPowerOf2_64(Size)) 8539 Size = llvm::NextPowerOf2(Size); 8540 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8541 } 8542 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8543 } 8544 8545 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8546 Address VAListAddr, 8547 QualType Ty) const { 8548 // Load the overflow area pointer. 8549 Address __overflow_area_pointer_p = 8550 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8551 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8552 __overflow_area_pointer_p, "__overflow_area_pointer"); 8553 8554 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8555 if (Align > 4) { 8556 // Alignment should be a power of 2. 8557 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8558 8559 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8560 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8561 8562 // Add offset to the current pointer to access the argument. 8563 __overflow_area_pointer = 8564 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8565 llvm::Value *AsInt = 8566 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8567 8568 // Create a mask which should be "AND"ed 8569 // with (overflow_arg_area + align - 1) 8570 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8571 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8572 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8573 "__overflow_area_pointer.align"); 8574 } 8575 8576 // Get the type of the argument from memory and bitcast 8577 // overflow area pointer to the argument type. 8578 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8579 Address AddrTyped = CGF.Builder.CreateBitCast( 8580 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8581 llvm::PointerType::getUnqual(PTy)); 8582 8583 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8584 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8585 8586 __overflow_area_pointer = CGF.Builder.CreateGEP( 8587 CGF.Int8Ty, __overflow_area_pointer, 8588 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8589 "__overflow_area_pointer.next"); 8590 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8591 8592 return AddrTyped; 8593 } 8594 8595 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8596 Address VAListAddr, 8597 QualType Ty) const { 8598 // FIXME: Need to handle alignment 8599 llvm::Type *BP = CGF.Int8PtrTy; 8600 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8601 CGBuilderTy &Builder = CGF.Builder; 8602 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8603 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8604 // Handle address alignment for type alignment > 32 bits 8605 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8606 if (TyAlign > 4) { 8607 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8608 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8609 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8610 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8611 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8612 } 8613 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8614 Address AddrTyped = Builder.CreateBitCast( 8615 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8616 8617 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8618 llvm::Value *NextAddr = Builder.CreateGEP( 8619 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8620 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8621 8622 return AddrTyped; 8623 } 8624 8625 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8626 Address VAListAddr, 8627 QualType Ty) const { 8628 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8629 8630 if (ArgSize > 8) 8631 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8632 8633 // Here we have check if the argument is in register area or 8634 // in overflow area. 8635 // If the saved register area pointer + argsize rounded up to alignment > 8636 // saved register area end pointer, argument is in overflow area. 8637 unsigned RegsLeft = 6; 8638 Ty = CGF.getContext().getCanonicalType(Ty); 8639 (void)classifyArgumentType(Ty, &RegsLeft); 8640 8641 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8642 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8643 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8644 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8645 8646 // Get rounded size of the argument.GCC does not allow vararg of 8647 // size < 4 bytes. We follow the same logic here. 8648 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8649 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8650 8651 // Argument may be in saved register area 8652 CGF.EmitBlock(MaybeRegBlock); 8653 8654 // Load the current saved register area pointer. 8655 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8656 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8657 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8658 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8659 8660 // Load the saved register area end pointer. 8661 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8662 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8663 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8664 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8665 8666 // If the size of argument is > 4 bytes, check if the stack 8667 // location is aligned to 8 bytes 8668 if (ArgAlign > 4) { 8669 8670 llvm::Value *__current_saved_reg_area_pointer_int = 8671 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8672 CGF.Int32Ty); 8673 8674 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8675 __current_saved_reg_area_pointer_int, 8676 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8677 "align_current_saved_reg_area_pointer"); 8678 8679 __current_saved_reg_area_pointer_int = 8680 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8681 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8682 "align_current_saved_reg_area_pointer"); 8683 8684 __current_saved_reg_area_pointer = 8685 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8686 __current_saved_reg_area_pointer->getType(), 8687 "align_current_saved_reg_area_pointer"); 8688 } 8689 8690 llvm::Value *__new_saved_reg_area_pointer = 8691 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8692 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8693 "__new_saved_reg_area_pointer"); 8694 8695 llvm::Value *UsingStack = 0; 8696 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8697 __saved_reg_area_end_pointer); 8698 8699 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8700 8701 // Argument in saved register area 8702 // Implement the block where argument is in register saved area 8703 CGF.EmitBlock(InRegBlock); 8704 8705 llvm::Type *PTy = CGF.ConvertType(Ty); 8706 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8707 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8708 8709 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8710 __current_saved_reg_area_pointer_p); 8711 8712 CGF.EmitBranch(ContBlock); 8713 8714 // Argument in overflow area 8715 // Implement the block where the argument is in overflow area. 8716 CGF.EmitBlock(OnStackBlock); 8717 8718 // Load the overflow area pointer 8719 Address __overflow_area_pointer_p = 8720 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8721 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8722 __overflow_area_pointer_p, "__overflow_area_pointer"); 8723 8724 // Align the overflow area pointer according to the alignment of the argument 8725 if (ArgAlign > 4) { 8726 llvm::Value *__overflow_area_pointer_int = 8727 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8728 8729 __overflow_area_pointer_int = 8730 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8731 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8732 "align_overflow_area_pointer"); 8733 8734 __overflow_area_pointer_int = 8735 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8736 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8737 "align_overflow_area_pointer"); 8738 8739 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8740 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8741 "align_overflow_area_pointer"); 8742 } 8743 8744 // Get the pointer for next argument in overflow area and store it 8745 // to overflow area pointer. 8746 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8747 CGF.Int8Ty, __overflow_area_pointer, 8748 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8749 "__overflow_area_pointer.next"); 8750 8751 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8752 __overflow_area_pointer_p); 8753 8754 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8755 __current_saved_reg_area_pointer_p); 8756 8757 // Bitcast the overflow area pointer to the type of argument. 8758 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8759 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8760 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8761 8762 CGF.EmitBranch(ContBlock); 8763 8764 // Get the correct pointer to load the variable argument 8765 // Implement the ContBlock 8766 CGF.EmitBlock(ContBlock); 8767 8768 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8769 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8770 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8771 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8772 8773 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8774 } 8775 8776 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8777 QualType Ty) const { 8778 8779 if (getTarget().getTriple().isMusl()) 8780 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8781 8782 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8783 } 8784 8785 //===----------------------------------------------------------------------===// 8786 // Lanai ABI Implementation 8787 //===----------------------------------------------------------------------===// 8788 8789 namespace { 8790 class LanaiABIInfo : public DefaultABIInfo { 8791 public: 8792 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8793 8794 bool shouldUseInReg(QualType Ty, CCState &State) const; 8795 8796 void computeInfo(CGFunctionInfo &FI) const override { 8797 CCState State(FI); 8798 // Lanai uses 4 registers to pass arguments unless the function has the 8799 // regparm attribute set. 8800 if (FI.getHasRegParm()) { 8801 State.FreeRegs = FI.getRegParm(); 8802 } else { 8803 State.FreeRegs = 4; 8804 } 8805 8806 if (!getCXXABI().classifyReturnType(FI)) 8807 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8808 for (auto &I : FI.arguments()) 8809 I.info = classifyArgumentType(I.type, State); 8810 } 8811 8812 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8813 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8814 }; 8815 } // end anonymous namespace 8816 8817 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8818 unsigned Size = getContext().getTypeSize(Ty); 8819 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8820 8821 if (SizeInRegs == 0) 8822 return false; 8823 8824 if (SizeInRegs > State.FreeRegs) { 8825 State.FreeRegs = 0; 8826 return false; 8827 } 8828 8829 State.FreeRegs -= SizeInRegs; 8830 8831 return true; 8832 } 8833 8834 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8835 CCState &State) const { 8836 if (!ByVal) { 8837 if (State.FreeRegs) { 8838 --State.FreeRegs; // Non-byval indirects just use one pointer. 8839 return getNaturalAlignIndirectInReg(Ty); 8840 } 8841 return getNaturalAlignIndirect(Ty, false); 8842 } 8843 8844 // Compute the byval alignment. 8845 const unsigned MinABIStackAlignInBytes = 4; 8846 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8847 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8848 /*Realign=*/TypeAlign > 8849 MinABIStackAlignInBytes); 8850 } 8851 8852 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8853 CCState &State) const { 8854 // Check with the C++ ABI first. 8855 const RecordType *RT = Ty->getAs<RecordType>(); 8856 if (RT) { 8857 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8858 if (RAA == CGCXXABI::RAA_Indirect) { 8859 return getIndirectResult(Ty, /*ByVal=*/false, State); 8860 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8861 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8862 } 8863 } 8864 8865 if (isAggregateTypeForABI(Ty)) { 8866 // Structures with flexible arrays are always indirect. 8867 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8868 return getIndirectResult(Ty, /*ByVal=*/true, State); 8869 8870 // Ignore empty structs/unions. 8871 if (isEmptyRecord(getContext(), Ty, true)) 8872 return ABIArgInfo::getIgnore(); 8873 8874 llvm::LLVMContext &LLVMContext = getVMContext(); 8875 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8876 if (SizeInRegs <= State.FreeRegs) { 8877 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8878 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8879 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8880 State.FreeRegs -= SizeInRegs; 8881 return ABIArgInfo::getDirectInReg(Result); 8882 } else { 8883 State.FreeRegs = 0; 8884 } 8885 return getIndirectResult(Ty, true, State); 8886 } 8887 8888 // Treat an enum type as its underlying type. 8889 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8890 Ty = EnumTy->getDecl()->getIntegerType(); 8891 8892 bool InReg = shouldUseInReg(Ty, State); 8893 8894 // Don't pass >64 bit integers in registers. 