1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41     Builder.CreateStore(Value, Cell);
42   }
43 }
44 
45 static bool isAggregateTypeForABI(QualType T) {
46   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47          T->isMemberFunctionPointerType();
48 }
49 
50 ABIInfo::~ABIInfo() {}
51 
52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53                                               CGCXXABI &CXXABI) {
54   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55   if (!RD)
56     return CGCXXABI::RAA_Default;
57   return CXXABI.getRecordArgABI(RD);
58 }
59 
60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61                                               CGCXXABI &CXXABI) {
62   const RecordType *RT = T->getAs<RecordType>();
63   if (!RT)
64     return CGCXXABI::RAA_Default;
65   return getRecordArgABI(RT, CXXABI);
66 }
67 
68 /// Pass transparent unions as if they were the type of the first element. Sema
69 /// should ensure that all elements of the union have the same "machine type".
70 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
71   if (const RecordType *UT = Ty->getAsUnionType()) {
72     const RecordDecl *UD = UT->getDecl();
73     if (UD->hasAttr<TransparentUnionAttr>()) {
74       assert(!UD->field_empty() && "sema created an empty transparent union");
75       return UD->field_begin()->getType();
76     }
77   }
78   return Ty;
79 }
80 
81 CGCXXABI &ABIInfo::getCXXABI() const {
82   return CGT.getCXXABI();
83 }
84 
85 ASTContext &ABIInfo::getContext() const {
86   return CGT.getContext();
87 }
88 
89 llvm::LLVMContext &ABIInfo::getVMContext() const {
90   return CGT.getLLVMContext();
91 }
92 
93 const llvm::DataLayout &ABIInfo::getDataLayout() const {
94   return CGT.getDataLayout();
95 }
96 
97 const TargetInfo &ABIInfo::getTarget() const {
98   return CGT.getTarget();
99 }
100 
101 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
102   return false;
103 }
104 
105 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
106                                                 uint64_t Members) const {
107   return false;
108 }
109 
110 void ABIArgInfo::dump() const {
111   raw_ostream &OS = llvm::errs();
112   OS << "(ABIArgInfo Kind=";
113   switch (TheKind) {
114   case Direct:
115     OS << "Direct Type=";
116     if (llvm::Type *Ty = getCoerceToType())
117       Ty->print(OS);
118     else
119       OS << "null";
120     break;
121   case Extend:
122     OS << "Extend";
123     break;
124   case Ignore:
125     OS << "Ignore";
126     break;
127   case InAlloca:
128     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
129     break;
130   case Indirect:
131     OS << "Indirect Align=" << getIndirectAlign()
132        << " ByVal=" << getIndirectByVal()
133        << " Realign=" << getIndirectRealign();
134     break;
135   case Expand:
136     OS << "Expand";
137     break;
138   }
139   OS << ")\n";
140 }
141 
142 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
143 
144 // If someone can figure out a general rule for this, that would be great.
145 // It's probably just doomed to be platform-dependent, though.
146 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
147   // Verified for:
148   //   x86-64     FreeBSD, Linux, Darwin
149   //   x86-32     FreeBSD, Linux, Darwin
150   //   PowerPC    Linux, Darwin
151   //   ARM        Darwin (*not* EABI)
152   //   AArch64    Linux
153   return 32;
154 }
155 
156 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
157                                      const FunctionNoProtoType *fnType) const {
158   // The following conventions are known to require this to be false:
159   //   x86_stdcall
160   //   MIPS
161   // For everything else, we just prefer false unless we opt out.
162   return false;
163 }
164 
165 void
166 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
167                                              llvm::SmallString<24> &Opt) const {
168   // This assumes the user is passing a library name like "rt" instead of a
169   // filename like "librt.a/so", and that they don't care whether it's static or
170   // dynamic.
171   Opt = "-l";
172   Opt += Lib;
173 }
174 
175 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
176 
177 /// isEmptyField - Return true iff a the field is "empty", that is it
178 /// is an unnamed bit-field or an (array of) empty record(s).
179 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
180                          bool AllowArrays) {
181   if (FD->isUnnamedBitfield())
182     return true;
183 
184   QualType FT = FD->getType();
185 
186   // Constant arrays of empty records count as empty, strip them off.
187   // Constant arrays of zero length always count as empty.
188   if (AllowArrays)
189     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
190       if (AT->getSize() == 0)
191         return true;
192       FT = AT->getElementType();
193     }
194 
195   const RecordType *RT = FT->getAs<RecordType>();
196   if (!RT)
197     return false;
198 
199   // C++ record fields are never empty, at least in the Itanium ABI.
200   //
201   // FIXME: We should use a predicate for whether this behavior is true in the
202   // current ABI.
203   if (isa<CXXRecordDecl>(RT->getDecl()))
204     return false;
205 
206   return isEmptyRecord(Context, FT, AllowArrays);
207 }
208 
209 /// isEmptyRecord - Return true iff a structure contains only empty
210 /// fields. Note that a structure with a flexible array member is not
211 /// considered empty.
212 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
213   const RecordType *RT = T->getAs<RecordType>();
214   if (!RT)
215     return 0;
216   const RecordDecl *RD = RT->getDecl();
217   if (RD->hasFlexibleArrayMember())
218     return false;
219 
220   // If this is a C++ record, check the bases first.
221   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
222     for (const auto &I : CXXRD->bases())
223       if (!isEmptyRecord(Context, I.getType(), true))
224         return false;
225 
226   for (const auto *I : RD->fields())
227     if (!isEmptyField(Context, I, AllowArrays))
228       return false;
229   return true;
230 }
231 
232 /// isSingleElementStruct - Determine if a structure is a "single
233 /// element struct", i.e. it has exactly one non-empty field or
234 /// exactly one field which is itself a single element
235 /// struct. Structures with flexible array members are never
236 /// considered single element structs.
237 ///
238 /// \return The field declaration for the single non-empty field, if
239 /// it exists.
240 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
241   const RecordType *RT = T->getAs<RecordType>();
242   if (!RT)
243     return nullptr;
244 
245   const RecordDecl *RD = RT->getDecl();
246   if (RD->hasFlexibleArrayMember())
247     return nullptr;
248 
249   const Type *Found = nullptr;
250 
251   // If this is a C++ record, check the bases first.
252   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
253     for (const auto &I : CXXRD->bases()) {
254       // Ignore empty records.
255       if (isEmptyRecord(Context, I.getType(), true))
256         continue;
257 
258       // If we already found an element then this isn't a single-element struct.
259       if (Found)
260         return nullptr;
261 
262       // If this is non-empty and not a single element struct, the composite
263       // cannot be a single element struct.
264       Found = isSingleElementStruct(I.getType(), Context);
265       if (!Found)
266         return nullptr;
267     }
268   }
269 
270   // Check for single element.
271   for (const auto *FD : RD->fields()) {
272     QualType FT = FD->getType();
273 
274     // Ignore empty fields.
275     if (isEmptyField(Context, FD, true))
276       continue;
277 
278     // If we already found an element then this isn't a single-element
279     // struct.
280     if (Found)
281       return nullptr;
282 
283     // Treat single element arrays as the element.
284     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
285       if (AT->getSize().getZExtValue() != 1)
286         break;
287       FT = AT->getElementType();
288     }
289 
290     if (!isAggregateTypeForABI(FT)) {
291       Found = FT.getTypePtr();
292     } else {
293       Found = isSingleElementStruct(FT, Context);
294       if (!Found)
295         return nullptr;
296     }
297   }
298 
299   // We don't consider a struct a single-element struct if it has
300   // padding beyond the element type.
301   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
302     return nullptr;
303 
304   return Found;
305 }
306 
307 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
308   // Treat complex types as the element type.
309   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
310     Ty = CTy->getElementType();
311 
312   // Check for a type which we know has a simple scalar argument-passing
313   // convention without any padding.  (We're specifically looking for 32
314   // and 64-bit integer and integer-equivalents, float, and double.)
315   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
316       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
317     return false;
318 
319   uint64_t Size = Context.getTypeSize(Ty);
320   return Size == 32 || Size == 64;
321 }
322 
323 /// canExpandIndirectArgument - Test whether an argument type which is to be
324 /// passed indirectly (on the stack) would have the equivalent layout if it was
325 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
326 /// inhibiting optimizations.
327 ///
328 // FIXME: This predicate is missing many cases, currently it just follows
329 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
330 // should probably make this smarter, or better yet make the LLVM backend
331 // capable of handling it.
332 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
333   // We can only expand structure types.
334   const RecordType *RT = Ty->getAs<RecordType>();
335   if (!RT)
336     return false;
337 
338   // We can only expand (C) structures.
339   //
340   // FIXME: This needs to be generalized to handle classes as well.
341   const RecordDecl *RD = RT->getDecl();
342   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
343     return false;
344 
345   uint64_t Size = 0;
346 
347   for (const auto *FD : RD->fields()) {
348     if (!is32Or64BitBasicType(FD->getType(), Context))
349       return false;
350 
351     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
352     // how to expand them yet, and the predicate for telling if a bitfield still
353     // counts as "basic" is more complicated than what we were doing previously.
354     if (FD->isBitField())
355       return false;
356 
357     Size += Context.getTypeSize(FD->getType());
358   }
359 
360   // Make sure there are not any holes in the struct.
361   if (Size != Context.getTypeSize(Ty))
362     return false;
363 
364   return true;
365 }
366 
367 namespace {
368 /// DefaultABIInfo - The default implementation for ABI specific
369 /// details. This implementation provides information which results in
370 /// self-consistent and sensible LLVM IR generation, but does not
371 /// conform to any particular ABI.
372 class DefaultABIInfo : public ABIInfo {
373 public:
374   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
375 
376   ABIArgInfo classifyReturnType(QualType RetTy) const;
377   ABIArgInfo classifyArgumentType(QualType RetTy) const;
378 
379   void computeInfo(CGFunctionInfo &FI) const override {
380     if (!getCXXABI().classifyReturnType(FI))
381       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
382     for (auto &I : FI.arguments())
383       I.info = classifyArgumentType(I.type);
384   }
385 
386   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
387                          CodeGenFunction &CGF) const override;
388 };
389 
390 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
391 public:
392   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
393     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
394 };
395 
396 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
397                                        CodeGenFunction &CGF) const {
398   return nullptr;
399 }
400 
401 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
402   if (isAggregateTypeForABI(Ty))
403     return ABIArgInfo::getIndirect(0);
404 
405   // Treat an enum type as its underlying type.
406   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407     Ty = EnumTy->getDecl()->getIntegerType();
408 
409   return (Ty->isPromotableIntegerType() ?
410           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411 }
412 
413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414   if (RetTy->isVoidType())
415     return ABIArgInfo::getIgnore();
416 
417   if (isAggregateTypeForABI(RetTy))
418     return ABIArgInfo::getIndirect(0);
419 
420   // Treat an enum type as its underlying type.
421   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422     RetTy = EnumTy->getDecl()->getIntegerType();
423 
424   return (RetTy->isPromotableIntegerType() ?
425           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // le32/PNaCl bitcode ABI Implementation
430 //
431 // This is a simplified version of the x86_32 ABI.  Arguments and return values
432 // are always passed on the stack.
433 //===----------------------------------------------------------------------===//
434 
435 class PNaClABIInfo : public ABIInfo {
436  public:
437   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438 
439   ABIArgInfo classifyReturnType(QualType RetTy) const;
440   ABIArgInfo classifyArgumentType(QualType RetTy) const;
441 
442   void computeInfo(CGFunctionInfo &FI) const override;
443   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444                          CodeGenFunction &CGF) const override;
445 };
446 
447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448  public:
449   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451 };
452 
453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454   if (!getCXXABI().classifyReturnType(FI))
455     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456 
457   for (auto &I : FI.arguments())
458     I.info = classifyArgumentType(I.type);
459 }
460 
461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462                                        CodeGenFunction &CGF) const {
463   return nullptr;
464 }
465 
466 /// \brief Classify argument of given type \p Ty.
467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468   if (isAggregateTypeForABI(Ty)) {
469     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471     return ABIArgInfo::getIndirect(0);
472   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473     // Treat an enum type as its underlying type.
474     Ty = EnumTy->getDecl()->getIntegerType();
475   } else if (Ty->isFloatingType()) {
476     // Floating-point types don't go inreg.
477     return ABIArgInfo::getDirect();
478   }
479 
480   return (Ty->isPromotableIntegerType() ?
481           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482 }
483 
484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485   if (RetTy->isVoidType())
486     return ABIArgInfo::getIgnore();
487 
488   // In the PNaCl ABI we always return records/structures on the stack.
489   if (isAggregateTypeForABI(RetTy))
490     return ABIArgInfo::getIndirect(0);
491 
492   // Treat an enum type as its underlying type.
493   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494     RetTy = EnumTy->getDecl()->getIntegerType();
495 
496   return (RetTy->isPromotableIntegerType() ?
497           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498 }
499 
500 /// IsX86_MMXType - Return true if this is an MMX type.
501 bool IsX86_MMXType(llvm::Type *IRType) {
502   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505     IRType->getScalarSizeInBits() != 64;
506 }
507 
508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509                                           StringRef Constraint,
510                                           llvm::Type* Ty) {
511   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513       // Invalid MMX constraint
514       return nullptr;
515     }
516 
517     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518   }
519 
520   // No operation needed
521   return Ty;
522 }
523 
524 /// Returns true if this type can be passed in SSE registers with the
525 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
526 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
527   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
528     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
529       return true;
530   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
531     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
532     // registers specially.
533     unsigned VecSize = Context.getTypeSize(VT);
534     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
535       return true;
536   }
537   return false;
538 }
539 
540 /// Returns true if this aggregate is small enough to be passed in SSE registers
541 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
542 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
543   return NumMembers <= 4;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 // X86-32 ABI Implementation
548 //===----------------------------------------------------------------------===//
549 
550 /// \brief Similar to llvm::CCState, but for Clang.
551 struct CCState {
552   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
553 
554   unsigned CC;
555   unsigned FreeRegs;
556   unsigned FreeSSERegs;
557 };
558 
559 /// X86_32ABIInfo - The X86-32 ABI information.
560 class X86_32ABIInfo : public ABIInfo {
561   enum Class {
562     Integer,
563     Float
564   };
565 
566   static const unsigned MinABIStackAlignInBytes = 4;
567 
568   bool IsDarwinVectorABI;
569   bool IsSmallStructInRegABI;
570   bool IsWin32StructABI;
571   unsigned DefaultNumRegisterParameters;
572 
573   static bool isRegisterSize(unsigned Size) {
574     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
575   }
576 
577   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
578     // FIXME: Assumes vectorcall is in use.
579     return isX86VectorTypeForVectorCall(getContext(), Ty);
580   }
581 
582   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
583                                          uint64_t NumMembers) const override {
584     // FIXME: Assumes vectorcall is in use.
585     return isX86VectorCallAggregateSmallEnough(NumMembers);
586   }
587 
588   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
589 
590   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
591   /// such that the argument will be passed in memory.
592   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
593 
594   ABIArgInfo getIndirectReturnResult(CCState &State) const;
595 
596   /// \brief Return the alignment to use for the given type on the stack.
597   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
598 
599   Class classify(QualType Ty) const;
600   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
601   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
602   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
603 
604   /// \brief Rewrite the function info so that all memory arguments use
605   /// inalloca.
606   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
607 
608   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
609                            unsigned &StackOffset, ABIArgInfo &Info,
610                            QualType Type) const;
611 
612 public:
613 
614   void computeInfo(CGFunctionInfo &FI) const override;
615   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
616                          CodeGenFunction &CGF) const override;
617 
618   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
619                 unsigned r)
620     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
621       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
622 };
623 
624 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
625 public:
626   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
627       bool d, bool p, bool w, unsigned r)
628     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
629 
630   static bool isStructReturnInRegABI(
631       const llvm::Triple &Triple, const CodeGenOptions &Opts);
632 
633   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
634                            CodeGen::CodeGenModule &CGM) const override;
635 
636   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
637     // Darwin uses different dwarf register numbers for EH.
638     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
639     return 4;
640   }
641 
642   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
643                                llvm::Value *Address) const override;
644 
645   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
646                                   StringRef Constraint,
647                                   llvm::Type* Ty) const override {
648     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
649   }
650 
651   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
652                                 std::string &Constraints,
653                                 std::vector<llvm::Type *> &ResultRegTypes,
654                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
655                                 std::vector<LValue> &ResultRegDests,
656                                 std::string &AsmString,
657                                 unsigned NumOutputs) const override;
658 
659   llvm::Constant *
660   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
661     unsigned Sig = (0xeb << 0) |  // jmp rel8
662                    (0x06 << 8) |  //           .+0x08
663                    ('F' << 16) |
664                    ('T' << 24);
665     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
666   }
667 
668   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
669     return true;
670   }
671 };
672 
673 }
674 
675 /// Rewrite input constraint references after adding some output constraints.
676 /// In the case where there is one output and one input and we add one output,
677 /// we need to replace all operand references greater than or equal to 1:
678 ///     mov $0, $1
679 ///     mov eax, $1
680 /// The result will be:
681 ///     mov $0, $2
682 ///     mov eax, $2
683 static void rewriteInputConstraintReferences(unsigned FirstIn,
684                                              unsigned NumNewOuts,
685                                              std::string &AsmString) {
686   std::string Buf;
687   llvm::raw_string_ostream OS(Buf);
688   size_t Pos = 0;
689   while (Pos < AsmString.size()) {
690     size_t DollarStart = AsmString.find('$', Pos);
691     if (DollarStart == std::string::npos)
692       DollarStart = AsmString.size();
693     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
694     if (DollarEnd == std::string::npos)
695       DollarEnd = AsmString.size();
696     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
697     Pos = DollarEnd;
698     size_t NumDollars = DollarEnd - DollarStart;
699     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
700       // We have an operand reference.
701       size_t DigitStart = Pos;
702       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
703       if (DigitEnd == std::string::npos)
704         DigitEnd = AsmString.size();
705       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
706       unsigned OperandIndex;
707       if (!OperandStr.getAsInteger(10, OperandIndex)) {
708         if (OperandIndex >= FirstIn)
709           OperandIndex += NumNewOuts;
710         OS << OperandIndex;
711       } else {
712         OS << OperandStr;
713       }
714       Pos = DigitEnd;
715     }
716   }
717   AsmString = std::move(OS.str());
718 }
719 
720 /// Add output constraints for EAX:EDX because they are return registers.
721 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
722     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
723     std::vector<llvm::Type *> &ResultRegTypes,
724     std::vector<llvm::Type *> &ResultTruncRegTypes,
725     std::vector<LValue> &ResultRegDests, std::string &AsmString,
726     unsigned NumOutputs) const {
727   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
728 
729   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
730   // larger.
731   if (!Constraints.empty())
732     Constraints += ',';
733   if (RetWidth <= 32) {
734     Constraints += "={eax}";
735     ResultRegTypes.push_back(CGF.Int32Ty);
736   } else {
737     // Use the 'A' constraint for EAX:EDX.
738     Constraints += "=A";
739     ResultRegTypes.push_back(CGF.Int64Ty);
740   }
741 
742   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
743   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
744   ResultTruncRegTypes.push_back(CoerceTy);
745 
746   // Coerce the integer by bitcasting the return slot pointer.
747   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
748                                                   CoerceTy->getPointerTo()));
749   ResultRegDests.push_back(ReturnSlot);
750 
751   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
752 }
753 
754 /// shouldReturnTypeInRegister - Determine if the given type should be
755 /// passed in a register (for the Darwin ABI).
756 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
757                                                ASTContext &Context) const {
758   uint64_t Size = Context.getTypeSize(Ty);
759 
760   // Type must be register sized.
761   if (!isRegisterSize(Size))
762     return false;
763 
764   if (Ty->isVectorType()) {
765     // 64- and 128- bit vectors inside structures are not returned in
766     // registers.
767     if (Size == 64 || Size == 128)
768       return false;
769 
770     return true;
771   }
772 
773   // If this is a builtin, pointer, enum, complex type, member pointer, or
774   // member function pointer it is ok.
775   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
776       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
777       Ty->isBlockPointerType() || Ty->isMemberPointerType())
778     return true;
779 
780   // Arrays are treated like records.
781   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
782     return shouldReturnTypeInRegister(AT->getElementType(), Context);
783 
784   // Otherwise, it must be a record type.
785   const RecordType *RT = Ty->getAs<RecordType>();
786   if (!RT) return false;
787 
788   // FIXME: Traverse bases here too.
789 
790   // Structure types are passed in register if all fields would be
791   // passed in a register.
792   for (const auto *FD : RT->getDecl()->fields()) {
793     // Empty fields are ignored.
794     if (isEmptyField(Context, FD, true))
795       continue;
796 
797     // Check fields recursively.
798     if (!shouldReturnTypeInRegister(FD->getType(), Context))
799       return false;
800   }
801   return true;
802 }
803 
804 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
805   // If the return value is indirect, then the hidden argument is consuming one
806   // integer register.
807   if (State.FreeRegs) {
808     --State.FreeRegs;
809     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
810   }
811   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
812 }
813 
814 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
815   if (RetTy->isVoidType())
816     return ABIArgInfo::getIgnore();
817 
818   const Type *Base = nullptr;
819   uint64_t NumElts = 0;
820   if (State.CC == llvm::CallingConv::X86_VectorCall &&
821       isHomogeneousAggregate(RetTy, Base, NumElts)) {
822     // The LLVM struct type for such an aggregate should lower properly.
823     return ABIArgInfo::getDirect();
824   }
825 
826   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
827     // On Darwin, some vectors are returned in registers.
828     if (IsDarwinVectorABI) {
829       uint64_t Size = getContext().getTypeSize(RetTy);
830 
831       // 128-bit vectors are a special case; they are returned in
832       // registers and we need to make sure to pick a type the LLVM
833       // backend will like.
834       if (Size == 128)
835         return ABIArgInfo::getDirect(llvm::VectorType::get(
836                   llvm::Type::getInt64Ty(getVMContext()), 2));
837 
838       // Always return in register if it fits in a general purpose
839       // register, or if it is 64 bits and has a single element.
840       if ((Size == 8 || Size == 16 || Size == 32) ||
841           (Size == 64 && VT->getNumElements() == 1))
842         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
843                                                             Size));
844 
845       return getIndirectReturnResult(State);
846     }
847 
848     return ABIArgInfo::getDirect();
849   }
850 
851   if (isAggregateTypeForABI(RetTy)) {
852     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
853       // Structures with flexible arrays are always indirect.
854       if (RT->getDecl()->hasFlexibleArrayMember())
855         return getIndirectReturnResult(State);
856     }
857 
858     // If specified, structs and unions are always indirect.
859     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
860       return getIndirectReturnResult(State);
861 
862     // Small structures which are register sized are generally returned
863     // in a register.
864     if (shouldReturnTypeInRegister(RetTy, getContext())) {
865       uint64_t Size = getContext().getTypeSize(RetTy);
866 
867       // As a special-case, if the struct is a "single-element" struct, and
868       // the field is of type "float" or "double", return it in a
869       // floating-point register. (MSVC does not apply this special case.)
870       // We apply a similar transformation for pointer types to improve the
871       // quality of the generated IR.
872       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
873         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
874             || SeltTy->hasPointerRepresentation())
875           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
876 
877       // FIXME: We should be able to narrow this integer in cases with dead
878       // padding.
879       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
880     }
881 
882     return getIndirectReturnResult(State);
883   }
884 
885   // Treat an enum type as its underlying type.
886   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
887     RetTy = EnumTy->getDecl()->getIntegerType();
888 
889   return (RetTy->isPromotableIntegerType() ?
890           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
891 }
892 
893 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
894   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
895 }
896 
897 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
898   const RecordType *RT = Ty->getAs<RecordType>();
899   if (!RT)
900     return 0;
901   const RecordDecl *RD = RT->getDecl();
902 
903   // If this is a C++ record, check the bases first.
904   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
905     for (const auto &I : CXXRD->bases())
906       if (!isRecordWithSSEVectorType(Context, I.getType()))
907         return false;
908 
909   for (const auto *i : RD->fields()) {
910     QualType FT = i->getType();
911 
912     if (isSSEVectorType(Context, FT))
913       return true;
914 
915     if (isRecordWithSSEVectorType(Context, FT))
916       return true;
917   }
918 
919   return false;
920 }
921 
922 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
923                                                  unsigned Align) const {
924   // Otherwise, if the alignment is less than or equal to the minimum ABI
925   // alignment, just use the default; the backend will handle this.
926   if (Align <= MinABIStackAlignInBytes)
927     return 0; // Use default alignment.
928 
929   // On non-Darwin, the stack type alignment is always 4.
930   if (!IsDarwinVectorABI) {
931     // Set explicit alignment, since we may need to realign the top.
932     return MinABIStackAlignInBytes;
933   }
934 
935   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
936   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
937                       isRecordWithSSEVectorType(getContext(), Ty)))
938     return 16;
939 
940   return MinABIStackAlignInBytes;
941 }
942 
943 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
944                                             CCState &State) const {
945   if (!ByVal) {
946     if (State.FreeRegs) {
947       --State.FreeRegs; // Non-byval indirects just use one pointer.
