1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) { 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 } else if (FI.getReturnInfo().isIndirect()) { 963 // The C++ ABI is not aware of register usage, so we have to check if the 964 // return value was sret and put it in a register ourselves if appropriate. 965 if (State.FreeRegs) { 966 --State.FreeRegs; // The sret parameter consumes a register. 967 FI.getReturnInfo().setInReg(true); 968 } 969 } 970 971 bool UsedInAlloca = false; 972 for (auto &I : FI.arguments()) { 973 I.info = classifyArgumentType(I.type, State); 974 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 975 } 976 977 // If we needed to use inalloca for any argument, do a second pass and rewrite 978 // all the memory arguments to use inalloca. 979 if (UsedInAlloca) 980 rewriteWithInAlloca(FI); 981 } 982 983 void 984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 985 unsigned &StackOffset, 986 ABIArgInfo &Info, QualType Type) const { 987 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 988 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 989 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 990 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 991 992 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 993 // byte aligned. 994 if (StackOffset % 4U) { 995 unsigned OldOffset = StackOffset; 996 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 997 unsigned NumBytes = StackOffset - OldOffset; 998 assert(NumBytes); 999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1000 Ty = llvm::ArrayType::get(Ty, NumBytes); 1001 FrameFields.push_back(Ty); 1002 } 1003 } 1004 1005 static bool isArgInAlloca(const ABIArgInfo &Info) { 1006 // Leave ignored and inreg arguments alone. 1007 switch (Info.getKind()) { 1008 case ABIArgInfo::InAlloca: 1009 return true; 1010 case ABIArgInfo::Indirect: 1011 assert(Info.getIndirectByVal()); 1012 return true; 1013 case ABIArgInfo::Ignore: 1014 return false; 1015 case ABIArgInfo::Direct: 1016 case ABIArgInfo::Extend: 1017 case ABIArgInfo::Expand: 1018 if (Info.getInReg()) 1019 return false; 1020 return true; 1021 } 1022 llvm_unreachable("invalid enum"); 1023 } 1024 1025 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1026 assert(IsWin32StructABI && "inalloca only supported on win32"); 1027 1028 // Build a packed struct type for all of the arguments in memory. 1029 SmallVector<llvm::Type *, 6> FrameFields; 1030 1031 unsigned StackOffset = 0; 1032 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1033 1034 // Put 'this' into the struct before 'sret', if necessary. 1035 bool IsThisCall = 1036 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1037 ABIArgInfo &Ret = FI.getReturnInfo(); 1038 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1039 isArgInAlloca(I->info)) { 1040 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1041 ++I; 1042 } 1043 1044 // Put the sret parameter into the inalloca struct if it's in memory. 1045 if (Ret.isIndirect() && !Ret.getInReg()) { 1046 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1047 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1048 // On Windows, the hidden sret parameter is always returned in eax. 1049 Ret.setInAllocaSRet(IsWin32StructABI); 1050 } 1051 1052 // Skip the 'this' parameter in ecx. 1053 if (IsThisCall) 1054 ++I; 1055 1056 // Put arguments passed in memory into the struct. 1057 for (; I != E; ++I) { 1058 if (isArgInAlloca(I->info)) 1059 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1060 } 1061 1062 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1063 /*isPacked=*/true)); 1064 } 1065 1066 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1067 CodeGenFunction &CGF) const { 1068 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1069 1070 CGBuilderTy &Builder = CGF.Builder; 1071 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1072 "ap"); 1073 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1074 1075 // Compute if the address needs to be aligned 1076 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1077 Align = getTypeStackAlignInBytes(Ty, Align); 1078 Align = std::max(Align, 4U); 1079 if (Align > 4) { 1080 // addr = (addr + align - 1) & -align; 1081 llvm::Value *Offset = 1082 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1083 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1084 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1085 CGF.Int32Ty); 1086 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1087 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1088 Addr->getType(), 1089 "ap.cur.aligned"); 1090 } 1091 1092 llvm::Type *PTy = 1093 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1094 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1095 1096 uint64_t Offset = 1097 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1098 llvm::Value *NextAddr = 1099 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1100 "ap.next"); 1101 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1102 1103 return AddrTyped; 1104 } 1105 1106 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1107 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1108 assert(Triple.getArch() == llvm::Triple::x86); 1109 1110 switch (Opts.getStructReturnConvention()) { 1111 case CodeGenOptions::SRCK_Default: 1112 break; 1113 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1114 return false; 1115 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1116 return true; 1117 } 1118 1119 if (Triple.isOSDarwin()) 1120 return true; 1121 1122 switch (Triple.getOS()) { 1123 case llvm::Triple::DragonFly: 1124 case llvm::Triple::FreeBSD: 1125 case llvm::Triple::OpenBSD: 1126 case llvm::Triple::Bitrig: 1127 return true; 1128 case llvm::Triple::Win32: 1129 switch (Triple.getEnvironment()) { 1130 case llvm::Triple::UnknownEnvironment: 1131 case llvm::Triple::Cygnus: 1132 case llvm::Triple::GNU: 1133 case llvm::Triple::MSVC: 1134 return true; 1135 default: 1136 return false; 1137 } 1138 default: 1139 return false; 1140 } 1141 } 1142 1143 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1144 llvm::GlobalValue *GV, 1145 CodeGen::CodeGenModule &CGM) const { 1146 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1147 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1148 // Get the LLVM function. 1149 llvm::Function *Fn = cast<llvm::Function>(GV); 1150 1151 // Now add the 'alignstack' attribute with a value of 16. 1152 llvm::AttrBuilder B; 1153 B.addStackAlignmentAttr(16); 1154 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1155 llvm::AttributeSet::get(CGM.getLLVMContext(), 1156 llvm::AttributeSet::FunctionIndex, 1157 B)); 1158 } 1159 } 1160 } 1161 1162 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1163 CodeGen::CodeGenFunction &CGF, 1164 llvm::Value *Address) const { 1165 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1166 1167 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1168 1169 // 0-7 are the eight integer registers; the order is different 1170 // on Darwin (for EH), but the range is the same. 1171 // 8 is %eip. 1172 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1173 1174 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1175 // 12-16 are st(0..4). Not sure why we stop at 4. 1176 // These have size 16, which is sizeof(long double) on 1177 // platforms with 8-byte alignment for that type. 1178 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1179 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1180 1181 } else { 1182 // 9 is %eflags, which doesn't get a size on Darwin for some 1183 // reason. 1184 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1185 1186 // 11-16 are st(0..5). Not sure why we stop at 5. 1187 // These have size 12, which is sizeof(long double) on 1188 // platforms with 4-byte alignment for that type. 1189 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1190 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1191 } 1192 1193 return false; 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // X86-64 ABI Implementation 1198 //===----------------------------------------------------------------------===// 1199 1200 1201 namespace { 1202 /// X86_64ABIInfo - The X86_64 ABI information. 1203 class X86_64ABIInfo : public ABIInfo { 1204 enum Class { 1205 Integer = 0, 1206 SSE, 1207 SSEUp, 1208 X87, 1209 X87Up, 1210 ComplexX87, 1211 NoClass, 1212 Memory 1213 }; 1214 1215 /// merge - Implement the X86_64 ABI merging algorithm. 1216 /// 1217 /// Merge an accumulating classification \arg Accum with a field 1218 /// classification \arg Field. 1219 /// 1220 /// \param Accum - The accumulating classification. This should 1221 /// always be either NoClass or the result of a previous merge 1222 /// call. In addition, this should never be Memory (the caller 1223 /// should just return Memory for the aggregate). 1224 static Class merge(Class Accum, Class Field); 1225 1226 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1227 /// 1228 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1229 /// final MEMORY or SSE classes when necessary. 1230 /// 1231 /// \param AggregateSize - The size of the current aggregate in 1232 /// the classification process. 1233 /// 1234 /// \param Lo - The classification for the parts of the type 1235 /// residing in the low word of the containing object. 1236 /// 1237 /// \param Hi - The classification for the parts of the type 1238 /// residing in the higher words of the containing object. 1239 /// 1240 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1241 1242 /// classify - Determine the x86_64 register classes in which the 1243 /// given type T should be passed. 1244 /// 1245 /// \param Lo - The classification for the parts of the type 1246 /// residing in the low word of the containing object. 1247 /// 1248 /// \param Hi - The classification for the parts of the type 1249 /// residing in the high word of the containing object. 1250 /// 1251 /// \param OffsetBase - The bit offset of this type in the 1252 /// containing object. Some parameters are classified different 1253 /// depending on whether they straddle an eightbyte boundary. 1254 /// 1255 /// \param isNamedArg - Whether the argument in question is a "named" 1256 /// argument, as used in AMD64-ABI 3.5.7. 1257 /// 1258 /// If a word is unused its result will be NoClass; if a type should 1259 /// be passed in Memory then at least the classification of \arg Lo 1260 /// will be Memory. 1261 /// 1262 /// The \arg Lo class will be NoClass iff the argument is ignored. 1263 /// 1264 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1265 /// also be ComplexX87. 1266 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1267 bool isNamedArg) const; 1268 1269 llvm::Type *GetByteVectorType(QualType Ty) const; 1270 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1271 unsigned IROffset, QualType SourceTy, 1272 unsigned SourceOffset) const; 1273 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1274 unsigned IROffset, QualType SourceTy, 1275 unsigned SourceOffset) const; 1276 1277 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1278 /// such that the argument will be returned in memory. 1279 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1280 1281 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1282 /// such that the argument will be passed in memory. 1283 /// 1284 /// \param freeIntRegs - The number of free integer registers remaining 1285 /// available. 1286 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1287 1288 ABIArgInfo classifyReturnType(QualType RetTy) const; 1289 1290 ABIArgInfo classifyArgumentType(QualType Ty, 1291 unsigned freeIntRegs, 1292 unsigned &neededInt, 1293 unsigned &neededSSE, 1294 bool isNamedArg) const; 1295 1296 bool IsIllegalVectorType(QualType Ty) const; 1297 1298 /// The 0.98 ABI revision clarified a lot of ambiguities, 1299 /// unfortunately in ways that were not always consistent with 1300 /// certain previous compilers. In particular, platforms which 1301 /// required strict binary compatibility with older versions of GCC 1302 /// may need to exempt themselves. 1303 bool honorsRevision0_98() const { 1304 return !getTarget().getTriple().isOSDarwin(); 1305 } 1306 1307 bool HasAVX; 1308 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1309 // 64-bit hardware. 1310 bool Has64BitPointers; 1311 1312 public: 1313 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1314 ABIInfo(CGT), HasAVX(hasavx), 1315 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1316 } 1317 1318 bool isPassedUsingAVXType(QualType type) const { 1319 unsigned neededInt, neededSSE; 1320 // The freeIntRegs argument doesn't matter here. 1321 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1322 /*isNamedArg*/true); 1323 if (info.isDirect()) { 1324 llvm::Type *ty = info.getCoerceToType(); 1325 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1326 return (vectorTy->getBitWidth() > 128); 1327 } 1328 return false; 1329 } 1330 1331 void computeInfo(CGFunctionInfo &FI) const override; 1332 1333 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1334 CodeGenFunction &CGF) const override; 1335 }; 1336 1337 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1338 class WinX86_64ABIInfo : public ABIInfo { 1339 1340 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1341 1342 public: 1343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1344 1345 void computeInfo(CGFunctionInfo &FI) const override; 1346 1347 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1348 CodeGenFunction &CGF) const override; 1349 }; 1350 1351 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1352 public: 1353 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1354 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1355 1356 const X86_64ABIInfo &getABIInfo() const { 1357 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1358 } 1359 1360 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1361 return 7; 1362 } 1363 1364 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1365 llvm::Value *Address) const override { 1366 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1367 1368 // 0-15 are the 16 integer registers. 1369 // 16 is %rip. 1370 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1371 return false; 1372 } 1373 1374 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1375 StringRef Constraint, 1376 llvm::Type* Ty) const override { 1377 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1378 } 1379 1380 bool isNoProtoCallVariadic(const CallArgList &args, 1381 const FunctionNoProtoType *fnType) const override { 1382 // The default CC on x86-64 sets %al to the number of SSA 1383 // registers used, and GCC sets this when calling an unprototyped 1384 // function, so we override the default behavior. However, don't do 1385 // that when AVX types are involved: the ABI explicitly states it is 1386 // undefined, and it doesn't work in practice because of how the ABI 1387 // defines varargs anyway. 1388 if (fnType->getCallConv() == CC_C) { 1389 bool HasAVXType = false; 1390 for (CallArgList::const_iterator 1391 it = args.begin(), ie = args.end(); it != ie; ++it) { 1392 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1393 HasAVXType = true; 1394 break; 1395 } 1396 } 1397 1398 if (!HasAVXType) 1399 return true; 1400 } 1401 1402 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1403 } 1404 1405 llvm::Constant * 1406 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1407 unsigned Sig = (0xeb << 0) | // jmp rel8 1408 (0x0a << 8) | // .+0x0c 1409 ('F' << 16) | 1410 ('T' << 24); 1411 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1412 } 1413 1414 }; 1415 1416 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1417 // If the argument does not end in .lib, automatically add the suffix. This 1418 // matches the behavior of MSVC. 1419 std::string ArgStr = Lib; 1420 if (!Lib.endswith_lower(".lib")) 1421 ArgStr += ".lib"; 1422 return ArgStr; 1423 } 1424 1425 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1426 public: 1427 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1428 bool d, bool p, bool w, unsigned RegParms) 1429 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1430 1431 void getDependentLibraryOption(llvm::StringRef Lib, 1432 llvm::SmallString<24> &Opt) const override { 1433 Opt = "/DEFAULTLIB:"; 1434 Opt += qualifyWindowsLibrary(Lib); 1435 } 1436 1437 void getDetectMismatchOption(llvm::StringRef Name, 1438 llvm::StringRef Value, 1439 llvm::SmallString<32> &Opt) const override { 1440 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1441 } 1442 }; 1443 1444 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1445 public: 1446 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1447 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1448 1449 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1450 return 7; 1451 } 1452 1453 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1454 llvm::Value *Address) const override { 1455 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1456 1457 // 0-15 are the 16 integer registers. 1458 // 16 is %rip. 1459 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1460 return false; 1461 } 1462 1463 void getDependentLibraryOption(llvm::StringRef Lib, 1464 llvm::SmallString<24> &Opt) const override { 1465 Opt = "/DEFAULTLIB:"; 1466 Opt += qualifyWindowsLibrary(Lib); 1467 } 1468 1469 void getDetectMismatchOption(llvm::StringRef Name, 1470 llvm::StringRef Value, 1471 llvm::SmallString<32> &Opt) const override { 1472 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1473 } 1474 }; 1475 1476 } 1477 1478 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1479 Class &Hi) const { 1480 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1481 // 1482 // (a) If one of the classes is Memory, the whole argument is passed in 1483 // memory. 1484 // 1485 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1486 // memory. 1487 // 1488 // (c) If the size of the aggregate exceeds two eightbytes and the first 1489 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1490 // argument is passed in memory. NOTE: This is necessary to keep the 1491 // ABI working for processors that don't support the __m256 type. 1492 // 1493 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1494 // 1495 // Some of these are enforced by the merging logic. Others can arise 1496 // only with unions; for example: 1497 // union { _Complex double; unsigned; } 1498 // 1499 // Note that clauses (b) and (c) were added in 0.98. 1500 // 1501 if (Hi == Memory) 1502 Lo = Memory; 1503 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1504 Lo = Memory; 1505 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1506 Lo = Memory; 1507 if (Hi == SSEUp && Lo != SSE) 1508 Hi = SSE; 1509 } 1510 1511 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1512 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1513 // classified recursively so that always two fields are 1514 // considered. The resulting class is calculated according to 1515 // the classes of the fields in the eightbyte: 1516 // 1517 // (a) If both classes are equal, this is the resulting class. 1518 // 1519 // (b) If one of the classes is NO_CLASS, the resulting class is 1520 // the other class. 1521 // 1522 // (c) If one of the classes is MEMORY, the result is the MEMORY 1523 // class. 1524 // 1525 // (d) If one of the classes is INTEGER, the result is the 1526 // INTEGER. 1527 // 1528 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1529 // MEMORY is used as class. 1530 // 1531 // (f) Otherwise class SSE is used. 1532 1533 // Accum should never be memory (we should have returned) or 1534 // ComplexX87 (because this cannot be passed in a structure). 1535 assert((Accum != Memory && Accum != ComplexX87) && 1536 "Invalid accumulated classification during merge."); 1537 if (Accum == Field || Field == NoClass) 1538 return Accum; 1539 if (Field == Memory) 1540 return Memory; 1541 if (Accum == NoClass) 1542 return Field; 1543 if (Accum == Integer || Field == Integer) 1544 return Integer; 1545 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1546 Accum == X87 || Accum == X87Up) 1547 return Memory; 1548 return SSE; 1549 } 1550 1551 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1552 Class &Lo, Class &Hi, bool isNamedArg) const { 1553 // FIXME: This code can be simplified by introducing a simple value class for 1554 // Class pairs with appropriate constructor methods for the various 1555 // situations. 1556 1557 // FIXME: Some of the split computations are wrong; unaligned vectors 1558 // shouldn't be passed in registers for example, so there is no chance they 1559 // can straddle an eightbyte. Verify & simplify. 1560 1561 Lo = Hi = NoClass; 1562 1563 Class &Current = OffsetBase < 64 ? Lo : Hi; 1564 Current = Memory; 1565 1566 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1567 BuiltinType::Kind k = BT->getKind(); 1568 1569 if (k == BuiltinType::Void) { 1570 Current = NoClass; 1571 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1572 Lo = Integer; 1573 Hi = Integer; 1574 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1575 Current = Integer; 1576 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1577 (k == BuiltinType::LongDouble && 1578 getTarget().getTriple().isOSNaCl())) { 1579 Current = SSE; 1580 } else if (k == BuiltinType::LongDouble) { 1581 Lo = X87; 1582 Hi = X87Up; 1583 } 1584 // FIXME: _Decimal32 and _Decimal64 are SSE. 1585 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1586 return; 1587 } 1588 1589 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1590 // Classify the underlying integer type. 1591 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1592 return; 1593 } 1594 1595 if (Ty->hasPointerRepresentation()) { 1596 Current = Integer; 1597 return; 1598 } 1599 1600 if (Ty->isMemberPointerType()) { 1601 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1602 Lo = Hi = Integer; 1603 else 1604 Current = Integer; 1605 return; 1606 } 1607 1608 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1609 uint64_t Size = getContext().getTypeSize(VT); 1610 if (Size == 32) { 1611 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1612 // float> as integer. 1613 Current = Integer; 1614 1615 // If this type crosses an eightbyte boundary, it should be 1616 // split. 1617 uint64_t EB_Real = (OffsetBase) / 64; 1618 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1619 if (EB_Real != EB_Imag) 1620 Hi = Lo; 1621 } else if (Size == 64) { 1622 // gcc passes <1 x double> in memory. :( 1623 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1624 return; 1625 1626 // gcc passes <1 x long long> as INTEGER. 1627 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1628 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1629 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1630 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1631 Current = Integer; 1632 else 1633 Current = SSE; 1634 1635 // If this type crosses an eightbyte boundary, it should be 1636 // split. 1637 if (OffsetBase && OffsetBase != 64) 1638 Hi = Lo; 1639 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1640 // Arguments of 256-bits are split into four eightbyte chunks. The 1641 // least significant one belongs to class SSE and all the others to class 1642 // SSEUP. The original Lo and Hi design considers that types can't be 1643 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1644 // This design isn't correct for 256-bits, but since there're no cases 1645 // where the upper parts would need to be inspected, avoid adding 1646 // complexity and just consider Hi to match the 64-256 part. 1647 // 1648 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1649 // registers if they are "named", i.e. not part of the "..." of a 1650 // variadic function. 1651 Lo = SSE; 1652 Hi = SSEUp; 1653 } 1654 return; 1655 } 1656 1657 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1658 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1659 1660 uint64_t Size = getContext().getTypeSize(Ty); 1661 if (ET->isIntegralOrEnumerationType()) { 1662 if (Size <= 64) 1663 Current = Integer; 1664 else if (Size <= 128) 1665 Lo = Hi = Integer; 1666 } else if (ET == getContext().FloatTy) 1667 Current = SSE; 1668 else if (ET == getContext().DoubleTy || 1669 (ET == getContext().LongDoubleTy && 1670 getTarget().getTriple().isOSNaCl())) 1671 Lo = Hi = SSE; 1672 else if (ET == getContext().LongDoubleTy) 1673 Current = ComplexX87; 1674 1675 // If this complex type crosses an eightbyte boundary then it 1676 // should be split. 1677 uint64_t EB_Real = (OffsetBase) / 64; 1678 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1679 if (Hi == NoClass && EB_Real != EB_Imag) 1680 Hi = Lo; 1681 1682 return; 1683 } 1684 1685 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1686 // Arrays are treated like structures. 1687 1688 uint64_t Size = getContext().getTypeSize(Ty); 1689 1690 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1691 // than four eightbytes, ..., it has class MEMORY. 1692 if (Size > 256) 1693 return; 1694 1695 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1696 // fields, it has class MEMORY. 1697 // 1698 // Only need to check alignment of array base. 1699 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1700 return; 1701 1702 // Otherwise implement simplified merge. We could be smarter about 1703 // this, but it isn't worth it and would be harder to verify. 1704 Current = NoClass; 1705 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1706 uint64_t ArraySize = AT->getSize().getZExtValue(); 1707 1708 // The only case a 256-bit wide vector could be used is when the array 1709 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1710 // to work for sizes wider than 128, early check and fallback to memory. 1711 if (Size > 128 && EltSize != 256) 1712 return; 1713 1714 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1715 Class FieldLo, FieldHi; 1716 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1717 Lo = merge(Lo, FieldLo); 1718 Hi = merge(Hi, FieldHi); 1719 if (Lo == Memory || Hi == Memory) 1720 break; 1721 } 1722 1723 postMerge(Size, Lo, Hi); 1724 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1725 return; 1726 } 1727 1728 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1729 uint64_t Size = getContext().getTypeSize(Ty); 1730 1731 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1732 // than four eightbytes, ..., it has class MEMORY. 