1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address emitMergePHI(CodeGenFunction &CGF,
396                             Address Addr1, llvm::BasicBlock *Block1,
397                             Address Addr2, llvm::BasicBlock *Block2,
398                             const llvm::Twine &Name = "") {
399   assert(Addr1.getType() == Addr2.getType());
400   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
401   PHI->addIncoming(Addr1.getPointer(), Block1);
402   PHI->addIncoming(Addr2.getPointer(), Block2);
403   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
404   return Address(PHI, Align);
405 }
406 
407 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
408 
409 // If someone can figure out a general rule for this, that would be great.
410 // It's probably just doomed to be platform-dependent, though.
411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
412   // Verified for:
413   //   x86-64     FreeBSD, Linux, Darwin
414   //   x86-32     FreeBSD, Linux, Darwin
415   //   PowerPC    Linux, Darwin
416   //   ARM        Darwin (*not* EABI)
417   //   AArch64    Linux
418   return 32;
419 }
420 
421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
422                                      const FunctionNoProtoType *fnType) const {
423   // The following conventions are known to require this to be false:
424   //   x86_stdcall
425   //   MIPS
426   // For everything else, we just prefer false unless we opt out.
427   return false;
428 }
429 
430 void
431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
432                                              llvm::SmallString<24> &Opt) const {
433   // This assumes the user is passing a library name like "rt" instead of a
434   // filename like "librt.a/so", and that they don't care whether it's static or
435   // dynamic.
436   Opt = "-l";
437   Opt += Lib;
438 }
439 
440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
441   // OpenCL kernels are called via an explicit runtime API with arguments
442   // set with clSetKernelArg(), not as normal sub-functions.
443   // Return SPIR_KERNEL by default as the kernel calling convention to
444   // ensure the fingerprint is fixed such way that each OpenCL argument
445   // gets one matching argument in the produced kernel function argument
446   // list to enable feasible implementation of clSetKernelArg() with
447   // aggregates etc. In case we would use the default C calling conv here,
448   // clSetKernelArg() might break depending on the target-specific
449   // conventions; different targets might split structs passed as values
450   // to multiple function arguments etc.
451   return llvm::CallingConv::SPIR_KERNEL;
452 }
453 
454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
455     llvm::PointerType *T, QualType QT) const {
456   return llvm::ConstantPointerNull::get(T);
457 }
458 
459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
460                                                    const VarDecl *D) const {
461   assert(!CGM.getLangOpts().OpenCL &&
462          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
463          "Address space agnostic languages only");
464   return D ? D->getType().getAddressSpace() : LangAS::Default;
465 }
466 
467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
468     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
469     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
470   // Since target may map different address spaces in AST to the same address
471   // space, an address space conversion may end up as a bitcast.
472   if (auto *C = dyn_cast<llvm::Constant>(Src))
473     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
474   // Try to preserve the source's name to make IR more readable.
475   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
476       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
477 }
478 
479 llvm::Constant *
480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
481                                         LangAS SrcAddr, LangAS DestAddr,
482                                         llvm::Type *DestTy) const {
483   // Since target may map different address spaces in AST to the same address
484   // space, an address space conversion may end up as a bitcast.
485   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
486 }
487 
488 llvm::SyncScope::ID
489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
490                                       SyncScope Scope,
491                                       llvm::AtomicOrdering Ordering,
492                                       llvm::LLVMContext &Ctx) const {
493   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
494 }
495 
496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
497 
498 /// isEmptyField - Return true iff a the field is "empty", that is it
499 /// is an unnamed bit-field or an (array of) empty record(s).
500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
501                          bool AllowArrays) {
502   if (FD->isUnnamedBitfield())
503     return true;
504 
505   QualType FT = FD->getType();
506 
507   // Constant arrays of empty records count as empty, strip them off.
508   // Constant arrays of zero length always count as empty.
509   bool WasArray = false;
510   if (AllowArrays)
511     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
512       if (AT->getSize() == 0)
513         return true;
514       FT = AT->getElementType();
515       // The [[no_unique_address]] special case below does not apply to
516       // arrays of C++ empty records, so we need to remember this fact.
517       WasArray = true;
518     }
519 
520   const RecordType *RT = FT->getAs<RecordType>();
521   if (!RT)
522     return false;
523 
524   // C++ record fields are never empty, at least in the Itanium ABI.
525   //
526   // FIXME: We should use a predicate for whether this behavior is true in the
527   // current ABI.
528   //
529   // The exception to the above rule are fields marked with the
530   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
531   // according to the Itanium ABI.  The exception applies only to records,
532   // not arrays of records, so we must also check whether we stripped off an
533   // array type above.
534   if (isa<CXXRecordDecl>(RT->getDecl()) &&
535       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
536     return false;
537 
538   return isEmptyRecord(Context, FT, AllowArrays);
539 }
540 
541 /// isEmptyRecord - Return true iff a structure contains only empty
542 /// fields. Note that a structure with a flexible array member is not
543 /// considered empty.
544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
545   const RecordType *RT = T->getAs<RecordType>();
546   if (!RT)
547     return false;
548   const RecordDecl *RD = RT->getDecl();
549   if (RD->hasFlexibleArrayMember())
550     return false;
551 
552   // If this is a C++ record, check the bases first.
553   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
554     for (const auto &I : CXXRD->bases())
555       if (!isEmptyRecord(Context, I.getType(), true))
556         return false;
557 
558   for (const auto *I : RD->fields())
559     if (!isEmptyField(Context, I, AllowArrays))
560       return false;
561   return true;
562 }
563 
564 /// isSingleElementStruct - Determine if a structure is a "single
565 /// element struct", i.e. it has exactly one non-empty field or
566 /// exactly one field which is itself a single element
567 /// struct. Structures with flexible array members are never
568 /// considered single element structs.
569 ///
570 /// \return The field declaration for the single non-empty field, if
571 /// it exists.
572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
573   const RecordType *RT = T->getAs<RecordType>();
574   if (!RT)
575     return nullptr;
576 
577   const RecordDecl *RD = RT->getDecl();
578   if (RD->hasFlexibleArrayMember())
579     return nullptr;
580 
581   const Type *Found = nullptr;
582 
583   // If this is a C++ record, check the bases first.
584   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
585     for (const auto &I : CXXRD->bases()) {
586       // Ignore empty records.
587       if (isEmptyRecord(Context, I.getType(), true))
588         continue;
589 
590       // If we already found an element then this isn't a single-element struct.
591       if (Found)
592         return nullptr;
593 
594       // If this is non-empty and not a single element struct, the composite
595       // cannot be a single element struct.
596       Found = isSingleElementStruct(I.getType(), Context);
597       if (!Found)
598         return nullptr;
599     }
600   }
601 
602   // Check for single element.
603   for (const auto *FD : RD->fields()) {
604     QualType FT = FD->getType();
605 
606     // Ignore empty fields.
607     if (isEmptyField(Context, FD, true))
608       continue;
609 
610     // If we already found an element then this isn't a single-element
611     // struct.
612     if (Found)
613       return nullptr;
614 
615     // Treat single element arrays as the element.
616     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
617       if (AT->getSize().getZExtValue() != 1)
618         break;
619       FT = AT->getElementType();
620     }
621 
622     if (!isAggregateTypeForABI(FT)) {
623       Found = FT.getTypePtr();
624     } else {
625       Found = isSingleElementStruct(FT, Context);
626       if (!Found)
627         return nullptr;
628     }
629   }
630 
631   // We don't consider a struct a single-element struct if it has
632   // padding beyond the element type.
633   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
634     return nullptr;
635 
636   return Found;
637 }
638 
639 namespace {
640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
641                        const ABIArgInfo &AI) {
642   // This default implementation defers to the llvm backend's va_arg
643   // instruction. It can handle only passing arguments directly
644   // (typically only handled in the backend for primitive types), or
645   // aggregates passed indirectly by pointer (NOTE: if the "byval"
646   // flag has ABI impact in the callee, this implementation cannot
647   // work.)
648 
649   // Only a few cases are covered here at the moment -- those needed
650   // by the default abi.
651   llvm::Value *Val;
652 
653   if (AI.isIndirect()) {
654     assert(!AI.getPaddingType() &&
655            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
656     assert(
657         !AI.getIndirectRealign() &&
658         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
659 
660     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
661     CharUnits TyAlignForABI = TyInfo.Align;
662 
663     llvm::Type *BaseTy =
664         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
665     llvm::Value *Addr =
666         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
667     return Address(Addr, TyAlignForABI);
668   } else {
669     assert((AI.isDirect() || AI.isExtend()) &&
670            "Unexpected ArgInfo Kind in generic VAArg emitter!");
671 
672     assert(!AI.getInReg() &&
673            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getPaddingType() &&
675            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getDirectOffset() &&
677            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
678     assert(!AI.getCoerceToType() &&
679            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
680 
681     Address Temp = CGF.CreateMemTemp(Ty, "varet");
682     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
683     CGF.Builder.CreateStore(Val, Temp);
684     return Temp;
685   }
686 }
687 
688 /// DefaultABIInfo - The default implementation for ABI specific
689 /// details. This implementation provides information which results in
690 /// self-consistent and sensible LLVM IR generation, but does not
691 /// conform to any particular ABI.
692 class DefaultABIInfo : public ABIInfo {
693 public:
694   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
695 
696   ABIArgInfo classifyReturnType(QualType RetTy) const;
697   ABIArgInfo classifyArgumentType(QualType RetTy) const;
698 
699   void computeInfo(CGFunctionInfo &FI) const override {
700     if (!getCXXABI().classifyReturnType(FI))
701       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
702     for (auto &I : FI.arguments())
703       I.info = classifyArgumentType(I.type);
704   }
705 
706   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
707                     QualType Ty) const override {
708     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
709   }
710 };
711 
712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
713 public:
714   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
715       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
716 };
717 
718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
719   Ty = useFirstFieldIfTransparentUnion(Ty);
720 
721   if (isAggregateTypeForABI(Ty)) {
722     // Records with non-trivial destructors/copy-constructors should not be
723     // passed by value.
724     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
725       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
726 
727     return getNaturalAlignIndirect(Ty);
728   }
729 
730   // Treat an enum type as its underlying type.
731   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732     Ty = EnumTy->getDecl()->getIntegerType();
733 
734   ASTContext &Context = getContext();
735   if (const auto *EIT = Ty->getAs<ExtIntType>())
736     if (EIT->getNumBits() >
737         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
738                                 ? Context.Int128Ty
739                                 : Context.LongLongTy))
740       return getNaturalAlignIndirect(Ty);
741 
742   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
743                                             : ABIArgInfo::getDirect());
744 }
745 
746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
747   if (RetTy->isVoidType())
748     return ABIArgInfo::getIgnore();
749 
750   if (isAggregateTypeForABI(RetTy))
751     return getNaturalAlignIndirect(RetTy);
752 
753   // Treat an enum type as its underlying type.
754   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
755     RetTy = EnumTy->getDecl()->getIntegerType();
756 
757   if (const auto *EIT = RetTy->getAs<ExtIntType>())
758     if (EIT->getNumBits() >
759         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
760                                      ? getContext().Int128Ty
761                                      : getContext().LongLongTy))
762       return getNaturalAlignIndirect(RetTy);
763 
764   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
765                                                : ABIArgInfo::getDirect());
766 }
767 
768 //===----------------------------------------------------------------------===//
769 // WebAssembly ABI Implementation
770 //
771 // This is a very simple ABI that relies a lot on DefaultABIInfo.
772 //===----------------------------------------------------------------------===//
773 
774 class WebAssemblyABIInfo final : public SwiftABIInfo {
775 public:
776   enum ABIKind {
777     MVP = 0,
778     ExperimentalMV = 1,
779   };
780 
781 private:
782   DefaultABIInfo defaultInfo;
783   ABIKind Kind;
784 
785 public:
786   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
787       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
788 
789 private:
790   ABIArgInfo classifyReturnType(QualType RetTy) const;
791   ABIArgInfo classifyArgumentType(QualType Ty) const;
792 
793   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
794   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
795   // overload them.
796   void computeInfo(CGFunctionInfo &FI) const override {
797     if (!getCXXABI().classifyReturnType(FI))
798       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
799     for (auto &Arg : FI.arguments())
800       Arg.info = classifyArgumentType(Arg.type);
801   }
802 
803   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
804                     QualType Ty) const override;
805 
806   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
807                                     bool asReturnValue) const override {
808     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
809   }
810 
811   bool isSwiftErrorInRegister() const override {
812     return false;
813   }
814 };
815 
816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
817 public:
818   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
819                                         WebAssemblyABIInfo::ABIKind K)
820       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
821 
822   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
823                            CodeGen::CodeGenModule &CGM) const override {
824     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
825     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
826       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
827         llvm::Function *Fn = cast<llvm::Function>(GV);
828         llvm::AttrBuilder B;
829         B.addAttribute("wasm-import-module", Attr->getImportModule());
830         Fn->addFnAttrs(B);
831       }
832       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
833         llvm::Function *Fn = cast<llvm::Function>(GV);
834         llvm::AttrBuilder B;
835         B.addAttribute("wasm-import-name", Attr->getImportName());
836         Fn->addFnAttrs(B);
837       }
838       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
839         llvm::Function *Fn = cast<llvm::Function>(GV);
840         llvm::AttrBuilder B;
841         B.addAttribute("wasm-export-name", Attr->getExportName());
842         Fn->addFnAttrs(B);
843       }
844     }
845 
846     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
847       llvm::Function *Fn = cast<llvm::Function>(GV);
848       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
849         Fn->addFnAttr("no-prototype");
850     }
851   }
852 };
853 
854 /// Classify argument of given type \p Ty.
855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
856   Ty = useFirstFieldIfTransparentUnion(Ty);
857 
858   if (isAggregateTypeForABI(Ty)) {
859     // Records with non-trivial destructors/copy-constructors should not be
860     // passed by value.
861     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
862       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
863     // Ignore empty structs/unions.
864     if (isEmptyRecord(getContext(), Ty, true))
865       return ABIArgInfo::getIgnore();
866     // Lower single-element structs to just pass a regular value. TODO: We
867     // could do reasonable-size multiple-element structs too, using getExpand(),
868     // though watch out for things like bitfields.
869     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
870       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
871     // For the experimental multivalue ABI, fully expand all other aggregates
872     if (Kind == ABIKind::ExperimentalMV) {
873       const RecordType *RT = Ty->getAs<RecordType>();
874       assert(RT);
875       bool HasBitField = false;
876       for (auto *Field : RT->getDecl()->fields()) {
877         if (Field->isBitField()) {
878           HasBitField = true;
879           break;
880         }
881       }
882       if (!HasBitField)
883         return ABIArgInfo::getExpand();
884     }
885   }
886 
887   // Otherwise just do the default thing.
888   return defaultInfo.classifyArgumentType(Ty);
889 }
890 
891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
892   if (isAggregateTypeForABI(RetTy)) {
893     // Records with non-trivial destructors/copy-constructors should not be
894     // returned by value.
895     if (!getRecordArgABI(RetTy, getCXXABI())) {
896       // Ignore empty structs/unions.
897       if (isEmptyRecord(getContext(), RetTy, true))
898         return ABIArgInfo::getIgnore();
899       // Lower single-element structs to just return a regular value. TODO: We
900       // could do reasonable-size multiple-element structs too, using
901       // ABIArgInfo::getDirect().
902       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
903         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
904       // For the experimental multivalue ABI, return all other aggregates
905       if (Kind == ABIKind::ExperimentalMV)
906         return ABIArgInfo::getDirect();
907     }
908   }
909 
910   // Otherwise just do the default thing.
911   return defaultInfo.classifyReturnType(RetTy);
912 }
913 
914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
915                                       QualType Ty) const {
916   bool IsIndirect = isAggregateTypeForABI(Ty) &&
917                     !isEmptyRecord(getContext(), Ty, true) &&
918                     !isSingleElementStruct(Ty, getContext());
919   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
920                           getContext().getTypeInfoInChars(Ty),
921                           CharUnits::fromQuantity(4),
922                           /*AllowHigherAlign=*/true);
923 }
924 
925 //===----------------------------------------------------------------------===//
926 // le32/PNaCl bitcode ABI Implementation
927 //
928 // This is a simplified version of the x86_32 ABI.  Arguments and return values
929 // are always passed on the stack.
930 //===----------------------------------------------------------------------===//
931 
932 class PNaClABIInfo : public ABIInfo {
933  public:
934   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
935 
936   ABIArgInfo classifyReturnType(QualType RetTy) const;
937   ABIArgInfo classifyArgumentType(QualType RetTy) const;
938 
939   void computeInfo(CGFunctionInfo &FI) const override;
940   Address EmitVAArg(CodeGenFunction &CGF,
941                     Address VAListAddr, QualType Ty) const override;
942 };
943 
944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
945  public:
946    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
947        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
948 };
949 
950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
951   if (!getCXXABI().classifyReturnType(FI))
952     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
953 
954   for (auto &I : FI.arguments())
955     I.info = classifyArgumentType(I.type);
956 }
957 
958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
959                                 QualType Ty) const {
960   // The PNaCL ABI is a bit odd, in that varargs don't use normal
961   // function classification. Structs get passed directly for varargs
962   // functions, through a rewriting transform in
963   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
964   // this target to actually support a va_arg instructions with an
965   // aggregate type, unlike other targets.
966   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
967 }
968 
969 /// Classify argument of given type \p Ty.
970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
971   if (isAggregateTypeForABI(Ty)) {
972     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
973       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
974     return getNaturalAlignIndirect(Ty);
975   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
976     // Treat an enum type as its underlying type.
977     Ty = EnumTy->getDecl()->getIntegerType();
978   } else if (Ty->isFloatingType()) {
979     // Floating-point types don't go inreg.
980     return ABIArgInfo::getDirect();
981   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
982     // Treat extended integers as integers if <=64, otherwise pass indirectly.
983     if (EIT->getNumBits() > 64)
984       return getNaturalAlignIndirect(Ty);
985     return ABIArgInfo::getDirect();
986   }
987 
988   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
989                                             : ABIArgInfo::getDirect());
990 }
991 
992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
993   if (RetTy->isVoidType())
994     return ABIArgInfo::getIgnore();
995 
996   // In the PNaCl ABI we always return records/structures on the stack.
997   if (isAggregateTypeForABI(RetTy))
998     return getNaturalAlignIndirect(RetTy);
999 
1000   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1001   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1002     if (EIT->getNumBits() > 64)
1003       return getNaturalAlignIndirect(RetTy);
1004     return ABIArgInfo::getDirect();
1005   }
1006 
1007   // Treat an enum type as its underlying type.
1008   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1009     RetTy = EnumTy->getDecl()->getIntegerType();
1010 
1011   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1012                                                : ABIArgInfo::getDirect());
1013 }
1014 
1015 /// IsX86_MMXType - Return true if this is an MMX type.
1016 bool IsX86_MMXType(llvm::Type *IRType) {
1017   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1018   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1019     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1020     IRType->getScalarSizeInBits() != 64;
1021 }
1022 
1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1024                                           StringRef Constraint,
1025                                           llvm::Type* Ty) {
1026   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1027                      .Cases("y", "&y", "^Ym", true)
1028                      .Default(false);
1029   if (IsMMXCons && Ty->isVectorTy()) {
1030     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1031         64) {
1032       // Invalid MMX constraint
1033       return nullptr;
1034     }
1035 
1036     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1037   }
1038 
1039   // No operation needed
1040   return Ty;
1041 }
1042 
1043 /// Returns true if this type can be passed in SSE registers with the
1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1046   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1047     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1048       if (BT->getKind() == BuiltinType::LongDouble) {
1049         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1050             &llvm::APFloat::x87DoubleExtended())
1051           return false;
1052       }
1053       return true;
1054     }
1055   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1056     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1057     // registers specially.
1058     unsigned VecSize = Context.getTypeSize(VT);
1059     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1060       return true;
1061   }
1062   return false;
1063 }
1064 
1065 /// Returns true if this aggregate is small enough to be passed in SSE registers
1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1068   return NumMembers <= 4;
1069 }
1070 
1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1073   auto AI = ABIArgInfo::getDirect(T);
1074   AI.setInReg(true);
1075   AI.setCanBeFlattened(false);
1076   return AI;
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 // X86-32 ABI Implementation
1081 //===----------------------------------------------------------------------===//
1082 
1083 /// Similar to llvm::CCState, but for Clang.
1084 struct CCState {
1085   CCState(CGFunctionInfo &FI)
1086       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1087 
1088   llvm::SmallBitVector IsPreassigned;
1089   unsigned CC = CallingConv::CC_C;
1090   unsigned FreeRegs = 0;
1091   unsigned FreeSSERegs = 0;
1092 };
1093 
1094 /// X86_32ABIInfo - The X86-32 ABI information.
1095 class X86_32ABIInfo : public SwiftABIInfo {
1096   enum Class {
1097     Integer,
1098     Float
1099   };
1100 
1101   static const unsigned MinABIStackAlignInBytes = 4;
1102 
1103   bool IsDarwinVectorABI;
1104   bool IsRetSmallStructInRegABI;
1105   bool IsWin32StructABI;
1106   bool IsSoftFloatABI;
1107   bool IsMCUABI;
1108   bool IsLinuxABI;
1109   unsigned DefaultNumRegisterParameters;
1110 
1111   static bool isRegisterSize(unsigned Size) {
1112     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1113   }
1114 
1115   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1116     // FIXME: Assumes vectorcall is in use.
1117     return isX86VectorTypeForVectorCall(getContext(), Ty);
1118   }
1119 
1120   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1121                                          uint64_t NumMembers) const override {
1122     // FIXME: Assumes vectorcall is in use.
1123     return isX86VectorCallAggregateSmallEnough(NumMembers);
1124   }
1125 
1126   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1127 
1128   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1129   /// such that the argument will be passed in memory.
1130   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1131 
1132   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1133 
1134   /// Return the alignment to use for the given type on the stack.
1135   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1136 
1137   Class classify(QualType Ty) const;
1138   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1139   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1140 
1141   /// Updates the number of available free registers, returns
1142   /// true if any registers were allocated.
1143   bool updateFreeRegs(QualType Ty, CCState &State) const;
1144 
1145   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1146                                 bool &NeedsPadding) const;
1147   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1148 
1149   bool canExpandIndirectArgument(QualType Ty) const;
1150 
1151   /// Rewrite the function info so that all memory arguments use
1152   /// inalloca.
1153   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1154 
1155   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1156                            CharUnits &StackOffset, ABIArgInfo &Info,
1157                            QualType Type) const;
1158   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1159 
1160 public:
1161 
1162   void computeInfo(CGFunctionInfo &FI) const override;
1163   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1164                     QualType Ty) const override;
1165 
1166   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1167                 bool RetSmallStructInRegABI, bool Win32StructABI,
1168                 unsigned NumRegisterParameters, bool SoftFloatABI)
1169     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1170       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1171       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1172       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1173       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()),
1174       DefaultNumRegisterParameters(NumRegisterParameters) {}
1175 
1176   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1177                                     bool asReturnValue) const override {
1178     // LLVM's x86-32 lowering currently only assigns up to three
1179     // integer registers and three fp registers.  Oddly, it'll use up to
1180     // four vector registers for vectors, but those can overlap with the
1181     // scalar registers.
1182     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1183   }
1184 
1185   bool isSwiftErrorInRegister() const override {
1186     // x86-32 lowering does not support passing swifterror in a register.
1187     return false;
1188   }
1189 };
1190 
1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1192 public:
1193   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1194                           bool RetSmallStructInRegABI, bool Win32StructABI,
1195                           unsigned NumRegisterParameters, bool SoftFloatABI)
1196       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1197             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1198             NumRegisterParameters, SoftFloatABI)) {}
1199 
1200   static bool isStructReturnInRegABI(
1201       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1202 
1203   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1204                            CodeGen::CodeGenModule &CGM) const override;
1205 
1206   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1207     // Darwin uses different dwarf register numbers for EH.
1208     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1209     return 4;
1210   }
1211 
1212   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1213                                llvm::Value *Address) const override;
1214 
1215   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1216                                   StringRef Constraint,
1217                                   llvm::Type* Ty) const override {
1218     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1219   }
1220 
1221   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1222                                 std::string &Constraints,
1223                                 std::vector<llvm::Type *> &ResultRegTypes,
1224                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1225                                 std::vector<LValue> &ResultRegDests,
1226                                 std::string &AsmString,
1227                                 unsigned NumOutputs) const override;
1228 
1229   llvm::Constant *
1230   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1231     unsigned Sig = (0xeb << 0) |  // jmp rel8
1232                    (0x06 << 8) |  //           .+0x08
1233                    ('v' << 16) |
1234                    ('2' << 24);
1235     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1236   }
1237 
1238   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1239     return "movl\t%ebp, %ebp"
1240            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1241   }
1242 };
1243 
1244 }
1245 
1246 /// Rewrite input constraint references after adding some output constraints.
1247 /// In the case where there is one output and one input and we add one output,
1248 /// we need to replace all operand references greater than or equal to 1:
1249 ///     mov $0, $1
1250 ///     mov eax, $1
1251 /// The result will be:
1252 ///     mov $0, $2
1253 ///     mov eax, $2
1254 static void rewriteInputConstraintReferences(unsigned FirstIn,
1255                                              unsigned NumNewOuts,
1256                                              std::string &AsmString) {
1257   std::string Buf;
1258   llvm::raw_string_ostream OS(Buf);
1259   size_t Pos = 0;
1260   while (Pos < AsmString.size()) {
1261     size_t DollarStart = AsmString.find('$', Pos);
1262     if (DollarStart == std::string::npos)
1263       DollarStart = AsmString.size();
1264     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1265     if (DollarEnd == std::string::npos)
1266       DollarEnd = AsmString.size();
1267     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1268     Pos = DollarEnd;
1269     size_t NumDollars = DollarEnd - DollarStart;
1270     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1271       // We have an operand reference.
1272       size_t DigitStart = Pos;
1273       if (AsmString[DigitStart] == '{') {
1274         OS << '{';
1275         ++DigitStart;
1276       }
1277       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1278       if (DigitEnd == std::string::npos)
1279         DigitEnd = AsmString.size();
1280       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1281       unsigned OperandIndex;
1282       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1283         if (OperandIndex >= FirstIn)
1284           OperandIndex += NumNewOuts;
1285         OS << OperandIndex;
1286       } else {
1287         OS << OperandStr;
1288       }
1289       Pos = DigitEnd;
1290     }
1291   }
1292   AsmString = std::move(OS.str());
1293 }
1294 
1295 /// Add output constraints for EAX:EDX because they are return registers.
1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1297     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1298     std::vector<llvm::Type *> &ResultRegTypes,
1299     std::vector<llvm::Type *> &ResultTruncRegTypes,
1300     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1301     unsigned NumOutputs) const {
1302   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1303 
1304   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1305   // larger.
1306   if (!Constraints.empty())
1307     Constraints += ',';
1308   if (RetWidth <= 32) {
1309     Constraints += "={eax}";
1310     ResultRegTypes.push_back(CGF.Int32Ty);
1311   } else {
1312     // Use the 'A' constraint for EAX:EDX.
1313     Constraints += "=A";
1314     ResultRegTypes.push_back(CGF.Int64Ty);
1315   }
1316 
1317   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1318   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1319   ResultTruncRegTypes.push_back(CoerceTy);
1320 
1321   // Coerce the integer by bitcasting the return slot pointer.
1322   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1323                                                   CoerceTy->getPointerTo()));
1324   ResultRegDests.push_back(ReturnSlot);
1325 
1326   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1327 }
1328 
1329 /// shouldReturnTypeInRegister - Determine if the given type should be
1330 /// returned in a register (for the Darwin and MCU ABI).
1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1332                                                ASTContext &Context) const {
1333   uint64_t Size = Context.getTypeSize(Ty);
1334 
1335   // For i386, type must be register sized.
1336   // For the MCU ABI, it only needs to be <= 8-byte
1337   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1338    return false;
1339 
1340   if (Ty->isVectorType()) {
1341     // 64- and 128- bit vectors inside structures are not returned in
1342     // registers.
1343     if (Size == 64 || Size == 128)
1344       return false;
1345 
1346     return true;
1347   }
1348 
1349   // If this is a builtin, pointer, enum, complex type, member pointer, or
1350   // member function pointer it is ok.
1351   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1352       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1353       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1354     return true;
1355 
1356   // Arrays are treated like records.
1357   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1358     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1359 
1360   // Otherwise, it must be a record type.
1361   const RecordType *RT = Ty->getAs<RecordType>();
1362   if (!RT) return false;
1363 
1364   // FIXME: Traverse bases here too.
1365 
1366   // Structure types are passed in register if all fields would be
1367   // passed in a register.
1368   for (const auto *FD : RT->getDecl()->fields()) {
1369     // Empty fields are ignored.
1370     if (isEmptyField(Context, FD, true))
1371       continue;
1372 
1373     // Check fields recursively.
1374     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1375       return false;
1376   }
1377   return true;
1378 }
1379 
1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1381   // Treat complex types as the element type.
1382   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1383     Ty = CTy->getElementType();
1384 
1385   // Check for a type which we know has a simple scalar argument-passing
1386   // convention without any padding.  (We're specifically looking for 32
1387   // and 64-bit integer and integer-equivalents, float, and double.)
1388   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1389       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1390     return false;
1391 
1392   uint64_t Size = Context.getTypeSize(Ty);
1393   return Size == 32 || Size == 64;
1394 }
1395 
1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1397                           uint64_t &Size) {
1398   for (const auto *FD : RD->fields()) {
1399     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1400     // argument is smaller than 32-bits, expanding the struct will create
1401     // alignment padding.
1402     if (!is32Or64BitBasicType(FD->getType(), Context))
1403       return false;
1404 
1405     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1406     // how to expand them yet, and the predicate for telling if a bitfield still
1407     // counts as "basic" is more complicated than what we were doing previously.
1408     if (FD->isBitField())
1409       return false;
1410 
1411     Size += Context.getTypeSize(FD->getType());
1412   }
1413   return true;
1414 }
1415 
1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1417                                  uint64_t &Size) {
1418   // Don't do this if there are any non-empty bases.
1419   for (const CXXBaseSpecifier &Base : RD->bases()) {
1420     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1421                               Size))
1422       return false;
1423   }
1424   if (!addFieldSizes(Context, RD, Size))
1425     return false;
1426   return true;
1427 }
1428 
1429 /// Test whether an argument type which is to be passed indirectly (on the
1430 /// stack) would have the equivalent layout if it was expanded into separate
1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1432 /// optimizations.
1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1434   // We can only expand structure types.
1435   const RecordType *RT = Ty->getAs<RecordType>();
1436   if (!RT)
1437     return false;
1438   const RecordDecl *RD = RT->getDecl();
1439   uint64_t Size = 0;
1440   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1441     if (!IsWin32StructABI) {
1442       // On non-Windows, we have to conservatively match our old bitcode
1443       // prototypes in order to be ABI-compatible at the bitcode level.
1444       if (!CXXRD->isCLike())
1445         return false;
1446     } else {
1447       // Don't do this for dynamic classes.
1448       if (CXXRD->isDynamicClass())
1449         return false;
1450     }
1451     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1452       return false;
1453   } else {
1454     if (!addFieldSizes(getContext(), RD, Size))
1455       return false;
1456   }
1457 
1458   // We can do this if there was no alignment padding.
1459   return Size == getContext().getTypeSize(Ty);
1460 }
1461 
1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1463   // If the return value is indirect, then the hidden argument is consuming one
1464   // integer register.
1465   if (State.FreeRegs) {
1466     --State.FreeRegs;
1467     if (!IsMCUABI)
1468       return getNaturalAlignIndirectInReg(RetTy);
1469   }
1470   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1471 }
1472 
1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1474                                              CCState &State) const {
1475   if (RetTy->isVoidType())
1476     return ABIArgInfo::getIgnore();
1477 
1478   const Type *Base = nullptr;
1479   uint64_t NumElts = 0;
1480   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1481        State.CC == llvm::CallingConv::X86_RegCall) &&
1482       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1483     // The LLVM struct type for such an aggregate should lower properly.
1484     return ABIArgInfo::getDirect();
1485   }
1486 
1487   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1488     // On Darwin, some vectors are returned in registers.
1489     if (IsDarwinVectorABI) {
1490       uint64_t Size = getContext().getTypeSize(RetTy);
1491 
1492       // 128-bit vectors are a special case; they are returned in
1493       // registers and we need to make sure to pick a type the LLVM
1494       // backend will like.
1495       if (Size == 128)
1496         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1497             llvm::Type::getInt64Ty(getVMContext()), 2));
1498 
1499       // Always return in register if it fits in a general purpose
1500       // register, or if it is 64 bits and has a single element.
1501       if ((Size == 8 || Size == 16 || Size == 32) ||
1502           (Size == 64 && VT->getNumElements() == 1))
1503         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1504                                                             Size));
1505 
1506       return getIndirectReturnResult(RetTy, State);
1507     }
1508 
1509     return ABIArgInfo::getDirect();
1510   }
1511 
1512   if (isAggregateTypeForABI(RetTy)) {
1513     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1514       // Structures with flexible arrays are always indirect.
1515       if (RT->getDecl()->hasFlexibleArrayMember())
1516         return getIndirectReturnResult(RetTy, State);
1517     }
1518 
1519     // If specified, structs and unions are always indirect.
1520     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1521       return getIndirectReturnResult(RetTy, State);
1522 
1523     // Ignore empty structs/unions.
1524     if (isEmptyRecord(getContext(), RetTy, true))
1525       return ABIArgInfo::getIgnore();
1526 
1527     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1528     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1529       QualType ET = getContext().getCanonicalType(CT->getElementType());
1530       if (ET->isFloat16Type())
1531         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1532             llvm::Type::getHalfTy(getVMContext()), 2));
1533     }
1534 
1535     // Small structures which are register sized are generally returned
1536     // in a register.
1537     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1538       uint64_t Size = getContext().getTypeSize(RetTy);
1539 
1540       // As a special-case, if the struct is a "single-element" struct, and
1541       // the field is of type "float" or "double", return it in a
1542       // floating-point register. (MSVC does not apply this special case.)
1543       // We apply a similar transformation for pointer types to improve the
1544       // quality of the generated IR.
1545       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1546         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1547             || SeltTy->hasPointerRepresentation())
1548           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1549 
1550       // FIXME: We should be able to narrow this integer in cases with dead
1551       // padding.
1552       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1553     }
1554 
1555     return getIndirectReturnResult(RetTy, State);
1556   }
1557 
1558   // Treat an enum type as its underlying type.
1559   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1560     RetTy = EnumTy->getDecl()->getIntegerType();
1561 
1562   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1563     if (EIT->getNumBits() > 64)
1564       return getIndirectReturnResult(RetTy, State);
1565 
1566   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1567                                                : ABIArgInfo::getDirect());
1568 }
1569 
1570 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1571   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1572 }
1573 
1574 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1575   const RecordType *RT = Ty->getAs<RecordType>();
1576   if (!RT)
1577     return 0;
1578   const RecordDecl *RD = RT->getDecl();
1579 
1580   // If this is a C++ record, check the bases first.
1581   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1582     for (const auto &I : CXXRD->bases())
1583       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1584         return false;
1585 
1586   for (const auto *i : RD->fields()) {
1587     QualType FT = i->getType();
1588 
1589     if (isSIMDVectorType(Context, FT))
1590       return true;
1591 
1592     if (isRecordWithSIMDVectorType(Context, FT))
1593       return true;
1594   }
1595 
1596   return false;
1597 }
1598 
1599 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1600                                                  unsigned Align) const {
1601   // Otherwise, if the alignment is less than or equal to the minimum ABI
1602   // alignment, just use the default; the backend will handle this.
1603   if (Align <= MinABIStackAlignInBytes)
1604     return 0; // Use default alignment.
1605 
1606   if (IsLinuxABI) {
1607     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1608     // want to spend any effort dealing with the ramifications of ABI breaks.
1609     //
1610     // If the vector type is __m128/__m256/__m512, return the default alignment.
1611     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1612       return Align;
1613   }
1614   // On non-Darwin, the stack type alignment is always 4.
1615   if (!IsDarwinVectorABI) {
1616     // Set explicit alignment, since we may need to realign the top.
1617     return MinABIStackAlignInBytes;
1618   }
1619 
1620   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1621   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1622                       isRecordWithSIMDVectorType(getContext(), Ty)))
1623     return 16;
1624 
1625   return MinABIStackAlignInBytes;
1626 }
1627 
1628 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1629                                             CCState &State) const {
1630   if (!ByVal) {
1631     if (State.FreeRegs) {
1632       --State.FreeRegs; // Non-byval indirects just use one pointer.
1633       if (!IsMCUABI)
1634         return getNaturalAlignIndirectInReg(Ty);
1635     }
1636     return getNaturalAlignIndirect(Ty, false);
1637   }
1638 
1639   // Compute the byval alignment.
1640   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1641   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1642   if (StackAlign == 0)
1643     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1644 
1645   // If the stack alignment is less than the type alignment, realign the
1646   // argument.
1647   bool Realign = TypeAlign > StackAlign;
1648   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1649                                  /*ByVal=*/true, Realign);
1650 }
1651 
1652 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1653   const Type *T = isSingleElementStruct(Ty, getContext());
1654   if (!T)
1655     T = Ty.getTypePtr();
1656 
1657   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1658     BuiltinType::Kind K = BT->getKind();
1659     if (K == BuiltinType::Float || K == BuiltinType::Double)
1660       return Float;
1661   }
1662   return Integer;
1663 }
1664 
1665 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1666   if (!IsSoftFloatABI) {
1667     Class C = classify(Ty);
1668     if (C == Float)
1669       return false;
1670   }
1671 
1672   unsigned Size = getContext().getTypeSize(Ty);
1673   unsigned SizeInRegs = (Size + 31) / 32;
1674 
1675   if (SizeInRegs == 0)
1676     return false;
1677 
1678   if (!IsMCUABI) {
1679     if (SizeInRegs > State.FreeRegs) {
1680       State.FreeRegs = 0;
1681       return false;
1682     }
1683   } else {
1684     // The MCU psABI allows passing parameters in-reg even if there are
1685     // earlier parameters that are passed on the stack. Also,
1686     // it does not allow passing >8-byte structs in-register,
1687     // even if there are 3 free registers available.
1688     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1689       return false;
1690   }
1691 
1692   State.FreeRegs -= SizeInRegs;
1693   return true;
1694 }
1695 
1696 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1697                                              bool &InReg,
1698                                              bool &NeedsPadding) const {
1699   // On Windows, aggregates other than HFAs are never passed in registers, and
1700   // they do not consume register slots. Homogenous floating-point aggregates
1701   // (HFAs) have already been dealt with at this point.
1702   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1703     return false;
1704 
1705   NeedsPadding = false;
1706   InReg = !IsMCUABI;
1707 
1708   if (!updateFreeRegs(Ty, State))
1709     return false;
1710 
1711   if (IsMCUABI)
1712     return true;
1713 
1714   if (State.CC == llvm::CallingConv::X86_FastCall ||
1715       State.CC == llvm::CallingConv::X86_VectorCall ||
1716       State.CC == llvm::CallingConv::X86_RegCall) {
1717     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1718       NeedsPadding = true;
1719 
1720     return false;
1721   }
1722 
1723   return true;
1724 }
1725 
1726 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1727   if (!updateFreeRegs(Ty, State))
1728     return false;
1729 
1730   if (IsMCUABI)
1731     return false;
1732 
1733   if (State.CC == llvm::CallingConv::X86_FastCall ||
1734       State.CC == llvm::CallingConv::X86_VectorCall ||
1735       State.CC == llvm::CallingConv::X86_RegCall) {
1736     if (getContext().getTypeSize(Ty) > 32)
1737       return false;
1738 
1739     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1740         Ty->isReferenceType());
1741   }
1742 
1743   return true;
1744 }
1745 
1746 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1747   // Vectorcall x86 works subtly different than in x64, so the format is
1748   // a bit different than the x64 version.  First, all vector types (not HVAs)
1749   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1750   // This differs from the x64 implementation, where the first 6 by INDEX get
1751   // registers.
1752   // In the second pass over the arguments, HVAs are passed in the remaining
1753   // vector registers if possible, or indirectly by address. The address will be
1754   // passed in ECX/EDX if available. Any other arguments are passed according to
1755   // the usual fastcall rules.