948       return ABIArgInfo::getIndirectInReg(0, false);
949     }
950     return ABIArgInfo::getIndirect(0, false);
951   }
952 
953   // Compute the byval alignment.
954   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
955   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
956   if (StackAlign == 0)
957     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
958 
959   // If the stack alignment is less than the type alignment, realign the
960   // argument.
961   bool Realign = TypeAlign > StackAlign;
962   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
963 }
964 
965 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
966   const Type *T = isSingleElementStruct(Ty, getContext());
967   if (!T)
968     T = Ty.getTypePtr();
969 
970   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
971     BuiltinType::Kind K = BT->getKind();
972     if (K == BuiltinType::Float || K == BuiltinType::Double)
973       return Float;
974   }
975   return Integer;
976 }
977 
978 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
979                                    bool &NeedsPadding) const {
980   NeedsPadding = false;
981   Class C = classify(Ty);
982   if (C == Float)
983     return false;
984 
985   unsigned Size = getContext().getTypeSize(Ty);
986   unsigned SizeInRegs = (Size + 31) / 32;
987 
988   if (SizeInRegs == 0)
989     return false;
990 
991   if (SizeInRegs > State.FreeRegs) {
992     State.FreeRegs = 0;
993     return false;
994   }
995 
996   State.FreeRegs -= SizeInRegs;
997 
998   if (State.CC == llvm::CallingConv::X86_FastCall ||
999       State.CC == llvm::CallingConv::X86_VectorCall) {
1000     if (Size > 32)
1001       return false;
1002 
1003     if (Ty->isIntegralOrEnumerationType())
1004       return true;
1005 
1006     if (Ty->isPointerType())
1007       return true;
1008 
1009     if (Ty->isReferenceType())
1010       return true;
1011 
1012     if (State.FreeRegs)
1013       NeedsPadding = true;
1014 
1015     return false;
1016   }
1017 
1018   return true;
1019 }
1020 
1021 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1022                                                CCState &State) const {
1023   // FIXME: Set alignment on indirect arguments.
1024 
1025   Ty = useFirstFieldIfTransparentUnion(Ty);
1026 
1027   // Check with the C++ ABI first.
1028   const RecordType *RT = Ty->getAs<RecordType>();
1029   if (RT) {
1030     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1031     if (RAA == CGCXXABI::RAA_Indirect) {
1032       return getIndirectResult(Ty, false, State);
1033     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1034       // The field index doesn't matter, we'll fix it up later.
1035       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1036     }
1037   }
1038 
1039   // vectorcall adds the concept of a homogenous vector aggregate, similar
1040   // to other targets.
1041   const Type *Base = nullptr;
1042   uint64_t NumElts = 0;
1043   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1044       isHomogeneousAggregate(Ty, Base, NumElts)) {
1045     if (State.FreeSSERegs >= NumElts) {
1046       State.FreeSSERegs -= NumElts;
1047       if (Ty->isBuiltinType() || Ty->isVectorType())
1048         return ABIArgInfo::getDirect();
1049       return ABIArgInfo::getExpand();
1050     }
1051     return getIndirectResult(Ty, /*ByVal=*/false, State);
1052   }
1053 
1054   if (isAggregateTypeForABI(Ty)) {
1055     if (RT) {
1056       // Structs are always byval on win32, regardless of what they contain.
1057       if (IsWin32StructABI)
1058         return getIndirectResult(Ty, true, State);
1059 
1060       // Structures with flexible arrays are always indirect.
1061       if (RT->getDecl()->hasFlexibleArrayMember())
1062         return getIndirectResult(Ty, true, State);
1063     }
1064 
1065     // Ignore empty structs/unions.
1066     if (isEmptyRecord(getContext(), Ty, true))
1067       return ABIArgInfo::getIgnore();
1068 
1069     llvm::LLVMContext &LLVMContext = getVMContext();
1070     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1071     bool NeedsPadding;
1072     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1073       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1074       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1075       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1076       return ABIArgInfo::getDirectInReg(Result);
1077     }
1078     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1079 
1080     // Expand small (<= 128-bit) record types when we know that the stack layout
1081     // of those arguments will match the struct. This is important because the
1082     // LLVM backend isn't smart enough to remove byval, which inhibits many
1083     // optimizations.
1084     if (getContext().getTypeSize(Ty) <= 4*32 &&
1085         canExpandIndirectArgument(Ty, getContext()))
1086       return ABIArgInfo::getExpandWithPadding(
1087           State.CC == llvm::CallingConv::X86_FastCall ||
1088               State.CC == llvm::CallingConv::X86_VectorCall,
1089           PaddingType);
1090 
1091     return getIndirectResult(Ty, true, State);
1092   }
1093 
1094   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1095     // On Darwin, some vectors are passed in memory, we handle this by passing
1096     // it as an i8/i16/i32/i64.
1097     if (IsDarwinVectorABI) {
1098       uint64_t Size = getContext().getTypeSize(Ty);
1099       if ((Size == 8 || Size == 16 || Size == 32) ||
1100           (Size == 64 && VT->getNumElements() == 1))
1101         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1102                                                             Size));
1103     }
1104 
1105     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1106       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1107 
1108     return ABIArgInfo::getDirect();
1109   }
1110 
1111 
1112   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1113     Ty = EnumTy->getDecl()->getIntegerType();
1114 
1115   bool NeedsPadding;
1116   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1117 
1118   if (Ty->isPromotableIntegerType()) {
1119     if (InReg)
1120       return ABIArgInfo::getExtendInReg();
1121     return ABIArgInfo::getExtend();
1122   }
1123   if (InReg)
1124     return ABIArgInfo::getDirectInReg();
1125   return ABIArgInfo::getDirect();
1126 }
1127 
1128 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1129   CCState State(FI.getCallingConvention());
1130   if (State.CC == llvm::CallingConv::X86_FastCall)
1131     State.FreeRegs = 2;
1132   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1133     State.FreeRegs = 2;
1134     State.FreeSSERegs = 6;
1135   } else if (FI.getHasRegParm())
1136     State.FreeRegs = FI.getRegParm();
1137   else
1138     State.FreeRegs = DefaultNumRegisterParameters;
1139 
1140   if (!getCXXABI().classifyReturnType(FI)) {
1141     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1142   } else if (FI.getReturnInfo().isIndirect()) {
1143     // The C++ ABI is not aware of register usage, so we have to check if the
1144     // return value was sret and put it in a register ourselves if appropriate.
1145     if (State.FreeRegs) {
1146       --State.FreeRegs;  // The sret parameter consumes a register.
1147       FI.getReturnInfo().setInReg(true);
1148     }
1149   }
1150 
1151   // The chain argument effectively gives us another free register.
1152   if (FI.isChainCall())
1153     ++State.FreeRegs;
1154 
1155   bool UsedInAlloca = false;
1156   for (auto &I : FI.arguments()) {
1157     I.info = classifyArgumentType(I.type, State);
1158     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1159   }
1160 
1161   // If we needed to use inalloca for any argument, do a second pass and rewrite
1162   // all the memory arguments to use inalloca.
1163   if (UsedInAlloca)
1164     rewriteWithInAlloca(FI);
1165 }
1166 
1167 void
1168 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1169                                    unsigned &StackOffset,
1170                                    ABIArgInfo &Info, QualType Type) const {
1171   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1172   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1173   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1174   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1175 
1176   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1177   // byte aligned.
1178   if (StackOffset % 4U) {
1179     unsigned OldOffset = StackOffset;
1180     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1181     unsigned NumBytes = StackOffset - OldOffset;
1182     assert(NumBytes);
1183     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1184     Ty = llvm::ArrayType::get(Ty, NumBytes);
1185     FrameFields.push_back(Ty);
1186   }
1187 }
1188 
1189 static bool isArgInAlloca(const ABIArgInfo &Info) {
1190   // Leave ignored and inreg arguments alone.
1191   switch (Info.getKind()) {
1192   case ABIArgInfo::InAlloca:
1193     return true;
1194   case ABIArgInfo::Indirect:
1195     assert(Info.getIndirectByVal());
1196     return true;
1197   case ABIArgInfo::Ignore:
1198     return false;
1199   case ABIArgInfo::Direct:
1200   case ABIArgInfo::Extend:
1201   case ABIArgInfo::Expand:
1202     if (Info.getInReg())
1203       return false;
1204     return true;
1205   }
1206   llvm_unreachable("invalid enum");
1207 }
1208 
1209 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1210   assert(IsWin32StructABI && "inalloca only supported on win32");
1211 
1212   // Build a packed struct type for all of the arguments in memory.
1213   SmallVector<llvm::Type *, 6> FrameFields;
1214 
1215   unsigned StackOffset = 0;
1216   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1217 
1218   // Put 'this' into the struct before 'sret', if necessary.
1219   bool IsThisCall =
1220       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1221   ABIArgInfo &Ret = FI.getReturnInfo();
1222   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1223       isArgInAlloca(I->info)) {
1224     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1225     ++I;
1226   }
1227 
1228   // Put the sret parameter into the inalloca struct if it's in memory.
1229   if (Ret.isIndirect() && !Ret.getInReg()) {
1230     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1231     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1232     // On Windows, the hidden sret parameter is always returned in eax.
1233     Ret.setInAllocaSRet(IsWin32StructABI);
1234   }
1235 
1236   // Skip the 'this' parameter in ecx.
1237   if (IsThisCall)
1238     ++I;
1239 
1240   // Put arguments passed in memory into the struct.
1241   for (; I != E; ++I) {
1242     if (isArgInAlloca(I->info))
1243       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1244   }
1245 
1246   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1247                                         /*isPacked=*/true));
1248 }
1249 
1250 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1251                                       CodeGenFunction &CGF) const {
1252   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1253 
1254   CGBuilderTy &Builder = CGF.Builder;
1255   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1256                                                        "ap");
1257   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1258 
1259   // Compute if the address needs to be aligned
1260   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1261   Align = getTypeStackAlignInBytes(Ty, Align);
1262   Align = std::max(Align, 4U);
1263   if (Align > 4) {
1264     // addr = (addr + align - 1) & -align;
1265     llvm::Value *Offset =
1266       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1267     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1268     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1269                                                     CGF.Int32Ty);
1270     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1271     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1272                                       Addr->getType(),
1273                                       "ap.cur.aligned");
1274   }
1275 
1276   llvm::Type *PTy =
1277     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1278   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1279 
1280   uint64_t Offset =
1281     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1282   llvm::Value *NextAddr =
1283     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1284                       "ap.next");
1285   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1286 
1287   return AddrTyped;
1288 }
1289 
1290 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1291     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1292   assert(Triple.getArch() == llvm::Triple::x86);
1293 
1294   switch (Opts.getStructReturnConvention()) {
1295   case CodeGenOptions::SRCK_Default:
1296     break;
1297   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1298     return false;
1299   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1300     return true;
1301   }
1302 
1303   if (Triple.isOSDarwin())
1304     return true;
1305 
1306   switch (Triple.getOS()) {
1307   case llvm::Triple::DragonFly:
1308   case llvm::Triple::FreeBSD:
1309   case llvm::Triple::OpenBSD:
1310   case llvm::Triple::Bitrig:
1311   case llvm::Triple::Win32:
1312     return true;
1313   default:
1314     return false;
1315   }
1316 }
1317 
1318 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1319                                                   llvm::GlobalValue *GV,
1320                                             CodeGen::CodeGenModule &CGM) const {
1321   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1322     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1323       // Get the LLVM function.
1324       llvm::Function *Fn = cast<llvm::Function>(GV);
1325 
1326       // Now add the 'alignstack' attribute with a value of 16.
1327       llvm::AttrBuilder B;
1328       B.addStackAlignmentAttr(16);
1329       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1330                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1331                                               llvm::AttributeSet::FunctionIndex,
1332                                               B));
1333     }
1334   }
1335 }
1336 
1337 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1338                                                CodeGen::CodeGenFunction &CGF,
1339                                                llvm::Value *Address) const {
1340   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1341 
1342   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1343 
1344   // 0-7 are the eight integer registers;  the order is different
1345   //   on Darwin (for EH), but the range is the same.
1346   // 8 is %eip.
1347   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1348 
1349   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1350     // 12-16 are st(0..4).  Not sure why we stop at 4.
1351     // These have size 16, which is sizeof(long double) on
1352     // platforms with 8-byte alignment for that type.
1353     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1354     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1355 
1356   } else {
1357     // 9 is %eflags, which doesn't get a size on Darwin for some
1358     // reason.
1359     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1360 
1361     // 11-16 are st(0..5).  Not sure why we stop at 5.
1362     // These have size 12, which is sizeof(long double) on
1363     // platforms with 4-byte alignment for that type.
1364     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1365     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1366   }
1367 
1368   return false;
1369 }
1370 
1371 //===----------------------------------------------------------------------===//
1372 // X86-64 ABI Implementation
1373 //===----------------------------------------------------------------------===//
1374 
1375 
1376 namespace {
1377 /// X86_64ABIInfo - The X86_64 ABI information.
1378 class X86_64ABIInfo : public ABIInfo {
1379   enum Class {
1380     Integer = 0,
1381     SSE,
1382     SSEUp,
1383     X87,
1384     X87Up,
1385     ComplexX87,
1386     NoClass,
1387     Memory
1388   };
1389 
1390   /// merge - Implement the X86_64 ABI merging algorithm.
1391   ///
1392   /// Merge an accumulating classification \arg Accum with a field
1393   /// classification \arg Field.
1394   ///
1395   /// \param Accum - The accumulating classification. This should
1396   /// always be either NoClass or the result of a previous merge
1397   /// call. In addition, this should never be Memory (the caller
1398   /// should just return Memory for the aggregate).
1399   static Class merge(Class Accum, Class Field);
1400 
1401   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1402   ///
1403   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1404   /// final MEMORY or SSE classes when necessary.
1405   ///
1406   /// \param AggregateSize - The size of the current aggregate in
1407   /// the classification process.
1408   ///
1409   /// \param Lo - The classification for the parts of the type
1410   /// residing in the low word of the containing object.
1411   ///
1412   /// \param Hi - The classification for the parts of the type
1413   /// residing in the higher words of the containing object.
1414   ///
1415   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1416 
1417   /// classify - Determine the x86_64 register classes in which the
1418   /// given type T should be passed.
1419   ///
1420   /// \param Lo - The classification for the parts of the type
1421   /// residing in the low word of the containing object.
1422   ///
1423   /// \param Hi - The classification for the parts of the type
1424   /// residing in the high word of the containing object.
1425   ///
1426   /// \param OffsetBase - The bit offset of this type in the
1427   /// containing object.  Some parameters are classified different
1428   /// depending on whether they straddle an eightbyte boundary.
1429   ///
1430   /// \param isNamedArg - Whether the argument in question is a "named"
1431   /// argument, as used in AMD64-ABI 3.5.7.
1432   ///
1433   /// If a word is unused its result will be NoClass; if a type should
1434   /// be passed in Memory then at least the classification of \arg Lo
1435   /// will be Memory.
1436   ///
1437   /// The \arg Lo class will be NoClass iff the argument is ignored.
1438   ///
1439   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1440   /// also be ComplexX87.
1441   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1442                 bool isNamedArg) const;
1443 
1444   llvm::Type *GetByteVectorType(QualType Ty) const;
1445   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1446                                  unsigned IROffset, QualType SourceTy,
1447                                  unsigned SourceOffset) const;
1448   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1449                                      unsigned IROffset, QualType SourceTy,
1450                                      unsigned SourceOffset) const;
1451 
1452   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1453   /// such that the argument will be returned in memory.
1454   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1455 
1456   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1457   /// such that the argument will be passed in memory.
1458   ///
1459   /// \param freeIntRegs - The number of free integer registers remaining
1460   /// available.
1461   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1462 
1463   ABIArgInfo classifyReturnType(QualType RetTy) const;
1464 
1465   ABIArgInfo classifyArgumentType(QualType Ty,
1466                                   unsigned freeIntRegs,
1467                                   unsigned &neededInt,
1468                                   unsigned &neededSSE,
1469                                   bool isNamedArg) const;
1470 
1471   bool IsIllegalVectorType(QualType Ty) const;
1472 
1473   /// The 0.98 ABI revision clarified a lot of ambiguities,
1474   /// unfortunately in ways that were not always consistent with
1475   /// certain previous compilers.  In particular, platforms which
1476   /// required strict binary compatibility with older versions of GCC
1477   /// may need to exempt themselves.
1478   bool honorsRevision0_98() const {
1479     return !getTarget().getTriple().isOSDarwin();
1480   }
1481 
1482   bool HasAVX;
1483   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1484   // 64-bit hardware.
1485   bool Has64BitPointers;
1486 
1487 public:
1488   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1489       ABIInfo(CGT), HasAVX(hasavx),
1490       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1491   }
1492 
1493   bool isPassedUsingAVXType(QualType type) const {
1494     unsigned neededInt, neededSSE;
1495     // The freeIntRegs argument doesn't matter here.
1496     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1497                                            /*isNamedArg*/true);
1498     if (info.isDirect()) {
1499       llvm::Type *ty = info.getCoerceToType();
1500       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1501         return (vectorTy->getBitWidth() > 128);
1502     }
1503     return false;
1504   }
1505 
1506   void computeInfo(CGFunctionInfo &FI) const override;
1507 
1508   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1509                          CodeGenFunction &CGF) const override;
1510 
1511   bool has64BitPointers() const {
1512     return Has64BitPointers;
1513   }
1514 };
1515 
1516 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1517 class WinX86_64ABIInfo : public ABIInfo {
1518 
1519   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1520                       bool IsReturnType) const;
1521 
1522 public:
1523   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1524 
1525   void computeInfo(CGFunctionInfo &FI) const override;
1526 
1527   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1528                          CodeGenFunction &CGF) const override;
1529 
1530   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1531     // FIXME: Assumes vectorcall is in use.
1532     return isX86VectorTypeForVectorCall(getContext(), Ty);
1533   }
1534 
1535   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1536                                          uint64_t NumMembers) const override {
1537     // FIXME: Assumes vectorcall is in use.
1538     return isX86VectorCallAggregateSmallEnough(NumMembers);
1539   }
1540 };
1541 
1542 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1543   bool HasAVX;
1544 public:
1545   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1546       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1547 
1548   const X86_64ABIInfo &getABIInfo() const {
1549     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1550   }
1551 
1552   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1553     return 7;
1554   }
1555 
1556   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1557                                llvm::Value *Address) const override {
1558     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1559 
1560     // 0-15 are the 16 integer registers.
1561     // 16 is %rip.
1562     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1563     return false;
1564   }
1565 
1566   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1567                                   StringRef Constraint,
1568                                   llvm::Type* Ty) const override {
1569     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1570   }
1571 
1572   bool isNoProtoCallVariadic(const CallArgList &args,
1573                              const FunctionNoProtoType *fnType) const override {
1574     // The default CC on x86-64 sets %al to the number of SSA
1575     // registers used, and GCC sets this when calling an unprototyped
1576     // function, so we override the default behavior.  However, don't do
1577     // that when AVX types are involved: the ABI explicitly states it is
1578     // undefined, and it doesn't work in practice because of how the ABI
1579     // defines varargs anyway.
1580     if (fnType->getCallConv() == CC_C) {
1581       bool HasAVXType = false;
1582       for (CallArgList::const_iterator
1583              it = args.begin(), ie = args.end(); it != ie; ++it) {
1584         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1585           HasAVXType = true;
1586           break;
1587         }
1588       }
1589 
1590       if (!HasAVXType)
1591         return true;
1592     }
1593 
1594     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1595   }
1596 
1597   llvm::Constant *
1598   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1599     unsigned Sig;
1600     if (getABIInfo().has64BitPointers())
1601       Sig = (0xeb << 0) |  // jmp rel8
1602             (0x0a << 8) |  //           .+0x0c
1603             ('F' << 16) |
1604             ('T' << 24);
1605     else
1606       Sig = (0xeb << 0) |  // jmp rel8
1607             (0x06 << 8) |  //           .+0x08
1608             ('F' << 16) |
1609             ('T' << 24);
1610     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1611   }
1612 
1613   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1614     return HasAVX ? 32 : 16;
1615   }
1616 
1617   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
1618     return true;
1619   }
1620 };
1621 
1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1623 public:
1624   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1625     : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1626 
1627   void getDependentLibraryOption(llvm::StringRef Lib,
1628                                  llvm::SmallString<24> &Opt) const {
1629     Opt = "\01";
1630     Opt += Lib;
1631   }
1632 };
1633 
1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1635   // If the argument does not end in .lib, automatically add the suffix.
1636   // If the argument contains a space, enclose it in quotes.
1637   // This matches the behavior of MSVC.
1638   bool Quote = (Lib.find(" ") != StringRef::npos);
1639   std::string ArgStr = Quote ? "\"" : "";
1640   ArgStr += Lib;
1641   if (!Lib.endswith_lower(".lib"))
1642     ArgStr += ".lib";
1643   ArgStr += Quote ? "\"" : "";
1644   return ArgStr;
1645 }
1646 
1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1648 public:
1649   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1650         bool d, bool p, bool w, unsigned RegParms)
1651     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1652 
1653   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1654                            CodeGen::CodeGenModule &CGM) const override;
1655 
1656   void getDependentLibraryOption(llvm::StringRef Lib,
1657                                  llvm::SmallString<24> &Opt) const override {
1658     Opt = "/DEFAULTLIB:";
1659     Opt += qualifyWindowsLibrary(Lib);
1660   }
1661 
1662   void getDetectMismatchOption(llvm::StringRef Name,
1663                                llvm::StringRef Value,
1664                                llvm::SmallString<32> &Opt) const override {
1665     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1666   }
1667 };
1668 
1669 static void addStackProbeSizeTargetAttribute(const Decl *D,
1670                                              llvm::GlobalValue *GV,
1671                                              CodeGen::CodeGenModule &CGM) {
1672   if (isa<FunctionDecl>(D)) {
1673     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1674       llvm::Function *Fn = cast<llvm::Function>(GV);
1675 
1676       Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1677     }
1678   }
1679 }
1680 
1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1682                                                      llvm::GlobalValue *GV,
1683                                             CodeGen::CodeGenModule &CGM) const {
1684   X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1685 
1686   addStackProbeSizeTargetAttribute(D, GV, CGM);
1687 }
1688 
1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1690   bool HasAVX;
1691 public:
1692   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1693     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1694 
1695   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1696                            CodeGen::CodeGenModule &CGM) const override;
1697 
1698   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1699     return 7;
1700   }
1701 
1702   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1703                                llvm::Value *Address) const override {
1704     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1705 
1706     // 0-15 are the 16 integer registers.
1707     // 16 is %rip.
1708     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1709     return false;
1710   }
1711 
1712   void getDependentLibraryOption(llvm::StringRef Lib,
1713                                  llvm::SmallString<24> &Opt) const override {
1714     Opt = "/DEFAULTLIB:";
1715     Opt += qualifyWindowsLibrary(Lib);
1716   }
1717 
1718   void getDetectMismatchOption(llvm::StringRef Name,
1719                                llvm::StringRef Value,
1720                                llvm::SmallString<32> &Opt) const override {
1721     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1722   }
1723 
1724   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1725     return HasAVX ? 32 : 16;
1726   }
1727 };
1728 
1729 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1730                                                      llvm::GlobalValue *GV,
1731                                             CodeGen::CodeGenModule &CGM) const {
1732   TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1733 
1734   addStackProbeSizeTargetAttribute(D, GV, CGM);
1735 }
1736 }
1737 
1738 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1739                               Class &Hi) const {
1740   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1741   //
1742   // (a) If one of the classes is Memory, the whole argument is passed in
1743   //     memory.
1744   //
1745   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1746   //     memory.
1747   //
1748   // (c) If the size of the aggregate exceeds two eightbytes and the first
1749   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1750   //     argument is passed in memory. NOTE: This is necessary to keep the
1751   //     ABI working for processors that don't support the __m256 type.
1752   //
1753   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1754   //
1755   // Some of these are enforced by the merging logic.  Others can arise
1756   // only with unions; for example:
1757   //   union { _Complex double; unsigned; }
1758   //
1759   // Note that clauses (b) and (c) were added in 0.98.
1760   //
1761   if (Hi == Memory)
1762     Lo = Memory;
1763   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1764     Lo = Memory;
1765   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1766     Lo = Memory;
1767   if (Hi == SSEUp && Lo != SSE)
1768     Hi = SSE;
1769 }
1770 
1771 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1772   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1773   // classified recursively so that always two fields are
1774   // considered. The resulting class is calculated according to
1775   // the classes of the fields in the eightbyte:
1776   //
1777   // (a) If both classes are equal, this is the resulting class.
1778   //
1779   // (b) If one of the classes is NO_CLASS, the resulting class is
1780   // the other class.
1781   //
1782   // (c) If one of the classes is MEMORY, the result is the MEMORY
1783   // class.
1784   //
1785   // (d) If one of the classes is INTEGER, the result is the
1786   // INTEGER.