8895 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8896 if (EIT->getNumBits() > 64) 8897 return getIndirectResult(Ty, /*ByVal=*/true, State); 8898 8899 if (isPromotableIntegerTypeForABI(Ty)) { 8900 if (InReg) 8901 return ABIArgInfo::getDirectInReg(); 8902 return ABIArgInfo::getExtend(Ty); 8903 } 8904 if (InReg) 8905 return ABIArgInfo::getDirectInReg(); 8906 return ABIArgInfo::getDirect(); 8907 } 8908 8909 namespace { 8910 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8911 public: 8912 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8913 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8914 }; 8915 } 8916 8917 //===----------------------------------------------------------------------===// 8918 // AMDGPU ABI Implementation 8919 //===----------------------------------------------------------------------===// 8920 8921 namespace { 8922 8923 class AMDGPUABIInfo final : public DefaultABIInfo { 8924 private: 8925 static const unsigned MaxNumRegsForArgsRet = 16; 8926 8927 unsigned numRegsForType(QualType Ty) const; 8928 8929 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8930 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8931 uint64_t Members) const override; 8932 8933 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8934 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8935 unsigned ToAS) const { 8936 // Single value types. 8937 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8938 return llvm::PointerType::get( 8939 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8940 return Ty; 8941 } 8942 8943 public: 8944 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8945 DefaultABIInfo(CGT) {} 8946 8947 ABIArgInfo classifyReturnType(QualType RetTy) const; 8948 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8949 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8950 8951 void computeInfo(CGFunctionInfo &FI) const override; 8952 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8953 QualType Ty) const override; 8954 }; 8955 8956 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8957 return true; 8958 } 8959 8960 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8961 const Type *Base, uint64_t Members) const { 8962 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8963 8964 // Homogeneous Aggregates may occupy at most 16 registers. 8965 return Members * NumRegs <= MaxNumRegsForArgsRet; 8966 } 8967 8968 /// Estimate number of registers the type will use when passed in registers. 8969 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8970 unsigned NumRegs = 0; 8971 8972 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8973 // Compute from the number of elements. The reported size is based on the 8974 // in-memory size, which includes the padding 4th element for 3-vectors. 8975 QualType EltTy = VT->getElementType(); 8976 unsigned EltSize = getContext().getTypeSize(EltTy); 8977 8978 // 16-bit element vectors should be passed as packed. 8979 if (EltSize == 16) 8980 return (VT->getNumElements() + 1) / 2; 8981 8982 unsigned EltNumRegs = (EltSize + 31) / 32; 8983 return EltNumRegs * VT->getNumElements(); 8984 } 8985 8986 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8987 const RecordDecl *RD = RT->getDecl(); 8988 assert(!RD->hasFlexibleArrayMember()); 8989 8990 for (const FieldDecl *Field : RD->fields()) { 8991 QualType FieldTy = Field->getType(); 8992 NumRegs += numRegsForType(FieldTy); 8993 } 8994 8995 return NumRegs; 8996 } 8997 8998 return (getContext().getTypeSize(Ty) + 31) / 32; 8999 } 9000 9001 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9002 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9003 9004 if (!getCXXABI().classifyReturnType(FI)) 9005 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9006 9007 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9008 for (auto &Arg : FI.arguments()) { 9009 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9010 Arg.info = classifyKernelArgumentType(Arg.type); 9011 } else { 9012 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9013 } 9014 } 9015 } 9016 9017 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9018 QualType Ty) const { 9019 llvm_unreachable("AMDGPU does not support varargs"); 9020 } 9021 9022 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9023 if (isAggregateTypeForABI(RetTy)) { 9024 // Records with non-trivial destructors/copy-constructors should not be 9025 // returned by value. 9026 if (!getRecordArgABI(RetTy, getCXXABI())) { 9027 // Ignore empty structs/unions. 9028 if (isEmptyRecord(getContext(), RetTy, true)) 9029 return ABIArgInfo::getIgnore(); 9030 9031 // Lower single-element structs to just return a regular value. 9032 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9033 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9034 9035 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9036 const RecordDecl *RD = RT->getDecl(); 9037 if (RD->hasFlexibleArrayMember()) 9038 return DefaultABIInfo::classifyReturnType(RetTy); 9039 } 9040 9041 // Pack aggregates <= 4 bytes into single VGPR or pair. 9042 uint64_t Size = getContext().getTypeSize(RetTy); 9043 if (Size <= 16) 9044 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9045 9046 if (Size <= 32) 9047 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9048 9049 if (Size <= 64) { 9050 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9051 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9052 } 9053 9054 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9055 return ABIArgInfo::getDirect(); 9056 } 9057 } 9058 9059 // Otherwise just do the default thing. 9060 return DefaultABIInfo::classifyReturnType(RetTy); 9061 } 9062 9063 /// For kernels all parameters are really passed in a special buffer. It doesn't 9064 /// make sense to pass anything byval, so everything must be direct. 9065 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9066 Ty = useFirstFieldIfTransparentUnion(Ty); 9067 9068 // TODO: Can we omit empty structs? 9069 9070 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9071 Ty = QualType(SeltTy, 0); 9072 9073 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9074 llvm::Type *LTy = OrigLTy; 9075 if (getContext().getLangOpts().HIP) { 9076 LTy = coerceKernelArgumentType( 9077 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9078 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9079 } 9080 9081 // FIXME: Should also use this for OpenCL, but it requires addressing the 9082 // problem of kernels being called. 9083 // 9084 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9085 // to global address space when using byref. This would require implementing a 9086 // new kind of coercion of the in-memory type when for indirect arguments. 9087 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9088 isAggregateTypeForABI(Ty)) { 9089 return ABIArgInfo::getIndirectAliased( 9090 getContext().getTypeAlignInChars(Ty), 9091 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9092 false /*Realign*/, nullptr /*Padding*/); 9093 } 9094 9095 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9096 // individual elements, which confuses the Clover OpenCL backend; therefore we 9097 // have to set it to false here. Other args of getDirect() are just defaults. 9098 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9099 } 9100 9101 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9102 unsigned &NumRegsLeft) const { 9103 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9104 9105 Ty = useFirstFieldIfTransparentUnion(Ty); 9106 9107 if (isAggregateTypeForABI(Ty)) { 9108 // Records with non-trivial destructors/copy-constructors should not be 9109 // passed by value. 9110 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9111 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9112 9113 // Ignore empty structs/unions. 9114 if (isEmptyRecord(getContext(), Ty, true)) 9115 return ABIArgInfo::getIgnore(); 9116 9117 // Lower single-element structs to just pass a regular value. TODO: We 9118 // could do reasonable-size multiple-element structs too, using getExpand(), 9119 // though watch out for things like bitfields. 9120 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9121 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9122 9123 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9124 const RecordDecl *RD = RT->getDecl(); 9125 if (RD->hasFlexibleArrayMember()) 9126 return DefaultABIInfo::classifyArgumentType(Ty); 9127 } 9128 9129 // Pack aggregates <= 8 bytes into single VGPR or pair. 9130 uint64_t Size = getContext().getTypeSize(Ty); 9131 if (Size <= 64) { 9132 unsigned NumRegs = (Size + 31) / 32; 9133 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9134 9135 if (Size <= 16) 9136 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9137 9138 if (Size <= 32) 9139 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9140 9141 // XXX: Should this be i64 instead, and should the limit increase? 9142 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9143 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9144 } 9145 9146 if (NumRegsLeft > 0) { 9147 unsigned NumRegs = numRegsForType(Ty); 9148 if (NumRegsLeft >= NumRegs) { 9149 NumRegsLeft -= NumRegs; 9150 return ABIArgInfo::getDirect(); 9151 } 9152 } 9153 } 9154 9155 // Otherwise just do the default thing. 9156 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9157 if (!ArgInfo.isIndirect()) { 9158 unsigned NumRegs = numRegsForType(Ty); 9159 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9160 } 9161 9162 return ArgInfo; 9163 } 9164 9165 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9166 public: 9167 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9168 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9169 9170 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9171 CodeGenModule &CGM) const; 9172 9173 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9174 CodeGen::CodeGenModule &M) const override; 9175 unsigned getOpenCLKernelCallingConv() const override; 9176 9177 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9178 llvm::PointerType *T, QualType QT) const override; 9179 9180 LangAS getASTAllocaAddressSpace() const override { 9181 return getLangASFromTargetAS( 9182 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9183 } 9184 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9185 const VarDecl *D) const override; 9186 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9187 SyncScope Scope, 9188 llvm::AtomicOrdering Ordering, 9189 llvm::LLVMContext &Ctx) const override; 9190 llvm::Function * 9191 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9192 llvm::Function *BlockInvokeFunc, 9193 llvm::Value *BlockLiteral) const override; 9194 bool shouldEmitStaticExternCAliases() const override; 9195 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9196 }; 9197 } 9198 9199 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9200 llvm::GlobalValue *GV) { 9201 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9202 return false; 9203 9204 return D->hasAttr<OpenCLKernelAttr>() || 9205 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9206 (isa<VarDecl>(D) && 9207 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9208 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9209 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9210 } 9211 9212 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9213 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9214 const auto *ReqdWGS = 9215 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9216 const bool IsOpenCLKernel = 9217 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9218 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9219 9220 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9221 if (ReqdWGS || FlatWGS) { 9222 unsigned Min = 0; 9223 unsigned Max = 0; 9224 if (FlatWGS) { 9225 Min = FlatWGS->getMin() 9226 ->EvaluateKnownConstInt(M.getContext()) 9227 .getExtValue(); 9228 Max = FlatWGS->getMax() 9229 ->EvaluateKnownConstInt(M.getContext()) 9230 .getExtValue(); 9231 } 9232 if (ReqdWGS && Min == 0 && Max == 0) 9233 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9234 9235 if (Min != 0) { 9236 assert(Min <= Max && "Min must be less than or equal Max"); 9237 9238 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9239 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9240 } else 9241 assert(Max == 0 && "Max must be zero"); 9242 } else if (IsOpenCLKernel || IsHIPKernel) { 9243 // By default, restrict the maximum size to a value specified by 9244 // --gpu-max-threads-per-block=n or its default value for HIP. 9245 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9246 const unsigned DefaultMaxWorkGroupSize = 9247 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9248 : M.getLangOpts().GPUMaxThreadsPerBlock; 9249 std::string AttrVal = 