1733 if (Size > 256) 1734 return; 1735 1736 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1737 // copy constructor or a non-trivial destructor, it is passed by invisible 1738 // reference. 1739 if (getRecordArgABI(RT, getCXXABI())) 1740 return; 1741 1742 const RecordDecl *RD = RT->getDecl(); 1743 1744 // Assume variable sized types are passed in memory. 1745 if (RD->hasFlexibleArrayMember()) 1746 return; 1747 1748 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1749 1750 // Reset Lo class, this will be recomputed. 1751 Current = NoClass; 1752 1753 // If this is a C++ record, classify the bases first. 1754 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1755 for (const auto &I : CXXRD->bases()) { 1756 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1757 "Unexpected base class!"); 1758 const CXXRecordDecl *Base = 1759 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1760 1761 // Classify this field. 1762 // 1763 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1764 // single eightbyte, each is classified separately. Each eightbyte gets 1765 // initialized to class NO_CLASS. 1766 Class FieldLo, FieldHi; 1767 uint64_t Offset = 1768 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1769 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1770 Lo = merge(Lo, FieldLo); 1771 Hi = merge(Hi, FieldHi); 1772 if (Lo == Memory || Hi == Memory) 1773 break; 1774 } 1775 } 1776 1777 // Classify the fields one at a time, merging the results. 1778 unsigned idx = 0; 1779 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1780 i != e; ++i, ++idx) { 1781 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1782 bool BitField = i->isBitField(); 1783 1784 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1785 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1786 // 1787 // The only case a 256-bit wide vector could be used is when the struct 1788 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1789 // to work for sizes wider than 128, early check and fallback to memory. 1790 // 1791 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1792 Lo = Memory; 1793 return; 1794 } 1795 // Note, skip this test for bit-fields, see below. 1796 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1797 Lo = Memory; 1798 return; 1799 } 1800 1801 // Classify this field. 1802 // 1803 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1804 // exceeds a single eightbyte, each is classified 1805 // separately. Each eightbyte gets initialized to class 1806 // NO_CLASS. 1807 Class FieldLo, FieldHi; 1808 1809 // Bit-fields require special handling, they do not force the 1810 // structure to be passed in memory even if unaligned, and 1811 // therefore they can straddle an eightbyte. 1812 if (BitField) { 1813 // Ignore padding bit-fields. 1814 if (i->isUnnamedBitfield()) 1815 continue; 1816 1817 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1818 uint64_t Size = i->getBitWidthValue(getContext()); 1819 1820 uint64_t EB_Lo = Offset / 64; 1821 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1822 1823 if (EB_Lo) { 1824 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1825 FieldLo = NoClass; 1826 FieldHi = Integer; 1827 } else { 1828 FieldLo = Integer; 1829 FieldHi = EB_Hi ? Integer : NoClass; 1830 } 1831 } else 1832 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1833 Lo = merge(Lo, FieldLo); 1834 Hi = merge(Hi, FieldHi); 1835 if (Lo == Memory || Hi == Memory) 1836 break; 1837 } 1838 1839 postMerge(Size, Lo, Hi); 1840 } 1841 } 1842 1843 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1844 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1845 // place naturally. 1846 if (!isAggregateTypeForABI(Ty)) { 1847 // Treat an enum type as its underlying type. 1848 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1849 Ty = EnumTy->getDecl()->getIntegerType(); 1850 1851 return (Ty->isPromotableIntegerType() ? 1852 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1853 } 1854 1855 return ABIArgInfo::getIndirect(0); 1856 } 1857 1858 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1859 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1860 uint64_t Size = getContext().getTypeSize(VecTy); 1861 unsigned LargestVector = HasAVX ? 256 : 128; 1862 if (Size <= 64 || Size > LargestVector) 1863 return true; 1864 } 1865 1866 return false; 1867 } 1868 1869 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1870 unsigned freeIntRegs) const { 1871 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1872 // place naturally. 1873 // 1874 // This assumption is optimistic, as there could be free registers available 1875 // when we need to pass this argument in memory, and LLVM could try to pass 1876 // the argument in the free register. This does not seem to happen currently, 1877 // but this code would be much safer if we could mark the argument with 1878 // 'onstack'. See PR12193. 1879 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1880 // Treat an enum type as its underlying type. 1881 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1882 Ty = EnumTy->getDecl()->getIntegerType(); 1883 1884 return (Ty->isPromotableIntegerType() ? 1885 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1886 } 1887 1888 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1889 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1890 1891 // Compute the byval alignment. We specify the alignment of the byval in all 1892 // cases so that the mid-level optimizer knows the alignment of the byval. 1893 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1894 1895 // Attempt to avoid passing indirect results using byval when possible. This 1896 // is important for good codegen. 1897 // 1898 // We do this by coercing the value into a scalar type which the backend can 1899 // handle naturally (i.e., without using byval). 1900 // 1901 // For simplicity, we currently only do this when we have exhausted all of the 1902 // free integer registers. Doing this when there are free integer registers 1903 // would require more care, as we would have to ensure that the coerced value 1904 // did not claim the unused register. That would require either reording the 1905 // arguments to the function (so that any subsequent inreg values came first), 1906 // or only doing this optimization when there were no following arguments that 1907 // might be inreg. 1908 // 1909 // We currently expect it to be rare (particularly in well written code) for 1910 // arguments to be passed on the stack when there are still free integer 1911 // registers available (this would typically imply large structs being passed 1912 // by value), so this seems like a fair tradeoff for now. 1913 // 1914 // We can revisit this if the backend grows support for 'onstack' parameter 1915 // attributes. See PR12193. 1916 if (freeIntRegs == 0) { 1917 uint64_t Size = getContext().getTypeSize(Ty); 1918 1919 // If this type fits in an eightbyte, coerce it into the matching integral 1920 // type, which will end up on the stack (with alignment 8). 1921 if (Align == 8 && Size <= 64) 1922 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1923 Size)); 1924 } 1925 1926 return ABIArgInfo::getIndirect(Align); 1927 } 1928 1929 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1930 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1931 /// vector register. 1932 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1933 llvm::Type *IRType = CGT.ConvertType(Ty); 1934 1935 // Wrapper structs that just contain vectors are passed just like vectors, 1936 // strip them off if present. 1937 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1938 while (STy && STy->getNumElements() == 1) { 1939 IRType = STy->getElementType(0); 1940 STy = dyn_cast<llvm::StructType>(IRType); 1941 } 1942 1943 // If the preferred type is a 16-byte vector, prefer to pass it. 1944 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1945 llvm::Type *EltTy = VT->getElementType(); 1946 unsigned BitWidth = VT->getBitWidth(); 1947 if ((BitWidth >= 128 && BitWidth <= 256) && 1948 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1949 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1950 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1951 EltTy->isIntegerTy(128))) 1952 return VT; 1953 } 1954 1955 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1956 } 1957 1958 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1959 /// is known to either be off the end of the specified type or being in 1960 /// alignment padding. The user type specified is known to be at most 128 bits 1961 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1962 /// classification that put one of the two halves in the INTEGER class. 1963 /// 1964 /// It is conservatively correct to return false. 1965 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1966 unsigned EndBit, ASTContext &Context) { 1967 // If the bytes being queried are off the end of the type, there is no user 1968 // data hiding here. This handles analysis of builtins, vectors and other 1969 // types that don't contain interesting padding. 1970 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1971 if (TySize <= StartBit) 1972 return true; 1973 1974 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1975 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1976 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1977 1978 // Check each element to see if the element overlaps with the queried range. 1979 for (unsigned i = 0; i != NumElts; ++i) { 1980 // If the element is after the span we care about, then we're done.. 1981 unsigned EltOffset = i*EltSize; 1982 if (EltOffset >= EndBit) break; 1983 1984 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1985 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1986 EndBit-EltOffset, Context)) 1987 return false; 1988 } 1989 // If it overlaps no elements, then it is safe to process as padding. 1990 return true; 1991 } 1992 1993 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1994 const RecordDecl *RD = RT->getDecl(); 1995 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1996 1997 // If this is a C++ record, check the bases first. 1998 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1999 for (const auto &I : CXXRD->bases()) { 2000 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2001 "Unexpected base class!"); 2002 const CXXRecordDecl *Base = 2003 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2004 2005 // If the base is after the span we care about, ignore it. 2006 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2007 if (BaseOffset >= EndBit) continue; 2008 2009 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2010 if (!BitsContainNoUserData(I.getType(), BaseStart, 2011 EndBit-BaseOffset, Context)) 2012 return false; 2013 } 2014 } 2015 2016 // Verify that no field has data that overlaps the region of interest. Yes 2017 // this could be sped up a lot by being smarter about queried fields, 2018 // however we're only looking at structs up to 16 bytes, so we don't care 2019 // much. 2020 unsigned idx = 0; 2021 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2022 i != e; ++i, ++idx) { 2023 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2024 2025 // If we found a field after the region we care about, then we're done. 2026 if (FieldOffset >= EndBit) break; 2027 2028 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2029 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2030 Context)) 2031 return false; 2032 } 2033 2034 // If nothing in this record overlapped the area of interest, then we're 2035 // clean. 2036 return true; 2037 } 2038 2039 return false; 2040 } 2041 2042 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2043 /// float member at the specified offset. For example, {int,{float}} has a 2044 /// float at offset 4. It is conservatively correct for this routine to return 2045 /// false. 2046 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2047 const llvm::DataLayout &TD) { 2048 // Base case if we find a float. 2049 if (IROffset == 0 && IRType->isFloatTy()) 2050 return true; 2051 2052 // If this is a struct, recurse into the field at the specified offset. 2053 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2054 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2055 unsigned Elt = SL->getElementContainingOffset(IROffset); 2056 IROffset -= SL->getElementOffset(Elt); 2057 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2058 } 2059 2060 // If this is an array, recurse into the field at the specified offset. 2061 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2062 llvm::Type *EltTy = ATy->getElementType(); 2063 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2064 IROffset -= IROffset/EltSize*EltSize; 2065 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2066 } 2067 2068 return false; 2069 } 2070 2071 2072 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2073 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2074 llvm::Type *X86_64ABIInfo:: 2075 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2076 QualType SourceTy, unsigned SourceOffset) const { 2077 // The only three choices we have are either double, <2 x float>, or float. We 2078 // pass as float if the last 4 bytes is just padding. This happens for 2079 // structs that contain 3 floats. 2080 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2081 SourceOffset*8+64, getContext())) 2082 return llvm::Type::getFloatTy(getVMContext()); 2083 2084 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2085 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2086 // case. 2087 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2088 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2089 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2090 2091 return llvm::Type::getDoubleTy(getVMContext()); 2092 } 2093 2094 2095 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2096 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2097 /// about the high or low part of an up-to-16-byte struct. This routine picks 2098 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2099 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2100 /// etc). 2101 /// 2102 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2103 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2104 /// the 8-byte value references. PrefType may be null. 2105 /// 2106 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2107 /// an offset into this that we're processing (which is always either 0 or 8). 2108 /// 2109 llvm::Type *X86_64ABIInfo:: 2110 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2111 QualType SourceTy, unsigned SourceOffset) const { 2112 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2113 // returning an 8-byte unit starting with it. See if we can safely use it. 2114 if (IROffset == 0) { 2115 // Pointers and int64's always fill the 8-byte unit. 2116 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2117 IRType->isIntegerTy(64)) 2118 return IRType; 2119 2120 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2121 // goodness in the source type is just tail padding. This is allowed to 2122 // kick in for struct {double,int} on the int, but not on 2123 // struct{double,int,int} because we wouldn't return the second int. We 2124 // have to do this analysis on the source type because we can't depend on 2125 // unions being lowered a specific way etc. 2126 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2127 IRType->isIntegerTy(32) || 2128 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2129 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2130 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2131 2132 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2133 SourceOffset*8+64, getContext())) 2134 return IRType; 2135 } 2136 } 2137 2138 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2139 // If this is a struct, recurse into the field at the specified offset. 2140 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2141 if (IROffset < SL->getSizeInBytes()) { 2142 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2143 IROffset -= SL->getElementOffset(FieldIdx); 2144 2145 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2146 SourceTy, SourceOffset); 2147 } 2148 } 2149 2150 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2151 llvm::Type *EltTy = ATy->getElementType(); 2152 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2153 unsigned EltOffset = IROffset/EltSize*EltSize; 2154 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2155 SourceOffset); 2156 } 2157 2158 // Okay, we don't have any better idea of what to pass, so we pass this in an 2159 // integer register that isn't too big to fit the rest of the struct. 2160 unsigned TySizeInBytes = 2161 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2162 2163 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2164 2165 // It is always safe to classify this as an integer type up to i64 that 2166 // isn't larger than the structure. 2167 return llvm::IntegerType::get(getVMContext(), 2168 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2169 } 2170 2171 2172 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2173 /// be used as elements of a two register pair to pass or return, return a 2174 /// first class aggregate to represent them. For example, if the low part of 2175 /// a by-value argument should be passed as i32* and the high part as float, 2176 /// return {i32*, float}. 2177 static llvm::Type * 2178 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2179 const llvm::DataLayout &TD) { 2180 // In order to correctly satisfy the ABI, we need to the high part to start 2181 // at offset 8. If the high and low parts we inferred are both 4-byte types 2182 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2183 // the second element at offset 8. Check for this: 2184 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2185 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2186 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2187 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2188 2189 // To handle this, we have to increase the size of the low part so that the 2190 // second element will start at an 8 byte offset. We can't increase the size 2191 // of the second element because it might make us access off the end of the 2192 // struct. 2193 if (HiStart != 8) { 2194 // There are only two sorts of types the ABI generation code can produce for 2195 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2196 // Promote these to a larger type. 2197 if (Lo->isFloatTy()) 2198 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2199 else { 2200 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2201 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2202 } 2203 } 2204 2205 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2206 2207 2208 // Verify that the second element is at an 8-byte offset. 2209 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2210 "Invalid x86-64 argument pair!"); 2211 return Result; 2212 } 2213 2214 ABIArgInfo X86_64ABIInfo:: 2215 classifyReturnType(QualType RetTy) const { 2216 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2217 // classification algorithm. 2218 X86_64ABIInfo::Class Lo, Hi; 2219 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2220 2221 // Check some invariants. 2222 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2223 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2224 2225 llvm::Type *ResType = nullptr; 2226 switch (Lo) { 2227 case NoClass: 2228 if (Hi == NoClass) 2229 return ABIArgInfo::getIgnore(); 2230 // If the low part is just padding, it takes no register, leave ResType 2231 // null. 2232 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2233 "Unknown missing lo part"); 2234 break; 2235 2236 case SSEUp: 2237 case X87Up: 2238 llvm_unreachable("Invalid classification for lo word."); 2239 2240 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2241 // hidden argument. 2242 case Memory: 2243 return getIndirectReturnResult(RetTy); 2244 2245 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2246 // available register of the sequence %rax, %rdx is used. 2247 case Integer: 2248 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2249 2250 // If we have a sign or zero extended integer, make sure to return Extend 2251 // so that the parameter gets the right LLVM IR attributes. 2252 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2253 // Treat an enum type as its underlying type. 2254 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2255 RetTy = EnumTy->getDecl()->getIntegerType(); 2256 2257 if (RetTy->isIntegralOrEnumerationType() && 2258 RetTy->isPromotableIntegerType()) 2259 return ABIArgInfo::getExtend(); 2260 } 2261 break; 2262 2263 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2264 // available SSE register of the sequence %xmm0, %xmm1 is used. 2265 case SSE: 2266 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2267 break; 2268 2269 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2270 // returned on the X87 stack in %st0 as 80-bit x87 number. 2271 case X87: 2272 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2273 break; 2274 2275 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2276 // part of the value is returned in %st0 and the imaginary part in 2277 // %st1. 2278 case ComplexX87: 2279 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2280 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2281 llvm::Type::getX86_FP80Ty(getVMContext()), 2282 NULL); 2283 break; 2284 } 2285 2286 llvm::Type *HighPart = nullptr; 2287 switch (Hi) { 2288 // Memory was handled previously and X87 should 2289 // never occur as a hi class. 2290 case Memory: 2291 case X87: 2292 llvm_unreachable("Invalid classification for hi word."); 2293 2294 case ComplexX87: // Previously handled. 2295 case NoClass: 2296 break; 2297 2298 case Integer: 2299 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2300 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2301 return ABIArgInfo::getDirect(HighPart, 8); 2302 break; 2303 case SSE: 2304 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2305 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2306 return ABIArgInfo::getDirect(HighPart, 8); 2307 break; 2308 2309 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2310 // is passed in the next available eightbyte chunk if the last used 2311 // vector register. 2312 // 2313 // SSEUP should always be preceded by SSE, just widen. 2314 case SSEUp: 2315 assert(Lo == SSE && "Unexpected SSEUp classification."); 2316 ResType = GetByteVectorType(RetTy); 2317 break; 2318 2319 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2320 // returned together with the previous X87 value in %st0. 2321 case X87Up: 2322 // If X87Up is preceded by X87, we don't need to do 2323 // anything. However, in some cases with unions it may not be 2324 // preceded by X87. In such situations we follow gcc and pass the 2325 // extra bits in an SSE reg. 2326 if (Lo != X87) { 2327 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2328 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2329 return ABIArgInfo::getDirect(HighPart, 8); 2330 } 2331 break; 2332 } 2333 2334 // If a high part was specified, merge it together with the low part. It is 2335 // known to pass in the high eightbyte of the result. We do this by forming a 2336 // first class struct aggregate with the high and low part: {low, high} 2337 if (HighPart) 2338 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2339 2340 return ABIArgInfo::getDirect(ResType); 2341 } 2342 2343 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2344 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2345 bool isNamedArg) 2346 const 2347 { 2348 X86_64ABIInfo::Class Lo, Hi; 2349 classify(Ty, 0, Lo, Hi, isNamedArg); 2350 2351 // Check some invariants. 2352 // FIXME: Enforce these by construction. 2353 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2354 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2355 2356 neededInt = 0; 2357 neededSSE = 0; 2358 llvm::Type *ResType = nullptr; 2359 switch (Lo) { 2360 case NoClass: 2361 if (Hi == NoClass) 2362 return ABIArgInfo::getIgnore(); 2363 // If the low part is just padding, it takes no register, leave ResType 2364 // null. 2365 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2366 "Unknown missing lo part"); 2367 break; 2368 2369 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2370 // on the stack. 2371 case Memory: 2372 2373 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2374 // COMPLEX_X87, it is passed in memory. 2375 case X87: 2376 case ComplexX87: 2377 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2378 ++neededInt; 2379 return getIndirectResult(Ty, freeIntRegs); 2380 2381 case SSEUp: 2382 case X87Up: 2383 llvm_unreachable("Invalid classification for lo word."); 2384 2385 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2386 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2387 // and %r9 is used. 2388 case Integer: 2389 ++neededInt; 2390 2391 // Pick an 8-byte type based on the preferred type. 2392 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2393 2394 // If we have a sign or zero extended integer, make sure to return Extend 2395 // so that the parameter gets the right LLVM IR attributes. 2396 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2397 // Treat an enum type as its underlying type. 2398 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2399 Ty = EnumTy->getDecl()->getIntegerType(); 2400 2401 if (Ty->isIntegralOrEnumerationType() && 2402 Ty->isPromotableIntegerType()) 2403 return ABIArgInfo::getExtend(); 2404 } 2405 2406 break; 2407 2408 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2409 // available SSE register is used, the registers are taken in the 2410 // order from %xmm0 to %xmm7. 2411 case SSE: { 2412 llvm::Type *IRType = CGT.ConvertType(Ty); 2413 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2414 ++neededSSE; 2415 break; 2416 } 2417 } 2418 2419 llvm::Type *HighPart = nullptr; 2420 switch (Hi) { 2421 // Memory was handled previously, ComplexX87 and X87 should 2422 // never occur as hi classes, and X87Up must be preceded by X87, 2423 // which is passed in memory. 2424 case Memory: 2425 case X87: 2426 case ComplexX87: 2427 llvm_unreachable("Invalid classification for hi word."); 2428 2429 case NoClass: break; 2430 2431 case Integer: 2432 ++neededInt; 2433 // Pick an 8-byte type based on the preferred type. 2434 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2435 2436 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2437 return ABIArgInfo::getDirect(HighPart, 8); 2438 break; 2439 2440 // X87Up generally doesn't occur here (long double is passed in 2441 // memory), except in situations involving unions. 