1787   //
1788   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1789   // MEMORY is used as class.
1790   //
1791   // (f) Otherwise class SSE is used.
1792 
1793   // Accum should never be memory (we should have returned) or
1794   // ComplexX87 (because this cannot be passed in a structure).
1795   assert((Accum != Memory && Accum != ComplexX87) &&
1796          "Invalid accumulated classification during merge.");
1797   if (Accum == Field || Field == NoClass)
1798     return Accum;
1799   if (Field == Memory)
1800     return Memory;
1801   if (Accum == NoClass)
1802     return Field;
1803   if (Accum == Integer || Field == Integer)
1804     return Integer;
1805   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1806       Accum == X87 || Accum == X87Up)
1807     return Memory;
1808   return SSE;
1809 }
1810 
1811 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1812                              Class &Lo, Class &Hi, bool isNamedArg) const {
1813   // FIXME: This code can be simplified by introducing a simple value class for
1814   // Class pairs with appropriate constructor methods for the various
1815   // situations.
1816 
1817   // FIXME: Some of the split computations are wrong; unaligned vectors
1818   // shouldn't be passed in registers for example, so there is no chance they
1819   // can straddle an eightbyte. Verify & simplify.
1820 
1821   Lo = Hi = NoClass;
1822 
1823   Class &Current = OffsetBase < 64 ? Lo : Hi;
1824   Current = Memory;
1825 
1826   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1827     BuiltinType::Kind k = BT->getKind();
1828 
1829     if (k == BuiltinType::Void) {
1830       Current = NoClass;
1831     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1832       Lo = Integer;
1833       Hi = Integer;
1834     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1835       Current = Integer;
1836     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1837                (k == BuiltinType::LongDouble &&
1838                 getTarget().getTriple().isOSNaCl())) {
1839       Current = SSE;
1840     } else if (k == BuiltinType::LongDouble) {
1841       Lo = X87;
1842       Hi = X87Up;
1843     }
1844     // FIXME: _Decimal32 and _Decimal64 are SSE.
1845     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1846     return;
1847   }
1848 
1849   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1850     // Classify the underlying integer type.
1851     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1852     return;
1853   }
1854 
1855   if (Ty->hasPointerRepresentation()) {
1856     Current = Integer;
1857     return;
1858   }
1859 
1860   if (Ty->isMemberPointerType()) {
1861     if (Ty->isMemberFunctionPointerType()) {
1862       if (Has64BitPointers) {
1863         // If Has64BitPointers, this is an {i64, i64}, so classify both
1864         // Lo and Hi now.
1865         Lo = Hi = Integer;
1866       } else {
1867         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1868         // straddles an eightbyte boundary, Hi should be classified as well.
1869         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1870         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1871         if (EB_FuncPtr != EB_ThisAdj) {
1872           Lo = Hi = Integer;
1873         } else {
1874           Current = Integer;
1875         }
1876       }
1877     } else {
1878       Current = Integer;
1879     }
1880     return;
1881   }
1882 
1883   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1884     uint64_t Size = getContext().getTypeSize(VT);
1885     if (Size == 32) {
1886       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1887       // float> as integer.
1888       Current = Integer;
1889 
1890       // If this type crosses an eightbyte boundary, it should be
1891       // split.
1892       uint64_t EB_Real = (OffsetBase) / 64;
1893       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1894       if (EB_Real != EB_Imag)
1895         Hi = Lo;
1896     } else if (Size == 64) {
1897       // gcc passes <1 x double> in memory. :(
1898       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1899         return;
1900 
1901       // gcc passes <1 x long long> as INTEGER.
1902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1903           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1904           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1905           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1906         Current = Integer;
1907       else
1908         Current = SSE;
1909 
1910       // If this type crosses an eightbyte boundary, it should be
1911       // split.
1912       if (OffsetBase && OffsetBase != 64)
1913         Hi = Lo;
1914     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1915       // Arguments of 256-bits are split into four eightbyte chunks. The
1916       // least significant one belongs to class SSE and all the others to class
1917       // SSEUP. The original Lo and Hi design considers that types can't be
1918       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1919       // This design isn't correct for 256-bits, but since there're no cases
1920       // where the upper parts would need to be inspected, avoid adding
1921       // complexity and just consider Hi to match the 64-256 part.
1922       //
1923       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1924       // registers if they are "named", i.e. not part of the "..." of a
1925       // variadic function.
1926       Lo = SSE;
1927       Hi = SSEUp;
1928     }
1929     return;
1930   }
1931 
1932   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1933     QualType ET = getContext().getCanonicalType(CT->getElementType());
1934 
1935     uint64_t Size = getContext().getTypeSize(Ty);
1936     if (ET->isIntegralOrEnumerationType()) {
1937       if (Size <= 64)
1938         Current = Integer;
1939       else if (Size <= 128)
1940         Lo = Hi = Integer;
1941     } else if (ET == getContext().FloatTy)
1942       Current = SSE;
1943     else if (ET == getContext().DoubleTy ||
1944              (ET == getContext().LongDoubleTy &&
1945               getTarget().getTriple().isOSNaCl()))
1946       Lo = Hi = SSE;
1947     else if (ET == getContext().LongDoubleTy)
1948       Current = ComplexX87;
1949 
1950     // If this complex type crosses an eightbyte boundary then it
1951     // should be split.
1952     uint64_t EB_Real = (OffsetBase) / 64;
1953     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1954     if (Hi == NoClass && EB_Real != EB_Imag)
1955       Hi = Lo;
1956 
1957     return;
1958   }
1959 
1960   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1961     // Arrays are treated like structures.
1962 
1963     uint64_t Size = getContext().getTypeSize(Ty);
1964 
1965     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1966     // than four eightbytes, ..., it has class MEMORY.
1967     if (Size > 256)
1968       return;
1969 
1970     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1971     // fields, it has class MEMORY.
1972     //
1973     // Only need to check alignment of array base.
1974     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1975       return;
1976 
1977     // Otherwise implement simplified merge. We could be smarter about
1978     // this, but it isn't worth it and would be harder to verify.
1979     Current = NoClass;
1980     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1981     uint64_t ArraySize = AT->getSize().getZExtValue();
1982 
1983     // The only case a 256-bit wide vector could be used is when the array
1984     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1985     // to work for sizes wider than 128, early check and fallback to memory.
1986     if (Size > 128 && EltSize != 256)
1987       return;
1988 
1989     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1990       Class FieldLo, FieldHi;
1991       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1992       Lo = merge(Lo, FieldLo);
1993       Hi = merge(Hi, FieldHi);
1994       if (Lo == Memory || Hi == Memory)
1995         break;
1996     }
1997 
1998     postMerge(Size, Lo, Hi);
1999     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2000     return;
2001   }
2002 
2003   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2004     uint64_t Size = getContext().getTypeSize(Ty);
2005 
2006     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2007     // than four eightbytes, ..., it has class MEMORY.
2008     if (Size > 256)
2009       return;
2010 
2011     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2012     // copy constructor or a non-trivial destructor, it is passed by invisible
2013     // reference.
2014     if (getRecordArgABI(RT, getCXXABI()))
2015       return;
2016 
2017     const RecordDecl *RD = RT->getDecl();
2018 
2019     // Assume variable sized types are passed in memory.
2020     if (RD->hasFlexibleArrayMember())
2021       return;
2022 
2023     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2024 
2025     // Reset Lo class, this will be recomputed.
2026     Current = NoClass;
2027 
2028     // If this is a C++ record, classify the bases first.
2029     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2030       for (const auto &I : CXXRD->bases()) {
2031         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2032                "Unexpected base class!");
2033         const CXXRecordDecl *Base =
2034           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2035 
2036         // Classify this field.
2037         //
2038         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2039         // single eightbyte, each is classified separately. Each eightbyte gets
2040         // initialized to class NO_CLASS.
2041         Class FieldLo, FieldHi;
2042         uint64_t Offset =
2043           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2044         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2045         Lo = merge(Lo, FieldLo);
2046         Hi = merge(Hi, FieldHi);
2047         if (Lo == Memory || Hi == Memory)
2048           break;
2049       }
2050     }
2051 
2052     // Classify the fields one at a time, merging the results.
2053     unsigned idx = 0;
2054     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2055            i != e; ++i, ++idx) {
2056       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2057       bool BitField = i->isBitField();
2058 
2059       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2060       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2061       //
2062       // The only case a 256-bit wide vector could be used is when the struct
2063       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2064       // to work for sizes wider than 128, early check and fallback to memory.
2065       //
2066       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2067         Lo = Memory;
2068         return;
2069       }
2070       // Note, skip this test for bit-fields, see below.
2071       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2072         Lo = Memory;
2073         return;
2074       }
2075 
2076       // Classify this field.
2077       //
2078       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2079       // exceeds a single eightbyte, each is classified
2080       // separately. Each eightbyte gets initialized to class
2081       // NO_CLASS.
2082       Class FieldLo, FieldHi;
2083 
2084       // Bit-fields require special handling, they do not force the
2085       // structure to be passed in memory even if unaligned, and
2086       // therefore they can straddle an eightbyte.
2087       if (BitField) {
2088         // Ignore padding bit-fields.
2089         if (i->isUnnamedBitfield())
2090           continue;
2091 
2092         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2093         uint64_t Size = i->getBitWidthValue(getContext());
2094 
2095         uint64_t EB_Lo = Offset / 64;
2096         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2097 
2098         if (EB_Lo) {
2099           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2100           FieldLo = NoClass;
2101           FieldHi = Integer;
2102         } else {
2103           FieldLo = Integer;
2104           FieldHi = EB_Hi ? Integer : NoClass;
2105         }
2106       } else
2107         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2108       Lo = merge(Lo, FieldLo);
2109       Hi = merge(Hi, FieldHi);
2110       if (Lo == Memory || Hi == Memory)
2111         break;
2112     }
2113 
2114     postMerge(Size, Lo, Hi);
2115   }
2116 }
2117 
2118 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2119   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2120   // place naturally.
2121   if (!isAggregateTypeForABI(Ty)) {
2122     // Treat an enum type as its underlying type.
2123     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2124       Ty = EnumTy->getDecl()->getIntegerType();
2125 
2126     return (Ty->isPromotableIntegerType() ?
2127             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2128   }
2129 
2130   return ABIArgInfo::getIndirect(0);
2131 }
2132 
2133 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2134   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2135     uint64_t Size = getContext().getTypeSize(VecTy);
2136     unsigned LargestVector = HasAVX ? 256 : 128;
2137     if (Size <= 64 || Size > LargestVector)
2138       return true;
2139   }
2140 
2141   return false;
2142 }
2143 
2144 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2145                                             unsigned freeIntRegs) const {
2146   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2147   // place naturally.
2148   //
2149   // This assumption is optimistic, as there could be free registers available
2150   // when we need to pass this argument in memory, and LLVM could try to pass
2151   // the argument in the free register. This does not seem to happen currently,
2152   // but this code would be much safer if we could mark the argument with
2153   // 'onstack'. See PR12193.
2154   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2155     // Treat an enum type as its underlying type.
2156     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2157       Ty = EnumTy->getDecl()->getIntegerType();
2158 
2159     return (Ty->isPromotableIntegerType() ?
2160             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2161   }
2162 
2163   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2164     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2165 
2166   // Compute the byval alignment. We specify the alignment of the byval in all
2167   // cases so that the mid-level optimizer knows the alignment of the byval.
2168   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2169 
2170   // Attempt to avoid passing indirect results using byval when possible. This
2171   // is important for good codegen.
2172   //
2173   // We do this by coercing the value into a scalar type which the backend can
2174   // handle naturally (i.e., without using byval).
2175   //
2176   // For simplicity, we currently only do this when we have exhausted all of the
2177   // free integer registers. Doing this when there are free integer registers
2178   // would require more care, as we would have to ensure that the coerced value
2179   // did not claim the unused register. That would require either reording the
2180   // arguments to the function (so that any subsequent inreg values came first),
2181   // or only doing this optimization when there were no following arguments that
2182   // might be inreg.
2183   //
2184   // We currently expect it to be rare (particularly in well written code) for
2185   // arguments to be passed on the stack when there are still free integer
2186   // registers available (this would typically imply large structs being passed
2187   // by value), so this seems like a fair tradeoff for now.
2188   //
2189   // We can revisit this if the backend grows support for 'onstack' parameter
2190   // attributes. See PR12193.
2191   if (freeIntRegs == 0) {
2192     uint64_t Size = getContext().getTypeSize(Ty);
2193 
2194     // If this type fits in an eightbyte, coerce it into the matching integral
2195     // type, which will end up on the stack (with alignment 8).
2196     if (Align == 8 && Size <= 64)
2197       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2198                                                           Size));
2199   }
2200 
2201   return ABIArgInfo::getIndirect(Align);
2202 }
2203 
2204 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2205 /// register. Pick an LLVM IR type that will be passed as a vector register.
2206 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2207   // Wrapper structs/arrays that only contain vectors are passed just like
2208   // vectors; strip them off if present.
2209   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2210     Ty = QualType(InnerTy, 0);
2211 
2212   llvm::Type *IRType = CGT.ConvertType(Ty);
2213   assert(isa<llvm::VectorType>(IRType) &&
2214          "Trying to return a non-vector type in a vector register!");
2215   return IRType;
2216 }
2217 
2218 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2219 /// is known to either be off the end of the specified type or being in
2220 /// alignment padding.  The user type specified is known to be at most 128 bits
2221 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2222 /// classification that put one of the two halves in the INTEGER class.
2223 ///
2224 /// It is conservatively correct to return false.
2225 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2226                                   unsigned EndBit, ASTContext &Context) {
2227   // If the bytes being queried are off the end of the type, there is no user
2228   // data hiding here.  This handles analysis of builtins, vectors and other
2229   // types that don't contain interesting padding.
2230   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2231   if (TySize <= StartBit)
2232     return true;
2233 
2234   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2235     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2236     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2237 
2238     // Check each element to see if the element overlaps with the queried range.
2239     for (unsigned i = 0; i != NumElts; ++i) {
2240       // If the element is after the span we care about, then we're done..
2241       unsigned EltOffset = i*EltSize;
2242       if (EltOffset >= EndBit) break;
2243 
2244       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2245       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2246                                  EndBit-EltOffset, Context))
2247         return false;
2248     }
2249     // If it overlaps no elements, then it is safe to process as padding.
2250     return true;
2251   }
2252 
2253   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2254     const RecordDecl *RD = RT->getDecl();
2255     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2256 
2257     // If this is a C++ record, check the bases first.
2258     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2259       for (const auto &I : CXXRD->bases()) {
2260         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2261                "Unexpected base class!");
2262         const CXXRecordDecl *Base =
2263           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2264 
2265         // If the base is after the span we care about, ignore it.
2266         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2267         if (BaseOffset >= EndBit) continue;
2268 
2269         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2270         if (!BitsContainNoUserData(I.getType(), BaseStart,
2271                                    EndBit-BaseOffset, Context))
2272           return false;
2273       }
2274     }
2275 
2276     // Verify that no field has data that overlaps the region of interest.  Yes
2277     // this could be sped up a lot by being smarter about queried fields,
2278     // however we're only looking at structs up to 16 bytes, so we don't care
2279     // much.
2280     unsigned idx = 0;
2281     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2282          i != e; ++i, ++idx) {
2283       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2284 
2285       // If we found a field after the region we care about, then we're done.
2286       if (FieldOffset >= EndBit) break;
2287 
2288       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2289       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2290                                  Context))
2291         return false;
2292     }
2293 
2294     // If nothing in this record overlapped the area of interest, then we're
2295     // clean.
2296     return true;
2297   }
2298 
2299   return false;
2300 }
2301 
2302 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2303 /// float member at the specified offset.  For example, {int,{float}} has a
2304 /// float at offset 4.  It is conservatively correct for this routine to return
2305 /// false.
2306 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2307                                   const llvm::DataLayout &TD) {
2308   // Base case if we find a float.
2309   if (IROffset == 0 && IRType->isFloatTy())
2310     return true;
2311 
2312   // If this is a struct, recurse into the field at the specified offset.
2313   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2314     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2315     unsigned Elt = SL->getElementContainingOffset(IROffset);
2316     IROffset -= SL->getElementOffset(Elt);
2317     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2318   }
2319 
2320   // If this is an array, recurse into the field at the specified offset.
2321   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2322     llvm::Type *EltTy = ATy->getElementType();
2323     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2324     IROffset -= IROffset/EltSize*EltSize;
2325     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2326   }
2327 
2328   return false;
2329 }
2330 
2331 
2332 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2333 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2334 llvm::Type *X86_64ABIInfo::
2335 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2336                    QualType SourceTy, unsigned SourceOffset) const {
2337   // The only three choices we have are either double, <2 x float>, or float. We
2338   // pass as float if the last 4 bytes is just padding.  This happens for
2339   // structs that contain 3 floats.
2340   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2341                             SourceOffset*8+64, getContext()))
2342     return llvm::Type::getFloatTy(getVMContext());
2343 
2344   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2345   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2346   // case.
2347   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2348       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2349     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2350 
2351   return llvm::Type::getDoubleTy(getVMContext());
2352 }
2353 
2354 
2355 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2356 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2357 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2358 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2359 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2360 /// etc).
2361 ///
2362 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2363 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2364 /// the 8-byte value references.  PrefType may be null.
2365 ///
2366 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2367 /// an offset into this that we're processing (which is always either 0 or 8).
2368 ///
2369 llvm::Type *X86_64ABIInfo::
2370 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2371                        QualType SourceTy, unsigned SourceOffset) const {
2372   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2373   // returning an 8-byte unit starting with it.  See if we can safely use it.
2374   if (IROffset == 0) {
2375     // Pointers and int64's always fill the 8-byte unit.
2376     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2377         IRType->isIntegerTy(64))
2378       return IRType;
2379 
2380     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2381     // goodness in the source type is just tail padding.  This is allowed to
2382     // kick in for struct {double,int} on the int, but not on
2383     // struct{double,int,int} because we wouldn't return the second int.  We
2384     // have to do this analysis on the source type because we can't depend on
2385     // unions being lowered a specific way etc.
2386     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2387         IRType->isIntegerTy(32) ||
2388         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2389       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2390           cast<llvm::IntegerType>(IRType)->getBitWidth();
2391 
2392       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2393                                 SourceOffset*8+64, getContext()))
2394         return IRType;
2395     }
2396   }
2397 
2398   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2399     // If this is a struct, recurse into the field at the specified offset.
2400     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2401     if (IROffset < SL->getSizeInBytes()) {
2402       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2403       IROffset -= SL->getElementOffset(FieldIdx);
2404 
2405       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2406                                     SourceTy, SourceOffset);
2407     }
2408   }
2409 
2410   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2411     llvm::Type *EltTy = ATy->getElementType();
2412     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2413     unsigned EltOffset = IROffset/EltSize*EltSize;
2414     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2415                                   SourceOffset);
2416   }
2417 
2418   // Okay, we don't have any better idea of what to pass, so we pass this in an
2419   // integer register that isn't too big to fit the rest of the struct.
2420   unsigned TySizeInBytes =
2421     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2422 
2423   assert(TySizeInBytes != SourceOffset && "Empty field?");
2424 
2425   // It is always safe to classify this as an integer type up to i64 that
2426   // isn't larger than the structure.
2427   return llvm::IntegerType::get(getVMContext(),
2428                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2429 }
2430 
2431 
2432 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2433 /// be used as elements of a two register pair to pass or return, return a
2434 /// first class aggregate to represent them.  For example, if the low part of
2435 /// a by-value argument should be passed as i32* and the high part as float,
2436 /// return {i32*, float}.
2437 static llvm::Type *
2438 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2439                            const llvm::DataLayout &TD) {
2440   // In order to correctly satisfy the ABI, we need to the high part to start
2441   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2442   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2443   // the second element at offset 8.  Check for this:
2444   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2445   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2446   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2447   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2448 
2449   // To handle this, we have to increase the size of the low part so that the
2450   // second element will start at an 8 byte offset.  We can't increase the size
2451   // of the second element because it might make us access off the end of the
2452   // struct.
2453   if (HiStart != 8) {
2454     // There are only two sorts of types the ABI generation code can produce for
2455     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2456     // Promote these to a larger type.
2457     if (Lo->isFloatTy())
2458       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2459     else {
2460       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2461       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2462     }
2463   }
2464 
2465   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2466 
2467 
2468   // Verify that the second element is at an 8-byte offset.
2469   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2470          "Invalid x86-64 argument pair!");
2471   return Result;
2472 }
2473 
2474 ABIArgInfo X86_64ABIInfo::
2475 classifyReturnType(QualType RetTy) const {
2476   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2477   // classification algorithm.
2478   X86_64ABIInfo::Class Lo, Hi;
2479   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2480 
2481   // Check some invariants.
2482   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2483   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2484 
2485   llvm::Type *ResType = nullptr;
2486   switch (Lo) {
2487   case NoClass:
2488     if (Hi == NoClass)
2489       return ABIArgInfo::getIgnore();
2490     // If the low part is just padding, it takes no register, leave ResType
2491     // null.
2492     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2493            "Unknown missing lo part");
2494     break;
2495 
2496   case SSEUp:
2497   case X87Up:
2498     llvm_unreachable("Invalid classification for lo word.");
2499 
2500     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2501     // hidden argument.
2502   case Memory:
2503     return getIndirectReturnResult(RetTy);
2504 
2505     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2506     // available register of the sequence %rax, %rdx is used.
2507   case Integer:
2508     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2509 
2510     // If we have a sign or zero extended integer, make sure to return Extend
2511     // so that the parameter gets the right LLVM IR attributes.
2512     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2513       // Treat an enum type as its underlying type.
2514       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2515         RetTy = EnumTy->getDecl()->getIntegerType();
2516 
2517       if (RetTy->isIntegralOrEnumerationType() &&
2518           RetTy->isPromotableIntegerType())
2519         return ABIArgInfo::getExtend();
2520     }
2521     break;
2522 
2523     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2524     // available SSE register of the sequence %xmm0, %xmm1 is used.
2525   case SSE:
2526     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2527     break;
2528 
2529     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2530     // returned on the X87 stack in %st0 as 80-bit x87 number.
2531   case X87:
2532     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2533     break;
2534 
2535     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2536     // part of the value is returned in %st0 and the imaginary part in
2537     // %st1.
2538   case ComplexX87:
2539     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2540     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2541                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2542                                     nullptr);
2543     break;
2544   }
2545 
2546   llvm::Type *HighPart = nullptr;
2547   switch (Hi) {
2548     // Memory was handled previously and X87 should
2549     // never occur as a hi class.
2550   case Memory:
2551   case X87:
2552     llvm_unreachable("Invalid classification for hi word.");
2553 
2554   case ComplexX87: // Previously handled.
2555   case NoClass:
2556     break;
2557 
2558   case Integer:
2559     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2560     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2561       return ABIArgInfo::getDirect(HighPart, 8);
2562     break;
2563   case SSE:
2564     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2565     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2566       return ABIArgInfo::getDirect(HighPart, 8);
2567     break;
2568 
2569     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2570     // is passed in the next available eightbyte chunk if the last used
2571     // vector register.
2572     //
2573     // SSEUP should always be preceded by SSE, just widen.
2574   case SSEUp:
2575     assert(Lo == SSE && "Unexpected SSEUp classification.");
2576     ResType = GetByteVectorType(RetTy);
2577     break;
2578 
2579     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2580     // returned together with the previous X87 value in %st0.
2581   case X87Up:
2582     // If X87Up is preceded by X87, we don't need to do
2583     // anything. However, in some cases with unions it may not be
2584     // preceded by X87. In such situations we follow gcc and pass the
2585     // extra bits in an SSE reg.
2586     if (Lo != X87) {
2587       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2588       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2589         return ABIArgInfo::getDirect(HighPart, 8);
2590     }
2591     break;
2592   }
2593 
2594   // If a high part was specified, merge it together with the low part.  It is
2595   // known to pass in the high eightbyte of the result.  We do this by forming a
2596   // first class struct aggregate with the high and low part: {low, high}
2597   if (HighPart)
2598     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2599 
2600   return ABIArgInfo::getDirect(ResType);
2601 }
2602 
2603 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2604   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2605   bool isNamedArg)
2606   const
2607 {
2608   Ty = useFirstFieldIfTransparentUnion(Ty);
2609 
2610   X86_64ABIInfo::Class Lo, Hi;
2611   classify(Ty, 0, Lo, Hi, isNamedArg);
2612 
2613   // Check some invariants.
2614   // FIXME: Enforce these by construction.
2615   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2616   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2617 
2618   neededInt = 0;
2619   neededSSE = 0;
2620   llvm::Type *ResType = nullptr;
2621   switch (Lo) {
2622   case NoClass:
2623     if (Hi == NoClass)
2624       return ABIArgInfo::getIgnore();
2625     // If the low part is just padding, it takes no register, leave ResType
2626     // null.
2627     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2628            "Unknown missing lo part");
2629     break;
2630 
2631     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2632     // on the stack.
2633   case Memory:
2634 
2635     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2636     // COMPLEX_X87, it is passed in memory.