9250 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9251 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9252 } 9253 9254 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9255 unsigned Min = 9256 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9257 unsigned Max = Attr->getMax() ? Attr->getMax() 9258 ->EvaluateKnownConstInt(M.getContext()) 9259 .getExtValue() 9260 : 0; 9261 9262 if (Min != 0) { 9263 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9264 9265 std::string AttrVal = llvm::utostr(Min); 9266 if (Max != 0) 9267 AttrVal = AttrVal + "," + llvm::utostr(Max); 9268 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9269 } else 9270 assert(Max == 0 && "Max must be zero"); 9271 } 9272 9273 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9274 unsigned NumSGPR = Attr->getNumSGPR(); 9275 9276 if (NumSGPR != 0) 9277 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9278 } 9279 9280 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9281 uint32_t NumVGPR = Attr->getNumVGPR(); 9282 9283 if (NumVGPR != 0) 9284 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9285 } 9286 } 9287 9288 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9289 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9290 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9291 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9292 GV->setDSOLocal(true); 9293 } 9294 9295 if (GV->isDeclaration()) 9296 return; 9297 9298 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9299 if (!F) 9300 return; 9301 9302 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9303 if (FD) 9304 setFunctionDeclAttributes(FD, F, M); 9305 9306 const bool IsOpenCLKernel = 9307 M.getLangOpts().OpenCL && FD && FD->hasAttr<OpenCLKernelAttr>(); 9308 const bool IsHIPKernel = 9309 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9310 9311 const bool IsOpenMP = M.getLangOpts().OpenMP && !FD; 9312 if ((IsOpenCLKernel || IsHIPKernel || IsOpenMP) && 9313 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9314 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9315 9316 if (IsHIPKernel) 9317 F->addFnAttr("uniform-work-group-size", "true"); 9318 9319 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9320 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9321 9322 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9323 F->addFnAttr("amdgpu-ieee", "false"); 9324 } 9325 9326 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9327 return llvm::CallingConv::AMDGPU_KERNEL; 9328 } 9329 9330 // Currently LLVM assumes null pointers always have value 0, 9331 // which results in incorrectly transformed IR. Therefore, instead of 9332 // emitting null pointers in private and local address spaces, a null 9333 // pointer in generic address space is emitted which is casted to a 9334 // pointer in local or private address space. 9335 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9336 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9337 QualType QT) const { 9338 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9339 return llvm::ConstantPointerNull::get(PT); 9340 9341 auto &Ctx = CGM.getContext(); 9342 auto NPT = llvm::PointerType::get(PT->getElementType(), 9343 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9344 return llvm::ConstantExpr::getAddrSpaceCast( 9345 llvm::ConstantPointerNull::get(NPT), PT); 9346 } 9347 9348 LangAS 9349 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9350 const VarDecl *D) const { 9351 assert(!CGM.getLangOpts().OpenCL && 9352 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9353 "Address space agnostic languages only"); 9354 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9355 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9356 if (!D) 9357 return DefaultGlobalAS; 9358 9359 LangAS AddrSpace = D->getType().getAddressSpace(); 9360 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9361 if (AddrSpace != LangAS::Default) 9362 return AddrSpace; 9363 9364 if (CGM.isTypeConstant(D->getType(), false)) { 9365 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9366 return ConstAS.getValue(); 9367 } 9368 return DefaultGlobalAS; 9369 } 9370 9371 llvm::SyncScope::ID 9372 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9373 SyncScope Scope, 9374 llvm::AtomicOrdering Ordering, 9375 llvm::LLVMContext &Ctx) const { 9376 std::string Name; 9377 switch (Scope) { 9378 case SyncScope::HIPSingleThread: 9379 Name = "singlethread"; 9380 break; 9381 case SyncScope::HIPWavefront: 9382 case SyncScope::OpenCLSubGroup: 9383 Name = "wavefront"; 9384 break; 9385 case SyncScope::HIPWorkgroup: 9386 case SyncScope::OpenCLWorkGroup: 9387 Name = "workgroup"; 9388 break; 9389 case SyncScope::HIPAgent: 9390 case SyncScope::OpenCLDevice: 9391 Name = "agent"; 9392 break; 9393 case SyncScope::HIPSystem: 9394 case SyncScope::OpenCLAllSVMDevices: 9395 Name = ""; 9396 break; 9397 } 9398 9399 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9400 if (!Name.empty()) 9401 Name = Twine(Twine(Name) + Twine("-")).str(); 9402 9403 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9404 } 9405 9406 return Ctx.getOrInsertSyncScopeID(Name); 9407 } 9408 9409 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9410 return false; 9411 } 9412 9413 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9414 const FunctionType *&FT) const { 9415 FT = getABIInfo().getContext().adjustFunctionType( 9416 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9417 } 9418 9419 //===----------------------------------------------------------------------===// 9420 // SPARC v8 ABI Implementation. 9421 // Based on the SPARC Compliance Definition version 2.4.1. 9422 // 9423 // Ensures that complex values are passed in registers. 9424 // 9425 namespace { 9426 class SparcV8ABIInfo : public DefaultABIInfo { 9427 public: 9428 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9429 9430 private: 9431 ABIArgInfo classifyReturnType(QualType RetTy) const; 9432 void computeInfo(CGFunctionInfo &FI) const override; 9433 }; 9434 } // end anonymous namespace 9435 9436 9437 ABIArgInfo 9438 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9439 if (Ty->isAnyComplexType()) { 9440 return ABIArgInfo::getDirect(); 9441 } 9442 else { 9443 return DefaultABIInfo::classifyReturnType(Ty); 9444 } 9445 } 9446 9447 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9448 9449 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9450 for (auto &Arg : FI.arguments()) 9451 Arg.info = classifyArgumentType(Arg.type); 9452 } 9453 9454 namespace { 9455 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9456 public: 9457 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9458 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9459 }; 9460 } // end anonymous namespace 9461 9462 //===----------------------------------------------------------------------===// 9463 // SPARC v9 ABI Implementation. 9464 // Based on the SPARC Compliance Definition version 2.4.1. 9465 // 9466 // Function arguments a mapped to a nominal "parameter array" and promoted to 9467 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9468 // the array, structs larger than 16 bytes are passed indirectly. 9469 // 9470 // One case requires special care: 9471 // 9472 // struct mixed { 9473 // int i; 9474 // float f; 9475 // }; 9476 // 9477 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9478 // parameter array, but the int is passed in an integer register, and the float 9479 // is passed in a floating point register. This is represented as two arguments 9480 // with the LLVM IR inreg attribute: 9481 // 9482 // declare void f(i32 inreg %i, float inreg %f) 9483 // 9484 // The code generator will only allocate 4 bytes from the parameter array for 9485 // the inreg arguments. All other arguments are allocated a multiple of 8 9486 // bytes. 9487 // 9488 namespace { 9489 class SparcV9ABIInfo : public ABIInfo { 9490 public: 9491 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9492 9493 private: 9494 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9495 void computeInfo(CGFunctionInfo &FI) const override; 9496 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9497 QualType Ty) const override; 9498 9499 // Coercion type builder for structs passed in registers. The coercion type 9500 // serves two purposes: 9501 // 9502 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9503 // in registers. 9504 // 2. Expose aligned floating point elements as first-level elements, so the 9505 // code generator knows to pass them in floating point registers. 9506 // 9507 // We also compute the InReg flag which indicates that the struct contains 9508 // aligned 32-bit floats. 9509 // 9510 struct CoerceBuilder { 9511 llvm::LLVMContext &Context; 9512 const llvm::DataLayout &DL; 9513 SmallVector<llvm::Type*, 8> Elems; 9514 uint64_t Size; 9515 bool InReg; 9516 9517 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9518 : Context(c), DL(dl), Size(0), InReg(false) {} 9519 9520 // Pad Elems with integers until Size is ToSize. 9521 void pad(uint64_t ToSize) { 9522 assert(ToSize >= Size && "Cannot remove elements"); 9523 if (ToSize == Size) 9524 return; 9525 9526 // Finish the current 64-bit word. 9527 uint64_t Aligned = llvm::alignTo(Size, 64); 9528 if (Aligned > Size && Aligned <= ToSize) { 9529 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9530 Size = Aligned; 9531 } 9532 9533 // Add whole 64-bit words. 9534 while (Size + 64 <= ToSize) { 9535 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9536 Size += 64; 9537 } 9538 9539 // Final in-word padding. 9540 if (Size < ToSize) { 9541 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9542 Size = ToSize; 9543 } 9544 } 9545 9546 // Add a floating point element at Offset. 9547 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9548 // Unaligned floats are treated as integers. 9549 if (Offset % Bits) 9550 return; 9551 // The InReg flag is only required if there are any floats < 64 bits. 9552 if (Bits < 64) 9553 InReg = true; 9554 pad(Offset); 9555 Elems.push_back(Ty); 9556 Size = Offset + Bits; 9557 } 9558 9559 // Add a struct type to the coercion type, starting at Offset (in bits). 9560 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9561 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9562 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9563 llvm::Type *ElemTy = StrTy->getElementType(i); 9564 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9565 switch (ElemTy->getTypeID()) { 9566 case llvm::Type::StructTyID: 9567 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9568 break; 9569 case llvm::Type::FloatTyID: 9570 addFloat(ElemOffset, ElemTy, 32); 9571 break; 9572 case llvm::Type::DoubleTyID: 9573 addFloat(ElemOffset, ElemTy, 64); 9574 break; 9575 case llvm::Type::FP128TyID: 9576 addFloat(ElemOffset, ElemTy, 128); 9577 break; 9578 case llvm::Type::PointerTyID: 9579 if (ElemOffset % 64 == 0) { 9580 pad(ElemOffset); 9581 Elems.push_back(ElemTy); 9582 Size += 64; 9583 } 9584 break; 9585 default: 9586 break; 9587 } 9588 } 9589 } 9590 9591 // Check if Ty is a usable substitute for the coercion type. 9592 bool isUsableType(llvm::StructType *Ty) const { 9593 return llvm::makeArrayRef(Elems) == Ty->elements(); 9594 } 9595 9596 // Get the coercion type as a literal struct type. 9597 llvm::Type *getType() const { 9598 if (Elems.size() == 1) 9599 return Elems.front(); 9600 else 9601 return llvm::StructType::get(Context, Elems); 9602 } 9603 }; 9604 }; 9605 } // end anonymous namespace 9606 9607 ABIArgInfo 9608 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9609 if (Ty->isVoidType()) 9610 return ABIArgInfo::getIgnore(); 9611 9612 uint64_t Size = getContext().getTypeSize(Ty); 9613 9614 // Anything too big to fit in registers is passed with an explicit indirect 9615 // pointer / sret pointer. 9616 if (Size > SizeLimit) 9617 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9618 9619 // Treat an enum type as its underlying type. 9620 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9621 Ty = EnumTy->getDecl()->getIntegerType(); 9622 9623 // Integer types smaller than a register are extended. 9624 if (Size < 64 && Ty->isIntegerType()) 9625 return ABIArgInfo::getExtend(Ty); 9626 9627 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9628 if (EIT->getNumBits() < 64) 9629 return ABIArgInfo::getExtend(Ty); 9630 9631 // Other non-aggregates go in registers. 9632 if (!isAggregateTypeForABI(Ty)) 9633 return ABIArgInfo::getDirect(); 9634 9635 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9636 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9637 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9638 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9639 9640 // This is a small aggregate type that should be passed in registers. 9641 // Build a coercion type from the LLVM struct type. 9642 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9643 if (!StrTy) 9644 return ABIArgInfo::getDirect(); 9645 9646 CoerceBuilder CB(getVMContext(), getDataLayout()); 9647 CB.addStruct(0, StrTy); 9648 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9649 9650 // Try to use the original type for coercion. 