1756   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1757   for (int I = 0, E = Args.size(); I < E; ++I) {
1758     const Type *Base = nullptr;
1759     uint64_t NumElts = 0;
1760     const QualType &Ty = Args[I].type;
1761     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1762         isHomogeneousAggregate(Ty, Base, NumElts)) {
1763       if (State.FreeSSERegs >= NumElts) {
1764         State.FreeSSERegs -= NumElts;
1765         Args[I].info = ABIArgInfo::getDirectInReg();
1766         State.IsPreassigned.set(I);
1767       }
1768     }
1769   }
1770 }
1771 
1772 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1773                                                CCState &State) const {
1774   // FIXME: Set alignment on indirect arguments.
1775   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1776   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1777   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1778 
1779   Ty = useFirstFieldIfTransparentUnion(Ty);
1780   TypeInfo TI = getContext().getTypeInfo(Ty);
1781 
1782   // Check with the C++ ABI first.
1783   const RecordType *RT = Ty->getAs<RecordType>();
1784   if (RT) {
1785     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1786     if (RAA == CGCXXABI::RAA_Indirect) {
1787       return getIndirectResult(Ty, false, State);
1788     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1789       // The field index doesn't matter, we'll fix it up later.
1790       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1791     }
1792   }
1793 
1794   // Regcall uses the concept of a homogenous vector aggregate, similar
1795   // to other targets.
1796   const Type *Base = nullptr;
1797   uint64_t NumElts = 0;
1798   if ((IsRegCall || IsVectorCall) &&
1799       isHomogeneousAggregate(Ty, Base, NumElts)) {
1800     if (State.FreeSSERegs >= NumElts) {
1801       State.FreeSSERegs -= NumElts;
1802 
1803       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1804       // does.
1805       if (IsVectorCall)
1806         return getDirectX86Hva();
1807 
1808       if (Ty->isBuiltinType() || Ty->isVectorType())
1809         return ABIArgInfo::getDirect();
1810       return ABIArgInfo::getExpand();
1811     }
1812     return getIndirectResult(Ty, /*ByVal=*/false, State);
1813   }
1814 
1815   if (isAggregateTypeForABI(Ty)) {
1816     // Structures with flexible arrays are always indirect.
1817     // FIXME: This should not be byval!
1818     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1819       return getIndirectResult(Ty, true, State);
1820 
1821     // Ignore empty structs/unions on non-Windows.
1822     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1823       return ABIArgInfo::getIgnore();
1824 
1825     llvm::LLVMContext &LLVMContext = getVMContext();
1826     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1827     bool NeedsPadding = false;
1828     bool InReg;
1829     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1830       unsigned SizeInRegs = (TI.Width + 31) / 32;
1831       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1832       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1833       if (InReg)
1834         return ABIArgInfo::getDirectInReg(Result);
1835       else
1836         return ABIArgInfo::getDirect(Result);
1837     }
1838     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1839 
1840     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1841     // added in MSVC 2015.
1842     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1843       return getIndirectResult(Ty, /*ByVal=*/false, State);
1844 
1845     // Expand small (<= 128-bit) record types when we know that the stack layout
1846     // of those arguments will match the struct. This is important because the
1847     // LLVM backend isn't smart enough to remove byval, which inhibits many
1848     // optimizations.
1849     // Don't do this for the MCU if there are still free integer registers
1850     // (see X86_64 ABI for full explanation).
1851     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1852         canExpandIndirectArgument(Ty))
1853       return ABIArgInfo::getExpandWithPadding(
1854           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1855 
1856     return getIndirectResult(Ty, true, State);
1857   }
1858 
1859   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1860     // On Windows, vectors are passed directly if registers are available, or
1861     // indirectly if not. This avoids the need to align argument memory. Pass
1862     // user-defined vector types larger than 512 bits indirectly for simplicity.
1863     if (IsWin32StructABI) {
1864       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1865         --State.FreeSSERegs;
1866         return ABIArgInfo::getDirectInReg();
1867       }
1868       return getIndirectResult(Ty, /*ByVal=*/false, State);
1869     }
1870 
1871     // On Darwin, some vectors are passed in memory, we handle this by passing
1872     // it as an i8/i16/i32/i64.
1873     if (IsDarwinVectorABI) {
1874       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1875           (TI.Width == 64 && VT->getNumElements() == 1))
1876         return ABIArgInfo::getDirect(
1877             llvm::IntegerType::get(getVMContext(), TI.Width));
1878     }
1879 
1880     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1881       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1882 
1883     return ABIArgInfo::getDirect();
1884   }
1885 
1886 
1887   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1888     Ty = EnumTy->getDecl()->getIntegerType();
1889 
1890   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1891 
1892   if (isPromotableIntegerTypeForABI(Ty)) {
1893     if (InReg)
1894       return ABIArgInfo::getExtendInReg(Ty);
1895     return ABIArgInfo::getExtend(Ty);
1896   }
1897 
1898   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1899     if (EIT->getNumBits() <= 64) {
1900       if (InReg)
1901         return ABIArgInfo::getDirectInReg();
1902       return ABIArgInfo::getDirect();
1903     }
1904     return getIndirectResult(Ty, /*ByVal=*/false, State);
1905   }
1906 
1907   if (InReg)
1908     return ABIArgInfo::getDirectInReg();
1909   return ABIArgInfo::getDirect();
1910 }
1911 
1912 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1913   CCState State(FI);
1914   if (IsMCUABI)
1915     State.FreeRegs = 3;
1916   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1917     State.FreeRegs = 2;
1918     State.FreeSSERegs = 3;
1919   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1920     State.FreeRegs = 2;
1921     State.FreeSSERegs = 6;
1922   } else if (FI.getHasRegParm())
1923     State.FreeRegs = FI.getRegParm();
1924   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1925     State.FreeRegs = 5;
1926     State.FreeSSERegs = 8;
1927   } else if (IsWin32StructABI) {
1928     // Since MSVC 2015, the first three SSE vectors have been passed in
1929     // registers. The rest are passed indirectly.
1930     State.FreeRegs = DefaultNumRegisterParameters;
1931     State.FreeSSERegs = 3;
1932   } else
1933     State.FreeRegs = DefaultNumRegisterParameters;
1934 
1935   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1936     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1937   } else if (FI.getReturnInfo().isIndirect()) {
1938     // The C++ ABI is not aware of register usage, so we have to check if the
1939     // return value was sret and put it in a register ourselves if appropriate.
1940     if (State.FreeRegs) {
1941       --State.FreeRegs;  // The sret parameter consumes a register.
1942       if (!IsMCUABI)
1943         FI.getReturnInfo().setInReg(true);
1944     }
1945   }
1946 
1947   // The chain argument effectively gives us another free register.
1948   if (FI.isChainCall())
1949     ++State.FreeRegs;
1950 
1951   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1952   // arguments to XMM registers as available.
1953   if (State.CC == llvm::CallingConv::X86_VectorCall)
1954     runVectorCallFirstPass(FI, State);
1955 
1956   bool UsedInAlloca = false;
1957   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1958   for (int I = 0, E = Args.size(); I < E; ++I) {
1959     // Skip arguments that have already been assigned.
1960     if (State.IsPreassigned.test(I))
1961       continue;
1962 
1963     Args[I].info = classifyArgumentType(Args[I].type, State);
1964     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1965   }
1966 
1967   // If we needed to use inalloca for any argument, do a second pass and rewrite
1968   // all the memory arguments to use inalloca.
1969   if (UsedInAlloca)
1970     rewriteWithInAlloca(FI);
1971 }
1972 
1973 void
1974 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1975                                    CharUnits &StackOffset, ABIArgInfo &Info,
1976                                    QualType Type) const {
1977   // Arguments are always 4-byte-aligned.
1978   CharUnits WordSize = CharUnits::fromQuantity(4);
1979   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1980 
1981   // sret pointers and indirect things will require an extra pointer
1982   // indirection, unless they are byval. Most things are byval, and will not
1983   // require this indirection.
1984   bool IsIndirect = false;
1985   if (Info.isIndirect() && !Info.getIndirectByVal())
1986     IsIndirect = true;
1987   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1988   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1989   if (IsIndirect)
1990     LLTy = LLTy->getPointerTo(0);
1991   FrameFields.push_back(LLTy);
1992   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1993 
1994   // Insert padding bytes to respect alignment.
1995   CharUnits FieldEnd = StackOffset;
1996   StackOffset = FieldEnd.alignTo(WordSize);
1997   if (StackOffset != FieldEnd) {
1998     CharUnits NumBytes = StackOffset - FieldEnd;
1999     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2000     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2001     FrameFields.push_back(Ty);
2002   }
2003 }
2004 
2005 static bool isArgInAlloca(const ABIArgInfo &Info) {
2006   // Leave ignored and inreg arguments alone.
2007   switch (Info.getKind()) {
2008   case ABIArgInfo::InAlloca:
2009     return true;
2010   case ABIArgInfo::Ignore:
2011   case ABIArgInfo::IndirectAliased:
2012     return false;
2013   case ABIArgInfo::Indirect:
2014   case ABIArgInfo::Direct:
2015   case ABIArgInfo::Extend:
2016     return !Info.getInReg();
2017   case ABIArgInfo::Expand:
2018   case ABIArgInfo::CoerceAndExpand:
2019     // These are aggregate types which are never passed in registers when
2020     // inalloca is involved.
2021     return true;
2022   }
2023   llvm_unreachable("invalid enum");
2024 }
2025 
2026 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2027   assert(IsWin32StructABI && "inalloca only supported on win32");
2028 
2029   // Build a packed struct type for all of the arguments in memory.
2030   SmallVector<llvm::Type *, 6> FrameFields;
2031 
2032   // The stack alignment is always 4.
2033   CharUnits StackAlign = CharUnits::fromQuantity(4);
2034 
2035   CharUnits StackOffset;
2036   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2037 
2038   // Put 'this' into the struct before 'sret', if necessary.
2039   bool IsThisCall =
2040       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2041   ABIArgInfo &Ret = FI.getReturnInfo();
2042   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2043       isArgInAlloca(I->info)) {
2044     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2045     ++I;
2046   }
2047 
2048   // Put the sret parameter into the inalloca struct if it's in memory.
2049   if (Ret.isIndirect() && !Ret.getInReg()) {
2050     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2051     // On Windows, the hidden sret parameter is always returned in eax.
2052     Ret.setInAllocaSRet(IsWin32StructABI);
2053   }
2054 
2055   // Skip the 'this' parameter in ecx.
2056   if (IsThisCall)
2057     ++I;
2058 
2059   // Put arguments passed in memory into the struct.
2060   for (; I != E; ++I) {
2061     if (isArgInAlloca(I->info))
2062       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2063   }
2064 
2065   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2066                                         /*isPacked=*/true),
2067                   StackAlign);
2068 }
2069 
2070 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2071                                  Address VAListAddr, QualType Ty) const {
2072 
2073   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2074 
2075   // x86-32 changes the alignment of certain arguments on the stack.
2076   //
2077   // Just messing with TypeInfo like this works because we never pass
2078   // anything indirectly.
2079   TypeInfo.Align = CharUnits::fromQuantity(
2080                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2081 
2082   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2083                           TypeInfo, CharUnits::fromQuantity(4),
2084                           /*AllowHigherAlign*/ true);
2085 }
2086 
2087 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2088     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2089   assert(Triple.getArch() == llvm::Triple::x86);
2090 
2091   switch (Opts.getStructReturnConvention()) {
2092   case CodeGenOptions::SRCK_Default:
2093     break;
2094   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2095     return false;
2096   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2097     return true;
2098   }
2099 
2100   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2101     return true;
2102 
2103   switch (Triple.getOS()) {
2104   case llvm::Triple::DragonFly:
2105   case llvm::Triple::FreeBSD:
2106   case llvm::Triple::OpenBSD:
2107   case llvm::Triple::Win32:
2108     return true;
2109   default:
2110     return false;
2111   }
2112 }
2113 
2114 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2115                                  CodeGen::CodeGenModule &CGM) {
2116   if (!FD->hasAttr<AnyX86InterruptAttr>())
2117     return;
2118 
2119   llvm::Function *Fn = cast<llvm::Function>(GV);
2120   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2121   if (FD->getNumParams() == 0)
2122     return;
2123 
2124   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2125   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2126   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2127     Fn->getContext(), ByValTy);
2128   Fn->addParamAttr(0, NewAttr);
2129 }
2130 
2131 void X86_32TargetCodeGenInfo::setTargetAttributes(
2132     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2133   if (GV->isDeclaration())
2134     return;
2135   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2136     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2137       llvm::Function *Fn = cast<llvm::Function>(GV);
2138       Fn->addFnAttr("stackrealign");
2139     }
2140 
2141     addX86InterruptAttrs(FD, GV, CGM);
2142   }
2143 }
2144 
2145 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2146                                                CodeGen::CodeGenFunction &CGF,
2147                                                llvm::Value *Address) const {
2148   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2149 
2150   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2151 
2152   // 0-7 are the eight integer registers;  the order is different
2153   //   on Darwin (for EH), but the range is the same.
2154   // 8 is %eip.
2155   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2156 
2157   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2158     // 12-16 are st(0..4).  Not sure why we stop at 4.
2159     // These have size 16, which is sizeof(long double) on
2160     // platforms with 8-byte alignment for that type.
2161     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2162     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2163 
2164   } else {
2165     // 9 is %eflags, which doesn't get a size on Darwin for some
2166     // reason.
2167     Builder.CreateAlignedStore(
2168         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2169                                CharUnits::One());
2170 
2171     // 11-16 are st(0..5).  Not sure why we stop at 5.
2172     // These have size 12, which is sizeof(long double) on
2173     // platforms with 4-byte alignment for that type.
2174     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2175     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2176   }
2177 
2178   return false;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 // X86-64 ABI Implementation
2183 //===----------------------------------------------------------------------===//
2184 
2185 
2186 namespace {
2187 /// The AVX ABI level for X86 targets.
2188 enum class X86AVXABILevel {
2189   None,
2190   AVX,
2191   AVX512
2192 };
2193 
2194 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2195 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2196   switch (AVXLevel) {
2197   case X86AVXABILevel::AVX512:
2198     return 512;
2199   case X86AVXABILevel::AVX:
2200     return 256;
2201   case X86AVXABILevel::None:
2202     return 128;
2203   }
2204   llvm_unreachable("Unknown AVXLevel");
2205 }
2206 
2207 /// X86_64ABIInfo - The X86_64 ABI information.
2208 class X86_64ABIInfo : public SwiftABIInfo {
2209   enum Class {
2210     Integer = 0,
2211     SSE,
2212     SSEUp,
2213     X87,
2214     X87Up,
2215     ComplexX87,
2216     NoClass,
2217     Memory
2218   };
2219 
2220   /// merge - Implement the X86_64 ABI merging algorithm.
2221   ///
2222   /// Merge an accumulating classification \arg Accum with a field
2223   /// classification \arg Field.
2224   ///
2225   /// \param Accum - The accumulating classification. This should
2226   /// always be either NoClass or the result of a previous merge
2227   /// call. In addition, this should never be Memory (the caller
2228   /// should just return Memory for the aggregate).
2229   static Class merge(Class Accum, Class Field);
2230 
2231   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2232   ///
2233   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2234   /// final MEMORY or SSE classes when necessary.
2235   ///
2236   /// \param AggregateSize - The size of the current aggregate in
2237   /// the classification process.
2238   ///
2239   /// \param Lo - The classification for the parts of the type
2240   /// residing in the low word of the containing object.
2241   ///
2242   /// \param Hi - The classification for the parts of the type
2243   /// residing in the higher words of the containing object.
2244   ///
2245   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2246 
2247   /// classify - Determine the x86_64 register classes in which the
2248   /// given type T should be passed.
2249   ///
2250   /// \param Lo - The classification for the parts of the type
2251   /// residing in the low word of the containing object.
2252   ///
2253   /// \param Hi - The classification for the parts of the type
2254   /// residing in the high word of the containing object.
2255   ///
2256   /// \param OffsetBase - The bit offset of this type in the
2257   /// containing object.  Some parameters are classified different
2258   /// depending on whether they straddle an eightbyte boundary.
2259   ///
2260   /// \param isNamedArg - Whether the argument in question is a "named"
2261   /// argument, as used in AMD64-ABI 3.5.7.
2262   ///
2263   /// If a word is unused its result will be NoClass; if a type should
2264   /// be passed in Memory then at least the classification of \arg Lo
2265   /// will be Memory.
2266   ///
2267   /// The \arg Lo class will be NoClass iff the argument is ignored.
2268   ///
2269   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2270   /// also be ComplexX87.
2271   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2272                 bool isNamedArg) const;
2273 
2274   llvm::Type *GetByteVectorType(QualType Ty) const;
2275   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2276                                  unsigned IROffset, QualType SourceTy,
2277                                  unsigned SourceOffset) const;
2278   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2279                                      unsigned IROffset, QualType SourceTy,
2280                                      unsigned SourceOffset) const;
2281 
2282   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2283   /// such that the argument will be returned in memory.
2284   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2285 
2286   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2287   /// such that the argument will be passed in memory.
2288   ///
2289   /// \param freeIntRegs - The number of free integer registers remaining
2290   /// available.
2291   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2292 
2293   ABIArgInfo classifyReturnType(QualType RetTy) const;
2294 
2295   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2296                                   unsigned &neededInt, unsigned &neededSSE,
2297                                   bool isNamedArg) const;
2298 
2299   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2300                                        unsigned &NeededSSE) const;
2301 
2302   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2303                                            unsigned &NeededSSE) const;
2304 
2305   bool IsIllegalVectorType(QualType Ty) const;
2306 
2307   /// The 0.98 ABI revision clarified a lot of ambiguities,
2308   /// unfortunately in ways that were not always consistent with
2309   /// certain previous compilers.  In particular, platforms which
2310   /// required strict binary compatibility with older versions of GCC
2311   /// may need to exempt themselves.
2312   bool honorsRevision0_98() const {
2313     return !getTarget().getTriple().isOSDarwin();
2314   }
2315 
2316   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2317   /// classify it as INTEGER (for compatibility with older clang compilers).
2318   bool classifyIntegerMMXAsSSE() const {
2319     // Clang <= 3.8 did not do this.
2320     if (getContext().getLangOpts().getClangABICompat() <=
2321         LangOptions::ClangABI::Ver3_8)
2322       return false;
2323 
2324     const llvm::Triple &Triple = getTarget().getTriple();
2325     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2326       return false;
2327     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2328       return false;
2329     return true;
2330   }
2331 
2332   // GCC classifies vectors of __int128 as memory.
2333   bool passInt128VectorsInMem() const {
2334     // Clang <= 9.0 did not do this.
2335     if (getContext().getLangOpts().getClangABICompat() <=
2336         LangOptions::ClangABI::Ver9)
2337       return false;
2338 
2339     const llvm::Triple &T = getTarget().getTriple();
2340     return T.isOSLinux() || T.isOSNetBSD();
2341   }
2342 
2343   X86AVXABILevel AVXLevel;
2344   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2345   // 64-bit hardware.
2346   bool Has64BitPointers;
2347 
2348 public:
2349   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2350       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2351       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2352   }
2353 
2354   bool isPassedUsingAVXType(QualType type) const {
2355     unsigned neededInt, neededSSE;
2356     // The freeIntRegs argument doesn't matter here.
2357     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2358                                            /*isNamedArg*/true);
2359     if (info.isDirect()) {
2360       llvm::Type *ty = info.getCoerceToType();
2361       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2362         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2363     }
2364     return false;
2365   }
2366 
2367   void computeInfo(CGFunctionInfo &FI) const override;
2368 
2369   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2370                     QualType Ty) const override;
2371   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2372                       QualType Ty) const override;
2373 
2374   bool has64BitPointers() const {
2375     return Has64BitPointers;
2376   }
2377 
2378   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2379                                     bool asReturnValue) const override {
2380     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2381   }
2382   bool isSwiftErrorInRegister() const override {
2383     return true;
2384   }
2385 };
2386 
2387 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2388 class WinX86_64ABIInfo : public SwiftABIInfo {
2389 public:
2390   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2391       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2392         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2393 
2394   void computeInfo(CGFunctionInfo &FI) const override;
2395 
2396   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2397                     QualType Ty) const override;
2398 
2399   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2400     // FIXME: Assumes vectorcall is in use.
2401     return isX86VectorTypeForVectorCall(getContext(), Ty);
2402   }
2403 
2404   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2405                                          uint64_t NumMembers) const override {
2406     // FIXME: Assumes vectorcall is in use.
2407     return isX86VectorCallAggregateSmallEnough(NumMembers);
2408   }
2409 
2410   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2411                                     bool asReturnValue) const override {
2412     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2413   }
2414 
2415   bool isSwiftErrorInRegister() const override {
2416     return true;
2417   }
2418 
2419 private:
2420   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2421                       bool IsVectorCall, bool IsRegCall) const;
2422   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2423                                            const ABIArgInfo &current) const;
2424 
2425   X86AVXABILevel AVXLevel;
2426 
2427   bool IsMingw64;
2428 };
2429 
2430 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2431 public:
2432   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2433       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2434 
2435   const X86_64ABIInfo &getABIInfo() const {
2436     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2437   }
2438 
2439   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2440   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2441   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2442 
2443   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2444     return 7;
2445   }
2446 
2447   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2448                                llvm::Value *Address) const override {
2449     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2450 
2451     // 0-15 are the 16 integer registers.
2452     // 16 is %rip.
2453     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2454     return false;
2455   }
2456 
2457   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2458                                   StringRef Constraint,
2459                                   llvm::Type* Ty) const override {
2460     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2461   }
2462 
2463   bool isNoProtoCallVariadic(const CallArgList &args,
2464                              const FunctionNoProtoType *fnType) const override {
2465     // The default CC on x86-64 sets %al to the number of SSA
2466     // registers used, and GCC sets this when calling an unprototyped
2467     // function, so we override the default behavior.  However, don't do
2468     // that when AVX types are involved: the ABI explicitly states it is
2469     // undefined, and it doesn't work in practice because of how the ABI
2470     // defines varargs anyway.
2471     if (fnType->getCallConv() == CC_C) {
2472       bool HasAVXType = false;
2473       for (CallArgList::const_iterator
2474              it = args.begin(), ie = args.end(); it != ie; ++it) {
2475         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2476           HasAVXType = true;
2477           break;
2478         }
2479       }
2480 
2481       if (!HasAVXType)
2482         return true;
2483     }
2484 
2485     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2486   }
2487 
2488   llvm::Constant *
2489   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2490     unsigned Sig = (0xeb << 0) | // jmp rel8
2491                    (0x06 << 8) | //           .+0x08
2492                    ('v' << 16) |
2493                    ('2' << 24);
2494     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2495   }
2496 
2497   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2498                            CodeGen::CodeGenModule &CGM) const override {
2499     if (GV->isDeclaration())
2500       return;
2501     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2502       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2503         llvm::Function *Fn = cast<llvm::Function>(GV);
2504         Fn->addFnAttr("stackrealign");
2505       }
2506 
2507       addX86InterruptAttrs(FD, GV, CGM);
2508     }
2509   }
2510 
2511   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2512                             const FunctionDecl *Caller,
2513                             const FunctionDecl *Callee,
2514                             const CallArgList &Args) const override;
2515 };
2516 
2517 static void initFeatureMaps(const ASTContext &Ctx,
2518                             llvm::StringMap<bool> &CallerMap,
2519                             const FunctionDecl *Caller,
2520                             llvm::StringMap<bool> &CalleeMap,
2521                             const FunctionDecl *Callee) {
2522   if (CalleeMap.empty() && CallerMap.empty()) {
2523     // The caller is potentially nullptr in the case where the call isn't in a
2524     // function.  In this case, the getFunctionFeatureMap ensures we just get
2525     // the TU level setting (since it cannot be modified by 'target'..
2526     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2527     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2528   }
2529 }
2530 
2531 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2532                                  SourceLocation CallLoc,
2533                                  const llvm::StringMap<bool> &CallerMap,
2534                                  const llvm::StringMap<bool> &CalleeMap,
2535                                  QualType Ty, StringRef Feature,
2536                                  bool IsArgument) {
2537   bool CallerHasFeat = CallerMap.lookup(Feature);
2538   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2539   if (!CallerHasFeat && !CalleeHasFeat)
2540     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2541            << IsArgument << Ty << Feature;
2542 
2543   // Mixing calling conventions here is very clearly an error.
2544   if (!CallerHasFeat || !CalleeHasFeat)
2545     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2546            << IsArgument << Ty << Feature;
2547 
2548   // Else, both caller and callee have the required feature, so there is no need
2549   // to diagnose.
2550   return false;
2551 }
2552 
2553 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2554                           SourceLocation CallLoc,
2555                           const llvm::StringMap<bool> &CallerMap,
2556                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2557                           bool IsArgument) {
2558   uint64_t Size = Ctx.getTypeSize(Ty);
2559   if (Size > 256)
2560     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2561                                 "avx512f", IsArgument);
2562 
2563   if (Size > 128)
2564     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2565                                 IsArgument);
2566 
2567   return false;
2568 }
2569 
2570 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2571     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2572     const FunctionDecl *Callee, const CallArgList &Args) const {
2573   llvm::StringMap<bool> CallerMap;
2574   llvm::StringMap<bool> CalleeMap;
2575   unsigned ArgIndex = 0;
2576 
2577   // We need to loop through the actual call arguments rather than the the
2578   // function's parameters, in case this variadic.
2579   for (const CallArg &Arg : Args) {
2580     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2581     // additionally changes how vectors >256 in size are passed. Like GCC, we
2582     // warn when a function is called with an argument where this will change.
2583     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2584     // the caller and callee features are mismatched.
2585     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2586     // change its ABI with attribute-target after this call.
2587     if (Arg.getType()->isVectorType() &&
2588         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2589       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2590       QualType Ty = Arg.getType();
2591       // The CallArg seems to have desugared the type already, so for clearer
2592       // diagnostics, replace it with the type in the FunctionDecl if possible.
2593       if (ArgIndex < Callee->getNumParams())
2594         Ty = Callee->getParamDecl(ArgIndex)->getType();
2595 
2596       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2597                         CalleeMap, Ty, /*IsArgument*/ true))
2598         return;
2599     }
2600     ++ArgIndex;
2601   }
2602 
2603   // Check return always, as we don't have a good way of knowing in codegen
2604   // whether this value is used, tail-called, etc.
2605   if (Callee->getReturnType()->isVectorType() &&
2606       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2607     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2608     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2609                   CalleeMap, Callee->getReturnType(),
2610                   /*IsArgument*/ false);
2611   }
2612 }
2613 
2614 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2615   // If the argument does not end in .lib, automatically add the suffix.
2616   // If the argument contains a space, enclose it in quotes.
2617   // This matches the behavior of MSVC.
2618   bool Quote = (Lib.find(' ') != StringRef::npos);
2619   std::string ArgStr = Quote ? "\"" : "";
2620   ArgStr += Lib;
2621   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2622     ArgStr += ".lib";
2623   ArgStr += Quote ? "\"" : "";
2624   return ArgStr;
2625 }
2626 
2627 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2628 public:
2629   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2630         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2631         unsigned NumRegisterParameters)
2632     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2633         Win32StructABI, NumRegisterParameters, false) {}
2634 
2635   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2636                            CodeGen::CodeGenModule &CGM) const override;
2637 
2638   void getDependentLibraryOption(llvm::StringRef Lib,
2639                                  llvm::SmallString<24> &Opt) const override {
2640     Opt = "/DEFAULTLIB:";
2641     Opt += qualifyWindowsLibrary(Lib);
2642   }
2643 
2644   void getDetectMismatchOption(llvm::StringRef Name,
2645                                llvm::StringRef Value,
2646                                llvm::SmallString<32> &Opt) const override {
2647     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2648   }
2649 };
2650 
2651 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2652                                           CodeGen::CodeGenModule &CGM) {
2653   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2654 
2655     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2656       Fn->addFnAttr("stack-probe-size",
2657                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2658     if (CGM.getCodeGenOpts().NoStackArgProbe)
2659       Fn->addFnAttr("no-stack-arg-probe");
2660   }
2661 }
2662 
2663 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2664     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2665   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2666   if (GV->isDeclaration())
2667     return;
2668   addStackProbeTargetAttributes(D, GV, CGM);
2669 }
2670 
2671 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2672 public:
2673   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2674                              X86AVXABILevel AVXLevel)
2675       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2676 
2677   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2678                            CodeGen::CodeGenModule &CGM) const override;
2679 
2680   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2681     return 7;
2682   }
2683 
2684   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2685                                llvm::Value *Address) const override {
2686     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2687 
2688     // 0-15 are the 16 integer registers.
2689     // 16 is %rip.
2690     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2691     return false;
2692   }
2693 
2694   void getDependentLibraryOption(llvm::StringRef Lib,
2695                                  llvm::SmallString<24> &Opt) const override {
2696     Opt = "/DEFAULTLIB:";
2697     Opt += qualifyWindowsLibrary(Lib);
2698   }
2699 
2700   void getDetectMismatchOption(llvm::StringRef Name,
2701                                llvm::StringRef Value,
2702                                llvm::SmallString<32> &Opt) const override {
2703     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2704   }
2705 };
2706 
2707 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2708     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2709   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2710   if (GV->isDeclaration())
2711     return;
2712   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2713     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2714       llvm::Function *Fn = cast<llvm::Function>(GV);
2715       Fn->addFnAttr("stackrealign");
2716     }
2717 
2718     addX86InterruptAttrs(FD, GV, CGM);
2719   }
2720 
2721   addStackProbeTargetAttributes(D, GV, CGM);
2722 }
2723 }
2724 
2725 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2726                               Class &Hi) const {
2727   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2728   //
2729   // (a) If one of the classes is Memory, the whole argument is passed in
2730   //     memory.
2731   //
2732   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2733   //     memory.
2734   //
2735   // (c) If the size of the aggregate exceeds two eightbytes and the first
2736   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2737   //     argument is passed in memory. NOTE: This is necessary to keep the
2738   //     ABI working for processors that don't support the __m256 type.
2739   //
2740   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2741   //
2742   // Some of these are enforced by the merging logic.  Others can arise
2743   // only with unions; for example:
2744   //   union { _Complex double; unsigned; }
2745   //
2746   // Note that clauses (b) and (c) were added in 0.98.
2747   //
2748   if (Hi == Memory)
2749     Lo = Memory;
2750   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2751     Lo = Memory;
2752   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2753     Lo = Memory;
2754   if (Hi == SSEUp && Lo != SSE)
2755     Hi = SSE;
2756 }
2757 
2758 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2759   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2760   // classified recursively so that always two fields are
2761   // considered. The resulting class is calculated according to
2762   // the classes of the fields in the eightbyte:
2763   //
2764   // (a) If both classes are equal, this is the resulting class.
2765   //
2766   // (b) If one of the classes is NO_CLASS, the resulting class is
2767   // the other class.
2768   //
2769   // (c) If one of the classes is MEMORY, the result is the MEMORY
2770   // class.
2771   //
2772   // (d) If one of the classes is INTEGER, the result is the
2773   // INTEGER.
2774   //
2775   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2776   // MEMORY is used as class.
2777   //
2778   // (f) Otherwise class SSE is used.
2779 
2780   // Accum should never be memory (we should have returned) or
2781   // ComplexX87 (because this cannot be passed in a structure).
2782   assert((Accum != Memory && Accum != ComplexX87) &&
2783          "Invalid accumulated classification during merge.");
2784   if (Accum == Field || Field == NoClass)
2785     return Accum;
2786   if (Field == Memory)
2787     return Memory;
2788   if (Accum == NoClass)
2789     return Field;
2790   if (Accum == Integer || Field == Integer)
2791     return Integer;
2792   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2793       Accum == X87 || Accum == X87Up)
2794     return Memory;
2795   return SSE;
2796 }
2797 
2798 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2799                              Class &Lo, Class &Hi, bool isNamedArg) const {
2800   // FIXME: This code can be simplified by introducing a simple value class for
2801   // Class pairs with appropriate constructor methods for the various
2802   // situations.
2803 
2804   // FIXME: Some of the split computations are wrong; unaligned vectors
2805   // shouldn't be passed in registers for example, so there is no chance they
2806   // can straddle an eightbyte. Verify & simplify.
2807 
2808   Lo = Hi = NoClass;
2809 
2810   Class &Current = OffsetBase < 64 ? Lo : Hi;
2811   Current = Memory;
2812 
2813   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2814     BuiltinType::Kind k = BT->getKind();
2815 
2816     if (k == BuiltinType::Void) {
2817       Current = NoClass;
2818     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2819       Lo = Integer;
2820       Hi = Integer;
2821     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2822       Current = Integer;
2823     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2824                k == BuiltinType::Float16) {
2825       Current = SSE;
2826     } else if (k == BuiltinType::LongDouble) {
2827       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2828       if (LDF == &llvm::APFloat::IEEEquad()) {
2829         Lo = SSE;
2830         Hi = SSEUp;
2831       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2832         Lo = X87;
2833         Hi = X87Up;
2834       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2835         Current = SSE;
2836       } else
2837         llvm_unreachable("unexpected long double representation!");
2838     }
2839     // FIXME: _Decimal32 and _Decimal64 are SSE.
2840     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2841     return;
2842   }
2843 
2844   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2845     // Classify the underlying integer type.
2846     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2847     return;
2848   }
2849 
2850   if (Ty->hasPointerRepresentation()) {
2851     Current = Integer;
2852     return;
2853   }
2854 
2855   if (Ty->isMemberPointerType()) {
2856     if (Ty->isMemberFunctionPointerType()) {
2857       if (Has64BitPointers) {
2858         // If Has64BitPointers, this is an {i64, i64}, so classify both
2859         // Lo and Hi now.
2860         Lo = Hi = Integer;
2861       } else {
2862         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2863         // straddles an eightbyte boundary, Hi should be classified as well.
2864         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2865         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2866         if (EB_FuncPtr != EB_ThisAdj) {
2867           Lo = Hi = Integer;
2868         } else {
2869           Current = Integer;
2870         }
2871       }
2872     } else {
2873       Current = Integer;
2874     }
2875     return;
2876   }
2877 
2878   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2879     uint64_t Size = getContext().getTypeSize(VT);
2880     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2881       // gcc passes the following as integer:
2882       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2883       // 2 bytes - <2 x char>, <1 x short>
2884       // 1 byte  - <1 x char>
2885       Current = Integer;
2886 
2887       // If this type crosses an eightbyte boundary, it should be
2888       // split.
2889       uint64_t EB_Lo = (OffsetBase) / 64;
2890       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2891       if (EB_Lo != EB_Hi)
2892         Hi = Lo;
2893     } else if (Size == 64) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes <1 x double> in memory. :(
2897       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2898         return;
2899 
2900       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2901       // pass them as integer.  For platforms where clang is the de facto
2902       // platform compiler, we must continue to use integer.
2903       if (!classifyIntegerMMXAsSSE() &&
2904           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2905            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2906            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2907            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2908         Current = Integer;
2909       else
2910         Current = SSE;
2911 
2912       // If this type crosses an eightbyte boundary, it should be
2913       // split.
2914       if (OffsetBase && OffsetBase != 64)
2915         Hi = Lo;
2916     } else if (Size == 128 ||
2917                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2918       QualType ElementType = VT->getElementType();
2919 
2920       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2921       if (passInt128VectorsInMem() && Size != 128 &&
2922           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2923            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2924         return;
2925 
2926       // Arguments of 256-bits are split into four eightbyte chunks. The
2927       // least significant one belongs to class SSE and all the others to class
2928       // SSEUP. The original Lo and Hi design considers that types can't be
2929       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2930       // This design isn't correct for 256-bits, but since there're no cases
2931       // where the upper parts would need to be inspected, avoid adding
2932       // complexity and just consider Hi to match the 64-256 part.
2933       //
2934       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2935       // registers if they are "named", i.e. not part of the "..." of a
2936       // variadic function.
2937       //
2938       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2939       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2940       Lo = SSE;
2941       Hi = SSEUp;
2942     }
2943     return;
2944   }
2945 
2946   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2947     QualType ET = getContext().getCanonicalType(CT->getElementType());
2948 
2949     uint64_t Size = getContext().getTypeSize(Ty);
2950     if (ET->isIntegralOrEnumerationType()) {
2951       if (Size <= 64)
2952         Current = Integer;
2953       else if (Size <= 128)
2954         Lo = Hi = Integer;
2955     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
2956       Current = SSE;
2957     } else if (ET == getContext().DoubleTy) {
2958       Lo = Hi = SSE;
2959     } else if (ET == getContext().LongDoubleTy) {
2960       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2961       if (LDF == &llvm::APFloat::IEEEquad())
2962         Current = Memory;
2963       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2964         Current = ComplexX87;
2965       else if (LDF == &llvm::APFloat::IEEEdouble())
2966         Lo = Hi = SSE;
2967       else
2968         llvm_unreachable("unexpected long double representation!");
2969     }
2970 
2971     // If this complex type crosses an eightbyte boundary then it
2972     // should be split.
2973     uint64_t EB_Real = (OffsetBase) / 64;
2974     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2975     if (Hi == NoClass && EB_Real != EB_Imag)
2976       Hi = Lo;
2977 
2978     return;
2979   }
2980 
2981   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2982     if (EITy->getNumBits() <= 64)
2983       Current = Integer;
2984     else if (EITy->getNumBits() <= 128)
2985       Lo = Hi = Integer;
2986     // Larger values need to get passed in memory.
2987     return;
2988   }
2989 
2990   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2991     // Arrays are treated like structures.
2992 
2993     uint64_t Size = getContext().getTypeSize(Ty);
2994 
2995     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2996     // than eight eightbytes, ..., it has class MEMORY.
2997     if (Size > 512)
2998       return;
2999 
3000     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3001     // fields, it has class MEMORY.
3002     //
3003     // Only need to check alignment of array base.
3004     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3005       return;
3006 
3007     // Otherwise implement simplified merge. We could be smarter about
3008     // this, but it isn't worth it and would be harder to verify.
3009     Current = NoClass;
3010     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3011     uint64_t ArraySize = AT->getSize().getZExtValue();
3012 
3013     // The only case a 256-bit wide vector could be used is when the array
3014     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3015     // to work for sizes wider than 128, early check and fallback to memory.
3016     //
3017     if (Size > 128 &&
3018         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3019       return;
3020 
3021     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3022       Class FieldLo, FieldHi;
3023       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3024       Lo = merge(Lo, FieldLo);
3025       Hi = merge(Hi, FieldHi);
3026       if (Lo == Memory || Hi == Memory)
3027         break;
3028     }
3029 
3030     postMerge(Size, Lo, Hi);
3031     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3032     return;
3033   }
3034 
3035   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3036     uint64_t Size = getContext().getTypeSize(Ty);
3037 
3038     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3039     // than eight eightbytes, ..., it has class MEMORY.
3040     if (Size > 512)
3041       return;
3042 
3043     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3044     // copy constructor or a non-trivial destructor, it is passed by invisible
3045     // reference.
3046     if (getRecordArgABI(RT, getCXXABI()))
3047       return;
3048 
3049     const RecordDecl *RD = RT->getDecl();
3050 
3051     // Assume variable sized types are passed in memory.
3052     if (RD->hasFlexibleArrayMember())
3053       return;
3054 
3055     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3056 
3057     // Reset Lo class, this will be recomputed.
3058     Current = NoClass;
3059 
3060     // If this is a C++ record, classify the bases first.
3061     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3062       for (const auto &I : CXXRD->bases()) {
3063         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3064                "Unexpected base class!");
3065         const auto *Base =
3066             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3067 
3068         // Classify this field.
3069         //
3070         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3071         // single eightbyte, each is classified separately. Each eightbyte gets
3072         // initialized to class NO_CLASS.
3073         Class FieldLo, FieldHi;
3074         uint64_t Offset =
3075           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3076         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3077         Lo = merge(Lo, FieldLo);
3078         Hi = merge(Hi, FieldHi);
3079         if (Lo == Memory || Hi == Memory) {
3080           postMerge(Size, Lo, Hi);
3081           return;
3082         }
3083       }
3084     }
3085 
3086     // Classify the fields one at a time, merging the results.
3087     unsigned idx = 0;
3088     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3089                                 LangOptions::ClangABI::Ver11 ||
3090                             getContext().getTargetInfo().getTriple().isPS4();
3091     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3092 
3093     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3094            i != e; ++i, ++idx) {
3095       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3096       bool BitField = i->isBitField();
3097 
3098       // Ignore padding bit-fields.