2637   case X87:
2638   case ComplexX87:
2639     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2640       ++neededInt;
2641     return getIndirectResult(Ty, freeIntRegs);
2642 
2643   case SSEUp:
2644   case X87Up:
2645     llvm_unreachable("Invalid classification for lo word.");
2646 
2647     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2648     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2649     // and %r9 is used.
2650   case Integer:
2651     ++neededInt;
2652 
2653     // Pick an 8-byte type based on the preferred type.
2654     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2655 
2656     // If we have a sign or zero extended integer, make sure to return Extend
2657     // so that the parameter gets the right LLVM IR attributes.
2658     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2659       // Treat an enum type as its underlying type.
2660       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661         Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663       if (Ty->isIntegralOrEnumerationType() &&
2664           Ty->isPromotableIntegerType())
2665         return ABIArgInfo::getExtend();
2666     }
2667 
2668     break;
2669 
2670     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2671     // available SSE register is used, the registers are taken in the
2672     // order from %xmm0 to %xmm7.
2673   case SSE: {
2674     llvm::Type *IRType = CGT.ConvertType(Ty);
2675     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2676     ++neededSSE;
2677     break;
2678   }
2679   }
2680 
2681   llvm::Type *HighPart = nullptr;
2682   switch (Hi) {
2683     // Memory was handled previously, ComplexX87 and X87 should
2684     // never occur as hi classes, and X87Up must be preceded by X87,
2685     // which is passed in memory.
2686   case Memory:
2687   case X87:
2688   case ComplexX87:
2689     llvm_unreachable("Invalid classification for hi word.");
2690 
2691   case NoClass: break;
2692 
2693   case Integer:
2694     ++neededInt;
2695     // Pick an 8-byte type based on the preferred type.
2696     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2697 
2698     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2699       return ABIArgInfo::getDirect(HighPart, 8);
2700     break;
2701 
2702     // X87Up generally doesn't occur here (long double is passed in
2703     // memory), except in situations involving unions.
2704   case X87Up:
2705   case SSE:
2706     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2707 
2708     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2709       return ABIArgInfo::getDirect(HighPart, 8);
2710 
2711     ++neededSSE;
2712     break;
2713 
2714     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2715     // eightbyte is passed in the upper half of the last used SSE
2716     // register.  This only happens when 128-bit vectors are passed.
2717   case SSEUp:
2718     assert(Lo == SSE && "Unexpected SSEUp classification");
2719     ResType = GetByteVectorType(Ty);
2720     break;
2721   }
2722 
2723   // If a high part was specified, merge it together with the low part.  It is
2724   // known to pass in the high eightbyte of the result.  We do this by forming a
2725   // first class struct aggregate with the high and low part: {low, high}
2726   if (HighPart)
2727     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2728 
2729   return ABIArgInfo::getDirect(ResType);
2730 }
2731 
2732 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2733 
2734   if (!getCXXABI().classifyReturnType(FI))
2735     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2736 
2737   // Keep track of the number of assigned registers.
2738   unsigned freeIntRegs = 6, freeSSERegs = 8;
2739 
2740   // If the return value is indirect, then the hidden argument is consuming one
2741   // integer register.
2742   if (FI.getReturnInfo().isIndirect())
2743     --freeIntRegs;
2744 
2745   // The chain argument effectively gives us another free register.
2746   if (FI.isChainCall())
2747     ++freeIntRegs;
2748 
2749   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2750   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2751   // get assigned (in left-to-right order) for passing as follows...
2752   unsigned ArgNo = 0;
2753   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2754        it != ie; ++it, ++ArgNo) {
2755     bool IsNamedArg = ArgNo < NumRequiredArgs;
2756 
2757     unsigned neededInt, neededSSE;
2758     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2759                                     neededSSE, IsNamedArg);
2760 
2761     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2762     // eightbyte of an argument, the whole argument is passed on the
2763     // stack. If registers have already been assigned for some
2764     // eightbytes of such an argument, the assignments get reverted.
2765     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2766       freeIntRegs -= neededInt;
2767       freeSSERegs -= neededSSE;
2768     } else {
2769       it->info = getIndirectResult(it->type, freeIntRegs);
2770     }
2771   }
2772 }
2773 
2774 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2775                                         QualType Ty,
2776                                         CodeGenFunction &CGF) {
2777   llvm::Value *overflow_arg_area_p =
2778     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2779   llvm::Value *overflow_arg_area =
2780     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2781 
2782   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2783   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2784   // It isn't stated explicitly in the standard, but in practice we use
2785   // alignment greater than 16 where necessary.
2786   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2787   if (Align > 8) {
2788     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2789     llvm::Value *Offset =
2790       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2791     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2792     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2793                                                     CGF.Int64Ty);
2794     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2795     overflow_arg_area =
2796       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2797                                  overflow_arg_area->getType(),
2798                                  "overflow_arg_area.align");
2799   }
2800 
2801   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2802   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2803   llvm::Value *Res =
2804     CGF.Builder.CreateBitCast(overflow_arg_area,
2805                               llvm::PointerType::getUnqual(LTy));
2806 
2807   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2808   // l->overflow_arg_area + sizeof(type).
2809   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2810   // an 8 byte boundary.
2811 
2812   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2813   llvm::Value *Offset =
2814       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2815   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2816                                             "overflow_arg_area.next");
2817   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2818 
2819   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2820   return Res;
2821 }
2822 
2823 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2824                                       CodeGenFunction &CGF) const {
2825   // Assume that va_list type is correct; should be pointer to LLVM type:
2826   // struct {
2827   //   i32 gp_offset;
2828   //   i32 fp_offset;
2829   //   i8* overflow_arg_area;
2830   //   i8* reg_save_area;
2831   // };
2832   unsigned neededInt, neededSSE;
2833 
2834   Ty = CGF.getContext().getCanonicalType(Ty);
2835   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2836                                        /*isNamedArg*/false);
2837 
2838   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2839   // in the registers. If not go to step 7.
2840   if (!neededInt && !neededSSE)
2841     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2842 
2843   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2844   // general purpose registers needed to pass type and num_fp to hold
2845   // the number of floating point registers needed.
2846 
2847   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2848   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2849   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2850   //
2851   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2852   // register save space).
2853 
2854   llvm::Value *InRegs = nullptr;
2855   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2856   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2857   if (neededInt) {
2858     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2859     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2860     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2861     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2862   }
2863 
2864   if (neededSSE) {
2865     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2866     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2867     llvm::Value *FitsInFP =
2868       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2869     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2870     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2871   }
2872 
2873   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2874   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2875   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2876   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2877 
2878   // Emit code to load the value if it was passed in registers.
2879 
2880   CGF.EmitBlock(InRegBlock);
2881 
2882   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2883   // an offset of l->gp_offset and/or l->fp_offset. This may require
2884   // copying to a temporary location in case the parameter is passed
2885   // in different register classes or requires an alignment greater
2886   // than 8 for general purpose registers and 16 for XMM registers.
2887   //
2888   // FIXME: This really results in shameful code when we end up needing to
2889   // collect arguments from different places; often what should result in a
2890   // simple assembling of a structure from scattered addresses has many more
2891   // loads than necessary. Can we clean this up?
2892   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2893   llvm::Value *RegAddr =
2894     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2895                            "reg_save_area");
2896   if (neededInt && neededSSE) {
2897     // FIXME: Cleanup.
2898     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2899     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2900     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2901     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2902     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2903     llvm::Type *TyLo = ST->getElementType(0);
2904     llvm::Type *TyHi = ST->getElementType(1);
2905     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2906            "Unexpected ABI info for mixed regs");
2907     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2908     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2909     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2910     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2911     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2912     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2913     llvm::Value *V =
2914       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2915     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2916     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2917     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2918 
2919     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2920                                         llvm::PointerType::getUnqual(LTy));
2921   } else if (neededInt) {
2922     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2923     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2924                                         llvm::PointerType::getUnqual(LTy));
2925 
2926     // Copy to a temporary if necessary to ensure the appropriate alignment.
2927     std::pair<CharUnits, CharUnits> SizeAlign =
2928         CGF.getContext().getTypeInfoInChars(Ty);
2929     uint64_t TySize = SizeAlign.first.getQuantity();
2930     unsigned TyAlign = SizeAlign.second.getQuantity();
2931     if (TyAlign > 8) {
2932       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2933       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2934       RegAddr = Tmp;
2935     }
2936   } else if (neededSSE == 1) {
2937     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2938     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2939                                         llvm::PointerType::getUnqual(LTy));
2940   } else {
2941     assert(neededSSE == 2 && "Invalid number of needed registers!");
2942     // SSE registers are spaced 16 bytes apart in the register save
2943     // area, we need to collect the two eightbytes together.
2944     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2945     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2946     llvm::Type *DoubleTy = CGF.DoubleTy;
2947     llvm::Type *DblPtrTy =
2948       llvm::PointerType::getUnqual(DoubleTy);
2949     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2950     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2951     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2952     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2953                                                          DblPtrTy));
2954     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2955     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2956                                                          DblPtrTy));
2957     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2958     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2959                                         llvm::PointerType::getUnqual(LTy));
2960   }
2961 
2962   // AMD64-ABI 3.5.7p5: Step 5. Set:
2963   // l->gp_offset = l->gp_offset + num_gp * 8
2964   // l->fp_offset = l->fp_offset + num_fp * 16.
2965   if (neededInt) {
2966     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2967     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2968                             gp_offset_p);
2969   }
2970   if (neededSSE) {
2971     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2972     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2973                             fp_offset_p);
2974   }
2975   CGF.EmitBranch(ContBlock);
2976 
2977   // Emit code to load the value if it was passed in memory.
2978 
2979   CGF.EmitBlock(InMemBlock);
2980   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2981 
2982   // Return the appropriate result.
2983 
2984   CGF.EmitBlock(ContBlock);
2985   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2986                                                  "vaarg.addr");
2987   ResAddr->addIncoming(RegAddr, InRegBlock);
2988   ResAddr->addIncoming(MemAddr, InMemBlock);
2989   return ResAddr;
2990 }
2991 
2992 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2993                                       bool IsReturnType) const {
2994 
2995   if (Ty->isVoidType())
2996     return ABIArgInfo::getIgnore();
2997 
2998   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2999     Ty = EnumTy->getDecl()->getIntegerType();
3000 
3001   TypeInfo Info = getContext().getTypeInfo(Ty);
3002   uint64_t Width = Info.Width;
3003   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3004 
3005   const RecordType *RT = Ty->getAs<RecordType>();
3006   if (RT) {
3007     if (!IsReturnType) {
3008       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3009         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3010     }
3011 
3012     if (RT->getDecl()->hasFlexibleArrayMember())
3013       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3014 
3015     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3016     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3017       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3018                                                           Width));
3019   }
3020 
3021   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3022   // other targets.
3023   const Type *Base = nullptr;
3024   uint64_t NumElts = 0;
3025   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3026     if (FreeSSERegs >= NumElts) {
3027       FreeSSERegs -= NumElts;
3028       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3029         return ABIArgInfo::getDirect();
3030       return ABIArgInfo::getExpand();
3031     }
3032     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3033   }
3034 
3035 
3036   if (Ty->isMemberPointerType()) {
3037     // If the member pointer is represented by an LLVM int or ptr, pass it
3038     // directly.
3039     llvm::Type *LLTy = CGT.ConvertType(Ty);
3040     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3041       return ABIArgInfo::getDirect();
3042   }
3043 
3044   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3045     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3046     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3047     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3048       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3049 
3050     // Otherwise, coerce it to a small integer.
3051     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3052   }
3053 
3054   // Bool type is always extended to the ABI, other builtin types are not
3055   // extended.
3056   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3057   if (BT && BT->getKind() == BuiltinType::Bool)
3058     return ABIArgInfo::getExtend();
3059 
3060   return ABIArgInfo::getDirect();
3061 }
3062 
3063 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3064   bool IsVectorCall =
3065       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3066 
3067   // We can use up to 4 SSE return registers with vectorcall.
3068   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3069   if (!getCXXABI().classifyReturnType(FI))
3070     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3071 
3072   // We can use up to 6 SSE register parameters with vectorcall.
3073   FreeSSERegs = IsVectorCall ? 6 : 0;
3074   for (auto &I : FI.arguments())
3075     I.info = classify(I.type, FreeSSERegs, false);
3076 }
3077 
3078 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3079                                       CodeGenFunction &CGF) const {
3080   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3081 
3082   CGBuilderTy &Builder = CGF.Builder;
3083   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3084                                                        "ap");
3085   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3086   llvm::Type *PTy =
3087     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3088   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3089 
3090   uint64_t Offset =
3091     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3092   llvm::Value *NextAddr =
3093     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3094                       "ap.next");
3095   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3096 
3097   return AddrTyped;
3098 }
3099 
3100 // PowerPC-32
3101 namespace {
3102 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3103 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3104 public:
3105   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3106 
3107   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3108                          CodeGenFunction &CGF) const override;
3109 };
3110 
3111 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3112 public:
3113   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3114 
3115   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3116     // This is recovered from gcc output.
3117     return 1; // r1 is the dedicated stack pointer
3118   }
3119 
3120   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3121                                llvm::Value *Address) const override;
3122 
3123   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3124     return 16; // Natural alignment for Altivec vectors.
3125   }
3126 
3127   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3128     return true;
3129   }
3130 };
3131 
3132 }
3133 
3134 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3135                                            QualType Ty,
3136                                            CodeGenFunction &CGF) const {
3137   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3138     // TODO: Implement this. For now ignore.
3139     (void)CTy;
3140     return nullptr;
3141   }
3142 
3143   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3144   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3145   llvm::Type *CharPtr = CGF.Int8PtrTy;
3146   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3147 
3148   CGBuilderTy &Builder = CGF.Builder;
3149   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3150   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3151   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3152   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3153   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3154   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3155   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3156   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3157   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3158   // Align GPR when TY is i64.
3159   if (isI64) {
3160     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3161     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3162     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3163     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3164   }
3165   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3166   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3167   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3168   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3169   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3170 
3171   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3172                                           Builder.getInt8(8), "cond");
3173 
3174   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3175                                                Builder.getInt8(isInt ? 4 : 8));
3176 
3177   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3178 
3179   if (Ty->isFloatingType())
3180     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3181 
3182   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3183   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3184   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3185 
3186   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3187 
3188   CGF.EmitBlock(UsingRegs);
3189 
3190   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3191   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3192   // Increase the GPR/FPR indexes.
3193   if (isInt) {
3194     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3195     Builder.CreateStore(GPR, GPRPtr);
3196   } else {
3197     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3198     Builder.CreateStore(FPR, FPRPtr);
3199   }
3200   CGF.EmitBranch(Cont);
3201 
3202   CGF.EmitBlock(UsingOverflow);
3203 
3204   // Increase the overflow area.
3205   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3206   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3207   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3208   CGF.EmitBranch(Cont);
3209 
3210   CGF.EmitBlock(Cont);
3211 
3212   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3213   Result->addIncoming(Result1, UsingRegs);
3214   Result->addIncoming(Result2, UsingOverflow);
3215 
3216   if (Ty->isAggregateType()) {
3217     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
3218     return Builder.CreateLoad(AGGPtr, false, "aggr");
3219   }
3220 
3221   return Result;
3222 }
3223 
3224 bool
3225 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3226                                                 llvm::Value *Address) const {
3227   // This is calculated from the LLVM and GCC tables and verified
3228   // against gcc output.  AFAIK all ABIs use the same encoding.
3229 
3230   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3231 
3232   llvm::IntegerType *i8 = CGF.Int8Ty;
3233   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3234   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3235   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3236 
3237   // 0-31: r0-31, the 4-byte general-purpose registers
3238   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3239 
3240   // 32-63: fp0-31, the 8-byte floating-point registers
3241   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3242 
3243   // 64-76 are various 4-byte special-purpose registers:
3244   // 64: mq
3245   // 65: lr
3246   // 66: ctr
3247   // 67: ap
3248   // 68-75 cr0-7
3249   // 76: xer
3250   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3251 
3252   // 77-108: v0-31, the 16-byte vector registers
3253   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3254 
3255   // 109: vrsave
3256   // 110: vscr
3257   // 111: spe_acc
3258   // 112: spefscr
3259   // 113: sfp
3260   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3261 
3262   return false;
3263 }
3264 
3265 // PowerPC-64
3266 
3267 namespace {
3268 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3269 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3270 public:
3271   enum ABIKind {
3272     ELFv1 = 0,
3273     ELFv2
3274   };
3275 
3276 private:
3277   static const unsigned GPRBits = 64;
3278   ABIKind Kind;
3279 
3280 public:
3281   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3282     : DefaultABIInfo(CGT), Kind(Kind) {}
3283 
3284   bool isPromotableTypeForABI(QualType Ty) const;
3285   bool isAlignedParamType(QualType Ty) const;
3286 
3287   ABIArgInfo classifyReturnType(QualType RetTy) const;
3288   ABIArgInfo classifyArgumentType(QualType Ty) const;
3289 
3290   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3291   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3292                                          uint64_t Members) const override;
3293 
3294   // TODO: We can add more logic to computeInfo to improve performance.
3295   // Example: For aggregate arguments that fit in a register, we could
3296   // use getDirectInReg (as is done below for structs containing a single
3297   // floating-point value) to avoid pushing them to memory on function
3298   // entry.  This would require changing the logic in PPCISelLowering
3299   // when lowering the parameters in the caller and args in the callee.
3300   void computeInfo(CGFunctionInfo &FI) const override {
3301     if (!getCXXABI().classifyReturnType(FI))
3302       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3303     for (auto &I : FI.arguments()) {
3304       // We rely on the default argument classification for the most part.
3305       // One exception:  An aggregate containing a single floating-point
3306       // or vector item must be passed in a register if one is available.
3307       const Type *T = isSingleElementStruct(I.type, getContext());
3308       if (T) {
3309         const BuiltinType *BT = T->getAs<BuiltinType>();
3310         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3311             (BT && BT->isFloatingPoint())) {
3312           QualType QT(T, 0);
3313           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3314           continue;
3315         }
3316       }
3317       I.info = classifyArgumentType(I.type);
3318     }
3319   }
3320 
3321   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3322                          CodeGenFunction &CGF) const override;
3323 };
3324 
3325 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3326 public:
3327   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3328                                PPC64_SVR4_ABIInfo::ABIKind Kind)
3329     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3330 
3331   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3332     // This is recovered from gcc output.
3333     return 1; // r1 is the dedicated stack pointer
3334   }
3335 
3336   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3337                                llvm::Value *Address) const override;
3338 
3339   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3340     return 16; // Natural alignment for Altivec and VSX vectors.
3341   }
3342 
3343   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3344     return true;
3345   }
3346 };
3347 
3348 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3349 public:
3350   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3351 
3352   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3353     // This is recovered from gcc output.
3354     return 1; // r1 is the dedicated stack pointer
3355   }
3356 
3357   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3358                                llvm::Value *Address) const override;
3359 
3360   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3361     return 16; // Natural alignment for Altivec vectors.
3362   }
3363 
3364   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3365     return true;
3366   }
3367 };
3368 
3369 }
3370 
3371 // Return true if the ABI requires Ty to be passed sign- or zero-
3372 // extended to 64 bits.
3373 bool
3374 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3375   // Treat an enum type as its underlying type.
3376   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3377     Ty = EnumTy->getDecl()->getIntegerType();
3378 
3379   // Promotable integer types are required to be promoted by the ABI.
3380   if (Ty->isPromotableIntegerType())
3381     return true;
3382 
3383   // In addition to the usual promotable integer types, we also need to
3384   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3385   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3386     switch (BT->getKind()) {
3387     case BuiltinType::Int:
3388     case BuiltinType::UInt:
3389       return true;
3390     default:
3391       break;
3392     }
3393 
3394   return false;
3395 }
3396 
3397 /// isAlignedParamType - Determine whether a type requires 16-byte
3398 /// alignment in the parameter area.
3399 bool
3400 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3401   // Complex types are passed just like their elements.
3402   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3403     Ty = CTy->getElementType();
3404 
3405   // Only vector types of size 16 bytes need alignment (larger types are
3406   // passed via reference, smaller types are not aligned).
3407   if (Ty->isVectorType())
3408     return getContext().getTypeSize(Ty) == 128;
3409 
3410   // For single-element float/vector structs, we consider the whole type
3411   // to have the same alignment requirements as its single element.
3412   const Type *AlignAsType = nullptr;
3413   const Type *EltType = isSingleElementStruct(Ty, getContext());
3414   if (EltType) {
3415     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3416     if ((EltType->isVectorType() &&
3417          getContext().getTypeSize(EltType) == 128) ||
3418         (BT && BT->isFloatingPoint()))
3419       AlignAsType = EltType;
3420   }
3421 
3422   // Likewise for ELFv2 homogeneous aggregates.
3423   const Type *Base = nullptr;
3424   uint64_t Members = 0;
3425   if (!AlignAsType && Kind == ELFv2 &&
3426       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3427     AlignAsType = Base;
3428 
3429   // With special case aggregates, only vector base types need alignment.
3430   if (AlignAsType)
3431     return AlignAsType->isVectorType();
3432 
3433   // Otherwise, we only need alignment for any aggregate type that
3434   // has an alignment requirement of >= 16 bytes.
3435   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3436     return true;
3437 
3438   return false;
3439 }
3440 
3441 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3442 /// aggregate.  Base is set to the base element type, and Members is set
3443 /// to the number of base elements.
3444 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3445                                      uint64_t &Members) const {
3446   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3447     uint64_t NElements = AT->getSize().getZExtValue();
3448     if (NElements == 0)
3449       return false;
3450     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3451       return false;
3452     Members *= NElements;
3453   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3454     const RecordDecl *RD = RT->getDecl();
3455     if (RD->hasFlexibleArrayMember())
3456       return false;
3457 
3458     Members = 0;
3459 
3460     // If this is a C++ record, check the bases first.
3461     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3462       for (const auto &I : CXXRD->bases()) {
3463         // Ignore empty records.
3464         if (isEmptyRecord(getContext(), I.getType(), true))
3465           continue;
3466 
3467         uint64_t FldMembers;
3468         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3469           return false;
3470 
3471         Members += FldMembers;
3472       }
3473     }
3474 
3475     for (const auto *FD : RD->fields()) {
3476       // Ignore (non-zero arrays of) empty records.
3477       QualType FT = FD->getType();
3478       while (const ConstantArrayType *AT =
3479              getContext().getAsConstantArrayType(FT)) {
3480         if (AT->getSize().getZExtValue() == 0)
3481           return false;
3482         FT = AT->getElementType();
3483       }
3484       if (isEmptyRecord(getContext(), FT, true))
3485         continue;
3486 
3487       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3488       if (getContext().getLangOpts().CPlusPlus &&
3489           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3490         continue;
3491 
3492       uint64_t FldMembers;
3493       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3494         return false;
3495 
3496       Members = (RD->isUnion() ?
3497                  std::max(Members, FldMembers) : Members + FldMembers);
3498     }
3499 
3500     if (!Base)
3501       return false;
3502 
3503     // Ensure there is no padding.
3504     if (getContext().getTypeSize(Base) * Members !=
3505         getContext().getTypeSize(Ty))
3506       return false;
3507   } else {
3508     Members = 1;
3509     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3510       Members = 2;
3511       Ty = CT->getElementType();
3512     }
3513 
3514     // Most ABIs only support float, double, and some vector type widths.
3515     if (!isHomogeneousAggregateBaseType(Ty))
3516       return false;
3517 
3518     // The base type must be the same for all members.  Types that
3519     // agree in both total size and mode (float vs. vector) are
3520     // treated as being equivalent here.
3521     const Type *TyPtr = Ty.getTypePtr();
3522     if (!Base)
3523       Base = TyPtr;
3524 
3525     if (Base->isVectorType() != TyPtr->isVectorType() ||
3526         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3527       return false;
3528   }
3529   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3530 }
3531 
3532 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3533   // Homogeneous aggregates for ELFv2 must have base types of float,
3534   // double, long double, or 128-bit vectors.
3535   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3536     if (BT->getKind() == BuiltinType::Float ||
3537         BT->getKind() == BuiltinType::Double ||
3538         BT->getKind() == BuiltinType::LongDouble)
3539       return true;
3540   }
3541   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3542     if (getContext().getTypeSize(VT) == 128)
3543       return true;
3544   }
3545   return false;
3546 }
3547 
3548 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3549     const Type *Base, uint64_t Members) const {
3550   // Vector types require one register, floating point types require one
3551   // or two registers depending on their size.
3552   uint32_t NumRegs =
3553       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3554 
3555   // Homogeneous Aggregates may occupy at most 8 registers.
3556   return Members * NumRegs <= 8;
3557 }
3558 
3559 ABIArgInfo
3560 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3561   Ty = useFirstFieldIfTransparentUnion(Ty);
3562 
3563   if (Ty->isAnyComplexType())
3564     return ABIArgInfo::getDirect();
3565 
3566   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3567   // or via reference (larger than 16 bytes).