2442 case X87Up: 2443 case SSE: 2444 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2445 2446 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2447 return ABIArgInfo::getDirect(HighPart, 8); 2448 2449 ++neededSSE; 2450 break; 2451 2452 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2453 // eightbyte is passed in the upper half of the last used SSE 2454 // register. This only happens when 128-bit vectors are passed. 2455 case SSEUp: 2456 assert(Lo == SSE && "Unexpected SSEUp classification"); 2457 ResType = GetByteVectorType(Ty); 2458 break; 2459 } 2460 2461 // If a high part was specified, merge it together with the low part. It is 2462 // known to pass in the high eightbyte of the result. We do this by forming a 2463 // first class struct aggregate with the high and low part: {low, high} 2464 if (HighPart) 2465 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2466 2467 return ABIArgInfo::getDirect(ResType); 2468 } 2469 2470 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2471 2472 if (!getCXXABI().classifyReturnType(FI)) 2473 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2474 2475 // Keep track of the number of assigned registers. 2476 unsigned freeIntRegs = 6, freeSSERegs = 8; 2477 2478 // If the return value is indirect, then the hidden argument is consuming one 2479 // integer register. 2480 if (FI.getReturnInfo().isIndirect()) 2481 --freeIntRegs; 2482 2483 bool isVariadic = FI.isVariadic(); 2484 unsigned numRequiredArgs = 0; 2485 if (isVariadic) 2486 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2487 2488 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2489 // get assigned (in left-to-right order) for passing as follows... 2490 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2491 it != ie; ++it) { 2492 bool isNamedArg = true; 2493 if (isVariadic) 2494 isNamedArg = (it - FI.arg_begin()) < 2495 static_cast<signed>(numRequiredArgs); 2496 2497 unsigned neededInt, neededSSE; 2498 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2499 neededSSE, isNamedArg); 2500 2501 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2502 // eightbyte of an argument, the whole argument is passed on the 2503 // stack. If registers have already been assigned for some 2504 // eightbytes of such an argument, the assignments get reverted. 2505 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2506 freeIntRegs -= neededInt; 2507 freeSSERegs -= neededSSE; 2508 } else { 2509 it->info = getIndirectResult(it->type, freeIntRegs); 2510 } 2511 } 2512 } 2513 2514 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2515 QualType Ty, 2516 CodeGenFunction &CGF) { 2517 llvm::Value *overflow_arg_area_p = 2518 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2519 llvm::Value *overflow_arg_area = 2520 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2521 2522 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2523 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2524 // It isn't stated explicitly in the standard, but in practice we use 2525 // alignment greater than 16 where necessary. 2526 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2527 if (Align > 8) { 2528 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2529 llvm::Value *Offset = 2530 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2531 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2532 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2533 CGF.Int64Ty); 2534 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2535 overflow_arg_area = 2536 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2537 overflow_arg_area->getType(), 2538 "overflow_arg_area.align"); 2539 } 2540 2541 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2542 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2543 llvm::Value *Res = 2544 CGF.Builder.CreateBitCast(overflow_arg_area, 2545 llvm::PointerType::getUnqual(LTy)); 2546 2547 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2548 // l->overflow_arg_area + sizeof(type). 2549 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2550 // an 8 byte boundary. 2551 2552 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2553 llvm::Value *Offset = 2554 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2555 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2556 "overflow_arg_area.next"); 2557 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2558 2559 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2560 return Res; 2561 } 2562 2563 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2564 CodeGenFunction &CGF) const { 2565 // Assume that va_list type is correct; should be pointer to LLVM type: 2566 // struct { 2567 // i32 gp_offset; 2568 // i32 fp_offset; 2569 // i8* overflow_arg_area; 2570 // i8* reg_save_area; 2571 // }; 2572 unsigned neededInt, neededSSE; 2573 2574 Ty = CGF.getContext().getCanonicalType(Ty); 2575 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2576 /*isNamedArg*/false); 2577 2578 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2579 // in the registers. If not go to step 7. 2580 if (!neededInt && !neededSSE) 2581 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2582 2583 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2584 // general purpose registers needed to pass type and num_fp to hold 2585 // the number of floating point registers needed. 2586 2587 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2588 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2589 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2590 // 2591 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2592 // register save space). 2593 2594 llvm::Value *InRegs = nullptr; 2595 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2596 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2597 if (neededInt) { 2598 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2599 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2600 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2601 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2602 } 2603 2604 if (neededSSE) { 2605 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2606 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2607 llvm::Value *FitsInFP = 2608 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2609 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2610 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2611 } 2612 2613 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2614 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2615 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2616 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2617 2618 // Emit code to load the value if it was passed in registers. 2619 2620 CGF.EmitBlock(InRegBlock); 2621 2622 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2623 // an offset of l->gp_offset and/or l->fp_offset. This may require 2624 // copying to a temporary location in case the parameter is passed 2625 // in different register classes or requires an alignment greater 2626 // than 8 for general purpose registers and 16 for XMM registers. 2627 // 2628 // FIXME: This really results in shameful code when we end up needing to 2629 // collect arguments from different places; often what should result in a 2630 // simple assembling of a structure from scattered addresses has many more 2631 // loads than necessary. Can we clean this up? 2632 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2633 llvm::Value *RegAddr = 2634 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2635 "reg_save_area"); 2636 if (neededInt && neededSSE) { 2637 // FIXME: Cleanup. 2638 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2639 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2640 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2641 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2642 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2643 llvm::Type *TyLo = ST->getElementType(0); 2644 llvm::Type *TyHi = ST->getElementType(1); 2645 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2646 "Unexpected ABI info for mixed regs"); 2647 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2648 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2649 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2650 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2651 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2652 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2653 llvm::Value *V = 2654 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2655 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2656 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2657 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2658 2659 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2660 llvm::PointerType::getUnqual(LTy)); 2661 } else if (neededInt) { 2662 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2663 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2664 llvm::PointerType::getUnqual(LTy)); 2665 2666 // Copy to a temporary if necessary to ensure the appropriate alignment. 2667 std::pair<CharUnits, CharUnits> SizeAlign = 2668 CGF.getContext().getTypeInfoInChars(Ty); 2669 uint64_t TySize = SizeAlign.first.getQuantity(); 2670 unsigned TyAlign = SizeAlign.second.getQuantity(); 2671 if (TyAlign > 8) { 2672 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2673 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2674 RegAddr = Tmp; 2675 } 2676 } else if (neededSSE == 1) { 2677 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2678 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2679 llvm::PointerType::getUnqual(LTy)); 2680 } else { 2681 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2682 // SSE registers are spaced 16 bytes apart in the register save 2683 // area, we need to collect the two eightbytes together. 2684 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2685 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2686 llvm::Type *DoubleTy = CGF.DoubleTy; 2687 llvm::Type *DblPtrTy = 2688 llvm::PointerType::getUnqual(DoubleTy); 2689 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2690 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2691 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2692 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2693 DblPtrTy)); 2694 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2695 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2696 DblPtrTy)); 2697 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2698 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2699 llvm::PointerType::getUnqual(LTy)); 2700 } 2701 2702 // AMD64-ABI 3.5.7p5: Step 5. Set: 2703 // l->gp_offset = l->gp_offset + num_gp * 8 2704 // l->fp_offset = l->fp_offset + num_fp * 16. 2705 if (neededInt) { 2706 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2707 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2708 gp_offset_p); 2709 } 2710 if (neededSSE) { 2711 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2712 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2713 fp_offset_p); 2714 } 2715 CGF.EmitBranch(ContBlock); 2716 2717 // Emit code to load the value if it was passed in memory. 2718 2719 CGF.EmitBlock(InMemBlock); 2720 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2721 2722 // Return the appropriate result. 2723 2724 CGF.EmitBlock(ContBlock); 2725 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2726 "vaarg.addr"); 2727 ResAddr->addIncoming(RegAddr, InRegBlock); 2728 ResAddr->addIncoming(MemAddr, InMemBlock); 2729 return ResAddr; 2730 } 2731 2732 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2733 2734 if (Ty->isVoidType()) 2735 return ABIArgInfo::getIgnore(); 2736 2737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2738 Ty = EnumTy->getDecl()->getIntegerType(); 2739 2740 uint64_t Size = getContext().getTypeSize(Ty); 2741 2742 const RecordType *RT = Ty->getAs<RecordType>(); 2743 if (RT) { 2744 if (!IsReturnType) { 2745 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2746 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2747 } 2748 2749 if (RT->getDecl()->hasFlexibleArrayMember()) 2750 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2751 2752 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2753 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2754 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2755 Size)); 2756 } 2757 2758 if (Ty->isMemberPointerType()) { 2759 // If the member pointer is represented by an LLVM int or ptr, pass it 2760 // directly. 2761 llvm::Type *LLTy = CGT.ConvertType(Ty); 2762 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2763 return ABIArgInfo::getDirect(); 2764 } 2765 2766 if (RT || Ty->isMemberPointerType()) { 2767 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2768 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2769 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2770 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2771 2772 // Otherwise, coerce it to a small integer. 2773 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2774 } 2775 2776 // Bool type is always extended to the ABI, other builtin types are not 2777 // extended. 2778 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 2779 if (BT && BT->getKind() == BuiltinType::Bool) 2780 return ABIArgInfo::getExtend(); 2781 2782 return ABIArgInfo::getDirect(); 2783 } 2784 2785 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2786 if (!getCXXABI().classifyReturnType(FI)) 2787 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2788 2789 for (auto &I : FI.arguments()) 2790 I.info = classify(I.type, false); 2791 } 2792 2793 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2794 CodeGenFunction &CGF) const { 2795 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2796 2797 CGBuilderTy &Builder = CGF.Builder; 2798 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2799 "ap"); 2800 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2801 llvm::Type *PTy = 2802 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2803 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2804 2805 uint64_t Offset = 2806 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2807 llvm::Value *NextAddr = 2808 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2809 "ap.next"); 2810 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2811 2812 return AddrTyped; 2813 } 2814 2815 namespace { 2816 2817 class NaClX86_64ABIInfo : public ABIInfo { 2818 public: 2819 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2820 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2821 void computeInfo(CGFunctionInfo &FI) const override; 2822 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2823 CodeGenFunction &CGF) const override; 2824 private: 2825 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2826 X86_64ABIInfo NInfo; // Used for everything else. 2827 }; 2828 2829 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2830 public: 2831 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2832 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2833 }; 2834 2835 } 2836 2837 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2838 if (FI.getASTCallingConvention() == CC_PnaclCall) 2839 PInfo.computeInfo(FI); 2840 else 2841 NInfo.computeInfo(FI); 2842 } 2843 2844 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2845 CodeGenFunction &CGF) const { 2846 // Always use the native convention; calling pnacl-style varargs functions 2847 // is unuspported. 2848 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2849 } 2850 2851 2852 // PowerPC-32 2853 2854 namespace { 2855 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2856 public: 2857 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2858 2859 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2860 // This is recovered from gcc output. 2861 return 1; // r1 is the dedicated stack pointer 2862 } 2863 2864 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2865 llvm::Value *Address) const override; 2866 }; 2867 2868 } 2869 2870 bool 2871 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2872 llvm::Value *Address) const { 2873 // This is calculated from the LLVM and GCC tables and verified 2874 // against gcc output. AFAIK all ABIs use the same encoding. 2875 2876 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2877 2878 llvm::IntegerType *i8 = CGF.Int8Ty; 2879 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2880 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2881 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2882 2883 // 0-31: r0-31, the 4-byte general-purpose registers 2884 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2885 2886 // 32-63: fp0-31, the 8-byte floating-point registers 2887 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2888 2889 // 64-76 are various 4-byte special-purpose registers: 2890 // 64: mq 2891 // 65: lr 2892 // 66: ctr 2893 // 67: ap 2894 // 68-75 cr0-7 2895 // 76: xer 2896 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2897 2898 // 77-108: v0-31, the 16-byte vector registers 2899 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2900 2901 // 109: vrsave 2902 // 110: vscr 2903 // 111: spe_acc 2904 // 112: spefscr 2905 // 113: sfp 2906 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2907 2908 return false; 2909 } 2910 2911 // PowerPC-64 2912 2913 namespace { 2914 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2915 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2916 public: 2917 enum ABIKind { 2918 ELFv1 = 0, 2919 ELFv2 2920 }; 2921 2922 private: 2923 static const unsigned GPRBits = 64; 2924 ABIKind Kind; 2925 2926 public: 2927 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 2928 : DefaultABIInfo(CGT), Kind(Kind) {} 2929 2930 bool isPromotableTypeForABI(QualType Ty) const; 2931 bool isAlignedParamType(QualType Ty) const; 2932 bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 2933 uint64_t &Members) const; 2934 2935 ABIArgInfo classifyReturnType(QualType RetTy) const; 2936 ABIArgInfo classifyArgumentType(QualType Ty) const; 2937 2938 // TODO: We can add more logic to computeInfo to improve performance. 2939 // Example: For aggregate arguments that fit in a register, we could 2940 // use getDirectInReg (as is done below for structs containing a single 2941 // floating-point value) to avoid pushing them to memory on function 2942 // entry. This would require changing the logic in PPCISelLowering 2943 // when lowering the parameters in the caller and args in the callee. 2944 void computeInfo(CGFunctionInfo &FI) const override { 2945 if (!getCXXABI().classifyReturnType(FI)) 2946 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2947 for (auto &I : FI.arguments()) { 2948 // We rely on the default argument classification for the most part. 2949 // One exception: An aggregate containing a single floating-point 2950 // or vector item must be passed in a register if one is available. 2951 const Type *T = isSingleElementStruct(I.type, getContext()); 2952 if (T) { 2953 const BuiltinType *BT = T->getAs<BuiltinType>(); 2954 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 2955 (BT && BT->isFloatingPoint())) { 2956 QualType QT(T, 0); 2957 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2958 continue; 2959 } 2960 } 2961 I.info = classifyArgumentType(I.type); 2962 } 2963 } 2964 2965 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2966 CodeGenFunction &CGF) const override; 2967 }; 2968 2969 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2970 public: 2971 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 2972 PPC64_SVR4_ABIInfo::ABIKind Kind) 2973 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} 2974 2975 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2976 // This is recovered from gcc output. 2977 return 1; // r1 is the dedicated stack pointer 2978 } 2979 2980 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2981 llvm::Value *Address) const override; 2982 }; 2983 2984 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2985 public: 2986 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2987 2988 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2989 // This is recovered from gcc output. 2990 return 1; // r1 is the dedicated stack pointer 2991 } 2992 2993 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2994 llvm::Value *Address) const override; 2995 }; 2996 2997 } 2998 2999 // Return true if the ABI requires Ty to be passed sign- or zero- 3000 // extended to 64 bits. 3001 bool 3002 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3003 // Treat an enum type as its underlying type. 3004 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3005 Ty = EnumTy->getDecl()->getIntegerType(); 3006 3007 // Promotable integer types are required to be promoted by the ABI. 3008 if (Ty->isPromotableIntegerType()) 3009 return true; 3010 3011 // In addition to the usual promotable integer types, we also need to 3012 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3013 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3014 switch (BT->getKind()) { 3015 case BuiltinType::Int: 3016 case BuiltinType::UInt: 3017 return true; 3018 default: 3019 break; 3020 } 3021 3022 return false; 3023 } 3024 3025 /// isAlignedParamType - Determine whether a type requires 16-byte 3026 /// alignment in the parameter area. 3027 bool 3028 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3029 // Complex types are passed just like their elements. 3030 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3031 Ty = CTy->getElementType(); 3032 3033 // Only vector types of size 16 bytes need alignment (larger types are 3034 // passed via reference, smaller types are not aligned). 3035 if (Ty->isVectorType()) 3036 return getContext().getTypeSize(Ty) == 128; 3037 3038 // For single-element float/vector structs, we consider the whole type 3039 // to have the same alignment requirements as its single element. 3040 const Type *AlignAsType = nullptr; 3041 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3042 if (EltType) { 3043 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3044 if ((EltType->isVectorType() && 3045 getContext().getTypeSize(EltType) == 128) || 3046 (BT && BT->isFloatingPoint())) 3047 AlignAsType = EltType; 3048 } 3049 3050 // Likewise for ELFv2 homogeneous aggregates. 3051 const Type *Base = nullptr; 3052 uint64_t Members = 0; 3053 if (!AlignAsType && Kind == ELFv2 && 3054 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3055 AlignAsType = Base; 3056 3057 // With special case aggregates, only vector base types need alignment. 3058 if (AlignAsType) 3059 return AlignAsType->isVectorType(); 3060 3061 // Otherwise, we only need alignment for any aggregate type that 3062 // has an alignment requirement of >= 16 bytes. 3063 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3064 return true; 3065 3066 return false; 3067 } 3068 3069 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3070 /// aggregate. Base is set to the base element type, and Members is set 3071 /// to the number of base elements. 3072 bool 3073 PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3074 uint64_t &Members) const { 3075 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3076 uint64_t NElements = AT->getSize().getZExtValue(); 3077 if (NElements == 0) 3078 return false; 3079 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3080 return false; 3081 Members *= NElements; 3082 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3083 const RecordDecl *RD = RT->getDecl(); 3084 if (RD->hasFlexibleArrayMember()) 3085 return false; 3086 3087 Members = 0; 3088 for (const auto *FD : RD->fields()) { 3089 // Ignore (non-zero arrays of) empty records. 3090 QualType FT = FD->getType(); 3091 while (const ConstantArrayType *AT = 3092 getContext().getAsConstantArrayType(FT)) { 3093 if (AT->getSize().getZExtValue() == 0) 3094 return false; 3095 FT = AT->getElementType(); 3096 } 3097 if (isEmptyRecord(getContext(), FT, true)) 3098 continue; 3099 3100 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3101 if (getContext().getLangOpts().CPlusPlus && 3102 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3103 continue; 3104 3105 uint64_t FldMembers; 3106 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3107 return false; 3108 3109 Members = (RD->isUnion() ? 3110 std::max(Members, FldMembers) : Members + FldMembers); 3111 } 3112 3113 if (!Base) 3114 return false; 3115 3116 // Ensure there is no padding. 3117 if (getContext().getTypeSize(Base) * Members != 3118 getContext().getTypeSize(Ty)) 3119 return false; 3120 } else { 3121 Members = 1; 3122 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3123 Members = 2; 3124 Ty = CT->getElementType(); 3125 } 3126 3127 // Homogeneous aggregates for ELFv2 must have base types of float, 3128 // double, long double, or 128-bit vectors. 3129 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3130 if (BT->getKind() != BuiltinType::Float && 3131 BT->getKind() != BuiltinType::Double && 3132 BT->getKind() != BuiltinType::LongDouble) 3133 return false; 3134 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3135 if (getContext().getTypeSize(VT) != 128) 3136 return false; 3137 } else { 3138 return false; 3139 } 3140 3141 // The base type must be the same for all members. Types that 3142 // agree in both total size and mode (float vs. vector) are 3143 // treated as being equivalent here. 3144 const Type *TyPtr = Ty.getTypePtr(); 3145 if (!Base) 3146 Base = TyPtr; 3147 3148 if (Base->isVectorType() != TyPtr->isVectorType() || 3149 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3150 return false; 3151 } 3152 3153 // Vector types require one register, floating point types require one 3154 // or two registers depending on their size. 3155 uint32_t NumRegs = Base->isVectorType() ? 1 : 3156 (getContext().getTypeSize(Base) + 63) / 64; 3157 3158 // Homogeneous Aggregates may occupy at most 8 registers. 3159 return (Members > 0 && Members * NumRegs <= 8); 3160 } 3161 3162 ABIArgInfo 3163 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3164 if (Ty->isAnyComplexType()) 3165 return ABIArgInfo::getDirect(); 3166 3167 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3168 // or via reference (larger than 16 bytes). 