3099       if (BitField && i->isUnnamedBitfield())
3100         continue;
3101 
3102       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3103       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3104       //
3105       // The only case a 256-bit or a 512-bit wide vector could be used is when
3106       // the struct contains a single 256-bit or 512-bit element. Early check
3107       // and fallback to memory.
3108       //
3109       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3110       // than 128.
3111       if (Size > 128 &&
3112           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3113            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3114         Lo = Memory;
3115         postMerge(Size, Lo, Hi);
3116         return;
3117       }
3118       // Note, skip this test for bit-fields, see below.
3119       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3120         Lo = Memory;
3121         postMerge(Size, Lo, Hi);
3122         return;
3123       }
3124 
3125       // Classify this field.
3126       //
3127       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3128       // exceeds a single eightbyte, each is classified
3129       // separately. Each eightbyte gets initialized to class
3130       // NO_CLASS.
3131       Class FieldLo, FieldHi;
3132 
3133       // Bit-fields require special handling, they do not force the
3134       // structure to be passed in memory even if unaligned, and
3135       // therefore they can straddle an eightbyte.
3136       if (BitField) {
3137         assert(!i->isUnnamedBitfield());
3138         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3139         uint64_t Size = i->getBitWidthValue(getContext());
3140 
3141         uint64_t EB_Lo = Offset / 64;
3142         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3143 
3144         if (EB_Lo) {
3145           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3146           FieldLo = NoClass;
3147           FieldHi = Integer;
3148         } else {
3149           FieldLo = Integer;
3150           FieldHi = EB_Hi ? Integer : NoClass;
3151         }
3152       } else
3153         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3154       Lo = merge(Lo, FieldLo);
3155       Hi = merge(Hi, FieldHi);
3156       if (Lo == Memory || Hi == Memory)
3157         break;
3158     }
3159 
3160     postMerge(Size, Lo, Hi);
3161   }
3162 }
3163 
3164 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3165   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3166   // place naturally.
3167   if (!isAggregateTypeForABI(Ty)) {
3168     // Treat an enum type as its underlying type.
3169     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3170       Ty = EnumTy->getDecl()->getIntegerType();
3171 
3172     if (Ty->isExtIntType())
3173       return getNaturalAlignIndirect(Ty);
3174 
3175     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3176                                               : ABIArgInfo::getDirect());
3177   }
3178 
3179   return getNaturalAlignIndirect(Ty);
3180 }
3181 
3182 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3183   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3184     uint64_t Size = getContext().getTypeSize(VecTy);
3185     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3186     if (Size <= 64 || Size > LargestVector)
3187       return true;
3188     QualType EltTy = VecTy->getElementType();
3189     if (passInt128VectorsInMem() &&
3190         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3191          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3192       return true;
3193   }
3194 
3195   return false;
3196 }
3197 
3198 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3199                                             unsigned freeIntRegs) const {
3200   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3201   // place naturally.
3202   //
3203   // This assumption is optimistic, as there could be free registers available
3204   // when we need to pass this argument in memory, and LLVM could try to pass
3205   // the argument in the free register. This does not seem to happen currently,
3206   // but this code would be much safer if we could mark the argument with
3207   // 'onstack'. See PR12193.
3208   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3209       !Ty->isExtIntType()) {
3210     // Treat an enum type as its underlying type.
3211     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3212       Ty = EnumTy->getDecl()->getIntegerType();
3213 
3214     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3215                                               : ABIArgInfo::getDirect());
3216   }
3217 
3218   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3219     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3220 
3221   // Compute the byval alignment. We specify the alignment of the byval in all
3222   // cases so that the mid-level optimizer knows the alignment of the byval.
3223   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3224 
3225   // Attempt to avoid passing indirect results using byval when possible. This
3226   // is important for good codegen.
3227   //
3228   // We do this by coercing the value into a scalar type which the backend can
3229   // handle naturally (i.e., without using byval).
3230   //
3231   // For simplicity, we currently only do this when we have exhausted all of the
3232   // free integer registers. Doing this when there are free integer registers
3233   // would require more care, as we would have to ensure that the coerced value
3234   // did not claim the unused register. That would require either reording the
3235   // arguments to the function (so that any subsequent inreg values came first),
3236   // or only doing this optimization when there were no following arguments that
3237   // might be inreg.
3238   //
3239   // We currently expect it to be rare (particularly in well written code) for
3240   // arguments to be passed on the stack when there are still free integer
3241   // registers available (this would typically imply large structs being passed
3242   // by value), so this seems like a fair tradeoff for now.
3243   //
3244   // We can revisit this if the backend grows support for 'onstack' parameter
3245   // attributes. See PR12193.
3246   if (freeIntRegs == 0) {
3247     uint64_t Size = getContext().getTypeSize(Ty);
3248 
3249     // If this type fits in an eightbyte, coerce it into the matching integral
3250     // type, which will end up on the stack (with alignment 8).
3251     if (Align == 8 && Size <= 64)
3252       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3253                                                           Size));
3254   }
3255 
3256   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3257 }
3258 
3259 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3260 /// register. Pick an LLVM IR type that will be passed as a vector register.
3261 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3262   // Wrapper structs/arrays that only contain vectors are passed just like
3263   // vectors; strip them off if present.
3264   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3265     Ty = QualType(InnerTy, 0);
3266 
3267   llvm::Type *IRType = CGT.ConvertType(Ty);
3268   if (isa<llvm::VectorType>(IRType)) {
3269     // Don't pass vXi128 vectors in their native type, the backend can't
3270     // legalize them.
3271     if (passInt128VectorsInMem() &&
3272         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3273       // Use a vXi64 vector.
3274       uint64_t Size = getContext().getTypeSize(Ty);
3275       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3276                                         Size / 64);
3277     }
3278 
3279     return IRType;
3280   }
3281 
3282   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3283     return IRType;
3284 
3285   // We couldn't find the preferred IR vector type for 'Ty'.
3286   uint64_t Size = getContext().getTypeSize(Ty);
3287   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3288 
3289 
3290   // Return a LLVM IR vector type based on the size of 'Ty'.
3291   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3292                                     Size / 64);
3293 }
3294 
3295 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3296 /// is known to either be off the end of the specified type or being in
3297 /// alignment padding.  The user type specified is known to be at most 128 bits
3298 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3299 /// classification that put one of the two halves in the INTEGER class.
3300 ///
3301 /// It is conservatively correct to return false.
3302 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3303                                   unsigned EndBit, ASTContext &Context) {
3304   // If the bytes being queried are off the end of the type, there is no user
3305   // data hiding here.  This handles analysis of builtins, vectors and other
3306   // types that don't contain interesting padding.
3307   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3308   if (TySize <= StartBit)
3309     return true;
3310 
3311   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3312     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3313     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3314 
3315     // Check each element to see if the element overlaps with the queried range.
3316     for (unsigned i = 0; i != NumElts; ++i) {
3317       // If the element is after the span we care about, then we're done..
3318       unsigned EltOffset = i*EltSize;
3319       if (EltOffset >= EndBit) break;
3320 
3321       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3322       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3323                                  EndBit-EltOffset, Context))
3324         return false;
3325     }
3326     // If it overlaps no elements, then it is safe to process as padding.
3327     return true;
3328   }
3329 
3330   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3331     const RecordDecl *RD = RT->getDecl();
3332     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3333 
3334     // If this is a C++ record, check the bases first.
3335     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3336       for (const auto &I : CXXRD->bases()) {
3337         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3338                "Unexpected base class!");
3339         const auto *Base =
3340             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3341 
3342         // If the base is after the span we care about, ignore it.
3343         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3344         if (BaseOffset >= EndBit) continue;
3345 
3346         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3347         if (!BitsContainNoUserData(I.getType(), BaseStart,
3348                                    EndBit-BaseOffset, Context))
3349           return false;
3350       }
3351     }
3352 
3353     // Verify that no field has data that overlaps the region of interest.  Yes
3354     // this could be sped up a lot by being smarter about queried fields,
3355     // however we're only looking at structs up to 16 bytes, so we don't care
3356     // much.
3357     unsigned idx = 0;
3358     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3359          i != e; ++i, ++idx) {
3360       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3361 
3362       // If we found a field after the region we care about, then we're done.
3363       if (FieldOffset >= EndBit) break;
3364 
3365       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3366       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3367                                  Context))
3368         return false;
3369     }
3370 
3371     // If nothing in this record overlapped the area of interest, then we're
3372     // clean.
3373     return true;
3374   }
3375 
3376   return false;
3377 }
3378 
3379 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3380 /// float member at the specified offset.  For example, {int,{float}} has a
3381 /// float at offset 4.  It is conservatively correct for this routine to return
3382 /// false.
3383 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3384                                   const llvm::DataLayout &TD) {
3385   // Base case if we find a float.
3386   if (IROffset == 0 && IRType->isFloatTy())
3387     return true;
3388 
3389   // If this is a struct, recurse into the field at the specified offset.
3390   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3391     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3392     unsigned Elt = SL->getElementContainingOffset(IROffset);
3393     IROffset -= SL->getElementOffset(Elt);
3394     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3395   }
3396 
3397   // If this is an array, recurse into the field at the specified offset.
3398   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3399     llvm::Type *EltTy = ATy->getElementType();
3400     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3401     IROffset -= IROffset/EltSize*EltSize;
3402     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3403   }
3404 
3405   return false;
3406 }
3407 
3408 /// ContainsHalfAtOffset - Return true if the specified LLVM IR type has a
3409 /// half member at the specified offset.  For example, {int,{half}} has a
3410 /// half at offset 4.  It is conservatively correct for this routine to return
3411 /// false.
3412 /// FIXME: Merge with ContainsFloatAtOffset
3413 static bool ContainsHalfAtOffset(llvm::Type *IRType, unsigned IROffset,
3414                                  const llvm::DataLayout &TD) {
3415   // Base case if we find a float.
3416   if (IROffset == 0 && IRType->isHalfTy())
3417     return true;
3418 
3419   // If this is a struct, recurse into the field at the specified offset.
3420   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3421     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3422     unsigned Elt = SL->getElementContainingOffset(IROffset);
3423     IROffset -= SL->getElementOffset(Elt);
3424     return ContainsHalfAtOffset(STy->getElementType(Elt), IROffset, TD);
3425   }
3426 
3427   // If this is an array, recurse into the field at the specified offset.
3428   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3429     llvm::Type *EltTy = ATy->getElementType();
3430     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3431     IROffset -= IROffset / EltSize * EltSize;
3432     return ContainsHalfAtOffset(EltTy, IROffset, TD);
3433   }
3434 
3435   return false;
3436 }
3437 
3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3439 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3440 llvm::Type *X86_64ABIInfo::
3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3442                    QualType SourceTy, unsigned SourceOffset) const {
3443   // If the high 32 bits are not used, we have three choices. Single half,
3444   // single float or two halfs.
3445   if (BitsContainNoUserData(SourceTy, SourceOffset * 8 + 32,
3446                             SourceOffset * 8 + 64, getContext())) {
3447     if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()))
3448       return llvm::Type::getFloatTy(getVMContext());
3449     if (ContainsHalfAtOffset(IRType, IROffset + 2, getDataLayout()))
3450       return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()),
3451                                         2);
3452 
3453     return llvm::Type::getHalfTy(getVMContext());
3454   }
3455 
3456   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3457   // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
3458   // case.
3459   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3460       ContainsFloatAtOffset(IRType, IROffset + 4, getDataLayout()))
3461     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3462                                       2);
3463 
3464   // We want to pass as <4 x half> if the LLVM IR type contains a half at
3465   // offset+0, +2, +4. Walk the LLVM IR type to find out if this is the case.
3466   if (ContainsHalfAtOffset(IRType, IROffset, getDataLayout()) &&
3467       ContainsHalfAtOffset(IRType, IROffset + 2, getDataLayout()) &&
3468       ContainsHalfAtOffset(IRType, IROffset + 4, getDataLayout()))
3469     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3470 
3471   // We want to pass as <4 x half> if the LLVM IR type contains a mix of float
3472   // and half.
3473   // FIXME: Do we have a better representation for the mixed type?
3474   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) ||
3475       ContainsFloatAtOffset(IRType, IROffset + 4, getDataLayout()))
3476     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3477 
3478   return llvm::Type::getDoubleTy(getVMContext());
3479 }
3480 
3481 
3482 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3483 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3484 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3485 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3486 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3487 /// etc).
3488 ///
3489 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3490 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3491 /// the 8-byte value references.  PrefType may be null.
3492 ///
3493 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3494 /// an offset into this that we're processing (which is always either 0 or 8).
3495 ///
3496 llvm::Type *X86_64ABIInfo::
3497 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3498                        QualType SourceTy, unsigned SourceOffset) const {
3499   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3500   // returning an 8-byte unit starting with it.  See if we can safely use it.
3501   if (IROffset == 0) {
3502     // Pointers and int64's always fill the 8-byte unit.
3503     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3504         IRType->isIntegerTy(64))
3505       return IRType;
3506 
3507     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3508     // goodness in the source type is just tail padding.  This is allowed to
3509     // kick in for struct {double,int} on the int, but not on
3510     // struct{double,int,int} because we wouldn't return the second int.  We
3511     // have to do this analysis on the source type because we can't depend on
3512     // unions being lowered a specific way etc.
3513     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3514         IRType->isIntegerTy(32) ||
3515         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3516       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3517           cast<llvm::IntegerType>(IRType)->getBitWidth();
3518 
3519       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3520                                 SourceOffset*8+64, getContext()))
3521         return IRType;
3522     }
3523   }
3524 
3525   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3526     // If this is a struct, recurse into the field at the specified offset.
3527     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3528     if (IROffset < SL->getSizeInBytes()) {
3529       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3530       IROffset -= SL->getElementOffset(FieldIdx);
3531 
3532       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3533                                     SourceTy, SourceOffset);
3534     }
3535   }
3536 
3537   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3538     llvm::Type *EltTy = ATy->getElementType();
3539     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3540     unsigned EltOffset = IROffset/EltSize*EltSize;
3541     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3542                                   SourceOffset);
3543   }
3544 
3545   // Okay, we don't have any better idea of what to pass, so we pass this in an
3546   // integer register that isn't too big to fit the rest of the struct.
3547   unsigned TySizeInBytes =
3548     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3549 
3550   assert(TySizeInBytes != SourceOffset && "Empty field?");
3551 
3552   // It is always safe to classify this as an integer type up to i64 that
3553   // isn't larger than the structure.
3554   return llvm::IntegerType::get(getVMContext(),
3555                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3556 }
3557 
3558 
3559 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3560 /// be used as elements of a two register pair to pass or return, return a
3561 /// first class aggregate to represent them.  For example, if the low part of
3562 /// a by-value argument should be passed as i32* and the high part as float,
3563 /// return {i32*, float}.
3564 static llvm::Type *
3565 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3566                            const llvm::DataLayout &TD) {
3567   // In order to correctly satisfy the ABI, we need to the high part to start
3568   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3569   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3570   // the second element at offset 8.  Check for this:
3571   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3572   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3573   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3574   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3575 
3576   // To handle this, we have to increase the size of the low part so that the
3577   // second element will start at an 8 byte offset.  We can't increase the size
3578   // of the second element because it might make us access off the end of the
3579   // struct.
3580   if (HiStart != 8) {
3581     // There are usually two sorts of types the ABI generation code can produce
3582     // for the low part of a pair that aren't 8 bytes in size: half, float or
3583     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3584     // NaCl).
3585     // Promote these to a larger type.
3586     if (Lo->isHalfTy() || Lo->isFloatTy())
3587       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3588     else {
3589       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3590              && "Invalid/unknown lo type");
3591       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3592     }
3593   }
3594 
3595   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3596 
3597   // Verify that the second element is at an 8-byte offset.
3598   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3599          "Invalid x86-64 argument pair!");
3600   return Result;
3601 }
3602 
3603 ABIArgInfo X86_64ABIInfo::
3604 classifyReturnType(QualType RetTy) const {
3605   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3606   // classification algorithm.
3607   X86_64ABIInfo::Class Lo, Hi;
3608   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3609 
3610   // Check some invariants.
3611   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3612   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3613 
3614   llvm::Type *ResType = nullptr;
3615   switch (Lo) {
3616   case NoClass:
3617     if (Hi == NoClass)
3618       return ABIArgInfo::getIgnore();
3619     // If the low part is just padding, it takes no register, leave ResType
3620     // null.
3621     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3622            "Unknown missing lo part");
3623     break;
3624 
3625   case SSEUp:
3626   case X87Up:
3627     llvm_unreachable("Invalid classification for lo word.");
3628 
3629     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3630     // hidden argument.
3631   case Memory:
3632     return getIndirectReturnResult(RetTy);
3633 
3634     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3635     // available register of the sequence %rax, %rdx is used.
3636   case Integer:
3637     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3638 
3639     // If we have a sign or zero extended integer, make sure to return Extend
3640     // so that the parameter gets the right LLVM IR attributes.
3641     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3642       // Treat an enum type as its underlying type.
3643       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3644         RetTy = EnumTy->getDecl()->getIntegerType();
3645 
3646       if (RetTy->isIntegralOrEnumerationType() &&
3647           isPromotableIntegerTypeForABI(RetTy))
3648         return ABIArgInfo::getExtend(RetTy);
3649     }
3650     break;
3651 
3652     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3653     // available SSE register of the sequence %xmm0, %xmm1 is used.
3654   case SSE:
3655     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3656     break;
3657 
3658     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3659     // returned on the X87 stack in %st0 as 80-bit x87 number.
3660   case X87:
3661     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3662     break;
3663 
3664     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3665     // part of the value is returned in %st0 and the imaginary part in
3666     // %st1.
3667   case ComplexX87:
3668     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3669     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3670                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3671     break;
3672   }
3673 
3674   llvm::Type *HighPart = nullptr;
3675   switch (Hi) {
3676     // Memory was handled previously and X87 should
3677     // never occur as a hi class.
3678   case Memory:
3679   case X87:
3680     llvm_unreachable("Invalid classification for hi word.");
3681 
3682   case ComplexX87: // Previously handled.
3683   case NoClass:
3684     break;
3685 
3686   case Integer:
3687     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3688     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3689       return ABIArgInfo::getDirect(HighPart, 8);
3690     break;
3691   case SSE:
3692     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3693     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3694       return ABIArgInfo::getDirect(HighPart, 8);
3695     break;
3696 
3697     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3698     // is passed in the next available eightbyte chunk if the last used
3699     // vector register.
3700     //
3701     // SSEUP should always be preceded by SSE, just widen.
3702   case SSEUp:
3703     assert(Lo == SSE && "Unexpected SSEUp classification.");
3704     ResType = GetByteVectorType(RetTy);
3705     break;
3706 
3707     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3708     // returned together with the previous X87 value in %st0.
3709   case X87Up:
3710     // If X87Up is preceded by X87, we don't need to do
3711     // anything. However, in some cases with unions it may not be
3712     // preceded by X87. In such situations we follow gcc and pass the
3713     // extra bits in an SSE reg.
3714     if (Lo != X87) {
3715       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3716       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3717         return ABIArgInfo::getDirect(HighPart, 8);
3718     }
3719     break;
3720   }
3721 
3722   // If a high part was specified, merge it together with the low part.  It is
3723   // known to pass in the high eightbyte of the result.  We do this by forming a
3724   // first class struct aggregate with the high and low part: {low, high}
3725   if (HighPart)
3726     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3727 
3728   return ABIArgInfo::getDirect(ResType);
3729 }
3730 
3731 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3732   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3733   bool isNamedArg)
3734   const
3735 {
3736   Ty = useFirstFieldIfTransparentUnion(Ty);
3737 
3738   X86_64ABIInfo::Class Lo, Hi;
3739   classify(Ty, 0, Lo, Hi, isNamedArg);
3740 
3741   // Check some invariants.
3742   // FIXME: Enforce these by construction.
3743   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3744   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3745 
3746   neededInt = 0;
3747   neededSSE = 0;
3748   llvm::Type *ResType = nullptr;
3749   switch (Lo) {
3750   case NoClass:
3751     if (Hi == NoClass)
3752       return ABIArgInfo::getIgnore();
3753     // If the low part is just padding, it takes no register, leave ResType
3754     // null.
3755     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3756            "Unknown missing lo part");
3757     break;
3758 
3759     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3760     // on the stack.
3761   case Memory:
3762 
3763     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3764     // COMPLEX_X87, it is passed in memory.
3765   case X87:
3766   case ComplexX87:
3767     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3768       ++neededInt;
3769     return getIndirectResult(Ty, freeIntRegs);
3770 
3771   case SSEUp:
3772   case X87Up:
3773     llvm_unreachable("Invalid classification for lo word.");
3774 
3775     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3776     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3777     // and %r9 is used.
3778   case Integer:
3779     ++neededInt;
3780 
3781     // Pick an 8-byte type based on the preferred type.
3782     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3783 
3784     // If we have a sign or zero extended integer, make sure to return Extend
3785     // so that the parameter gets the right LLVM IR attributes.
3786     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3787       // Treat an enum type as its underlying type.
3788       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3789         Ty = EnumTy->getDecl()->getIntegerType();
3790 
3791       if (Ty->isIntegralOrEnumerationType() &&
3792           isPromotableIntegerTypeForABI(Ty))
3793         return ABIArgInfo::getExtend(Ty);
3794     }
3795 
3796     break;
3797 
3798     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3799     // available SSE register is used, the registers are taken in the
3800     // order from %xmm0 to %xmm7.
3801   case SSE: {
3802     llvm::Type *IRType = CGT.ConvertType(Ty);
3803     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3804     ++neededSSE;
3805     break;
3806   }
3807   }
3808 
3809   llvm::Type *HighPart = nullptr;
3810   switch (Hi) {
3811     // Memory was handled previously, ComplexX87 and X87 should
3812     // never occur as hi classes, and X87Up must be preceded by X87,
3813     // which is passed in memory.
3814   case Memory:
3815   case X87:
3816   case ComplexX87:
3817     llvm_unreachable("Invalid classification for hi word.");
3818 
3819   case NoClass: break;
3820 
3821   case Integer:
3822     ++neededInt;
3823     // Pick an 8-byte type based on the preferred type.
3824     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3825 
3826     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3827       return ABIArgInfo::getDirect(HighPart, 8);
3828     break;
3829 
3830     // X87Up generally doesn't occur here (long double is passed in
3831     // memory), except in situations involving unions.
3832   case X87Up:
3833   case SSE:
3834     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3835 
3836     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3837       return ABIArgInfo::getDirect(HighPart, 8);
3838 
3839     ++neededSSE;
3840     break;
3841 
3842     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3843     // eightbyte is passed in the upper half of the last used SSE
3844     // register.  This only happens when 128-bit vectors are passed.
3845   case SSEUp:
3846     assert(Lo == SSE && "Unexpected SSEUp classification");
3847     ResType = GetByteVectorType(Ty);
3848     break;
3849   }
3850 
3851   // If a high part was specified, merge it together with the low part.  It is
3852   // known to pass in the high eightbyte of the result.  We do this by forming a
3853   // first class struct aggregate with the high and low part: {low, high}
3854   if (HighPart)
3855     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3856 
3857   return ABIArgInfo::getDirect(ResType);
3858 }
3859 
3860 ABIArgInfo
3861 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3862                                              unsigned &NeededSSE) const {
3863   auto RT = Ty->getAs<RecordType>();
3864   assert(RT && "classifyRegCallStructType only valid with struct types");
3865 
3866   if (RT->getDecl()->hasFlexibleArrayMember())
3867     return getIndirectReturnResult(Ty);
3868 
3869   // Sum up bases
3870   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3871     if (CXXRD->isDynamicClass()) {
3872       NeededInt = NeededSSE = 0;
3873       return getIndirectReturnResult(Ty);
3874     }
3875 
3876     for (const auto &I : CXXRD->bases())
3877       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3878               .isIndirect()) {
3879         NeededInt = NeededSSE = 0;
3880         return getIndirectReturnResult(Ty);
3881       }
3882   }
3883 
3884   // Sum up members
3885   for (const auto *FD : RT->getDecl()->fields()) {
3886     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3887       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3888               .isIndirect()) {
3889         NeededInt = NeededSSE = 0;
3890         return getIndirectReturnResult(Ty);
3891       }
3892     } else {
3893       unsigned LocalNeededInt, LocalNeededSSE;
3894       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3895                                LocalNeededSSE, true)
3896               .isIndirect()) {
3897         NeededInt = NeededSSE = 0;
3898         return getIndirectReturnResult(Ty);
3899       }
3900       NeededInt += LocalNeededInt;
3901       NeededSSE += LocalNeededSSE;
3902     }
3903   }
3904 
3905   return ABIArgInfo::getDirect();
3906 }
3907 
3908 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3909                                                     unsigned &NeededInt,
3910                                                     unsigned &NeededSSE) const {
3911 
3912   NeededInt = 0;
3913   NeededSSE = 0;
3914 
3915   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3916 }
3917 
3918 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3919 
3920   const unsigned CallingConv = FI.getCallingConvention();
3921   // It is possible to force Win64 calling convention on any x86_64 target by
3922   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3923   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3924   if (CallingConv == llvm::CallingConv::Win64) {
3925     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3926     Win64ABIInfo.computeInfo(FI);
3927     return;
3928   }
3929 
3930   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3931 
3932   // Keep track of the number of assigned registers.
3933   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3934   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3935   unsigned NeededInt, NeededSSE;
3936 
3937   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3938     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3939         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3940       FI.getReturnInfo() =
3941           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3942       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3943         FreeIntRegs -= NeededInt;
3944         FreeSSERegs -= NeededSSE;
3945       } else {
3946         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3947       }
3948     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3949                getContext().getCanonicalType(FI.getReturnType()
3950                                                  ->getAs<ComplexType>()
3951                                                  ->getElementType()) ==
3952                    getContext().LongDoubleTy)
3953       // Complex Long Double Type is passed in Memory when Regcall
3954       // calling convention is used.
3955       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3956     else
3957       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3958   }
3959 
3960   // If the return value is indirect, then the hidden argument is consuming one
3961   // integer register.
3962   if (FI.getReturnInfo().isIndirect())
3963     --FreeIntRegs;
3964 
3965   // The chain argument effectively gives us another free register.
3966   if (FI.isChainCall())
3967     ++FreeIntRegs;
3968 
3969   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3970   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3971   // get assigned (in left-to-right order) for passing as follows...
3972   unsigned ArgNo = 0;
3973   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3974        it != ie; ++it, ++ArgNo) {
3975     bool IsNamedArg = ArgNo < NumRequiredArgs;
3976 
3977     if (IsRegCall && it->type->isStructureOrClassType())
3978       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3979     else
3980       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3981                                       NeededSSE, IsNamedArg);
3982 
3983     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3984     // eightbyte of an argument, the whole argument is passed on the
3985     // stack. If registers have already been assigned for some
3986     // eightbytes of such an argument, the assignments get reverted.
3987     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3988       FreeIntRegs -= NeededInt;
3989       FreeSSERegs -= NeededSSE;
3990     } else {
3991       it->info = getIndirectResult(it->type, FreeIntRegs);
3992     }
3993   }
3994 }
3995 
3996 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3997                                          Address VAListAddr, QualType Ty) {
3998   Address overflow_arg_area_p =
3999       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4000   llvm::Value *overflow_arg_area =
4001     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4002 
4003   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4004   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4005   // It isn't stated explicitly in the standard, but in practice we use
4006   // alignment greater than 16 where necessary.
4007   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4008   if (Align > CharUnits::fromQuantity(8)) {
4009     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4010                                                       Align);
4011   }
4012 
4013   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4014   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4015   llvm::Value *Res =
4016     CGF.Builder.CreateBitCast(overflow_arg_area,
4017                               llvm::PointerType::getUnqual(LTy));
4018 
4019   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4020   // l->overflow_arg_area + sizeof(type).
4021   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4022   // an 8 byte boundary.
4023 
4024   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4025   llvm::Value *Offset =
4026       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4027   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4028                                             Offset, "overflow_arg_area.next");
4029   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4030 
4031   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4032   return Address(Res, Align);
4033 }
4034 
4035 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4036                                  QualType Ty) const {
4037   // Assume that va_list type is correct; should be pointer to LLVM type:
4038   // struct {
4039   //   i32 gp_offset;
4040   //   i32 fp_offset;
4041   //   i8* overflow_arg_area;
4042   //   i8* reg_save_area;
4043   // };
4044   unsigned neededInt, neededSSE;
4045 
4046   Ty = getContext().getCanonicalType(Ty);
4047   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4048                                        /*isNamedArg*/false);
4049 
4050   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4051   // in the registers. If not go to step 7.
4052   if (!neededInt && !neededSSE)
4053     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4054 
4055   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4056   // general purpose registers needed to pass type and num_fp to hold
4057   // the number of floating point registers needed.
4058 
4059   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4060   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4061   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4062   //
4063   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4064   // register save space).
4065 
4066   llvm::Value *InRegs = nullptr;
4067   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4068   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4069   if (neededInt) {
4070     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4071     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4072     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4073     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4074   }
4075 
4076   if (neededSSE) {
4077     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4078     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4079     llvm::Value *FitsInFP =
4080       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4081     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4082     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4083   }
4084 
4085   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4086   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4087   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4088   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4089 
4090   // Emit code to load the value if it was passed in registers.
4091 
4092   CGF.EmitBlock(InRegBlock);
4093 
4094   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4095   // an offset of l->gp_offset and/or l->fp_offset. This may require
4096   // copying to a temporary location in case the parameter is passed
4097   // in different register classes or requires an alignment greater
4098   // than 8 for general purpose registers and 16 for XMM registers.
4099   //
4100   // FIXME: This really results in shameful code when we end up needing to
4101   // collect arguments from different places; often what should result in a
4102   // simple assembling of a structure from scattered addresses has many more
4103   // loads than necessary. Can we clean this up?
4104   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4105   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4106       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4107 
4108   Address RegAddr = Address::invalid();
4109   if (neededInt && neededSSE) {
4110     // FIXME: Cleanup.
4111     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4112     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4113     Address Tmp = CGF.CreateMemTemp(Ty);
4114     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4115     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4116     llvm::Type *TyLo = ST->getElementType(0);
4117     llvm::Type *TyHi = ST->getElementType(1);
4118     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4119            "Unexpected ABI info for mixed regs");
4120     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4121     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4122     llvm::Value *GPAddr =
4123         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4124     llvm::Value *FPAddr =
4125         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4126     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4127     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4128 
4129     // Copy the first element.
4130     // FIXME: Our choice of alignment here and below is probably pessimistic.
4131     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4132         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4133         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4134     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4135 
4136     // Copy the second element.
4137     V = CGF.Builder.CreateAlignedLoad(
4138         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4139         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4140     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4141 
4142     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4143   } else if (neededInt) {
4144     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4145                       CharUnits::fromQuantity(8));
4146     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4147 
4148     // Copy to a temporary if necessary to ensure the appropriate alignment.
4149     auto TInfo = getContext().getTypeInfoInChars(Ty);
4150     uint64_t TySize = TInfo.Width.getQuantity();
4151     CharUnits TyAlign = TInfo.Align;
4152 
4153     // Copy into a temporary if the type is more aligned than the
4154     // register save area.
4155     if (TyAlign.getQuantity() > 8) {
4156       Address Tmp = CGF.CreateMemTemp(Ty);
4157       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4158       RegAddr = Tmp;
4159     }
4160 
4161   } else if (neededSSE == 1) {
4162     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4163                       CharUnits::fromQuantity(16));
4164     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4165   } else {
4166     assert(neededSSE == 2 && "Invalid number of needed registers!");
4167     // SSE registers are spaced 16 bytes apart in the register save
4168     // area, we need to collect the two eightbytes together.
4169     // The ABI isn't explicit about this, but it seems reasonable
4170     // to assume that the slots are 16-byte aligned, since the stack is
4171     // naturally 16-byte aligned and the prologue is expected to store
4172     // all the SSE registers to the RSA.
4173     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4174                                                       fp_offset),
4175                                 CharUnits::fromQuantity(16));
4176     Address RegAddrHi =
4177       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4178                                              CharUnits::fromQuantity(16));
4179     llvm::Type *ST = AI.canHaveCoerceToType()
4180                          ? AI.getCoerceToType()
4181                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4182     llvm::Value *V;
4183     Address Tmp = CGF.CreateMemTemp(Ty);
4184     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4185     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4186         RegAddrLo, ST->getStructElementType(0)));
4187     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4188     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4189         RegAddrHi, ST->getStructElementType(1)));
4190     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4191 
4192     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4193   }
4194 
4195   // AMD64-ABI 3.5.7p5: Step 5. Set:
4196   // l->gp_offset = l->gp_offset + num_gp * 8
4197   // l->fp_offset = l->fp_offset + num_fp * 16.
4198   if (neededInt) {
4199     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4200     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4201                             gp_offset_p);
4202   }
4203   if (neededSSE) {
4204     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4205     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4206                             fp_offset_p);
4207   }
4208   CGF.EmitBranch(ContBlock);
4209 
4210   // Emit code to load the value if it was passed in memory.
4211 
4212   CGF.EmitBlock(InMemBlock);
4213   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4214 
4215   // Return the appropriate result.
4216 
4217   CGF.EmitBlock(ContBlock);
4218   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4219                                  "vaarg.addr");
4220   return ResAddr;
4221 }
4222 
4223 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4224                                    QualType Ty) const {
4225   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4226   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4227   uint64_t Width = getContext().getTypeSize(Ty);
4228   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4229 
4230   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4231                           CGF.getContext().getTypeInfoInChars(Ty),
4232                           CharUnits::fromQuantity(8),
4233                           /*allowHigherAlign*/ false);
4234 }
4235 
4236 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4237     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4238   const Type *Base = nullptr;
4239   uint64_t NumElts = 0;
4240 
4241   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4242       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4243     FreeSSERegs -= NumElts;
4244     return getDirectX86Hva();
4245   }
4246   return current;
4247 }
4248 
4249 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4250                                       bool IsReturnType, bool IsVectorCall,
4251                                       bool IsRegCall) const {
4252 
4253   if (Ty->isVoidType())
4254     return ABIArgInfo::getIgnore();
4255 
4256   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4257     Ty = EnumTy->getDecl()->getIntegerType();
4258 
4259   TypeInfo Info = getContext().getTypeInfo(Ty);
4260   uint64_t Width = Info.Width;
4261   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4262 
4263   const RecordType *RT = Ty->getAs<RecordType>();
4264   if (RT) {
4265     if (!IsReturnType) {
4266       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4267         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4268     }
4269 
4270     if (RT->getDecl()->hasFlexibleArrayMember())
4271       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4272 
4273   }
4274 
4275   const Type *Base = nullptr;
4276   uint64_t NumElts = 0;
4277   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4278   // other targets.
4279   if ((IsVectorCall || IsRegCall) &&
4280       isHomogeneousAggregate(Ty, Base, NumElts)) {
4281     if (IsRegCall) {
4282       if (FreeSSERegs >= NumElts) {
4283         FreeSSERegs -= NumElts;
4284         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4285           return ABIArgInfo::getDirect();
4286         return ABIArgInfo::getExpand();
4287       }
4288       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4289     } else if (IsVectorCall) {
4290       if (FreeSSERegs >= NumElts &&
4291           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4292         FreeSSERegs -= NumElts;
4293         return ABIArgInfo::getDirect();
4294       } else if (IsReturnType) {
4295         return ABIArgInfo::getExpand();
4296       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4297         // HVAs are delayed and reclassified in the 2nd step.
4298         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4299       }
4300     }
4301   }
4302 
4303   if (Ty->isMemberPointerType()) {
4304     // If the member pointer is represented by an LLVM int or ptr, pass it
4305     // directly.
4306     llvm::Type *LLTy = CGT.ConvertType(Ty);
4307     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4308       return ABIArgInfo::getDirect();
4309   }
4310 
4311   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4312     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4313     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4314     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4315       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4316 
4317     // Otherwise, coerce it to a small integer.
4318     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4319   }
4320 
4321   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4322     switch (BT->getKind()) {
4323     case BuiltinType::Bool:
4324       // Bool type is always extended to the ABI, other builtin types are not
4325       // extended.
4326       return ABIArgInfo::getExtend(Ty);
4327 
4328     case BuiltinType::LongDouble:
4329       // Mingw64 GCC uses the old 80 bit extended precision floating point
4330       // unit. It passes them indirectly through memory.
4331       if (IsMingw64) {
4332         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4333         if (LDF == &llvm::APFloat::x87DoubleExtended())
4334           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4335       }
4336       break;
4337 
4338     case BuiltinType::Int128:
4339     case BuiltinType::UInt128:
4340       // If it's a parameter type, the normal ABI rule is that arguments larger
4341       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4342       // even though it isn't particularly efficient.
4343       if (!IsReturnType)
4344         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4345 
4346       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4347       // Clang matches them for compatibility.
4348       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4349           llvm::Type::getInt64Ty(getVMContext()), 2));
4350 
4351     default:
4352       break;
4353     }
4354   }
4355 
4356   if (Ty->isExtIntType()) {
4357     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4358     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4359     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4360     // anyway as long is it fits in them, so we don't have to check the power of
4361     // 2.
4362     if (Width <= 64)
4363       return ABIArgInfo::getDirect();
4364     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4365   }
4366 
4367   return ABIArgInfo::getDirect();
4368 }
4369 
4370 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4371   const unsigned CC = FI.getCallingConvention();
4372   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4373   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4374 
4375   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4376   // classification rules.
4377   if (CC == llvm::CallingConv::X86_64_SysV) {
4378     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4379     SysVABIInfo.computeInfo(FI);
4380     return;
4381   }
4382 
4383   unsigned FreeSSERegs = 0;
4384   if (IsVectorCall) {
4385     // We can use up to 4 SSE return registers with vectorcall.
4386     FreeSSERegs = 4;
4387   } else if (IsRegCall) {
4388     // RegCall gives us 16 SSE registers.
4389     FreeSSERegs = 16;
4390   }
4391 
4392   if (!getCXXABI().classifyReturnType(FI))
4393     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4394                                   IsVectorCall, IsRegCall);
4395 
4396   if (IsVectorCall) {
4397     // We can use up to 6 SSE register parameters with vectorcall.
4398     FreeSSERegs = 6;
4399   } else if (IsRegCall) {
4400     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4401     FreeSSERegs = 16;
4402   }
4403 
4404   unsigned ArgNum = 0;
4405   unsigned ZeroSSERegs = 0;
4406   for (auto &I : FI.arguments()) {
4407     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4408     // XMM/YMM registers. After the sixth argument, pretend no vector
4409     // registers are left.
4410     unsigned *MaybeFreeSSERegs =
4411         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4412     I.info =
4413         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4414     ++ArgNum;
4415   }
4416 
4417   if (IsVectorCall) {
4418     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4419     // second pass.
4420     for (auto &I : FI.arguments())
4421       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4422   }
4423 }
4424 
4425 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4426                                     QualType Ty) const {
4427   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4428   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4429   uint64_t Width = getContext().getTypeSize(Ty);
4430   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4431 
4432   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4433                           CGF.getContext().getTypeInfoInChars(Ty),
4434                           CharUnits::fromQuantity(8),
4435                           /*allowHigherAlign*/ false);
4436 }
4437 
4438 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4439                                         llvm::Value *Address, bool Is64Bit,
4440                                         bool IsAIX) {
4441   // This is calculated from the LLVM and GCC tables and verified
4442   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4443 
4444   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4445 
4446   llvm::IntegerType *i8 = CGF.Int8Ty;
4447   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4448   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4449   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4450 
4451   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4452   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4453 
4454   // 32-63: fp0-31, the 8-byte floating-point registers
4455   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4456 
4457   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4458   // 64: mq
4459   // 65: lr
4460   // 66: ctr
4461   // 67: ap
4462   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4463 
4464   // 68-76 are various 4-byte special-purpose registers:
4465   // 68-75 cr0-7
4466   // 76: xer
4467   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4468 
4469   // 77-108: v0-31, the 16-byte vector registers
4470   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4471 
4472   // 109: vrsave
4473   // 110: vscr
4474   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4475 
4476   // AIX does not utilize the rest of the registers.
4477   if (IsAIX)
4478     return false;
4479 
4480   // 111: spe_acc
4481   // 112: spefscr
4482   // 113: sfp
4483   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4484 
4485   if (!Is64Bit)
4486     return false;
4487 
4488   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4489   // or above CPU.
4490   // 64-bit only registers:
4491   // 114: tfhar
4492   // 115: tfiar
4493   // 116: texasr
4494   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4495 
4496   return false;
4497 }
4498 
4499 // AIX
4500 namespace {
4501 /// AIXABIInfo - The AIX XCOFF ABI information.