3568   if (Ty->isVectorType()) {
3569     uint64_t Size = getContext().getTypeSize(Ty);
3570     if (Size > 128)
3571       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3572     else if (Size < 128) {
3573       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3574       return ABIArgInfo::getDirect(CoerceTy);
3575     }
3576   }
3577 
3578   if (isAggregateTypeForABI(Ty)) {
3579     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3580       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3581 
3582     uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3583     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3584 
3585     // ELFv2 homogeneous aggregates are passed as array types.
3586     const Type *Base = nullptr;
3587     uint64_t Members = 0;
3588     if (Kind == ELFv2 &&
3589         isHomogeneousAggregate(Ty, Base, Members)) {
3590       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3591       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3592       return ABIArgInfo::getDirect(CoerceTy);
3593     }
3594 
3595     // If an aggregate may end up fully in registers, we do not
3596     // use the ByVal method, but pass the aggregate as array.
3597     // This is usually beneficial since we avoid forcing the
3598     // back-end to store the argument to memory.
3599     uint64_t Bits = getContext().getTypeSize(Ty);
3600     if (Bits > 0 && Bits <= 8 * GPRBits) {
3601       llvm::Type *CoerceTy;
3602 
3603       // Types up to 8 bytes are passed as integer type (which will be
3604       // properly aligned in the argument save area doubleword).
3605       if (Bits <= GPRBits)
3606         CoerceTy = llvm::IntegerType::get(getVMContext(),
3607                                           llvm::RoundUpToAlignment(Bits, 8));
3608       // Larger types are passed as arrays, with the base type selected
3609       // according to the required alignment in the save area.
3610       else {
3611         uint64_t RegBits = ABIAlign * 8;
3612         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3613         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3614         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3615       }
3616 
3617       return ABIArgInfo::getDirect(CoerceTy);
3618     }
3619 
3620     // All other aggregates are passed ByVal.
3621     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3622                                    /*Realign=*/TyAlign > ABIAlign);
3623   }
3624 
3625   return (isPromotableTypeForABI(Ty) ?
3626           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3627 }
3628 
3629 ABIArgInfo
3630 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3631   if (RetTy->isVoidType())
3632     return ABIArgInfo::getIgnore();
3633 
3634   if (RetTy->isAnyComplexType())
3635     return ABIArgInfo::getDirect();
3636 
3637   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3638   // or via reference (larger than 16 bytes).
3639   if (RetTy->isVectorType()) {
3640     uint64_t Size = getContext().getTypeSize(RetTy);
3641     if (Size > 128)
3642       return ABIArgInfo::getIndirect(0);
3643     else if (Size < 128) {
3644       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3645       return ABIArgInfo::getDirect(CoerceTy);
3646     }
3647   }
3648 
3649   if (isAggregateTypeForABI(RetTy)) {
3650     // ELFv2 homogeneous aggregates are returned as array types.
3651     const Type *Base = nullptr;
3652     uint64_t Members = 0;
3653     if (Kind == ELFv2 &&
3654         isHomogeneousAggregate(RetTy, Base, Members)) {
3655       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3656       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3657       return ABIArgInfo::getDirect(CoerceTy);
3658     }
3659 
3660     // ELFv2 small aggregates are returned in up to two registers.
3661     uint64_t Bits = getContext().getTypeSize(RetTy);
3662     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3663       if (Bits == 0)
3664         return ABIArgInfo::getIgnore();
3665 
3666       llvm::Type *CoerceTy;
3667       if (Bits > GPRBits) {
3668         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3669         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3670       } else
3671         CoerceTy = llvm::IntegerType::get(getVMContext(),
3672                                           llvm::RoundUpToAlignment(Bits, 8));
3673       return ABIArgInfo::getDirect(CoerceTy);
3674     }
3675 
3676     // All other aggregates are returned indirectly.
3677     return ABIArgInfo::getIndirect(0);
3678   }
3679 
3680   return (isPromotableTypeForABI(RetTy) ?
3681           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3682 }
3683 
3684 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3685 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3686                                            QualType Ty,
3687                                            CodeGenFunction &CGF) const {
3688   llvm::Type *BP = CGF.Int8PtrTy;
3689   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3690 
3691   CGBuilderTy &Builder = CGF.Builder;
3692   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3693   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3694 
3695   // Handle types that require 16-byte alignment in the parameter save area.
3696   if (isAlignedParamType(Ty)) {
3697     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3698     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3699     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3700     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3701   }
3702 
3703   // Update the va_list pointer.  The pointer should be bumped by the
3704   // size of the object.  We can trust getTypeSize() except for a complex
3705   // type whose base type is smaller than a doubleword.  For these, the
3706   // size of the object is 16 bytes; see below for further explanation.
3707   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3708   QualType BaseTy;
3709   unsigned CplxBaseSize = 0;
3710 
3711   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3712     BaseTy = CTy->getElementType();
3713     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3714     if (CplxBaseSize < 8)
3715       SizeInBytes = 16;
3716   }
3717 
3718   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3719   llvm::Value *NextAddr =
3720     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3721                       "ap.next");
3722   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3723 
3724   // If we have a complex type and the base type is smaller than 8 bytes,
3725   // the ABI calls for the real and imaginary parts to be right-adjusted
3726   // in separate doublewords.  However, Clang expects us to produce a
3727   // pointer to a structure with the two parts packed tightly.  So generate
3728   // loads of the real and imaginary parts relative to the va_list pointer,
3729   // and store them to a temporary structure.
3730   if (CplxBaseSize && CplxBaseSize < 8) {
3731     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3732     llvm::Value *ImagAddr = RealAddr;
3733     if (CGF.CGM.getDataLayout().isBigEndian()) {
3734       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3735       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3736     } else {
3737       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3738     }
3739     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3740     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3741     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3742     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3743     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3744     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3745                                             "vacplx");
3746     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3747     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3748     Builder.CreateStore(Real, RealPtr, false);
3749     Builder.CreateStore(Imag, ImagPtr, false);
3750     return Ptr;
3751   }
3752 
3753   // If the argument is smaller than 8 bytes, it is right-adjusted in
3754   // its doubleword slot.  Adjust the pointer to pick it up from the
3755   // correct offset.
3756   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3757     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3758     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3759     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3760   }
3761 
3762   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3763   return Builder.CreateBitCast(Addr, PTy);
3764 }
3765 
3766 static bool
3767 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3768                               llvm::Value *Address) {
3769   // This is calculated from the LLVM and GCC tables and verified
3770   // against gcc output.  AFAIK all ABIs use the same encoding.
3771 
3772   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3773 
3774   llvm::IntegerType *i8 = CGF.Int8Ty;
3775   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3776   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3777   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3778 
3779   // 0-31: r0-31, the 8-byte general-purpose registers
3780   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3781 
3782   // 32-63: fp0-31, the 8-byte floating-point registers
3783   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3784 
3785   // 64-76 are various 4-byte special-purpose registers:
3786   // 64: mq
3787   // 65: lr
3788   // 66: ctr
3789   // 67: ap
3790   // 68-75 cr0-7
3791   // 76: xer
3792   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3793 
3794   // 77-108: v0-31, the 16-byte vector registers
3795   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3796 
3797   // 109: vrsave
3798   // 110: vscr
3799   // 111: spe_acc
3800   // 112: spefscr
3801   // 113: sfp
3802   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3803 
3804   return false;
3805 }
3806 
3807 bool
3808 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3809   CodeGen::CodeGenFunction &CGF,
3810   llvm::Value *Address) const {
3811 
3812   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3813 }
3814 
3815 bool
3816 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3817                                                 llvm::Value *Address) const {
3818 
3819   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3820 }
3821 
3822 //===----------------------------------------------------------------------===//
3823 // AArch64 ABI Implementation
3824 //===----------------------------------------------------------------------===//
3825 
3826 namespace {
3827 
3828 class AArch64ABIInfo : public ABIInfo {
3829 public:
3830   enum ABIKind {
3831     AAPCS = 0,
3832     DarwinPCS
3833   };
3834 
3835 private:
3836   ABIKind Kind;
3837 
3838 public:
3839   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3840 
3841 private:
3842   ABIKind getABIKind() const { return Kind; }
3843   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3844 
3845   ABIArgInfo classifyReturnType(QualType RetTy) const;
3846   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3847   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3848   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3849                                          uint64_t Members) const override;
3850 
3851   bool isIllegalVectorType(QualType Ty) const;
3852 
3853   void computeInfo(CGFunctionInfo &FI) const override {
3854     if (!getCXXABI().classifyReturnType(FI))
3855       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3856 
3857     for (auto &it : FI.arguments())
3858       it.info = classifyArgumentType(it.type);
3859   }
3860 
3861   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3862                                CodeGenFunction &CGF) const;
3863 
3864   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3865                               CodeGenFunction &CGF) const;
3866 
3867   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3868                                  CodeGenFunction &CGF) const override {
3869     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3870                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3871   }
3872 };
3873 
3874 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3875 public:
3876   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3877       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3878 
3879   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3880     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3881   }
3882 
3883   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3884 
3885   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3886 };
3887 }
3888 
3889 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3890   Ty = useFirstFieldIfTransparentUnion(Ty);
3891 
3892   // Handle illegal vector types here.
3893   if (isIllegalVectorType(Ty)) {
3894     uint64_t Size = getContext().getTypeSize(Ty);
3895     if (Size <= 32) {
3896       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3897       return ABIArgInfo::getDirect(ResType);
3898     }
3899     if (Size == 64) {
3900       llvm::Type *ResType =
3901           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3902       return ABIArgInfo::getDirect(ResType);
3903     }
3904     if (Size == 128) {
3905       llvm::Type *ResType =
3906           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3907       return ABIArgInfo::getDirect(ResType);
3908     }
3909     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3910   }
3911 
3912   if (!isAggregateTypeForABI(Ty)) {
3913     // Treat an enum type as its underlying type.
3914     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3915       Ty = EnumTy->getDecl()->getIntegerType();
3916 
3917     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3918                 ? ABIArgInfo::getExtend()
3919                 : ABIArgInfo::getDirect());
3920   }
3921 
3922   // Structures with either a non-trivial destructor or a non-trivial
3923   // copy constructor are always indirect.
3924   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3925     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3926                                    CGCXXABI::RAA_DirectInMemory);
3927   }
3928 
3929   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3930   // elsewhere for GNU compatibility.
3931   if (isEmptyRecord(getContext(), Ty, true)) {
3932     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3933       return ABIArgInfo::getIgnore();
3934 
3935     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3936   }
3937 
3938   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3939   const Type *Base = nullptr;
3940   uint64_t Members = 0;
3941   if (isHomogeneousAggregate(Ty, Base, Members)) {
3942     return ABIArgInfo::getDirect(
3943         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3944   }
3945 
3946   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3947   uint64_t Size = getContext().getTypeSize(Ty);
3948   if (Size <= 128) {
3949     unsigned Alignment = getContext().getTypeAlign(Ty);
3950     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3951 
3952     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3953     // For aggregates with 16-byte alignment, we use i128.
3954     if (Alignment < 128 && Size == 128) {
3955       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3956       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3957     }
3958     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3959   }
3960 
3961   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3962 }
3963 
3964 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3965   if (RetTy->isVoidType())
3966     return ABIArgInfo::getIgnore();
3967 
3968   // Large vector types should be returned via memory.
3969   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3970     return ABIArgInfo::getIndirect(0);
3971 
3972   if (!isAggregateTypeForABI(RetTy)) {
3973     // Treat an enum type as its underlying type.
3974     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3975       RetTy = EnumTy->getDecl()->getIntegerType();
3976 
3977     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3978                 ? ABIArgInfo::getExtend()
3979                 : ABIArgInfo::getDirect());
3980   }
3981 
3982   if (isEmptyRecord(getContext(), RetTy, true))
3983     return ABIArgInfo::getIgnore();
3984 
3985   const Type *Base = nullptr;
3986   uint64_t Members = 0;
3987   if (isHomogeneousAggregate(RetTy, Base, Members))
3988     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3989     return ABIArgInfo::getDirect();
3990 
3991   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3992   uint64_t Size = getContext().getTypeSize(RetTy);
3993   if (Size <= 128) {
3994     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3995     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3996   }
3997 
3998   return ABIArgInfo::getIndirect(0);
3999 }
4000 
4001 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4002 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4003   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4004     // Check whether VT is legal.
4005     unsigned NumElements = VT->getNumElements();
4006     uint64_t Size = getContext().getTypeSize(VT);
4007     // NumElements should be power of 2 between 1 and 16.
4008     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4009       return true;
4010     return Size != 64 && (Size != 128 || NumElements == 1);
4011   }
4012   return false;
4013 }
4014 
4015 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4016   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4017   // point type or a short-vector type. This is the same as the 32-bit ABI,
4018   // but with the difference that any floating-point type is allowed,
4019   // including __fp16.
4020   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4021     if (BT->isFloatingPoint())
4022       return true;
4023   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4024     unsigned VecSize = getContext().getTypeSize(VT);
4025     if (VecSize == 64 || VecSize == 128)
4026       return true;
4027   }
4028   return false;
4029 }
4030 
4031 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4032                                                        uint64_t Members) const {
4033   return Members <= 4;
4034 }
4035 
4036 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4037                                             QualType Ty,
4038                                             CodeGenFunction &CGF) const {
4039   ABIArgInfo AI = classifyArgumentType(Ty);
4040   bool IsIndirect = AI.isIndirect();
4041 
4042   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4043   if (IsIndirect)
4044     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4045   else if (AI.getCoerceToType())
4046     BaseTy = AI.getCoerceToType();
4047 
4048   unsigned NumRegs = 1;
4049   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4050     BaseTy = ArrTy->getElementType();
4051     NumRegs = ArrTy->getNumElements();
4052   }
4053   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4054 
4055   // The AArch64 va_list type and handling is specified in the Procedure Call
4056   // Standard, section B.4:
4057   //
4058   // struct {
4059   //   void *__stack;
4060   //   void *__gr_top;
4061   //   void *__vr_top;
4062   //   int __gr_offs;
4063   //   int __vr_offs;
4064   // };
4065 
4066   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4067   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4068   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4069   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4070   auto &Ctx = CGF.getContext();
4071 
4072   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4073   int reg_top_index;
4074   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4075   if (!IsFPR) {
4076     // 3 is the field number of __gr_offs
4077     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4078     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4079     reg_top_index = 1; // field number for __gr_top
4080     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4081   } else {
4082     // 4 is the field number of __vr_offs.
4083     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4084     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4085     reg_top_index = 2; // field number for __vr_top
4086     RegSize = 16 * NumRegs;
4087   }
4088 
4089   //=======================================
4090   // Find out where argument was passed
4091   //=======================================
4092 
4093   // If reg_offs >= 0 we're already using the stack for this type of
4094   // argument. We don't want to keep updating reg_offs (in case it overflows,
4095   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4096   // whatever they get).
4097   llvm::Value *UsingStack = nullptr;
4098   UsingStack = CGF.Builder.CreateICmpSGE(
4099       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4100 
4101   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4102 
4103   // Otherwise, at least some kind of argument could go in these registers, the
4104   // question is whether this particular type is too big.
4105   CGF.EmitBlock(MaybeRegBlock);
4106 
4107   // Integer arguments may need to correct register alignment (for example a
4108   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4109   // align __gr_offs to calculate the potential address.
4110   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4111     int Align = Ctx.getTypeAlign(Ty) / 8;
4112 
4113     reg_offs = CGF.Builder.CreateAdd(
4114         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4115         "align_regoffs");
4116     reg_offs = CGF.Builder.CreateAnd(
4117         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4118         "aligned_regoffs");
4119   }
4120 
4121   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4122   llvm::Value *NewOffset = nullptr;
4123   NewOffset = CGF.Builder.CreateAdd(
4124       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4125   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4126 
4127   // Now we're in a position to decide whether this argument really was in
4128   // registers or not.
4129   llvm::Value *InRegs = nullptr;
4130   InRegs = CGF.Builder.CreateICmpSLE(
4131       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4132 
4133   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4134 
4135   //=======================================
4136   // Argument was in registers
4137   //=======================================
4138 
4139   // Now we emit the code for if the argument was originally passed in
4140   // registers. First start the appropriate block:
4141   CGF.EmitBlock(InRegBlock);
4142 
4143   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4144   reg_top_p =
4145       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4146   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4147   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4148   llvm::Value *RegAddr = nullptr;
4149   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4150 
4151   if (IsIndirect) {
4152     // If it's been passed indirectly (actually a struct), whatever we find from
4153     // stored registers or on the stack will actually be a struct **.
4154     MemTy = llvm::PointerType::getUnqual(MemTy);
4155   }
4156 
4157   const Type *Base = nullptr;
4158   uint64_t NumMembers = 0;
4159   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4160   if (IsHFA && NumMembers > 1) {
4161     // Homogeneous aggregates passed in registers will have their elements split
4162     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4163     // qN+1, ...). We reload and store into a temporary local variable
4164     // contiguously.
4165     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4166     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4167     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4168     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4169     int Offset = 0;
4170 
4171     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4172       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4173     for (unsigned i = 0; i < NumMembers; ++i) {
4174       llvm::Value *BaseOffset =
4175           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4176       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4177       LoadAddr = CGF.Builder.CreateBitCast(
4178           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4179       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4180 
4181       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4182       CGF.Builder.CreateStore(Elem, StoreAddr);
4183     }
4184 
4185     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4186   } else {
4187     // Otherwise the object is contiguous in memory
4188     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4189     if (CGF.CGM.getDataLayout().isBigEndian() &&
4190         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4191         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4192       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4193       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4194 
4195       BaseAddr = CGF.Builder.CreateAdd(
4196           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4197 
4198       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4199     }
4200 
4201     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4202   }
4203 
4204   CGF.EmitBranch(ContBlock);
4205 
4206   //=======================================
4207   // Argument was on the stack
4208   //=======================================
4209   CGF.EmitBlock(OnStackBlock);
4210 
4211   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4212   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4213   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4214 
4215   // Again, stack arguments may need realigmnent. In this case both integer and
4216   // floating-point ones might be affected.
4217   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4218     int Align = Ctx.getTypeAlign(Ty) / 8;
4219 
4220     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4221 
4222     OnStackAddr = CGF.Builder.CreateAdd(
4223         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4224         "align_stack");
4225     OnStackAddr = CGF.Builder.CreateAnd(
4226         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4227         "align_stack");
4228 
4229     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4230   }
4231 
4232   uint64_t StackSize;
4233   if (IsIndirect)
4234     StackSize = 8;
4235   else
4236     StackSize = Ctx.getTypeSize(Ty) / 8;
4237 
4238   // All stack slots are 8 bytes
4239   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4240 
4241   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4242   llvm::Value *NewStack =
4243       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4244 
4245   // Write the new value of __stack for the next call to va_arg
4246   CGF.Builder.CreateStore(NewStack, stack_p);
4247 
4248   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4249       Ctx.getTypeSize(Ty) < 64) {
4250     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4251     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4252 
4253     OnStackAddr = CGF.Builder.CreateAdd(
4254         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4255 
4256     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4257   }
4258 
4259   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4260 
4261   CGF.EmitBranch(ContBlock);
4262 
4263   //=======================================
4264   // Tidy up
4265   //=======================================
4266   CGF.EmitBlock(ContBlock);
4267 
4268   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4269   ResAddr->addIncoming(RegAddr, InRegBlock);
4270   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4271 
4272   if (IsIndirect)
4273     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4274 
4275   return ResAddr;
4276 }
4277 
4278 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4279                                            CodeGenFunction &CGF) const {
4280   // We do not support va_arg for aggregates or illegal vector types.
4281   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4282   // other cases.
4283   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4284     return nullptr;
4285 
4286   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4287   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4288 
4289   const Type *Base = nullptr;
4290   uint64_t Members = 0;
4291   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4292 
4293   bool isIndirect = false;
4294   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4295   // be passed indirectly.
4296   if (Size > 16 && !isHA) {
4297     isIndirect = true;
4298     Size = 8;
4299     Align = 8;
4300   }
4301 
4302   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4303   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4304 
4305   CGBuilderTy &Builder = CGF.Builder;
4306   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4307   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4308 
4309   if (isEmptyRecord(getContext(), Ty, true)) {
4310     // These are ignored for parameter passing purposes.
4311     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4312     return Builder.CreateBitCast(Addr, PTy);
4313   }
4314 
4315   const uint64_t MinABIAlign = 8;
4316   if (Align > MinABIAlign) {
4317     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4318     Addr = Builder.CreateGEP(Addr, Offset);
4319     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4320     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4321     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4322     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4323   }
4324 
4325   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4326   llvm::Value *NextAddr = Builder.CreateGEP(
4327       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4328   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4329 
4330   if (isIndirect)
4331     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4332   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4333   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4334 
4335   return AddrTyped;
4336 }
4337 
4338 //===----------------------------------------------------------------------===//
4339 // ARM ABI Implementation
4340 //===----------------------------------------------------------------------===//
4341 
4342 namespace {
4343 
4344 class ARMABIInfo : public ABIInfo {
4345 public:
4346   enum ABIKind {
4347     APCS = 0,
4348     AAPCS = 1,
4349     AAPCS_VFP
4350   };
4351 
4352 private:
4353   ABIKind Kind;
4354 
4355 public:
4356   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4357     setCCs();
4358   }
4359 
4360   bool isEABI() const {
4361     switch (getTarget().getTriple().getEnvironment()) {
4362     case llvm::Triple::Android:
4363     case llvm::Triple::EABI:
4364     case llvm::Triple::EABIHF:
4365     case llvm::Triple::GNUEABI:
4366     case llvm::Triple::GNUEABIHF:
4367       return true;
4368     default:
4369       return false;
4370     }
4371   }
4372 
4373   bool isEABIHF() const {
4374     switch (getTarget().getTriple().getEnvironment()) {
4375     case llvm::Triple::EABIHF:
4376     case llvm::Triple::GNUEABIHF:
4377       return true;
4378     default:
4379       return false;
4380     }
4381   }
4382 
4383   ABIKind getABIKind() const { return Kind; }
4384 
4385 private:
4386   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4387   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4388   bool isIllegalVectorType(QualType Ty) const;
4389 
4390   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4391   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4392                                          uint64_t Members) const override;
4393 
4394   void computeInfo(CGFunctionInfo &FI) const override;
4395 
4396   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4397                          CodeGenFunction &CGF) const override;
4398 
4399   llvm::CallingConv::ID getLLVMDefaultCC() const;
4400   llvm::CallingConv::ID getABIDefaultCC() const;
4401   void setCCs();
4402 };
4403 
4404 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4405 public:
4406   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4407     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4408 
4409   const ARMABIInfo &getABIInfo() const {
4410     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4411   }
4412 
4413   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4414     return 13;
4415   }
4416 
4417   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4418     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4419   }
4420 
4421   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4422                                llvm::Value *Address) const override {
4423     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4424 
4425     // 0-15 are the 16 integer registers.
4426     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4427     return false;
4428   }
4429 
4430   unsigned getSizeOfUnwindException() const override {
4431     if (getABIInfo().isEABI()) return 88;
4432     return TargetCodeGenInfo::getSizeOfUnwindException();
4433   }
4434 
4435   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4436                            CodeGen::CodeGenModule &CGM) const override {
4437     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4438     if (!FD)
4439       return;
4440 
4441     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4442     if (!Attr)
4443       return;
4444 
4445     const char *Kind;
4446     switch (Attr->getInterrupt()) {
4447     case ARMInterruptAttr::Generic: Kind = ""; break;
4448     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4449     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4450     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4451     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4452     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4453     }
4454 
4455     llvm::Function *Fn = cast<llvm::Function>(GV);
4456 
4457     Fn->addFnAttr("interrupt", Kind);
4458 
4459     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4460       return;
4461 
4462     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4463     // however this is not necessarily true on taking any interrupt. Instruct
4464     // the backend to perform a realignment as part of the function prologue.
4465     llvm::AttrBuilder B;
4466     B.addStackAlignmentAttr(8);
4467     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4468                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4469                                               llvm::AttributeSet::FunctionIndex,
4470                                               B));
4471   }
4472 
4473   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
4474     return false;
4475     // FIXME: backend implementation too restricted, even on Darwin.
4476     // return CGF.getTarget().getTriple().isOSDarwin();
4477   }
4478 };
4479 
4480 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4481   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4482                                         CodeGen::CodeGenModule &CGM) const;
4483 
4484 public:
4485   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4486       : ARMTargetCodeGenInfo(CGT, K) {}
4487 
4488   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4489                            CodeGen::CodeGenModule &CGM) const override;
4490 };
4491 
4492 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4493     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4494   if (!isa<FunctionDecl>(D))
4495     return;
4496   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4497     return;
4498 
4499   llvm::Function *F = cast<llvm::Function>(GV);
4500   F->addFnAttr("stack-probe-size",
4501                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4502 }
4503 
4504 void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
4505     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4506   ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
4507   addStackProbeSizeTargetAttribute(D, GV, CGM);
4508 }
4509 }
4510 
4511 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4512   if (!getCXXABI().classifyReturnType(FI))
4513     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4514 
4515   for (auto &I : FI.arguments())
4516     I.info = classifyArgumentType(I.type, FI.isVariadic());
4517 
4518   // Always honor user-specified calling convention.