9651 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9652 9653 if (CB.InReg) 9654 return ABIArgInfo::getDirectInReg(CoerceTy); 9655 else 9656 return ABIArgInfo::getDirect(CoerceTy); 9657 } 9658 9659 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9660 QualType Ty) const { 9661 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9662 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9663 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9664 AI.setCoerceToType(ArgTy); 9665 9666 CharUnits SlotSize = CharUnits::fromQuantity(8); 9667 9668 CGBuilderTy &Builder = CGF.Builder; 9669 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9670 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9671 9672 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9673 9674 Address ArgAddr = Address::invalid(); 9675 CharUnits Stride; 9676 switch (AI.getKind()) { 9677 case ABIArgInfo::Expand: 9678 case ABIArgInfo::CoerceAndExpand: 9679 case ABIArgInfo::InAlloca: 9680 llvm_unreachable("Unsupported ABI kind for va_arg"); 9681 9682 case ABIArgInfo::Extend: { 9683 Stride = SlotSize; 9684 CharUnits Offset = SlotSize - TypeInfo.Width; 9685 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9686 break; 9687 } 9688 9689 case ABIArgInfo::Direct: { 9690 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9691 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9692 ArgAddr = Addr; 9693 break; 9694 } 9695 9696 case ABIArgInfo::Indirect: 9697 case ABIArgInfo::IndirectAliased: 9698 Stride = SlotSize; 9699 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9700 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9701 TypeInfo.Align); 9702 break; 9703 9704 case ABIArgInfo::Ignore: 9705 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9706 } 9707 9708 // Update VAList. 9709 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9710 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9711 9712 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9713 } 9714 9715 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9716 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9717 for (auto &I : FI.arguments()) 9718 I.info = classifyType(I.type, 16 * 8); 9719 } 9720 9721 namespace { 9722 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9723 public: 9724 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9725 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9726 9727 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9728 return 14; 9729 } 9730 9731 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9732 llvm::Value *Address) const override; 9733 }; 9734 } // end anonymous namespace 9735 9736 bool 9737 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9738 llvm::Value *Address) const { 9739 // This is calculated from the LLVM and GCC tables and verified 9740 // against gcc output. AFAIK all ABIs use the same encoding. 9741 9742 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9743 9744 llvm::IntegerType *i8 = CGF.Int8Ty; 9745 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9746 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9747 9748 // 0-31: the 8-byte general-purpose registers 9749 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9750 9751 // 32-63: f0-31, the 4-byte floating-point registers 9752 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9753 9754 // Y = 64 9755 // PSR = 65 9756 // WIM = 66 9757 // TBR = 67 9758 // PC = 68 9759 // NPC = 69 9760 // FSR = 70 9761 // CSR = 71 9762 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9763 9764 // 72-87: d0-15, the 8-byte floating-point registers 9765 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9766 9767 return false; 9768 } 9769 9770 // ARC ABI implementation. 9771 namespace { 9772 9773 class ARCABIInfo : public DefaultABIInfo { 9774 public: 9775 using DefaultABIInfo::DefaultABIInfo; 9776 9777 private: 9778 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9779 QualType Ty) const override; 9780 9781 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9782 if (!State.FreeRegs) 9783 return; 9784 if (Info.isIndirect() && Info.getInReg()) 9785 State.FreeRegs--; 9786 else if (Info.isDirect() && Info.getInReg()) { 9787 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9788 if (sz < State.FreeRegs) 9789 State.FreeRegs -= sz; 9790 else 9791 State.FreeRegs = 0; 9792 } 9793 } 9794 9795 void computeInfo(CGFunctionInfo &FI) const override { 9796 CCState State(FI); 9797 // ARC uses 8 registers to pass arguments. 9798 State.FreeRegs = 8; 9799 9800 if (!getCXXABI().classifyReturnType(FI)) 9801 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9802 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9803 for (auto &I : FI.arguments()) { 9804 I.info = classifyArgumentType(I.type, State.FreeRegs); 9805 updateState(I.info, I.type, State); 9806 } 9807 } 9808 9809 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9810 ABIArgInfo getIndirectByValue(QualType Ty) const; 9811 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9812 ABIArgInfo classifyReturnType(QualType RetTy) const; 9813 }; 9814 9815 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9816 public: 9817 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9818 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9819 }; 9820 9821 9822 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9823 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9824 getNaturalAlignIndirect(Ty, false); 9825 } 9826 9827 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9828 // Compute the byval alignment. 9829 const unsigned MinABIStackAlignInBytes = 4; 9830 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9831 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9832 TypeAlign > MinABIStackAlignInBytes); 9833 } 9834 9835 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9836 QualType Ty) const { 9837 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9838 getContext().getTypeInfoInChars(Ty), 9839 CharUnits::fromQuantity(4), true); 9840 } 9841 9842 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9843 uint8_t FreeRegs) const { 9844 // Handle the generic C++ ABI. 9845 const RecordType *RT = Ty->getAs<RecordType>(); 9846 if (RT) { 9847 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9848 if (RAA == CGCXXABI::RAA_Indirect) 9849 return getIndirectByRef(Ty, FreeRegs > 0); 9850 9851 if (RAA == CGCXXABI::RAA_DirectInMemory) 9852 return getIndirectByValue(Ty); 9853 } 9854 9855 // Treat an enum type as its underlying type. 9856 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9857 Ty = EnumTy->getDecl()->getIntegerType(); 9858 9859 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9860 9861 if (isAggregateTypeForABI(Ty)) { 9862 // Structures with flexible arrays are always indirect. 9863 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9864 return getIndirectByValue(Ty); 9865 9866 // Ignore empty structs/unions. 9867 if (isEmptyRecord(getContext(), Ty, true)) 9868 return ABIArgInfo::getIgnore(); 9869 9870 llvm::LLVMContext &LLVMContext = getVMContext(); 9871 9872 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9873 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9874 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9875 9876 return FreeRegs >= SizeInRegs ? 9877 ABIArgInfo::getDirectInReg(Result) : 9878 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9879 } 9880 9881 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9882 if (EIT->getNumBits() > 64) 9883 return getIndirectByValue(Ty); 9884 9885 return isPromotableIntegerTypeForABI(Ty) 9886 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9887 : ABIArgInfo::getExtend(Ty)) 9888 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9889 : ABIArgInfo::getDirect()); 9890 } 9891 9892 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9893 if (RetTy->isAnyComplexType()) 9894 return ABIArgInfo::getDirectInReg(); 9895 9896 // Arguments of size > 4 registers are indirect. 9897 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9898 if (RetSize > 4) 9899 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9900 9901 return DefaultABIInfo::classifyReturnType(RetTy); 9902 } 9903 9904 } // End anonymous namespace. 9905 9906 //===----------------------------------------------------------------------===// 9907 // XCore ABI Implementation 9908 //===----------------------------------------------------------------------===// 9909 9910 namespace { 9911 9912 /// A SmallStringEnc instance is used to build up the TypeString by passing 9913 /// it by reference between functions that append to it. 9914 typedef llvm::SmallString<128> SmallStringEnc; 9915 9916 /// TypeStringCache caches the meta encodings of Types. 9917 /// 9918 /// The reason for caching TypeStrings is two fold: 9919 /// 1. To cache a type's encoding for later uses; 9920 /// 2. As a means to break recursive member type inclusion. 9921 /// 9922 /// A cache Entry can have a Status of: 9923 /// NonRecursive: The type encoding is not recursive; 9924 /// Recursive: The type encoding is recursive; 9925 /// Incomplete: An incomplete TypeString; 9926 /// IncompleteUsed: An incomplete TypeString that has been used in a 9927 /// Recursive type encoding. 9928 /// 9929 /// A NonRecursive entry will have all of its sub-members expanded as fully 9930 /// as possible. Whilst it may contain types which are recursive, the type 9931 /// itself is not recursive and thus its encoding may be safely used whenever 9932 /// the type is encountered. 9933 /// 9934 /// A Recursive entry will have all of its sub-members expanded as fully as 9935 /// possible. The type itself is recursive and it may contain other types which 9936 /// are recursive. The Recursive encoding must not be used during the expansion 9937 /// of a recursive type's recursive branch. For simplicity the code uses 9938 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9939 /// 9940 /// An Incomplete entry is always a RecordType and only encodes its 9941 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9942 /// are placed into the cache during type expansion as a means to identify and 9943 /// handle recursive inclusion of types as sub-members. If there is recursion 9944 /// the entry becomes IncompleteUsed. 9945 /// 9946 /// During the expansion of a RecordType's members: 9947 /// 9948 /// If the cache contains a NonRecursive encoding for the member type, the 9949 /// cached encoding is used; 9950 /// 9951 /// If the cache contains a Recursive encoding for the member type, the 9952 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9953 /// 9954 /// If the member is a RecordType, an Incomplete encoding is placed into the 9955 /// cache to break potential recursive inclusion of itself as a sub-member; 9956 /// 9957 /// Once a member RecordType has been expanded, its temporary incomplete 9958 /// entry is removed from the cache. If a Recursive encoding was swapped out 9959 /// it is swapped back in; 9960 /// 9961 /// If an incomplete entry is used to expand a sub-member, the incomplete 9962 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9963 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9964 /// 9965 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9966 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9967 /// Else the member is part of a recursive type and thus the recursion has 9968 /// been exited too soon for the encoding to be correct for the member. 9969 /// 9970 class TypeStringCache { 9971 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9972 struct Entry { 9973 std::string Str; // The encoded TypeString for the type. 9974 enum Status State; // Information about the encoding in 'Str'. 9975 std::string Swapped; // A temporary place holder for a Recursive encoding 9976 // during the expansion of RecordType's members. 9977 }; 9978 std::map<const IdentifierInfo *, struct Entry> Map; 9979 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9980 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9981 public: 9982 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9983 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9984 bool removeIncomplete(const IdentifierInfo *ID); 9985 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9986 bool IsRecursive); 9987 StringRef lookupStr(const IdentifierInfo *ID); 9988 }; 9989 9990 /// TypeString encodings for enum & union fields must be order. 9991 /// FieldEncoding is a helper for this ordering process. 9992 class FieldEncoding { 9993 bool HasName; 9994 std::string Enc; 9995 public: 9996 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9997 StringRef str() { return Enc; } 9998 bool operator<(const FieldEncoding &rhs) const { 9999 if (HasName != rhs.HasName) return HasName; 10000 return Enc < rhs.Enc; 10001 } 10002 }; 10003 10004 class XCoreABIInfo : public DefaultABIInfo { 10005 public: 10006 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10007 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10008 QualType Ty) const override; 10009 }; 10010 10011 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10012 mutable TypeStringCache TSC; 10013 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10014 const CodeGen::CodeGenModule &M) const; 10015 10016 public: 10017 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10018 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10019 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10020 const llvm::MapVector<GlobalDecl, StringRef> 10021 &MangledDeclNames) const override; 10022 }; 10023 10024 } // End anonymous namespace. 