4502 class AIXABIInfo : public ABIInfo {
4503   const bool Is64Bit;
4504   const unsigned PtrByteSize;
4505   CharUnits getParamTypeAlignment(QualType Ty) const;
4506 
4507 public:
4508   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4509       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4510 
4511   bool isPromotableTypeForABI(QualType Ty) const;
4512 
4513   ABIArgInfo classifyReturnType(QualType RetTy) const;
4514   ABIArgInfo classifyArgumentType(QualType Ty) const;
4515 
4516   void computeInfo(CGFunctionInfo &FI) const override {
4517     if (!getCXXABI().classifyReturnType(FI))
4518       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4519 
4520     for (auto &I : FI.arguments())
4521       I.info = classifyArgumentType(I.type);
4522   }
4523 
4524   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4525                     QualType Ty) const override;
4526 };
4527 
4528 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4529   const bool Is64Bit;
4530 
4531 public:
4532   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4533       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4534         Is64Bit(Is64Bit) {}
4535   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4536     return 1; // r1 is the dedicated stack pointer
4537   }
4538 
4539   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4540                                llvm::Value *Address) const override;
4541 };
4542 } // namespace
4543 
4544 // Return true if the ABI requires Ty to be passed sign- or zero-
4545 // extended to 32/64 bits.
4546 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4547   // Treat an enum type as its underlying type.
4548   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4549     Ty = EnumTy->getDecl()->getIntegerType();
4550 
4551   // Promotable integer types are required to be promoted by the ABI.
4552   if (Ty->isPromotableIntegerType())
4553     return true;
4554 
4555   if (!Is64Bit)
4556     return false;
4557 
4558   // For 64 bit mode, in addition to the usual promotable integer types, we also
4559   // need to extend all 32-bit types, since the ABI requires promotion to 64
4560   // bits.
4561   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4562     switch (BT->getKind()) {
4563     case BuiltinType::Int:
4564     case BuiltinType::UInt:
4565       return true;
4566     default:
4567       break;
4568     }
4569 
4570   return false;
4571 }
4572 
4573 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4574   if (RetTy->isAnyComplexType())
4575     return ABIArgInfo::getDirect();
4576 
4577   if (RetTy->isVectorType())
4578     return ABIArgInfo::getDirect();
4579 
4580   if (RetTy->isVoidType())
4581     return ABIArgInfo::getIgnore();
4582 
4583   if (isAggregateTypeForABI(RetTy))
4584     return getNaturalAlignIndirect(RetTy);
4585 
4586   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4587                                         : ABIArgInfo::getDirect());
4588 }
4589 
4590 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4591   Ty = useFirstFieldIfTransparentUnion(Ty);
4592 
4593   if (Ty->isAnyComplexType())
4594     return ABIArgInfo::getDirect();
4595 
4596   if (Ty->isVectorType())
4597     return ABIArgInfo::getDirect();
4598 
4599   if (isAggregateTypeForABI(Ty)) {
4600     // Records with non-trivial destructors/copy-constructors should not be
4601     // passed by value.
4602     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4603       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4604 
4605     CharUnits CCAlign = getParamTypeAlignment(Ty);
4606     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4607 
4608     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4609                                    /*Realign*/ TyAlign > CCAlign);
4610   }
4611 
4612   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4613                                      : ABIArgInfo::getDirect());
4614 }
4615 
4616 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4617   // Complex types are passed just like their elements.
4618   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4619     Ty = CTy->getElementType();
4620 
4621   if (Ty->isVectorType())
4622     return CharUnits::fromQuantity(16);
4623 
4624   // If the structure contains a vector type, the alignment is 16.
4625   if (isRecordWithSIMDVectorType(getContext(), Ty))
4626     return CharUnits::fromQuantity(16);
4627 
4628   return CharUnits::fromQuantity(PtrByteSize);
4629 }
4630 
4631 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4632                               QualType Ty) const {
4633   if (Ty->isAnyComplexType())
4634     llvm::report_fatal_error("complex type is not supported on AIX yet");
4635 
4636   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4637   TypeInfo.Align = getParamTypeAlignment(Ty);
4638 
4639   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4640 
4641   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4642                           SlotSize, /*AllowHigher*/ true);
4643 }
4644 
4645 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4646     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4647   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4648 }
4649 
4650 // PowerPC-32
4651 namespace {
4652 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4653 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4654   bool IsSoftFloatABI;
4655   bool IsRetSmallStructInRegABI;
4656 
4657   CharUnits getParamTypeAlignment(QualType Ty) const;
4658 
4659 public:
4660   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4661                      bool RetSmallStructInRegABI)
4662       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4663         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4664 
4665   ABIArgInfo classifyReturnType(QualType RetTy) const;
4666 
4667   void computeInfo(CGFunctionInfo &FI) const override {
4668     if (!getCXXABI().classifyReturnType(FI))
4669       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4670     for (auto &I : FI.arguments())
4671       I.info = classifyArgumentType(I.type);
4672   }
4673 
4674   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4675                     QualType Ty) const override;
4676 };
4677 
4678 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4679 public:
4680   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4681                          bool RetSmallStructInRegABI)
4682       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4683             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4684 
4685   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4686                                      const CodeGenOptions &Opts);
4687 
4688   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4689     // This is recovered from gcc output.
4690     return 1; // r1 is the dedicated stack pointer
4691   }
4692 
4693   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4694                                llvm::Value *Address) const override;
4695 };
4696 }
4697 
4698 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4699   // Complex types are passed just like their elements.
4700   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4701     Ty = CTy->getElementType();
4702 
4703   if (Ty->isVectorType())
4704     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4705                                                                        : 4);
4706 
4707   // For single-element float/vector structs, we consider the whole type
4708   // to have the same alignment requirements as its single element.
4709   const Type *AlignTy = nullptr;
4710   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4711     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4712     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4713         (BT && BT->isFloatingPoint()))
4714       AlignTy = EltType;
4715   }
4716 
4717   if (AlignTy)
4718     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4719   return CharUnits::fromQuantity(4);
4720 }
4721 
4722 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4723   uint64_t Size;
4724 
4725   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4726   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4727       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4728     // System V ABI (1995), page 3-22, specified:
4729     // > A structure or union whose size is less than or equal to 8 bytes
4730     // > shall be returned in r3 and r4, as if it were first stored in the
4731     // > 8-byte aligned memory area and then the low addressed word were
4732     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4733     // > the last member of the structure or union are not defined.
4734     //
4735     // GCC for big-endian PPC32 inserts the pad before the first member,
4736     // not "beyond the last member" of the struct.  To stay compatible
4737     // with GCC, we coerce the struct to an integer of the same size.
4738     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4739     if (Size == 0)
4740       return ABIArgInfo::getIgnore();
4741     else {
4742       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4743       return ABIArgInfo::getDirect(CoerceTy);
4744     }
4745   }
4746 
4747   return DefaultABIInfo::classifyReturnType(RetTy);
4748 }
4749 
4750 // TODO: this implementation is now likely redundant with
4751 // DefaultABIInfo::EmitVAArg.
4752 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4753                                       QualType Ty) const {
4754   if (getTarget().getTriple().isOSDarwin()) {
4755     auto TI = getContext().getTypeInfoInChars(Ty);
4756     TI.Align = getParamTypeAlignment(Ty);
4757 
4758     CharUnits SlotSize = CharUnits::fromQuantity(4);
4759     return emitVoidPtrVAArg(CGF, VAList, Ty,
4760                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4761                             /*AllowHigherAlign=*/true);
4762   }
4763 
4764   const unsigned OverflowLimit = 8;
4765   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4766     // TODO: Implement this. For now ignore.
4767     (void)CTy;
4768     return Address::invalid(); // FIXME?
4769   }
4770 
4771   // struct __va_list_tag {
4772   //   unsigned char gpr;
4773   //   unsigned char fpr;
4774   //   unsigned short reserved;
4775   //   void *overflow_arg_area;
4776   //   void *reg_save_area;
4777   // };
4778 
4779   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4780   bool isInt = !Ty->isFloatingType();
4781   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4782 
4783   // All aggregates are passed indirectly?  That doesn't seem consistent
4784   // with the argument-lowering code.
4785   bool isIndirect = isAggregateTypeForABI(Ty);
4786 
4787   CGBuilderTy &Builder = CGF.Builder;
4788 
4789   // The calling convention either uses 1-2 GPRs or 1 FPR.
4790   Address NumRegsAddr = Address::invalid();
4791   if (isInt || IsSoftFloatABI) {
4792     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4793   } else {
4794     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4795   }
4796 
4797   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4798 
4799   // "Align" the register count when TY is i64.
4800   if (isI64 || (isF64 && IsSoftFloatABI)) {
4801     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4802     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4803   }
4804 
4805   llvm::Value *CC =
4806       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4807 
4808   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4809   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4810   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4811 
4812   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4813 
4814   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4815   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4816 
4817   // Case 1: consume registers.
4818   Address RegAddr = Address::invalid();
4819   {
4820     CGF.EmitBlock(UsingRegs);
4821 
4822     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4823     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4824                       CharUnits::fromQuantity(8));
4825     assert(RegAddr.getElementType() == CGF.Int8Ty);
4826 
4827     // Floating-point registers start after the general-purpose registers.
4828     if (!(isInt || IsSoftFloatABI)) {
4829       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4830                                                    CharUnits::fromQuantity(32));
4831     }
4832 
4833     // Get the address of the saved value by scaling the number of
4834     // registers we've used by the number of
4835     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4836     llvm::Value *RegOffset =
4837       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4838     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4839                                             RegAddr.getPointer(), RegOffset),
4840                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4841     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4842 
4843     // Increase the used-register count.
4844     NumRegs =
4845       Builder.CreateAdd(NumRegs,
4846                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4847     Builder.CreateStore(NumRegs, NumRegsAddr);
4848 
4849     CGF.EmitBranch(Cont);
4850   }
4851 
4852   // Case 2: consume space in the overflow area.
4853   Address MemAddr = Address::invalid();
4854   {
4855     CGF.EmitBlock(UsingOverflow);
4856 
4857     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4858 
4859     // Everything in the overflow area is rounded up to a size of at least 4.
4860     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4861 
4862     CharUnits Size;
4863     if (!isIndirect) {
4864       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4865       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4866     } else {
4867       Size = CGF.getPointerSize();
4868     }
4869 
4870     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4871     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4872                          OverflowAreaAlign);
4873     // Round up address of argument to alignment
4874     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4875     if (Align > OverflowAreaAlign) {
4876       llvm::Value *Ptr = OverflowArea.getPointer();
4877       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4878                                                            Align);
4879     }
4880 
4881     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4882 
4883     // Increase the overflow area.
4884     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4885     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4886     CGF.EmitBranch(Cont);
4887   }
4888 
4889   CGF.EmitBlock(Cont);
4890 
4891   // Merge the cases with a phi.
4892   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4893                                 "vaarg.addr");
4894 
4895   // Load the pointer if the argument was passed indirectly.
4896   if (isIndirect) {
4897     Result = Address(Builder.CreateLoad(Result, "aggr"),
4898                      getContext().getTypeAlignInChars(Ty));
4899   }
4900 
4901   return Result;
4902 }
4903 
4904 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4905     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4906   assert(Triple.isPPC32());
4907 
4908   switch (Opts.getStructReturnConvention()) {
4909   case CodeGenOptions::SRCK_Default:
4910     break;
4911   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4912     return false;
4913   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4914     return true;
4915   }
4916 
4917   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4918     return true;
4919 
4920   return false;
4921 }
4922 
4923 bool
4924 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4925                                                 llvm::Value *Address) const {
4926   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4927                                      /*IsAIX*/ false);
4928 }
4929 
4930 // PowerPC-64
4931 
4932 namespace {
4933 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4934 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4935 public:
4936   enum ABIKind {
4937     ELFv1 = 0,
4938     ELFv2
4939   };
4940 
4941 private:
4942   static const unsigned GPRBits = 64;
4943   ABIKind Kind;
4944   bool IsSoftFloatABI;
4945 
4946 public:
4947   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4948                      bool SoftFloatABI)
4949       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4950 
4951   bool isPromotableTypeForABI(QualType Ty) const;
4952   CharUnits getParamTypeAlignment(QualType Ty) const;
4953 
4954   ABIArgInfo classifyReturnType(QualType RetTy) const;
4955   ABIArgInfo classifyArgumentType(QualType Ty) const;
4956 
4957   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4958   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4959                                          uint64_t Members) const override;
4960 
4961   // TODO: We can add more logic to computeInfo to improve performance.
4962   // Example: For aggregate arguments that fit in a register, we could
4963   // use getDirectInReg (as is done below for structs containing a single
4964   // floating-point value) to avoid pushing them to memory on function
4965   // entry.  This would require changing the logic in PPCISelLowering
4966   // when lowering the parameters in the caller and args in the callee.
4967   void computeInfo(CGFunctionInfo &FI) const override {
4968     if (!getCXXABI().classifyReturnType(FI))
4969       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4970     for (auto &I : FI.arguments()) {
4971       // We rely on the default argument classification for the most part.
4972       // One exception:  An aggregate containing a single floating-point
4973       // or vector item must be passed in a register if one is available.
4974       const Type *T = isSingleElementStruct(I.type, getContext());
4975       if (T) {
4976         const BuiltinType *BT = T->getAs<BuiltinType>();
4977         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4978             (BT && BT->isFloatingPoint())) {
4979           QualType QT(T, 0);
4980           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4981           continue;
4982         }
4983       }
4984       I.info = classifyArgumentType(I.type);
4985     }
4986   }
4987 
4988   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4989                     QualType Ty) const override;
4990 
4991   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4992                                     bool asReturnValue) const override {
4993     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4994   }
4995 
4996   bool isSwiftErrorInRegister() const override {
4997     return false;
4998   }
4999 };
5000 
5001 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5002 
5003 public:
5004   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5005                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5006                                bool SoftFloatABI)
5007       : TargetCodeGenInfo(
5008             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5009 
5010   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5011     // This is recovered from gcc output.
5012     return 1; // r1 is the dedicated stack pointer
5013   }
5014 
5015   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5016                                llvm::Value *Address) const override;
5017 };
5018 
5019 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5020 public:
5021   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5022 
5023   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5024     // This is recovered from gcc output.
5025     return 1; // r1 is the dedicated stack pointer
5026   }
5027 
5028   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5029                                llvm::Value *Address) const override;
5030 };
5031 
5032 }
5033 
5034 // Return true if the ABI requires Ty to be passed sign- or zero-
5035 // extended to 64 bits.
5036 bool
5037 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5038   // Treat an enum type as its underlying type.
5039   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5040     Ty = EnumTy->getDecl()->getIntegerType();
5041 
5042   // Promotable integer types are required to be promoted by the ABI.
5043   if (isPromotableIntegerTypeForABI(Ty))
5044     return true;
5045 
5046   // In addition to the usual promotable integer types, we also need to
5047   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5048   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5049     switch (BT->getKind()) {
5050     case BuiltinType::Int:
5051     case BuiltinType::UInt:
5052       return true;
5053     default:
5054       break;
5055     }
5056 
5057   if (const auto *EIT = Ty->getAs<ExtIntType>())
5058     if (EIT->getNumBits() < 64)
5059       return true;
5060 
5061   return false;
5062 }
5063 
5064 /// isAlignedParamType - Determine whether a type requires 16-byte or
5065 /// higher alignment in the parameter area.  Always returns at least 8.
5066 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5067   // Complex types are passed just like their elements.
5068   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5069     Ty = CTy->getElementType();
5070 
5071   // Only vector types of size 16 bytes need alignment (larger types are
5072   // passed via reference, smaller types are not aligned).
5073   if (Ty->isVectorType()) {
5074     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5075   } else if (Ty->isRealFloatingType() &&
5076              &getContext().getFloatTypeSemantics(Ty) ==
5077                  &llvm::APFloat::IEEEquad()) {
5078     // According to ABI document section 'Optional Save Areas': If extended
5079     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5080     // format are supported, map them to a single quadword, quadword aligned.
5081     return CharUnits::fromQuantity(16);
5082   }
5083 
5084   // For single-element float/vector structs, we consider the whole type
5085   // to have the same alignment requirements as its single element.
5086   const Type *AlignAsType = nullptr;
5087   const Type *EltType = isSingleElementStruct(Ty, getContext());
5088   if (EltType) {
5089     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5090     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5091         (BT && BT->isFloatingPoint()))
5092       AlignAsType = EltType;
5093   }
5094 
5095   // Likewise for ELFv2 homogeneous aggregates.
5096   const Type *Base = nullptr;
5097   uint64_t Members = 0;
5098   if (!AlignAsType && Kind == ELFv2 &&
5099       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5100     AlignAsType = Base;
5101 
5102   // With special case aggregates, only vector base types need alignment.
5103   if (AlignAsType) {
5104     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5105   }
5106 
5107   // Otherwise, we only need alignment for any aggregate type that
5108   // has an alignment requirement of >= 16 bytes.
5109   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5110     return CharUnits::fromQuantity(16);
5111   }
5112 
5113   return CharUnits::fromQuantity(8);
5114 }
5115 
5116 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5117 /// aggregate.  Base is set to the base element type, and Members is set
5118 /// to the number of base elements.
5119 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5120                                      uint64_t &Members) const {
5121   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5122     uint64_t NElements = AT->getSize().getZExtValue();
5123     if (NElements == 0)
5124       return false;
5125     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5126       return false;
5127     Members *= NElements;
5128   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5129     const RecordDecl *RD = RT->getDecl();
5130     if (RD->hasFlexibleArrayMember())
5131       return false;
5132 
5133     Members = 0;
5134 
5135     // If this is a C++ record, check the properties of the record such as
5136     // bases and ABI specific restrictions
5137     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5138       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5139         return false;
5140 
5141       for (const auto &I : CXXRD->bases()) {
5142         // Ignore empty records.
5143         if (isEmptyRecord(getContext(), I.getType(), true))
5144           continue;
5145 
5146         uint64_t FldMembers;
5147         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5148           return false;
5149 
5150         Members += FldMembers;
5151       }
5152     }
5153 
5154     for (const auto *FD : RD->fields()) {
5155       // Ignore (non-zero arrays of) empty records.
5156       QualType FT = FD->getType();
5157       while (const ConstantArrayType *AT =
5158              getContext().getAsConstantArrayType(FT)) {
5159         if (AT->getSize().getZExtValue() == 0)
5160           return false;
5161         FT = AT->getElementType();
5162       }
5163       if (isEmptyRecord(getContext(), FT, true))
5164         continue;
5165 
5166       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5167       if (getContext().getLangOpts().CPlusPlus &&
5168           FD->isZeroLengthBitField(getContext()))
5169         continue;
5170 
5171       uint64_t FldMembers;
5172       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5173         return false;
5174 
5175       Members = (RD->isUnion() ?
5176                  std::max(Members, FldMembers) : Members + FldMembers);
5177     }
5178 
5179     if (!Base)
5180       return false;
5181 
5182     // Ensure there is no padding.
5183     if (getContext().getTypeSize(Base) * Members !=
5184         getContext().getTypeSize(Ty))
5185       return false;
5186   } else {
5187     Members = 1;
5188     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5189       Members = 2;
5190       Ty = CT->getElementType();
5191     }
5192 
5193     // Most ABIs only support float, double, and some vector type widths.
5194     if (!isHomogeneousAggregateBaseType(Ty))
5195       return false;
5196 
5197     // The base type must be the same for all members.  Types that
5198     // agree in both total size and mode (float vs. vector) are
5199     // treated as being equivalent here.
5200     const Type *TyPtr = Ty.getTypePtr();
5201     if (!Base) {
5202       Base = TyPtr;
5203       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5204       // so make sure to widen it explicitly.
5205       if (const VectorType *VT = Base->getAs<VectorType>()) {
5206         QualType EltTy = VT->getElementType();
5207         unsigned NumElements =
5208             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5209         Base = getContext()
5210                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5211                    .getTypePtr();
5212       }
5213     }
5214 
5215     if (Base->isVectorType() != TyPtr->isVectorType() ||
5216         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5217       return false;
5218   }
5219   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5220 }
5221 
5222 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5223   // Homogeneous aggregates for ELFv2 must have base types of float,
5224   // double, long double, or 128-bit vectors.
5225   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5226     if (BT->getKind() == BuiltinType::Float ||
5227         BT->getKind() == BuiltinType::Double ||
5228         BT->getKind() == BuiltinType::LongDouble ||
5229         (getContext().getTargetInfo().hasFloat128Type() &&
5230           (BT->getKind() == BuiltinType::Float128))) {
5231       if (IsSoftFloatABI)
5232         return false;
5233       return true;
5234     }
5235   }
5236   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5237     if (getContext().getTypeSize(VT) == 128)
5238       return true;
5239   }
5240   return false;
5241 }
5242 
5243 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5244     const Type *Base, uint64_t Members) const {
5245   // Vector and fp128 types require one register, other floating point types
5246   // require one or two registers depending on their size.
5247   uint32_t NumRegs =
5248       ((getContext().getTargetInfo().hasFloat128Type() &&
5249           Base->isFloat128Type()) ||
5250         Base->isVectorType()) ? 1
5251                               : (getContext().getTypeSize(Base) + 63) / 64;
5252 
5253   // Homogeneous Aggregates may occupy at most 8 registers.
5254   return Members * NumRegs <= 8;
5255 }
5256 
5257 ABIArgInfo
5258 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5259   Ty = useFirstFieldIfTransparentUnion(Ty);
5260 
5261   if (Ty->isAnyComplexType())
5262     return ABIArgInfo::getDirect();
5263 
5264   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5265   // or via reference (larger than 16 bytes).
5266   if (Ty->isVectorType()) {
5267     uint64_t Size = getContext().getTypeSize(Ty);
5268     if (Size > 128)
5269       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5270     else if (Size < 128) {
5271       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5272       return ABIArgInfo::getDirect(CoerceTy);
5273     }
5274   }
5275 
5276   if (const auto *EIT = Ty->getAs<ExtIntType>())
5277     if (EIT->getNumBits() > 128)
5278       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5279 
5280   if (isAggregateTypeForABI(Ty)) {
5281     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5282       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5283 
5284     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5285     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5286 
5287     // ELFv2 homogeneous aggregates are passed as array types.
5288     const Type *Base = nullptr;
5289     uint64_t Members = 0;
5290     if (Kind == ELFv2 &&
5291         isHomogeneousAggregate(Ty, Base, Members)) {
5292       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5293       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5294       return ABIArgInfo::getDirect(CoerceTy);
5295     }
5296 
5297     // If an aggregate may end up fully in registers, we do not
5298     // use the ByVal method, but pass the aggregate as array.
5299     // This is usually beneficial since we avoid forcing the
5300     // back-end to store the argument to memory.
5301     uint64_t Bits = getContext().getTypeSize(Ty);
5302     if (Bits > 0 && Bits <= 8 * GPRBits) {
5303       llvm::Type *CoerceTy;
5304 
5305       // Types up to 8 bytes are passed as integer type (which will be
5306       // properly aligned in the argument save area doubleword).
5307       if (Bits <= GPRBits)
5308         CoerceTy =
5309             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5310       // Larger types are passed as arrays, with the base type selected
5311       // according to the required alignment in the save area.
5312       else {
5313         uint64_t RegBits = ABIAlign * 8;
5314         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5315         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5316         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5317       }
5318 
5319       return ABIArgInfo::getDirect(CoerceTy);
5320     }
5321 
5322     // All other aggregates are passed ByVal.
5323     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5324                                    /*ByVal=*/true,
5325                                    /*Realign=*/TyAlign > ABIAlign);
5326   }
5327 
5328   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5329                                      : ABIArgInfo::getDirect());
5330 }
5331 
5332 ABIArgInfo
5333 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5334   if (RetTy->isVoidType())
5335     return ABIArgInfo::getIgnore();
5336 
5337   if (RetTy->isAnyComplexType())
5338     return ABIArgInfo::getDirect();
5339 
5340   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5341   // or via reference (larger than 16 bytes).
5342   if (RetTy->isVectorType()) {
5343     uint64_t Size = getContext().getTypeSize(RetTy);
5344     if (Size > 128)
5345       return getNaturalAlignIndirect(RetTy);
5346     else if (Size < 128) {
5347       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5348       return ABIArgInfo::getDirect(CoerceTy);
5349     }
5350   }
5351 
5352   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5353     if (EIT->getNumBits() > 128)
5354       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5355 
5356   if (isAggregateTypeForABI(RetTy)) {
5357     // ELFv2 homogeneous aggregates are returned as array types.
5358     const Type *Base = nullptr;
5359     uint64_t Members = 0;
5360     if (Kind == ELFv2 &&
5361         isHomogeneousAggregate(RetTy, Base, Members)) {
5362       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5363       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5364       return ABIArgInfo::getDirect(CoerceTy);
5365     }
5366 
5367     // ELFv2 small aggregates are returned in up to two registers.
5368     uint64_t Bits = getContext().getTypeSize(RetTy);
5369     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5370       if (Bits == 0)
5371         return ABIArgInfo::getIgnore();
5372 
5373       llvm::Type *CoerceTy;
5374       if (Bits > GPRBits) {
5375         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5376         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5377       } else
5378         CoerceTy =
5379             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5380       return ABIArgInfo::getDirect(CoerceTy);
5381     }
5382 
5383     // All other aggregates are returned indirectly.
5384     return getNaturalAlignIndirect(RetTy);
5385   }
5386 
5387   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5388                                         : ABIArgInfo::getDirect());
5389 }
5390 
5391 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5392 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5393                                       QualType Ty) const {
5394   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5395   TypeInfo.Align = getParamTypeAlignment(Ty);
5396 
5397   CharUnits SlotSize = CharUnits::fromQuantity(8);
5398 
5399   // If we have a complex type and the base type is smaller than 8 bytes,
5400   // the ABI calls for the real and imaginary parts to be right-adjusted
5401   // in separate doublewords.  However, Clang expects us to produce a
5402   // pointer to a structure with the two parts packed tightly.  So generate
5403   // loads of the real and imaginary parts relative to the va_list pointer,
5404   // and store them to a temporary structure.
5405   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5406     CharUnits EltSize = TypeInfo.Width / 2;
5407     if (EltSize < SlotSize) {
5408       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5409                                             SlotSize * 2, SlotSize,
5410                                             SlotSize, /*AllowHigher*/ true);
5411 
5412       Address RealAddr = Addr;
5413       Address ImagAddr = RealAddr;
5414       if (CGF.CGM.getDataLayout().isBigEndian()) {
5415         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5416                                                           SlotSize - EltSize);
5417         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5418                                                       2 * SlotSize - EltSize);
5419       } else {
5420         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5421       }
5422 
5423       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5424       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5425       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5426       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5427       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5428 
5429       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5430       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5431                              /*init*/ true);
5432       return Temp;
5433     }
5434   }
5435 
5436   // Otherwise, just use the general rule.
5437   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5438                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5439 }
5440 
5441 bool
5442 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5443   CodeGen::CodeGenFunction &CGF,
5444   llvm::Value *Address) const {
5445   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5446                                      /*IsAIX*/ false);
5447 }
5448 
5449 bool
5450 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5451                                                 llvm::Value *Address) const {
5452   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5453                                      /*IsAIX*/ false);
5454 }
5455 
5456 //===----------------------------------------------------------------------===//
5457 // AArch64 ABI Implementation
5458 //===----------------------------------------------------------------------===//
5459 
5460 namespace {
5461 
5462 class AArch64ABIInfo : public SwiftABIInfo {
5463 public:
5464   enum ABIKind {
5465     AAPCS = 0,
5466     DarwinPCS,
5467     Win64
5468   };
5469 
5470 private:
5471   ABIKind Kind;
5472 
5473 public:
5474   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5475     : SwiftABIInfo(CGT), Kind(Kind) {}
5476 
5477 private:
5478   ABIKind getABIKind() const { return Kind; }
5479   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5480 
5481   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5482   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5483                                   unsigned CallingConvention) const;
5484   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5485   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5486   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5487                                          uint64_t Members) const override;
5488 
5489   bool isIllegalVectorType(QualType Ty) const;
5490 
5491   void computeInfo(CGFunctionInfo &FI) const override {
5492     if (!::classifyReturnType(getCXXABI(), FI, *this))
5493       FI.getReturnInfo() =
5494           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5495 
5496     for (auto &it : FI.arguments())
5497       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5498                                      FI.getCallingConvention());
5499   }
5500 
5501   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5502                           CodeGenFunction &CGF) const;
5503 
5504   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5505                          CodeGenFunction &CGF) const;
5506 
5507   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5508                     QualType Ty) const override {
5509     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5510     if (isa<llvm::ScalableVectorType>(BaseTy))
5511       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5512                                "currently not supported");
5513 
5514     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5515                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5516                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5517   }
5518 
5519   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5520                       QualType Ty) const override;
5521 
5522   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5523                                     bool asReturnValue) const override {
5524     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5525   }
5526   bool isSwiftErrorInRegister() const override {
5527     return true;
5528   }
5529 
5530   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5531                                  unsigned elts) const override;
5532 
5533   bool allowBFloatArgsAndRet() const override {
5534     return getTarget().hasBFloat16Type();
5535   }
5536 };
5537 
5538 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5539 public:
5540   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5541       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5542 
5543   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5544     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5545   }
5546 
5547   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5548     return 31;
5549   }
5550 
5551   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5552 
5553   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5554                            CodeGen::CodeGenModule &CGM) const override {
5555     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5556     if (!FD)
5557       return;
5558 
5559     const auto *TA = FD->getAttr<TargetAttr>();
5560     if (TA == nullptr)
5561       return;
5562 
5563     ParsedTargetAttr Attr = TA->parse();
5564     if (Attr.BranchProtection.empty())
5565       return;
5566 
5567     TargetInfo::BranchProtectionInfo BPI;
5568     StringRef Error;
5569     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5570                                                    BPI, Error);
5571     assert(Error.empty());
5572 
5573     auto *Fn = cast<llvm::Function>(GV);
5574     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5575     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5576 
5577     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5578       Fn->addFnAttr("sign-return-address-key",
5579                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5580                         ? "a_key"
5581                         : "b_key");
5582     }
5583 
5584     Fn->addFnAttr("branch-target-enforcement",
5585                   BPI.BranchTargetEnforcement ? "true" : "false");
5586   }
5587 
5588   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5589                                 llvm::Type *Ty) const override {
5590     if (CGF.getTarget().hasFeature("ls64")) {
5591       auto *ST = dyn_cast<llvm::StructType>(Ty);
5592       if (ST && ST->getNumElements() == 1) {
5593         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5594         if (AT && AT->getNumElements() == 8 &&
5595             AT->getElementType()->isIntegerTy(64))
5596           return true;
5597       }
5598     }
5599     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5600   }
5601 };
5602 
5603 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5604 public:
5605   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5606       : AArch64TargetCodeGenInfo(CGT, K) {}
5607 
5608   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5609                            CodeGen::CodeGenModule &CGM) const override;
5610 
5611   void getDependentLibraryOption(llvm::StringRef Lib,
5612                                  llvm::SmallString<24> &Opt) const override {
5613     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5614   }
5615 
5616   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5617                                llvm::SmallString<32> &Opt) const override {
5618     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5619   }
5620 };
5621 
5622 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5623     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5624   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5625   if (GV->isDeclaration())
5626     return;
5627   addStackProbeTargetAttributes(D, GV, CGM);
5628 }
5629 }
5630 
5631 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5632   assert(Ty->isVectorType() && "expected vector type!");
5633 
5634   const auto *VT = Ty->castAs<VectorType>();
5635   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5636     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5637     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5638                BuiltinType::UChar &&
5639            "unexpected builtin type for SVE predicate!");
5640     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5641         llvm::Type::getInt1Ty(getVMContext()), 16));
5642   }
5643 
5644   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5645     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5646 
5647     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5648     llvm::ScalableVectorType *ResType = nullptr;
5649     switch (BT->getKind()) {
5650     default:
5651       llvm_unreachable("unexpected builtin type for SVE vector!");
5652     case BuiltinType::SChar:
5653     case BuiltinType::UChar:
5654       ResType = llvm::ScalableVectorType::get(
5655           llvm::Type::getInt8Ty(getVMContext()), 16);
5656       break;
5657     case BuiltinType::Short:
5658     case BuiltinType::UShort:
5659       ResType = llvm::ScalableVectorType::get(
5660           llvm::Type::getInt16Ty(getVMContext()), 8);
5661       break;
5662     case BuiltinType::Int:
5663     case BuiltinType::UInt:
5664       ResType = llvm::ScalableVectorType::get(
5665           llvm::Type::getInt32Ty(getVMContext()), 4);
5666       break;
5667     case BuiltinType::Long:
5668     case BuiltinType::ULong:
5669       ResType = llvm::ScalableVectorType::get(
5670           llvm::Type::getInt64Ty(getVMContext()), 2);
5671       break;
5672     case BuiltinType::Half:
5673       ResType = llvm::ScalableVectorType::get(
5674           llvm::Type::getHalfTy(getVMContext()), 8);
5675       break;
5676     case BuiltinType::Float:
5677       ResType = llvm::ScalableVectorType::get(
5678           llvm::Type::getFloatTy(getVMContext()), 4);
5679       break;
5680     case BuiltinType::Double:
5681       ResType = llvm::ScalableVectorType::get(
5682           llvm::Type::getDoubleTy(getVMContext()), 2);
5683       break;
5684     case BuiltinType::BFloat16:
5685       ResType = llvm::ScalableVectorType::get(
5686           llvm::Type::getBFloatTy(getVMContext()), 8);
5687       break;
5688     }
5689     return ABIArgInfo::getDirect(ResType);
5690   }
5691 
5692   uint64_t Size = getContext().getTypeSize(Ty);
5693   // Android promotes <2 x i8> to i16, not i32
5694   if (isAndroid() && (Size <= 16)) {
5695     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5696     return ABIArgInfo::getDirect(ResType);
5697   }
5698   if (Size <= 32) {
5699     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5700     return ABIArgInfo::getDirect(ResType);
5701   }
5702   if (Size == 64) {
5703     auto *ResType =
5704         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5705     return ABIArgInfo::getDirect(ResType);
5706   }
5707   if (Size == 128) {
5708     auto *ResType =
5709         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5710     return ABIArgInfo::getDirect(ResType);
5711   }
5712   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5713 }
5714 
5715 ABIArgInfo
5716 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5717                                      unsigned CallingConvention) const {
5718   Ty = useFirstFieldIfTransparentUnion(Ty);
5719 
5720   // Handle illegal vector types here.
5721   if (isIllegalVectorType(Ty))
5722     return coerceIllegalVector(Ty);
5723 
5724   if (!isAggregateTypeForABI(Ty)) {
5725     // Treat an enum type as its underlying type.
5726     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5727       Ty = EnumTy->getDecl()->getIntegerType();
5728 
5729     if (const auto *EIT = Ty->getAs<ExtIntType>())
5730       if (EIT->getNumBits() > 128)
5731         return getNaturalAlignIndirect(Ty);
5732 
5733     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5734                 ? ABIArgInfo::getExtend(Ty)
5735                 : ABIArgInfo::getDirect());
5736   }
5737 
5738   // Structures with either a non-trivial destructor or a non-trivial
5739   // copy constructor are always indirect.
5740   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5741     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5742                                      CGCXXABI::RAA_DirectInMemory);
5743   }
5744 
5745   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5746   // elsewhere for GNU compatibility.
5747   uint64_t Size = getContext().getTypeSize(Ty);
5748   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5749   if (IsEmpty || Size == 0) {
5750     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5751       return ABIArgInfo::getIgnore();
5752 
5753     // GNU C mode. The only argument that gets ignored is an empty one with size
5754     // 0.
5755     if (IsEmpty && Size == 0)
5756       return ABIArgInfo::getIgnore();
5757     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5758   }
5759 
5760   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5761   const Type *Base = nullptr;
5762   uint64_t Members = 0;
5763   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5764   bool IsWinVariadic = IsWin64 && IsVariadic;
5765   // In variadic functions on Windows, all composite types are treated alike,
5766   // no special handling of HFAs/HVAs.
5767   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5768     if (Kind != AArch64ABIInfo::AAPCS)
5769       return ABIArgInfo::getDirect(
5770           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5771 
5772     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5773     // default otherwise.
5774     unsigned Align =
5775         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5776     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5777     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5778     return ABIArgInfo::getDirect(
5779         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5780         nullptr, true, Align);
5781   }
5782 
5783   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5784   if (Size <= 128) {
5785     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5786     // same size and alignment.
5787     if (getTarget().isRenderScriptTarget()) {
5788       return coerceToIntArray(Ty, getContext(), getVMContext());
5789     }
5790     unsigned Alignment;
5791     if (Kind == AArch64ABIInfo::AAPCS) {
5792       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5793       Alignment = Alignment < 128 ? 64 : 128;
5794     } else {
5795       Alignment = std::max(getContext().getTypeAlign(Ty),
5796                            (unsigned)getTarget().getPointerWidth(0));
5797     }
5798     Size = llvm::alignTo(Size, Alignment);
5799 
5800     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5801     // For aggregates with 16-byte alignment, we use i128.
5802     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5803     return ABIArgInfo::getDirect(
5804         Size == Alignment ? BaseTy
5805                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5806   }
5807 
5808   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5809 }
5810 
5811 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5812                                               bool IsVariadic) const {
5813   if (RetTy->isVoidType())
5814     return ABIArgInfo::getIgnore();
5815 
5816   if (const auto *VT = RetTy->getAs<VectorType>()) {
5817     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5818         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5819       return coerceIllegalVector(RetTy);
5820   }
5821 
5822   // Large vector types should be returned via memory.
5823   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5824     return getNaturalAlignIndirect(RetTy);
5825 
5826   if (!isAggregateTypeForABI(RetTy)) {
5827     // Treat an enum type as its underlying type.
5828     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5829       RetTy = EnumTy->getDecl()->getIntegerType();
5830 
5831     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5832       if (EIT->getNumBits() > 128)
5833         return getNaturalAlignIndirect(RetTy);
5834 
5835     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5836                 ? ABIArgInfo::getExtend(RetTy)
5837                 : ABIArgInfo::getDirect());
5838   }
5839 
5840   uint64_t Size = getContext().getTypeSize(RetTy);
5841   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5842     return ABIArgInfo::getIgnore();
5843 
5844   const Type *Base = nullptr;
5845   uint64_t Members = 0;
5846   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5847       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5848         IsVariadic))
5849     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5850     return ABIArgInfo::getDirect();
5851 
5852   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5853   if (Size <= 128) {
5854     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5855     // same size and alignment.
5856     if (getTarget().isRenderScriptTarget()) {
5857       return coerceToIntArray(RetTy, getContext(), getVMContext());
5858     }
5859 
5860     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5861       // Composite types are returned in lower bits of a 64-bit register for LE,
5862       // and in higher bits for BE. However, integer types are always returned
5863       // in lower bits for both LE and BE, and they are not rounded up to
5864       // 64-bits. We can skip rounding up of composite types for LE, but not for
5865       // BE, otherwise composite types will be indistinguishable from integer
5866       // types.
5867       return ABIArgInfo::getDirect(
5868           llvm::IntegerType::get(getVMContext(), Size));
5869     }
5870 
5871     unsigned Alignment = getContext().getTypeAlign(RetTy);
5872     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5873 
5874     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5875     // For aggregates with 16-byte alignment, we use i128.
5876     if (Alignment < 128 && Size == 128) {
5877       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5878       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5879     }
5880     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5881   }
5882 
5883   return getNaturalAlignIndirect(RetTy);
5884 }
5885 
5886 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5887 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5888   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5889     // Check whether VT is a fixed-length SVE vector. These types are
5890     // represented as scalable vectors in function args/return and must be
5891     // coerced from fixed vectors.
5892     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5893         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5894       return true;
5895 
5896     // Check whether VT is legal.
5897     unsigned NumElements = VT->getNumElements();
5898     uint64_t Size = getContext().getTypeSize(VT);
5899     // NumElements should be power of 2.
5900     if (!llvm::isPowerOf2_32(NumElements))
5901       return true;
5902 
5903     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5904     // vectors for some reason.