4519   if (FI.getCallingConvention() != llvm::CallingConv::C)
4520     return;
4521 
4522   llvm::CallingConv::ID cc = getRuntimeCC();
4523   if (cc != llvm::CallingConv::C)
4524     FI.setEffectiveCallingConvention(cc);
4525 }
4526 
4527 /// Return the default calling convention that LLVM will use.
4528 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4529   // The default calling convention that LLVM will infer.
4530   if (isEABIHF())
4531     return llvm::CallingConv::ARM_AAPCS_VFP;
4532   else if (isEABI())
4533     return llvm::CallingConv::ARM_AAPCS;
4534   else
4535     return llvm::CallingConv::ARM_APCS;
4536 }
4537 
4538 /// Return the calling convention that our ABI would like us to use
4539 /// as the C calling convention.
4540 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4541   switch (getABIKind()) {
4542   case APCS: return llvm::CallingConv::ARM_APCS;
4543   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4544   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4545   }
4546   llvm_unreachable("bad ABI kind");
4547 }
4548 
4549 void ARMABIInfo::setCCs() {
4550   assert(getRuntimeCC() == llvm::CallingConv::C);
4551 
4552   // Don't muddy up the IR with a ton of explicit annotations if
4553   // they'd just match what LLVM will infer from the triple.
4554   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4555   if (abiCC != getLLVMDefaultCC())
4556     RuntimeCC = abiCC;
4557 
4558   BuiltinCC = (getABIKind() == APCS ?
4559                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4560 }
4561 
4562 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4563                                             bool isVariadic) const {
4564   // 6.1.2.1 The following argument types are VFP CPRCs:
4565   //   A single-precision floating-point type (including promoted
4566   //   half-precision types); A double-precision floating-point type;
4567   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4568   //   with a Base Type of a single- or double-precision floating-point type,
4569   //   64-bit containerized vectors or 128-bit containerized vectors with one
4570   //   to four Elements.
4571   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4572 
4573   Ty = useFirstFieldIfTransparentUnion(Ty);
4574 
4575   // Handle illegal vector types here.
4576   if (isIllegalVectorType(Ty)) {
4577     uint64_t Size = getContext().getTypeSize(Ty);
4578     if (Size <= 32) {
4579       llvm::Type *ResType =
4580           llvm::Type::getInt32Ty(getVMContext());
4581       return ABIArgInfo::getDirect(ResType);
4582     }
4583     if (Size == 64) {
4584       llvm::Type *ResType = llvm::VectorType::get(
4585           llvm::Type::getInt32Ty(getVMContext()), 2);
4586       return ABIArgInfo::getDirect(ResType);
4587     }
4588     if (Size == 128) {
4589       llvm::Type *ResType = llvm::VectorType::get(
4590           llvm::Type::getInt32Ty(getVMContext()), 4);
4591       return ABIArgInfo::getDirect(ResType);
4592     }
4593     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4594   }
4595 
4596   if (!isAggregateTypeForABI(Ty)) {
4597     // Treat an enum type as its underlying type.
4598     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4599       Ty = EnumTy->getDecl()->getIntegerType();
4600     }
4601 
4602     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4603                                           : ABIArgInfo::getDirect());
4604   }
4605 
4606   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4607     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4608   }
4609 
4610   // Ignore empty records.
4611   if (isEmptyRecord(getContext(), Ty, true))
4612     return ABIArgInfo::getIgnore();
4613 
4614   if (IsEffectivelyAAPCS_VFP) {
4615     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4616     // into VFP registers.
4617     const Type *Base = nullptr;
4618     uint64_t Members = 0;
4619     if (isHomogeneousAggregate(Ty, Base, Members)) {
4620       assert(Base && "Base class should be set for homogeneous aggregate");
4621       // Base can be a floating-point or a vector.
4622       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4623     }
4624   }
4625 
4626   // Support byval for ARM.
4627   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4628   // most 8-byte. We realign the indirect argument if type alignment is bigger
4629   // than ABI alignment.
4630   uint64_t ABIAlign = 4;
4631   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4632   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4633       getABIKind() == ARMABIInfo::AAPCS)
4634     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4635   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4636     // Update Allocated GPRs. Since this is only used when the size of the
4637     // argument is greater than 64 bytes, this will always use up any available
4638     // registers (of which there are 4). We also don't care about getting the
4639     // alignment right, because general-purpose registers cannot be back-filled.
4640     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4641            /*Realign=*/TyAlign > ABIAlign);
4642   }
4643 
4644   // Otherwise, pass by coercing to a structure of the appropriate size.
4645   llvm::Type* ElemTy;
4646   unsigned SizeRegs;
4647   // FIXME: Try to match the types of the arguments more accurately where
4648   // we can.
4649   if (getContext().getTypeAlign(Ty) <= 32) {
4650     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4651     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4652   } else {
4653     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4654     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4655   }
4656 
4657   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4658 }
4659 
4660 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4661                               llvm::LLVMContext &VMContext) {
4662   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4663   // is called integer-like if its size is less than or equal to one word, and
4664   // the offset of each of its addressable sub-fields is zero.
4665 
4666   uint64_t Size = Context.getTypeSize(Ty);
4667 
4668   // Check that the type fits in a word.
4669   if (Size > 32)
4670     return false;
4671 
4672   // FIXME: Handle vector types!
4673   if (Ty->isVectorType())
4674     return false;
4675 
4676   // Float types are never treated as "integer like".
4677   if (Ty->isRealFloatingType())
4678     return false;
4679 
4680   // If this is a builtin or pointer type then it is ok.
4681   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4682     return true;
4683 
4684   // Small complex integer types are "integer like".
4685   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4686     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4687 
4688   // Single element and zero sized arrays should be allowed, by the definition
4689   // above, but they are not.
4690 
4691   // Otherwise, it must be a record type.
4692   const RecordType *RT = Ty->getAs<RecordType>();
4693   if (!RT) return false;
4694 
4695   // Ignore records with flexible arrays.
4696   const RecordDecl *RD = RT->getDecl();
4697   if (RD->hasFlexibleArrayMember())
4698     return false;
4699 
4700   // Check that all sub-fields are at offset 0, and are themselves "integer
4701   // like".
4702   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4703 
4704   bool HadField = false;
4705   unsigned idx = 0;
4706   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4707        i != e; ++i, ++idx) {
4708     const FieldDecl *FD = *i;
4709 
4710     // Bit-fields are not addressable, we only need to verify they are "integer
4711     // like". We still have to disallow a subsequent non-bitfield, for example:
4712     //   struct { int : 0; int x }
4713     // is non-integer like according to gcc.
4714     if (FD->isBitField()) {
4715       if (!RD->isUnion())
4716         HadField = true;
4717 
4718       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4719         return false;
4720 
4721       continue;
4722     }
4723 
4724     // Check if this field is at offset 0.
4725     if (Layout.getFieldOffset(idx) != 0)
4726       return false;
4727 
4728     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4729       return false;
4730 
4731     // Only allow at most one field in a structure. This doesn't match the
4732     // wording above, but follows gcc in situations with a field following an
4733     // empty structure.
4734     if (!RD->isUnion()) {
4735       if (HadField)
4736         return false;
4737 
4738       HadField = true;
4739     }
4740   }
4741 
4742   return true;
4743 }
4744 
4745 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4746                                           bool isVariadic) const {
4747   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4748 
4749   if (RetTy->isVoidType())
4750     return ABIArgInfo::getIgnore();
4751 
4752   // Large vector types should be returned via memory.
4753   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4754     return ABIArgInfo::getIndirect(0);
4755   }
4756 
4757   if (!isAggregateTypeForABI(RetTy)) {
4758     // Treat an enum type as its underlying type.
4759     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4760       RetTy = EnumTy->getDecl()->getIntegerType();
4761 
4762     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4763                                             : ABIArgInfo::getDirect();
4764   }
4765 
4766   // Are we following APCS?
4767   if (getABIKind() == APCS) {
4768     if (isEmptyRecord(getContext(), RetTy, false))
4769       return ABIArgInfo::getIgnore();
4770 
4771     // Complex types are all returned as packed integers.
4772     //
4773     // FIXME: Consider using 2 x vector types if the back end handles them
4774     // correctly.
4775     if (RetTy->isAnyComplexType())
4776       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4777           getVMContext(), getContext().getTypeSize(RetTy)));
4778 
4779     // Integer like structures are returned in r0.
4780     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4781       // Return in the smallest viable integer type.
4782       uint64_t Size = getContext().getTypeSize(RetTy);
4783       if (Size <= 8)
4784         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4785       if (Size <= 16)
4786         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4787       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4788     }
4789 
4790     // Otherwise return in memory.
4791     return ABIArgInfo::getIndirect(0);
4792   }
4793 
4794   // Otherwise this is an AAPCS variant.
4795 
4796   if (isEmptyRecord(getContext(), RetTy, true))
4797     return ABIArgInfo::getIgnore();
4798 
4799   // Check for homogeneous aggregates with AAPCS-VFP.
4800   if (IsEffectivelyAAPCS_VFP) {
4801     const Type *Base = nullptr;
4802     uint64_t Members;
4803     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4804       assert(Base && "Base class should be set for homogeneous aggregate");
4805       // Homogeneous Aggregates are returned directly.
4806       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4807     }
4808   }
4809 
4810   // Aggregates <= 4 bytes are returned in r0; other aggregates
4811   // are returned indirectly.
4812   uint64_t Size = getContext().getTypeSize(RetTy);
4813   if (Size <= 32) {
4814     if (getDataLayout().isBigEndian())
4815       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4816       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4817 
4818     // Return in the smallest viable integer type.
4819     if (Size <= 8)
4820       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4821     if (Size <= 16)
4822       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4823     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4824   }
4825 
4826   return ABIArgInfo::getIndirect(0);
4827 }
4828 
4829 /// isIllegalVector - check whether Ty is an illegal vector type.
4830 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4831   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4832     // Check whether VT is legal.
4833     unsigned NumElements = VT->getNumElements();
4834     uint64_t Size = getContext().getTypeSize(VT);
4835     // NumElements should be power of 2.
4836     if ((NumElements & (NumElements - 1)) != 0)
4837       return true;
4838     // Size should be greater than 32 bits.
4839     return Size <= 32;
4840   }
4841   return false;
4842 }
4843 
4844 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4845   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4846   // double, or 64-bit or 128-bit vectors.
4847   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4848     if (BT->getKind() == BuiltinType::Float ||
4849         BT->getKind() == BuiltinType::Double ||
4850         BT->getKind() == BuiltinType::LongDouble)
4851       return true;
4852   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4853     unsigned VecSize = getContext().getTypeSize(VT);
4854     if (VecSize == 64 || VecSize == 128)
4855       return true;
4856   }
4857   return false;
4858 }
4859 
4860 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4861                                                    uint64_t Members) const {
4862   return Members <= 4;
4863 }
4864 
4865 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4866                                    CodeGenFunction &CGF) const {
4867   llvm::Type *BP = CGF.Int8PtrTy;
4868   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4869 
4870   CGBuilderTy &Builder = CGF.Builder;
4871   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4872   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4873 
4874   if (isEmptyRecord(getContext(), Ty, true)) {
4875     // These are ignored for parameter passing purposes.
4876     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4877     return Builder.CreateBitCast(Addr, PTy);
4878   }
4879 
4880   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4881   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4882   bool IsIndirect = false;
4883 
4884   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4885   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4886   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4887       getABIKind() == ARMABIInfo::AAPCS)
4888     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4889   else
4890     TyAlign = 4;
4891   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4892   if (isIllegalVectorType(Ty) && Size > 16) {
4893     IsIndirect = true;
4894     Size = 4;
4895     TyAlign = 4;
4896   }
4897 
4898   // Handle address alignment for ABI alignment > 4 bytes.
4899   if (TyAlign > 4) {
4900     assert((TyAlign & (TyAlign - 1)) == 0 &&
4901            "Alignment is not power of 2!");
4902     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4903     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4904     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4905     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4906   }
4907 
4908   uint64_t Offset =
4909     llvm::RoundUpToAlignment(Size, 4);
4910   llvm::Value *NextAddr =
4911     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4912                       "ap.next");
4913   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4914 
4915   if (IsIndirect)
4916     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4917   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4918     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4919     // may not be correctly aligned for the vector type. We create an aligned
4920     // temporary space and copy the content over from ap.cur to the temporary
4921     // space. This is necessary if the natural alignment of the type is greater
4922     // than the ABI alignment.
4923     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4924     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4925     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4926                                                     "var.align");
4927     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4928     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4929     Builder.CreateMemCpy(Dst, Src,
4930         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4931         TyAlign, false);
4932     Addr = AlignedTemp; //The content is in aligned location.
4933   }
4934   llvm::Type *PTy =
4935     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4936   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4937 
4938   return AddrTyped;
4939 }
4940 
4941 //===----------------------------------------------------------------------===//
4942 // NVPTX ABI Implementation
4943 //===----------------------------------------------------------------------===//
4944 
4945 namespace {
4946 
4947 class NVPTXABIInfo : public ABIInfo {
4948 public:
4949   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4950 
4951   ABIArgInfo classifyReturnType(QualType RetTy) const;
4952   ABIArgInfo classifyArgumentType(QualType Ty) const;
4953 
4954   void computeInfo(CGFunctionInfo &FI) const override;
4955   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4956                          CodeGenFunction &CFG) const override;
4957 };
4958 
4959 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4960 public:
4961   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4962     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4963 
4964   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4965                            CodeGen::CodeGenModule &M) const override;
4966 private:
4967   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
4968   // resulting MDNode to the nvvm.annotations MDNode.
4969   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
4970 };
4971 
4972 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4973   if (RetTy->isVoidType())
4974     return ABIArgInfo::getIgnore();
4975 
4976   // note: this is different from default ABI
4977   if (!RetTy->isScalarType())
4978     return ABIArgInfo::getDirect();
4979 
4980   // Treat an enum type as its underlying type.
4981   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4982     RetTy = EnumTy->getDecl()->getIntegerType();
4983 
4984   return (RetTy->isPromotableIntegerType() ?
4985           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4986 }
4987 
4988 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4989   // Treat an enum type as its underlying type.
4990   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4991     Ty = EnumTy->getDecl()->getIntegerType();
4992 
4993   // Return aggregates type as indirect by value
4994   if (isAggregateTypeForABI(Ty))
4995     return ABIArgInfo::getIndirect(0, /* byval */ true);
4996 
4997   return (Ty->isPromotableIntegerType() ?
4998           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4999 }
5000 
5001 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5002   if (!getCXXABI().classifyReturnType(FI))
5003     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5004   for (auto &I : FI.arguments())
5005     I.info = classifyArgumentType(I.type);
5006 
5007   // Always honor user-specified calling convention.
5008   if (FI.getCallingConvention() != llvm::CallingConv::C)
5009     return;
5010 
5011   FI.setEffectiveCallingConvention(getRuntimeCC());
5012 }
5013 
5014 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5015                                      CodeGenFunction &CFG) const {
5016   llvm_unreachable("NVPTX does not support varargs");
5017 }
5018 
5019 void NVPTXTargetCodeGenInfo::
5020 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5021                     CodeGen::CodeGenModule &M) const{
5022   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5023   if (!FD) return;
5024 
5025   llvm::Function *F = cast<llvm::Function>(GV);
5026 
5027   // Perform special handling in OpenCL mode
5028   if (M.getLangOpts().OpenCL) {
5029     // Use OpenCL function attributes to check for kernel functions
5030     // By default, all functions are device functions
5031     if (FD->hasAttr<OpenCLKernelAttr>()) {
5032       // OpenCL __kernel functions get kernel metadata
5033       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5034       addNVVMMetadata(F, "kernel", 1);
5035       // And kernel functions are not subject to inlining
5036       F->addFnAttr(llvm::Attribute::NoInline);
5037     }
5038   }
5039 
5040   // Perform special handling in CUDA mode.
5041   if (M.getLangOpts().CUDA) {
5042     // CUDA __global__ functions get a kernel metadata entry.  Since
5043     // __global__ functions cannot be called from the device, we do not
5044     // need to set the noinline attribute.
5045     if (FD->hasAttr<CUDAGlobalAttr>()) {
5046       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5047       addNVVMMetadata(F, "kernel", 1);
5048     }
5049     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5050       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5051       addNVVMMetadata(F, "maxntidx",
5052                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5053       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5054       // zero value from getMinBlocks either means it was not specified in
5055       // __launch_bounds__ or the user specified a 0 value. In both cases, we
5056       // don't have to add a PTX directive.
5057       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5058       if (MinCTASM > 0) {
5059         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5060         addNVVMMetadata(F, "minctasm", MinCTASM);
5061       }
5062     }
5063   }
5064 }
5065 
5066 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5067                                              int Operand) {
5068   llvm::Module *M = F->getParent();
5069   llvm::LLVMContext &Ctx = M->getContext();
5070 
5071   // Get "nvvm.annotations" metadata node
5072   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5073 
5074   llvm::Metadata *MDVals[] = {
5075       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5076       llvm::ConstantAsMetadata::get(
5077           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5078   // Append metadata to nvvm.annotations
5079   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5080 }
5081 }
5082 
5083 //===----------------------------------------------------------------------===//
5084 // SystemZ ABI Implementation
5085 //===----------------------------------------------------------------------===//
5086 
5087 namespace {
5088 
5089 class SystemZABIInfo : public ABIInfo {
5090 public:
5091   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5092 
5093   bool isPromotableIntegerType(QualType Ty) const;
5094   bool isCompoundType(QualType Ty) const;
5095   bool isFPArgumentType(QualType Ty) const;
5096 
5097   ABIArgInfo classifyReturnType(QualType RetTy) const;
5098   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5099 
5100   void computeInfo(CGFunctionInfo &FI) const override {
5101     if (!getCXXABI().classifyReturnType(FI))
5102       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5103     for (auto &I : FI.arguments())
5104       I.info = classifyArgumentType(I.type);
5105   }
5106 
5107   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5108                          CodeGenFunction &CGF) const override;
5109 };
5110 
5111 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5112 public:
5113   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5114     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5115 };
5116 
5117 }
5118 
5119 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5120   // Treat an enum type as its underlying type.
5121   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5122     Ty = EnumTy->getDecl()->getIntegerType();
5123 
5124   // Promotable integer types are required to be promoted by the ABI.
5125   if (Ty->isPromotableIntegerType())
5126     return true;
5127 
5128   // 32-bit values must also be promoted.
5129   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5130     switch (BT->getKind()) {
5131     case BuiltinType::Int:
5132     case BuiltinType::UInt:
5133       return true;
5134     default:
5135       return false;
5136     }
5137   return false;
5138 }
5139 
5140 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5141   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5142 }
5143 
5144 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5145   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5146     switch (BT->getKind()) {
5147     case BuiltinType::Float:
5148     case BuiltinType::Double:
5149       return true;
5150     default:
5151       return false;
5152     }
5153 
5154   if (const RecordType *RT = Ty->getAsStructureType()) {
5155     const RecordDecl *RD = RT->getDecl();
5156     bool Found = false;
5157 
5158     // If this is a C++ record, check the bases first.
5159     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5160       for (const auto &I : CXXRD->bases()) {
5161         QualType Base = I.getType();
5162 
5163         // Empty bases don't affect things either way.
5164         if (isEmptyRecord(getContext(), Base, true))
5165           continue;
5166 
5167         if (Found)
5168           return false;
5169         Found = isFPArgumentType(Base);
5170         if (!Found)
5171           return false;
5172       }
5173 
5174     // Check the fields.
5175     for (const auto *FD : RD->fields()) {
5176       // Empty bitfields don't affect things either way.
5177       // Unlike isSingleElementStruct(), empty structure and array fields
5178       // do count.  So do anonymous bitfields that aren't zero-sized.
5179       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5180         return true;
5181 
5182       // Unlike isSingleElementStruct(), arrays do not count.
5183       // Nested isFPArgumentType structures still do though.
5184       if (Found)
5185         return false;
5186       Found = isFPArgumentType(FD->getType());
5187       if (!Found)
5188         return false;
5189     }
5190 
5191     // Unlike isSingleElementStruct(), trailing padding is allowed.
5192     // An 8-byte aligned struct s { float f; } is passed as a double.
5193     return Found;
5194   }
5195 
5196   return false;
5197 }
5198 
5199 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5200                                        CodeGenFunction &CGF) const {
5201   // Assume that va_list type is correct; should be pointer to LLVM type:
5202   // struct {
5203   //   i64 __gpr;
5204   //   i64 __fpr;
5205   //   i8 *__overflow_arg_area;
5206   //   i8 *__reg_save_area;
5207   // };
5208 
5209   // Every argument occupies 8 bytes and is passed by preference in either
5210   // GPRs or FPRs.
5211   Ty = CGF.getContext().getCanonicalType(Ty);
5212   ABIArgInfo AI = classifyArgumentType(Ty);
5213   bool InFPRs = isFPArgumentType(Ty);
5214 
5215   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5216   bool IsIndirect = AI.isIndirect();
5217   unsigned UnpaddedBitSize;
5218   if (IsIndirect) {
5219     APTy = llvm::PointerType::getUnqual(APTy);
5220     UnpaddedBitSize = 64;
5221   } else
5222     UnpaddedBitSize = getContext().getTypeSize(Ty);
5223   unsigned PaddedBitSize = 64;
5224   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5225 
5226   unsigned PaddedSize = PaddedBitSize / 8;
5227   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5228 
5229   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5230   if (InFPRs) {
5231     MaxRegs = 4; // Maximum of 4 FPR arguments
5232     RegCountField = 1; // __fpr
5233     RegSaveIndex = 16; // save offset for f0
5234     RegPadding = 0; // floats are passed in the high bits of an FPR
5235   } else {
5236     MaxRegs = 5; // Maximum of 5 GPR arguments
5237     RegCountField = 0; // __gpr
5238     RegSaveIndex = 2; // save offset for r2
5239     RegPadding = Padding; // values are passed in the low bits of a GPR
5240   }
5241 
5242   llvm::Value *RegCountPtr =
5243     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5244   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5245   llvm::Type *IndexTy = RegCount->getType();
5246   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5247   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5248                                                  "fits_in_regs");
5249 
5250   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5251   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5252   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5253   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5254 
5255   // Emit code to load the value if it was passed in registers.
5256   CGF.EmitBlock(InRegBlock);
5257 
5258   // Work out the address of an argument register.
5259   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5260   llvm::Value *ScaledRegCount =
5261     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5262   llvm::Value *RegBase =
5263     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5264   llvm::Value *RegOffset =
5265     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5266   llvm::Value *RegSaveAreaPtr =
5267     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5268   llvm::Value *RegSaveArea =
5269     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5270   llvm::Value *RawRegAddr =
5271     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5272   llvm::Value *RegAddr =
5273     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5274 
5275   // Update the register count
5276   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5277   llvm::Value *NewRegCount =
5278     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5279   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5280   CGF.EmitBranch(ContBlock);
5281 
5282   // Emit code to load the value if it was passed in memory.
5283   CGF.EmitBlock(InMemBlock);
5284 
5285   // Work out the address of a stack argument.
5286   llvm::Value *OverflowArgAreaPtr =
5287     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5288   llvm::Value *OverflowArgArea =
5289     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5290   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5291   llvm::Value *RawMemAddr =
5292     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5293   llvm::Value *MemAddr =
5294     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5295 
5296   // Update overflow_arg_area_ptr pointer
5297   llvm::Value *NewOverflowArgArea =
5298     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5299   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5300   CGF.EmitBranch(ContBlock);
5301 
5302   // Return the appropriate result.
5303   CGF.EmitBlock(ContBlock);
5304   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5305   ResAddr->addIncoming(RegAddr, InRegBlock);
5306   ResAddr->addIncoming(MemAddr, InMemBlock);
5307 
5308   if (IsIndirect)
5309     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5310 
5311   return ResAddr;
5312 }
5313 
5314 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5315   if (RetTy->isVoidType())
5316     return ABIArgInfo::getIgnore();
5317   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5318     return ABIArgInfo::getIndirect(0);
5319   return (isPromotableIntegerType(RetTy) ?
5320           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5321 }
5322 
5323 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5324   // Handle the generic C++ ABI.
5325   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5326     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5327 
5328   // Integers and enums are extended to full register width.
5329   if (isPromotableIntegerType(Ty))
5330     return ABIArgInfo::getExtend();
5331 
5332   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5333   uint64_t Size = getContext().getTypeSize(Ty);
5334   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5335     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5336 
5337   // Handle small structures.
5338   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5339     // Structures with flexible arrays have variable length, so really
5340     // fail the size test above.
5341     const RecordDecl *RD = RT->getDecl();
5342     if (RD->hasFlexibleArrayMember())
5343       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5344 
5345     // The structure is passed as an unextended integer, a float, or a double.