10025 10026 // TODO: this implementation is likely now redundant with the default 10027 // EmitVAArg. 10028 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10029 QualType Ty) const { 10030 CGBuilderTy &Builder = CGF.Builder; 10031 10032 // Get the VAList. 10033 CharUnits SlotSize = CharUnits::fromQuantity(4); 10034 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 10035 10036 // Handle the argument. 10037 ABIArgInfo AI = classifyArgumentType(Ty); 10038 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10039 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10040 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10041 AI.setCoerceToType(ArgTy); 10042 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10043 10044 Address Val = Address::invalid(); 10045 CharUnits ArgSize = CharUnits::Zero(); 10046 switch (AI.getKind()) { 10047 case ABIArgInfo::Expand: 10048 case ABIArgInfo::CoerceAndExpand: 10049 case ABIArgInfo::InAlloca: 10050 llvm_unreachable("Unsupported ABI kind for va_arg"); 10051 case ABIArgInfo::Ignore: 10052 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 10053 ArgSize = CharUnits::Zero(); 10054 break; 10055 case ABIArgInfo::Extend: 10056 case ABIArgInfo::Direct: 10057 Val = Builder.CreateBitCast(AP, ArgPtrTy); 10058 ArgSize = CharUnits::fromQuantity( 10059 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10060 ArgSize = ArgSize.alignTo(SlotSize); 10061 break; 10062 case ABIArgInfo::Indirect: 10063 case ABIArgInfo::IndirectAliased: 10064 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10065 Val = Address(Builder.CreateLoad(Val), TypeAlign); 10066 ArgSize = SlotSize; 10067 break; 10068 } 10069 10070 // Increment the VAList. 10071 if (!ArgSize.isZero()) { 10072 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10073 Builder.CreateStore(APN.getPointer(), VAListAddr); 10074 } 10075 10076 return Val; 10077 } 10078 10079 /// During the expansion of a RecordType, an incomplete TypeString is placed 10080 /// into the cache as a means to identify and break recursion. 10081 /// If there is a Recursive encoding in the cache, it is swapped out and will 10082 /// be reinserted by removeIncomplete(). 10083 /// All other types of encoding should have been used rather than arriving here. 10084 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10085 std::string StubEnc) { 10086 if (!ID) 10087 return; 10088 Entry &E = Map[ID]; 10089 assert( (E.Str.empty() || E.State == Recursive) && 10090 "Incorrectly use of addIncomplete"); 10091 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10092 E.Swapped.swap(E.Str); // swap out the Recursive 10093 E.Str.swap(StubEnc); 10094 E.State = Incomplete; 10095 ++IncompleteCount; 10096 } 10097 10098 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10099 /// must be removed from the cache. 10100 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10101 /// Returns true if the RecordType was defined recursively. 10102 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10103 if (!ID) 10104 return false; 10105 auto I = Map.find(ID); 10106 assert(I != Map.end() && "Entry not present"); 10107 Entry &E = I->second; 10108 assert( (E.State == Incomplete || 10109 E.State == IncompleteUsed) && 10110 "Entry must be an incomplete type"); 10111 bool IsRecursive = false; 10112 if (E.State == IncompleteUsed) { 10113 // We made use of our Incomplete encoding, thus we are recursive. 10114 IsRecursive = true; 10115 --IncompleteUsedCount; 10116 } 10117 if (E.Swapped.empty()) 10118 Map.erase(I); 10119 else { 10120 // Swap the Recursive back. 10121 E.Swapped.swap(E.Str); 10122 E.Swapped.clear(); 10123 E.State = Recursive; 10124 } 10125 --IncompleteCount; 10126 return IsRecursive; 10127 } 10128 10129 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10130 /// Recursive (viz: all sub-members were expanded as fully as possible). 10131 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10132 bool IsRecursive) { 10133 if (!ID || IncompleteUsedCount) 10134 return; // No key or it is is an incomplete sub-type so don't add. 10135 Entry &E = Map[ID]; 10136 if (IsRecursive && !E.Str.empty()) { 10137 assert(E.State==Recursive && E.Str.size() == Str.size() && 10138 "This is not the same Recursive entry"); 10139 // The parent container was not recursive after all, so we could have used 10140 // this Recursive sub-member entry after all, but we assumed the worse when 10141 // we started viz: IncompleteCount!=0. 10142 return; 10143 } 10144 assert(E.Str.empty() && "Entry already present"); 10145 E.Str = Str.str(); 10146 E.State = IsRecursive? Recursive : NonRecursive; 10147 } 10148 10149 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10150 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10151 /// encoding is Recursive, return an empty StringRef. 10152 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10153 if (!ID) 10154 return StringRef(); // We have no key. 10155 auto I = Map.find(ID); 10156 if (I == Map.end()) 10157 return StringRef(); // We have no encoding. 10158 Entry &E = I->second; 10159 if (E.State == Recursive && IncompleteCount) 10160 return StringRef(); // We don't use Recursive encodings for member types. 10161 10162 if (E.State == Incomplete) { 10163 // The incomplete type is being used to break out of recursion. 10164 E.State = IncompleteUsed; 10165 ++IncompleteUsedCount; 10166 } 10167 return E.Str; 10168 } 10169 10170 /// The XCore ABI includes a type information section that communicates symbol 10171 /// type information to the linker. The linker uses this information to verify 10172 /// safety/correctness of things such as array bound and pointers et al. 10173 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10174 /// This type information (TypeString) is emitted into meta data for all global 10175 /// symbols: definitions, declarations, functions & variables. 10176 /// 10177 /// The TypeString carries type, qualifier, name, size & value details. 10178 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10179 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10180 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10181 /// 10182 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10183 const CodeGen::CodeGenModule &CGM, 10184 TypeStringCache &TSC); 10185 10186 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10187 void XCoreTargetCodeGenInfo::emitTargetMD( 10188 const Decl *D, llvm::GlobalValue *GV, 10189 const CodeGen::CodeGenModule &CGM) const { 10190 SmallStringEnc Enc; 10191 if (getTypeString(Enc, D, CGM, TSC)) { 10192 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10193 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10194 llvm::MDString::get(Ctx, Enc.str())}; 10195 llvm::NamedMDNode *MD = 10196 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10197 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10198 } 10199 } 10200 10201 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10202 CodeGen::CodeGenModule &CGM, 10203 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10204 // Warning, new MangledDeclNames may be appended within this loop. 10205 // We rely on MapVector insertions adding new elements to the end 10206 // of the container. 10207 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10208 auto Val = *(MangledDeclNames.begin() + I); 10209 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10210 if (GV) { 10211 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10212 emitTargetMD(D, GV, CGM); 10213 } 10214 } 10215 } 10216 10217 //===----------------------------------------------------------------------===// 10218 // Base ABI and target codegen info implementation common between SPIR and 10219 // SPIR-V. 10220 //===----------------------------------------------------------------------===// 10221 10222 namespace { 10223 class CommonSPIRABIInfo : public DefaultABIInfo { 10224 public: 10225 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10226 10227 private: 10228 void setCCs(); 10229 }; 10230 } // end anonymous namespace 10231 namespace { 10232 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10233 public: 10234 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10235 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10236 10237 LangAS getASTAllocaAddressSpace() const override { 10238 return getLangASFromTargetAS( 10239 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10240 } 10241 10242 unsigned getOpenCLKernelCallingConv() const override; 10243 }; 10244 10245 } // End anonymous namespace. 10246 void CommonSPIRABIInfo::setCCs() { 10247 assert(getRuntimeCC() == llvm::CallingConv::C); 10248 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10249 } 10250 10251 namespace clang { 10252 namespace CodeGen { 10253 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10254 DefaultABIInfo SPIRABI(CGM.getTypes()); 10255 SPIRABI.computeInfo(FI); 10256 } 10257 } 10258 } 10259 10260 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10261 return llvm::CallingConv::SPIR_KERNEL; 10262 } 10263 10264 static bool appendType(SmallStringEnc &Enc, QualType QType, 10265 const CodeGen::CodeGenModule &CGM, 10266 TypeStringCache &TSC); 10267 10268 /// Helper function for appendRecordType(). 10269 /// Builds a SmallVector containing the encoded field types in declaration 10270 /// order. 10271 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10272 const RecordDecl *RD, 10273 const CodeGen::CodeGenModule &CGM, 10274 TypeStringCache &TSC) { 10275 for (const auto *Field : RD->fields()) { 10276 SmallStringEnc Enc; 10277 Enc += "m("; 10278 Enc += Field->getName(); 10279 Enc += "){"; 10280 if (Field->isBitField()) { 10281 Enc += "b("; 10282 llvm::raw_svector_ostream OS(Enc); 10283 OS << Field->getBitWidthValue(CGM.getContext()); 10284 Enc += ':'; 10285 } 10286 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10287 return false; 10288 if (Field->isBitField()) 10289 Enc += ')'; 10290 Enc += '}'; 10291 FE.emplace_back(!Field->getName().empty(), Enc); 10292 } 10293 return true; 10294 } 10295 10296 /// Appends structure and union types to Enc and adds encoding to cache. 10297 /// Recursively calls appendType (via extractFieldType) for each field. 10298 /// Union types have their fields ordered according to the ABI. 10299 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10300 const CodeGen::CodeGenModule &CGM, 10301 TypeStringCache &TSC, const IdentifierInfo *ID) { 10302 // Append the cached TypeString if we have one. 10303 StringRef TypeString = TSC.lookupStr(ID); 10304 if (!TypeString.empty()) { 10305 Enc += TypeString; 10306 return true; 10307 } 10308 10309 // Start to emit an incomplete TypeString. 10310 size_t Start = Enc.size(); 10311 Enc += (RT->isUnionType()? 'u' : 's'); 10312 Enc += '('; 10313 if (ID) 10314 Enc += ID->getName(); 10315 Enc += "){"; 10316 10317 // We collect all encoded fields and order as necessary. 10318 bool IsRecursive = false; 10319 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10320 if (RD && !RD->field_empty()) { 10321 // An incomplete TypeString stub is placed in the cache for this RecordType 10322 // so that recursive calls to this RecordType will use it whilst building a 10323 // complete TypeString for this RecordType. 10324 SmallVector<FieldEncoding, 16> FE; 10325 std::string StubEnc(Enc.substr(Start).str()); 10326 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10327 TSC.addIncomplete(ID, std::move(StubEnc)); 10328 if (!extractFieldType(FE, RD, CGM, TSC)) { 10329 (void) TSC.removeIncomplete(ID); 10330 return false; 10331 } 10332 IsRecursive = TSC.removeIncomplete(ID); 10333 // The ABI requires unions to be sorted but not structures. 10334 // See FieldEncoding::operator< for sort algorithm. 10335 if (RT->isUnionType()) 10336 llvm::sort(FE); 10337 // We can now complete the TypeString. 10338 unsigned E = FE.size(); 10339 for (unsigned I = 0; I != E; ++I) { 10340 if (I) 10341 Enc += ','; 10342 Enc += FE[I].str(); 10343 } 10344 } 10345 Enc += '}'; 10346 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10347 return true; 10348 } 10349 10350 /// Appends enum types to Enc and adds the encoding to the cache. 10351 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10352 TypeStringCache &TSC, 10353 const IdentifierInfo *ID) { 10354 // Append the cached TypeString if we have one. 10355 StringRef TypeString = TSC.lookupStr(ID); 10356 if (!TypeString.empty()) { 10357 Enc += TypeString; 10358 return true; 10359 } 10360 10361 size_t Start = Enc.size(); 10362 Enc += "e("; 10363 if (ID) 10364 Enc += ID->getName(); 10365 Enc += "){"; 10366 10367 // We collect all encoded enumerations and order them alphanumerically. 