5905     llvm::Triple Triple = getTarget().getTriple();
5906     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5907         Triple.isOSBinFormatMachO())
5908       return Size <= 32;
5909 
5910     return Size != 64 && (Size != 128 || NumElements == 1);
5911   }
5912   return false;
5913 }
5914 
5915 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5916                                                llvm::Type *eltTy,
5917                                                unsigned elts) const {
5918   if (!llvm::isPowerOf2_32(elts))
5919     return false;
5920   if (totalSize.getQuantity() != 8 &&
5921       (totalSize.getQuantity() != 16 || elts == 1))
5922     return false;
5923   return true;
5924 }
5925 
5926 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5927   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5928   // point type or a short-vector type. This is the same as the 32-bit ABI,
5929   // but with the difference that any floating-point type is allowed,
5930   // including __fp16.
5931   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5932     if (BT->isFloatingPoint())
5933       return true;
5934   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5935     unsigned VecSize = getContext().getTypeSize(VT);
5936     if (VecSize == 64 || VecSize == 128)
5937       return true;
5938   }
5939   return false;
5940 }
5941 
5942 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5943                                                        uint64_t Members) const {
5944   return Members <= 4;
5945 }
5946 
5947 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5948                                        CodeGenFunction &CGF) const {
5949   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5950                                        CGF.CurFnInfo->getCallingConvention());
5951   bool IsIndirect = AI.isIndirect();
5952 
5953   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5954   if (IsIndirect)
5955     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5956   else if (AI.getCoerceToType())
5957     BaseTy = AI.getCoerceToType();
5958 
5959   unsigned NumRegs = 1;
5960   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5961     BaseTy = ArrTy->getElementType();
5962     NumRegs = ArrTy->getNumElements();
5963   }
5964   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5965 
5966   // The AArch64 va_list type and handling is specified in the Procedure Call
5967   // Standard, section B.4:
5968   //
5969   // struct {
5970   //   void *__stack;
5971   //   void *__gr_top;
5972   //   void *__vr_top;
5973   //   int __gr_offs;
5974   //   int __vr_offs;
5975   // };
5976 
5977   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5978   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5979   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5980   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5981 
5982   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5983   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5984 
5985   Address reg_offs_p = Address::invalid();
5986   llvm::Value *reg_offs = nullptr;
5987   int reg_top_index;
5988   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5989   if (!IsFPR) {
5990     // 3 is the field number of __gr_offs
5991     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5992     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5993     reg_top_index = 1; // field number for __gr_top
5994     RegSize = llvm::alignTo(RegSize, 8);
5995   } else {
5996     // 4 is the field number of __vr_offs.
5997     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5998     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5999     reg_top_index = 2; // field number for __vr_top
6000     RegSize = 16 * NumRegs;
6001   }
6002 
6003   //=======================================
6004   // Find out where argument was passed
6005   //=======================================
6006 
6007   // If reg_offs >= 0 we're already using the stack for this type of
6008   // argument. We don't want to keep updating reg_offs (in case it overflows,
6009   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
6010   // whatever they get).
6011   llvm::Value *UsingStack = nullptr;
6012   UsingStack = CGF.Builder.CreateICmpSGE(
6013       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6014 
6015   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6016 
6017   // Otherwise, at least some kind of argument could go in these registers, the
6018   // question is whether this particular type is too big.
6019   CGF.EmitBlock(MaybeRegBlock);
6020 
6021   // Integer arguments may need to correct register alignment (for example a
6022   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6023   // align __gr_offs to calculate the potential address.
6024   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6025     int Align = TyAlign.getQuantity();
6026 
6027     reg_offs = CGF.Builder.CreateAdd(
6028         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6029         "align_regoffs");
6030     reg_offs = CGF.Builder.CreateAnd(
6031         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6032         "aligned_regoffs");
6033   }
6034 
6035   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6036   // The fact that this is done unconditionally reflects the fact that
6037   // allocating an argument to the stack also uses up all the remaining
6038   // registers of the appropriate kind.
6039   llvm::Value *NewOffset = nullptr;
6040   NewOffset = CGF.Builder.CreateAdd(
6041       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6042   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6043 
6044   // Now we're in a position to decide whether this argument really was in
6045   // registers or not.
6046   llvm::Value *InRegs = nullptr;
6047   InRegs = CGF.Builder.CreateICmpSLE(
6048       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6049 
6050   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6051 
6052   //=======================================
6053   // Argument was in registers
6054   //=======================================
6055 
6056   // Now we emit the code for if the argument was originally passed in
6057   // registers. First start the appropriate block:
6058   CGF.EmitBlock(InRegBlock);
6059 
6060   llvm::Value *reg_top = nullptr;
6061   Address reg_top_p =
6062       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6063   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6064   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6065                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6066   Address RegAddr = Address::invalid();
6067   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6068 
6069   if (IsIndirect) {
6070     // If it's been passed indirectly (actually a struct), whatever we find from
6071     // stored registers or on the stack will actually be a struct **.
6072     MemTy = llvm::PointerType::getUnqual(MemTy);
6073   }
6074 
6075   const Type *Base = nullptr;
6076   uint64_t NumMembers = 0;
6077   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6078   if (IsHFA && NumMembers > 1) {
6079     // Homogeneous aggregates passed in registers will have their elements split
6080     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6081     // qN+1, ...). We reload and store into a temporary local variable
6082     // contiguously.
6083     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6084     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6085     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6086     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6087     Address Tmp = CGF.CreateTempAlloca(HFATy,
6088                                        std::max(TyAlign, BaseTyInfo.Align));
6089 
6090     // On big-endian platforms, the value will be right-aligned in its slot.
6091     int Offset = 0;
6092     if (CGF.CGM.getDataLayout().isBigEndian() &&
6093         BaseTyInfo.Width.getQuantity() < 16)
6094       Offset = 16 - BaseTyInfo.Width.getQuantity();
6095 
6096     for (unsigned i = 0; i < NumMembers; ++i) {
6097       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6098       Address LoadAddr =
6099         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6100       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6101 
6102       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6103 
6104       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6105       CGF.Builder.CreateStore(Elem, StoreAddr);
6106     }
6107 
6108     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6109   } else {
6110     // Otherwise the object is contiguous in memory.
6111 
6112     // It might be right-aligned in its slot.
6113     CharUnits SlotSize = BaseAddr.getAlignment();
6114     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6115         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6116         TySize < SlotSize) {
6117       CharUnits Offset = SlotSize - TySize;
6118       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6119     }
6120 
6121     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6122   }
6123 
6124   CGF.EmitBranch(ContBlock);
6125 
6126   //=======================================
6127   // Argument was on the stack
6128   //=======================================
6129   CGF.EmitBlock(OnStackBlock);
6130 
6131   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6132   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6133 
6134   // Again, stack arguments may need realignment. In this case both integer and
6135   // floating-point ones might be affected.
6136   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6137     int Align = TyAlign.getQuantity();
6138 
6139     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6140 
6141     OnStackPtr = CGF.Builder.CreateAdd(
6142         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6143         "align_stack");
6144     OnStackPtr = CGF.Builder.CreateAnd(
6145         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6146         "align_stack");
6147 
6148     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6149   }
6150   Address OnStackAddr(OnStackPtr,
6151                       std::max(CharUnits::fromQuantity(8), TyAlign));
6152 
6153   // All stack slots are multiples of 8 bytes.
6154   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6155   CharUnits StackSize;
6156   if (IsIndirect)
6157     StackSize = StackSlotSize;
6158   else
6159     StackSize = TySize.alignTo(StackSlotSize);
6160 
6161   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6162   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6163       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6164 
6165   // Write the new value of __stack for the next call to va_arg
6166   CGF.Builder.CreateStore(NewStack, stack_p);
6167 
6168   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6169       TySize < StackSlotSize) {
6170     CharUnits Offset = StackSlotSize - TySize;
6171     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6172   }
6173 
6174   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6175 
6176   CGF.EmitBranch(ContBlock);
6177 
6178   //=======================================
6179   // Tidy up
6180   //=======================================
6181   CGF.EmitBlock(ContBlock);
6182 
6183   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6184                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6185 
6186   if (IsIndirect)
6187     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6188                    TyAlign);
6189 
6190   return ResAddr;
6191 }
6192 
6193 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6194                                         CodeGenFunction &CGF) const {
6195   // The backend's lowering doesn't support va_arg for aggregates or
6196   // illegal vector types.  Lower VAArg here for these cases and use
6197   // the LLVM va_arg instruction for everything else.
6198   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6199     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6200 
6201   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6202   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6203 
6204   // Empty records are ignored for parameter passing purposes.
6205   if (isEmptyRecord(getContext(), Ty, true)) {
6206     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6207     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6208     return Addr;
6209   }
6210 
6211   // The size of the actual thing passed, which might end up just
6212   // being a pointer for indirect types.
6213   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6214 
6215   // Arguments bigger than 16 bytes which aren't homogeneous
6216   // aggregates should be passed indirectly.
6217   bool IsIndirect = false;
6218   if (TyInfo.Width.getQuantity() > 16) {
6219     const Type *Base = nullptr;
6220     uint64_t Members = 0;
6221     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6222   }
6223 
6224   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6225                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6226 }
6227 
6228 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6229                                     QualType Ty) const {
6230   bool IsIndirect = false;
6231 
6232   // Composites larger than 16 bytes are passed by reference.
6233   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6234     IsIndirect = true;
6235 
6236   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6237                           CGF.getContext().getTypeInfoInChars(Ty),
6238                           CharUnits::fromQuantity(8),
6239                           /*allowHigherAlign*/ false);
6240 }
6241 
6242 //===----------------------------------------------------------------------===//
6243 // ARM ABI Implementation
6244 //===----------------------------------------------------------------------===//
6245 
6246 namespace {
6247 
6248 class ARMABIInfo : public SwiftABIInfo {
6249 public:
6250   enum ABIKind {
6251     APCS = 0,
6252     AAPCS = 1,
6253     AAPCS_VFP = 2,
6254     AAPCS16_VFP = 3,
6255   };
6256 
6257 private:
6258   ABIKind Kind;
6259   bool IsFloatABISoftFP;
6260 
6261 public:
6262   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6263       : SwiftABIInfo(CGT), Kind(_Kind) {
6264     setCCs();
6265     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6266         CGT.getCodeGenOpts().FloatABI == ""; // default
6267   }
6268 
6269   bool isEABI() const {
6270     switch (getTarget().getTriple().getEnvironment()) {
6271     case llvm::Triple::Android:
6272     case llvm::Triple::EABI:
6273     case llvm::Triple::EABIHF:
6274     case llvm::Triple::GNUEABI:
6275     case llvm::Triple::GNUEABIHF:
6276     case llvm::Triple::MuslEABI:
6277     case llvm::Triple::MuslEABIHF:
6278       return true;
6279     default:
6280       return false;
6281     }
6282   }
6283 
6284   bool isEABIHF() const {
6285     switch (getTarget().getTriple().getEnvironment()) {
6286     case llvm::Triple::EABIHF:
6287     case llvm::Triple::GNUEABIHF:
6288     case llvm::Triple::MuslEABIHF:
6289       return true;
6290     default:
6291       return false;
6292     }
6293   }
6294 
6295   ABIKind getABIKind() const { return Kind; }
6296 
6297   bool allowBFloatArgsAndRet() const override {
6298     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6299   }
6300 
6301 private:
6302   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6303                                 unsigned functionCallConv) const;
6304   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6305                                   unsigned functionCallConv) const;
6306   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6307                                           uint64_t Members) const;
6308   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6309   bool isIllegalVectorType(QualType Ty) const;
6310   bool containsAnyFP16Vectors(QualType Ty) const;
6311 
6312   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6313   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6314                                          uint64_t Members) const override;
6315 
6316   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6317 
6318   void computeInfo(CGFunctionInfo &FI) const override;
6319 
6320   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6321                     QualType Ty) const override;
6322 
6323   llvm::CallingConv::ID getLLVMDefaultCC() const;
6324   llvm::CallingConv::ID getABIDefaultCC() const;
6325   void setCCs();
6326 
6327   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6328                                     bool asReturnValue) const override {
6329     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6330   }
6331   bool isSwiftErrorInRegister() const override {
6332     return true;
6333   }
6334   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6335                                  unsigned elts) const override;
6336 };
6337 
6338 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6339 public:
6340   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6341       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6342 
6343   const ARMABIInfo &getABIInfo() const {
6344     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6345   }
6346 
6347   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6348     return 13;
6349   }
6350 
6351   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6352     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6353   }
6354 
6355   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6356                                llvm::Value *Address) const override {
6357     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6358 
6359     // 0-15 are the 16 integer registers.
6360     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6361     return false;
6362   }
6363 
6364   unsigned getSizeOfUnwindException() const override {
6365     if (getABIInfo().isEABI()) return 88;
6366     return TargetCodeGenInfo::getSizeOfUnwindException();
6367   }
6368 
6369   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6370                            CodeGen::CodeGenModule &CGM) const override {
6371     if (GV->isDeclaration())
6372       return;
6373     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6374     if (!FD)
6375       return;
6376 
6377     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6378     if (!Attr)
6379       return;
6380 
6381     const char *Kind;
6382     switch (Attr->getInterrupt()) {
6383     case ARMInterruptAttr::Generic: Kind = ""; break;
6384     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6385     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6386     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6387     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6388     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6389     }
6390 
6391     llvm::Function *Fn = cast<llvm::Function>(GV);
6392 
6393     Fn->addFnAttr("interrupt", Kind);
6394 
6395     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6396     if (ABI == ARMABIInfo::APCS)
6397       return;
6398 
6399     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6400     // however this is not necessarily true on taking any interrupt. Instruct
6401     // the backend to perform a realignment as part of the function prologue.
6402     llvm::AttrBuilder B;
6403     B.addStackAlignmentAttr(8);
6404     Fn->addFnAttrs(B);
6405   }
6406 };
6407 
6408 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6409 public:
6410   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6411       : ARMTargetCodeGenInfo(CGT, K) {}
6412 
6413   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6414                            CodeGen::CodeGenModule &CGM) const override;
6415 
6416   void getDependentLibraryOption(llvm::StringRef Lib,
6417                                  llvm::SmallString<24> &Opt) const override {
6418     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6419   }
6420 
6421   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6422                                llvm::SmallString<32> &Opt) const override {
6423     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6424   }
6425 };
6426 
6427 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6428     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6429   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6430   if (GV->isDeclaration())
6431     return;
6432   addStackProbeTargetAttributes(D, GV, CGM);
6433 }
6434 }
6435 
6436 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6437   if (!::classifyReturnType(getCXXABI(), FI, *this))
6438     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6439                                             FI.getCallingConvention());
6440 
6441   for (auto &I : FI.arguments())
6442     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6443                                   FI.getCallingConvention());
6444 
6445 
6446   // Always honor user-specified calling convention.
6447   if (FI.getCallingConvention() != llvm::CallingConv::C)
6448     return;
6449 
6450   llvm::CallingConv::ID cc = getRuntimeCC();
6451   if (cc != llvm::CallingConv::C)
6452     FI.setEffectiveCallingConvention(cc);
6453 }
6454 
6455 /// Return the default calling convention that LLVM will use.
6456 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6457   // The default calling convention that LLVM will infer.
6458   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6459     return llvm::CallingConv::ARM_AAPCS_VFP;
6460   else if (isEABI())
6461     return llvm::CallingConv::ARM_AAPCS;
6462   else
6463     return llvm::CallingConv::ARM_APCS;
6464 }
6465 
6466 /// Return the calling convention that our ABI would like us to use
6467 /// as the C calling convention.
6468 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6469   switch (getABIKind()) {
6470   case APCS: return llvm::CallingConv::ARM_APCS;
6471   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6472   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6473   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6474   }
6475   llvm_unreachable("bad ABI kind");
6476 }
6477 
6478 void ARMABIInfo::setCCs() {
6479   assert(getRuntimeCC() == llvm::CallingConv::C);
6480 
6481   // Don't muddy up the IR with a ton of explicit annotations if
6482   // they'd just match what LLVM will infer from the triple.
6483   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6484   if (abiCC != getLLVMDefaultCC())
6485     RuntimeCC = abiCC;
6486 }
6487 
6488 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6489   uint64_t Size = getContext().getTypeSize(Ty);
6490   if (Size <= 32) {
6491     llvm::Type *ResType =
6492         llvm::Type::getInt32Ty(getVMContext());
6493     return ABIArgInfo::getDirect(ResType);
6494   }
6495   if (Size == 64 || Size == 128) {
6496     auto *ResType = llvm::FixedVectorType::get(
6497         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6498     return ABIArgInfo::getDirect(ResType);
6499   }
6500   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6501 }
6502 
6503 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6504                                                     const Type *Base,
6505                                                     uint64_t Members) const {
6506   assert(Base && "Base class should be set for homogeneous aggregate");
6507   // Base can be a floating-point or a vector.
6508   if (const VectorType *VT = Base->getAs<VectorType>()) {
6509     // FP16 vectors should be converted to integer vectors
6510     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6511       uint64_t Size = getContext().getTypeSize(VT);
6512       auto *NewVecTy = llvm::FixedVectorType::get(
6513           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6514       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6515       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6516     }
6517   }
6518   unsigned Align = 0;
6519   if (getABIKind() == ARMABIInfo::AAPCS ||
6520       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6521     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6522     // default otherwise.
6523     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6524     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6525     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6526   }
6527   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6528 }
6529 
6530 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6531                                             unsigned functionCallConv) const {
6532   // 6.1.2.1 The following argument types are VFP CPRCs:
6533   //   A single-precision floating-point type (including promoted
6534   //   half-precision types); A double-precision floating-point type;
6535   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6536   //   with a Base Type of a single- or double-precision floating-point type,
6537   //   64-bit containerized vectors or 128-bit containerized vectors with one
6538   //   to four Elements.
6539   // Variadic functions should always marshal to the base standard.
6540   bool IsAAPCS_VFP =
6541       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6542 
6543   Ty = useFirstFieldIfTransparentUnion(Ty);
6544 
6545   // Handle illegal vector types here.
6546   if (isIllegalVectorType(Ty))
6547     return coerceIllegalVector(Ty);
6548 
6549   if (!isAggregateTypeForABI(Ty)) {
6550     // Treat an enum type as its underlying type.
6551     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6552       Ty = EnumTy->getDecl()->getIntegerType();
6553     }
6554 
6555     if (const auto *EIT = Ty->getAs<ExtIntType>())
6556       if (EIT->getNumBits() > 64)
6557         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6558 
6559     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6560                                               : ABIArgInfo::getDirect());
6561   }
6562 
6563   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6564     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6565   }
6566 
6567   // Ignore empty records.
6568   if (isEmptyRecord(getContext(), Ty, true))
6569     return ABIArgInfo::getIgnore();
6570 
6571   if (IsAAPCS_VFP) {
6572     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6573     // into VFP registers.
6574     const Type *Base = nullptr;
6575     uint64_t Members = 0;
6576     if (isHomogeneousAggregate(Ty, Base, Members))
6577       return classifyHomogeneousAggregate(Ty, Base, Members);
6578   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6579     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6580     // this convention even for a variadic function: the backend will use GPRs
6581     // if needed.
6582     const Type *Base = nullptr;
6583     uint64_t Members = 0;
6584     if (isHomogeneousAggregate(Ty, Base, Members)) {
6585       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6586       llvm::Type *Ty =
6587         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6588       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6589     }
6590   }
6591 
6592   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6593       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6594     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6595     // bigger than 128-bits, they get placed in space allocated by the caller,
6596     // and a pointer is passed.
6597     return ABIArgInfo::getIndirect(
6598         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6599   }
6600 
6601   // Support byval for ARM.
6602   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6603   // most 8-byte. We realign the indirect argument if type alignment is bigger
6604   // than ABI alignment.
6605   uint64_t ABIAlign = 4;
6606   uint64_t TyAlign;
6607   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6608       getABIKind() == ARMABIInfo::AAPCS) {
6609     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6610     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6611   } else {
6612     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6613   }
6614   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6615     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6616     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6617                                    /*ByVal=*/true,
6618                                    /*Realign=*/TyAlign > ABIAlign);
6619   }
6620 
6621   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6622   // same size and alignment.
6623   if (getTarget().isRenderScriptTarget()) {
6624     return coerceToIntArray(Ty, getContext(), getVMContext());
6625   }
6626 
6627   // Otherwise, pass by coercing to a structure of the appropriate size.
6628   llvm::Type* ElemTy;
6629   unsigned SizeRegs;
6630   // FIXME: Try to match the types of the arguments more accurately where
6631   // we can.
6632   if (TyAlign <= 4) {
6633     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6634     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6635   } else {
6636     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6637     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6638   }
6639 
6640   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6641 }
6642 
6643 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6644                               llvm::LLVMContext &VMContext) {
6645   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6646   // is called integer-like if its size is less than or equal to one word, and
6647   // the offset of each of its addressable sub-fields is zero.
6648 
6649   uint64_t Size = Context.getTypeSize(Ty);
6650 
6651   // Check that the type fits in a word.
6652   if (Size > 32)
6653     return false;
6654 
6655   // FIXME: Handle vector types!
6656   if (Ty->isVectorType())
6657     return false;
6658 
6659   // Float types are never treated as "integer like".
6660   if (Ty->isRealFloatingType())
6661     return false;
6662 
6663   // If this is a builtin or pointer type then it is ok.
6664   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6665     return true;
6666 
6667   // Small complex integer types are "integer like".
6668   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6669     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6670 
6671   // Single element and zero sized arrays should be allowed, by the definition
6672   // above, but they are not.
6673 
6674   // Otherwise, it must be a record type.
6675   const RecordType *RT = Ty->getAs<RecordType>();
6676   if (!RT) return false;
6677 
6678   // Ignore records with flexible arrays.
6679   const RecordDecl *RD = RT->getDecl();
6680   if (RD->hasFlexibleArrayMember())
6681     return false;
6682 
6683   // Check that all sub-fields are at offset 0, and are themselves "integer
6684   // like".
6685   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6686 
6687   bool HadField = false;
6688   unsigned idx = 0;
6689   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6690        i != e; ++i, ++idx) {
6691     const FieldDecl *FD = *i;
6692 
6693     // Bit-fields are not addressable, we only need to verify they are "integer
6694     // like". We still have to disallow a subsequent non-bitfield, for example:
6695     //   struct { int : 0; int x }
6696     // is non-integer like according to gcc.
6697     if (FD->isBitField()) {
6698       if (!RD->isUnion())
6699         HadField = true;
6700 
6701       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6702         return false;
6703 
6704       continue;
6705     }
6706 
6707     // Check if this field is at offset 0.
6708     if (Layout.getFieldOffset(idx) != 0)
6709       return false;
6710 
6711     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6712       return false;
6713 
6714     // Only allow at most one field in a structure. This doesn't match the
6715     // wording above, but follows gcc in situations with a field following an
6716     // empty structure.
6717     if (!RD->isUnion()) {
6718       if (HadField)
6719         return false;
6720 
6721       HadField = true;
6722     }
6723   }
6724 
6725   return true;
6726 }
6727 
6728 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6729                                           unsigned functionCallConv) const {
6730 
6731   // Variadic functions should always marshal to the base standard.
6732   bool IsAAPCS_VFP =
6733       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6734 
6735   if (RetTy->isVoidType())
6736     return ABIArgInfo::getIgnore();
6737 
6738   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6739     // Large vector types should be returned via memory.
6740     if (getContext().getTypeSize(RetTy) > 128)
6741       return getNaturalAlignIndirect(RetTy);
6742     // TODO: FP16/BF16 vectors should be converted to integer vectors
6743     // This check is similar  to isIllegalVectorType - refactor?
6744     if ((!getTarget().hasLegalHalfType() &&
6745         (VT->getElementType()->isFloat16Type() ||
6746          VT->getElementType()->isHalfType())) ||
6747         (IsFloatABISoftFP &&
6748          VT->getElementType()->isBFloat16Type()))
6749       return coerceIllegalVector(RetTy);
6750   }
6751 
6752   if (!isAggregateTypeForABI(RetTy)) {
6753     // Treat an enum type as its underlying type.
6754     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6755       RetTy = EnumTy->getDecl()->getIntegerType();
6756 
6757     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6758       if (EIT->getNumBits() > 64)
6759         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6760 
6761     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6762                                                 : ABIArgInfo::getDirect();
6763   }
6764 
6765   // Are we following APCS?
6766   if (getABIKind() == APCS) {
6767     if (isEmptyRecord(getContext(), RetTy, false))
6768       return ABIArgInfo::getIgnore();
6769 
6770     // Complex types are all returned as packed integers.
6771     //
6772     // FIXME: Consider using 2 x vector types if the back end handles them
6773     // correctly.
6774     if (RetTy->isAnyComplexType())
6775       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6776           getVMContext(), getContext().getTypeSize(RetTy)));
6777 
6778     // Integer like structures are returned in r0.
6779     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6780       // Return in the smallest viable integer type.
6781       uint64_t Size = getContext().getTypeSize(RetTy);
6782       if (Size <= 8)
6783         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6784       if (Size <= 16)
6785         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6786       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6787     }
6788 
6789     // Otherwise return in memory.
6790     return getNaturalAlignIndirect(RetTy);
6791   }
6792 
6793   // Otherwise this is an AAPCS variant.
6794 
6795   if (isEmptyRecord(getContext(), RetTy, true))
6796     return ABIArgInfo::getIgnore();
6797 
6798   // Check for homogeneous aggregates with AAPCS-VFP.
6799   if (IsAAPCS_VFP) {
6800     const Type *Base = nullptr;
6801     uint64_t Members = 0;
6802     if (isHomogeneousAggregate(RetTy, Base, Members))
6803       return classifyHomogeneousAggregate(RetTy, Base, Members);
6804   }
6805 
6806   // Aggregates <= 4 bytes are returned in r0; other aggregates
6807   // are returned indirectly.
6808   uint64_t Size = getContext().getTypeSize(RetTy);
6809   if (Size <= 32) {
6810     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6811     // same size and alignment.
6812     if (getTarget().isRenderScriptTarget()) {
6813       return coerceToIntArray(RetTy, getContext(), getVMContext());
6814     }
6815     if (getDataLayout().isBigEndian())
6816       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6817       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6818 
6819     // Return in the smallest viable integer type.
6820     if (Size <= 8)
6821       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6822     if (Size <= 16)
6823       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6824     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6825   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6826     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6827     llvm::Type *CoerceTy =
6828         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6829     return ABIArgInfo::getDirect(CoerceTy);
6830   }
6831 
6832   return getNaturalAlignIndirect(RetTy);
6833 }
6834 
6835 /// isIllegalVector - check whether Ty is an illegal vector type.
6836 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6837   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6838     // On targets that don't support half, fp16 or bfloat, they are expanded
6839     // into float, and we don't want the ABI to depend on whether or not they
6840     // are supported in hardware. Thus return false to coerce vectors of these
6841     // types into integer vectors.
6842     // We do not depend on hasLegalHalfType for bfloat as it is a
6843     // separate IR type.
6844     if ((!getTarget().hasLegalHalfType() &&
6845         (VT->getElementType()->isFloat16Type() ||
6846          VT->getElementType()->isHalfType())) ||
6847         (IsFloatABISoftFP &&
6848          VT->getElementType()->isBFloat16Type()))
6849       return true;
6850     if (isAndroid()) {
6851       // Android shipped using Clang 3.1, which supported a slightly different
6852       // vector ABI. The primary differences were that 3-element vector types
6853       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6854       // accepts that legacy behavior for Android only.
6855       // Check whether VT is legal.
6856       unsigned NumElements = VT->getNumElements();
6857       // NumElements should be power of 2 or equal to 3.
6858       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6859         return true;
6860     } else {
6861       // Check whether VT is legal.
6862       unsigned NumElements = VT->getNumElements();
6863       uint64_t Size = getContext().getTypeSize(VT);
6864       // NumElements should be power of 2.
6865       if (!llvm::isPowerOf2_32(NumElements))
6866         return true;
6867       // Size should be greater than 32 bits.
6868       return Size <= 32;
6869     }
6870   }
6871   return false;
6872 }
6873 
6874 /// Return true if a type contains any 16-bit floating point vectors
6875 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6876   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6877     uint64_t NElements = AT->getSize().getZExtValue();
6878     if (NElements == 0)
6879       return false;
6880     return containsAnyFP16Vectors(AT->getElementType());
6881   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6882     const RecordDecl *RD = RT->getDecl();
6883 
6884     // If this is a C++ record, check the bases first.
6885     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6886       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6887             return containsAnyFP16Vectors(B.getType());
6888           }))
6889         return true;
6890 
6891     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6892           return FD && containsAnyFP16Vectors(FD->getType());
6893         }))
6894       return true;
6895 
6896     return false;
6897   } else {
6898     if (const VectorType *VT = Ty->getAs<VectorType>())
6899       return (VT->getElementType()->isFloat16Type() ||
6900               VT->getElementType()->isBFloat16Type() ||
6901               VT->getElementType()->isHalfType());
6902     return false;
6903   }
6904 }
6905 
6906 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6907                                            llvm::Type *eltTy,
6908                                            unsigned numElts) const {
6909   if (!llvm::isPowerOf2_32(numElts))
6910     return false;
6911   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6912   if (size > 64)
6913     return false;
6914   if (vectorSize.getQuantity() != 8 &&
6915       (vectorSize.getQuantity() != 16 || numElts == 1))
6916     return false;
6917   return true;
6918 }
6919 
6920 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6921   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6922   // double, or 64-bit or 128-bit vectors.
6923   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6924     if (BT->getKind() == BuiltinType::Float ||
6925         BT->getKind() == BuiltinType::Double ||
6926         BT->getKind() == BuiltinType::LongDouble)
6927       return true;
6928   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6929     unsigned VecSize = getContext().getTypeSize(VT);
6930     if (VecSize == 64 || VecSize == 128)
6931       return true;
6932   }
6933   return false;
6934 }
6935 
6936 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6937                                                    uint64_t Members) const {
6938   return Members <= 4;
6939 }
6940 
6941 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6942                                         bool acceptHalf) const {
6943   // Give precedence to user-specified calling conventions.
6944   if (callConvention != llvm::CallingConv::C)
6945     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6946   else
6947     return (getABIKind() == AAPCS_VFP) ||
6948            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6949 }
6950 
6951 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6952                               QualType Ty) const {
6953   CharUnits SlotSize = CharUnits::fromQuantity(4);
6954 
6955   // Empty records are ignored for parameter passing purposes.
6956   if (isEmptyRecord(getContext(), Ty, true)) {
6957     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6958     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6959     return Addr;
6960   }
6961 
6962   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6963   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6964 
6965   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6966   bool IsIndirect = false;
6967   const Type *Base = nullptr;
6968   uint64_t Members = 0;
6969   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6970     IsIndirect = true;
6971 
6972   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6973   // allocated by the caller.
6974   } else if (TySize > CharUnits::fromQuantity(16) &&
6975              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6976              !isHomogeneousAggregate(Ty, Base, Members)) {
6977     IsIndirect = true;
6978 
6979   // Otherwise, bound the type's ABI alignment.
6980   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6981   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6982   // Our callers should be prepared to handle an under-aligned address.
6983   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6984              getABIKind() == ARMABIInfo::AAPCS) {
6985     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6986     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6987   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6988     // ARMv7k allows type alignment up to 16 bytes.
6989     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6990     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6991   } else {
6992     TyAlignForABI = CharUnits::fromQuantity(4);
6993   }
6994 
6995   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
6996   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6997                           SlotSize, /*AllowHigherAlign*/ true);
6998 }
6999 
7000 //===----------------------------------------------------------------------===//
7001 // NVPTX ABI Implementation
7002 //===----------------------------------------------------------------------===//
7003 
7004 namespace {
7005 
7006 class NVPTXTargetCodeGenInfo;
7007 
7008 class NVPTXABIInfo : public ABIInfo {
7009   NVPTXTargetCodeGenInfo &CGInfo;
7010 
7011 public:
7012   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7013       : ABIInfo(CGT), CGInfo(Info) {}
7014 
7015   ABIArgInfo classifyReturnType(QualType RetTy) const;
7016   ABIArgInfo classifyArgumentType(QualType Ty) const;
7017 
7018   void computeInfo(CGFunctionInfo &FI) const override;
7019   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7020                     QualType Ty) const override;
7021   bool isUnsupportedType(QualType T) const;
7022   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7023 };
7024 
7025 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7026 public:
7027   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7028       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7029 
7030   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7031                            CodeGen::CodeGenModule &M) const override;
7032   bool shouldEmitStaticExternCAliases() const override;
7033 
7034   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7035     // On the device side, surface reference is represented as an object handle
7036     // in 64-bit integer.
7037     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7038   }
7039 
7040   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7041     // On the device side, texture reference is represented as an object handle
7042     // in 64-bit integer.
7043     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7044   }
7045 
7046   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7047                                               LValue Src) const override {
7048     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7049     return true;
7050   }
7051 
7052   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7053                                               LValue Src) const override {
7054     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7055     return true;
7056   }
7057 
7058 private:
7059   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7060   // resulting MDNode to the nvvm.annotations MDNode.
7061   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7062                               int Operand);
7063 
7064   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7065                                            LValue Src) {
7066     llvm::Value *Handle = nullptr;
7067     llvm::Constant *C =
7068         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7069     // Lookup `addrspacecast` through the constant pointer if any.
7070     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7071       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7072     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7073       // Load the handle from the specific global variable using
7074       // `nvvm.texsurf.handle.internal` intrinsic.
7075       Handle = CGF.EmitRuntimeCall(
7076           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7077                                {GV->getType()}),
7078           {GV}, "texsurf_handle");
7079     } else
7080       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7081     CGF.EmitStoreOfScalar(Handle, Dst);
7082   }
7083 };
7084 
7085 /// Checks if the type is unsupported directly by the current target.
7086 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7087   ASTContext &Context = getContext();
7088   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7089     return true;
7090   if (!Context.getTargetInfo().hasFloat128Type() &&
7091       (T->isFloat128Type() ||
7092        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7093     return true;
7094   if (const auto *EIT = T->getAs<ExtIntType>())
7095     return EIT->getNumBits() >
7096            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7097   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7098       Context.getTypeSize(T) > 64U)
7099     return true;
7100   if (const auto *AT = T->getAsArrayTypeUnsafe())
7101     return isUnsupportedType(AT->getElementType());
7102   const auto *RT = T->getAs<RecordType>();
7103   if (!RT)
7104     return false;
7105   const RecordDecl *RD = RT->getDecl();
7106 
7107   // If this is a C++ record, check the bases first.
7108   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7109     for (const CXXBaseSpecifier &I : CXXRD->bases())
7110       if (isUnsupportedType(I.getType()))
7111         return true;
7112 
7113   for (const FieldDecl *I : RD->fields())
7114     if (isUnsupportedType(I->getType()))
7115       return true;
7116   return false;
7117 }
7118 
7119 /// Coerce the given type into an array with maximum allowed size of elements.
7120 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7121                                                    unsigned MaxSize) const {
7122   // Alignment and Size are measured in bits.
7123   const uint64_t Size = getContext().getTypeSize(Ty);
7124   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7125   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7126   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7127   const uint64_t NumElements = (Size + Div - 1) / Div;
7128   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7129 }
7130 
7131 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7132   if (RetTy->isVoidType())
7133     return ABIArgInfo::getIgnore();
7134 
7135   if (getContext().getLangOpts().OpenMP &&
7136       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7137     return coerceToIntArrayWithLimit(RetTy, 64);
7138 
7139   // note: this is different from default ABI
7140   if (!RetTy->isScalarType())
7141     return ABIArgInfo::getDirect();
7142 
7143   // Treat an enum type as its underlying type.
7144   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7145     RetTy = EnumTy->getDecl()->getIntegerType();
7146 
7147   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7148                                                : ABIArgInfo::getDirect());
7149 }
7150 
7151 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7152   // Treat an enum type as its underlying type.
7153   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7154     Ty = EnumTy->getDecl()->getIntegerType();
7155 
7156   // Return aggregates type as indirect by value
7157   if (isAggregateTypeForABI(Ty)) {
7158     // Under CUDA device compilation, tex/surf builtin types are replaced with
7159     // object types and passed directly.
7160     if (getContext().getLangOpts().CUDAIsDevice) {
7161       if (Ty->isCUDADeviceBuiltinSurfaceType())
7162         return ABIArgInfo::getDirect(
7163             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7164       if (Ty->isCUDADeviceBuiltinTextureType())
7165         return ABIArgInfo::getDirect(
7166             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7167     }
7168     return getNaturalAlignIndirect(Ty, /* byval */ true);
7169   }
7170 
7171   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7172     if ((EIT->getNumBits() > 128) ||
7173         (!getContext().getTargetInfo().hasInt128Type() &&
7174          EIT->getNumBits() > 64))
7175       return getNaturalAlignIndirect(Ty, /* byval */ true);
7176   }
7177 
7178   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7179                                             : ABIArgInfo::getDirect());
7180 }
7181 
7182 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7183   if (!getCXXABI().classifyReturnType(FI))
7184     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7185   for (auto &I : FI.arguments())
7186     I.info = classifyArgumentType(I.type);
7187 
7188   // Always honor user-specified calling convention.
7189   if (FI.getCallingConvention() != llvm::CallingConv::C)
7190     return;
7191 
7192   FI.setEffectiveCallingConvention(getRuntimeCC());
7193 }
7194 
7195 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7196                                 QualType Ty) const {
7197   llvm_unreachable("NVPTX does not support varargs");
7198 }
7199 
7200 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7201     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7202   if (GV->isDeclaration())
7203     return;
7204   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7205   if (VD) {
7206     if (M.getLangOpts().CUDA) {
7207       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7208         addNVVMMetadata(GV, "surface", 1);
7209       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7210         addNVVMMetadata(GV, "texture", 1);
7211       return;
7212     }
7213   }
7214 
7215   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7216   if (!FD) return;
7217 
7218   llvm::Function *F = cast<llvm::Function>(GV);
7219 
7220   // Perform special handling in OpenCL mode
7221   if (M.getLangOpts().OpenCL) {
7222     // Use OpenCL function attributes to check for kernel functions
7223     // By default, all functions are device functions
7224     if (FD->hasAttr<OpenCLKernelAttr>()) {
7225       // OpenCL __kernel functions get kernel metadata
7226       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7227       addNVVMMetadata(F, "kernel", 1);
7228       // And kernel functions are not subject to inlining
7229       F->addFnAttr(llvm::Attribute::NoInline);
7230     }
7231   }
7232 
7233   // Perform special handling in CUDA mode.
7234   if (M.getLangOpts().CUDA) {
7235     // CUDA __global__ functions get a kernel metadata entry.  Since
7236     // __global__ functions cannot be called from the device, we do not
7237     // need to set the noinline attribute.
7238     if (FD->hasAttr<CUDAGlobalAttr>()) {
7239       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7240       addNVVMMetadata(F, "kernel", 1);
7241     }
7242     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7243       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7244       llvm::APSInt MaxThreads(32);
7245       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7246       if (MaxThreads > 0)
7247         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7248 
7249       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7250       // not specified in __launch_bounds__ or if the user specified a 0 value,
7251       // we don't have to add a PTX directive.
7252       if (Attr->getMinBlocks()) {
7253         llvm::APSInt MinBlocks(32);
7254         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7255         if (MinBlocks > 0)
7256           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7257           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7258       }
7259     }
7260   }
7261 }
7262 
7263 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7264                                              StringRef Name, int Operand) {
7265   llvm::Module *M = GV->getParent();
7266   llvm::LLVMContext &Ctx = M->getContext();
7267 
7268   // Get "nvvm.annotations" metadata node
7269   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7270 
7271   llvm::Metadata *MDVals[] = {
7272       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7273       llvm::ConstantAsMetadata::get(
7274           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7275   // Append metadata to nvvm.annotations
7276   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7277 }
7278 
7279 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7280   return false;
7281 }
7282 }
7283 
7284 //===----------------------------------------------------------------------===//
7285 // SystemZ ABI Implementation
7286 //===----------------------------------------------------------------------===//
7287 
7288 namespace {
7289 
7290 class SystemZABIInfo : public SwiftABIInfo {
7291   bool HasVector;
7292   bool IsSoftFloatABI;
7293 
7294 public:
7295   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7296     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7297 
7298   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7299   bool isCompoundType(QualType Ty) const;
7300   bool isVectorArgumentType(QualType Ty) const;
7301   bool isFPArgumentType(QualType Ty) const;
7302   QualType GetSingleElementType(QualType Ty) const;
7303 
7304   ABIArgInfo classifyReturnType(QualType RetTy) const;
7305   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7306 
7307   void computeInfo(CGFunctionInfo &FI) const override {
7308     if (!getCXXABI().classifyReturnType(FI))
7309       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7310     for (auto &I : FI.arguments())
7311       I.info = classifyArgumentType(I.type);
7312   }
7313 
7314   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7315                     QualType Ty) const override;
7316 
7317   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7318                                     bool asReturnValue) const override {
7319     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7320   }
7321   bool isSwiftErrorInRegister() const override {
7322     return false;
7323   }
7324 };
7325 
7326 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7327 public:
7328   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7329       : TargetCodeGenInfo(
7330             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7331 
7332   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7333                           CGBuilderTy &Builder,
7334                           CodeGenModule &CGM) const override {
7335     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7336     // Only use TDC in constrained FP mode.