5346     llvm::Type *PassTy;
5347     if (isFPArgumentType(Ty)) {
5348       assert(Size == 32 || Size == 64);
5349       if (Size == 32)
5350         PassTy = llvm::Type::getFloatTy(getVMContext());
5351       else
5352         PassTy = llvm::Type::getDoubleTy(getVMContext());
5353     } else
5354       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5355     return ABIArgInfo::getDirect(PassTy);
5356   }
5357 
5358   // Non-structure compounds are passed indirectly.
5359   if (isCompoundType(Ty))
5360     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5361 
5362   return ABIArgInfo::getDirect(nullptr);
5363 }
5364 
5365 //===----------------------------------------------------------------------===//
5366 // MSP430 ABI Implementation
5367 //===----------------------------------------------------------------------===//
5368 
5369 namespace {
5370 
5371 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5372 public:
5373   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5374     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5375   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5376                            CodeGen::CodeGenModule &M) const override;
5377 };
5378 
5379 }
5380 
5381 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5382                                                   llvm::GlobalValue *GV,
5383                                              CodeGen::CodeGenModule &M) const {
5384   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5385     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5386       // Handle 'interrupt' attribute:
5387       llvm::Function *F = cast<llvm::Function>(GV);
5388 
5389       // Step 1: Set ISR calling convention.
5390       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5391 
5392       // Step 2: Add attributes goodness.
5393       F->addFnAttr(llvm::Attribute::NoInline);
5394 
5395       // Step 3: Emit ISR vector alias.
5396       unsigned Num = attr->getNumber() / 2;
5397       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5398                                 "__isr_" + Twine(Num), F);
5399     }
5400   }
5401 }
5402 
5403 //===----------------------------------------------------------------------===//
5404 // MIPS ABI Implementation.  This works for both little-endian and
5405 // big-endian variants.
5406 //===----------------------------------------------------------------------===//
5407 
5408 namespace {
5409 class MipsABIInfo : public ABIInfo {
5410   bool IsO32;
5411   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5412   void CoerceToIntArgs(uint64_t TySize,
5413                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5414   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5415   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5416   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5417 public:
5418   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5419     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5420     StackAlignInBytes(IsO32 ? 8 : 16) {}
5421 
5422   ABIArgInfo classifyReturnType(QualType RetTy) const;
5423   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5424   void computeInfo(CGFunctionInfo &FI) const override;
5425   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5426                          CodeGenFunction &CGF) const override;
5427 };
5428 
5429 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5430   unsigned SizeOfUnwindException;
5431 public:
5432   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5433     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5434       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5435 
5436   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5437     return 29;
5438   }
5439 
5440   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5441                            CodeGen::CodeGenModule &CGM) const override {
5442     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5443     if (!FD) return;
5444     llvm::Function *Fn = cast<llvm::Function>(GV);
5445     if (FD->hasAttr<Mips16Attr>()) {
5446       Fn->addFnAttr("mips16");
5447     }
5448     else if (FD->hasAttr<NoMips16Attr>()) {
5449       Fn->addFnAttr("nomips16");
5450     }
5451   }
5452 
5453   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5454                                llvm::Value *Address) const override;
5455 
5456   unsigned getSizeOfUnwindException() const override {
5457     return SizeOfUnwindException;
5458   }
5459 };
5460 }
5461 
5462 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5463                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5464   llvm::IntegerType *IntTy =
5465     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5466 
5467   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5468   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5469     ArgList.push_back(IntTy);
5470 
5471   // If necessary, add one more integer type to ArgList.
5472   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5473 
5474   if (R)
5475     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5476 }
5477 
5478 // In N32/64, an aligned double precision floating point field is passed in
5479 // a register.
5480 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5481   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5482 
5483   if (IsO32) {
5484     CoerceToIntArgs(TySize, ArgList);
5485     return llvm::StructType::get(getVMContext(), ArgList);
5486   }
5487 
5488   if (Ty->isComplexType())
5489     return CGT.ConvertType(Ty);
5490 
5491   const RecordType *RT = Ty->getAs<RecordType>();
5492 
5493   // Unions/vectors are passed in integer registers.
5494   if (!RT || !RT->isStructureOrClassType()) {
5495     CoerceToIntArgs(TySize, ArgList);
5496     return llvm::StructType::get(getVMContext(), ArgList);
5497   }
5498 
5499   const RecordDecl *RD = RT->getDecl();
5500   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5501   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5502 
5503   uint64_t LastOffset = 0;
5504   unsigned idx = 0;
5505   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5506 
5507   // Iterate over fields in the struct/class and check if there are any aligned
5508   // double fields.
5509   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5510        i != e; ++i, ++idx) {
5511     const QualType Ty = i->getType();
5512     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5513 
5514     if (!BT || BT->getKind() != BuiltinType::Double)
5515       continue;
5516 
5517     uint64_t Offset = Layout.getFieldOffset(idx);
5518     if (Offset % 64) // Ignore doubles that are not aligned.
5519       continue;
5520 
5521     // Add ((Offset - LastOffset) / 64) args of type i64.
5522     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5523       ArgList.push_back(I64);
5524 
5525     // Add double type.
5526     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5527     LastOffset = Offset + 64;
5528   }
5529 
5530   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5531   ArgList.append(IntArgList.begin(), IntArgList.end());
5532 
5533   return llvm::StructType::get(getVMContext(), ArgList);
5534 }
5535 
5536 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5537                                         uint64_t Offset) const {
5538   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5539     return nullptr;
5540 
5541   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5542 }
5543 
5544 ABIArgInfo
5545 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5546   Ty = useFirstFieldIfTransparentUnion(Ty);
5547 
5548   uint64_t OrigOffset = Offset;
5549   uint64_t TySize = getContext().getTypeSize(Ty);
5550   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5551 
5552   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5553                    (uint64_t)StackAlignInBytes);
5554   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5555   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5556 
5557   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5558     // Ignore empty aggregates.
5559     if (TySize == 0)
5560       return ABIArgInfo::getIgnore();
5561 
5562     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5563       Offset = OrigOffset + MinABIStackAlignInBytes;
5564       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5565     }
5566 
5567     // If we have reached here, aggregates are passed directly by coercing to
5568     // another structure type. Padding is inserted if the offset of the
5569     // aggregate is unaligned.
5570     ABIArgInfo ArgInfo =
5571         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5572                               getPaddingType(OrigOffset, CurrOffset));
5573     ArgInfo.setInReg(true);
5574     return ArgInfo;
5575   }
5576 
5577   // Treat an enum type as its underlying type.
5578   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5579     Ty = EnumTy->getDecl()->getIntegerType();
5580 
5581   // All integral types are promoted to the GPR width.
5582   if (Ty->isIntegralOrEnumerationType())
5583     return ABIArgInfo::getExtend();
5584 
5585   return ABIArgInfo::getDirect(
5586       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5587 }
5588 
5589 llvm::Type*
5590 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5591   const RecordType *RT = RetTy->getAs<RecordType>();
5592   SmallVector<llvm::Type*, 8> RTList;
5593 
5594   if (RT && RT->isStructureOrClassType()) {
5595     const RecordDecl *RD = RT->getDecl();
5596     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5597     unsigned FieldCnt = Layout.getFieldCount();
5598 
5599     // N32/64 returns struct/classes in floating point registers if the
5600     // following conditions are met:
5601     // 1. The size of the struct/class is no larger than 128-bit.
5602     // 2. The struct/class has one or two fields all of which are floating
5603     //    point types.
5604     // 3. The offset of the first field is zero (this follows what gcc does).
5605     //
5606     // Any other composite results are returned in integer registers.
5607     //
5608     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5609       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5610       for (; b != e; ++b) {
5611         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5612 
5613         if (!BT || !BT->isFloatingPoint())
5614           break;
5615 
5616         RTList.push_back(CGT.ConvertType(b->getType()));
5617       }
5618 
5619       if (b == e)
5620         return llvm::StructType::get(getVMContext(), RTList,
5621                                      RD->hasAttr<PackedAttr>());
5622 
5623       RTList.clear();
5624     }
5625   }
5626 
5627   CoerceToIntArgs(Size, RTList);
5628   return llvm::StructType::get(getVMContext(), RTList);
5629 }
5630 
5631 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5632   uint64_t Size = getContext().getTypeSize(RetTy);
5633 
5634   if (RetTy->isVoidType())
5635     return ABIArgInfo::getIgnore();
5636 
5637   // O32 doesn't treat zero-sized structs differently from other structs.
5638   // However, N32/N64 ignores zero sized return values.
5639   if (!IsO32 && Size == 0)
5640     return ABIArgInfo::getIgnore();
5641 
5642   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5643     if (Size <= 128) {
5644       if (RetTy->isAnyComplexType())
5645         return ABIArgInfo::getDirect();
5646 
5647       // O32 returns integer vectors in registers and N32/N64 returns all small
5648       // aggregates in registers.
5649       if (!IsO32 ||
5650           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5651         ABIArgInfo ArgInfo =
5652             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5653         ArgInfo.setInReg(true);
5654         return ArgInfo;
5655       }
5656     }
5657 
5658     return ABIArgInfo::getIndirect(0);
5659   }
5660 
5661   // Treat an enum type as its underlying type.
5662   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5663     RetTy = EnumTy->getDecl()->getIntegerType();
5664 
5665   return (RetTy->isPromotableIntegerType() ?
5666           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5667 }
5668 
5669 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5670   ABIArgInfo &RetInfo = FI.getReturnInfo();
5671   if (!getCXXABI().classifyReturnType(FI))
5672     RetInfo = classifyReturnType(FI.getReturnType());
5673 
5674   // Check if a pointer to an aggregate is passed as a hidden argument.
5675   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5676 
5677   for (auto &I : FI.arguments())
5678     I.info = classifyArgumentType(I.type, Offset);
5679 }
5680 
5681 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5682                                     CodeGenFunction &CGF) const {
5683   llvm::Type *BP = CGF.Int8PtrTy;
5684   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5685 
5686   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5687   // Pointers are also promoted in the same way but this only matters for N32.
5688   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5689   unsigned PtrWidth = getTarget().getPointerWidth(0);
5690   if ((Ty->isIntegerType() &&
5691           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5692       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5693     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5694                                                 Ty->isSignedIntegerType());
5695   }
5696 
5697   CGBuilderTy &Builder = CGF.Builder;
5698   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5699   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5700   int64_t TypeAlign =
5701       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5702   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5703   llvm::Value *AddrTyped;
5704   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5705 
5706   if (TypeAlign > MinABIStackAlignInBytes) {
5707     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5708     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5709     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5710     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5711     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5712     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5713   }
5714   else
5715     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5716 
5717   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5718   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5719   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5720   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5721   llvm::Value *NextAddr =
5722     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5723                       "ap.next");
5724   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5725 
5726   return AddrTyped;
5727 }
5728 
5729 bool
5730 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5731                                                llvm::Value *Address) const {
5732   // This information comes from gcc's implementation, which seems to
5733   // as canonical as it gets.
5734 
5735   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5736   // are aliased to pairs of single-precision FP registers.
5737   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5738 
5739   // 0-31 are the general purpose registers, $0 - $31.
5740   // 32-63 are the floating-point registers, $f0 - $f31.
5741   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5742   // 66 is the (notional, I think) register for signal-handler return.
5743   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5744 
5745   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5746   // They are one bit wide and ignored here.
5747 
5748   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5749   // (coprocessor 1 is the FP unit)
5750   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5751   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5752   // 176-181 are the DSP accumulator registers.
5753   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5754   return false;
5755 }
5756 
5757 //===----------------------------------------------------------------------===//
5758 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5759 // Currently subclassed only to implement custom OpenCL C function attribute
5760 // handling.
5761 //===----------------------------------------------------------------------===//
5762 
5763 namespace {
5764 
5765 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5766 public:
5767   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5768     : DefaultTargetCodeGenInfo(CGT) {}
5769 
5770   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5771                            CodeGen::CodeGenModule &M) const override;
5772 };
5773 
5774 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5775                                                llvm::GlobalValue *GV,
5776                                                CodeGen::CodeGenModule &M) const {
5777   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5778   if (!FD) return;
5779 
5780   llvm::Function *F = cast<llvm::Function>(GV);
5781 
5782   if (M.getLangOpts().OpenCL) {
5783     if (FD->hasAttr<OpenCLKernelAttr>()) {
5784       // OpenCL C Kernel functions are not subject to inlining
5785       F->addFnAttr(llvm::Attribute::NoInline);
5786       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5787       if (Attr) {
5788         // Convert the reqd_work_group_size() attributes to metadata.
5789         llvm::LLVMContext &Context = F->getContext();
5790         llvm::NamedMDNode *OpenCLMetadata =
5791             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5792 
5793         SmallVector<llvm::Metadata *, 5> Operands;
5794         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5795 
5796         Operands.push_back(
5797             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5798                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5799         Operands.push_back(
5800             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5801                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5802         Operands.push_back(
5803             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5804                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5805 
5806         // Add a boolean constant operand for "required" (true) or "hint" (false)
5807         // for implementing the work_group_size_hint attr later. Currently
5808         // always true as the hint is not yet implemented.
5809         Operands.push_back(
5810             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5811         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5812       }
5813     }
5814   }
5815 }
5816 
5817 }
5818 
5819 //===----------------------------------------------------------------------===//
5820 // Hexagon ABI Implementation
5821 //===----------------------------------------------------------------------===//
5822 
5823 namespace {
5824 
5825 class HexagonABIInfo : public ABIInfo {
5826 
5827 
5828 public:
5829   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5830 
5831 private:
5832 
5833   ABIArgInfo classifyReturnType(QualType RetTy) const;
5834   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5835 
5836   void computeInfo(CGFunctionInfo &FI) const override;
5837 
5838   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5839                          CodeGenFunction &CGF) const override;
5840 };
5841 
5842 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5843 public:
5844   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5845     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5846 
5847   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5848     return 29;
5849   }
5850 };
5851 
5852 }
5853 
5854 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5855   if (!getCXXABI().classifyReturnType(FI))
5856     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5857   for (auto &I : FI.arguments())
5858     I.info = classifyArgumentType(I.type);
5859 }
5860 
5861 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5862   if (!isAggregateTypeForABI(Ty)) {
5863     // Treat an enum type as its underlying type.
5864     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5865       Ty = EnumTy->getDecl()->getIntegerType();
5866 
5867     return (Ty->isPromotableIntegerType() ?
5868             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5869   }
5870 
5871   // Ignore empty records.
5872   if (isEmptyRecord(getContext(), Ty, true))
5873     return ABIArgInfo::getIgnore();
5874 
5875   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5876     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5877 
5878   uint64_t Size = getContext().getTypeSize(Ty);
5879   if (Size > 64)
5880     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5881     // Pass in the smallest viable integer type.
5882   else if (Size > 32)
5883       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5884   else if (Size > 16)
5885       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5886   else if (Size > 8)
5887       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5888   else
5889       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5890 }
5891 
5892 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5893   if (RetTy->isVoidType())
5894     return ABIArgInfo::getIgnore();
5895 
5896   // Large vector types should be returned via memory.
5897   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5898     return ABIArgInfo::getIndirect(0);
5899 
5900   if (!isAggregateTypeForABI(RetTy)) {
5901     // Treat an enum type as its underlying type.
5902     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5903       RetTy = EnumTy->getDecl()->getIntegerType();
5904 
5905     return (RetTy->isPromotableIntegerType() ?
5906             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5907   }
5908 
5909   if (isEmptyRecord(getContext(), RetTy, true))
5910     return ABIArgInfo::getIgnore();
5911 
5912   // Aggregates <= 8 bytes are returned in r0; other aggregates
5913   // are returned indirectly.
5914   uint64_t Size = getContext().getTypeSize(RetTy);
5915   if (Size <= 64) {
5916     // Return in the smallest viable integer type.
5917     if (Size <= 8)
5918       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5919     if (Size <= 16)
5920       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5921     if (Size <= 32)
5922       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5923     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5924   }
5925 
5926   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5927 }
5928 
5929 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5930                                        CodeGenFunction &CGF) const {
5931   // FIXME: Need to handle alignment
5932   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5933 
5934   CGBuilderTy &Builder = CGF.Builder;
5935   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5936                                                        "ap");
5937   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5938   llvm::Type *PTy =
5939     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5940   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5941 
5942   uint64_t Offset =
5943     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5944   llvm::Value *NextAddr =
5945     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5946                       "ap.next");
5947   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5948 
5949   return AddrTyped;
5950 }
5951 
5952 //===----------------------------------------------------------------------===//
5953 // AMDGPU ABI Implementation
5954 //===----------------------------------------------------------------------===//
5955 
5956 namespace {
5957 
5958 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
5959 public:
5960   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
5961     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5962   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5963                            CodeGen::CodeGenModule &M) const override;
5964 };
5965 
5966 }
5967 
5968 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
5969   const Decl *D,
5970   llvm::GlobalValue *GV,
5971   CodeGen::CodeGenModule &M) const {
5972   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5973   if (!FD)
5974     return;
5975 
5976   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
5977     llvm::Function *F = cast<llvm::Function>(GV);
5978     uint32_t NumVGPR = Attr->getNumVGPR();
5979     if (NumVGPR != 0)
5980       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
5981   }
5982 
5983   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
5984     llvm::Function *F = cast<llvm::Function>(GV);
5985     unsigned NumSGPR = Attr->getNumSGPR();
5986     if (NumSGPR != 0)
5987       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
5988   }
5989 }
5990 
5991 
5992 //===----------------------------------------------------------------------===//
5993 // SPARC v9 ABI Implementation.
5994 // Based on the SPARC Compliance Definition version 2.4.1.
5995 //
5996 // Function arguments a mapped to a nominal "parameter array" and promoted to
5997 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5998 // the array, structs larger than 16 bytes are passed indirectly.
5999 //
6000 // One case requires special care:
6001 //
6002 //   struct mixed {
6003 //     int i;
6004 //     float f;
6005 //   };
6006 //
6007 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6008 // parameter array, but the int is passed in an integer register, and the float
6009 // is passed in a floating point register. This is represented as two arguments
6010 // with the LLVM IR inreg attribute:
6011 //
6012 //   declare void f(i32 inreg %i, float inreg %f)
6013 //
6014 // The code generator will only allocate 4 bytes from the parameter array for
6015 // the inreg arguments. All other arguments are allocated a multiple of 8
6016 // bytes.
6017 //
6018 namespace {
6019 class SparcV9ABIInfo : public ABIInfo {
6020 public:
6021   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6022 
6023 private:
6024   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6025   void computeInfo(CGFunctionInfo &FI) const override;
6026   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6027                          CodeGenFunction &CGF) const override;
6028 
6029   // Coercion type builder for structs passed in registers. The coercion type
6030   // serves two purposes:
6031   //
6032   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6033   //    in registers.
6034   // 2. Expose aligned floating point elements as first-level elements, so the
6035   //    code generator knows to pass them in floating point registers.
6036   //
6037   // We also compute the InReg flag which indicates that the struct contains
6038   // aligned 32-bit floats.
6039   //
6040   struct CoerceBuilder {
6041     llvm::LLVMContext &Context;
6042     const llvm::DataLayout &DL;
6043     SmallVector<llvm::Type*, 8> Elems;
6044     uint64_t Size;
6045     bool InReg;
6046 
6047     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6048       : Context(c), DL(dl), Size(0), InReg(false) {}
6049 
6050     // Pad Elems with integers until Size is ToSize.
6051     void pad(uint64_t ToSize) {
6052       assert(ToSize >= Size && "Cannot remove elements");
6053       if (ToSize == Size)
6054         return;
6055 
6056       // Finish the current 64-bit word.
6057       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6058       if (Aligned > Size && Aligned <= ToSize) {
6059         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6060         Size = Aligned;
6061       }
6062 
6063       // Add whole 64-bit words.
6064       while (Size + 64 <= ToSize) {
6065         Elems.push_back(llvm::Type::getInt64Ty(Context));
6066         Size += 64;
6067       }
6068 
6069       // Final in-word padding.
6070       if (Size < ToSize) {
6071         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6072         Size = ToSize;
6073       }
6074     }
6075 
6076     // Add a floating point element at Offset.
6077     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6078       // Unaligned floats are treated as integers.
6079       if (Offset % Bits)
6080         return;
6081       // The InReg flag is only required if there are any floats < 64 bits.
6082       if (Bits < 64)
6083         InReg = true;
6084       pad(Offset);
6085       Elems.push_back(Ty);
6086       Size = Offset + Bits;
6087     }
6088 
6089     // Add a struct type to the coercion type, starting at Offset (in bits).
6090     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6091       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6092       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6093         llvm::Type *ElemTy = StrTy->getElementType(i);
6094         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6095         switch (ElemTy->getTypeID()) {
6096         case llvm::Type::StructTyID:
6097           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6098           break;
6099         case llvm::Type::FloatTyID:
6100           addFloat(ElemOffset, ElemTy, 32);
6101           break;
6102         case llvm::Type::DoubleTyID:
6103           addFloat(ElemOffset, ElemTy, 64);
6104           break;
6105         case llvm::Type::FP128TyID:
6106           addFloat(ElemOffset, ElemTy, 128);
6107           break;
6108         case llvm::Type::PointerTyID:
6109           if (ElemOffset % 64 == 0) {
6110             pad(ElemOffset);
6111             Elems.push_back(ElemTy);
6112             Size += 64;
6113           }
6114           break;
6115         default:
6116           break;
6117         }
6118       }
6119     }
6120 
6121     // Check if Ty is a usable substitute for the coercion type.
6122     bool isUsableType(llvm::StructType *Ty) const {
6123       return llvm::makeArrayRef(Elems) == Ty->elements();
6124     }
6125 
6126     // Get the coercion type as a literal struct type.
6127     llvm::Type *getType() const {
6128       if (Elems.size() == 1)
6129         return Elems.front();
6130       else
6131         return llvm::StructType::get(Context, Elems);
6132     }
6133   };
6134 };
6135 } // end anonymous namespace
6136 
6137 ABIArgInfo
6138 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6139   if (Ty->isVoidType())
6140     return ABIArgInfo::getIgnore();
6141 
6142   uint64_t Size = getContext().getTypeSize(Ty);
6143 
6144   // Anything too big to fit in registers is passed with an explicit indirect
6145   // pointer / sret pointer.
6146   if (Size > SizeLimit)
6147     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6148 
6149   // Treat an enum type as its underlying type.
6150   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6151     Ty = EnumTy->getDecl()->getIntegerType();
6152 
6153   // Integer types smaller than a register are extended.
6154   if (Size < 64 && Ty->isIntegerType())
6155     return ABIArgInfo::getExtend();
6156 
6157   // Other non-aggregates go in registers.
6158   if (!isAggregateTypeForABI(Ty))
6159     return ABIArgInfo::getDirect();
6160 
6161   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6162   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6163   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6164     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6165 
6166   // This is a small aggregate type that should be passed in registers.
6167   // Build a coercion type from the LLVM struct type.
6168   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6169   if (!StrTy)
6170     return ABIArgInfo::getDirect();
6171 
6172   CoerceBuilder CB(getVMContext(), getDataLayout());
6173   CB.addStruct(0, StrTy);
6174   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6175 
6176   // Try to use the original type for coercion.
6177   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6178 
6179   if (CB.InReg)
6180     return ABIArgInfo::getDirectInReg(CoerceTy);
6181   else
6182     return ABIArgInfo::getDirect(CoerceTy);
6183 }
6184 
6185 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6186                                        CodeGenFunction &CGF) const {
6187   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6188   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6189   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6190     AI.setCoerceToType(ArgTy);
6191 
6192   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6193   CGBuilderTy &Builder = CGF.Builder;
6194   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6195   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6196   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6197   llvm::Value *ArgAddr;
6198   unsigned Stride;
6199 
6200   switch (AI.getKind()) {
6201   case ABIArgInfo::Expand:
6202   case ABIArgInfo::InAlloca:
6203     llvm_unreachable("Unsupported ABI kind for va_arg");
6204 
6205   case ABIArgInfo::Extend:
6206     Stride = 8;
6207     ArgAddr = Builder
6208       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6209                           "extend");
6210     break;
6211 
6212   case ABIArgInfo::Direct:
6213     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6214     ArgAddr = Addr;
6215     break;
6216 
6217   case ABIArgInfo::Indirect:
6218     Stride = 8;
6219     ArgAddr = Builder.CreateBitCast(Addr,
6220                                     llvm::PointerType::getUnqual(ArgPtrTy),
6221                                     "indirect");
6222     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6223     break;
6224 
6225   case ABIArgInfo::Ignore:
6226     return llvm::UndefValue::get(ArgPtrTy);
6227   }
6228 
6229   // Update VAList.
6230   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6231   Builder.CreateStore(Addr, VAListAddrAsBPP);
6232 
6233   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6234 }
6235 
6236 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6237   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6238   for (auto &I : FI.arguments())
6239     I.info = classifyType(I.type, 16 * 8);
6240 }
6241 
6242 namespace {
6243 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6244 public:
6245   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6246     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6247 
6248   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6249     return 14;
6250   }
6251 
6252   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6253                                llvm::Value *Address) const override;
6254 };
6255 } // end anonymous namespace
6256 
6257 bool
6258 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6259                                                 llvm::Value *Address) const {
6260   // This is calculated from the LLVM and GCC tables and verified
6261   // against gcc output.  AFAIK all ABIs use the same encoding.