3169 if (Ty->isVectorType()) { 3170 uint64_t Size = getContext().getTypeSize(Ty); 3171 if (Size > 128) 3172 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3173 else if (Size < 128) { 3174 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3175 return ABIArgInfo::getDirect(CoerceTy); 3176 } 3177 } 3178 3179 if (isAggregateTypeForABI(Ty)) { 3180 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3181 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3182 3183 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3184 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3185 3186 // ELFv2 homogeneous aggregates are passed as array types. 3187 const Type *Base = nullptr; 3188 uint64_t Members = 0; 3189 if (Kind == ELFv2 && 3190 isHomogeneousAggregate(Ty, Base, Members)) { 3191 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3192 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3193 return ABIArgInfo::getDirect(CoerceTy); 3194 } 3195 3196 // If an aggregate may end up fully in registers, we do not 3197 // use the ByVal method, but pass the aggregate as array. 3198 // This is usually beneficial since we avoid forcing the 3199 // back-end to store the argument to memory. 3200 uint64_t Bits = getContext().getTypeSize(Ty); 3201 if (Bits > 0 && Bits <= 8 * GPRBits) { 3202 llvm::Type *CoerceTy; 3203 3204 // Types up to 8 bytes are passed as integer type (which will be 3205 // properly aligned in the argument save area doubleword). 3206 if (Bits <= GPRBits) 3207 CoerceTy = llvm::IntegerType::get(getVMContext(), 3208 llvm::RoundUpToAlignment(Bits, 8)); 3209 // Larger types are passed as arrays, with the base type selected 3210 // according to the required alignment in the save area. 3211 else { 3212 uint64_t RegBits = ABIAlign * 8; 3213 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3214 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3215 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3216 } 3217 3218 return ABIArgInfo::getDirect(CoerceTy); 3219 } 3220 3221 // All other aggregates are passed ByVal. 3222 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3223 /*Realign=*/TyAlign > ABIAlign); 3224 } 3225 3226 return (isPromotableTypeForABI(Ty) ? 3227 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3228 } 3229 3230 ABIArgInfo 3231 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3232 if (RetTy->isVoidType()) 3233 return ABIArgInfo::getIgnore(); 3234 3235 if (RetTy->isAnyComplexType()) 3236 return ABIArgInfo::getDirect(); 3237 3238 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3239 // or via reference (larger than 16 bytes). 3240 if (RetTy->isVectorType()) { 3241 uint64_t Size = getContext().getTypeSize(RetTy); 3242 if (Size > 128) 3243 return ABIArgInfo::getIndirect(0); 3244 else if (Size < 128) { 3245 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3246 return ABIArgInfo::getDirect(CoerceTy); 3247 } 3248 } 3249 3250 if (isAggregateTypeForABI(RetTy)) { 3251 // ELFv2 homogeneous aggregates are returned as array types. 3252 const Type *Base = nullptr; 3253 uint64_t Members = 0; 3254 if (Kind == ELFv2 && 3255 isHomogeneousAggregate(RetTy, Base, Members)) { 3256 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3257 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3258 return ABIArgInfo::getDirect(CoerceTy); 3259 } 3260 3261 // ELFv2 small aggregates are returned in up to two registers. 3262 uint64_t Bits = getContext().getTypeSize(RetTy); 3263 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3264 if (Bits == 0) 3265 return ABIArgInfo::getIgnore(); 3266 3267 llvm::Type *CoerceTy; 3268 if (Bits > GPRBits) { 3269 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3270 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL); 3271 } else 3272 CoerceTy = llvm::IntegerType::get(getVMContext(), 3273 llvm::RoundUpToAlignment(Bits, 8)); 3274 return ABIArgInfo::getDirect(CoerceTy); 3275 } 3276 3277 // All other aggregates are returned indirectly. 3278 return ABIArgInfo::getIndirect(0); 3279 } 3280 3281 return (isPromotableTypeForABI(RetTy) ? 3282 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3283 } 3284 3285 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3286 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3287 QualType Ty, 3288 CodeGenFunction &CGF) const { 3289 llvm::Type *BP = CGF.Int8PtrTy; 3290 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3291 3292 CGBuilderTy &Builder = CGF.Builder; 3293 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3294 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3295 3296 // Handle types that require 16-byte alignment in the parameter save area. 3297 if (isAlignedParamType(Ty)) { 3298 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3299 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3300 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3301 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3302 } 3303 3304 // Update the va_list pointer. The pointer should be bumped by the 3305 // size of the object. We can trust getTypeSize() except for a complex 3306 // type whose base type is smaller than a doubleword. For these, the 3307 // size of the object is 16 bytes; see below for further explanation. 3308 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3309 QualType BaseTy; 3310 unsigned CplxBaseSize = 0; 3311 3312 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3313 BaseTy = CTy->getElementType(); 3314 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3315 if (CplxBaseSize < 8) 3316 SizeInBytes = 16; 3317 } 3318 3319 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3320 llvm::Value *NextAddr = 3321 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3322 "ap.next"); 3323 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3324 3325 // If we have a complex type and the base type is smaller than 8 bytes, 3326 // the ABI calls for the real and imaginary parts to be right-adjusted 3327 // in separate doublewords. However, Clang expects us to produce a 3328 // pointer to a structure with the two parts packed tightly. So generate 3329 // loads of the real and imaginary parts relative to the va_list pointer, 3330 // and store them to a temporary structure. 3331 if (CplxBaseSize && CplxBaseSize < 8) { 3332 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3333 llvm::Value *ImagAddr = RealAddr; 3334 if (CGF.CGM.getDataLayout().isBigEndian()) { 3335 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3336 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3337 } else { 3338 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3339 } 3340 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3341 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3342 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3343 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3344 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3345 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3346 "vacplx"); 3347 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3348 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3349 Builder.CreateStore(Real, RealPtr, false); 3350 Builder.CreateStore(Imag, ImagPtr, false); 3351 return Ptr; 3352 } 3353 3354 // If the argument is smaller than 8 bytes, it is right-adjusted in 3355 // its doubleword slot. Adjust the pointer to pick it up from the 3356 // correct offset. 3357 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3358 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3359 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3360 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3361 } 3362 3363 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3364 return Builder.CreateBitCast(Addr, PTy); 3365 } 3366 3367 static bool 3368 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3369 llvm::Value *Address) { 3370 // This is calculated from the LLVM and GCC tables and verified 3371 // against gcc output. AFAIK all ABIs use the same encoding. 3372 3373 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3374 3375 llvm::IntegerType *i8 = CGF.Int8Ty; 3376 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3377 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3378 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3379 3380 // 0-31: r0-31, the 8-byte general-purpose registers 3381 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3382 3383 // 32-63: fp0-31, the 8-byte floating-point registers 3384 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3385 3386 // 64-76 are various 4-byte special-purpose registers: 3387 // 64: mq 3388 // 65: lr 3389 // 66: ctr 3390 // 67: ap 3391 // 68-75 cr0-7 3392 // 76: xer 3393 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3394 3395 // 77-108: v0-31, the 16-byte vector registers 3396 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3397 3398 // 109: vrsave 3399 // 110: vscr 3400 // 111: spe_acc 3401 // 112: spefscr 3402 // 113: sfp 3403 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3404 3405 return false; 3406 } 3407 3408 bool 3409 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3410 CodeGen::CodeGenFunction &CGF, 3411 llvm::Value *Address) const { 3412 3413 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3414 } 3415 3416 bool 3417 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3418 llvm::Value *Address) const { 3419 3420 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3421 } 3422 3423 //===----------------------------------------------------------------------===// 3424 // AArch64 ABI Implementation 3425 //===----------------------------------------------------------------------===// 3426 3427 namespace { 3428 3429 class AArch64ABIInfo : public ABIInfo { 3430 public: 3431 enum ABIKind { 3432 AAPCS = 0, 3433 DarwinPCS 3434 }; 3435 3436 private: 3437 ABIKind Kind; 3438 3439 public: 3440 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3441 3442 private: 3443 ABIKind getABIKind() const { return Kind; } 3444 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3445 3446 ABIArgInfo classifyReturnType(QualType RetTy) const; 3447 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3448 bool &IsHA, unsigned &AllocatedGPR, 3449 bool &IsSmallAggr, bool IsNamedArg) const; 3450 bool isIllegalVectorType(QualType Ty) const; 3451 3452 virtual void computeInfo(CGFunctionInfo &FI) const { 3453 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3454 // number of SIMD and Floating-point registers allocated so far. 3455 // If the argument is an HFA or an HVA and there are sufficient unallocated 3456 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3457 // and Floating-point Registers (with one register per member of the HFA or 3458 // HVA). Otherwise, the NSRN is set to 8. 3459 unsigned AllocatedVFP = 0; 3460 3461 // To correctly handle small aggregates, we need to keep track of the number 3462 // of GPRs allocated so far. If the small aggregate can't all fit into 3463 // registers, it will be on stack. We don't allow the aggregate to be 3464 // partially in registers. 3465 unsigned AllocatedGPR = 0; 3466 3467 // Find the number of named arguments. Variadic arguments get special 3468 // treatment with the Darwin ABI. 3469 unsigned NumRequiredArgs = (FI.isVariadic() ? 3470 FI.getRequiredArgs().getNumRequiredArgs() : 3471 FI.arg_size()); 3472 3473 if (!getCXXABI().classifyReturnType(FI)) 3474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3475 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3476 it != ie; ++it) { 3477 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3478 bool IsHA = false, IsSmallAggr = false; 3479 const unsigned NumVFPs = 8; 3480 const unsigned NumGPRs = 8; 3481 bool IsNamedArg = ((it - FI.arg_begin()) < 3482 static_cast<signed>(NumRequiredArgs)); 3483 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3484 AllocatedGPR, IsSmallAggr, IsNamedArg); 3485 3486 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3487 // as sequences of floats since they'll get "holes" inserted as 3488 // padding by the back end. 3489 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3490 getContext().getTypeAlign(it->type) < 64) { 3491 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3492 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3493 3494 llvm::Type *CoerceTy = llvm::ArrayType::get( 3495 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3496 it->info = ABIArgInfo::getDirect(CoerceTy); 3497 } 3498 3499 // If we do not have enough VFP registers for the HA, any VFP registers 3500 // that are unallocated are marked as unavailable. To achieve this, we add 3501 // padding of (NumVFPs - PreAllocation) floats. 3502 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3503 llvm::Type *PaddingTy = llvm::ArrayType::get( 3504 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3505 it->info.setPaddingType(PaddingTy); 3506 } 3507 3508 // If we do not have enough GPRs for the small aggregate, any GPR regs 3509 // that are unallocated are marked as unavailable. 3510 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3511 llvm::Type *PaddingTy = llvm::ArrayType::get( 3512 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3513 it->info = 3514 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3515 } 3516 } 3517 } 3518 3519 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3520 CodeGenFunction &CGF) const; 3521 3522 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3523 CodeGenFunction &CGF) const; 3524 3525 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3526 CodeGenFunction &CGF) const { 3527 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3528 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3529 } 3530 }; 3531 3532 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3533 public: 3534 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3535 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3536 3537 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3538 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3539 } 3540 3541 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3542 3543 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3544 }; 3545 } 3546 3547 static bool isARMHomogeneousAggregate(QualType Ty, const Type *&Base, 3548 ASTContext &Context, 3549 bool isAArch64, 3550 uint64_t *HAMembers = nullptr); 3551 3552 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3553 unsigned &AllocatedVFP, 3554 bool &IsHA, 3555 unsigned &AllocatedGPR, 3556 bool &IsSmallAggr, 3557 bool IsNamedArg) const { 3558 // Handle illegal vector types here. 3559 if (isIllegalVectorType(Ty)) { 3560 uint64_t Size = getContext().getTypeSize(Ty); 3561 if (Size <= 32) { 3562 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3563 AllocatedGPR++; 3564 return ABIArgInfo::getDirect(ResType); 3565 } 3566 if (Size == 64) { 3567 llvm::Type *ResType = 3568 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3569 AllocatedVFP++; 3570 return ABIArgInfo::getDirect(ResType); 3571 } 3572 if (Size == 128) { 3573 llvm::Type *ResType = 3574 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3575 AllocatedVFP++; 3576 return ABIArgInfo::getDirect(ResType); 3577 } 3578 AllocatedGPR++; 3579 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3580 } 3581 if (Ty->isVectorType()) 3582 // Size of a legal vector should be either 64 or 128. 3583 AllocatedVFP++; 3584 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3585 if (BT->getKind() == BuiltinType::Half || 3586 BT->getKind() == BuiltinType::Float || 3587 BT->getKind() == BuiltinType::Double || 3588 BT->getKind() == BuiltinType::LongDouble) 3589 AllocatedVFP++; 3590 } 3591 3592 if (!isAggregateTypeForABI(Ty)) { 3593 // Treat an enum type as its underlying type. 3594 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3595 Ty = EnumTy->getDecl()->getIntegerType(); 3596 3597 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3598 unsigned Alignment = getContext().getTypeAlign(Ty); 3599 if (!isDarwinPCS() && Alignment > 64) 3600 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3601 3602 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3603 AllocatedGPR += RegsNeeded; 3604 } 3605 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3606 ? ABIArgInfo::getExtend() 3607 : ABIArgInfo::getDirect()); 3608 } 3609 3610 // Structures with either a non-trivial destructor or a non-trivial 3611 // copy constructor are always indirect. 3612 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3613 AllocatedGPR++; 3614 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3615 CGCXXABI::RAA_DirectInMemory); 3616 } 3617 3618 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3619 // elsewhere for GNU compatibility. 3620 if (isEmptyRecord(getContext(), Ty, true)) { 3621 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3622 return ABIArgInfo::getIgnore(); 3623 3624 ++AllocatedGPR; 3625 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3626 } 3627 3628 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3629 const Type *Base = nullptr; 3630 uint64_t Members = 0; 3631 if (isARMHomogeneousAggregate(Ty, Base, getContext(), true, &Members)) { 3632 IsHA = true; 3633 if (!IsNamedArg && isDarwinPCS()) { 3634 // With the Darwin ABI, variadic arguments are always passed on the stack 3635 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3636 uint64_t Size = getContext().getTypeSize(Ty); 3637 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3638 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3639 } 3640 AllocatedVFP += Members; 3641 return ABIArgInfo::getExpand(); 3642 } 3643 3644 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3645 uint64_t Size = getContext().getTypeSize(Ty); 3646 if (Size <= 128) { 3647 unsigned Alignment = getContext().getTypeAlign(Ty); 3648 if (!isDarwinPCS() && Alignment > 64) 3649 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3650 3651 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3652 AllocatedGPR += Size / 64; 3653 IsSmallAggr = true; 3654 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3655 // For aggregates with 16-byte alignment, we use i128. 3656 if (Alignment < 128 && Size == 128) { 3657 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3658 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3659 } 3660 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3661 } 3662 3663 AllocatedGPR++; 3664 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3665 } 3666 3667 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3668 if (RetTy->isVoidType()) 3669 return ABIArgInfo::getIgnore(); 3670 3671 // Large vector types should be returned via memory. 3672 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3673 return ABIArgInfo::getIndirect(0); 3674 3675 if (!isAggregateTypeForABI(RetTy)) { 3676 // Treat an enum type as its underlying type. 3677 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3678 RetTy = EnumTy->getDecl()->getIntegerType(); 3679 3680 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3681 ? ABIArgInfo::getExtend() 3682 : ABIArgInfo::getDirect()); 3683 } 3684 3685 if (isEmptyRecord(getContext(), RetTy, true)) 3686 return ABIArgInfo::getIgnore(); 3687 3688 const Type *Base = nullptr; 3689 if (isARMHomogeneousAggregate(RetTy, Base, getContext(), true)) 3690 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3691 return ABIArgInfo::getDirect(); 3692 3693 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3694 uint64_t Size = getContext().getTypeSize(RetTy); 3695 if (Size <= 128) { 3696 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3697 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3698 } 3699 3700 return ABIArgInfo::getIndirect(0); 3701 } 3702 3703 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3704 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3705 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3706 // Check whether VT is legal. 3707 unsigned NumElements = VT->getNumElements(); 3708 uint64_t Size = getContext().getTypeSize(VT); 3709 // NumElements should be power of 2 between 1 and 16. 3710 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3711 return true; 3712 return Size != 64 && (Size != 128 || NumElements == 1); 3713 } 3714 return false; 3715 } 3716 3717 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3718 int AllocatedGPR, int AllocatedVFP, 3719 bool IsIndirect, CodeGenFunction &CGF) { 3720 // The AArch64 va_list type and handling is specified in the Procedure Call 3721 // Standard, section B.4: 3722 // 3723 // struct { 3724 // void *__stack; 3725 // void *__gr_top; 3726 // void *__vr_top; 3727 // int __gr_offs; 3728 // int __vr_offs; 3729 // }; 3730 3731 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3732 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3733 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3734 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3735 auto &Ctx = CGF.getContext(); 3736 3737 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3738 int reg_top_index; 3739 int RegSize; 3740 if (AllocatedGPR) { 3741 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3742 // 3 is the field number of __gr_offs 3743 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3744 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3745 reg_top_index = 1; // field number for __gr_top 3746 RegSize = 8 * AllocatedGPR; 3747 } else { 3748 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3749 // 4 is the field number of __vr_offs. 3750 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3751 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3752 reg_top_index = 2; // field number for __vr_top 3753 RegSize = 16 * AllocatedVFP; 3754 } 3755 3756 //======================================= 3757 // Find out where argument was passed 3758 //======================================= 3759 3760 // If reg_offs >= 0 we're already using the stack for this type of 3761 // argument. We don't want to keep updating reg_offs (in case it overflows, 3762 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3763 // whatever they get). 3764 llvm::Value *UsingStack = nullptr; 3765 UsingStack = CGF.Builder.CreateICmpSGE( 3766 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3767 3768 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3769 3770 // Otherwise, at least some kind of argument could go in these registers, the 3771 // question is whether this particular type is too big. 3772 CGF.EmitBlock(MaybeRegBlock); 3773 3774 // Integer arguments may need to correct register alignment (for example a 3775 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3776 // align __gr_offs to calculate the potential address. 3777 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3778 int Align = Ctx.getTypeAlign(Ty) / 8; 3779 3780 reg_offs = CGF.Builder.CreateAdd( 3781 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3782 "align_regoffs"); 3783 reg_offs = CGF.Builder.CreateAnd( 3784 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3785 "aligned_regoffs"); 3786 } 3787 3788 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3789 llvm::Value *NewOffset = nullptr; 3790 NewOffset = CGF.Builder.CreateAdd( 3791 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3792 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3793 3794 // Now we're in a position to decide whether this argument really was in 3795 // registers or not. 3796 llvm::Value *InRegs = nullptr; 3797 InRegs = CGF.Builder.CreateICmpSLE( 3798 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3799 3800 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3801 3802 //======================================= 3803 // Argument was in registers 3804 //======================================= 3805 3806 // Now we emit the code for if the argument was originally passed in 3807 // registers. First start the appropriate block: 3808 CGF.EmitBlock(InRegBlock); 3809 3810 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3811 reg_top_p = 3812 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3813 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3814 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3815 llvm::Value *RegAddr = nullptr; 3816 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3817 3818 if (IsIndirect) { 3819 // If it's been passed indirectly (actually a struct), whatever we find from 3820 // stored registers or on the stack will actually be a struct **. 3821 MemTy = llvm::PointerType::getUnqual(MemTy); 3822 } 3823 3824 const Type *Base = nullptr; 3825 uint64_t NumMembers; 3826 bool IsHFA = isARMHomogeneousAggregate(Ty, Base, Ctx, true, &NumMembers); 3827 if (IsHFA && NumMembers > 1) { 3828 // Homogeneous aggregates passed in registers will have their elements split 3829 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3830 // qN+1, ...). We reload and store into a temporary local variable 3831 // contiguously. 3832 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3833 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3834 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3835 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3836 int Offset = 0; 3837 3838 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3839 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3840 for (unsigned i = 0; i < NumMembers; ++i) { 3841 llvm::Value *BaseOffset = 3842 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3843 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3844 LoadAddr = CGF.Builder.CreateBitCast( 3845 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3846 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3847 3848 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3849 CGF.Builder.CreateStore(Elem, StoreAddr); 3850 } 3851 3852 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3853 } else { 3854 // Otherwise the object is contiguous in memory 3855 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3856 if (CGF.CGM.getDataLayout().isBigEndian() && 3857 (IsHFA || !isAggregateTypeForABI(Ty)) && 3858 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3859 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3860 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3861 3862 BaseAddr = CGF.Builder.CreateAdd( 3863 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3864 3865 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3866 } 3867 3868 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3869 } 3870 3871 CGF.EmitBranch(ContBlock); 3872 3873 //======================================= 3874 // Argument was on the stack 3875 //======================================= 3876 CGF.EmitBlock(OnStackBlock); 3877 3878 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3879 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3880 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3881 3882 // Again, stack arguments may need realigmnent. In this case both integer and 3883 // floating-point ones might be affected. 