7337     if (!Builder.getIsFPConstrained())
7338       return nullptr;
7339 
7340     llvm::Type *Ty = V->getType();
7341     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7342       llvm::Module &M = CGM.getModule();
7343       auto &Ctx = M.getContext();
7344       llvm::Function *TDCFunc =
7345           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7346       unsigned TDCBits = 0;
7347       switch (BuiltinID) {
7348       case Builtin::BI__builtin_isnan:
7349         TDCBits = 0xf;
7350         break;
7351       case Builtin::BIfinite:
7352       case Builtin::BI__finite:
7353       case Builtin::BIfinitef:
7354       case Builtin::BI__finitef:
7355       case Builtin::BIfinitel:
7356       case Builtin::BI__finitel:
7357       case Builtin::BI__builtin_isfinite:
7358         TDCBits = 0xfc0;
7359         break;
7360       case Builtin::BI__builtin_isinf:
7361         TDCBits = 0x30;
7362         break;
7363       default:
7364         break;
7365       }
7366       if (TDCBits)
7367         return Builder.CreateCall(
7368             TDCFunc,
7369             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7370     }
7371     return nullptr;
7372   }
7373 };
7374 }
7375 
7376 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7377   // Treat an enum type as its underlying type.
7378   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7379     Ty = EnumTy->getDecl()->getIntegerType();
7380 
7381   // Promotable integer types are required to be promoted by the ABI.
7382   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7383     return true;
7384 
7385   if (const auto *EIT = Ty->getAs<ExtIntType>())
7386     if (EIT->getNumBits() < 64)
7387       return true;
7388 
7389   // 32-bit values must also be promoted.
7390   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7391     switch (BT->getKind()) {
7392     case BuiltinType::Int:
7393     case BuiltinType::UInt:
7394       return true;
7395     default:
7396       return false;
7397     }
7398   return false;
7399 }
7400 
7401 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7402   return (Ty->isAnyComplexType() ||
7403           Ty->isVectorType() ||
7404           isAggregateTypeForABI(Ty));
7405 }
7406 
7407 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7408   return (HasVector &&
7409           Ty->isVectorType() &&
7410           getContext().getTypeSize(Ty) <= 128);
7411 }
7412 
7413 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7414   if (IsSoftFloatABI)
7415     return false;
7416 
7417   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7418     switch (BT->getKind()) {
7419     case BuiltinType::Float:
7420     case BuiltinType::Double:
7421       return true;
7422     default:
7423       return false;
7424     }
7425 
7426   return false;
7427 }
7428 
7429 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7430   const RecordType *RT = Ty->getAs<RecordType>();
7431 
7432   if (RT && RT->isStructureOrClassType()) {
7433     const RecordDecl *RD = RT->getDecl();
7434     QualType Found;
7435 
7436     // If this is a C++ record, check the bases first.
7437     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7438       for (const auto &I : CXXRD->bases()) {
7439         QualType Base = I.getType();
7440 
7441         // Empty bases don't affect things either way.
7442         if (isEmptyRecord(getContext(), Base, true))
7443           continue;
7444 
7445         if (!Found.isNull())
7446           return Ty;
7447         Found = GetSingleElementType(Base);
7448       }
7449 
7450     // Check the fields.
7451     for (const auto *FD : RD->fields()) {
7452       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7453       // Unlike isSingleElementStruct(), empty structure and array fields
7454       // do count.  So do anonymous bitfields that aren't zero-sized.
7455       if (getContext().getLangOpts().CPlusPlus &&
7456           FD->isZeroLengthBitField(getContext()))
7457         continue;
7458       // Like isSingleElementStruct(), ignore C++20 empty data members.
7459       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7460           isEmptyRecord(getContext(), FD->getType(), true))
7461         continue;
7462 
7463       // Unlike isSingleElementStruct(), arrays do not count.
7464       // Nested structures still do though.
7465       if (!Found.isNull())
7466         return Ty;
7467       Found = GetSingleElementType(FD->getType());
7468     }
7469 
7470     // Unlike isSingleElementStruct(), trailing padding is allowed.
7471     // An 8-byte aligned struct s { float f; } is passed as a double.
7472     if (!Found.isNull())
7473       return Found;
7474   }
7475 
7476   return Ty;
7477 }
7478 
7479 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7480                                   QualType Ty) const {
7481   // Assume that va_list type is correct; should be pointer to LLVM type:
7482   // struct {
7483   //   i64 __gpr;
7484   //   i64 __fpr;
7485   //   i8 *__overflow_arg_area;
7486   //   i8 *__reg_save_area;
7487   // };
7488 
7489   // Every non-vector argument occupies 8 bytes and is passed by preference
7490   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7491   // always passed on the stack.
7492   Ty = getContext().getCanonicalType(Ty);
7493   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7494   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7495   llvm::Type *DirectTy = ArgTy;
7496   ABIArgInfo AI = classifyArgumentType(Ty);
7497   bool IsIndirect = AI.isIndirect();
7498   bool InFPRs = false;
7499   bool IsVector = false;
7500   CharUnits UnpaddedSize;
7501   CharUnits DirectAlign;
7502   if (IsIndirect) {
7503     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7504     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7505   } else {
7506     if (AI.getCoerceToType())
7507       ArgTy = AI.getCoerceToType();
7508     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7509     IsVector = ArgTy->isVectorTy();
7510     UnpaddedSize = TyInfo.Width;
7511     DirectAlign = TyInfo.Align;
7512   }
7513   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7514   if (IsVector && UnpaddedSize > PaddedSize)
7515     PaddedSize = CharUnits::fromQuantity(16);
7516   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7517 
7518   CharUnits Padding = (PaddedSize - UnpaddedSize);
7519 
7520   llvm::Type *IndexTy = CGF.Int64Ty;
7521   llvm::Value *PaddedSizeV =
7522     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7523 
7524   if (IsVector) {
7525     // Work out the address of a vector argument on the stack.
7526     // Vector arguments are always passed in the high bits of a
7527     // single (8 byte) or double (16 byte) stack slot.
7528     Address OverflowArgAreaPtr =
7529         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7530     Address OverflowArgArea =
7531       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7532               TyInfo.Align);
7533     Address MemAddr =
7534       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7535 
7536     // Update overflow_arg_area_ptr pointer
7537     llvm::Value *NewOverflowArgArea =
7538       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7539                             OverflowArgArea.getPointer(), PaddedSizeV,
7540                             "overflow_arg_area");
7541     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7542 
7543     return MemAddr;
7544   }
7545 
7546   assert(PaddedSize.getQuantity() == 8);
7547 
7548   unsigned MaxRegs, RegCountField, RegSaveIndex;
7549   CharUnits RegPadding;
7550   if (InFPRs) {
7551     MaxRegs = 4; // Maximum of 4 FPR arguments
7552     RegCountField = 1; // __fpr
7553     RegSaveIndex = 16; // save offset for f0
7554     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7555   } else {
7556     MaxRegs = 5; // Maximum of 5 GPR arguments
7557     RegCountField = 0; // __gpr
7558     RegSaveIndex = 2; // save offset for r2
7559     RegPadding = Padding; // values are passed in the low bits of a GPR
7560   }
7561 
7562   Address RegCountPtr =
7563       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7564   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7565   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7566   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7567                                                  "fits_in_regs");
7568 
7569   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7570   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7571   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7572   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7573 
7574   // Emit code to load the value if it was passed in registers.
7575   CGF.EmitBlock(InRegBlock);
7576 
7577   // Work out the address of an argument register.
7578   llvm::Value *ScaledRegCount =
7579     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7580   llvm::Value *RegBase =
7581     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7582                                       + RegPadding.getQuantity());
7583   llvm::Value *RegOffset =
7584     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7585   Address RegSaveAreaPtr =
7586       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7587   llvm::Value *RegSaveArea =
7588     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7589   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7590                                            "raw_reg_addr"),
7591                      PaddedSize);
7592   Address RegAddr =
7593     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7594 
7595   // Update the register count
7596   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7597   llvm::Value *NewRegCount =
7598     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7599   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7600   CGF.EmitBranch(ContBlock);
7601 
7602   // Emit code to load the value if it was passed in memory.
7603   CGF.EmitBlock(InMemBlock);
7604 
7605   // Work out the address of a stack argument.
7606   Address OverflowArgAreaPtr =
7607       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7608   Address OverflowArgArea =
7609     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7610             PaddedSize);
7611   Address RawMemAddr =
7612     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7613   Address MemAddr =
7614     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7615 
7616   // Update overflow_arg_area_ptr pointer
7617   llvm::Value *NewOverflowArgArea =
7618     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7619                           OverflowArgArea.getPointer(), PaddedSizeV,
7620                           "overflow_arg_area");
7621   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7622   CGF.EmitBranch(ContBlock);
7623 
7624   // Return the appropriate result.
7625   CGF.EmitBlock(ContBlock);
7626   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7627                                  MemAddr, InMemBlock, "va_arg.addr");
7628 
7629   if (IsIndirect)
7630     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7631                       TyInfo.Align);
7632 
7633   return ResAddr;
7634 }
7635 
7636 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7637   if (RetTy->isVoidType())
7638     return ABIArgInfo::getIgnore();
7639   if (isVectorArgumentType(RetTy))
7640     return ABIArgInfo::getDirect();
7641   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7642     return getNaturalAlignIndirect(RetTy);
7643   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7644                                                : ABIArgInfo::getDirect());
7645 }
7646 
7647 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7648   // Handle the generic C++ ABI.
7649   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7650     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7651 
7652   // Integers and enums are extended to full register width.
7653   if (isPromotableIntegerTypeForABI(Ty))
7654     return ABIArgInfo::getExtend(Ty);
7655 
7656   // Handle vector types and vector-like structure types.  Note that
7657   // as opposed to float-like structure types, we do not allow any
7658   // padding for vector-like structures, so verify the sizes match.
7659   uint64_t Size = getContext().getTypeSize(Ty);
7660   QualType SingleElementTy = GetSingleElementType(Ty);
7661   if (isVectorArgumentType(SingleElementTy) &&
7662       getContext().getTypeSize(SingleElementTy) == Size)
7663     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7664 
7665   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7666   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7667     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7668 
7669   // Handle small structures.
7670   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7671     // Structures with flexible arrays have variable length, so really
7672     // fail the size test above.
7673     const RecordDecl *RD = RT->getDecl();
7674     if (RD->hasFlexibleArrayMember())
7675       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7676 
7677     // The structure is passed as an unextended integer, a float, or a double.
7678     llvm::Type *PassTy;
7679     if (isFPArgumentType(SingleElementTy)) {
7680       assert(Size == 32 || Size == 64);
7681       if (Size == 32)
7682         PassTy = llvm::Type::getFloatTy(getVMContext());
7683       else
7684         PassTy = llvm::Type::getDoubleTy(getVMContext());
7685     } else
7686       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7687     return ABIArgInfo::getDirect(PassTy);
7688   }
7689 
7690   // Non-structure compounds are passed indirectly.
7691   if (isCompoundType(Ty))
7692     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7693 
7694   return ABIArgInfo::getDirect(nullptr);
7695 }
7696 
7697 //===----------------------------------------------------------------------===//
7698 // MSP430 ABI Implementation
7699 //===----------------------------------------------------------------------===//
7700 
7701 namespace {
7702 
7703 class MSP430ABIInfo : public DefaultABIInfo {
7704   static ABIArgInfo complexArgInfo() {
7705     ABIArgInfo Info = ABIArgInfo::getDirect();
7706     Info.setCanBeFlattened(false);
7707     return Info;
7708   }
7709 
7710 public:
7711   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7712 
7713   ABIArgInfo classifyReturnType(QualType RetTy) const {
7714     if (RetTy->isAnyComplexType())
7715       return complexArgInfo();
7716 
7717     return DefaultABIInfo::classifyReturnType(RetTy);
7718   }
7719 
7720   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7721     if (RetTy->isAnyComplexType())
7722       return complexArgInfo();
7723 
7724     return DefaultABIInfo::classifyArgumentType(RetTy);
7725   }
7726 
7727   // Just copy the original implementations because
7728   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7729   void computeInfo(CGFunctionInfo &FI) const override {
7730     if (!getCXXABI().classifyReturnType(FI))
7731       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7732     for (auto &I : FI.arguments())
7733       I.info = classifyArgumentType(I.type);
7734   }
7735 
7736   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7737                     QualType Ty) const override {
7738     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7739   }
7740 };
7741 
7742 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7743 public:
7744   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7745       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7746   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7747                            CodeGen::CodeGenModule &M) const override;
7748 };
7749 
7750 }
7751 
7752 void MSP430TargetCodeGenInfo::setTargetAttributes(
7753     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7754   if (GV->isDeclaration())
7755     return;
7756   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7757     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7758     if (!InterruptAttr)
7759       return;
7760 
7761     // Handle 'interrupt' attribute:
7762     llvm::Function *F = cast<llvm::Function>(GV);
7763 
7764     // Step 1: Set ISR calling convention.
7765     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7766 
7767     // Step 2: Add attributes goodness.
7768     F->addFnAttr(llvm::Attribute::NoInline);
7769     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7770   }
7771 }
7772 
7773 //===----------------------------------------------------------------------===//
7774 // MIPS ABI Implementation.  This works for both little-endian and
7775 // big-endian variants.
7776 //===----------------------------------------------------------------------===//
7777 
7778 namespace {
7779 class MipsABIInfo : public ABIInfo {
7780   bool IsO32;
7781   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7782   void CoerceToIntArgs(uint64_t TySize,
7783                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7784   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7785   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7786   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7787 public:
7788   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7789     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7790     StackAlignInBytes(IsO32 ? 8 : 16) {}
7791 
7792   ABIArgInfo classifyReturnType(QualType RetTy) const;
7793   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7794   void computeInfo(CGFunctionInfo &FI) const override;
7795   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7796                     QualType Ty) const override;
7797   ABIArgInfo extendType(QualType Ty) const;
7798 };
7799 
7800 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7801   unsigned SizeOfUnwindException;
7802 public:
7803   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7804       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7805         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7806 
7807   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7808     return 29;
7809   }
7810 
7811   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7812                            CodeGen::CodeGenModule &CGM) const override {
7813     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7814     if (!FD) return;
7815     llvm::Function *Fn = cast<llvm::Function>(GV);
7816 
7817     if (FD->hasAttr<MipsLongCallAttr>())
7818       Fn->addFnAttr("long-call");
7819     else if (FD->hasAttr<MipsShortCallAttr>())
7820       Fn->addFnAttr("short-call");
7821 
7822     // Other attributes do not have a meaning for declarations.
7823     if (GV->isDeclaration())
7824       return;
7825 
7826     if (FD->hasAttr<Mips16Attr>()) {
7827       Fn->addFnAttr("mips16");
7828     }
7829     else if (FD->hasAttr<NoMips16Attr>()) {
7830       Fn->addFnAttr("nomips16");
7831     }
7832 
7833     if (FD->hasAttr<MicroMipsAttr>())
7834       Fn->addFnAttr("micromips");
7835     else if (FD->hasAttr<NoMicroMipsAttr>())
7836       Fn->addFnAttr("nomicromips");
7837 
7838     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7839     if (!Attr)
7840       return;
7841 
7842     const char *Kind;
7843     switch (Attr->getInterrupt()) {
7844     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7845     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7846     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7847     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7848     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7849     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7850     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7851     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7852     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7853     }
7854 
7855     Fn->addFnAttr("interrupt", Kind);
7856 
7857   }
7858 
7859   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7860                                llvm::Value *Address) const override;
7861 
7862   unsigned getSizeOfUnwindException() const override {
7863     return SizeOfUnwindException;
7864   }
7865 };
7866 }
7867 
7868 void MipsABIInfo::CoerceToIntArgs(
7869     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7870   llvm::IntegerType *IntTy =
7871     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7872 
7873   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7874   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7875     ArgList.push_back(IntTy);
7876 
7877   // If necessary, add one more integer type to ArgList.
7878   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7879 
7880   if (R)
7881     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7882 }
7883 
7884 // In N32/64, an aligned double precision floating point field is passed in
7885 // a register.
7886 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7887   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7888 
7889   if (IsO32) {
7890     CoerceToIntArgs(TySize, ArgList);
7891     return llvm::StructType::get(getVMContext(), ArgList);
7892   }
7893 
7894   if (Ty->isComplexType())
7895     return CGT.ConvertType(Ty);
7896 
7897   const RecordType *RT = Ty->getAs<RecordType>();
7898 
7899   // Unions/vectors are passed in integer registers.
7900   if (!RT || !RT->isStructureOrClassType()) {
7901     CoerceToIntArgs(TySize, ArgList);
7902     return llvm::StructType::get(getVMContext(), ArgList);
7903   }
7904 
7905   const RecordDecl *RD = RT->getDecl();
7906   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7907   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7908 
7909   uint64_t LastOffset = 0;
7910   unsigned idx = 0;
7911   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7912 
7913   // Iterate over fields in the struct/class and check if there are any aligned
7914   // double fields.
7915   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7916        i != e; ++i, ++idx) {
7917     const QualType Ty = i->getType();
7918     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7919 
7920     if (!BT || BT->getKind() != BuiltinType::Double)
7921       continue;
7922 
7923     uint64_t Offset = Layout.getFieldOffset(idx);
7924     if (Offset % 64) // Ignore doubles that are not aligned.
7925       continue;
7926 
7927     // Add ((Offset - LastOffset) / 64) args of type i64.
7928     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7929       ArgList.push_back(I64);
7930 
7931     // Add double type.
7932     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7933     LastOffset = Offset + 64;
7934   }
7935 
7936   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7937   ArgList.append(IntArgList.begin(), IntArgList.end());
7938 
7939   return llvm::StructType::get(getVMContext(), ArgList);
7940 }
7941 
7942 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7943                                         uint64_t Offset) const {
7944   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7945     return nullptr;
7946 
7947   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7948 }
7949 
7950 ABIArgInfo
7951 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7952   Ty = useFirstFieldIfTransparentUnion(Ty);
7953 
7954   uint64_t OrigOffset = Offset;
7955   uint64_t TySize = getContext().getTypeSize(Ty);
7956   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7957 
7958   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7959                    (uint64_t)StackAlignInBytes);
7960   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7961   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7962 
7963   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7964     // Ignore empty aggregates.
7965     if (TySize == 0)
7966       return ABIArgInfo::getIgnore();
7967 
7968     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7969       Offset = OrigOffset + MinABIStackAlignInBytes;
7970       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7971     }
7972 
7973     // If we have reached here, aggregates are passed directly by coercing to
7974     // another structure type. Padding is inserted if the offset of the
7975     // aggregate is unaligned.
7976     ABIArgInfo ArgInfo =
7977         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7978                               getPaddingType(OrigOffset, CurrOffset));
7979     ArgInfo.setInReg(true);
7980     return ArgInfo;
7981   }
7982 
7983   // Treat an enum type as its underlying type.
7984   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7985     Ty = EnumTy->getDecl()->getIntegerType();
7986 
7987   // Make sure we pass indirectly things that are too large.
7988   if (const auto *EIT = Ty->getAs<ExtIntType>())
7989     if (EIT->getNumBits() > 128 ||
7990         (EIT->getNumBits() > 64 &&
7991          !getContext().getTargetInfo().hasInt128Type()))
7992       return getNaturalAlignIndirect(Ty);
7993 
7994   // All integral types are promoted to the GPR width.
7995   if (Ty->isIntegralOrEnumerationType())
7996     return extendType(Ty);
7997 
7998   return ABIArgInfo::getDirect(
7999       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
8000 }
8001 
8002 llvm::Type*
8003 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
8004   const RecordType *RT = RetTy->getAs<RecordType>();
8005   SmallVector<llvm::Type*, 8> RTList;
8006 
8007   if (RT && RT->isStructureOrClassType()) {
8008     const RecordDecl *RD = RT->getDecl();
8009     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
8010     unsigned FieldCnt = Layout.getFieldCount();
8011 
8012     // N32/64 returns struct/classes in floating point registers if the
8013     // following conditions are met:
8014     // 1. The size of the struct/class is no larger than 128-bit.
8015     // 2. The struct/class has one or two fields all of which are floating
8016     //    point types.
8017     // 3. The offset of the first field is zero (this follows what gcc does).
8018     //
8019     // Any other composite results are returned in integer registers.
8020     //
8021     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8022       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8023       for (; b != e; ++b) {
8024         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8025 
8026         if (!BT || !BT->isFloatingPoint())
8027           break;
8028 
8029         RTList.push_back(CGT.ConvertType(b->getType()));
8030       }
8031 
8032       if (b == e)
8033         return llvm::StructType::get(getVMContext(), RTList,
8034                                      RD->hasAttr<PackedAttr>());
8035 
8036       RTList.clear();
8037     }
8038   }
8039 
8040   CoerceToIntArgs(Size, RTList);
8041   return llvm::StructType::get(getVMContext(), RTList);
8042 }
8043 
8044 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8045   uint64_t Size = getContext().getTypeSize(RetTy);
8046 
8047   if (RetTy->isVoidType())
8048     return ABIArgInfo::getIgnore();
8049 
8050   // O32 doesn't treat zero-sized structs differently from other structs.
8051   // However, N32/N64 ignores zero sized return values.
8052   if (!IsO32 && Size == 0)
8053     return ABIArgInfo::getIgnore();
8054 
8055   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8056     if (Size <= 128) {
8057       if (RetTy->isAnyComplexType())
8058         return ABIArgInfo::getDirect();
8059 
8060       // O32 returns integer vectors in registers and N32/N64 returns all small
8061       // aggregates in registers.
8062       if (!IsO32 ||
8063           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8064         ABIArgInfo ArgInfo =
8065             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8066         ArgInfo.setInReg(true);
8067         return ArgInfo;
8068       }
8069     }
8070 
8071     return getNaturalAlignIndirect(RetTy);
8072   }
8073 
8074   // Treat an enum type as its underlying type.
8075   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8076     RetTy = EnumTy->getDecl()->getIntegerType();
8077 
8078   // Make sure we pass indirectly things that are too large.
8079   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8080     if (EIT->getNumBits() > 128 ||
8081         (EIT->getNumBits() > 64 &&
8082          !getContext().getTargetInfo().hasInt128Type()))
8083       return getNaturalAlignIndirect(RetTy);
8084 
8085   if (isPromotableIntegerTypeForABI(RetTy))
8086     return ABIArgInfo::getExtend(RetTy);
8087 
8088   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8089       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8090     return ABIArgInfo::getSignExtend(RetTy);
8091 
8092   return ABIArgInfo::getDirect();
8093 }
8094 
8095 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8096   ABIArgInfo &RetInfo = FI.getReturnInfo();
8097   if (!getCXXABI().classifyReturnType(FI))
8098     RetInfo = classifyReturnType(FI.getReturnType());
8099 
8100   // Check if a pointer to an aggregate is passed as a hidden argument.
8101   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8102 
8103   for (auto &I : FI.arguments())
8104     I.info = classifyArgumentType(I.type, Offset);
8105 }
8106 
8107 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8108                                QualType OrigTy) const {
8109   QualType Ty = OrigTy;
8110 
8111   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8112   // Pointers are also promoted in the same way but this only matters for N32.
8113   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8114   unsigned PtrWidth = getTarget().getPointerWidth(0);
8115   bool DidPromote = false;
8116   if ((Ty->isIntegerType() &&
8117           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8118       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8119     DidPromote = true;
8120     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8121                                             Ty->isSignedIntegerType());
8122   }
8123 
8124   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8125 
8126   // The alignment of things in the argument area is never larger than
8127   // StackAlignInBytes.
8128   TyInfo.Align =
8129     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8130 
8131   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8132   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8133 
8134   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8135                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8136 
8137 
8138   // If there was a promotion, "unpromote" into a temporary.
8139   // TODO: can we just use a pointer into a subset of the original slot?
8140   if (DidPromote) {
8141     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8142     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8143 
8144     // Truncate down to the right width.
8145     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8146                                                  : CGF.IntPtrTy);
8147     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8148     if (OrigTy->isPointerType())
8149       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8150 
8151     CGF.Builder.CreateStore(V, Temp);
8152     Addr = Temp;
8153   }
8154 
8155   return Addr;
8156 }
8157 
8158 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8159   int TySize = getContext().getTypeSize(Ty);
8160 
8161   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8162   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8163     return ABIArgInfo::getSignExtend(Ty);
8164 
8165   return ABIArgInfo::getExtend(Ty);
8166 }
8167 
8168 bool
8169 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8170                                                llvm::Value *Address) const {
8171   // This information comes from gcc's implementation, which seems to
8172   // as canonical as it gets.
8173 
8174   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8175   // are aliased to pairs of single-precision FP registers.
8176   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8177 
8178   // 0-31 are the general purpose registers, $0 - $31.
8179   // 32-63 are the floating-point registers, $f0 - $f31.
8180   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8181   // 66 is the (notional, I think) register for signal-handler return.
8182   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8183 
8184   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8185   // They are one bit wide and ignored here.
8186 
8187   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8188   // (coprocessor 1 is the FP unit)
8189   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8190   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8191   // 176-181 are the DSP accumulator registers.
8192   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8193   return false;
8194 }
8195 
8196 //===----------------------------------------------------------------------===//
8197 // M68k ABI Implementation
8198 //===----------------------------------------------------------------------===//
8199 
8200 namespace {
8201 
8202 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8203 public:
8204   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8205       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8206   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8207                            CodeGen::CodeGenModule &M) const override;
8208 };
8209 
8210 } // namespace
8211 
8212 void M68kTargetCodeGenInfo::setTargetAttributes(
8213     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8214   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8215     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8216       // Handle 'interrupt' attribute:
8217       llvm::Function *F = cast<llvm::Function>(GV);
8218 
8219       // Step 1: Set ISR calling convention.
8220       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8221 
8222       // Step 2: Add attributes goodness.
8223       F->addFnAttr(llvm::Attribute::NoInline);
8224 
8225       // Step 3: Emit ISR vector alias.
8226       unsigned Num = attr->getNumber() / 2;
8227       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8228                                 "__isr_" + Twine(Num), F);
8229     }
8230   }
8231 }
8232 
8233 //===----------------------------------------------------------------------===//
8234 // AVR ABI Implementation. Documented at
8235 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8236 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8237 //===----------------------------------------------------------------------===//
8238 
8239 namespace {
8240 class AVRABIInfo : public DefaultABIInfo {
8241 public:
8242   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8243 
8244   ABIArgInfo classifyReturnType(QualType Ty) const {
8245     // A return struct with size less than or equal to 8 bytes is returned
8246     // directly via registers R18-R25.
8247     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8248       return ABIArgInfo::getDirect();
8249     else
8250       return DefaultABIInfo::classifyReturnType(Ty);
8251   }
8252 
8253   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8254   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8255   void computeInfo(CGFunctionInfo &FI) const override {
8256     if (!getCXXABI().classifyReturnType(FI))
8257       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8258     for (auto &I : FI.arguments())
8259       I.info = classifyArgumentType(I.type);
8260   }
8261 };
8262 
8263 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8264 public:
8265   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8266       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8267 
8268   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8269                                   const VarDecl *D) const override {
8270     // Check if a global/static variable is defined within address space 1
8271     // but not constant.
8272     LangAS AS = D->getType().getAddressSpace();
8273     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8274         !D->getType().isConstQualified())
8275       CGM.getDiags().Report(D->getLocation(),
8276                             diag::err_verify_nonconst_addrspace)
8277           << "__flash";
8278     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8279   }
8280 
8281   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8282                            CodeGen::CodeGenModule &CGM) const override {
8283     if (GV->isDeclaration())
8284       return;
8285     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8286     if (!FD) return;
8287     auto *Fn = cast<llvm::Function>(GV);
8288 
8289     if (FD->getAttr<AVRInterruptAttr>())
8290       Fn->addFnAttr("interrupt");
8291 
8292     if (FD->getAttr<AVRSignalAttr>())
8293       Fn->addFnAttr("signal");
8294   }
8295 };
8296 }
8297 
8298 //===----------------------------------------------------------------------===//
8299 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8300 // Currently subclassed only to implement custom OpenCL C function attribute
8301 // handling.
8302 //===----------------------------------------------------------------------===//
8303 
8304 namespace {
8305 
8306 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8307 public:
8308   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8309     : DefaultTargetCodeGenInfo(CGT) {}
8310 
8311   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8312                            CodeGen::CodeGenModule &M) const override;
8313 };
8314 
8315 void TCETargetCodeGenInfo::setTargetAttributes(
8316     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8317   if (GV->isDeclaration())
8318     return;
8319   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8320   if (!FD) return;
8321 
8322   llvm::Function *F = cast<llvm::Function>(GV);
8323 
8324   if (M.getLangOpts().OpenCL) {
8325     if (FD->hasAttr<OpenCLKernelAttr>()) {
8326       // OpenCL C Kernel functions are not subject to inlining
8327       F->addFnAttr(llvm::Attribute::NoInline);
8328       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8329       if (Attr) {
8330         // Convert the reqd_work_group_size() attributes to metadata.
8331         llvm::LLVMContext &Context = F->getContext();
8332         llvm::NamedMDNode *OpenCLMetadata =
8333             M.getModule().getOrInsertNamedMetadata(
8334                 "opencl.kernel_wg_size_info");
8335 
8336         SmallVector<llvm::Metadata *, 5> Operands;
8337         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8338 
8339         Operands.push_back(
8340             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8341                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8342         Operands.push_back(
8343             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8344                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8345         Operands.push_back(
8346             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8347                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8348 
8349         // Add a boolean constant operand for "required" (true) or "hint"
8350         // (false) for implementing the work_group_size_hint attr later.
8351         // Currently always true as the hint is not yet implemented.
8352         Operands.push_back(
8353             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8354         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8355       }
8356     }
8357   }
8358 }
8359 
8360 }
8361 
8362 //===----------------------------------------------------------------------===//
8363 // Hexagon ABI Implementation
8364 //===----------------------------------------------------------------------===//
8365 
8366 namespace {
8367 
8368 class HexagonABIInfo : public DefaultABIInfo {
8369 public:
8370   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8371 
8372 private:
8373   ABIArgInfo classifyReturnType(QualType RetTy) const;
8374   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8375   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8376 
8377   void computeInfo(CGFunctionInfo &FI) const override;
8378 
8379   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8380                     QualType Ty) const override;
8381   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8382                               QualType Ty) const;
8383   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8384                               QualType Ty) const;
8385   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8386                                    QualType Ty) const;
8387 };
8388 
8389 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8390 public:
8391   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8392       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8393 
8394   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8395     return 29;
8396   }
8397 
8398   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8399                            CodeGen::CodeGenModule &GCM) const override {
8400     if (GV->isDeclaration())
8401       return;
8402     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8403     if (!FD)
8404       return;
8405   }
8406 };
8407 
8408 } // namespace
8409 
8410 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8411   unsigned RegsLeft = 6;
8412   if (!getCXXABI().classifyReturnType(FI))
8413     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8414   for (auto &I : FI.arguments())
8415     I.info = classifyArgumentType(I.type, &RegsLeft);
8416 }
8417 
8418 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8419   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8420                        " through registers");
8421 
8422   if (*RegsLeft == 0)
8423     return false;
8424 
8425   if (Size <= 32) {
8426     (*RegsLeft)--;
8427     return true;
8428   }
8429 
8430   if (2 <= (*RegsLeft & (~1U))) {
8431     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8432     return true;
8433   }
8434 
8435   // Next available register was r5 but candidate was greater than 32-bits so it
8436   // has to go on the stack. However we still consume r5
8437   if (*RegsLeft == 1)
8438     *RegsLeft = 0;
8439 
8440   return false;
8441 }
8442 
8443 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8444                                                 unsigned *RegsLeft) const {
8445   if (!isAggregateTypeForABI(Ty)) {
8446     // Treat an enum type as its underlying type.
8447     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8448       Ty = EnumTy->getDecl()->getIntegerType();
8449 
8450     uint64_t Size = getContext().getTypeSize(Ty);
8451     if (Size <= 64)
8452       HexagonAdjustRegsLeft(Size, RegsLeft);
8453 
8454     if (Size > 64 && Ty->isExtIntType())
8455       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8456 
8457     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8458                                              : ABIArgInfo::getDirect();
8459   }
8460 
8461   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8462     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8463 
8464   // Ignore empty records.
8465   if (isEmptyRecord(getContext(), Ty, true))
8466     return ABIArgInfo::getIgnore();
8467 
8468   uint64_t Size = getContext().getTypeSize(Ty);
8469   unsigned Align = getContext().getTypeAlign(Ty);
8470 
8471   if (Size > 64)
8472     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8473 
8474   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8475     Align = Size <= 32 ? 32 : 64;
8476   if (Size <= Align) {
8477     // Pass in the smallest viable integer type.
8478     if (!llvm::isPowerOf2_64(Size))
8479       Size = llvm::NextPowerOf2(Size);
8480     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8481   }
8482   return DefaultABIInfo::classifyArgumentType(Ty);
8483 }
8484 
8485 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8486   if (RetTy->isVoidType())
8487     return ABIArgInfo::getIgnore();
8488 
8489   const TargetInfo &T = CGT.getTarget();
8490   uint64_t Size = getContext().getTypeSize(RetTy);
8491 
8492   if (RetTy->getAs<VectorType>()) {
8493     // HVX vectors are returned in vector registers or register pairs.
8494     if (T.hasFeature("hvx")) {
8495       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8496       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8497       if (Size == VecSize || Size == 2*VecSize)
8498         return ABIArgInfo::getDirectInReg();
8499     }
8500     // Large vector types should be returned via memory.
8501     if (Size > 64)
8502       return getNaturalAlignIndirect(RetTy);
8503   }
8504 
8505   if (!isAggregateTypeForABI(RetTy)) {
8506     // Treat an enum type as its underlying type.
8507     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8508       RetTy = EnumTy->getDecl()->getIntegerType();
8509 
8510     if (Size > 64 && RetTy->isExtIntType())
8511       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8512 
8513     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8514                                                 : ABIArgInfo::getDirect();
8515   }
8516 
8517   if (isEmptyRecord(getContext(), RetTy, true))
8518     return ABIArgInfo::getIgnore();
8519 
8520   // Aggregates <= 8 bytes are returned in registers, other aggregates
8521   // are returned indirectly.
8522   if (Size <= 64) {
8523     // Return in the smallest viable integer type.
8524     if (!llvm::isPowerOf2_64(Size))
8525       Size = llvm::NextPowerOf2(Size);
8526     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8527   }
8528   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8529 }
8530 
8531 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8532                                             Address VAListAddr,
8533                                             QualType Ty) const {
8534   // Load the overflow area pointer.
8535   Address __overflow_area_pointer_p =
8536       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8537   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8538       __overflow_area_pointer_p, "__overflow_area_pointer");
8539 
8540   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8541   if (Align > 4) {
8542     // Alignment should be a power of 2.
8543     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8544 
8545     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8546     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8547 
8548     // Add offset to the current pointer to access the argument.
8549     __overflow_area_pointer =
8550         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8551     llvm::Value *AsInt =
8552         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8553 
8554     // Create a mask which should be "AND"ed
8555     // with (overflow_arg_area + align - 1)
8556     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8557     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8558         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8559         "__overflow_area_pointer.align");
8560   }
8561 
8562   // Get the type of the argument from memory and bitcast
8563   // overflow area pointer to the argument type.
8564   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8565   Address AddrTyped = CGF.Builder.CreateBitCast(
8566       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8567       llvm::PointerType::getUnqual(PTy));
8568 
8569   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8570   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8571 
8572   __overflow_area_pointer = CGF.Builder.CreateGEP(
8573       CGF.Int8Ty, __overflow_area_pointer,
8574       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8575       "__overflow_area_pointer.next");
8576   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8577 
8578   return AddrTyped;
8579 }
8580 
8581 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8582                                             Address VAListAddr,
8583                                             QualType Ty) const {
8584   // FIXME: Need to handle alignment
8585   llvm::Type *BP = CGF.Int8PtrTy;
8586   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8587   CGBuilderTy &Builder = CGF.Builder;
8588   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8589   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8590   // Handle address alignment for type alignment > 32 bits
8591   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8592   if (TyAlign > 4) {
8593     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8594     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8595     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8596     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8597     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8598   }
8599   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8600   Address AddrTyped = Builder.CreateBitCast(
8601       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8602 
8603   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8604   llvm::Value *NextAddr = Builder.CreateGEP(
8605       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8606   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8607 
8608   return AddrTyped;
8609 }
8610 
8611 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8612                                                  Address VAListAddr,
8613                                                  QualType Ty) const {
8614   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8615 
8616   if (ArgSize > 8)
8617     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8618 
8619   // Here we have check if the argument is in register area or
8620   // in overflow area.
8621   // If the saved register area pointer + argsize rounded up to alignment >
8622   // saved register area end pointer, argument is in overflow area.
8623   unsigned RegsLeft = 6;
8624   Ty = CGF.getContext().getCanonicalType(Ty);
8625   (void)classifyArgumentType(Ty, &RegsLeft);
8626 
8627   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8628   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8629   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8630   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8631 
8632   // Get rounded size of the argument.GCC does not allow vararg of
8633   // size < 4 bytes. We follow the same logic here.
8634   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8635   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8636 
8637   // Argument may be in saved register area
8638   CGF.EmitBlock(MaybeRegBlock);
8639 
8640   // Load the current saved register area pointer.
8641   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8642       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8643   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8644       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8645 
8646   // Load the saved register area end pointer.
8647   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8648       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8649   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8650       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8651 
8652   // If the size of argument is > 4 bytes, check if the stack
8653   // location is aligned to 8 bytes
8654   if (ArgAlign > 4) {
8655 
8656     llvm::Value *__current_saved_reg_area_pointer_int =
8657         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8658                                    CGF.Int32Ty);
8659 
8660     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8661         __current_saved_reg_area_pointer_int,
8662         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8663         "align_current_saved_reg_area_pointer");
8664 
8665     __current_saved_reg_area_pointer_int =
8666         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8667                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8668                               "align_current_saved_reg_area_pointer");
8669 
8670     __current_saved_reg_area_pointer =
8671         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8672                                    __current_saved_reg_area_pointer->getType(),
8673                                    "align_current_saved_reg_area_pointer");
8674   }
8675 
8676   llvm::Value *__new_saved_reg_area_pointer =
8677       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8678                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8679                             "__new_saved_reg_area_pointer");
8680 
8681   llvm::Value *UsingStack = 0;
8682   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8683                                          __saved_reg_area_end_pointer);
8684 
8685   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8686 
8687   // Argument in saved register area
8688   // Implement the block where argument is in register saved area
8689   CGF.EmitBlock(InRegBlock);
8690 
8691   llvm::Type *PTy = CGF.ConvertType(Ty);
8692   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8693       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8694 
8695   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8696                           __current_saved_reg_area_pointer_p);
8697 
8698   CGF.EmitBranch(ContBlock);
8699 
8700   // Argument in overflow area
8701   // Implement the block where the argument is in overflow area.
8702   CGF.EmitBlock(OnStackBlock);
8703 
8704   // Load the overflow area pointer
8705   Address __overflow_area_pointer_p =
8706       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8707   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8708       __overflow_area_pointer_p, "__overflow_area_pointer");
8709 
8710   // Align the overflow area pointer according to the alignment of the argument
8711   if (ArgAlign > 4) {
8712     llvm::Value *__overflow_area_pointer_int =
8713         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8714 
8715     __overflow_area_pointer_int =
8716         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8717                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8718                               "align_overflow_area_pointer");
8719 
8720     __overflow_area_pointer_int =
8721         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8722                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8723                               "align_overflow_area_pointer");
8724 
8725     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8726         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8727         "align_overflow_area_pointer");
8728   }
8729 
8730   // Get the pointer for next argument in overflow area and store it
8731   // to overflow area pointer.