10368 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10369 SmallVector<FieldEncoding, 16> FE; 10370 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10371 ++I) { 10372 SmallStringEnc EnumEnc; 10373 EnumEnc += "m("; 10374 EnumEnc += I->getName(); 10375 EnumEnc += "){"; 10376 I->getInitVal().toString(EnumEnc); 10377 EnumEnc += '}'; 10378 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10379 } 10380 llvm::sort(FE); 10381 unsigned E = FE.size(); 10382 for (unsigned I = 0; I != E; ++I) { 10383 if (I) 10384 Enc += ','; 10385 Enc += FE[I].str(); 10386 } 10387 } 10388 Enc += '}'; 10389 TSC.addIfComplete(ID, Enc.substr(Start), false); 10390 return true; 10391 } 10392 10393 /// Appends type's qualifier to Enc. 10394 /// This is done prior to appending the type's encoding. 10395 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10396 // Qualifiers are emitted in alphabetical order. 10397 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10398 int Lookup = 0; 10399 if (QT.isConstQualified()) 10400 Lookup += 1<<0; 10401 if (QT.isRestrictQualified()) 10402 Lookup += 1<<1; 10403 if (QT.isVolatileQualified()) 10404 Lookup += 1<<2; 10405 Enc += Table[Lookup]; 10406 } 10407 10408 /// Appends built-in types to Enc. 10409 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10410 const char *EncType; 10411 switch (BT->getKind()) { 10412 case BuiltinType::Void: 10413 EncType = "0"; 10414 break; 10415 case BuiltinType::Bool: 10416 EncType = "b"; 10417 break; 10418 case BuiltinType::Char_U: 10419 EncType = "uc"; 10420 break; 10421 case BuiltinType::UChar: 10422 EncType = "uc"; 10423 break; 10424 case BuiltinType::SChar: 10425 EncType = "sc"; 10426 break; 10427 case BuiltinType::UShort: 10428 EncType = "us"; 10429 break; 10430 case BuiltinType::Short: 10431 EncType = "ss"; 10432 break; 10433 case BuiltinType::UInt: 10434 EncType = "ui"; 10435 break; 10436 case BuiltinType::Int: 10437 EncType = "si"; 10438 break; 10439 case BuiltinType::ULong: 10440 EncType = "ul"; 10441 break; 10442 case BuiltinType::Long: 10443 EncType = "sl"; 10444 break; 10445 case BuiltinType::ULongLong: 10446 EncType = "ull"; 10447 break; 10448 case BuiltinType::LongLong: 10449 EncType = "sll"; 10450 break; 10451 case BuiltinType::Float: 10452 EncType = "ft"; 10453 break; 10454 case BuiltinType::Double: 10455 EncType = "d"; 10456 break; 10457 case BuiltinType::LongDouble: 10458 EncType = "ld"; 10459 break; 10460 default: 10461 return false; 10462 } 10463 Enc += EncType; 10464 return true; 10465 } 10466 10467 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10468 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10469 const CodeGen::CodeGenModule &CGM, 10470 TypeStringCache &TSC) { 10471 Enc += "p("; 10472 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10473 return false; 10474 Enc += ')'; 10475 return true; 10476 } 10477 10478 /// Appends array encoding to Enc before calling appendType for the element. 10479 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10480 const ArrayType *AT, 10481 const CodeGen::CodeGenModule &CGM, 10482 TypeStringCache &TSC, StringRef NoSizeEnc) { 10483 if (AT->getSizeModifier() != ArrayType::Normal) 10484 return false; 10485 Enc += "a("; 10486 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10487 CAT->getSize().toStringUnsigned(Enc); 10488 else 10489 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10490 Enc += ':'; 10491 // The Qualifiers should be attached to the type rather than the array. 10492 appendQualifier(Enc, QT); 10493 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10494 return false; 10495 Enc += ')'; 10496 return true; 10497 } 10498 10499 /// Appends a function encoding to Enc, calling appendType for the return type 10500 /// and the arguments. 10501 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10502 const CodeGen::CodeGenModule &CGM, 10503 TypeStringCache &TSC) { 10504 Enc += "f{"; 10505 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10506 return false; 10507 Enc += "}("; 10508 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10509 // N.B. we are only interested in the adjusted param types. 10510 auto I = FPT->param_type_begin(); 10511 auto E = FPT->param_type_end(); 10512 if (I != E) { 10513 do { 10514 if (!appendType(Enc, *I, CGM, TSC)) 10515 return false; 10516 ++I; 10517 if (I != E) 10518 Enc += ','; 10519 } while (I != E); 10520 if (FPT->isVariadic()) 10521 Enc += ",va"; 10522 } else { 10523 if (FPT->isVariadic()) 10524 Enc += "va"; 10525 else 10526 Enc += '0'; 10527 } 10528 } 10529 Enc += ')'; 10530 return true; 10531 } 10532 10533 /// Handles the type's qualifier before dispatching a call to handle specific 10534 /// type encodings. 10535 static bool appendType(SmallStringEnc &Enc, QualType QType, 10536 const CodeGen::CodeGenModule &CGM, 10537 TypeStringCache &TSC) { 10538 10539 QualType QT = QType.getCanonicalType(); 10540 10541 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10542 // The Qualifiers should be attached to the type rather than the array. 10543 // Thus we don't call appendQualifier() here. 10544 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10545 10546 appendQualifier(Enc, QT); 10547 10548 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10549 return appendBuiltinType(Enc, BT); 10550 10551 if (const PointerType *PT = QT->getAs<PointerType>()) 10552 return appendPointerType(Enc, PT, CGM, TSC); 10553 10554 if (const EnumType *ET = QT->getAs<EnumType>()) 10555 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10556 10557 if (const RecordType *RT = QT->getAsStructureType()) 10558 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10559 10560 if (const RecordType *RT = QT->getAsUnionType()) 10561 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10562 10563 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10564 return appendFunctionType(Enc, FT, CGM, TSC); 10565 10566 return false; 10567 } 10568 10569 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10570 const CodeGen::CodeGenModule &CGM, 10571 TypeStringCache &TSC) { 10572 if (!D) 10573 return false; 10574 10575 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10576 if (FD->getLanguageLinkage() != CLanguageLinkage) 10577 return false; 10578 return appendType(Enc, FD->getType(), CGM, TSC); 10579 } 10580 10581 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10582 if (VD->getLanguageLinkage() != CLanguageLinkage) 10583 return false; 10584 QualType QT = VD->getType().getCanonicalType(); 10585 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10586 // Global ArrayTypes are given a size of '*' if the size is unknown. 10587 // The Qualifiers should be attached to the type rather than the array. 10588 // Thus we don't call appendQualifier() here. 10589 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10590 } 10591 return appendType(Enc, QT, CGM, TSC); 10592 } 10593 return false; 10594 } 10595 10596 //===----------------------------------------------------------------------===// 10597 // RISCV ABI Implementation 10598 //===----------------------------------------------------------------------===// 10599 10600 namespace { 10601 class RISCVABIInfo : public DefaultABIInfo { 10602 private: 10603 // Size of the integer ('x') registers in bits. 10604 unsigned XLen; 10605 // Size of the floating point ('f') registers in bits. Note that the target 10606 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10607 // with soft float ABI has FLen==0). 10608 unsigned FLen; 10609 static const int NumArgGPRs = 8; 10610 static const int NumArgFPRs = 8; 10611 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10612 llvm::Type *&Field1Ty, 10613 CharUnits &Field1Off, 10614 llvm::Type *&Field2Ty, 10615 CharUnits &Field2Off) const; 10616 10617 public: 10618 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10619 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10620 10621 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10622 // non-virtual, but computeInfo is virtual, so we overload it. 10623 void computeInfo(CGFunctionInfo &FI) const override; 10624 10625 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10626 int &ArgFPRsLeft) const; 10627 ABIArgInfo classifyReturnType(QualType RetTy) const; 10628 10629 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10630 QualType Ty) const override; 10631 10632 ABIArgInfo extendType(QualType Ty) const; 10633 10634 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10635 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10636 CharUnits &Field2Off, int &NeededArgGPRs, 10637 int &NeededArgFPRs) const; 10638 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10639 CharUnits Field1Off, 10640 llvm::Type *Field2Ty, 10641 CharUnits Field2Off) const; 10642 }; 10643 } // end anonymous namespace 10644 10645 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10646 QualType RetTy = FI.getReturnType(); 10647 if (!getCXXABI().classifyReturnType(FI)) 10648 FI.getReturnInfo() = classifyReturnType(RetTy); 10649 10650 // IsRetIndirect is true if classifyArgumentType indicated the value should 10651 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10652 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10653 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10654 // list and pass indirectly on RV32. 10655 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10656 if (!IsRetIndirect && RetTy->isScalarType() && 10657 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10658 if (RetTy->isComplexType() && FLen) { 10659 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10660 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10661 } else { 10662 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10663 IsRetIndirect = true; 10664 } 10665 } 10666 10667 // We must track the number of GPRs used in order to conform to the RISC-V 10668 // ABI, as integer scalars passed in registers should have signext/zeroext 10669 // when promoted, but are anyext if passed on the stack. As GPR usage is 10670 // different for variadic arguments, we must also track whether we are 10671 // examining a vararg or not. 10672 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10673 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10674 int NumFixedArgs = FI.getNumRequiredArgs(); 10675 10676 int ArgNum = 0; 10677 for (auto &ArgInfo : FI.arguments()) { 10678 bool IsFixed = ArgNum < NumFixedArgs; 10679 ArgInfo.info = 10680 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10681 ArgNum++; 10682 } 10683 } 10684 10685 // Returns true if the struct is a potential candidate for the floating point 10686 // calling convention. If this function returns true, the caller is 10687 // responsible for checking that if there is only a single field then that 10688 // field is a float. 10689 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10690 llvm::Type *&Field1Ty, 10691 CharUnits &Field1Off, 10692 llvm::Type *&Field2Ty, 10693 CharUnits &Field2Off) const { 10694 bool IsInt = Ty->isIntegralOrEnumerationType(); 10695 bool IsFloat = Ty->isRealFloatingType(); 10696 10697 if (IsInt || IsFloat) { 10698 uint64_t Size = getContext().getTypeSize(Ty); 10699 if (IsInt && Size > XLen) 10700 return false; 10701 // Can't be eligible if larger than the FP registers. Half precision isn't 10702 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10703 // default to the integer ABI in that case. 10704 if (IsFloat && (Size > FLen || Size < 32)) 10705 return false; 10706 // Can't be eligible if an integer type was already found (int+int pairs 10707 // are not eligible). 10708 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10709 return false; 10710 if (!Field1Ty) { 10711 Field1Ty = CGT.ConvertType(Ty); 10712 Field1Off = CurOff; 10713 return true; 10714 } 10715 if (!Field2Ty) { 10716 Field2Ty = CGT.ConvertType(Ty); 10717 Field2Off = CurOff; 10718 return true; 10719 } 10720 return false; 10721 } 10722 10723 if (auto CTy = Ty->getAs<ComplexType>()) { 10724 if (Field1Ty) 10725 return false; 10726 QualType EltTy = CTy->getElementType(); 10727 if (getContext().getTypeSize(EltTy) > FLen) 10728 return false; 10729 Field1Ty = CGT.ConvertType(EltTy); 10730 Field1Off = CurOff; 10731 Field2Ty = Field1Ty; 10732 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10733 return true; 10734 } 10735 10736 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10737 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10738 QualType EltTy = ATy->getElementType(); 10739 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10740 for (uint64_t i = 0; i < ArraySize; ++i) { 10741 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10742 Field1Off, Field2Ty, Field2Off); 10743 if (!Ret) 10744 return false; 10745 CurOff += EltSize; 10746 } 10747 return true; 10748 } 10749 10750 if (const auto *RTy = Ty->getAs<RecordType>()) { 10751 // Structures with either a non-trivial destructor or a non-trivial 10752 // copy constructor are not eligible for the FP calling convention. 