6262 
6263   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6264 
6265   llvm::IntegerType *i8 = CGF.Int8Ty;
6266   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6267   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6268 
6269   // 0-31: the 8-byte general-purpose registers
6270   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6271 
6272   // 32-63: f0-31, the 4-byte floating-point registers
6273   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6274 
6275   //   Y   = 64
6276   //   PSR = 65
6277   //   WIM = 66
6278   //   TBR = 67
6279   //   PC  = 68
6280   //   NPC = 69
6281   //   FSR = 70
6282   //   CSR = 71
6283   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6284 
6285   // 72-87: d0-15, the 8-byte floating-point registers
6286   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6287 
6288   return false;
6289 }
6290 
6291 
6292 //===----------------------------------------------------------------------===//
6293 // XCore ABI Implementation
6294 //===----------------------------------------------------------------------===//
6295 
6296 namespace {
6297 
6298 /// A SmallStringEnc instance is used to build up the TypeString by passing
6299 /// it by reference between functions that append to it.
6300 typedef llvm::SmallString<128> SmallStringEnc;
6301 
6302 /// TypeStringCache caches the meta encodings of Types.
6303 ///
6304 /// The reason for caching TypeStrings is two fold:
6305 ///   1. To cache a type's encoding for later uses;
6306 ///   2. As a means to break recursive member type inclusion.
6307 ///
6308 /// A cache Entry can have a Status of:
6309 ///   NonRecursive:   The type encoding is not recursive;
6310 ///   Recursive:      The type encoding is recursive;
6311 ///   Incomplete:     An incomplete TypeString;
6312 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6313 ///                   Recursive type encoding.
6314 ///
6315 /// A NonRecursive entry will have all of its sub-members expanded as fully
6316 /// as possible. Whilst it may contain types which are recursive, the type
6317 /// itself is not recursive and thus its encoding may be safely used whenever
6318 /// the type is encountered.
6319 ///
6320 /// A Recursive entry will have all of its sub-members expanded as fully as
6321 /// possible. The type itself is recursive and it may contain other types which
6322 /// are recursive. The Recursive encoding must not be used during the expansion
6323 /// of a recursive type's recursive branch. For simplicity the code uses
6324 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6325 ///
6326 /// An Incomplete entry is always a RecordType and only encodes its
6327 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6328 /// are placed into the cache during type expansion as a means to identify and
6329 /// handle recursive inclusion of types as sub-members. If there is recursion
6330 /// the entry becomes IncompleteUsed.
6331 ///
6332 /// During the expansion of a RecordType's members:
6333 ///
6334 ///   If the cache contains a NonRecursive encoding for the member type, the
6335 ///   cached encoding is used;
6336 ///
6337 ///   If the cache contains a Recursive encoding for the member type, the
6338 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6339 ///
6340 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6341 ///   cache to break potential recursive inclusion of itself as a sub-member;
6342 ///
6343 ///   Once a member RecordType has been expanded, its temporary incomplete
6344 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6345 ///   it is swapped back in;
6346 ///
6347 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6348 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6349 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6350 ///
6351 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6352 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6353 ///   Else the member is part of a recursive type and thus the recursion has
6354 ///   been exited too soon for the encoding to be correct for the member.
6355 ///
6356 class TypeStringCache {
6357   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6358   struct Entry {
6359     std::string Str;     // The encoded TypeString for the type.
6360     enum Status State;   // Information about the encoding in 'Str'.
6361     std::string Swapped; // A temporary place holder for a Recursive encoding
6362                          // during the expansion of RecordType's members.
6363   };
6364   std::map<const IdentifierInfo *, struct Entry> Map;
6365   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6366   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6367 public:
6368   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6369   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6370   bool removeIncomplete(const IdentifierInfo *ID);
6371   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6372                      bool IsRecursive);
6373   StringRef lookupStr(const IdentifierInfo *ID);
6374 };
6375 
6376 /// TypeString encodings for enum & union fields must be order.
6377 /// FieldEncoding is a helper for this ordering process.
6378 class FieldEncoding {
6379   bool HasName;
6380   std::string Enc;
6381 public:
6382   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6383   StringRef str() {return Enc.c_str();};
6384   bool operator<(const FieldEncoding &rhs) const {
6385     if (HasName != rhs.HasName) return HasName;
6386     return Enc < rhs.Enc;
6387   }
6388 };
6389 
6390 class XCoreABIInfo : public DefaultABIInfo {
6391 public:
6392   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6393   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6394                          CodeGenFunction &CGF) const override;
6395 };
6396 
6397 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6398   mutable TypeStringCache TSC;
6399 public:
6400   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6401     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6402   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6403                     CodeGen::CodeGenModule &M) const override;
6404 };
6405 
6406 } // End anonymous namespace.
6407 
6408 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6409                                      CodeGenFunction &CGF) const {
6410   CGBuilderTy &Builder = CGF.Builder;
6411 
6412   // Get the VAList.
6413   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6414                                                        CGF.Int8PtrPtrTy);
6415   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6416 
6417   // Handle the argument.
6418   ABIArgInfo AI = classifyArgumentType(Ty);
6419   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6420   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6421     AI.setCoerceToType(ArgTy);
6422   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6423   llvm::Value *Val;
6424   uint64_t ArgSize = 0;
6425   switch (AI.getKind()) {
6426   case ABIArgInfo::Expand:
6427   case ABIArgInfo::InAlloca:
6428     llvm_unreachable("Unsupported ABI kind for va_arg");
6429   case ABIArgInfo::Ignore:
6430     Val = llvm::UndefValue::get(ArgPtrTy);
6431     ArgSize = 0;
6432     break;
6433   case ABIArgInfo::Extend:
6434   case ABIArgInfo::Direct:
6435     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6436     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6437     if (ArgSize < 4)
6438       ArgSize = 4;
6439     break;
6440   case ABIArgInfo::Indirect:
6441     llvm::Value *ArgAddr;
6442     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6443     ArgAddr = Builder.CreateLoad(ArgAddr);
6444     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6445     ArgSize = 4;
6446     break;
6447   }
6448 
6449   // Increment the VAList.
6450   if (ArgSize) {
6451     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6452     Builder.CreateStore(APN, VAListAddrAsBPP);
6453   }
6454   return Val;
6455 }
6456 
6457 /// During the expansion of a RecordType, an incomplete TypeString is placed
6458 /// into the cache as a means to identify and break recursion.
6459 /// If there is a Recursive encoding in the cache, it is swapped out and will
6460 /// be reinserted by removeIncomplete().
6461 /// All other types of encoding should have been used rather than arriving here.
6462 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6463                                     std::string StubEnc) {
6464   if (!ID)
6465     return;
6466   Entry &E = Map[ID];
6467   assert( (E.Str.empty() || E.State == Recursive) &&
6468          "Incorrectly use of addIncomplete");
6469   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6470   E.Swapped.swap(E.Str); // swap out the Recursive
6471   E.Str.swap(StubEnc);
6472   E.State = Incomplete;
6473   ++IncompleteCount;
6474 }
6475 
6476 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6477 /// must be removed from the cache.
6478 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6479 /// Returns true if the RecordType was defined recursively.
6480 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6481   if (!ID)
6482     return false;
6483   auto I = Map.find(ID);
6484   assert(I != Map.end() && "Entry not present");
6485   Entry &E = I->second;
6486   assert( (E.State == Incomplete ||
6487            E.State == IncompleteUsed) &&
6488          "Entry must be an incomplete type");
6489   bool IsRecursive = false;
6490   if (E.State == IncompleteUsed) {
6491     // We made use of our Incomplete encoding, thus we are recursive.
6492     IsRecursive = true;
6493     --IncompleteUsedCount;
6494   }
6495   if (E.Swapped.empty())
6496     Map.erase(I);
6497   else {
6498     // Swap the Recursive back.
6499     E.Swapped.swap(E.Str);
6500     E.Swapped.clear();
6501     E.State = Recursive;
6502   }
6503   --IncompleteCount;
6504   return IsRecursive;
6505 }
6506 
6507 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6508 /// Recursive (viz: all sub-members were expanded as fully as possible).
6509 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6510                                     bool IsRecursive) {
6511   if (!ID || IncompleteUsedCount)
6512     return; // No key or it is is an incomplete sub-type so don't add.
6513   Entry &E = Map[ID];
6514   if (IsRecursive && !E.Str.empty()) {
6515     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6516            "This is not the same Recursive entry");
6517     // The parent container was not recursive after all, so we could have used
6518     // this Recursive sub-member entry after all, but we assumed the worse when
6519     // we started viz: IncompleteCount!=0.
6520     return;
6521   }
6522   assert(E.Str.empty() && "Entry already present");
6523   E.Str = Str.str();
6524   E.State = IsRecursive? Recursive : NonRecursive;
6525 }
6526 
6527 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6528 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6529 /// encoding is Recursive, return an empty StringRef.
6530 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6531   if (!ID)
6532     return StringRef();   // We have no key.
6533   auto I = Map.find(ID);
6534   if (I == Map.end())
6535     return StringRef();   // We have no encoding.
6536   Entry &E = I->second;
6537   if (E.State == Recursive && IncompleteCount)
6538     return StringRef();   // We don't use Recursive encodings for member types.
6539 
6540   if (E.State == Incomplete) {
6541     // The incomplete type is being used to break out of recursion.
6542     E.State = IncompleteUsed;
6543     ++IncompleteUsedCount;
6544   }
6545   return E.Str.c_str();
6546 }
6547 
6548 /// The XCore ABI includes a type information section that communicates symbol
6549 /// type information to the linker. The linker uses this information to verify
6550 /// safety/correctness of things such as array bound and pointers et al.
6551 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6552 /// This type information (TypeString) is emitted into meta data for all global
6553 /// symbols: definitions, declarations, functions & variables.
6554 ///
6555 /// The TypeString carries type, qualifier, name, size & value details.
6556 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6557 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6558 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6559 ///
6560 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6561                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6562 
6563 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6564 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6565                                           CodeGen::CodeGenModule &CGM) const {
6566   SmallStringEnc Enc;
6567   if (getTypeString(Enc, D, CGM, TSC)) {
6568     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6569     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6570     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6571     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6572     llvm::NamedMDNode *MD =
6573       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6574     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6575   }
6576 }
6577 
6578 static bool appendType(SmallStringEnc &Enc, QualType QType,
6579                        const CodeGen::CodeGenModule &CGM,
6580                        TypeStringCache &TSC);
6581 
6582 /// Helper function for appendRecordType().
6583 /// Builds a SmallVector containing the encoded field types in declaration order.
6584 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6585                              const RecordDecl *RD,
6586                              const CodeGen::CodeGenModule &CGM,
6587                              TypeStringCache &TSC) {
6588   for (const auto *Field : RD->fields()) {
6589     SmallStringEnc Enc;
6590     Enc += "m(";
6591     Enc += Field->getName();
6592     Enc += "){";
6593     if (Field->isBitField()) {
6594       Enc += "b(";
6595       llvm::raw_svector_ostream OS(Enc);
6596       OS.resync();
6597       OS << Field->getBitWidthValue(CGM.getContext());
6598       OS.flush();
6599       Enc += ':';
6600     }
6601     if (!appendType(Enc, Field->getType(), CGM, TSC))
6602       return false;
6603     if (Field->isBitField())
6604       Enc += ')';
6605     Enc += '}';
6606     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6607   }
6608   return true;
6609 }
6610 
6611 /// Appends structure and union types to Enc and adds encoding to cache.
6612 /// Recursively calls appendType (via extractFieldType) for each field.
6613 /// Union types have their fields ordered according to the ABI.
6614 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6615                              const CodeGen::CodeGenModule &CGM,
6616                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6617   // Append the cached TypeString if we have one.
6618   StringRef TypeString = TSC.lookupStr(ID);
6619   if (!TypeString.empty()) {
6620     Enc += TypeString;
6621     return true;
6622   }
6623 
6624   // Start to emit an incomplete TypeString.
6625   size_t Start = Enc.size();
6626   Enc += (RT->isUnionType()? 'u' : 's');
6627   Enc += '(';
6628   if (ID)
6629     Enc += ID->getName();
6630   Enc += "){";
6631 
6632   // We collect all encoded fields and order as necessary.
6633   bool IsRecursive = false;
6634   const RecordDecl *RD = RT->getDecl()->getDefinition();
6635   if (RD && !RD->field_empty()) {
6636     // An incomplete TypeString stub is placed in the cache for this RecordType
6637     // so that recursive calls to this RecordType will use it whilst building a
6638     // complete TypeString for this RecordType.
6639     SmallVector<FieldEncoding, 16> FE;
6640     std::string StubEnc(Enc.substr(Start).str());
6641     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6642     TSC.addIncomplete(ID, std::move(StubEnc));
6643     if (!extractFieldType(FE, RD, CGM, TSC)) {
6644       (void) TSC.removeIncomplete(ID);
6645       return false;
6646     }
6647     IsRecursive = TSC.removeIncomplete(ID);
6648     // The ABI requires unions to be sorted but not structures.
6649     // See FieldEncoding::operator< for sort algorithm.
6650     if (RT->isUnionType())
6651       std::sort(FE.begin(), FE.end());
6652     // We can now complete the TypeString.
6653     unsigned E = FE.size();
6654     for (unsigned I = 0; I != E; ++I) {
6655       if (I)
6656         Enc += ',';
6657       Enc += FE[I].str();
6658     }
6659   }
6660   Enc += '}';
6661   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6662   return true;
6663 }
6664 
6665 /// Appends enum types to Enc and adds the encoding to the cache.
6666 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6667                            TypeStringCache &TSC,
6668                            const IdentifierInfo *ID) {
6669   // Append the cached TypeString if we have one.
6670   StringRef TypeString = TSC.lookupStr(ID);
6671   if (!TypeString.empty()) {
6672     Enc += TypeString;
6673     return true;
6674   }
6675 
6676   size_t Start = Enc.size();
6677   Enc += "e(";
6678   if (ID)
6679     Enc += ID->getName();
6680   Enc += "){";
6681 
6682   // We collect all encoded enumerations and order them alphanumerically.
6683   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6684     SmallVector<FieldEncoding, 16> FE;
6685     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6686          ++I) {
6687       SmallStringEnc EnumEnc;
6688       EnumEnc += "m(";
6689       EnumEnc += I->getName();
6690       EnumEnc += "){";
6691       I->getInitVal().toString(EnumEnc);
6692       EnumEnc += '}';
6693       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6694     }
6695     std::sort(FE.begin(), FE.end());
6696     unsigned E = FE.size();
6697     for (unsigned I = 0; I != E; ++I) {
6698       if (I)
6699         Enc += ',';
6700       Enc += FE[I].str();
6701     }
6702   }
6703   Enc += '}';
6704   TSC.addIfComplete(ID, Enc.substr(Start), false);
6705   return true;
6706 }
6707 
6708 /// Appends type's qualifier to Enc.
6709 /// This is done prior to appending the type's encoding.
6710 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6711   // Qualifiers are emitted in alphabetical order.
6712   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6713   int Lookup = 0;
6714   if (QT.isConstQualified())
6715     Lookup += 1<<0;
6716   if (QT.isRestrictQualified())
6717     Lookup += 1<<1;
6718   if (QT.isVolatileQualified())
6719     Lookup += 1<<2;
6720   Enc += Table[Lookup];
6721 }
6722 
6723 /// Appends built-in types to Enc.
6724 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6725   const char *EncType;
6726   switch (BT->getKind()) {
6727     case BuiltinType::Void:
6728       EncType = "0";
6729       break;
6730     case BuiltinType::Bool:
6731       EncType = "b";
6732       break;
6733     case BuiltinType::Char_U:
6734       EncType = "uc";
6735       break;
6736     case BuiltinType::UChar:
6737       EncType = "uc";
6738       break;
6739     case BuiltinType::SChar:
6740       EncType = "sc";
6741       break;
6742     case BuiltinType::UShort:
6743       EncType = "us";
6744       break;
6745     case BuiltinType::Short:
6746       EncType = "ss";
6747       break;
6748     case BuiltinType::UInt:
6749       EncType = "ui";
6750       break;
6751     case BuiltinType::Int:
6752       EncType = "si";
6753       break;
6754     case BuiltinType::ULong:
6755       EncType = "ul";
6756       break;
6757     case BuiltinType::Long:
6758       EncType = "sl";
6759       break;
6760     case BuiltinType::ULongLong:
6761       EncType = "ull";
6762       break;
6763     case BuiltinType::LongLong:
6764       EncType = "sll";
6765       break;
6766     case BuiltinType::Float:
6767       EncType = "ft";
6768       break;
6769     case BuiltinType::Double:
6770       EncType = "d";
6771       break;
6772     case BuiltinType::LongDouble:
6773       EncType = "ld";
6774       break;
6775     default:
6776       return false;
6777   }
6778   Enc += EncType;
6779   return true;
6780 }
6781 
6782 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6783 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6784                               const CodeGen::CodeGenModule &CGM,
6785                               TypeStringCache &TSC) {
6786   Enc += "p(";
6787   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6788     return false;
6789   Enc += ')';
6790   return true;
6791 }
6792 
6793 /// Appends array encoding to Enc before calling appendType for the element.
6794 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6795                             const ArrayType *AT,
6796                             const CodeGen::CodeGenModule &CGM,
6797                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6798   if (AT->getSizeModifier() != ArrayType::Normal)
6799     return false;
6800   Enc += "a(";
6801   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6802     CAT->getSize().toStringUnsigned(Enc);
6803   else
6804     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6805   Enc += ':';
6806   // The Qualifiers should be attached to the type rather than the array.
6807   appendQualifier(Enc, QT);
6808   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6809     return false;
6810   Enc += ')';
6811   return true;
6812 }
6813 
6814 /// Appends a function encoding to Enc, calling appendType for the return type
6815 /// and the arguments.
6816 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6817                              const CodeGen::CodeGenModule &CGM,
6818                              TypeStringCache &TSC) {
6819   Enc += "f{";
6820   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6821     return false;
6822   Enc += "}(";
6823   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6824     // N.B. we are only interested in the adjusted param types.
6825     auto I = FPT->param_type_begin();
6826     auto E = FPT->param_type_end();
6827     if (I != E) {
6828       do {
6829         if (!appendType(Enc, *I, CGM, TSC))
6830           return false;
6831         ++I;
6832         if (I != E)
6833           Enc += ',';
6834       } while (I != E);
6835       if (FPT->isVariadic())
6836         Enc += ",va";
6837     } else {
6838       if (FPT->isVariadic())
6839         Enc += "va";
6840       else
6841         Enc += '0';
6842     }
6843   }
6844   Enc += ')';
6845   return true;
6846 }
6847 
6848 /// Handles the type's qualifier before dispatching a call to handle specific
6849 /// type encodings.
6850 static bool appendType(SmallStringEnc &Enc, QualType QType,
6851                        const CodeGen::CodeGenModule &CGM,
6852                        TypeStringCache &TSC) {
6853 
6854   QualType QT = QType.getCanonicalType();
6855 
6856   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6857     // The Qualifiers should be attached to the type rather than the array.
6858     // Thus we don't call appendQualifier() here.
6859     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6860 
6861   appendQualifier(Enc, QT);
6862 
6863   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6864     return appendBuiltinType(Enc, BT);
6865 
6866   if (const PointerType *PT = QT->getAs<PointerType>())
6867     return appendPointerType(Enc, PT, CGM, TSC);
6868 
6869   if (const EnumType *ET = QT->getAs<EnumType>())
6870     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6871 
6872   if (const RecordType *RT = QT->getAsStructureType())
6873     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6874 
6875   if (const RecordType *RT = QT->getAsUnionType())
6876     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6877 
6878   if (const FunctionType *FT = QT->getAs<FunctionType>())
6879     return appendFunctionType(Enc, FT, CGM, TSC);
6880 
6881   return false;
6882 }
6883 
6884 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6885                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6886   if (!D)
6887     return false;
6888 
6889   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6890     if (FD->getLanguageLinkage() != CLanguageLinkage)
6891       return false;
6892     return appendType(Enc, FD->getType(), CGM, TSC);
6893   }
6894 
6895   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6896     if (VD->getLanguageLinkage() != CLanguageLinkage)
6897       return false;
6898     QualType QT = VD->getType().getCanonicalType();
6899     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6900       // Global ArrayTypes are given a size of '*' if the size is unknown.
6901       // The Qualifiers should be attached to the type rather than the array.
6902       // Thus we don't call appendQualifier() here.
6903       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6904     }
6905     return appendType(Enc, QT, CGM, TSC);
6906   }
6907   return false;
6908 }
6909 
6910 
6911 //===----------------------------------------------------------------------===//
6912 // Driver code
6913 //===----------------------------------------------------------------------===//
6914 
6915 const llvm::Triple &CodeGenModule::getTriple() const {
6916   return getTarget().getTriple();
6917 }
6918 
6919 bool CodeGenModule::supportsCOMDAT() const {
6920   return !getTriple().isOSBinFormatMachO();
6921 }
6922 
6923 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6924   if (TheTargetCodeGenInfo)
6925     return *TheTargetCodeGenInfo;
6926 
6927   const llvm::Triple &Triple = getTarget().getTriple();
6928   switch (Triple.getArch()) {
6929   default:
6930     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6931 
6932   case llvm::Triple::le32:
6933     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6934   case llvm::Triple::mips:
6935   case llvm::Triple::mipsel:
6936     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6937 
6938   case llvm::Triple::mips64:
6939   case llvm::Triple::mips64el:
6940     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6941 
6942   case llvm::Triple::aarch64:
6943   case llvm::Triple::aarch64_be: {
6944     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6945     if (getTarget().getABI() == "darwinpcs")
6946       Kind = AArch64ABIInfo::DarwinPCS;
6947 
6948     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6949   }
6950 
6951   case llvm::Triple::arm:
6952   case llvm::Triple::armeb:
6953   case llvm::Triple::thumb:
6954   case llvm::Triple::thumbeb:
6955     {
6956       if (Triple.getOS() == llvm::Triple::Win32) {
6957         TheTargetCodeGenInfo =
6958             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
6959         return *TheTargetCodeGenInfo;
6960       }
6961 
6962       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6963       if (getTarget().getABI() == "apcs-gnu")
6964         Kind = ARMABIInfo::APCS;
6965       else if (CodeGenOpts.FloatABI == "hard" ||
6966                (CodeGenOpts.FloatABI != "soft" &&
6967                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6968         Kind = ARMABIInfo::AAPCS_VFP;
6969 
6970       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
6971     }
6972 
6973   case llvm::Triple::ppc:
6974     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6975   case llvm::Triple::ppc64:
6976     if (Triple.isOSBinFormatELF()) {
6977       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
6978       if (getTarget().getABI() == "elfv2")
6979         Kind = PPC64_SVR4_ABIInfo::ELFv2;
6980 
6981       return *(TheTargetCodeGenInfo =
6982                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6983     } else
6984       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6985   case llvm::Triple::ppc64le: {
6986     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6987     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
6988     if (getTarget().getABI() == "elfv1")
6989       Kind = PPC64_SVR4_ABIInfo::ELFv1;
6990 
6991     return *(TheTargetCodeGenInfo =
6992              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6993   }
6994 
6995   case llvm::Triple::nvptx:
6996   case llvm::Triple::nvptx64:
6997     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
6998 
6999   case llvm::Triple::msp430:
7000     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7001 
7002   case llvm::Triple::systemz:
7003     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7004 
7005   case llvm::Triple::tce:
7006     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7007 
7008   case llvm::Triple::x86: {
7009     bool IsDarwinVectorABI = Triple.isOSDarwin();
7010     bool IsSmallStructInRegABI =
7011         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7012     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7013 
7014     if (Triple.getOS() == llvm::Triple::Win32) {
7015       return *(TheTargetCodeGenInfo =
7016                new WinX86_32TargetCodeGenInfo(Types,
7017                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7018                                               IsWin32FloatStructABI,
7019                                               CodeGenOpts.NumRegisterParameters));
7020     } else {
7021       return *(TheTargetCodeGenInfo =
7022                new X86_32TargetCodeGenInfo(Types,
7023                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7024                                            IsWin32FloatStructABI,
7025                                            CodeGenOpts.NumRegisterParameters));
7026     }
7027   }
7028 
7029   case llvm::Triple::x86_64: {
7030     bool HasAVX = getTarget().getABI() == "avx";
7031 
7032     switch (Triple.getOS()) {
7033     case llvm::Triple::Win32:
7034       return *(TheTargetCodeGenInfo =
7035                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7036     case llvm::Triple::PS4:
7037       return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7038     default:
7039       return *(TheTargetCodeGenInfo =
7040                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7041     }
7042   }
7043   case llvm::Triple::hexagon:
7044     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7045   case llvm::Triple::r600:
7046     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7047   case llvm::Triple::amdgcn:
7048     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7049   case llvm::Triple::sparcv9:
7050     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7051   case llvm::Triple::xcore:
7052     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7053   }
7054 }
7055