8732   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8733       CGF.Int8Ty, __overflow_area_pointer,
8734       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8735       "__overflow_area_pointer.next");
8736 
8737   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8738                           __overflow_area_pointer_p);
8739 
8740   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8741                           __current_saved_reg_area_pointer_p);
8742 
8743   // Bitcast the overflow area pointer to the type of argument.
8744   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8745   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8746       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8747 
8748   CGF.EmitBranch(ContBlock);
8749 
8750   // Get the correct pointer to load the variable argument
8751   // Implement the ContBlock
8752   CGF.EmitBlock(ContBlock);
8753 
8754   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8755   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8756   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8757   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8758 
8759   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8760 }
8761 
8762 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8763                                   QualType Ty) const {
8764 
8765   if (getTarget().getTriple().isMusl())
8766     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8767 
8768   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8769 }
8770 
8771 //===----------------------------------------------------------------------===//
8772 // Lanai ABI Implementation
8773 //===----------------------------------------------------------------------===//
8774 
8775 namespace {
8776 class LanaiABIInfo : public DefaultABIInfo {
8777 public:
8778   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8779 
8780   bool shouldUseInReg(QualType Ty, CCState &State) const;
8781 
8782   void computeInfo(CGFunctionInfo &FI) const override {
8783     CCState State(FI);
8784     // Lanai uses 4 registers to pass arguments unless the function has the
8785     // regparm attribute set.
8786     if (FI.getHasRegParm()) {
8787       State.FreeRegs = FI.getRegParm();
8788     } else {
8789       State.FreeRegs = 4;
8790     }
8791 
8792     if (!getCXXABI().classifyReturnType(FI))
8793       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8794     for (auto &I : FI.arguments())
8795       I.info = classifyArgumentType(I.type, State);
8796   }
8797 
8798   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8799   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8800 };
8801 } // end anonymous namespace
8802 
8803 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8804   unsigned Size = getContext().getTypeSize(Ty);
8805   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8806 
8807   if (SizeInRegs == 0)
8808     return false;
8809 
8810   if (SizeInRegs > State.FreeRegs) {
8811     State.FreeRegs = 0;
8812     return false;
8813   }
8814 
8815   State.FreeRegs -= SizeInRegs;
8816 
8817   return true;
8818 }
8819 
8820 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8821                                            CCState &State) const {
8822   if (!ByVal) {
8823     if (State.FreeRegs) {
8824       --State.FreeRegs; // Non-byval indirects just use one pointer.
8825       return getNaturalAlignIndirectInReg(Ty);
8826     }
8827     return getNaturalAlignIndirect(Ty, false);
8828   }
8829 
8830   // Compute the byval alignment.
8831   const unsigned MinABIStackAlignInBytes = 4;
8832   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8833   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8834                                  /*Realign=*/TypeAlign >
8835                                      MinABIStackAlignInBytes);
8836 }
8837 
8838 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8839                                               CCState &State) const {
8840   // Check with the C++ ABI first.
8841   const RecordType *RT = Ty->getAs<RecordType>();
8842   if (RT) {
8843     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8844     if (RAA == CGCXXABI::RAA_Indirect) {
8845       return getIndirectResult(Ty, /*ByVal=*/false, State);
8846     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8847       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8848     }
8849   }
8850 
8851   if (isAggregateTypeForABI(Ty)) {
8852     // Structures with flexible arrays are always indirect.
8853     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8854       return getIndirectResult(Ty, /*ByVal=*/true, State);
8855 
8856     // Ignore empty structs/unions.
8857     if (isEmptyRecord(getContext(), Ty, true))
8858       return ABIArgInfo::getIgnore();
8859 
8860     llvm::LLVMContext &LLVMContext = getVMContext();
8861     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8862     if (SizeInRegs <= State.FreeRegs) {
8863       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8864       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8865       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8866       State.FreeRegs -= SizeInRegs;
8867       return ABIArgInfo::getDirectInReg(Result);
8868     } else {
8869       State.FreeRegs = 0;
8870     }
8871     return getIndirectResult(Ty, true, State);
8872   }
8873 
8874   // Treat an enum type as its underlying type.
8875   if (const auto *EnumTy = Ty->getAs<EnumType>())
8876     Ty = EnumTy->getDecl()->getIntegerType();
8877 
8878   bool InReg = shouldUseInReg(Ty, State);
8879 
8880   // Don't pass >64 bit integers in registers.
8881   if (const auto *EIT = Ty->getAs<ExtIntType>())
8882     if (EIT->getNumBits() > 64)
8883       return getIndirectResult(Ty, /*ByVal=*/true, State);
8884 
8885   if (isPromotableIntegerTypeForABI(Ty)) {
8886     if (InReg)
8887       return ABIArgInfo::getDirectInReg();
8888     return ABIArgInfo::getExtend(Ty);
8889   }
8890   if (InReg)
8891     return ABIArgInfo::getDirectInReg();
8892   return ABIArgInfo::getDirect();
8893 }
8894 
8895 namespace {
8896 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8897 public:
8898   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8899       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8900 };
8901 }
8902 
8903 //===----------------------------------------------------------------------===//
8904 // AMDGPU ABI Implementation
8905 //===----------------------------------------------------------------------===//
8906 
8907 namespace {
8908 
8909 class AMDGPUABIInfo final : public DefaultABIInfo {
8910 private:
8911   static const unsigned MaxNumRegsForArgsRet = 16;
8912 
8913   unsigned numRegsForType(QualType Ty) const;
8914 
8915   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8916   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8917                                          uint64_t Members) const override;
8918 
8919   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8920   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8921                                        unsigned ToAS) const {
8922     // Single value types.
8923     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8924       return llvm::PointerType::get(
8925           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8926     return Ty;
8927   }
8928 
8929 public:
8930   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8931     DefaultABIInfo(CGT) {}
8932 
8933   ABIArgInfo classifyReturnType(QualType RetTy) const;
8934   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8935   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8936 
8937   void computeInfo(CGFunctionInfo &FI) const override;
8938   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8939                     QualType Ty) const override;
8940 };
8941 
8942 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8943   return true;
8944 }
8945 
8946 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8947   const Type *Base, uint64_t Members) const {
8948   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8949 
8950   // Homogeneous Aggregates may occupy at most 16 registers.
8951   return Members * NumRegs <= MaxNumRegsForArgsRet;
8952 }
8953 
8954 /// Estimate number of registers the type will use when passed in registers.
8955 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8956   unsigned NumRegs = 0;
8957 
8958   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8959     // Compute from the number of elements. The reported size is based on the
8960     // in-memory size, which includes the padding 4th element for 3-vectors.
8961     QualType EltTy = VT->getElementType();
8962     unsigned EltSize = getContext().getTypeSize(EltTy);
8963 
8964     // 16-bit element vectors should be passed as packed.
8965     if (EltSize == 16)
8966       return (VT->getNumElements() + 1) / 2;
8967 
8968     unsigned EltNumRegs = (EltSize + 31) / 32;
8969     return EltNumRegs * VT->getNumElements();
8970   }
8971 
8972   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8973     const RecordDecl *RD = RT->getDecl();
8974     assert(!RD->hasFlexibleArrayMember());
8975 
8976     for (const FieldDecl *Field : RD->fields()) {
8977       QualType FieldTy = Field->getType();
8978       NumRegs += numRegsForType(FieldTy);
8979     }
8980 
8981     return NumRegs;
8982   }
8983 
8984   return (getContext().getTypeSize(Ty) + 31) / 32;
8985 }
8986 
8987 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8988   llvm::CallingConv::ID CC = FI.getCallingConvention();
8989 
8990   if (!getCXXABI().classifyReturnType(FI))
8991     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8992 
8993   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8994   for (auto &Arg : FI.arguments()) {
8995     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8996       Arg.info = classifyKernelArgumentType(Arg.type);
8997     } else {
8998       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8999     }
9000   }
9001 }
9002 
9003 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9004                                  QualType Ty) const {
9005   llvm_unreachable("AMDGPU does not support varargs");
9006 }
9007 
9008 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
9009   if (isAggregateTypeForABI(RetTy)) {
9010     // Records with non-trivial destructors/copy-constructors should not be
9011     // returned by value.
9012     if (!getRecordArgABI(RetTy, getCXXABI())) {
9013       // Ignore empty structs/unions.
9014       if (isEmptyRecord(getContext(), RetTy, true))
9015         return ABIArgInfo::getIgnore();
9016 
9017       // Lower single-element structs to just return a regular value.
9018       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9019         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9020 
9021       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9022         const RecordDecl *RD = RT->getDecl();
9023         if (RD->hasFlexibleArrayMember())
9024           return DefaultABIInfo::classifyReturnType(RetTy);
9025       }
9026 
9027       // Pack aggregates <= 4 bytes into single VGPR or pair.
9028       uint64_t Size = getContext().getTypeSize(RetTy);
9029       if (Size <= 16)
9030         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9031 
9032       if (Size <= 32)
9033         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9034 
9035       if (Size <= 64) {
9036         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9037         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9038       }
9039 
9040       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9041         return ABIArgInfo::getDirect();
9042     }
9043   }
9044 
9045   // Otherwise just do the default thing.
9046   return DefaultABIInfo::classifyReturnType(RetTy);
9047 }
9048 
9049 /// For kernels all parameters are really passed in a special buffer. It doesn't
9050 /// make sense to pass anything byval, so everything must be direct.
9051 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9052   Ty = useFirstFieldIfTransparentUnion(Ty);
9053 
9054   // TODO: Can we omit empty structs?
9055 
9056   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9057     Ty = QualType(SeltTy, 0);
9058 
9059   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9060   llvm::Type *LTy = OrigLTy;
9061   if (getContext().getLangOpts().HIP) {
9062     LTy = coerceKernelArgumentType(
9063         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9064         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9065   }
9066 
9067   // FIXME: Should also use this for OpenCL, but it requires addressing the
9068   // problem of kernels being called.
9069   //
9070   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9071   // to global address space when using byref. This would require implementing a
9072   // new kind of coercion of the in-memory type when for indirect arguments.
9073   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9074       isAggregateTypeForABI(Ty)) {
9075     return ABIArgInfo::getIndirectAliased(
9076         getContext().getTypeAlignInChars(Ty),
9077         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9078         false /*Realign*/, nullptr /*Padding*/);
9079   }
9080 
9081   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9082   // individual elements, which confuses the Clover OpenCL backend; therefore we
9083   // have to set it to false here. Other args of getDirect() are just defaults.
9084   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9085 }
9086 
9087 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9088                                                unsigned &NumRegsLeft) const {
9089   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9090 
9091   Ty = useFirstFieldIfTransparentUnion(Ty);
9092 
9093   if (isAggregateTypeForABI(Ty)) {
9094     // Records with non-trivial destructors/copy-constructors should not be
9095     // passed by value.
9096     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9097       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9098 
9099     // Ignore empty structs/unions.
9100     if (isEmptyRecord(getContext(), Ty, true))
9101       return ABIArgInfo::getIgnore();
9102 
9103     // Lower single-element structs to just pass a regular value. TODO: We
9104     // could do reasonable-size multiple-element structs too, using getExpand(),
9105     // though watch out for things like bitfields.
9106     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9107       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9108 
9109     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9110       const RecordDecl *RD = RT->getDecl();
9111       if (RD->hasFlexibleArrayMember())
9112         return DefaultABIInfo::classifyArgumentType(Ty);
9113     }
9114 
9115     // Pack aggregates <= 8 bytes into single VGPR or pair.
9116     uint64_t Size = getContext().getTypeSize(Ty);
9117     if (Size <= 64) {
9118       unsigned NumRegs = (Size + 31) / 32;
9119       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9120 
9121       if (Size <= 16)
9122         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9123 
9124       if (Size <= 32)
9125         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9126 
9127       // XXX: Should this be i64 instead, and should the limit increase?
9128       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9129       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9130     }
9131 
9132     if (NumRegsLeft > 0) {
9133       unsigned NumRegs = numRegsForType(Ty);
9134       if (NumRegsLeft >= NumRegs) {
9135         NumRegsLeft -= NumRegs;
9136         return ABIArgInfo::getDirect();
9137       }
9138     }
9139   }
9140 
9141   // Otherwise just do the default thing.
9142   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9143   if (!ArgInfo.isIndirect()) {
9144     unsigned NumRegs = numRegsForType(Ty);
9145     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9146   }
9147 
9148   return ArgInfo;
9149 }
9150 
9151 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9152 public:
9153   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9154       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9155   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9156                            CodeGen::CodeGenModule &M) const override;
9157   unsigned getOpenCLKernelCallingConv() const override;
9158 
9159   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9160       llvm::PointerType *T, QualType QT) const override;
9161 
9162   LangAS getASTAllocaAddressSpace() const override {
9163     return getLangASFromTargetAS(
9164         getABIInfo().getDataLayout().getAllocaAddrSpace());
9165   }
9166   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9167                                   const VarDecl *D) const override;
9168   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9169                                          SyncScope Scope,
9170                                          llvm::AtomicOrdering Ordering,
9171                                          llvm::LLVMContext &Ctx) const override;
9172   llvm::Function *
9173   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9174                             llvm::Function *BlockInvokeFunc,
9175                             llvm::Value *BlockLiteral) const override;
9176   bool shouldEmitStaticExternCAliases() const override;
9177   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9178 };
9179 }
9180 
9181 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9182                                               llvm::GlobalValue *GV) {
9183   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9184     return false;
9185 
9186   return D->hasAttr<OpenCLKernelAttr>() ||
9187          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9188          (isa<VarDecl>(D) &&
9189           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9190            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9191            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9192 }
9193 
9194 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9195     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9196   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9197     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9198     GV->setDSOLocal(true);
9199   }
9200 
9201   if (GV->isDeclaration())
9202     return;
9203   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9204   if (!FD)
9205     return;
9206 
9207   llvm::Function *F = cast<llvm::Function>(GV);
9208 
9209   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9210     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9211 
9212 
9213   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9214                               FD->hasAttr<OpenCLKernelAttr>();
9215   const bool IsHIPKernel = M.getLangOpts().HIP &&
9216                            FD->hasAttr<CUDAGlobalAttr>();
9217   if ((IsOpenCLKernel || IsHIPKernel) &&
9218       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9219     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9220 
9221   if (IsHIPKernel)
9222     F->addFnAttr("uniform-work-group-size", "true");
9223 
9224 
9225   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9226   if (ReqdWGS || FlatWGS) {
9227     unsigned Min = 0;
9228     unsigned Max = 0;
9229     if (FlatWGS) {
9230       Min = FlatWGS->getMin()
9231                 ->EvaluateKnownConstInt(M.getContext())
9232                 .getExtValue();
9233       Max = FlatWGS->getMax()
9234                 ->EvaluateKnownConstInt(M.getContext())
9235                 .getExtValue();
9236     }
9237     if (ReqdWGS && Min == 0 && Max == 0)
9238       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9239 
9240     if (Min != 0) {
9241       assert(Min <= Max && "Min must be less than or equal Max");
9242 
9243       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9244       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9245     } else
9246       assert(Max == 0 && "Max must be zero");
9247   } else if (IsOpenCLKernel || IsHIPKernel) {
9248     // By default, restrict the maximum size to a value specified by
9249     // --gpu-max-threads-per-block=n or its default value for HIP.
9250     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9251     const unsigned DefaultMaxWorkGroupSize =
9252         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9253                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9254     std::string AttrVal =
9255         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9256     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9257   }
9258 
9259   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9260     unsigned Min =
9261         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9262     unsigned Max = Attr->getMax() ? Attr->getMax()
9263                                         ->EvaluateKnownConstInt(M.getContext())
9264                                         .getExtValue()
9265                                   : 0;
9266 
9267     if (Min != 0) {
9268       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9269 
9270       std::string AttrVal = llvm::utostr(Min);
9271       if (Max != 0)
9272         AttrVal = AttrVal + "," + llvm::utostr(Max);
9273       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9274     } else
9275       assert(Max == 0 && "Max must be zero");
9276   }
9277 
9278   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9279     unsigned NumSGPR = Attr->getNumSGPR();
9280 
9281     if (NumSGPR != 0)
9282       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9283   }
9284 
9285   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9286     uint32_t NumVGPR = Attr->getNumVGPR();
9287 
9288     if (NumVGPR != 0)
9289       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9290   }
9291 
9292   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9293     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9294 
9295   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9296     F->addFnAttr("amdgpu-ieee", "false");
9297 }
9298 
9299 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9300   return llvm::CallingConv::AMDGPU_KERNEL;
9301 }
9302 
9303 // Currently LLVM assumes null pointers always have value 0,
9304 // which results in incorrectly transformed IR. Therefore, instead of
9305 // emitting null pointers in private and local address spaces, a null
9306 // pointer in generic address space is emitted which is casted to a
9307 // pointer in local or private address space.
9308 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9309     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9310     QualType QT) const {
9311   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9312     return llvm::ConstantPointerNull::get(PT);
9313 
9314   auto &Ctx = CGM.getContext();
9315   auto NPT = llvm::PointerType::get(PT->getElementType(),
9316       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9317   return llvm::ConstantExpr::getAddrSpaceCast(
9318       llvm::ConstantPointerNull::get(NPT), PT);
9319 }
9320 
9321 LangAS
9322 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9323                                                   const VarDecl *D) const {
9324   assert(!CGM.getLangOpts().OpenCL &&
9325          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9326          "Address space agnostic languages only");
9327   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9328       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9329   if (!D)
9330     return DefaultGlobalAS;
9331 
9332   LangAS AddrSpace = D->getType().getAddressSpace();
9333   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9334   if (AddrSpace != LangAS::Default)
9335     return AddrSpace;
9336 
9337   if (CGM.isTypeConstant(D->getType(), false)) {
9338     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9339       return ConstAS.getValue();
9340   }
9341   return DefaultGlobalAS;
9342 }
9343 
9344 llvm::SyncScope::ID
9345 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9346                                             SyncScope Scope,
9347                                             llvm::AtomicOrdering Ordering,
9348                                             llvm::LLVMContext &Ctx) const {
9349   std::string Name;
9350   switch (Scope) {
9351   case SyncScope::OpenCLWorkGroup:
9352     Name = "workgroup";
9353     break;
9354   case SyncScope::OpenCLDevice:
9355     Name = "agent";
9356     break;
9357   case SyncScope::OpenCLAllSVMDevices:
9358     Name = "";
9359     break;
9360   case SyncScope::OpenCLSubGroup:
9361     Name = "wavefront";
9362   }
9363 
9364   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9365     if (!Name.empty())
9366       Name = Twine(Twine(Name) + Twine("-")).str();
9367 
9368     Name = Twine(Twine(Name) + Twine("one-as")).str();
9369   }
9370 
9371   return Ctx.getOrInsertSyncScopeID(Name);
9372 }
9373 
9374 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9375   return false;
9376 }
9377 
9378 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9379     const FunctionType *&FT) const {
9380   FT = getABIInfo().getContext().adjustFunctionType(
9381       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9382 }
9383 
9384 //===----------------------------------------------------------------------===//
9385 // SPARC v8 ABI Implementation.
9386 // Based on the SPARC Compliance Definition version 2.4.1.
9387 //
9388 // Ensures that complex values are passed in registers.
9389 //
9390 namespace {
9391 class SparcV8ABIInfo : public DefaultABIInfo {
9392 public:
9393   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9394 
9395 private:
9396   ABIArgInfo classifyReturnType(QualType RetTy) const;
9397   void computeInfo(CGFunctionInfo &FI) const override;
9398 };
9399 } // end anonymous namespace
9400 
9401 
9402 ABIArgInfo
9403 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9404   if (Ty->isAnyComplexType()) {
9405     return ABIArgInfo::getDirect();
9406   }
9407   else {
9408     return DefaultABIInfo::classifyReturnType(Ty);
9409   }
9410 }
9411 
9412 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9413 
9414   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9415   for (auto &Arg : FI.arguments())
9416     Arg.info = classifyArgumentType(Arg.type);
9417 }
9418 
9419 namespace {
9420 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9421 public:
9422   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9423       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9424 };
9425 } // end anonymous namespace
9426 
9427 //===----------------------------------------------------------------------===//
9428 // SPARC v9 ABI Implementation.
9429 // Based on the SPARC Compliance Definition version 2.4.1.
9430 //
9431 // Function arguments a mapped to a nominal "parameter array" and promoted to
9432 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9433 // the array, structs larger than 16 bytes are passed indirectly.
9434 //
9435 // One case requires special care:
9436 //
9437 //   struct mixed {
9438 //     int i;
9439 //     float f;
9440 //   };
9441 //
9442 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9443 // parameter array, but the int is passed in an integer register, and the float
9444 // is passed in a floating point register. This is represented as two arguments
9445 // with the LLVM IR inreg attribute:
9446 //
9447 //   declare void f(i32 inreg %i, float inreg %f)
9448 //
9449 // The code generator will only allocate 4 bytes from the parameter array for
9450 // the inreg arguments. All other arguments are allocated a multiple of 8
9451 // bytes.
9452 //
9453 namespace {
9454 class SparcV9ABIInfo : public ABIInfo {
9455 public:
9456   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9457 
9458 private:
9459   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9460   void computeInfo(CGFunctionInfo &FI) const override;
9461   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9462                     QualType Ty) const override;
9463 
9464   // Coercion type builder for structs passed in registers. The coercion type
9465   // serves two purposes:
9466   //
9467   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9468   //    in registers.
9469   // 2. Expose aligned floating point elements as first-level elements, so the
9470   //    code generator knows to pass them in floating point registers.
9471   //
9472   // We also compute the InReg flag which indicates that the struct contains
9473   // aligned 32-bit floats.
9474   //
9475   struct CoerceBuilder {
9476     llvm::LLVMContext &Context;
9477     const llvm::DataLayout &DL;
9478     SmallVector<llvm::Type*, 8> Elems;
9479     uint64_t Size;
9480     bool InReg;
9481 
9482     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9483       : Context(c), DL(dl), Size(0), InReg(false) {}
9484 
9485     // Pad Elems with integers until Size is ToSize.
9486     void pad(uint64_t ToSize) {
9487       assert(ToSize >= Size && "Cannot remove elements");
9488       if (ToSize == Size)
9489         return;
9490 
9491       // Finish the current 64-bit word.
9492       uint64_t Aligned = llvm::alignTo(Size, 64);
9493       if (Aligned > Size && Aligned <= ToSize) {
9494         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9495         Size = Aligned;
9496       }
9497 
9498       // Add whole 64-bit words.
9499       while (Size + 64 <= ToSize) {
9500         Elems.push_back(llvm::Type::getInt64Ty(Context));
9501         Size += 64;
9502       }
9503 
9504       // Final in-word padding.
9505       if (Size < ToSize) {
9506         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9507         Size = ToSize;
9508       }
9509     }
9510 
9511     // Add a floating point element at Offset.
9512     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9513       // Unaligned floats are treated as integers.
9514       if (Offset % Bits)
9515         return;
9516       // The InReg flag is only required if there are any floats < 64 bits.
9517       if (Bits < 64)
9518         InReg = true;
9519       pad(Offset);
9520       Elems.push_back(Ty);
9521       Size = Offset + Bits;
9522     }
9523 
9524     // Add a struct type to the coercion type, starting at Offset (in bits).
9525     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9526       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9527       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9528         llvm::Type *ElemTy = StrTy->getElementType(i);
9529         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9530         switch (ElemTy->getTypeID()) {
9531         case llvm::Type::StructTyID:
9532           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9533           break;
9534         case llvm::Type::FloatTyID:
9535           addFloat(ElemOffset, ElemTy, 32);
9536           break;
9537         case llvm::Type::DoubleTyID:
9538           addFloat(ElemOffset, ElemTy, 64);
9539           break;
9540         case llvm::Type::FP128TyID:
9541           addFloat(ElemOffset, ElemTy, 128);
9542           break;
9543         case llvm::Type::PointerTyID:
9544           if (ElemOffset % 64 == 0) {
9545             pad(ElemOffset);
9546             Elems.push_back(ElemTy);
9547             Size += 64;
9548           }
9549           break;
9550         default:
9551           break;
9552         }
9553       }
9554     }
9555 
9556     // Check if Ty is a usable substitute for the coercion type.
9557     bool isUsableType(llvm::StructType *Ty) const {
9558       return llvm::makeArrayRef(Elems) == Ty->elements();
9559     }
9560 
9561     // Get the coercion type as a literal struct type.
9562     llvm::Type *getType() const {
9563       if (Elems.size() == 1)
9564         return Elems.front();
9565       else
9566         return llvm::StructType::get(Context, Elems);
9567     }
9568   };
9569 };
9570 } // end anonymous namespace
9571 
9572 ABIArgInfo
9573 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9574   if (Ty->isVoidType())
9575     return ABIArgInfo::getIgnore();
9576 
9577   uint64_t Size = getContext().getTypeSize(Ty);
9578 
9579   // Anything too big to fit in registers is passed with an explicit indirect
9580   // pointer / sret pointer.
9581   if (Size > SizeLimit)
9582     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9583 
9584   // Treat an enum type as its underlying type.
9585   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9586     Ty = EnumTy->getDecl()->getIntegerType();
9587 
9588   // Integer types smaller than a register are extended.
9589   if (Size < 64 && Ty->isIntegerType())
9590     return ABIArgInfo::getExtend(Ty);
9591 
9592   if (const auto *EIT = Ty->getAs<ExtIntType>())
9593     if (EIT->getNumBits() < 64)
9594       return ABIArgInfo::getExtend(Ty);
9595 
9596   // Other non-aggregates go in registers.
9597   if (!isAggregateTypeForABI(Ty))
9598     return ABIArgInfo::getDirect();
9599 
9600   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9601   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9602   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9603     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9604 
9605   // This is a small aggregate type that should be passed in registers.
9606   // Build a coercion type from the LLVM struct type.
9607   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9608   if (!StrTy)
9609     return ABIArgInfo::getDirect();
9610 
9611   CoerceBuilder CB(getVMContext(), getDataLayout());
9612   CB.addStruct(0, StrTy);
9613   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9614 
9615   // Try to use the original type for coercion.
9616   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9617 
9618   if (CB.InReg)
9619     return ABIArgInfo::getDirectInReg(CoerceTy);
9620   else
9621     return ABIArgInfo::getDirect(CoerceTy);
9622 }
9623 
9624 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9625                                   QualType Ty) const {
9626   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9627   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9628   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9629     AI.setCoerceToType(ArgTy);
9630 
9631   CharUnits SlotSize = CharUnits::fromQuantity(8);
9632 
9633   CGBuilderTy &Builder = CGF.Builder;
9634   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9635   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9636 
9637   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9638 
9639   Address ArgAddr = Address::invalid();
9640   CharUnits Stride;
9641   switch (AI.getKind()) {
9642   case ABIArgInfo::Expand:
9643   case ABIArgInfo::CoerceAndExpand:
9644   case ABIArgInfo::InAlloca:
9645     llvm_unreachable("Unsupported ABI kind for va_arg");
9646 
9647   case ABIArgInfo::Extend: {
9648     Stride = SlotSize;
9649     CharUnits Offset = SlotSize - TypeInfo.Width;
9650     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9651     break;
9652   }
9653 
9654   case ABIArgInfo::Direct: {
9655     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9656     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9657     ArgAddr = Addr;
9658     break;
9659   }
9660 
9661   case ABIArgInfo::Indirect:
9662   case ABIArgInfo::IndirectAliased:
9663     Stride = SlotSize;
9664     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9665     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9666                       TypeInfo.Align);
9667     break;
9668 
9669   case ABIArgInfo::Ignore:
9670     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9671   }
9672 
9673   // Update VAList.
9674   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9675   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9676 
9677   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9678 }
9679 
9680 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9681   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9682   for (auto &I : FI.arguments())
9683     I.info = classifyType(I.type, 16 * 8);
9684 }
9685 
9686 namespace {
9687 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9688 public:
9689   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9690       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9691 
9692   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9693     return 14;
9694   }
9695 
9696   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9697                                llvm::Value *Address) const override;
9698 };
9699 } // end anonymous namespace
9700 
9701 bool
9702 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9703                                                 llvm::Value *Address) const {
9704   // This is calculated from the LLVM and GCC tables and verified
9705   // against gcc output.  AFAIK all ABIs use the same encoding.
9706 
9707   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9708 
9709   llvm::IntegerType *i8 = CGF.Int8Ty;
9710   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9711   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9712 
9713   // 0-31: the 8-byte general-purpose registers
9714   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9715 
9716   // 32-63: f0-31, the 4-byte floating-point registers
9717   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9718 
9719   //   Y   = 64
9720   //   PSR = 65
9721   //   WIM = 66
9722   //   TBR = 67
9723   //   PC  = 68
9724   //   NPC = 69
9725   //   FSR = 70
9726   //   CSR = 71
9727   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9728 
9729   // 72-87: d0-15, the 8-byte floating-point registers
9730   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9731 
9732   return false;
9733 }
9734 
9735 // ARC ABI implementation.
9736 namespace {
9737 
9738 class ARCABIInfo : public DefaultABIInfo {
9739 public:
9740   using DefaultABIInfo::DefaultABIInfo;
9741 
9742 private:
9743   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9744                     QualType Ty) const override;
9745 
9746   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9747     if (!State.FreeRegs)
9748       return;
9749     if (Info.isIndirect() && Info.getInReg())
9750       State.FreeRegs--;
9751     else if (Info.isDirect() && Info.getInReg()) {
9752       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9753       if (sz < State.FreeRegs)
9754         State.FreeRegs -= sz;
9755       else
9756         State.FreeRegs = 0;
9757     }
9758   }
9759 
9760   void computeInfo(CGFunctionInfo &FI) const override {
9761     CCState State(FI);
9762     // ARC uses 8 registers to pass arguments.
9763     State.FreeRegs = 8;
9764 
9765     if (!getCXXABI().classifyReturnType(FI))
9766       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9767     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9768     for (auto &I : FI.arguments()) {
9769       I.info = classifyArgumentType(I.type, State.FreeRegs);
9770       updateState(I.info, I.type, State);
9771     }
9772   }
9773 
9774   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9775   ABIArgInfo getIndirectByValue(QualType Ty) const;
9776   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9777   ABIArgInfo classifyReturnType(QualType RetTy) const;
9778 };
9779 
9780 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9781 public:
9782   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9783       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9784 };
9785 
9786 
9787 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9788   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9789                        getNaturalAlignIndirect(Ty, false);
9790 }
9791 
9792 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9793   // Compute the byval alignment.
9794   const unsigned MinABIStackAlignInBytes = 4;
9795   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9796   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9797                                  TypeAlign > MinABIStackAlignInBytes);
9798 }
9799 
9800 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9801                               QualType Ty) const {
9802   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9803                           getContext().getTypeInfoInChars(Ty),
9804                           CharUnits::fromQuantity(4), true);
9805 }
9806 
9807 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9808                                             uint8_t FreeRegs) const {
9809   // Handle the generic C++ ABI.
9810   const RecordType *RT = Ty->getAs<RecordType>();
9811   if (RT) {
9812     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9813     if (RAA == CGCXXABI::RAA_Indirect)
9814       return getIndirectByRef(Ty, FreeRegs > 0);
9815 
9816     if (RAA == CGCXXABI::RAA_DirectInMemory)
9817       return getIndirectByValue(Ty);
9818   }
9819 
9820   // Treat an enum type as its underlying type.
9821   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9822     Ty = EnumTy->getDecl()->getIntegerType();
9823 
9824   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9825 
9826   if (isAggregateTypeForABI(Ty)) {
9827     // Structures with flexible arrays are always indirect.
9828     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9829       return getIndirectByValue(Ty);
9830 
9831     // Ignore empty structs/unions.
9832     if (isEmptyRecord(getContext(), Ty, true))
9833       return ABIArgInfo::getIgnore();
9834 
9835     llvm::LLVMContext &LLVMContext = getVMContext();
9836 
9837     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9838     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9839     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9840 
9841     return FreeRegs >= SizeInRegs ?
9842         ABIArgInfo::getDirectInReg(Result) :
9843         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9844   }
9845 
9846   if (const auto *EIT = Ty->getAs<ExtIntType>())
9847     if (EIT->getNumBits() > 64)
9848       return getIndirectByValue(Ty);
9849 
9850   return isPromotableIntegerTypeForABI(Ty)
9851              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9852                                        : ABIArgInfo::getExtend(Ty))
9853              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9854                                        : ABIArgInfo::getDirect());
9855 }
9856 
9857 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9858   if (RetTy->isAnyComplexType())
9859     return ABIArgInfo::getDirectInReg();
9860 
9861   // Arguments of size > 4 registers are indirect.
9862   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9863   if (RetSize > 4)
9864     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9865 
9866   return DefaultABIInfo::classifyReturnType(RetTy);
9867 }
9868 
9869 } // End anonymous namespace.
9870 
9871 //===----------------------------------------------------------------------===//
9872 // XCore ABI Implementation
9873 //===----------------------------------------------------------------------===//
9874 
9875 namespace {
9876 
9877 /// A SmallStringEnc instance is used to build up the TypeString by passing
9878 /// it by reference between functions that append to it.
9879 typedef llvm::SmallString<128> SmallStringEnc;
9880 
9881 /// TypeStringCache caches the meta encodings of Types.
9882 ///
9883 /// The reason for caching TypeStrings is two fold:
9884 ///   1. To cache a type's encoding for later uses;
9885 ///   2. As a means to break recursive member type inclusion.
9886 ///
9887 /// A cache Entry can have a Status of:
9888 ///   NonRecursive:   The type encoding is not recursive;
9889 ///   Recursive:      The type encoding is recursive;
9890 ///   Incomplete:     An incomplete TypeString;
9891 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9892 ///                   Recursive type encoding.
9893 ///
9894 /// A NonRecursive entry will have all of its sub-members expanded as fully
9895 /// as possible. Whilst it may contain types which are recursive, the type
9896 /// itself is not recursive and thus its encoding may be safely used whenever
9897 /// the type is encountered.
9898 ///
9899 /// A Recursive entry will have all of its sub-members expanded as fully as
9900 /// possible. The type itself is recursive and it may contain other types which
9901 /// are recursive. The Recursive encoding must not be used during the expansion
9902 /// of a recursive type's recursive branch. For simplicity the code uses
9903 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9904 ///
9905 /// An Incomplete entry is always a RecordType and only encodes its
9906 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9907 /// are placed into the cache during type expansion as a means to identify and
9908 /// handle recursive inclusion of types as sub-members. If there is recursion
9909 /// the entry becomes IncompleteUsed.
9910 ///
9911 /// During the expansion of a RecordType's members:
9912 ///
9913 ///   If the cache contains a NonRecursive encoding for the member type, the
9914 ///   cached encoding is used;
9915 ///
9916 ///   If the cache contains a Recursive encoding for the member type, the
9917 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9918 ///
9919 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9920 ///   cache to break potential recursive inclusion of itself as a sub-member;
9921 ///
9922 ///   Once a member RecordType has been expanded, its temporary incomplete
9923 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9924 ///   it is swapped back in;
9925 ///
9926 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9927 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9928 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9929 ///
9930 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9931 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9932 ///   Else the member is part of a recursive type and thus the recursion has
9933 ///   been exited too soon for the encoding to be correct for the member.
9934 ///
9935 class TypeStringCache {
9936   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9937   struct Entry {
9938     std::string Str;     // The encoded TypeString for the type.
9939     enum Status State;   // Information about the encoding in 'Str'.
9940     std::string Swapped; // A temporary place holder for a Recursive encoding
9941                          // during the expansion of RecordType's members.
9942   };
9943   std::map<const IdentifierInfo *, struct Entry> Map;
9944   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9945   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9946 public:
9947   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9948   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9949   bool removeIncomplete(const IdentifierInfo *ID);
9950   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9951                      bool IsRecursive);
9952   StringRef lookupStr(const IdentifierInfo *ID);
9953 };
9954 
9955 /// TypeString encodings for enum & union fields must be order.
9956 /// FieldEncoding is a helper for this ordering process.
9957 class FieldEncoding {
9958   bool HasName;
9959   std::string Enc;
9960 public:
9961   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9962   StringRef str() { return Enc; }
9963   bool operator<(const FieldEncoding &rhs) const {
9964     if (HasName != rhs.HasName) return HasName;
9965     return Enc < rhs.Enc;
9966   }
9967 };
9968 
9969 class XCoreABIInfo : public DefaultABIInfo {
9970 public:
9971   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9972   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9973                     QualType Ty) const override;
9974 };
9975 
9976 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9977   mutable TypeStringCache TSC;
9978   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9979                     const CodeGen::CodeGenModule &M) const;
9980 
9981 public:
9982   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9983       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9984   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9985                           const llvm::MapVector<GlobalDecl, StringRef>
9986                               &MangledDeclNames) const override;
9987 };
9988 
9989 } // End anonymous namespace.
9990 
9991 // TODO: this implementation is likely now redundant with the default
9992 // EmitVAArg.
9993 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9994                                 QualType Ty) const {
9995   CGBuilderTy &Builder = CGF.Builder;
9996 
9997   // Get the VAList.
9998   CharUnits SlotSize = CharUnits::fromQuantity(4);
9999   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
10000 
10001   // Handle the argument.
10002   ABIArgInfo AI = classifyArgumentType(Ty);
10003   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
10004   llvm::Type *ArgTy = CGT.ConvertType(Ty);
10005   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
10006     AI.setCoerceToType(ArgTy);
10007   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
10008 
10009   Address Val = Address::invalid();
10010   CharUnits ArgSize = CharUnits::Zero();
10011   switch (AI.getKind()) {
10012   case ABIArgInfo::Expand:
10013   case ABIArgInfo::CoerceAndExpand:
10014   case ABIArgInfo::InAlloca:
10015     llvm_unreachable("Unsupported ABI kind for va_arg");
10016   case ABIArgInfo::Ignore:
10017     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
10018     ArgSize = CharUnits::Zero();
10019     break;
10020   case ABIArgInfo::Extend:
10021   case ABIArgInfo::Direct:
10022     Val = Builder.CreateBitCast(AP, ArgPtrTy);
10023     ArgSize = CharUnits::fromQuantity(
10024                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10025     ArgSize = ArgSize.alignTo(SlotSize);
10026     break;
10027   case ABIArgInfo::Indirect:
10028   case ABIArgInfo::IndirectAliased:
10029     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10030     Val = Address(Builder.CreateLoad(Val), TypeAlign);
10031     ArgSize = SlotSize;
10032     break;
10033   }
10034 
10035   // Increment the VAList.
10036   if (!ArgSize.isZero()) {
10037     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10038     Builder.CreateStore(APN.getPointer(), VAListAddr);
10039   }
10040 
10041   return Val;
10042 }
10043 
10044 /// During the expansion of a RecordType, an incomplete TypeString is placed
10045 /// into the cache as a means to identify and break recursion.
10046 /// If there is a Recursive encoding in the cache, it is swapped out and will
10047 /// be reinserted by removeIncomplete().
10048 /// All other types of encoding should have been used rather than arriving here.
10049 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10050                                     std::string StubEnc) {
10051   if (!ID)
10052     return;
10053   Entry &E = Map[ID];
10054   assert( (E.Str.empty() || E.State == Recursive) &&
10055          "Incorrectly use of addIncomplete");
10056   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10057   E.Swapped.swap(E.Str); // swap out the Recursive
10058   E.Str.swap(StubEnc);
10059   E.State = Incomplete;
10060   ++IncompleteCount;
10061 }
10062 
10063 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10064 /// must be removed from the cache.
10065 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10066 /// Returns true if the RecordType was defined recursively.
10067 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10068   if (!ID)
10069     return false;
10070   auto I = Map.find(ID);
10071   assert(I != Map.end() && "Entry not present");
10072   Entry &E = I->second;
10073   assert( (E.State == Incomplete ||
10074            E.State == IncompleteUsed) &&
10075          "Entry must be an incomplete type");
10076   bool IsRecursive = false;
10077   if (E.State == IncompleteUsed) {
10078     // We made use of our Incomplete encoding, thus we are recursive.
10079     IsRecursive = true;
10080     --IncompleteUsedCount;
10081   }
10082   if (E.Swapped.empty())
10083     Map.erase(I);
10084   else {
10085     // Swap the Recursive back.
10086     E.Swapped.swap(E.Str);
10087     E.Swapped.clear();
10088     E.State = Recursive;
10089   }
10090   --IncompleteCount;
10091   return IsRecursive;
10092 }
10093 
10094 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10095 /// Recursive (viz: all sub-members were expanded as fully as possible).