3884 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3885 int Align = Ctx.getTypeAlign(Ty) / 8; 3886 3887 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3888 3889 OnStackAddr = CGF.Builder.CreateAdd( 3890 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3891 "align_stack"); 3892 OnStackAddr = CGF.Builder.CreateAnd( 3893 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3894 "align_stack"); 3895 3896 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3897 } 3898 3899 uint64_t StackSize; 3900 if (IsIndirect) 3901 StackSize = 8; 3902 else 3903 StackSize = Ctx.getTypeSize(Ty) / 8; 3904 3905 // All stack slots are 8 bytes 3906 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3907 3908 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3909 llvm::Value *NewStack = 3910 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3911 3912 // Write the new value of __stack for the next call to va_arg 3913 CGF.Builder.CreateStore(NewStack, stack_p); 3914 3915 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3916 Ctx.getTypeSize(Ty) < 64) { 3917 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3918 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3919 3920 OnStackAddr = CGF.Builder.CreateAdd( 3921 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3922 3923 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3924 } 3925 3926 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3927 3928 CGF.EmitBranch(ContBlock); 3929 3930 //======================================= 3931 // Tidy up 3932 //======================================= 3933 CGF.EmitBlock(ContBlock); 3934 3935 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3936 ResAddr->addIncoming(RegAddr, InRegBlock); 3937 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3938 3939 if (IsIndirect) 3940 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3941 3942 return ResAddr; 3943 } 3944 3945 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3946 CodeGenFunction &CGF) const { 3947 3948 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3949 bool IsHA = false, IsSmallAggr = false; 3950 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3951 IsSmallAggr, false /*IsNamedArg*/); 3952 3953 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3954 AI.isIndirect(), CGF); 3955 } 3956 3957 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3958 CodeGenFunction &CGF) const { 3959 // We do not support va_arg for aggregates or illegal vector types. 3960 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3961 // other cases. 3962 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3963 return nullptr; 3964 3965 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3966 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3967 3968 const Type *Base = nullptr; 3969 bool isHA = isARMHomogeneousAggregate(Ty, Base, getContext(), true); 3970 3971 bool isIndirect = false; 3972 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3973 // be passed indirectly. 3974 if (Size > 16 && !isHA) { 3975 isIndirect = true; 3976 Size = 8; 3977 Align = 8; 3978 } 3979 3980 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3981 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3982 3983 CGBuilderTy &Builder = CGF.Builder; 3984 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3985 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3986 3987 if (isEmptyRecord(getContext(), Ty, true)) { 3988 // These are ignored for parameter passing purposes. 3989 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3990 return Builder.CreateBitCast(Addr, PTy); 3991 } 3992 3993 const uint64_t MinABIAlign = 8; 3994 if (Align > MinABIAlign) { 3995 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3996 Addr = Builder.CreateGEP(Addr, Offset); 3997 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3998 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3999 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4000 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4001 } 4002 4003 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4004 llvm::Value *NextAddr = Builder.CreateGEP( 4005 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4006 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4007 4008 if (isIndirect) 4009 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4010 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4011 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4012 4013 return AddrTyped; 4014 } 4015 4016 //===----------------------------------------------------------------------===// 4017 // ARM ABI Implementation 4018 //===----------------------------------------------------------------------===// 4019 4020 namespace { 4021 4022 class ARMABIInfo : public ABIInfo { 4023 public: 4024 enum ABIKind { 4025 APCS = 0, 4026 AAPCS = 1, 4027 AAPCS_VFP 4028 }; 4029 4030 private: 4031 ABIKind Kind; 4032 mutable int VFPRegs[16]; 4033 const unsigned NumVFPs; 4034 const unsigned NumGPRs; 4035 mutable unsigned AllocatedGPRs; 4036 mutable unsigned AllocatedVFPs; 4037 4038 public: 4039 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 4040 NumVFPs(16), NumGPRs(4) { 4041 setRuntimeCC(); 4042 resetAllocatedRegs(); 4043 } 4044 4045 bool isEABI() const { 4046 switch (getTarget().getTriple().getEnvironment()) { 4047 case llvm::Triple::Android: 4048 case llvm::Triple::EABI: 4049 case llvm::Triple::EABIHF: 4050 case llvm::Triple::GNUEABI: 4051 case llvm::Triple::GNUEABIHF: 4052 return true; 4053 default: 4054 return false; 4055 } 4056 } 4057 4058 bool isEABIHF() const { 4059 switch (getTarget().getTriple().getEnvironment()) { 4060 case llvm::Triple::EABIHF: 4061 case llvm::Triple::GNUEABIHF: 4062 return true; 4063 default: 4064 return false; 4065 } 4066 } 4067 4068 ABIKind getABIKind() const { return Kind; } 4069 4070 private: 4071 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4072 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 4073 bool &IsCPRC) const; 4074 bool isIllegalVectorType(QualType Ty) const; 4075 4076 void computeInfo(CGFunctionInfo &FI) const override; 4077 4078 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4079 CodeGenFunction &CGF) const override; 4080 4081 llvm::CallingConv::ID getLLVMDefaultCC() const; 4082 llvm::CallingConv::ID getABIDefaultCC() const; 4083 void setRuntimeCC(); 4084 4085 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 4086 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 4087 void resetAllocatedRegs(void) const; 4088 }; 4089 4090 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4091 public: 4092 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4093 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4094 4095 const ARMABIInfo &getABIInfo() const { 4096 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4097 } 4098 4099 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4100 return 13; 4101 } 4102 4103 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4104 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4105 } 4106 4107 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4108 llvm::Value *Address) const override { 4109 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4110 4111 // 0-15 are the 16 integer registers. 4112 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4113 return false; 4114 } 4115 4116 unsigned getSizeOfUnwindException() const override { 4117 if (getABIInfo().isEABI()) return 88; 4118 return TargetCodeGenInfo::getSizeOfUnwindException(); 4119 } 4120 4121 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4122 CodeGen::CodeGenModule &CGM) const override { 4123 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4124 if (!FD) 4125 return; 4126 4127 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4128 if (!Attr) 4129 return; 4130 4131 const char *Kind; 4132 switch (Attr->getInterrupt()) { 4133 case ARMInterruptAttr::Generic: Kind = ""; break; 4134 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4135 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4136 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4137 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4138 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4139 } 4140 4141 llvm::Function *Fn = cast<llvm::Function>(GV); 4142 4143 Fn->addFnAttr("interrupt", Kind); 4144 4145 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4146 return; 4147 4148 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4149 // however this is not necessarily true on taking any interrupt. Instruct 4150 // the backend to perform a realignment as part of the function prologue. 4151 llvm::AttrBuilder B; 4152 B.addStackAlignmentAttr(8); 4153 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4154 llvm::AttributeSet::get(CGM.getLLVMContext(), 4155 llvm::AttributeSet::FunctionIndex, 4156 B)); 4157 } 4158 4159 }; 4160 4161 } 4162 4163 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4164 // To correctly handle Homogeneous Aggregate, we need to keep track of the 4165 // VFP registers allocated so far. 4166 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4167 // VFP registers of the appropriate type unallocated then the argument is 4168 // allocated to the lowest-numbered sequence of such registers. 4169 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4170 // unallocated are marked as unavailable. 4171 resetAllocatedRegs(); 4172 4173 const bool isAAPCS_VFP = 4174 getABIKind() == ARMABIInfo::AAPCS_VFP && !FI.isVariadic(); 4175 4176 if (getCXXABI().classifyReturnType(FI)) { 4177 if (FI.getReturnInfo().isIndirect()) 4178 markAllocatedGPRs(1, 1); 4179 } else { 4180 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4181 } 4182 for (auto &I : FI.arguments()) { 4183 unsigned PreAllocationVFPs = AllocatedVFPs; 4184 unsigned PreAllocationGPRs = AllocatedGPRs; 4185 bool IsCPRC = false; 4186 // 6.1.2.3 There is one VFP co-processor register class using registers 4187 // s0-s15 (d0-d7) for passing arguments. 4188 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 4189 4190 // If we have allocated some arguments onto the stack (due to running 4191 // out of VFP registers), we cannot split an argument between GPRs and 4192 // the stack. If this situation occurs, we add padding to prevent the 4193 // GPRs from being used. In this situation, the current argument could 4194 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 4195 // unusable anyway. 4196 // We do not have to do this if the argument is being passed ByVal, as the 4197 // backend can handle that situation correctly. 4198 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4199 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); 4200 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && 4201 StackUsed && !IsByVal) { 4202 llvm::Type *PaddingTy = llvm::ArrayType::get( 4203 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4204 if (I.info.canHaveCoerceToType()) { 4205 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 4206 PaddingTy, !isAAPCS_VFP); 4207 } else { 4208 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4209 PaddingTy, !isAAPCS_VFP); 4210 } 4211 } 4212 } 4213 4214 // Always honor user-specified calling convention. 4215 if (FI.getCallingConvention() != llvm::CallingConv::C) 4216 return; 4217 4218 llvm::CallingConv::ID cc = getRuntimeCC(); 4219 if (cc != llvm::CallingConv::C) 4220 FI.setEffectiveCallingConvention(cc); 4221 } 4222 4223 /// Return the default calling convention that LLVM will use. 4224 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4225 // The default calling convention that LLVM will infer. 4226 if (isEABIHF()) 4227 return llvm::CallingConv::ARM_AAPCS_VFP; 4228 else if (isEABI()) 4229 return llvm::CallingConv::ARM_AAPCS; 4230 else 4231 return llvm::CallingConv::ARM_APCS; 4232 } 4233 4234 /// Return the calling convention that our ABI would like us to use 4235 /// as the C calling convention. 4236 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4237 switch (getABIKind()) { 4238 case APCS: return llvm::CallingConv::ARM_APCS; 4239 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4240 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4241 } 4242 llvm_unreachable("bad ABI kind"); 4243 } 4244 4245 void ARMABIInfo::setRuntimeCC() { 4246 assert(getRuntimeCC() == llvm::CallingConv::C); 4247 4248 // Don't muddy up the IR with a ton of explicit annotations if 4249 // they'd just match what LLVM will infer from the triple. 4250 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4251 if (abiCC != getLLVMDefaultCC()) 4252 RuntimeCC = abiCC; 4253 } 4254 4255 /// isARMHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 4256 /// aggregate. If HAMembers is non-null, the number of base elements 4257 /// contained in the type is returned through it; this is used for the 4258 /// recursive calls that check aggregate component types. 4259 static bool isARMHomogeneousAggregate(QualType Ty, const Type *&Base, 4260 ASTContext &Context, bool isAArch64, 4261 uint64_t *HAMembers) { 4262 uint64_t Members = 0; 4263 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 4264 if (!isARMHomogeneousAggregate(AT->getElementType(), Base, Context, isAArch64, &Members)) 4265 return false; 4266 Members *= AT->getSize().getZExtValue(); 4267 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4268 const RecordDecl *RD = RT->getDecl(); 4269 if (RD->hasFlexibleArrayMember()) 4270 return false; 4271 4272 Members = 0; 4273 for (const auto *FD : RD->fields()) { 4274 uint64_t FldMembers; 4275 if (!isARMHomogeneousAggregate(FD->getType(), Base, Context, isAArch64, &FldMembers)) 4276 return false; 4277 4278 Members = (RD->isUnion() ? 4279 std::max(Members, FldMembers) : Members + FldMembers); 4280 } 4281 } else { 4282 Members = 1; 4283 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4284 Members = 2; 4285 Ty = CT->getElementType(); 4286 } 4287 4288 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4289 // double, or 64-bit or 128-bit vectors. "long double" has the same machine 4290 // type as double, so it is also allowed as a base type. 4291 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4292 // point type or a short-vector type. This is the same as the 32-bit ABI, 4293 // but with the difference that any floating-point type is allowed, 4294 // including __fp16. 4295 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4296 if (isAArch64) { 4297 if (!BT->isFloatingPoint()) 4298 return false; 4299 } else { 4300 if (BT->getKind() != BuiltinType::Float && 4301 BT->getKind() != BuiltinType::Double && 4302 BT->getKind() != BuiltinType::LongDouble) 4303 return false; 4304 } 4305 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4306 unsigned VecSize = Context.getTypeSize(VT); 4307 if (VecSize != 64 && VecSize != 128) 4308 return false; 4309 } else { 4310 return false; 4311 } 4312 4313 // The base type must be the same for all members. Vector types of the 4314 // same total size are treated as being equivalent here. 4315 const Type *TyPtr = Ty.getTypePtr(); 4316 if (!Base) 4317 Base = TyPtr; 4318 4319 if (Base != TyPtr) { 4320 // Homogeneous aggregates are defined as containing members with the 4321 // same machine type. There are two cases in which two members have 4322 // different TypePtrs but the same machine type: 4323 4324 // 1) Vectors of the same length, regardless of the type and number 4325 // of their members. 4326 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 4327 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4328 4329 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 4330 // machine type. This is not the case for the 64-bit AAPCS. 4331 const bool SameSizeDoubles = 4332 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4333 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4334 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4335 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4336 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4337 4338 if (!SameLengthVectors && !SameSizeDoubles) 4339 return false; 4340 } 4341 } 4342 4343 // Homogeneous Aggregates can have at most 4 members of the base type. 4344 if (HAMembers) 4345 *HAMembers = Members; 4346 4347 return (Members > 0 && Members <= 4); 4348 } 4349 4350 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4351 /// number of VFP registers (unit is S register) requested. 4352 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4353 unsigned NumRequired) const { 4354 // Early Exit. 4355 if (AllocatedVFPs >= 16) { 4356 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4357 // the stack. 4358 AllocatedVFPs = 17; 4359 return; 4360 } 4361 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4362 // VFP registers of the appropriate type unallocated then the argument is 4363 // allocated to the lowest-numbered sequence of such registers. 4364 for (unsigned I = 0; I < 16; I += Alignment) { 4365 bool FoundSlot = true; 4366 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4367 if (J >= 16 || VFPRegs[J]) { 4368 FoundSlot = false; 4369 break; 4370 } 4371 if (FoundSlot) { 4372 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4373 VFPRegs[J] = 1; 4374 AllocatedVFPs += NumRequired; 4375 return; 4376 } 4377 } 4378 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4379 // unallocated are marked as unavailable. 4380 for (unsigned I = 0; I < 16; I++) 4381 VFPRegs[I] = 1; 4382 AllocatedVFPs = 17; // We do not have enough VFP registers. 4383 } 4384 4385 /// Update AllocatedGPRs to record the number of general purpose registers 4386 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4387 /// this represents arguments being stored on the stack. 4388 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4389 unsigned NumRequired) const { 4390 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4391 4392 if (Alignment == 2 && AllocatedGPRs & 0x1) 4393 AllocatedGPRs += 1; 4394 4395 AllocatedGPRs += NumRequired; 4396 } 4397 4398 void ARMABIInfo::resetAllocatedRegs(void) const { 4399 AllocatedGPRs = 0; 4400 AllocatedVFPs = 0; 4401 for (unsigned i = 0; i < NumVFPs; ++i) 4402 VFPRegs[i] = 0; 4403 } 4404 4405 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4406 bool &IsCPRC) const { 4407 // We update number of allocated VFPs according to 4408 // 6.1.2.1 The following argument types are VFP CPRCs: 4409 // A single-precision floating-point type (including promoted 4410 // half-precision types); A double-precision floating-point type; 4411 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4412 // with a Base Type of a single- or double-precision floating-point type, 4413 // 64-bit containerized vectors or 128-bit containerized vectors with one 4414 // to four Elements. 4415 4416 const bool isAAPCS_VFP = 4417 getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic; 4418 4419 // Handle illegal vector types here. 4420 if (isIllegalVectorType(Ty)) { 4421 uint64_t Size = getContext().getTypeSize(Ty); 4422 if (Size <= 32) { 4423 llvm::Type *ResType = 4424 llvm::Type::getInt32Ty(getVMContext()); 4425 markAllocatedGPRs(1, 1); 4426 return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP); 4427 } 4428 if (Size == 64) { 4429 llvm::Type *ResType = llvm::VectorType::get( 4430 llvm::Type::getInt32Ty(getVMContext()), 2); 4431 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4432 markAllocatedGPRs(2, 2); 4433 } else { 4434 markAllocatedVFPs(2, 2); 4435 IsCPRC = true; 4436 } 4437 return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP); 4438 } 4439 if (Size == 128) { 4440 llvm::Type *ResType = llvm::VectorType::get( 4441 llvm::Type::getInt32Ty(getVMContext()), 4); 4442 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4443 markAllocatedGPRs(2, 4); 4444 } else { 4445 markAllocatedVFPs(4, 4); 4446 IsCPRC = true; 4447 } 4448 return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP); 4449 } 4450 markAllocatedGPRs(1, 1); 4451 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4452 } 4453 // Update VFPRegs for legal vector types. 4454 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4455 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4456 uint64_t Size = getContext().getTypeSize(VT); 4457 // Size of a legal vector should be power of 2 and above 64. 4458 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4459 IsCPRC = true; 4460 } 4461 } 4462 // Update VFPRegs for floating point types. 4463 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4464 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4465 if (BT->getKind() == BuiltinType::Half || 4466 BT->getKind() == BuiltinType::Float) { 4467 markAllocatedVFPs(1, 1); 4468 IsCPRC = true; 4469 } 4470 if (BT->getKind() == BuiltinType::Double || 4471 BT->getKind() == BuiltinType::LongDouble) { 4472 markAllocatedVFPs(2, 2); 4473 IsCPRC = true; 4474 } 4475 } 4476 } 4477 4478 if (!isAggregateTypeForABI(Ty)) { 4479 // Treat an enum type as its underlying type. 4480 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4481 Ty = EnumTy->getDecl()->getIntegerType(); 4482 } 4483 4484 unsigned Size = getContext().getTypeSize(Ty); 4485 if (!IsCPRC) 4486 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4487 return (Ty->isPromotableIntegerType() 4488 ? ABIArgInfo::getExtend() 4489 : ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP)); 4490 } 4491 4492 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4493 markAllocatedGPRs(1, 1); 4494 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4495 } 4496 4497 // Ignore empty records. 4498 if (isEmptyRecord(getContext(), Ty, true)) 4499 return ABIArgInfo::getIgnore(); 4500 4501 if (isAAPCS_VFP) { 4502 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4503 // into VFP registers. 4504 const Type *Base = nullptr; 4505 uint64_t Members = 0; 4506 if (isARMHomogeneousAggregate(Ty, Base, getContext(), false, &Members)) { 4507 assert(Base && "Base class should be set for homogeneous aggregate"); 4508 // Base can be a floating-point or a vector. 4509 if (Base->isVectorType()) { 4510 // ElementSize is in number of floats. 4511 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4512 markAllocatedVFPs(ElementSize, 4513 Members * ElementSize); 4514 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4515 markAllocatedVFPs(1, Members); 4516 else { 4517 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4518 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4519 markAllocatedVFPs(2, Members * 2); 4520 } 4521 IsCPRC = true; 4522 return ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP); 4523 } 4524 } 4525 4526 // Support byval for ARM. 4527 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4528 // most 8-byte. We realign the indirect argument if type alignment is bigger 4529 // than ABI alignment. 4530 uint64_t ABIAlign = 4; 4531 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4532 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4533 getABIKind() == ARMABIInfo::AAPCS) 4534 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4535 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4536 // Update Allocated GPRs. Since this is only used when the size of the 4537 // argument is greater than 64 bytes, this will always use up any available 4538 // registers (of which there are 4). We also don't care about getting the 4539 // alignment right, because general-purpose registers cannot be back-filled. 4540 markAllocatedGPRs(1, 4); 4541 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4542 /*Realign=*/TyAlign > ABIAlign); 4543 } 4544 4545 // Otherwise, pass by coercing to a structure of the appropriate size. 4546 llvm::Type* ElemTy; 4547 unsigned SizeRegs; 4548 // FIXME: Try to match the types of the arguments more accurately where 4549 // we can. 4550 if (getContext().getTypeAlign(Ty) <= 32) { 4551 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4552 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4553 markAllocatedGPRs(1, SizeRegs); 4554 } else { 4555 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4556 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4557 markAllocatedGPRs(2, SizeRegs * 2); 4558 } 4559 4560 llvm::Type *STy = 4561 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4562 return ABIArgInfo::getDirect(STy, 0, nullptr, !isAAPCS_VFP); 4563 } 4564 4565 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4566 llvm::LLVMContext &VMContext) { 4567 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4568 // is called integer-like if its size is less than or equal to one word, and 4569 // the offset of each of its addressable sub-fields is zero. 4570 4571 uint64_t Size = Context.getTypeSize(Ty); 4572 4573 // Check that the type fits in a word. 4574 if (Size > 32) 4575 return false; 4576 4577 // FIXME: Handle vector types! 4578 if (Ty->isVectorType()) 4579 return false; 4580 4581 // Float types are never treated as "integer like". 4582 if (Ty->isRealFloatingType()) 4583 return false; 4584 4585 // If this is a builtin or pointer type then it is ok. 4586 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4587 return true; 4588 4589 // Small complex integer types are "integer like". 4590 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4591 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4592 4593 // Single element and zero sized arrays should be allowed, by the definition 4594 // above, but they are not. 4595 4596 // Otherwise, it must be a record type. 4597 const RecordType *RT = Ty->getAs<RecordType>(); 4598 if (!RT) return false; 4599 4600 // Ignore records with flexible arrays. 4601 const RecordDecl *RD = RT->getDecl(); 4602 if (RD->hasFlexibleArrayMember()) 4603 return false; 4604 4605 // Check that all sub-fields are at offset 0, and are themselves "integer 4606 // like". 4607 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4608 4609 bool HadField = false; 4610 unsigned idx = 0; 4611 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4612 i != e; ++i, ++idx) { 4613 const FieldDecl *FD = *i; 4614 4615 // Bit-fields are not addressable, we only need to verify they are "integer 4616 // like". We still have to disallow a subsequent non-bitfield, for example: 4617 // struct { int : 0; int x } 4618 // is non-integer like according to gcc. 4619 if (FD->isBitField()) { 4620 if (!RD->isUnion()) 4621 HadField = true; 4622 4623 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4624 return false; 4625 4626 continue; 4627 } 4628 4629 // Check if this field is at offset 0. 