10753 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10754 return false; 10755 if (isEmptyRecord(getContext(), Ty, true)) 10756 return true; 10757 const RecordDecl *RD = RTy->getDecl(); 10758 // Unions aren't eligible unless they're empty (which is caught above). 10759 if (RD->isUnion()) 10760 return false; 10761 int ZeroWidthBitFieldCount = 0; 10762 for (const FieldDecl *FD : RD->fields()) { 10763 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10764 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10765 QualType QTy = FD->getType(); 10766 if (FD->isBitField()) { 10767 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10768 // Allow a bitfield with a type greater than XLen as long as the 10769 // bitwidth is XLen or less. 10770 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10771 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10772 if (BitWidth == 0) { 10773 ZeroWidthBitFieldCount++; 10774 continue; 10775 } 10776 } 10777 10778 bool Ret = detectFPCCEligibleStructHelper( 10779 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10780 Field1Ty, Field1Off, Field2Ty, Field2Off); 10781 if (!Ret) 10782 return false; 10783 10784 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10785 // or int+fp structs, but are ignored for a struct with an fp field and 10786 // any number of zero-width bitfields. 10787 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10788 return false; 10789 } 10790 return Field1Ty != nullptr; 10791 } 10792 10793 return false; 10794 } 10795 10796 // Determine if a struct is eligible for passing according to the floating 10797 // point calling convention (i.e., when flattened it contains a single fp 10798 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10799 // NeededArgGPRs are incremented appropriately. 10800 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10801 CharUnits &Field1Off, 10802 llvm::Type *&Field2Ty, 10803 CharUnits &Field2Off, 10804 int &NeededArgGPRs, 10805 int &NeededArgFPRs) const { 10806 Field1Ty = nullptr; 10807 Field2Ty = nullptr; 10808 NeededArgGPRs = 0; 10809 NeededArgFPRs = 0; 10810 bool IsCandidate = detectFPCCEligibleStructHelper( 10811 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10812 // Not really a candidate if we have a single int but no float. 10813 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10814 return false; 10815 if (!IsCandidate) 10816 return false; 10817 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10818 NeededArgFPRs++; 10819 else if (Field1Ty) 10820 NeededArgGPRs++; 10821 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10822 NeededArgFPRs++; 10823 else if (Field2Ty) 10824 NeededArgGPRs++; 10825 return true; 10826 } 10827 10828 // Call getCoerceAndExpand for the two-element flattened struct described by 10829 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10830 // appropriate coerceToType and unpaddedCoerceToType. 10831 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10832 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10833 CharUnits Field2Off) const { 10834 SmallVector<llvm::Type *, 3> CoerceElts; 10835 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10836 if (!Field1Off.isZero()) 10837 CoerceElts.push_back(llvm::ArrayType::get( 10838 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10839 10840 CoerceElts.push_back(Field1Ty); 10841 UnpaddedCoerceElts.push_back(Field1Ty); 10842 10843 if (!Field2Ty) { 10844 return ABIArgInfo::getCoerceAndExpand( 10845 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10846 UnpaddedCoerceElts[0]); 10847 } 10848 10849 CharUnits Field2Align = 10850 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10851 CharUnits Field1End = Field1Off + 10852 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10853 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10854 10855 CharUnits Padding = CharUnits::Zero(); 10856 if (Field2Off > Field2OffNoPadNoPack) 10857 Padding = Field2Off - Field2OffNoPadNoPack; 10858 else if (Field2Off != Field2Align && Field2Off > Field1End) 10859 Padding = Field2Off - Field1End; 10860 10861 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10862 10863 if (!Padding.isZero()) 10864 CoerceElts.push_back(llvm::ArrayType::get( 10865 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10866 10867 CoerceElts.push_back(Field2Ty); 10868 UnpaddedCoerceElts.push_back(Field2Ty); 10869 10870 auto CoerceToType = 10871 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10872 auto UnpaddedCoerceToType = 10873 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10874 10875 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10876 } 10877 10878 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10879 int &ArgGPRsLeft, 10880 int &ArgFPRsLeft) const { 10881 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10882 Ty = useFirstFieldIfTransparentUnion(Ty); 10883 10884 // Structures with either a non-trivial destructor or a non-trivial 10885 // copy constructor are always passed indirectly. 10886 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10887 if (ArgGPRsLeft) 10888 ArgGPRsLeft -= 1; 10889 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10890 CGCXXABI::RAA_DirectInMemory); 10891 } 10892 10893 // Ignore empty structs/unions. 10894 if (isEmptyRecord(getContext(), Ty, true)) 10895 return ABIArgInfo::getIgnore(); 10896 10897 uint64_t Size = getContext().getTypeSize(Ty); 10898 10899 // Pass floating point values via FPRs if possible. 10900 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10901 FLen >= Size && ArgFPRsLeft) { 10902 ArgFPRsLeft--; 10903 return ABIArgInfo::getDirect(); 10904 } 10905 10906 // Complex types for the hard float ABI must be passed direct rather than 10907 // using CoerceAndExpand. 10908 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10909 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10910 if (getContext().getTypeSize(EltTy) <= FLen) { 10911 ArgFPRsLeft -= 2; 10912 return ABIArgInfo::getDirect(); 10913 } 10914 } 10915 10916 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10917 llvm::Type *Field1Ty = nullptr; 10918 llvm::Type *Field2Ty = nullptr; 10919 CharUnits Field1Off = CharUnits::Zero(); 10920 CharUnits Field2Off = CharUnits::Zero(); 10921 int NeededArgGPRs = 0; 10922 int NeededArgFPRs = 0; 10923 bool IsCandidate = 10924 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10925 NeededArgGPRs, NeededArgFPRs); 10926 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10927 NeededArgFPRs <= ArgFPRsLeft) { 10928 ArgGPRsLeft -= NeededArgGPRs; 10929 ArgFPRsLeft -= NeededArgFPRs; 10930 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10931 Field2Off); 10932 } 10933 } 10934 10935 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10936 bool MustUseStack = false; 10937 // Determine the number of GPRs needed to pass the current argument 10938 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10939 // register pairs, so may consume 3 registers. 10940 int NeededArgGPRs = 1; 10941 if (!IsFixed && NeededAlign == 2 * XLen) 10942 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10943 else if (Size > XLen && Size <= 2 * XLen) 10944 NeededArgGPRs = 2; 10945 10946 if (NeededArgGPRs > ArgGPRsLeft) { 10947 MustUseStack = true; 10948 NeededArgGPRs = ArgGPRsLeft; 10949 } 10950 10951 ArgGPRsLeft -= NeededArgGPRs; 10952 10953 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10954 // Treat an enum type as its underlying type. 10955 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10956 Ty = EnumTy->getDecl()->getIntegerType(); 10957 10958 // All integral types are promoted to XLen width, unless passed on the 10959 // stack. 10960 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10961 return extendType(Ty); 10962 } 10963 10964 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10965 if (EIT->getNumBits() < XLen && !MustUseStack) 10966 return extendType(Ty); 10967 if (EIT->getNumBits() > 128 || 10968 (!getContext().getTargetInfo().hasInt128Type() && 10969 EIT->getNumBits() > 64)) 10970 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10971 } 10972 10973 return ABIArgInfo::getDirect(); 10974 } 10975 10976 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10977 // so coerce to integers. 10978 if (Size <= 2 * XLen) { 10979 unsigned Alignment = getContext().getTypeAlign(Ty); 10980 10981 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10982 // required, and a 2-element XLen array if only XLen alignment is required. 10983 if (Size <= XLen) { 10984 return ABIArgInfo::getDirect( 10985 llvm::IntegerType::get(getVMContext(), XLen)); 10986 } else if (Alignment == 2 * XLen) { 10987 return ABIArgInfo::getDirect( 10988 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10989 } else { 10990 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10991 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10992 } 10993 } 10994 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10995 } 10996 10997 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10998 if (RetTy->isVoidType()) 10999 return ABIArgInfo::getIgnore(); 11000 11001 int ArgGPRsLeft = 2; 11002 int ArgFPRsLeft = FLen ? 2 : 0; 11003 11004 // The rules for return and argument types are the same, so defer to 11005 // classifyArgumentType. 11006 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11007 ArgFPRsLeft); 11008 } 11009 11010 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11011 QualType Ty) const { 11012 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11013 11014 // Empty records are ignored for parameter passing purposes. 11015 if (isEmptyRecord(getContext(), Ty, true)) { 11016 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 11017 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11018 return Addr; 11019 } 11020 11021 auto TInfo = getContext().getTypeInfoInChars(Ty); 11022 11023 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11024 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11025 11026 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11027 SlotSize, /*AllowHigherAlign=*/true); 11028 } 11029 11030 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11031 int TySize = getContext().getTypeSize(Ty); 11032 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11033 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11034 return ABIArgInfo::getSignExtend(Ty); 11035 return ABIArgInfo::getExtend(Ty); 11036 } 11037 11038 namespace { 11039 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11040 public: 11041 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11042 unsigned FLen) 11043 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11044 11045 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11046 CodeGen::CodeGenModule &CGM) const override { 11047 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11048 if (!FD) return; 11049 11050 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11051 if (!Attr) 11052 return; 11053 11054 const char *Kind; 11055 switch (Attr->getInterrupt()) { 11056 case RISCVInterruptAttr::user: Kind = "user"; break; 11057 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11058 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11059 } 11060 11061 auto *Fn = cast<llvm::Function>(GV); 11062 11063 Fn->addFnAttr("interrupt", Kind); 11064 } 11065 }; 11066 } // namespace 11067 11068 //===----------------------------------------------------------------------===// 11069 // VE ABI Implementation. 11070 // 11071 namespace { 11072 class VEABIInfo : public DefaultABIInfo { 11073 public: 11074 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11075 11076 private: 11077 ABIArgInfo classifyReturnType(QualType RetTy) const; 11078 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11079 void computeInfo(CGFunctionInfo &FI) const override; 11080 }; 11081 } // end anonymous namespace 11082 11083 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11084 if (Ty->isAnyComplexType()) 11085 return ABIArgInfo::getDirect(); 11086 uint64_t Size = getContext().getTypeSize(Ty); 11087 if (Size < 64 && Ty->isIntegerType()) 11088 return ABIArgInfo::getExtend(Ty); 11089 return DefaultABIInfo::classifyReturnType(Ty); 11090 } 11091 11092 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11093 if (Ty->isAnyComplexType()) 11094 return ABIArgInfo::getDirect(); 11095 uint64_t Size = getContext().getTypeSize(Ty); 11096 if (Size < 64 && Ty->isIntegerType()) 11097 return ABIArgInfo::getExtend(Ty); 11098 return DefaultABIInfo::classifyArgumentType(Ty); 11099 } 11100 11101 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11102 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11103 for (auto &Arg : FI.arguments()) 11104 Arg.info = classifyArgumentType(Arg.type); 11105 } 11106 11107 namespace { 11108 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11109 public: 11110 VETargetCodeGenInfo(CodeGenTypes &CGT) 11111 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11112 // VE ABI requires the arguments of variadic and prototype-less functions 11113 // are passed in both registers and memory. 