10096 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10097                                     bool IsRecursive) {
10098   if (!ID || IncompleteUsedCount)
10099     return; // No key or it is is an incomplete sub-type so don't add.
10100   Entry &E = Map[ID];
10101   if (IsRecursive && !E.Str.empty()) {
10102     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10103            "This is not the same Recursive entry");
10104     // The parent container was not recursive after all, so we could have used
10105     // this Recursive sub-member entry after all, but we assumed the worse when
10106     // we started viz: IncompleteCount!=0.
10107     return;
10108   }
10109   assert(E.Str.empty() && "Entry already present");
10110   E.Str = Str.str();
10111   E.State = IsRecursive? Recursive : NonRecursive;
10112 }
10113 
10114 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10115 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10116 /// encoding is Recursive, return an empty StringRef.
10117 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10118   if (!ID)
10119     return StringRef();   // We have no key.
10120   auto I = Map.find(ID);
10121   if (I == Map.end())
10122     return StringRef();   // We have no encoding.
10123   Entry &E = I->second;
10124   if (E.State == Recursive && IncompleteCount)
10125     return StringRef();   // We don't use Recursive encodings for member types.
10126 
10127   if (E.State == Incomplete) {
10128     // The incomplete type is being used to break out of recursion.
10129     E.State = IncompleteUsed;
10130     ++IncompleteUsedCount;
10131   }
10132   return E.Str;
10133 }
10134 
10135 /// The XCore ABI includes a type information section that communicates symbol
10136 /// type information to the linker. The linker uses this information to verify
10137 /// safety/correctness of things such as array bound and pointers et al.
10138 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10139 /// This type information (TypeString) is emitted into meta data for all global
10140 /// symbols: definitions, declarations, functions & variables.
10141 ///
10142 /// The TypeString carries type, qualifier, name, size & value details.
10143 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10144 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10145 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10146 ///
10147 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10148                           const CodeGen::CodeGenModule &CGM,
10149                           TypeStringCache &TSC);
10150 
10151 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10152 void XCoreTargetCodeGenInfo::emitTargetMD(
10153     const Decl *D, llvm::GlobalValue *GV,
10154     const CodeGen::CodeGenModule &CGM) const {
10155   SmallStringEnc Enc;
10156   if (getTypeString(Enc, D, CGM, TSC)) {
10157     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10158     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10159                                 llvm::MDString::get(Ctx, Enc.str())};
10160     llvm::NamedMDNode *MD =
10161       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10162     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10163   }
10164 }
10165 
10166 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10167     CodeGen::CodeGenModule &CGM,
10168     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10169   // Warning, new MangledDeclNames may be appended within this loop.
10170   // We rely on MapVector insertions adding new elements to the end
10171   // of the container.
10172   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10173     auto Val = *(MangledDeclNames.begin() + I);
10174     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10175     if (GV) {
10176       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10177       emitTargetMD(D, GV, CGM);
10178     }
10179   }
10180 }
10181 //===----------------------------------------------------------------------===//
10182 // SPIR ABI Implementation
10183 //===----------------------------------------------------------------------===//
10184 
10185 namespace {
10186 class SPIRABIInfo : public DefaultABIInfo {
10187 public:
10188   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10189 
10190 private:
10191   void setCCs();
10192 };
10193 } // end anonymous namespace
10194 namespace {
10195 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10196 public:
10197   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10198       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
10199 
10200   LangAS getASTAllocaAddressSpace() const override {
10201     return getLangASFromTargetAS(
10202         getABIInfo().getDataLayout().getAllocaAddrSpace());
10203   }
10204 
10205   unsigned getOpenCLKernelCallingConv() const override;
10206 };
10207 
10208 } // End anonymous namespace.
10209 void SPIRABIInfo::setCCs() {
10210   assert(getRuntimeCC() == llvm::CallingConv::C);
10211   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10212 }
10213 
10214 namespace clang {
10215 namespace CodeGen {
10216 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10217   DefaultABIInfo SPIRABI(CGM.getTypes());
10218   SPIRABI.computeInfo(FI);
10219 }
10220 }
10221 }
10222 
10223 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10224   return llvm::CallingConv::SPIR_KERNEL;
10225 }
10226 
10227 static bool appendType(SmallStringEnc &Enc, QualType QType,
10228                        const CodeGen::CodeGenModule &CGM,
10229                        TypeStringCache &TSC);
10230 
10231 /// Helper function for appendRecordType().
10232 /// Builds a SmallVector containing the encoded field types in declaration
10233 /// order.
10234 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10235                              const RecordDecl *RD,
10236                              const CodeGen::CodeGenModule &CGM,
10237                              TypeStringCache &TSC) {
10238   for (const auto *Field : RD->fields()) {
10239     SmallStringEnc Enc;
10240     Enc += "m(";
10241     Enc += Field->getName();
10242     Enc += "){";
10243     if (Field->isBitField()) {
10244       Enc += "b(";
10245       llvm::raw_svector_ostream OS(Enc);
10246       OS << Field->getBitWidthValue(CGM.getContext());
10247       Enc += ':';
10248     }
10249     if (!appendType(Enc, Field->getType(), CGM, TSC))
10250       return false;
10251     if (Field->isBitField())
10252       Enc += ')';
10253     Enc += '}';
10254     FE.emplace_back(!Field->getName().empty(), Enc);
10255   }
10256   return true;
10257 }
10258 
10259 /// Appends structure and union types to Enc and adds encoding to cache.
10260 /// Recursively calls appendType (via extractFieldType) for each field.
10261 /// Union types have their fields ordered according to the ABI.
10262 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10263                              const CodeGen::CodeGenModule &CGM,
10264                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10265   // Append the cached TypeString if we have one.
10266   StringRef TypeString = TSC.lookupStr(ID);
10267   if (!TypeString.empty()) {
10268     Enc += TypeString;
10269     return true;
10270   }
10271 
10272   // Start to emit an incomplete TypeString.
10273   size_t Start = Enc.size();
10274   Enc += (RT->isUnionType()? 'u' : 's');
10275   Enc += '(';
10276   if (ID)
10277     Enc += ID->getName();
10278   Enc += "){";
10279 
10280   // We collect all encoded fields and order as necessary.
10281   bool IsRecursive = false;
10282   const RecordDecl *RD = RT->getDecl()->getDefinition();
10283   if (RD && !RD->field_empty()) {
10284     // An incomplete TypeString stub is placed in the cache for this RecordType
10285     // so that recursive calls to this RecordType will use it whilst building a
10286     // complete TypeString for this RecordType.
10287     SmallVector<FieldEncoding, 16> FE;
10288     std::string StubEnc(Enc.substr(Start).str());
10289     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10290     TSC.addIncomplete(ID, std::move(StubEnc));
10291     if (!extractFieldType(FE, RD, CGM, TSC)) {
10292       (void) TSC.removeIncomplete(ID);
10293       return false;
10294     }
10295     IsRecursive = TSC.removeIncomplete(ID);
10296     // The ABI requires unions to be sorted but not structures.
10297     // See FieldEncoding::operator< for sort algorithm.
10298     if (RT->isUnionType())
10299       llvm::sort(FE);
10300     // We can now complete the TypeString.
10301     unsigned E = FE.size();
10302     for (unsigned I = 0; I != E; ++I) {
10303       if (I)
10304         Enc += ',';
10305       Enc += FE[I].str();
10306     }
10307   }
10308   Enc += '}';
10309   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10310   return true;
10311 }
10312 
10313 /// Appends enum types to Enc and adds the encoding to the cache.
10314 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10315                            TypeStringCache &TSC,
10316                            const IdentifierInfo *ID) {
10317   // Append the cached TypeString if we have one.
10318   StringRef TypeString = TSC.lookupStr(ID);
10319   if (!TypeString.empty()) {
10320     Enc += TypeString;
10321     return true;
10322   }
10323 
10324   size_t Start = Enc.size();
10325   Enc += "e(";
10326   if (ID)
10327     Enc += ID->getName();
10328   Enc += "){";
10329 
10330   // We collect all encoded enumerations and order them alphanumerically.
10331   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10332     SmallVector<FieldEncoding, 16> FE;
10333     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10334          ++I) {
10335       SmallStringEnc EnumEnc;
10336       EnumEnc += "m(";
10337       EnumEnc += I->getName();
10338       EnumEnc += "){";
10339       I->getInitVal().toString(EnumEnc);
10340       EnumEnc += '}';
10341       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10342     }
10343     llvm::sort(FE);
10344     unsigned E = FE.size();
10345     for (unsigned I = 0; I != E; ++I) {
10346       if (I)
10347         Enc += ',';
10348       Enc += FE[I].str();
10349     }
10350   }
10351   Enc += '}';
10352   TSC.addIfComplete(ID, Enc.substr(Start), false);
10353   return true;
10354 }
10355 
10356 /// Appends type's qualifier to Enc.
10357 /// This is done prior to appending the type's encoding.
10358 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10359   // Qualifiers are emitted in alphabetical order.
10360   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10361   int Lookup = 0;
10362   if (QT.isConstQualified())
10363     Lookup += 1<<0;
10364   if (QT.isRestrictQualified())
10365     Lookup += 1<<1;
10366   if (QT.isVolatileQualified())
10367     Lookup += 1<<2;
10368   Enc += Table[Lookup];
10369 }
10370 
10371 /// Appends built-in types to Enc.
10372 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10373   const char *EncType;
10374   switch (BT->getKind()) {
10375     case BuiltinType::Void:
10376       EncType = "0";
10377       break;
10378     case BuiltinType::Bool:
10379       EncType = "b";
10380       break;
10381     case BuiltinType::Char_U:
10382       EncType = "uc";
10383       break;
10384     case BuiltinType::UChar:
10385       EncType = "uc";
10386       break;
10387     case BuiltinType::SChar:
10388       EncType = "sc";
10389       break;
10390     case BuiltinType::UShort:
10391       EncType = "us";
10392       break;
10393     case BuiltinType::Short:
10394       EncType = "ss";
10395       break;
10396     case BuiltinType::UInt:
10397       EncType = "ui";
10398       break;
10399     case BuiltinType::Int:
10400       EncType = "si";
10401       break;
10402     case BuiltinType::ULong:
10403       EncType = "ul";
10404       break;
10405     case BuiltinType::Long:
10406       EncType = "sl";
10407       break;
10408     case BuiltinType::ULongLong:
10409       EncType = "ull";
10410       break;
10411     case BuiltinType::LongLong:
10412       EncType = "sll";
10413       break;
10414     case BuiltinType::Float:
10415       EncType = "ft";
10416       break;
10417     case BuiltinType::Double:
10418       EncType = "d";
10419       break;
10420     case BuiltinType::LongDouble:
10421       EncType = "ld";
10422       break;
10423     default:
10424       return false;
10425   }
10426   Enc += EncType;
10427   return true;
10428 }
10429 
10430 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10431 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10432                               const CodeGen::CodeGenModule &CGM,
10433                               TypeStringCache &TSC) {
10434   Enc += "p(";
10435   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10436     return false;
10437   Enc += ')';
10438   return true;
10439 }
10440 
10441 /// Appends array encoding to Enc before calling appendType for the element.
10442 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10443                             const ArrayType *AT,
10444                             const CodeGen::CodeGenModule &CGM,
10445                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10446   if (AT->getSizeModifier() != ArrayType::Normal)
10447     return false;
10448   Enc += "a(";
10449   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10450     CAT->getSize().toStringUnsigned(Enc);
10451   else
10452     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10453   Enc += ':';
10454   // The Qualifiers should be attached to the type rather than the array.
10455   appendQualifier(Enc, QT);
10456   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10457     return false;
10458   Enc += ')';
10459   return true;
10460 }
10461 
10462 /// Appends a function encoding to Enc, calling appendType for the return type
10463 /// and the arguments.
10464 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10465                              const CodeGen::CodeGenModule &CGM,
10466                              TypeStringCache &TSC) {
10467   Enc += "f{";
10468   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10469     return false;
10470   Enc += "}(";
10471   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10472     // N.B. we are only interested in the adjusted param types.
10473     auto I = FPT->param_type_begin();
10474     auto E = FPT->param_type_end();
10475     if (I != E) {
10476       do {
10477         if (!appendType(Enc, *I, CGM, TSC))
10478           return false;
10479         ++I;
10480         if (I != E)
10481           Enc += ',';
10482       } while (I != E);
10483       if (FPT->isVariadic())
10484         Enc += ",va";
10485     } else {
10486       if (FPT->isVariadic())
10487         Enc += "va";
10488       else
10489         Enc += '0';
10490     }
10491   }
10492   Enc += ')';
10493   return true;
10494 }
10495 
10496 /// Handles the type's qualifier before dispatching a call to handle specific
10497 /// type encodings.
10498 static bool appendType(SmallStringEnc &Enc, QualType QType,
10499                        const CodeGen::CodeGenModule &CGM,
10500                        TypeStringCache &TSC) {
10501 
10502   QualType QT = QType.getCanonicalType();
10503 
10504   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10505     // The Qualifiers should be attached to the type rather than the array.
10506     // Thus we don't call appendQualifier() here.
10507     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10508 
10509   appendQualifier(Enc, QT);
10510 
10511   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10512     return appendBuiltinType(Enc, BT);
10513 
10514   if (const PointerType *PT = QT->getAs<PointerType>())
10515     return appendPointerType(Enc, PT, CGM, TSC);
10516 
10517   if (const EnumType *ET = QT->getAs<EnumType>())
10518     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10519 
10520   if (const RecordType *RT = QT->getAsStructureType())
10521     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10522 
10523   if (const RecordType *RT = QT->getAsUnionType())
10524     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10525 
10526   if (const FunctionType *FT = QT->getAs<FunctionType>())
10527     return appendFunctionType(Enc, FT, CGM, TSC);
10528 
10529   return false;
10530 }
10531 
10532 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10533                           const CodeGen::CodeGenModule &CGM,
10534                           TypeStringCache &TSC) {
10535   if (!D)
10536     return false;
10537 
10538   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10539     if (FD->getLanguageLinkage() != CLanguageLinkage)
10540       return false;
10541     return appendType(Enc, FD->getType(), CGM, TSC);
10542   }
10543 
10544   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10545     if (VD->getLanguageLinkage() != CLanguageLinkage)
10546       return false;
10547     QualType QT = VD->getType().getCanonicalType();
10548     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10549       // Global ArrayTypes are given a size of '*' if the size is unknown.
10550       // The Qualifiers should be attached to the type rather than the array.
10551       // Thus we don't call appendQualifier() here.
10552       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10553     }
10554     return appendType(Enc, QT, CGM, TSC);
10555   }
10556   return false;
10557 }
10558 
10559 //===----------------------------------------------------------------------===//
10560 // RISCV ABI Implementation
10561 //===----------------------------------------------------------------------===//
10562 
10563 namespace {
10564 class RISCVABIInfo : public DefaultABIInfo {
10565 private:
10566   // Size of the integer ('x') registers in bits.
10567   unsigned XLen;
10568   // Size of the floating point ('f') registers in bits. Note that the target
10569   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10570   // with soft float ABI has FLen==0).
10571   unsigned FLen;
10572   static const int NumArgGPRs = 8;
10573   static const int NumArgFPRs = 8;
10574   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10575                                       llvm::Type *&Field1Ty,
10576                                       CharUnits &Field1Off,
10577                                       llvm::Type *&Field2Ty,
10578                                       CharUnits &Field2Off) const;
10579 
10580 public:
10581   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10582       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10583 
10584   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10585   // non-virtual, but computeInfo is virtual, so we overload it.
10586   void computeInfo(CGFunctionInfo &FI) const override;
10587 
10588   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10589                                   int &ArgFPRsLeft) const;
10590   ABIArgInfo classifyReturnType(QualType RetTy) const;
10591 
10592   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10593                     QualType Ty) const override;
10594 
10595   ABIArgInfo extendType(QualType Ty) const;
10596 
10597   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10598                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10599                                 CharUnits &Field2Off, int &NeededArgGPRs,
10600                                 int &NeededArgFPRs) const;
10601   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10602                                                CharUnits Field1Off,
10603                                                llvm::Type *Field2Ty,
10604                                                CharUnits Field2Off) const;
10605 };
10606 } // end anonymous namespace
10607 
10608 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10609   QualType RetTy = FI.getReturnType();
10610   if (!getCXXABI().classifyReturnType(FI))
10611     FI.getReturnInfo() = classifyReturnType(RetTy);
10612 
10613   // IsRetIndirect is true if classifyArgumentType indicated the value should
10614   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10615   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10616   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10617   // list and pass indirectly on RV32.
10618   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10619   if (!IsRetIndirect && RetTy->isScalarType() &&
10620       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10621     if (RetTy->isComplexType() && FLen) {
10622       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10623       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10624     } else {
10625       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10626       IsRetIndirect = true;
10627     }
10628   }
10629 
10630   // We must track the number of GPRs used in order to conform to the RISC-V
10631   // ABI, as integer scalars passed in registers should have signext/zeroext
10632   // when promoted, but are anyext if passed on the stack. As GPR usage is
10633   // different for variadic arguments, we must also track whether we are
10634   // examining a vararg or not.
10635   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10636   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10637   int NumFixedArgs = FI.getNumRequiredArgs();
10638 
10639   int ArgNum = 0;
10640   for (auto &ArgInfo : FI.arguments()) {
10641     bool IsFixed = ArgNum < NumFixedArgs;
10642     ArgInfo.info =
10643         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10644     ArgNum++;
10645   }
10646 }
10647 
10648 // Returns true if the struct is a potential candidate for the floating point
10649 // calling convention. If this function returns true, the caller is
10650 // responsible for checking that if there is only a single field then that
10651 // field is a float.
10652 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10653                                                   llvm::Type *&Field1Ty,
10654                                                   CharUnits &Field1Off,
10655                                                   llvm::Type *&Field2Ty,
10656                                                   CharUnits &Field2Off) const {
10657   bool IsInt = Ty->isIntegralOrEnumerationType();
10658   bool IsFloat = Ty->isRealFloatingType();
10659 
10660   if (IsInt || IsFloat) {
10661     uint64_t Size = getContext().getTypeSize(Ty);
10662     if (IsInt && Size > XLen)
10663       return false;
10664     // Can't be eligible if larger than the FP registers. Half precision isn't
10665     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10666     // default to the integer ABI in that case.
10667     if (IsFloat && (Size > FLen || Size < 32))
10668       return false;
10669     // Can't be eligible if an integer type was already found (int+int pairs
10670     // are not eligible).
10671     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10672       return false;
10673     if (!Field1Ty) {
10674       Field1Ty = CGT.ConvertType(Ty);
10675       Field1Off = CurOff;
10676       return true;
10677     }
10678     if (!Field2Ty) {
10679       Field2Ty = CGT.ConvertType(Ty);
10680       Field2Off = CurOff;
10681       return true;
10682     }
10683     return false;
10684   }
10685 
10686   if (auto CTy = Ty->getAs<ComplexType>()) {
10687     if (Field1Ty)
10688       return false;
10689     QualType EltTy = CTy->getElementType();
10690     if (getContext().getTypeSize(EltTy) > FLen)
10691       return false;
10692     Field1Ty = CGT.ConvertType(EltTy);
10693     Field1Off = CurOff;
10694     Field2Ty = Field1Ty;
10695     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10696     return true;
10697   }
10698 
10699   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10700     uint64_t ArraySize = ATy->getSize().getZExtValue();
10701     QualType EltTy = ATy->getElementType();
10702     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10703     for (uint64_t i = 0; i < ArraySize; ++i) {
10704       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10705                                                 Field1Off, Field2Ty, Field2Off);
10706       if (!Ret)
10707         return false;
10708       CurOff += EltSize;
10709     }
10710     return true;
10711   }
10712 
10713   if (const auto *RTy = Ty->getAs<RecordType>()) {
10714     // Structures with either a non-trivial destructor or a non-trivial
10715     // copy constructor are not eligible for the FP calling convention.
10716     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10717       return false;
10718     if (isEmptyRecord(getContext(), Ty, true))
10719       return true;
10720     const RecordDecl *RD = RTy->getDecl();
10721     // Unions aren't eligible unless they're empty (which is caught above).
10722     if (RD->isUnion())
10723       return false;
10724     int ZeroWidthBitFieldCount = 0;
10725     for (const FieldDecl *FD : RD->fields()) {
10726       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10727       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10728       QualType QTy = FD->getType();
10729       if (FD->isBitField()) {
10730         unsigned BitWidth = FD->getBitWidthValue(getContext());
10731         // Allow a bitfield with a type greater than XLen as long as the
10732         // bitwidth is XLen or less.
10733         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10734           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10735         if (BitWidth == 0) {
10736           ZeroWidthBitFieldCount++;
10737           continue;
10738         }
10739       }
10740 
10741       bool Ret = detectFPCCEligibleStructHelper(
10742           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10743           Field1Ty, Field1Off, Field2Ty, Field2Off);
10744       if (!Ret)
10745         return false;
10746 
10747       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10748       // or int+fp structs, but are ignored for a struct with an fp field and
10749       // any number of zero-width bitfields.
10750       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10751         return false;
10752     }
10753     return Field1Ty != nullptr;
10754   }
10755 
10756   return false;
10757 }
10758 
10759 // Determine if a struct is eligible for passing according to the floating
10760 // point calling convention (i.e., when flattened it contains a single fp
10761 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10762 // NeededArgGPRs are incremented appropriately.
10763 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10764                                             CharUnits &Field1Off,
10765                                             llvm::Type *&Field2Ty,
10766                                             CharUnits &Field2Off,
10767                                             int &NeededArgGPRs,
10768                                             int &NeededArgFPRs) const {
10769   Field1Ty = nullptr;
10770   Field2Ty = nullptr;
10771   NeededArgGPRs = 0;
10772   NeededArgFPRs = 0;
10773   bool IsCandidate = detectFPCCEligibleStructHelper(
10774       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10775   // Not really a candidate if we have a single int but no float.
10776   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10777     return false;
10778   if (!IsCandidate)
10779     return false;
10780   if (Field1Ty && Field1Ty->isFloatingPointTy())
10781     NeededArgFPRs++;
10782   else if (Field1Ty)
10783     NeededArgGPRs++;
10784   if (Field2Ty && Field2Ty->isFloatingPointTy())
10785     NeededArgFPRs++;
10786   else if (Field2Ty)
10787     NeededArgGPRs++;
10788   return true;
10789 }
10790 
10791 // Call getCoerceAndExpand for the two-element flattened struct described by
10792 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10793 // appropriate coerceToType and unpaddedCoerceToType.
10794 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10795     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10796     CharUnits Field2Off) const {
10797   SmallVector<llvm::Type *, 3> CoerceElts;
10798   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10799   if (!Field1Off.isZero())
10800     CoerceElts.push_back(llvm::ArrayType::get(
10801         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10802 
10803   CoerceElts.push_back(Field1Ty);
10804   UnpaddedCoerceElts.push_back(Field1Ty);
10805 
10806   if (!Field2Ty) {
10807     return ABIArgInfo::getCoerceAndExpand(
10808         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10809         UnpaddedCoerceElts[0]);
10810   }
10811 
10812   CharUnits Field2Align =
10813       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10814   CharUnits Field1End = Field1Off +
10815       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10816   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10817 
10818   CharUnits Padding = CharUnits::Zero();
10819   if (Field2Off > Field2OffNoPadNoPack)
10820     Padding = Field2Off - Field2OffNoPadNoPack;
10821   else if (Field2Off != Field2Align && Field2Off > Field1End)
10822     Padding = Field2Off - Field1End;
10823 
10824   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10825 
10826   if (!Padding.isZero())
10827     CoerceElts.push_back(llvm::ArrayType::get(
10828         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10829 
10830   CoerceElts.push_back(Field2Ty);
10831   UnpaddedCoerceElts.push_back(Field2Ty);
10832 
10833   auto CoerceToType =
10834       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10835   auto UnpaddedCoerceToType =
10836       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10837 
10838   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10839 }
10840 
10841 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10842                                               int &ArgGPRsLeft,
10843                                               int &ArgFPRsLeft) const {
10844   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10845   Ty = useFirstFieldIfTransparentUnion(Ty);
10846 
10847   // Structures with either a non-trivial destructor or a non-trivial
10848   // copy constructor are always passed indirectly.
10849   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10850     if (ArgGPRsLeft)
10851       ArgGPRsLeft -= 1;
10852     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10853                                            CGCXXABI::RAA_DirectInMemory);
10854   }
10855 
10856   // Ignore empty structs/unions.
10857   if (isEmptyRecord(getContext(), Ty, true))
10858     return ABIArgInfo::getIgnore();
10859 
10860   uint64_t Size = getContext().getTypeSize(Ty);
10861 
10862   // Pass floating point values via FPRs if possible.
10863   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10864       FLen >= Size && ArgFPRsLeft) {
10865     ArgFPRsLeft--;
10866     return ABIArgInfo::getDirect();
10867   }
10868 
10869   // Complex types for the hard float ABI must be passed direct rather than
10870   // using CoerceAndExpand.
10871   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10872     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10873     if (getContext().getTypeSize(EltTy) <= FLen) {
10874       ArgFPRsLeft -= 2;
10875       return ABIArgInfo::getDirect();
10876     }
10877   }
10878 
10879   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10880     llvm::Type *Field1Ty = nullptr;
10881     llvm::Type *Field2Ty = nullptr;
10882     CharUnits Field1Off = CharUnits::Zero();
10883     CharUnits Field2Off = CharUnits::Zero();
10884     int NeededArgGPRs = 0;
10885     int NeededArgFPRs = 0;
10886     bool IsCandidate =
10887         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10888                                  NeededArgGPRs, NeededArgFPRs);
10889     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10890         NeededArgFPRs <= ArgFPRsLeft) {
10891       ArgGPRsLeft -= NeededArgGPRs;
10892       ArgFPRsLeft -= NeededArgFPRs;
10893       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10894                                                Field2Off);
10895     }
10896   }
10897 
10898   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10899   bool MustUseStack = false;
10900   // Determine the number of GPRs needed to pass the current argument
10901   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10902   // register pairs, so may consume 3 registers.
10903   int NeededArgGPRs = 1;
10904   if (!IsFixed && NeededAlign == 2 * XLen)
10905     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10906   else if (Size > XLen && Size <= 2 * XLen)
10907     NeededArgGPRs = 2;
10908 
10909   if (NeededArgGPRs > ArgGPRsLeft) {
10910     MustUseStack = true;
10911     NeededArgGPRs = ArgGPRsLeft;
10912   }
10913 
10914   ArgGPRsLeft -= NeededArgGPRs;
10915 
10916   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10917     // Treat an enum type as its underlying type.
10918     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10919       Ty = EnumTy->getDecl()->getIntegerType();
10920 
10921     // All integral types are promoted to XLen width, unless passed on the
10922     // stack.
10923     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10924       return extendType(Ty);
10925     }
10926 
10927     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10928       if (EIT->getNumBits() < XLen && !MustUseStack)
10929         return extendType(Ty);
10930       if (EIT->getNumBits() > 128 ||
10931           (!getContext().getTargetInfo().hasInt128Type() &&
10932            EIT->getNumBits() > 64))
10933         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10934     }
10935 
10936     return ABIArgInfo::getDirect();
10937   }
10938 
10939   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10940   // so coerce to integers.
10941   if (Size <= 2 * XLen) {
10942     unsigned Alignment = getContext().getTypeAlign(Ty);
10943 
10944     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10945     // required, and a 2-element XLen array if only XLen alignment is required.
10946     if (Size <= XLen) {
10947       return ABIArgInfo::getDirect(
10948           llvm::IntegerType::get(getVMContext(), XLen));
10949     } else if (Alignment == 2 * XLen) {
10950       return ABIArgInfo::getDirect(
10951           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10952     } else {
10953       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10954           llvm::IntegerType::get(getVMContext(), XLen), 2));
10955     }
10956   }
10957   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10958 }
10959 
10960 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10961   if (RetTy->isVoidType())
10962     return ABIArgInfo::getIgnore();
10963 
10964   int ArgGPRsLeft = 2;
10965   int ArgFPRsLeft = FLen ? 2 : 0;
10966 
10967   // The rules for return and argument types are the same, so defer to
10968   // classifyArgumentType.
10969   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10970                               ArgFPRsLeft);
10971 }
10972 
10973 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10974                                 QualType Ty) const {
10975   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10976 
10977   // Empty records are ignored for parameter passing purposes.
10978   if (isEmptyRecord(getContext(), Ty, true)) {
10979     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10980     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10981     return Addr;
10982   }
10983 
10984   auto TInfo = getContext().getTypeInfoInChars(Ty);
10985 
10986   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10987   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10988 
10989   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10990                           SlotSize, /*AllowHigherAlign=*/true);
10991 }
10992 
10993 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10994   int TySize = getContext().getTypeSize(Ty);
10995   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10996   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10997     return ABIArgInfo::getSignExtend(Ty);
10998   return ABIArgInfo::getExtend(Ty);
10999 }
11000 
11001 namespace {
11002 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
11003 public:
11004   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
11005                          unsigned FLen)
11006       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
11007 
11008   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
11009                            CodeGen::CodeGenModule &CGM) const override {
11010     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
11011     if (!FD) return;
11012 
11013     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11014     if (!Attr)
11015       return;
11016 
11017     const char *Kind;
11018     switch (Attr->getInterrupt()) {
11019     case RISCVInterruptAttr::user: Kind = "user"; break;
11020     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11021     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11022     }
11023 
11024     auto *Fn = cast<llvm::Function>(GV);
11025 
11026     Fn->addFnAttr("interrupt", Kind);
11027   }
11028 };
11029 } // namespace
11030 
11031 //===----------------------------------------------------------------------===//
11032 // VE ABI Implementation.
11033 //
11034 namespace {
11035 class VEABIInfo : public DefaultABIInfo {
11036 public:
11037   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11038 
11039 private:
11040   ABIArgInfo classifyReturnType(QualType RetTy) const;
11041   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11042   void computeInfo(CGFunctionInfo &FI) const override;
11043 };
11044 } // end anonymous namespace
11045 
11046 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11047   if (Ty->isAnyComplexType())
11048     return ABIArgInfo::getDirect();
11049   uint64_t Size = getContext().getTypeSize(Ty);
11050   if (Size < 64 && Ty->isIntegerType())
11051     return ABIArgInfo::getExtend(Ty);
11052   return DefaultABIInfo::classifyReturnType(Ty);
11053 }
11054 
11055 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11056   if (Ty->isAnyComplexType())
11057     return ABIArgInfo::getDirect();
11058   uint64_t Size = getContext().getTypeSize(Ty);
11059   if (Size < 64 && Ty->isIntegerType())
11060     return ABIArgInfo::getExtend(Ty);
11061   return DefaultABIInfo::classifyArgumentType(Ty);
11062 }
11063 
11064 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11065   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11066   for (auto &Arg : FI.arguments())
11067     Arg.info = classifyArgumentType(Arg.type);
11068 }
11069 
11070 namespace {
11071 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11072 public:
11073   VETargetCodeGenInfo(CodeGenTypes &CGT)
11074       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11075   // VE ABI requires the arguments of variadic and prototype-less functions
11076   // are passed in both registers and memory.
11077   bool isNoProtoCallVariadic(const CallArgList &args,
11078                              const FunctionNoProtoType *fnType) const override {
11079     return true;
11080   }
11081 };
11082 } // end anonymous namespace
11083 
11084 //===----------------------------------------------------------------------===//
11085 // Driver code
11086 //===----------------------------------------------------------------------===//
11087 
11088 bool CodeGenModule::supportsCOMDAT() const {
11089   return getTriple().supportsCOMDAT();
11090 }
11091 
11092 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11093   if (TheTargetCodeGenInfo)
11094     return *TheTargetCodeGenInfo;
11095 
11096   // Helper to set the unique_ptr while still keeping the return value.
11097   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11098     this->TheTargetCodeGenInfo.reset(P);
11099     return *P;
11100   };
11101 
11102   const llvm::Triple &Triple = getTarget().getTriple();
11103   switch (Triple.getArch()) {
11104   default:
11105     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11106 
11107   case llvm::Triple::le32:
11108     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11109   case llvm::Triple::m68k:
11110     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11111   case llvm::Triple::mips:
11112   case llvm::Triple::mipsel:
11113     if (Triple.getOS() == llvm::Triple::NaCl)
11114       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11115     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11116 
11117   case llvm::Triple::mips64:
11118   case llvm::Triple::mips64el:
11119     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11120 
11121   case llvm::Triple::avr:
11122     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11123 
11124   case llvm::Triple::aarch64:
11125   case llvm::Triple::aarch64_32:
11126   case llvm::Triple::aarch64_be: {
11127     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11128     if (getTarget().getABI() == "darwinpcs")
11129       Kind = AArch64ABIInfo::DarwinPCS;
11130     else if (Triple.isOSWindows())
11131       return SetCGInfo(
11132           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11133 
11134     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11135   }
11136 
11137   case llvm::Triple::wasm32:
11138   case llvm::Triple::wasm64: {
11139     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11140     if (getTarget().getABI() == "experimental-mv")
11141       Kind = WebAssemblyABIInfo::ExperimentalMV;
11142     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11143   }
11144 
11145   case llvm::Triple::arm:
11146   case llvm::Triple::armeb:
11147   case llvm::Triple::thumb:
11148   case llvm::Triple::thumbeb: {
11149     if (Triple.getOS() == llvm::Triple::Win32) {
11150       return SetCGInfo(
11151           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11152     }
11153 
11154     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11155     StringRef ABIStr = getTarget().getABI();
11156     if (ABIStr == "apcs-gnu")
11157       Kind = ARMABIInfo::APCS;
11158     else if (ABIStr == "aapcs16")
11159       Kind = ARMABIInfo::AAPCS16_VFP;
11160     else if (CodeGenOpts.FloatABI == "hard" ||
11161              (CodeGenOpts.FloatABI != "soft" &&
11162               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11163                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11164                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11165       Kind = ARMABIInfo::AAPCS_VFP;
11166 
11167     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11168   }
11169 
11170   case llvm::Triple::ppc: {
11171     if (Triple.isOSAIX())
11172       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11173 
11174     bool IsSoftFloat =
11175         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11176     bool RetSmallStructInRegABI =
11177         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11178     return SetCGInfo(
11179         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11180   }
11181   case llvm::Triple::ppcle: {
11182     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11183     bool RetSmallStructInRegABI =
11184         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11185     return SetCGInfo(
11186         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11187   }
11188   case llvm::Triple::ppc64:
11189     if (Triple.isOSAIX())
11190       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11191 
11192     if (Triple.isOSBinFormatELF()) {
11193       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11194       if (getTarget().getABI() == "elfv2")
11195         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11196       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11197 
11198       return SetCGInfo(
11199           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11200     }
11201     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11202   case llvm::Triple::ppc64le: {
11203     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11204     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11205     if (getTarget().getABI() == "elfv1")
11206       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11207     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11208 
11209     return SetCGInfo(
11210         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11211   }
11212 
11213   case llvm::Triple::nvptx:
11214   case llvm::Triple::nvptx64:
11215     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11216 
11217   case llvm::Triple::msp430:
11218     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11219 
11220   case llvm::Triple::riscv32:
11221   case llvm::Triple::riscv64: {
11222     StringRef ABIStr = getTarget().getABI();
11223     unsigned XLen = getTarget().getPointerWidth(0);
11224     unsigned ABIFLen = 0;
11225     if (ABIStr.endswith("f"))
11226       ABIFLen = 32;
11227     else if (ABIStr.endswith("d"))
11228       ABIFLen = 64;
11229     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11230   }
11231 
11232   case llvm::Triple::systemz: {
11233     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11234     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11235     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11236   }
11237 
11238   case llvm::Triple::tce:
11239   case llvm::Triple::tcele:
11240     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11241 
11242   case llvm::Triple::x86: {
11243     bool IsDarwinVectorABI = Triple.isOSDarwin();
11244     bool RetSmallStructInRegABI =
11245         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11247 
11248     if (Triple.getOS() == llvm::Triple::Win32) {
11249       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11250           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11251           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11252     } else {
11253       return SetCGInfo(new X86_32TargetCodeGenInfo(
11254           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11255           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11256           CodeGenOpts.FloatABI == "soft"));
11257     }
11258   }
11259 
11260   case llvm::Triple::x86_64: {
11261     StringRef ABI = getTarget().getABI();
11262     X86AVXABILevel AVXLevel =
11263         (ABI == "avx512"
11264              ? X86AVXABILevel::AVX512
11265              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11266 
11267     switch (Triple.getOS()) {
11268     case llvm::Triple::Win32:
11269       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11270     default:
11271       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11272     }
11273   }
11274   case llvm::Triple::hexagon:
11275     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11276   case llvm::Triple::lanai:
11277     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11278   case llvm::Triple::r600:
11279     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11280   case llvm::Triple::amdgcn:
11281     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11282   case llvm::Triple::sparc:
11283     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11284   case llvm::Triple::sparcv9:
11285     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11286   case llvm::Triple::xcore:
11287     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11288   case llvm::Triple::arc:
11289     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11290   case llvm::Triple::spir:
11291   case llvm::Triple::spir64:
11292     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11293   case llvm::Triple::ve:
11294     return SetCGInfo(new VETargetCodeGenInfo(Types));
11295   }
11296 }
11297 
11298 /// Create an OpenCL kernel for an enqueued block.
11299 ///
11300 /// The kernel has the same function type as the block invoke function. Its
11301 /// name is the name of the block invoke function postfixed with "_kernel".
11302 /// It simply calls the block invoke function then returns.
11303 llvm::Function *
11304 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11305                                              llvm::Function *Invoke,
11306                                              llvm::Value *BlockLiteral) const {
11307   auto *InvokeFT = Invoke->getFunctionType();
11308   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11309   for (auto &P : InvokeFT->params())
11310     ArgTys.push_back(P);
11311   auto &C = CGF.getLLVMContext();
11312   std::string Name = Invoke->getName().str() + "_kernel";
11313   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11314   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11315                                    &CGF.CGM.getModule());
11316   auto IP = CGF.Builder.saveIP();
11317   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11318   auto &Builder = CGF.Builder;
11319   Builder.SetInsertPoint(BB);
11320   llvm::SmallVector<llvm::Value *, 2> Args;
11321   for (auto &A : F->args())
11322     Args.push_back(&A);
11323   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11324   call->setCallingConv(Invoke->getCallingConv());
11325   Builder.CreateRetVoid();
11326   Builder.restoreIP(IP);
11327   return F;
11328 }
11329 
11330 /// Create an OpenCL kernel for an enqueued block.
11331 ///
11332 /// The type of the first argument (the block literal) is the struct type
11333 /// of the block literal instead of a pointer type. The first argument
11334 /// (block literal) is passed directly by value to the kernel. The kernel
11335 /// allocates the same type of struct on stack and stores the block literal
11336 /// to it and passes its pointer to the block invoke function. The kernel
11337 /// has "enqueued-block" function attribute and kernel argument metadata.
11338 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11339     CodeGenFunction &CGF, llvm::Function *Invoke,
11340     llvm::Value *BlockLiteral) const {
11341   auto &Builder = CGF.Builder;
11342   auto &C = CGF.getLLVMContext();
11343 
11344   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11345   auto *InvokeFT = Invoke->getFunctionType();
11346   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11347   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11348   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11349   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11350   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11351   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11352   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11353 
11354   ArgTys.push_back(BlockTy);
11355   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11356   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11357   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11358   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11359   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11360   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11361   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11362     ArgTys.push_back(InvokeFT->getParamType(I));
11363     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11364     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11365     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11366     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11367     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11368     ArgNames.push_back(
11369         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11370   }
11371   std::string Name = Invoke->getName().str() + "_kernel";
11372   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11373   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11374                                    &CGF.CGM.getModule());
11375   F->addFnAttr("enqueued-block");
11376   auto IP = CGF.Builder.saveIP();
11377   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11378   Builder.SetInsertPoint(BB);
11379   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11380   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11381   BlockPtr->setAlignment(BlockAlign);
11382   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11383   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11384   llvm::SmallVector<llvm::Value *, 2> Args;
11385   Args.push_back(Cast);
11386   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11387     Args.push_back(I);
11388   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11389   call->setCallingConv(Invoke->getCallingConv());
11390   Builder.CreateRetVoid();
11391   Builder.restoreIP(IP);
11392 
11393   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11394   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11395   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11396   F->setMetadata("kernel_arg_base_type",
11397                  llvm::MDNode::get(C, ArgBaseTypeNames));
11398   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11399   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11400     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11401 
11402   return F;
11403 }
11404