4630 if (Layout.getFieldOffset(idx) != 0) 4631 return false; 4632 4633 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4634 return false; 4635 4636 // Only allow at most one field in a structure. This doesn't match the 4637 // wording above, but follows gcc in situations with a field following an 4638 // empty structure. 4639 if (!RD->isUnion()) { 4640 if (HadField) 4641 return false; 4642 4643 HadField = true; 4644 } 4645 } 4646 4647 return true; 4648 } 4649 4650 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4651 bool isVariadic) const { 4652 const bool isAAPCS_VFP = 4653 getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic; 4654 4655 if (RetTy->isVoidType()) 4656 return ABIArgInfo::getIgnore(); 4657 4658 // Large vector types should be returned via memory. 4659 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4660 markAllocatedGPRs(1, 1); 4661 return ABIArgInfo::getIndirect(0); 4662 } 4663 4664 if (!isAggregateTypeForABI(RetTy)) { 4665 // Treat an enum type as its underlying type. 4666 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4667 RetTy = EnumTy->getDecl()->getIntegerType(); 4668 4669 return (RetTy->isPromotableIntegerType() 4670 ? ABIArgInfo::getExtend() 4671 : ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP)); 4672 } 4673 4674 // Are we following APCS? 4675 if (getABIKind() == APCS) { 4676 if (isEmptyRecord(getContext(), RetTy, false)) 4677 return ABIArgInfo::getIgnore(); 4678 4679 // Complex types are all returned as packed integers. 4680 // 4681 // FIXME: Consider using 2 x vector types if the back end handles them 4682 // correctly. 4683 if (RetTy->isAnyComplexType()) 4684 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4685 getVMContext(), getContext().getTypeSize(RetTy))); 4686 4687 // Integer like structures are returned in r0. 4688 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4689 // Return in the smallest viable integer type. 4690 uint64_t Size = getContext().getTypeSize(RetTy); 4691 if (Size <= 8) 4692 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4693 if (Size <= 16) 4694 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4695 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4696 } 4697 4698 // Otherwise return in memory. 4699 markAllocatedGPRs(1, 1); 4700 return ABIArgInfo::getIndirect(0); 4701 } 4702 4703 // Otherwise this is an AAPCS variant. 4704 4705 if (isEmptyRecord(getContext(), RetTy, true)) 4706 return ABIArgInfo::getIgnore(); 4707 4708 // Check for homogeneous aggregates with AAPCS-VFP. 4709 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4710 const Type *Base = nullptr; 4711 if (isARMHomogeneousAggregate(RetTy, Base, getContext(), false)) { 4712 assert(Base && "Base class should be set for homogeneous aggregate"); 4713 // Homogeneous Aggregates are returned directly. 4714 return ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP); 4715 } 4716 } 4717 4718 // Aggregates <= 4 bytes are returned in r0; other aggregates 4719 // are returned indirectly. 4720 uint64_t Size = getContext().getTypeSize(RetTy); 4721 if (Size <= 32) { 4722 if (getDataLayout().isBigEndian()) 4723 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4724 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()), 0, 4725 nullptr, !isAAPCS_VFP); 4726 4727 // Return in the smallest viable integer type. 4728 if (Size <= 8) 4729 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()), 0, 4730 nullptr, !isAAPCS_VFP); 4731 if (Size <= 16) 4732 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()), 0, 4733 nullptr, !isAAPCS_VFP); 4734 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()), 0, 4735 nullptr, !isAAPCS_VFP); 4736 } 4737 4738 markAllocatedGPRs(1, 1); 4739 return ABIArgInfo::getIndirect(0); 4740 } 4741 4742 /// isIllegalVector - check whether Ty is an illegal vector type. 4743 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4744 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4745 // Check whether VT is legal. 4746 unsigned NumElements = VT->getNumElements(); 4747 uint64_t Size = getContext().getTypeSize(VT); 4748 // NumElements should be power of 2. 4749 if ((NumElements & (NumElements - 1)) != 0) 4750 return true; 4751 // Size should be greater than 32 bits. 4752 return Size <= 32; 4753 } 4754 return false; 4755 } 4756 4757 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4758 CodeGenFunction &CGF) const { 4759 llvm::Type *BP = CGF.Int8PtrTy; 4760 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4761 4762 CGBuilderTy &Builder = CGF.Builder; 4763 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4764 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4765 4766 if (isEmptyRecord(getContext(), Ty, true)) { 4767 // These are ignored for parameter passing purposes. 4768 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4769 return Builder.CreateBitCast(Addr, PTy); 4770 } 4771 4772 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4773 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4774 bool IsIndirect = false; 4775 4776 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4777 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4778 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4779 getABIKind() == ARMABIInfo::AAPCS) 4780 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4781 else 4782 TyAlign = 4; 4783 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4784 if (isIllegalVectorType(Ty) && Size > 16) { 4785 IsIndirect = true; 4786 Size = 4; 4787 TyAlign = 4; 4788 } 4789 4790 // Handle address alignment for ABI alignment > 4 bytes. 4791 if (TyAlign > 4) { 4792 assert((TyAlign & (TyAlign - 1)) == 0 && 4793 "Alignment is not power of 2!"); 4794 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4795 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4796 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4797 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4798 } 4799 4800 uint64_t Offset = 4801 llvm::RoundUpToAlignment(Size, 4); 4802 llvm::Value *NextAddr = 4803 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4804 "ap.next"); 4805 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4806 4807 if (IsIndirect) 4808 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4809 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4810 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4811 // may not be correctly aligned for the vector type. We create an aligned 4812 // temporary space and copy the content over from ap.cur to the temporary 4813 // space. This is necessary if the natural alignment of the type is greater 4814 // than the ABI alignment. 4815 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4816 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4817 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4818 "var.align"); 4819 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4820 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4821 Builder.CreateMemCpy(Dst, Src, 4822 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4823 TyAlign, false); 4824 Addr = AlignedTemp; //The content is in aligned location. 4825 } 4826 llvm::Type *PTy = 4827 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4828 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4829 4830 return AddrTyped; 4831 } 4832 4833 namespace { 4834 4835 class NaClARMABIInfo : public ABIInfo { 4836 public: 4837 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4838 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4839 void computeInfo(CGFunctionInfo &FI) const override; 4840 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4841 CodeGenFunction &CGF) const override; 4842 private: 4843 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4844 ARMABIInfo NInfo; // Used for everything else. 4845 }; 4846 4847 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4848 public: 4849 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4850 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4851 }; 4852 4853 } 4854 4855 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4856 if (FI.getASTCallingConvention() == CC_PnaclCall) 4857 PInfo.computeInfo(FI); 4858 else 4859 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4860 } 4861 4862 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4863 CodeGenFunction &CGF) const { 4864 // Always use the native convention; calling pnacl-style varargs functions 4865 // is unsupported. 4866 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4867 } 4868 4869 //===----------------------------------------------------------------------===// 4870 // NVPTX ABI Implementation 4871 //===----------------------------------------------------------------------===// 4872 4873 namespace { 4874 4875 class NVPTXABIInfo : public ABIInfo { 4876 public: 4877 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4878 4879 ABIArgInfo classifyReturnType(QualType RetTy) const; 4880 ABIArgInfo classifyArgumentType(QualType Ty) const; 4881 4882 void computeInfo(CGFunctionInfo &FI) const override; 4883 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4884 CodeGenFunction &CFG) const override; 4885 }; 4886 4887 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4888 public: 4889 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4890 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4891 4892 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4893 CodeGen::CodeGenModule &M) const override; 4894 private: 4895 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4896 // resulting MDNode to the nvvm.annotations MDNode. 4897 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4898 }; 4899 4900 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4901 if (RetTy->isVoidType()) 4902 return ABIArgInfo::getIgnore(); 4903 4904 // note: this is different from default ABI 4905 if (!RetTy->isScalarType()) 4906 return ABIArgInfo::getDirect(); 4907 4908 // Treat an enum type as its underlying type. 4909 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4910 RetTy = EnumTy->getDecl()->getIntegerType(); 4911 4912 return (RetTy->isPromotableIntegerType() ? 4913 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4914 } 4915 4916 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4917 // Treat an enum type as its underlying type. 4918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4919 Ty = EnumTy->getDecl()->getIntegerType(); 4920 4921 return (Ty->isPromotableIntegerType() ? 4922 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4923 } 4924 4925 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4926 if (!getCXXABI().classifyReturnType(FI)) 4927 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4928 for (auto &I : FI.arguments()) 4929 I.info = classifyArgumentType(I.type); 4930 4931 // Always honor user-specified calling convention. 4932 if (FI.getCallingConvention() != llvm::CallingConv::C) 4933 return; 4934 4935 FI.setEffectiveCallingConvention(getRuntimeCC()); 4936 } 4937 4938 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4939 CodeGenFunction &CFG) const { 4940 llvm_unreachable("NVPTX does not support varargs"); 4941 } 4942 4943 void NVPTXTargetCodeGenInfo:: 4944 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4945 CodeGen::CodeGenModule &M) const{ 4946 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4947 if (!FD) return; 4948 4949 llvm::Function *F = cast<llvm::Function>(GV); 4950 4951 // Perform special handling in OpenCL mode 4952 if (M.getLangOpts().OpenCL) { 4953 // Use OpenCL function attributes to check for kernel functions 4954 // By default, all functions are device functions 4955 if (FD->hasAttr<OpenCLKernelAttr>()) { 4956 // OpenCL __kernel functions get kernel metadata 4957 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4958 addNVVMMetadata(F, "kernel", 1); 4959 // And kernel functions are not subject to inlining 4960 F->addFnAttr(llvm::Attribute::NoInline); 4961 } 4962 } 4963 4964 // Perform special handling in CUDA mode. 4965 if (M.getLangOpts().CUDA) { 4966 // CUDA __global__ functions get a kernel metadata entry. Since 4967 // __global__ functions cannot be called from the device, we do not 4968 // need to set the noinline attribute. 4969 if (FD->hasAttr<CUDAGlobalAttr>()) { 4970 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4971 addNVVMMetadata(F, "kernel", 1); 4972 } 4973 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4974 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4975 addNVVMMetadata(F, "maxntidx", 4976 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4977 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4978 // zero value from getMinBlocks either means it was not specified in 4979 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4980 // don't have to add a PTX directive. 4981 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4982 if (MinCTASM > 0) { 4983 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4984 addNVVMMetadata(F, "minctasm", MinCTASM); 4985 } 4986 } 4987 } 4988 } 4989 4990 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4991 int Operand) { 4992 llvm::Module *M = F->getParent(); 4993 llvm::LLVMContext &Ctx = M->getContext(); 4994 4995 // Get "nvvm.annotations" metadata node 4996 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4997 4998 llvm::Value *MDVals[] = { 4999 F, llvm::MDString::get(Ctx, Name), 5000 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 5001 // Append metadata to nvvm.annotations 5002 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5003 } 5004 } 5005 5006 //===----------------------------------------------------------------------===// 5007 // SystemZ ABI Implementation 5008 //===----------------------------------------------------------------------===// 5009 5010 namespace { 5011 5012 class SystemZABIInfo : public ABIInfo { 5013 public: 5014 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5015 5016 bool isPromotableIntegerType(QualType Ty) const; 5017 bool isCompoundType(QualType Ty) const; 5018 bool isFPArgumentType(QualType Ty) const; 5019 5020 ABIArgInfo classifyReturnType(QualType RetTy) const; 5021 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5022 5023 void computeInfo(CGFunctionInfo &FI) const override { 5024 if (!getCXXABI().classifyReturnType(FI)) 5025 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5026 for (auto &I : FI.arguments()) 5027 I.info = classifyArgumentType(I.type); 5028 } 5029 5030 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5031 CodeGenFunction &CGF) const override; 5032 }; 5033 5034 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5035 public: 5036 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 5037 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 5038 }; 5039 5040 } 5041 5042 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5043 // Treat an enum type as its underlying type. 5044 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5045 Ty = EnumTy->getDecl()->getIntegerType(); 5046 5047 // Promotable integer types are required to be promoted by the ABI. 5048 if (Ty->isPromotableIntegerType()) 5049 return true; 5050 5051 // 32-bit values must also be promoted. 5052 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5053 switch (BT->getKind()) { 5054 case BuiltinType::Int: 5055 case BuiltinType::UInt: 5056 return true; 5057 default: 5058 return false; 5059 } 5060 return false; 5061 } 5062 5063 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5064 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 5065 } 5066 5067 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5068 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5069 switch (BT->getKind()) { 5070 case BuiltinType::Float: 5071 case BuiltinType::Double: 5072 return true; 5073 default: 5074 return false; 5075 } 5076 5077 if (const RecordType *RT = Ty->getAsStructureType()) { 5078 const RecordDecl *RD = RT->getDecl(); 5079 bool Found = false; 5080 5081 // If this is a C++ record, check the bases first. 5082 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5083 for (const auto &I : CXXRD->bases()) { 5084 QualType Base = I.getType(); 5085 5086 // Empty bases don't affect things either way. 5087 if (isEmptyRecord(getContext(), Base, true)) 5088 continue; 5089 5090 if (Found) 5091 return false; 5092 Found = isFPArgumentType(Base); 5093 if (!Found) 5094 return false; 5095 } 5096 5097 // Check the fields. 5098 for (const auto *FD : RD->fields()) { 5099 // Empty bitfields don't affect things either way. 5100 // Unlike isSingleElementStruct(), empty structure and array fields 5101 // do count. So do anonymous bitfields that aren't zero-sized. 5102 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5103 return true; 5104 5105 // Unlike isSingleElementStruct(), arrays do not count. 5106 // Nested isFPArgumentType structures still do though. 5107 if (Found) 5108 return false; 5109 Found = isFPArgumentType(FD->getType()); 5110 if (!Found) 5111 return false; 5112 } 5113 5114 // Unlike isSingleElementStruct(), trailing padding is allowed. 5115 // An 8-byte aligned struct s { float f; } is passed as a double. 5116 return Found; 5117 } 5118 5119 return false; 5120 } 5121 5122 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5123 CodeGenFunction &CGF) const { 5124 // Assume that va_list type is correct; should be pointer to LLVM type: 5125 // struct { 5126 // i64 __gpr; 5127 // i64 __fpr; 5128 // i8 *__overflow_arg_area; 5129 // i8 *__reg_save_area; 5130 // }; 5131 5132 // Every argument occupies 8 bytes and is passed by preference in either 5133 // GPRs or FPRs. 5134 Ty = CGF.getContext().getCanonicalType(Ty); 5135 ABIArgInfo AI = classifyArgumentType(Ty); 5136 bool InFPRs = isFPArgumentType(Ty); 5137 5138 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5139 bool IsIndirect = AI.isIndirect(); 5140 unsigned UnpaddedBitSize; 5141 if (IsIndirect) { 5142 APTy = llvm::PointerType::getUnqual(APTy); 5143 UnpaddedBitSize = 64; 5144 } else 5145 UnpaddedBitSize = getContext().getTypeSize(Ty); 5146 unsigned PaddedBitSize = 64; 5147 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5148 5149 unsigned PaddedSize = PaddedBitSize / 8; 5150 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5151 5152 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5153 if (InFPRs) { 5154 MaxRegs = 4; // Maximum of 4 FPR arguments 5155 RegCountField = 1; // __fpr 5156 RegSaveIndex = 16; // save offset for f0 5157 RegPadding = 0; // floats are passed in the high bits of an FPR 5158 } else { 5159 MaxRegs = 5; // Maximum of 5 GPR arguments 5160 RegCountField = 0; // __gpr 5161 RegSaveIndex = 2; // save offset for r2 5162 RegPadding = Padding; // values are passed in the low bits of a GPR 5163 } 5164 5165 llvm::Value *RegCountPtr = 5166 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5167 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5168 llvm::Type *IndexTy = RegCount->getType(); 5169 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5170 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5171 "fits_in_regs"); 5172 5173 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5174 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5175 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5176 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5177 5178 // Emit code to load the value if it was passed in registers. 5179 CGF.EmitBlock(InRegBlock); 5180 5181 // Work out the address of an argument register. 5182 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5183 llvm::Value *ScaledRegCount = 5184 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5185 llvm::Value *RegBase = 5186 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5187 llvm::Value *RegOffset = 5188 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5189 llvm::Value *RegSaveAreaPtr = 5190 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5191 llvm::Value *RegSaveArea = 5192 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5193 llvm::Value *RawRegAddr = 5194 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5195 llvm::Value *RegAddr = 5196 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5197 5198 // Update the register count 5199 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5200 llvm::Value *NewRegCount = 5201 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5202 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5203 CGF.EmitBranch(ContBlock); 5204 5205 // Emit code to load the value if it was passed in memory. 5206 CGF.EmitBlock(InMemBlock); 5207 5208 // Work out the address of a stack argument. 5209 llvm::Value *OverflowArgAreaPtr = 5210 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5211 llvm::Value *OverflowArgArea = 5212 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5213 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5214 llvm::Value *RawMemAddr = 5215 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5216 llvm::Value *MemAddr = 5217 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5218 5219 // Update overflow_arg_area_ptr pointer 5220 llvm::Value *NewOverflowArgArea = 5221 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5222 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5223 CGF.EmitBranch(ContBlock); 5224 5225 // Return the appropriate result. 5226 CGF.EmitBlock(ContBlock); 5227 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5228 ResAddr->addIncoming(RegAddr, InRegBlock); 5229 ResAddr->addIncoming(MemAddr, InMemBlock); 5230 5231 if (IsIndirect) 5232 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5233 5234 return ResAddr; 5235 } 5236 5237 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5238 if (RetTy->isVoidType()) 5239 return ABIArgInfo::getIgnore(); 5240 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5241 return ABIArgInfo::getIndirect(0); 5242 return (isPromotableIntegerType(RetTy) ? 5243 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5244 } 5245 5246 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5247 // Handle the generic C++ ABI. 5248 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5249 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5250 5251 // Integers and enums are extended to full register width. 5252 if (isPromotableIntegerType(Ty)) 5253 return ABIArgInfo::getExtend(); 5254 5255 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5256 uint64_t Size = getContext().getTypeSize(Ty); 5257 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5258 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5259 5260 // Handle small structures. 5261 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5262 // Structures with flexible arrays have variable length, so really 5263 // fail the size test above. 5264 const RecordDecl *RD = RT->getDecl(); 5265 if (RD->hasFlexibleArrayMember()) 5266 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5267 5268 // The structure is passed as an unextended integer, a float, or a double. 5269 llvm::Type *PassTy; 5270 if (isFPArgumentType(Ty)) { 5271 assert(Size == 32 || Size == 64); 5272 if (Size == 32) 5273 PassTy = llvm::Type::getFloatTy(getVMContext()); 5274 else 5275 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5276 } else 5277 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5278 return ABIArgInfo::getDirect(PassTy); 5279 } 5280 5281 // Non-structure compounds are passed indirectly. 5282 if (isCompoundType(Ty)) 5283 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5284 5285 return ABIArgInfo::getDirect(nullptr); 5286 } 5287 5288 //===----------------------------------------------------------------------===// 5289 // MSP430 ABI Implementation 5290 //===----------------------------------------------------------------------===// 5291 5292 namespace { 5293 5294 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5295 public: 5296 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5297 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5298 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5299 CodeGen::CodeGenModule &M) const override; 5300 }; 5301 5302 } 5303 5304 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5305 llvm::GlobalValue *GV, 5306 CodeGen::CodeGenModule &M) const { 5307 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5308 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5309 // Handle 'interrupt' attribute: 5310 llvm::Function *F = cast<llvm::Function>(GV); 5311 5312 // Step 1: Set ISR calling convention. 5313 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5314 5315 // Step 2: Add attributes goodness. 5316 F->addFnAttr(llvm::Attribute::NoInline); 5317 5318 // Step 3: Emit ISR vector alias. 5319 unsigned Num = attr->getNumber() / 2; 5320 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5321 "__isr_" + Twine(Num), F); 5322 } 5323 } 5324 } 5325 5326 //===----------------------------------------------------------------------===// 5327 // MIPS ABI Implementation. This works for both little-endian and 5328 // big-endian variants. 5329 //===----------------------------------------------------------------------===// 5330 5331 namespace { 5332 class MipsABIInfo : public ABIInfo { 5333 bool IsO32; 5334 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5335 void CoerceToIntArgs(uint64_t TySize, 5336 SmallVectorImpl<llvm::Type *> &ArgList) const; 5337 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5338 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5339 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5340 public: 5341 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5342 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5343 StackAlignInBytes(IsO32 ? 