11114 bool isNoProtoCallVariadic(const CallArgList &args, 11115 const FunctionNoProtoType *fnType) const override { 11116 return true; 11117 } 11118 }; 11119 } // end anonymous namespace 11120 11121 //===----------------------------------------------------------------------===// 11122 // Driver code 11123 //===----------------------------------------------------------------------===// 11124 11125 bool CodeGenModule::supportsCOMDAT() const { 11126 return getTriple().supportsCOMDAT(); 11127 } 11128 11129 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11130 if (TheTargetCodeGenInfo) 11131 return *TheTargetCodeGenInfo; 11132 11133 // Helper to set the unique_ptr while still keeping the return value. 11134 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11135 this->TheTargetCodeGenInfo.reset(P); 11136 return *P; 11137 }; 11138 11139 const llvm::Triple &Triple = getTarget().getTriple(); 11140 switch (Triple.getArch()) { 11141 default: 11142 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11143 11144 case llvm::Triple::le32: 11145 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11146 case llvm::Triple::m68k: 11147 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11148 case llvm::Triple::mips: 11149 case llvm::Triple::mipsel: 11150 if (Triple.getOS() == llvm::Triple::NaCl) 11151 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11152 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11153 11154 case llvm::Triple::mips64: 11155 case llvm::Triple::mips64el: 11156 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11157 11158 case llvm::Triple::avr: 11159 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11160 11161 case llvm::Triple::aarch64: 11162 case llvm::Triple::aarch64_32: 11163 case llvm::Triple::aarch64_be: { 11164 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11165 if (getTarget().getABI() == "darwinpcs") 11166 Kind = AArch64ABIInfo::DarwinPCS; 11167 else if (Triple.isOSWindows()) 11168 return SetCGInfo( 11169 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11170 11171 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11172 } 11173 11174 case llvm::Triple::wasm32: 11175 case llvm::Triple::wasm64: { 11176 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11177 if (getTarget().getABI() == "experimental-mv") 11178 Kind = WebAssemblyABIInfo::ExperimentalMV; 11179 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11180 } 11181 11182 case llvm::Triple::arm: 11183 case llvm::Triple::armeb: 11184 case llvm::Triple::thumb: 11185 case llvm::Triple::thumbeb: { 11186 if (Triple.getOS() == llvm::Triple::Win32) { 11187 return SetCGInfo( 11188 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11189 } 11190 11191 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11192 StringRef ABIStr = getTarget().getABI(); 11193 if (ABIStr == "apcs-gnu") 11194 Kind = ARMABIInfo::APCS; 11195 else if (ABIStr == "aapcs16") 11196 Kind = ARMABIInfo::AAPCS16_VFP; 11197 else if (CodeGenOpts.FloatABI == "hard" || 11198 (CodeGenOpts.FloatABI != "soft" && 11199 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11200 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11201 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11202 Kind = ARMABIInfo::AAPCS_VFP; 11203 11204 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11205 } 11206 11207 case llvm::Triple::ppc: { 11208 if (Triple.isOSAIX()) 11209 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11210 11211 bool IsSoftFloat = 11212 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11213 bool RetSmallStructInRegABI = 11214 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11215 return SetCGInfo( 11216 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11217 } 11218 case llvm::Triple::ppcle: { 11219 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11220 bool RetSmallStructInRegABI = 11221 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11222 return SetCGInfo( 11223 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11224 } 11225 case llvm::Triple::ppc64: 11226 if (Triple.isOSAIX()) 11227 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11228 11229 if (Triple.isOSBinFormatELF()) { 11230 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11231 if (getTarget().getABI() == "elfv2") 11232 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11233 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11234 11235 return SetCGInfo( 11236 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11237 } 11238 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11239 case llvm::Triple::ppc64le: { 11240 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11241 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11242 if (getTarget().getABI() == "elfv1") 11243 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11244 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11245 11246 return SetCGInfo( 11247 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11248 } 11249 11250 case llvm::Triple::nvptx: 11251 case llvm::Triple::nvptx64: 11252 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11253 11254 case llvm::Triple::msp430: 11255 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11256 11257 case llvm::Triple::riscv32: 11258 case llvm::Triple::riscv64: { 11259 StringRef ABIStr = getTarget().getABI(); 11260 unsigned XLen = getTarget().getPointerWidth(0); 11261 unsigned ABIFLen = 0; 11262 if (ABIStr.endswith("f")) 11263 ABIFLen = 32; 11264 else if (ABIStr.endswith("d")) 11265 ABIFLen = 64; 11266 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11267 } 11268 11269 case llvm::Triple::systemz: { 11270 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11271 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11272 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11273 } 11274 11275 case llvm::Triple::tce: 11276 case llvm::Triple::tcele: 11277 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11278 11279 case llvm::Triple::x86: { 11280 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11281 bool RetSmallStructInRegABI = 11282 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11283 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11284 11285 if (Triple.getOS() == llvm::Triple::Win32) { 11286 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11287 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11288 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11289 } else { 11290 return SetCGInfo(new X86_32TargetCodeGenInfo( 11291 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11292 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11293 CodeGenOpts.FloatABI == "soft")); 11294 } 11295 } 11296 11297 case llvm::Triple::x86_64: { 11298 StringRef ABI = getTarget().getABI(); 11299 X86AVXABILevel AVXLevel = 11300 (ABI == "avx512" 11301 ? X86AVXABILevel::AVX512 11302 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11303 11304 switch (Triple.getOS()) { 11305 case llvm::Triple::Win32: 11306 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11307 default: 11308 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11309 } 11310 } 11311 case llvm::Triple::hexagon: 11312 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11313 case llvm::Triple::lanai: 11314 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11315 case llvm::Triple::r600: 11316 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11317 case llvm::Triple::amdgcn: 11318 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11319 case llvm::Triple::sparc: 11320 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11321 case llvm::Triple::sparcv9: 11322 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11323 case llvm::Triple::xcore: 11324 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11325 case llvm::Triple::arc: 11326 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11327 case llvm::Triple::spir: 11328 case llvm::Triple::spir64: 11329 case llvm::Triple::spirv32: 11330 case llvm::Triple::spirv64: 11331 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11332 case llvm::Triple::ve: 11333 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11334 } 11335 } 11336 11337 /// Create an OpenCL kernel for an enqueued block. 11338 /// 11339 /// The kernel has the same function type as the block invoke function. Its 11340 /// name is the name of the block invoke function postfixed with "_kernel". 11341 /// It simply calls the block invoke function then returns. 11342 llvm::Function * 11343 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11344 llvm::Function *Invoke, 11345 llvm::Value *BlockLiteral) const { 11346 auto *InvokeFT = Invoke->getFunctionType(); 11347 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11348 for (auto &P : InvokeFT->params()) 11349 ArgTys.push_back(P); 11350 auto &C = CGF.getLLVMContext(); 11351 std::string Name = Invoke->getName().str() + "_kernel"; 11352 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11353 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11354 &CGF.CGM.getModule()); 11355 auto IP = CGF.Builder.saveIP(); 11356 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11357 auto &Builder = CGF.Builder; 11358 Builder.SetInsertPoint(BB); 11359 llvm::SmallVector<llvm::Value *, 2> Args; 11360 for (auto &A : F->args()) 11361 Args.push_back(&A); 11362 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11363 call->setCallingConv(Invoke->getCallingConv()); 11364 Builder.CreateRetVoid(); 11365 Builder.restoreIP(IP); 11366 return F; 11367 } 11368 11369 /// Create an OpenCL kernel for an enqueued block. 11370 /// 11371 /// The type of the first argument (the block literal) is the struct type 11372 /// of the block literal instead of a pointer type. The first argument 11373 /// (block literal) is passed directly by value to the kernel. The kernel 11374 /// allocates the same type of struct on stack and stores the block literal 11375 /// to it and passes its pointer to the block invoke function. The kernel 11376 /// has "enqueued-block" function attribute and kernel argument metadata. 11377 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11378 CodeGenFunction &CGF, llvm::Function *Invoke, 11379 llvm::Value *BlockLiteral) const { 11380 auto &Builder = CGF.Builder; 11381 auto &C = CGF.getLLVMContext(); 11382 11383 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11384 auto *InvokeFT = Invoke->getFunctionType(); 11385 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11386 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11387 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11388 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11389 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11390 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11391 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11392 11393 ArgTys.push_back(BlockTy); 11394 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11395 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11396 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11397 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11398 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11399 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11400 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11401 ArgTys.push_back(InvokeFT->getParamType(I)); 11402 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11403 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11404 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11405 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11406 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11407 ArgNames.push_back( 11408 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11409 } 11410 std::string Name = Invoke->getName().str() + "_kernel"; 11411 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11412 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11413 &CGF.CGM.getModule()); 11414 F->addFnAttr("enqueued-block"); 11415 auto IP = CGF.Builder.saveIP(); 11416 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11417 Builder.SetInsertPoint(BB); 11418 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11419 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11420 BlockPtr->setAlignment(BlockAlign); 11421 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11422 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11423 llvm::SmallVector<llvm::Value *, 2> Args; 11424 Args.push_back(Cast); 11425 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11426 Args.push_back(I); 11427 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11428 call->setCallingConv(Invoke->getCallingConv()); 11429 Builder.CreateRetVoid(); 11430 Builder.restoreIP(IP); 11431 11432 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11433 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11434 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11435 F->setMetadata("kernel_arg_base_type", 11436 llvm::MDNode::get(C, ArgBaseTypeNames)); 11437 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11438 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11439 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11440 11441 return F; 11442 } 11443