8 : 16) {} 5344 5345 ABIArgInfo classifyReturnType(QualType RetTy) const; 5346 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5347 void computeInfo(CGFunctionInfo &FI) const override; 5348 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5349 CodeGenFunction &CGF) const override; 5350 }; 5351 5352 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5353 unsigned SizeOfUnwindException; 5354 public: 5355 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5356 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5357 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5358 5359 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5360 return 29; 5361 } 5362 5363 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5364 CodeGen::CodeGenModule &CGM) const override { 5365 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5366 if (!FD) return; 5367 llvm::Function *Fn = cast<llvm::Function>(GV); 5368 if (FD->hasAttr<Mips16Attr>()) { 5369 Fn->addFnAttr("mips16"); 5370 } 5371 else if (FD->hasAttr<NoMips16Attr>()) { 5372 Fn->addFnAttr("nomips16"); 5373 } 5374 } 5375 5376 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5377 llvm::Value *Address) const override; 5378 5379 unsigned getSizeOfUnwindException() const override { 5380 return SizeOfUnwindException; 5381 } 5382 }; 5383 } 5384 5385 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5386 SmallVectorImpl<llvm::Type *> &ArgList) const { 5387 llvm::IntegerType *IntTy = 5388 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5389 5390 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5391 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5392 ArgList.push_back(IntTy); 5393 5394 // If necessary, add one more integer type to ArgList. 5395 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5396 5397 if (R) 5398 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5399 } 5400 5401 // In N32/64, an aligned double precision floating point field is passed in 5402 // a register. 5403 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5404 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5405 5406 if (IsO32) { 5407 CoerceToIntArgs(TySize, ArgList); 5408 return llvm::StructType::get(getVMContext(), ArgList); 5409 } 5410 5411 if (Ty->isComplexType()) 5412 return CGT.ConvertType(Ty); 5413 5414 const RecordType *RT = Ty->getAs<RecordType>(); 5415 5416 // Unions/vectors are passed in integer registers. 5417 if (!RT || !RT->isStructureOrClassType()) { 5418 CoerceToIntArgs(TySize, ArgList); 5419 return llvm::StructType::get(getVMContext(), ArgList); 5420 } 5421 5422 const RecordDecl *RD = RT->getDecl(); 5423 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5424 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5425 5426 uint64_t LastOffset = 0; 5427 unsigned idx = 0; 5428 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5429 5430 // Iterate over fields in the struct/class and check if there are any aligned 5431 // double fields. 5432 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5433 i != e; ++i, ++idx) { 5434 const QualType Ty = i->getType(); 5435 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5436 5437 if (!BT || BT->getKind() != BuiltinType::Double) 5438 continue; 5439 5440 uint64_t Offset = Layout.getFieldOffset(idx); 5441 if (Offset % 64) // Ignore doubles that are not aligned. 5442 continue; 5443 5444 // Add ((Offset - LastOffset) / 64) args of type i64. 5445 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5446 ArgList.push_back(I64); 5447 5448 // Add double type. 5449 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5450 LastOffset = Offset + 64; 5451 } 5452 5453 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5454 ArgList.append(IntArgList.begin(), IntArgList.end()); 5455 5456 return llvm::StructType::get(getVMContext(), ArgList); 5457 } 5458 5459 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5460 uint64_t Offset) const { 5461 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5462 return nullptr; 5463 5464 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5465 } 5466 5467 ABIArgInfo 5468 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5469 uint64_t OrigOffset = Offset; 5470 uint64_t TySize = getContext().getTypeSize(Ty); 5471 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5472 5473 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5474 (uint64_t)StackAlignInBytes); 5475 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5476 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5477 5478 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5479 // Ignore empty aggregates. 5480 if (TySize == 0) 5481 return ABIArgInfo::getIgnore(); 5482 5483 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5484 Offset = OrigOffset + MinABIStackAlignInBytes; 5485 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5486 } 5487 5488 // If we have reached here, aggregates are passed directly by coercing to 5489 // another structure type. Padding is inserted if the offset of the 5490 // aggregate is unaligned. 5491 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5492 getPaddingType(OrigOffset, CurrOffset)); 5493 } 5494 5495 // Treat an enum type as its underlying type. 5496 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5497 Ty = EnumTy->getDecl()->getIntegerType(); 5498 5499 if (Ty->isPromotableIntegerType()) 5500 return ABIArgInfo::getExtend(); 5501 5502 return ABIArgInfo::getDirect( 5503 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5504 } 5505 5506 llvm::Type* 5507 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5508 const RecordType *RT = RetTy->getAs<RecordType>(); 5509 SmallVector<llvm::Type*, 8> RTList; 5510 5511 if (RT && RT->isStructureOrClassType()) { 5512 const RecordDecl *RD = RT->getDecl(); 5513 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5514 unsigned FieldCnt = Layout.getFieldCount(); 5515 5516 // N32/64 returns struct/classes in floating point registers if the 5517 // following conditions are met: 5518 // 1. The size of the struct/class is no larger than 128-bit. 5519 // 2. The struct/class has one or two fields all of which are floating 5520 // point types. 5521 // 3. The offset of the first field is zero (this follows what gcc does). 5522 // 5523 // Any other composite results are returned in integer registers. 5524 // 5525 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5526 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5527 for (; b != e; ++b) { 5528 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5529 5530 if (!BT || !BT->isFloatingPoint()) 5531 break; 5532 5533 RTList.push_back(CGT.ConvertType(b->getType())); 5534 } 5535 5536 if (b == e) 5537 return llvm::StructType::get(getVMContext(), RTList, 5538 RD->hasAttr<PackedAttr>()); 5539 5540 RTList.clear(); 5541 } 5542 } 5543 5544 CoerceToIntArgs(Size, RTList); 5545 return llvm::StructType::get(getVMContext(), RTList); 5546 } 5547 5548 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5549 uint64_t Size = getContext().getTypeSize(RetTy); 5550 5551 if (RetTy->isVoidType() || Size == 0) 5552 return ABIArgInfo::getIgnore(); 5553 5554 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5555 if (Size <= 128) { 5556 if (RetTy->isAnyComplexType()) 5557 return ABIArgInfo::getDirect(); 5558 5559 // O32 returns integer vectors in registers. 5560 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5561 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5562 5563 if (!IsO32) 5564 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5565 } 5566 5567 return ABIArgInfo::getIndirect(0); 5568 } 5569 5570 // Treat an enum type as its underlying type. 5571 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5572 RetTy = EnumTy->getDecl()->getIntegerType(); 5573 5574 return (RetTy->isPromotableIntegerType() ? 5575 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5576 } 5577 5578 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5579 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5580 if (!getCXXABI().classifyReturnType(FI)) 5581 RetInfo = classifyReturnType(FI.getReturnType()); 5582 5583 // Check if a pointer to an aggregate is passed as a hidden argument. 5584 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5585 5586 for (auto &I : FI.arguments()) 5587 I.info = classifyArgumentType(I.type, Offset); 5588 } 5589 5590 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5591 CodeGenFunction &CGF) const { 5592 llvm::Type *BP = CGF.Int8PtrTy; 5593 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5594 5595 CGBuilderTy &Builder = CGF.Builder; 5596 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5597 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5598 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5599 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5600 llvm::Value *AddrTyped; 5601 unsigned PtrWidth = getTarget().getPointerWidth(0); 5602 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5603 5604 if (TypeAlign > MinABIStackAlignInBytes) { 5605 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5606 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5607 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5608 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5609 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5610 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5611 } 5612 else 5613 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5614 5615 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5616 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5617 uint64_t Offset = 5618 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5619 llvm::Value *NextAddr = 5620 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5621 "ap.next"); 5622 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5623 5624 return AddrTyped; 5625 } 5626 5627 bool 5628 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5629 llvm::Value *Address) const { 5630 // This information comes from gcc's implementation, which seems to 5631 // as canonical as it gets. 5632 5633 // Everything on MIPS is 4 bytes. Double-precision FP registers 5634 // are aliased to pairs of single-precision FP registers. 5635 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5636 5637 // 0-31 are the general purpose registers, $0 - $31. 5638 // 32-63 are the floating-point registers, $f0 - $f31. 5639 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5640 // 66 is the (notional, I think) register for signal-handler return. 5641 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5642 5643 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5644 // They are one bit wide and ignored here. 5645 5646 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5647 // (coprocessor 1 is the FP unit) 5648 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5649 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5650 // 176-181 are the DSP accumulator registers. 5651 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5652 return false; 5653 } 5654 5655 //===----------------------------------------------------------------------===// 5656 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5657 // Currently subclassed only to implement custom OpenCL C function attribute 5658 // handling. 5659 //===----------------------------------------------------------------------===// 5660 5661 namespace { 5662 5663 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5664 public: 5665 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5666 : DefaultTargetCodeGenInfo(CGT) {} 5667 5668 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5669 CodeGen::CodeGenModule &M) const override; 5670 }; 5671 5672 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5673 llvm::GlobalValue *GV, 5674 CodeGen::CodeGenModule &M) const { 5675 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5676 if (!FD) return; 5677 5678 llvm::Function *F = cast<llvm::Function>(GV); 5679 5680 if (M.getLangOpts().OpenCL) { 5681 if (FD->hasAttr<OpenCLKernelAttr>()) { 5682 // OpenCL C Kernel functions are not subject to inlining 5683 F->addFnAttr(llvm::Attribute::NoInline); 5684 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5685 if (Attr) { 5686 // Convert the reqd_work_group_size() attributes to metadata. 5687 llvm::LLVMContext &Context = F->getContext(); 5688 llvm::NamedMDNode *OpenCLMetadata = 5689 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5690 5691 SmallVector<llvm::Value*, 5> Operands; 5692 Operands.push_back(F); 5693 5694 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5695 llvm::APInt(32, Attr->getXDim()))); 5696 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5697 llvm::APInt(32, Attr->getYDim()))); 5698 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5699 llvm::APInt(32, Attr->getZDim()))); 5700 5701 // Add a boolean constant operand for "required" (true) or "hint" (false) 5702 // for implementing the work_group_size_hint attr later. Currently 5703 // always true as the hint is not yet implemented. 5704 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5705 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5706 } 5707 } 5708 } 5709 } 5710 5711 } 5712 5713 //===----------------------------------------------------------------------===// 5714 // Hexagon ABI Implementation 5715 //===----------------------------------------------------------------------===// 5716 5717 namespace { 5718 5719 class HexagonABIInfo : public ABIInfo { 5720 5721 5722 public: 5723 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5724 5725 private: 5726 5727 ABIArgInfo classifyReturnType(QualType RetTy) const; 5728 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5729 5730 void computeInfo(CGFunctionInfo &FI) const override; 5731 5732 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5733 CodeGenFunction &CGF) const override; 5734 }; 5735 5736 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5737 public: 5738 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5739 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5740 5741 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5742 return 29; 5743 } 5744 }; 5745 5746 } 5747 5748 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5749 if (!getCXXABI().classifyReturnType(FI)) 5750 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5751 for (auto &I : FI.arguments()) 5752 I.info = classifyArgumentType(I.type); 5753 } 5754 5755 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5756 if (!isAggregateTypeForABI(Ty)) { 5757 // Treat an enum type as its underlying type. 5758 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5759 Ty = EnumTy->getDecl()->getIntegerType(); 5760 5761 return (Ty->isPromotableIntegerType() ? 5762 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5763 } 5764 5765 // Ignore empty records. 5766 if (isEmptyRecord(getContext(), Ty, true)) 5767 return ABIArgInfo::getIgnore(); 5768 5769 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5770 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5771 5772 uint64_t Size = getContext().getTypeSize(Ty); 5773 if (Size > 64) 5774 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5775 // Pass in the smallest viable integer type. 5776 else if (Size > 32) 5777 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5778 else if (Size > 16) 5779 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5780 else if (Size > 8) 5781 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5782 else 5783 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5784 } 5785 5786 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5787 if (RetTy->isVoidType()) 5788 return ABIArgInfo::getIgnore(); 5789 5790 // Large vector types should be returned via memory. 5791 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5792 return ABIArgInfo::getIndirect(0); 5793 5794 if (!isAggregateTypeForABI(RetTy)) { 5795 // Treat an enum type as its underlying type. 5796 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5797 RetTy = EnumTy->getDecl()->getIntegerType(); 5798 5799 return (RetTy->isPromotableIntegerType() ? 5800 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5801 } 5802 5803 if (isEmptyRecord(getContext(), RetTy, true)) 5804 return ABIArgInfo::getIgnore(); 5805 5806 // Aggregates <= 8 bytes are returned in r0; other aggregates 5807 // are returned indirectly. 5808 uint64_t Size = getContext().getTypeSize(RetTy); 5809 if (Size <= 64) { 5810 // Return in the smallest viable integer type. 5811 if (Size <= 8) 5812 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5813 if (Size <= 16) 5814 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5815 if (Size <= 32) 5816 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5817 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5818 } 5819 5820 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5821 } 5822 5823 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5824 CodeGenFunction &CGF) const { 5825 // FIXME: Need to handle alignment 5826 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5827 5828 CGBuilderTy &Builder = CGF.Builder; 5829 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5830 "ap"); 5831 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5832 llvm::Type *PTy = 5833 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5834 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5835 5836 uint64_t Offset = 5837 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5838 llvm::Value *NextAddr = 5839 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5840 "ap.next"); 5841 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5842 5843 return AddrTyped; 5844 } 5845 5846 5847 //===----------------------------------------------------------------------===// 5848 // SPARC v9 ABI Implementation. 5849 // Based on the SPARC Compliance Definition version 2.4.1. 5850 // 5851 // Function arguments a mapped to a nominal "parameter array" and promoted to 5852 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5853 // the array, structs larger than 16 bytes are passed indirectly. 5854 // 5855 // One case requires special care: 5856 // 5857 // struct mixed { 5858 // int i; 5859 // float f; 5860 // }; 5861 // 5862 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5863 // parameter array, but the int is passed in an integer register, and the float 5864 // is passed in a floating point register. This is represented as two arguments 5865 // with the LLVM IR inreg attribute: 5866 // 5867 // declare void f(i32 inreg %i, float inreg %f) 5868 // 5869 // The code generator will only allocate 4 bytes from the parameter array for 5870 // the inreg arguments. All other arguments are allocated a multiple of 8 5871 // bytes. 5872 // 5873 namespace { 5874 class SparcV9ABIInfo : public ABIInfo { 5875 public: 5876 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5877 5878 private: 5879 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5880 void computeInfo(CGFunctionInfo &FI) const override; 5881 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5882 CodeGenFunction &CGF) const override; 5883 5884 // Coercion type builder for structs passed in registers. The coercion type 5885 // serves two purposes: 5886 // 5887 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5888 // in registers. 5889 // 2. Expose aligned floating point elements as first-level elements, so the 5890 // code generator knows to pass them in floating point registers. 5891 // 5892 // We also compute the InReg flag which indicates that the struct contains 5893 // aligned 32-bit floats. 5894 // 5895 struct CoerceBuilder { 5896 llvm::LLVMContext &Context; 5897 const llvm::DataLayout &DL; 5898 SmallVector<llvm::Type*, 8> Elems; 5899 uint64_t Size; 5900 bool InReg; 5901 5902 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5903 : Context(c), DL(dl), Size(0), InReg(false) {} 5904 5905 // Pad Elems with integers until Size is ToSize. 5906 void pad(uint64_t ToSize) { 5907 assert(ToSize >= Size && "Cannot remove elements"); 5908 if (ToSize == Size) 5909 return; 5910 5911 // Finish the current 64-bit word. 5912 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5913 if (Aligned > Size && Aligned <= ToSize) { 5914 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5915 Size = Aligned; 5916 } 5917 5918 // Add whole 64-bit words. 5919 while (Size + 64 <= ToSize) { 5920 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5921 Size += 64; 5922 } 5923 5924 // Final in-word padding. 5925 if (Size < ToSize) { 5926 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5927 Size = ToSize; 5928 } 5929 } 5930 5931 // Add a floating point element at Offset. 5932 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5933 // Unaligned floats are treated as integers. 5934 if (Offset % Bits) 5935 return; 5936 // The InReg flag is only required if there are any floats < 64 bits. 5937 if (Bits < 64) 5938 InReg = true; 5939 pad(Offset); 5940 Elems.push_back(Ty); 5941 Size = Offset + Bits; 5942 } 5943 5944 // Add a struct type to the coercion type, starting at Offset (in bits). 5945 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5946 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5947 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5948 llvm::Type *ElemTy = StrTy->getElementType(i); 5949 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5950 switch (ElemTy->getTypeID()) { 5951 case llvm::Type::StructTyID: 5952 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5953 break; 5954 case llvm::Type::FloatTyID: 5955 addFloat(ElemOffset, ElemTy, 32); 5956 break; 5957 case llvm::Type::DoubleTyID: 5958 addFloat(ElemOffset, ElemTy, 64); 5959 break; 5960 case llvm::Type::FP128TyID: 5961 addFloat(ElemOffset, ElemTy, 128); 5962 break; 5963 case llvm::Type::PointerTyID: 5964 if (ElemOffset % 64 == 0) { 5965 pad(ElemOffset); 5966 Elems.push_back(ElemTy); 5967 Size += 64; 5968 } 5969 break; 5970 default: 5971 break; 5972 } 5973 } 5974 } 5975 5976 // Check if Ty is a usable substitute for the coercion type. 5977 bool isUsableType(llvm::StructType *Ty) const { 5978 if (Ty->getNumElements() != Elems.size()) 5979 return false; 5980 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5981 if (Elems[i] != Ty->getElementType(i)) 5982 return false; 5983 return true; 5984 } 5985 5986 // Get the coercion type as a literal struct type. 5987 llvm::Type *getType() const { 5988 if (Elems.size() == 1) 5989 return Elems.front(); 5990 else 5991 return llvm::StructType::get(Context, Elems); 5992 } 5993 }; 5994 }; 5995 } // end anonymous namespace 5996 5997 ABIArgInfo 5998 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5999 if (Ty->isVoidType()) 6000 return ABIArgInfo::getIgnore(); 6001 6002 uint64_t Size = getContext().getTypeSize(Ty); 6003 6004 // Anything too big to fit in registers is passed with an explicit indirect 6005 // pointer / sret pointer. 6006 if (Size > SizeLimit) 6007 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6008 6009 // Treat an enum type as its underlying type. 6010 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6011 Ty = EnumTy->getDecl()->getIntegerType(); 6012 6013 // Integer types smaller than a register are extended. 6014 if (Size < 64 && Ty->isIntegerType()) 6015 return ABIArgInfo::getExtend(); 6016 6017 // Other non-aggregates go in registers. 6018 if (!isAggregateTypeForABI(Ty)) 6019 return ABIArgInfo::getDirect(); 6020 6021 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6022 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6023 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6024 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6025 6026 // This is a small aggregate type that should be passed in registers. 6027 // Build a coercion type from the LLVM struct type. 6028 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6029 if (!StrTy) 6030 return ABIArgInfo::getDirect(); 6031 6032 CoerceBuilder CB(getVMContext(), getDataLayout()); 6033 CB.addStruct(0, StrTy); 6034 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6035 6036 // Try to use the original type for coercion. 6037 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6038 6039 if (CB.InReg) 6040 return ABIArgInfo::getDirectInReg(CoerceTy); 6041 else 6042 return ABIArgInfo::getDirect(CoerceTy); 6043 } 6044 6045 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6046 CodeGenFunction &CGF) const { 6047 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6048 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6049 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6050 AI.setCoerceToType(ArgTy); 6051 6052 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6053 CGBuilderTy &Builder = CGF.Builder; 6054 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6055 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6056 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6057 llvm::Value *ArgAddr; 6058 unsigned Stride; 6059 6060 switch (AI.getKind()) { 6061 case ABIArgInfo::Expand: 6062 case ABIArgInfo::InAlloca: 6063 llvm_unreachable("Unsupported ABI kind for va_arg"); 6064 6065 case ABIArgInfo::Extend: 6066 Stride = 8; 6067 ArgAddr = Builder 6068 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6069 "extend"); 6070 break; 6071 6072 case ABIArgInfo::Direct: 6073 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6074 ArgAddr = Addr; 6075 break; 6076 6077 case ABIArgInfo::Indirect: 6078 Stride = 8; 6079 ArgAddr = Builder.CreateBitCast(Addr, 6080 llvm::PointerType::getUnqual(ArgPtrTy), 6081 "indirect"); 6082 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6083 break; 6084 6085 case ABIArgInfo::Ignore: 6086 return llvm::UndefValue::get(ArgPtrTy); 6087 } 6088 6089 // Update VAList. 6090 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6091 Builder.CreateStore(Addr, VAListAddrAsBPP); 6092 6093 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6094 } 6095 6096 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6097 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6098 for (auto &I : FI.arguments()) 6099 I.info = classifyType(I.type, 16 * 8); 6100 } 6101 6102 namespace { 6103 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6104 public: 6105 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6106 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6107 6108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6109 return 14; 6110 } 6111 6112 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6113 llvm::Value *Address) const override; 6114 }; 6115 } // end anonymous namespace 6116 6117 bool 6118 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6119 llvm::Value *Address) const { 6120 // This is calculated from the LLVM and GCC tables and verified 6121 // against gcc output. AFAIK all ABIs use the same encoding. 6122 6123 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6124 6125 llvm::IntegerType *i8 = CGF.Int8Ty; 6126 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6127 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6128 6129 // 0-31: the 8-byte general-purpose registers 6130 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6131 6132 // 32-63: f0-31, the 4-byte floating-point registers 6133 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6134 6135 // Y = 64 6136 // PSR = 65 6137 // WIM = 66 6138 // TBR = 67 6139 // PC = 68 6140 // NPC = 69 6141 // FSR = 70 6142 // CSR = 71 6143 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6144 6145 // 72-87: d0-15, the 8-byte floating-point registers 6146 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6147 6148 return false; 6149 } 6150 6151 6152 //===----------------------------------------------------------------------===// 6153 // XCore ABI Implementation 6154 //===----------------------------------------------------------------------===// 6155 6156 namespace { 6157 6158 /// A SmallStringEnc instance is used to build up the TypeString by passing 6159 /// it by reference between functions that append to it. 6160 typedef llvm::SmallString<128> SmallStringEnc; 6161 6162 /// TypeStringCache caches the meta encodings of Types. 6163 /// 6164 /// The reason for caching TypeStrings is two fold: 6165 /// 1. To cache a type's encoding for later uses; 6166 /// 2. As a means to break recursive member type inclusion. 6167 /// 6168 /// A cache Entry can have a Status of: 6169 /// NonRecursive: The type encoding is not recursive; 6170 /// Recursive: The type encoding is recursive; 6171 /// Incomplete: An incomplete TypeString; 6172 /// IncompleteUsed: An incomplete TypeString that has been used in a 6173 /// Recursive type encoding. 6174 /// 6175 /// A NonRecursive entry will have all of its sub-members expanded as fully 6176 /// as possible. Whilst it may contain types which are recursive, the type 6177 /// itself is not recursive and thus its encoding may be safely used whenever 6178 /// the type is encountered. 6179 /// 6180 /// A Recursive entry will have all of its sub-members expanded as fully as 6181 /// possible. The type itself is recursive and it may contain other types which 6182 /// are recursive. The Recursive encoding must not be used during the expansion 6183 /// of a recursive type's recursive branch. For simplicity the code uses 6184 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6185 /// 6186 /// An Incomplete entry is always a RecordType and only encodes its 6187 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6188 /// are placed into the cache during type expansion as a means to identify and 6189 /// handle recursive inclusion of types as sub-members. If there is recursion 6190 /// the entry becomes IncompleteUsed. 6191 /// 6192 /// During the expansion of a RecordType's members: 6193 /// 6194 /// If the cache contains a NonRecursive encoding for the member type, the 6195 /// cached encoding is used; 6196 /// 6197 /// If the cache contains a Recursive encoding for the member type, the 6198 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6199 /// 6200 /// If the member is a RecordType, an Incomplete encoding is placed into the 6201 /// cache to break potential recursive inclusion of itself as a sub-member; 6202 /// 6203 /// Once a member RecordType has been expanded, its temporary incomplete 6204 /// entry is removed from the cache. If a Recursive encoding was swapped out 6205 /// it is swapped back in; 6206 /// 6207 /// If an incomplete entry is used to expand a sub-member, the incomplete 6208 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6209 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6210 /// 6211 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6212 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6213 /// Else the member is part of a recursive type and thus the recursion has 6214 /// been exited too soon for the encoding to be correct for the member. 6215 /// 6216 class TypeStringCache { 6217 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6218 struct Entry { 6219 std::string Str; // The encoded TypeString for the type. 6220 enum Status State; // Information about the encoding in 'Str'. 6221 std::string Swapped; // A temporary place holder for a Recursive encoding 6222 // during the expansion of RecordType's members. 6223 }; 6224 std::map<const IdentifierInfo *, struct Entry> Map; 6225 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6226 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6227 public: 6228 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6229 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6230 bool removeIncomplete(const IdentifierInfo *ID); 6231 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6232 bool IsRecursive); 6233 StringRef lookupStr(const IdentifierInfo *ID); 6234 }; 6235 6236 /// TypeString encodings for enum & union fields must be order. 6237 /// FieldEncoding is a helper for this ordering process. 6238 class FieldEncoding { 6239 bool HasName; 6240 std::string Enc; 6241 public: 6242 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6243 StringRef str() {return Enc.c_str();}; 6244 bool operator<(const FieldEncoding &rhs) const { 6245 if (HasName != rhs.HasName) return HasName; 6246 return Enc < rhs.Enc; 6247 } 6248 }; 6249 6250 class XCoreABIInfo : public DefaultABIInfo { 6251 public: 6252 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6253 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6254 CodeGenFunction &CGF) const override; 6255 }; 6256 6257 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6258 mutable TypeStringCache TSC; 6259 public: 6260 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6261 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6262 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6263 CodeGen::CodeGenModule &M) const override; 6264 }; 6265 6266 } // End anonymous namespace. 6267 6268 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6269 CodeGenFunction &CGF) const { 6270 CGBuilderTy &Builder = CGF.Builder; 6271 6272 // Get the VAList. 6273 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6274 CGF.Int8PtrPtrTy); 6275 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6276 6277 // Handle the argument. 6278 ABIArgInfo AI = classifyArgumentType(Ty); 6279 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6280 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6281 AI.setCoerceToType(ArgTy); 6282 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6283 llvm::Value *Val; 6284 uint64_t ArgSize = 0; 6285 switch (AI.getKind()) { 6286 case ABIArgInfo::Expand: 6287 case ABIArgInfo::InAlloca: 6288 llvm_unreachable("Unsupported ABI kind for va_arg"); 6289 case ABIArgInfo::Ignore: 6290 Val = llvm::UndefValue::get(ArgPtrTy); 6291 ArgSize = 0; 6292 break; 6293 case ABIArgInfo::Extend: 6294 case ABIArgInfo::Direct: 6295 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6296 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6297 if (ArgSize < 4) 6298 ArgSize = 4; 6299 break; 6300 case ABIArgInfo::Indirect: 6301 llvm::Value *ArgAddr; 6302 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6303 ArgAddr = Builder.CreateLoad(ArgAddr); 6304 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6305 ArgSize = 4; 6306 break; 6307 } 6308 6309 // Increment the VAList. 6310 if (ArgSize) { 6311 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6312 Builder.CreateStore(APN, VAListAddrAsBPP); 6313 } 6314 return Val; 6315 } 6316 6317 /// During the expansion of a RecordType, an incomplete TypeString is placed 6318 /// into the cache as a means to identify and break recursion. 6319 /// If there is a Recursive encoding in the cache, it is swapped out and will 6320 /// be reinserted by removeIncomplete(). 6321 /// All other types of encoding should have been used rather than arriving here. 6322 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6323 std::string StubEnc) { 6324 if (!ID) 6325 return; 6326 Entry &E = Map[ID]; 6327 assert( (E.Str.empty() || E.State == Recursive) && 6328 "Incorrectly use of addIncomplete"); 6329 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6330 E.Swapped.swap(E.Str); // swap out the Recursive 6331 E.Str.swap(StubEnc); 6332 E.State = Incomplete; 6333 ++IncompleteCount; 6334 } 6335 6336 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6337 /// must be removed from the cache. 6338 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6339 /// Returns true if the RecordType was defined recursively. 6340 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6341 if (!ID) 6342 return false; 6343 auto I = Map.find(ID); 6344 assert(I != Map.end() && "Entry not present"); 6345 Entry &E = I->second; 6346 assert( (E.State == Incomplete || 6347 E.State == IncompleteUsed) && 6348 "Entry must be an incomplete type"); 6349 bool IsRecursive = false; 6350 if (E.State == IncompleteUsed) { 6351 // We made use of our Incomplete encoding, thus we are recursive. 6352 IsRecursive = true; 6353 --IncompleteUsedCount; 6354 } 6355 if (E.Swapped.empty()) 6356 Map.erase(I); 6357 else { 6358 // Swap the Recursive back. 6359 E.Swapped.swap(E.Str); 6360 E.Swapped.clear(); 6361 E.State = Recursive; 6362 } 6363 --IncompleteCount; 6364 return IsRecursive; 6365 } 6366 6367 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6368 /// Recursive (viz: all sub-members were expanded as fully as possible). 6369 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6370 bool IsRecursive) { 6371 if (!ID || IncompleteUsedCount) 6372 return; // No key or it is is an incomplete sub-type so don't add. 6373 Entry &E = Map[ID]; 6374 if (IsRecursive && !E.Str.empty()) { 6375 assert(E.State==Recursive && E.Str.size() == Str.size() && 6376 "This is not the same Recursive entry"); 6377 // The parent container was not recursive after all, so we could have used 6378 // this Recursive sub-member entry after all, but we assumed the worse when 6379 // we started viz: IncompleteCount!=0. 6380 return; 6381 } 6382 assert(E.Str.empty() && "Entry already present"); 6383 E.Str = Str.str(); 6384 E.State = IsRecursive? Recursive : NonRecursive; 6385 } 6386 6387 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6388 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6389 /// encoding is Recursive, return an empty StringRef. 6390 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6391 if (!ID) 6392 return StringRef(); // We have no key. 6393 auto I = Map.find(ID); 6394 if (I == Map.end()) 6395 return StringRef(); // We have no encoding. 6396 Entry &E = I->second; 6397 if (E.State == Recursive && IncompleteCount) 6398 return StringRef(); // We don't use Recursive encodings for member types. 6399 6400 if (E.State == Incomplete) { 6401 // The incomplete type is being used to break out of recursion. 6402 E.State = IncompleteUsed; 6403 ++IncompleteUsedCount; 6404 } 6405 return E.Str.c_str(); 6406 } 6407 6408 /// The XCore ABI includes a type information section that communicates symbol 6409 /// type information to the linker. The linker uses this information to verify 6410 /// safety/correctness of things such as array bound and pointers et al. 6411 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6412 /// This type information (TypeString) is emitted into meta data for all global 6413 /// symbols: definitions, declarations, functions & variables. 6414 /// 6415 /// The TypeString carries type, qualifier, name, size & value details. 6416 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6417 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6418 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6419 /// 6420 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6421 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6422 6423 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6424 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6425 CodeGen::CodeGenModule &CGM) const { 6426 SmallStringEnc Enc; 6427 if (getTypeString(Enc, D, CGM, TSC)) { 6428 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6429 llvm::SmallVector<llvm::Value *, 2> MDVals; 6430 MDVals.push_back(GV); 6431 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6432 llvm::NamedMDNode *MD = 6433 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6434 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6435 } 6436 } 6437 6438 static bool appendType(SmallStringEnc &Enc, QualType QType, 6439 const CodeGen::CodeGenModule &CGM, 6440 TypeStringCache &TSC); 6441 6442 /// Helper function for appendRecordType(). 6443 /// Builds a SmallVector containing the encoded field types in declaration order. 6444 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6445 const RecordDecl *RD, 6446 const CodeGen::CodeGenModule &CGM, 6447 TypeStringCache &TSC) { 6448 for (const auto *Field : RD->fields()) { 6449 SmallStringEnc Enc; 6450 Enc += "m("; 6451 Enc += Field->getName(); 6452 Enc += "){"; 6453 if (Field->isBitField()) { 6454 Enc += "b("; 6455 llvm::raw_svector_ostream OS(Enc); 6456 OS.resync(); 6457 OS << Field->getBitWidthValue(CGM.getContext()); 6458 OS.flush(); 6459 Enc += ':'; 6460 } 6461 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6462 return false; 6463 if (Field->isBitField()) 6464 Enc += ')'; 6465 Enc += '}'; 6466 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6467 } 6468 return true; 6469 } 6470 6471 /// Appends structure and union types to Enc and adds encoding to cache. 6472 /// Recursively calls appendType (via extractFieldType) for each field. 6473 /// Union types have their fields ordered according to the ABI. 6474 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6475 const CodeGen::CodeGenModule &CGM, 6476 TypeStringCache &TSC, const IdentifierInfo *ID) { 6477 // Append the cached TypeString if we have one. 6478 StringRef TypeString = TSC.lookupStr(ID); 6479 if (!TypeString.empty()) { 6480 Enc += TypeString; 6481 return true; 6482 } 6483 6484 // Start to emit an incomplete TypeString. 6485 size_t Start = Enc.size(); 6486 Enc += (RT->isUnionType()? 'u' : 's'); 6487 Enc += '('; 6488 if (ID) 6489 Enc += ID->getName(); 6490 Enc += "){"; 6491 6492 // We collect all encoded fields and order as necessary. 6493 bool IsRecursive = false; 6494 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6495 if (RD && !RD->field_empty()) { 6496 // An incomplete TypeString stub is placed in the cache for this RecordType 6497 // so that recursive calls to this RecordType will use it whilst building a 6498 // complete TypeString for this RecordType. 6499 SmallVector<FieldEncoding, 16> FE; 6500 std::string StubEnc(Enc.substr(Start).str()); 6501 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6502 TSC.addIncomplete(ID, std::move(StubEnc)); 6503 if (!extractFieldType(FE, RD, CGM, TSC)) { 6504 (void) TSC.removeIncomplete(ID); 6505 return false; 6506 } 6507 IsRecursive = TSC.removeIncomplete(ID); 6508 // The ABI requires unions to be sorted but not structures. 6509 // See FieldEncoding::operator< for sort algorithm. 6510 if (RT->isUnionType()) 6511 std::sort(FE.begin(), FE.end()); 6512 // We can now complete the TypeString. 6513 unsigned E = FE.size(); 6514 for (unsigned I = 0; I != E; ++I) { 6515 if (I) 6516 Enc += ','; 6517 Enc += FE[I].str(); 6518 } 6519 } 6520 Enc += '}'; 6521 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6522 return true; 6523 } 6524 6525 /// Appends enum types to Enc and adds the encoding to the cache. 6526 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6527 TypeStringCache &TSC, 6528 const IdentifierInfo *ID) { 6529 // Append the cached TypeString if we have one. 6530 StringRef TypeString = TSC.lookupStr(ID); 6531 if (!TypeString.empty()) { 6532 Enc += TypeString; 6533 return true; 6534 } 6535 6536 size_t Start = Enc.size(); 6537 Enc += "e("; 6538 if (ID) 6539 Enc += ID->getName(); 6540 Enc += "){"; 6541 6542 // We collect all encoded enumerations and order them alphanumerically. 6543 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6544 SmallVector<FieldEncoding, 16> FE; 6545 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6546 ++I) { 6547 SmallStringEnc EnumEnc; 6548 EnumEnc += "m("; 6549 EnumEnc += I->getName(); 6550 EnumEnc += "){"; 6551 I->getInitVal().toString(EnumEnc); 6552 EnumEnc += '}'; 6553 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6554 } 6555 std::sort(FE.begin(), FE.end()); 6556 unsigned E = FE.size(); 6557 for (unsigned I = 0; I != E; ++I) { 6558 if (I) 6559 Enc += ','; 6560 Enc += FE[I].str(); 6561 } 6562 } 6563 Enc += '}'; 6564 TSC.addIfComplete(ID, Enc.substr(Start), false); 6565 return true; 6566 } 6567 6568 /// Appends type's qualifier to Enc. 6569 /// This is done prior to appending the type's encoding. 6570 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6571 // Qualifiers are emitted in alphabetical order. 6572 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6573 int Lookup = 0; 6574 if (QT.isConstQualified()) 6575 Lookup += 1<<0; 6576 if (QT.isRestrictQualified()) 6577 Lookup += 1<<1; 6578 if (QT.isVolatileQualified()) 6579 Lookup += 1<<2; 6580 Enc += Table[Lookup]; 6581 } 6582 6583 /// Appends built-in types to Enc. 6584 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6585 const char *EncType; 6586 switch (BT->getKind()) { 6587 case BuiltinType::Void: 6588 EncType = "0"; 6589 break; 6590 case BuiltinType::Bool: 6591 EncType = "b"; 6592 break; 6593 case BuiltinType::Char_U: 6594 EncType = "uc"; 6595 break; 6596 case BuiltinType::UChar: 6597 EncType = "uc"; 6598 break; 6599 case BuiltinType::SChar: 6600 EncType = "sc"; 6601 break; 6602 case BuiltinType::UShort: 6603 EncType = "us"; 6604 break; 6605 case BuiltinType::Short: 6606 EncType = "ss"; 6607 break; 6608 case BuiltinType::UInt: 6609 EncType = "ui"; 6610 break; 6611 case BuiltinType::Int: 6612 EncType = "si"; 6613 break; 6614 case BuiltinType::ULong: 6615 EncType = "ul"; 6616 break; 6617 case BuiltinType::Long: 6618 EncType = "sl"; 6619 break; 6620 case BuiltinType::ULongLong: 6621 EncType = "ull"; 6622 break; 6623 case BuiltinType::LongLong: 6624 EncType = "sll"; 6625 break; 6626 case BuiltinType::Float: 6627 EncType = "ft"; 6628 break; 6629 case BuiltinType::Double: 6630 EncType = "d"; 6631 break; 6632 case BuiltinType::LongDouble: 6633 EncType = "ld"; 6634 break; 6635 default: 6636 return false; 6637 } 6638 Enc += EncType; 6639 return true; 6640 } 6641 6642 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6643 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6644 const CodeGen::CodeGenModule &CGM, 6645 TypeStringCache &TSC) { 6646 Enc += "p("; 6647 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6648 return false; 6649 Enc += ')'; 6650 return true; 6651 } 6652 6653 /// Appends array encoding to Enc before calling appendType for the element. 6654 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6655 const ArrayType *AT, 6656 const CodeGen::CodeGenModule &CGM, 6657 TypeStringCache &TSC, StringRef NoSizeEnc) { 6658 if (AT->getSizeModifier() != ArrayType::Normal) 6659 return false; 6660 Enc += "a("; 6661 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6662 CAT->getSize().toStringUnsigned(Enc); 6663 else 6664 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6665 Enc += ':'; 6666 // The Qualifiers should be attached to the type rather than the array. 6667 appendQualifier(Enc, QT); 6668 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6669 return false; 6670 Enc += ')'; 6671 return true; 6672 } 6673 6674 /// Appends a function encoding to Enc, calling appendType for the return type 6675 /// and the arguments. 6676 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6677 const CodeGen::CodeGenModule &CGM, 6678 TypeStringCache &TSC) { 6679 Enc += "f{"; 6680 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6681 return false; 6682 Enc += "}("; 6683 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6684 // N.B. we are only interested in the adjusted param types. 6685 auto I = FPT->param_type_begin(); 6686 auto E = FPT->param_type_end(); 6687 if (I != E) { 6688 do { 6689 if (!appendType(Enc, *I, CGM, TSC)) 6690 return false; 6691 ++I; 6692 if (I != E) 6693 Enc += ','; 6694 } while (I != E); 6695 if (FPT->isVariadic()) 6696 Enc += ",va"; 6697 } else { 6698 if (FPT->isVariadic()) 6699 Enc += "va"; 6700 else 6701 Enc += '0'; 6702 } 6703 } 6704 Enc += ')'; 6705 return true; 6706 } 6707 6708 /// Handles the type's qualifier before dispatching a call to handle specific 6709 /// type encodings. 6710 static bool appendType(SmallStringEnc &Enc, QualType QType, 6711 const CodeGen::CodeGenModule &CGM, 6712 TypeStringCache &TSC) { 6713 6714 QualType QT = QType.getCanonicalType(); 6715 6716 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6717 // The Qualifiers should be attached to the type rather than the array. 6718 // Thus we don't call appendQualifier() here. 6719 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6720 6721 appendQualifier(Enc, QT); 6722 6723 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6724 return appendBuiltinType(Enc, BT); 6725 6726 if (const PointerType *PT = QT->getAs<PointerType>()) 6727 return appendPointerType(Enc, PT, CGM, TSC); 6728 6729 if (const EnumType *ET = QT->getAs<EnumType>()) 6730 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6731 6732 if (const RecordType *RT = QT->getAsStructureType()) 6733 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6734 6735 if (const RecordType *RT = QT->getAsUnionType()) 6736 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6737 6738 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6739 return appendFunctionType(Enc, FT, CGM, TSC); 6740 6741 return false; 6742 } 6743 6744 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6745 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6746 if (!D) 6747 return false; 6748 6749 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6750 if (FD->getLanguageLinkage() != CLanguageLinkage) 6751 return false; 6752 return appendType(Enc, FD->getType(), CGM, TSC); 6753 } 6754 6755 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6756 if (VD->getLanguageLinkage() != CLanguageLinkage) 6757 return false; 6758 QualType QT = VD->getType().getCanonicalType(); 6759 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6760 // Global ArrayTypes are given a size of '*' if the size is unknown. 6761 // The Qualifiers should be attached to the type rather than the array. 6762 // Thus we don't call appendQualifier() here. 6763 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6764 } 6765 return appendType(Enc, QT, CGM, TSC); 6766 } 6767 return false; 6768 } 6769 6770 6771 //===----------------------------------------------------------------------===// 6772 // Driver code 6773 //===----------------------------------------------------------------------===// 6774 6775 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6776 if (TheTargetCodeGenInfo) 6777 return *TheTargetCodeGenInfo; 6778 6779 const llvm::Triple &Triple = getTarget().getTriple(); 6780 switch (Triple.getArch()) { 6781 default: 6782 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6783 6784 case llvm::Triple::le32: 6785 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6786 case llvm::Triple::mips: 6787 case llvm::Triple::mipsel: 6788 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6789 6790 case llvm::Triple::mips64: 6791 case llvm::Triple::mips64el: 6792 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6793 6794 case llvm::Triple::aarch64: 6795 case llvm::Triple::aarch64_be: { 6796 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6797 if (getTarget().getABI() == "darwinpcs") 6798 Kind = AArch64ABIInfo::DarwinPCS; 6799 6800 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6801 } 6802 6803 case llvm::Triple::arm: 6804 case llvm::Triple::armeb: 6805 case llvm::Triple::thumb: 6806 case llvm::Triple::thumbeb: 6807 { 6808 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6809 if (getTarget().getABI() == "apcs-gnu") 6810 Kind = ARMABIInfo::APCS; 6811 else if (CodeGenOpts.FloatABI == "hard" || 6812 (CodeGenOpts.FloatABI != "soft" && 6813 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6814 Kind = ARMABIInfo::AAPCS_VFP; 6815 6816 switch (Triple.getOS()) { 6817 case llvm::Triple::NaCl: 6818 return *(TheTargetCodeGenInfo = 6819 new NaClARMTargetCodeGenInfo(Types, Kind)); 6820 default: 6821 return *(TheTargetCodeGenInfo = 6822 new ARMTargetCodeGenInfo(Types, Kind)); 6823 } 6824 } 6825 6826 case llvm::Triple::ppc: 6827 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6828 case llvm::Triple::ppc64: 6829 if (Triple.isOSBinFormatELF()) { 6830 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 6831 if (getTarget().getABI() == "elfv2") 6832 Kind = PPC64_SVR4_ABIInfo::ELFv2; 6833 6834 return *(TheTargetCodeGenInfo = 6835 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6836 } else 6837 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6838 case llvm::Triple::ppc64le: { 6839 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6840 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 6841 if (getTarget().getABI() == "elfv1") 6842 Kind = PPC64_SVR4_ABIInfo::ELFv1; 6843 6844 return *(TheTargetCodeGenInfo = 6845 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6846 } 6847 6848 case llvm::Triple::nvptx: 6849 case llvm::Triple::nvptx64: 6850 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6851 6852 case llvm::Triple::msp430: 6853 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6854 6855 case llvm::Triple::systemz: 6856 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6857 6858 case llvm::Triple::tce: 6859 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6860 6861 case llvm::Triple::x86: { 6862 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6863 bool IsSmallStructInRegABI = 6864 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6865 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6866 6867 if (Triple.getOS() == llvm::Triple::Win32) { 6868 return *(TheTargetCodeGenInfo = 6869 new WinX86_32TargetCodeGenInfo(Types, 6870 IsDarwinVectorABI, IsSmallStructInRegABI, 6871 IsWin32FloatStructABI, 6872 CodeGenOpts.NumRegisterParameters)); 6873 } else { 6874 return *(TheTargetCodeGenInfo = 6875 new X86_32TargetCodeGenInfo(Types, 6876 IsDarwinVectorABI, IsSmallStructInRegABI, 6877 IsWin32FloatStructABI, 6878 CodeGenOpts.NumRegisterParameters)); 6879 } 6880 } 6881 6882 case llvm::Triple::x86_64: { 6883 bool HasAVX = getTarget().getABI() == "avx"; 6884 6885 switch (Triple.getOS()) { 6886 case llvm::Triple::Win32: 6887 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6888 case llvm::Triple::NaCl: 6889 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6890 HasAVX)); 6891 default: 6892 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6893 HasAVX)); 6894 } 6895 } 6896 case llvm::Triple::hexagon: 6897 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6898 case llvm::Triple::sparcv9: 6899 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6900 case llvm::Triple::xcore: 6901 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6902 } 6903 } 6904