1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41     Builder.CreateStore(Value, Cell);
42   }
43 }
44 
45 static bool isAggregateTypeForABI(QualType T) {
46   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47          T->isMemberFunctionPointerType();
48 }
49 
50 ABIInfo::~ABIInfo() {}
51 
52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53                                               CGCXXABI &CXXABI) {
54   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55   if (!RD)
56     return CGCXXABI::RAA_Default;
57   return CXXABI.getRecordArgABI(RD);
58 }
59 
60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61                                               CGCXXABI &CXXABI) {
62   const RecordType *RT = T->getAs<RecordType>();
63   if (!RT)
64     return CGCXXABI::RAA_Default;
65   return getRecordArgABI(RT, CXXABI);
66 }
67 
68 CGCXXABI &ABIInfo::getCXXABI() const {
69   return CGT.getCXXABI();
70 }
71 
72 ASTContext &ABIInfo::getContext() const {
73   return CGT.getContext();
74 }
75 
76 llvm::LLVMContext &ABIInfo::getVMContext() const {
77   return CGT.getLLVMContext();
78 }
79 
80 const llvm::DataLayout &ABIInfo::getDataLayout() const {
81   return CGT.getDataLayout();
82 }
83 
84 const TargetInfo &ABIInfo::getTarget() const {
85   return CGT.getTarget();
86 }
87 
88 void ABIArgInfo::dump() const {
89   raw_ostream &OS = llvm::errs();
90   OS << "(ABIArgInfo Kind=";
91   switch (TheKind) {
92   case Direct:
93     OS << "Direct Type=";
94     if (llvm::Type *Ty = getCoerceToType())
95       Ty->print(OS);
96     else
97       OS << "null";
98     break;
99   case Extend:
100     OS << "Extend";
101     break;
102   case Ignore:
103     OS << "Ignore";
104     break;
105   case InAlloca:
106     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
107     break;
108   case Indirect:
109     OS << "Indirect Align=" << getIndirectAlign()
110        << " ByVal=" << getIndirectByVal()
111        << " Realign=" << getIndirectRealign();
112     break;
113   case Expand:
114     OS << "Expand";
115     break;
116   }
117   OS << ")\n";
118 }
119 
120 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
121 
122 // If someone can figure out a general rule for this, that would be great.
123 // It's probably just doomed to be platform-dependent, though.
124 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
125   // Verified for:
126   //   x86-64     FreeBSD, Linux, Darwin
127   //   x86-32     FreeBSD, Linux, Darwin
128   //   PowerPC    Linux, Darwin
129   //   ARM        Darwin (*not* EABI)
130   //   AArch64    Linux
131   return 32;
132 }
133 
134 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
135                                      const FunctionNoProtoType *fnType) const {
136   // The following conventions are known to require this to be false:
137   //   x86_stdcall
138   //   MIPS
139   // For everything else, we just prefer false unless we opt out.
140   return false;
141 }
142 
143 void
144 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
145                                              llvm::SmallString<24> &Opt) const {
146   // This assumes the user is passing a library name like "rt" instead of a
147   // filename like "librt.a/so", and that they don't care whether it's static or
148   // dynamic.
149   Opt = "-l";
150   Opt += Lib;
151 }
152 
153 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
154 
155 /// isEmptyField - Return true iff a the field is "empty", that is it
156 /// is an unnamed bit-field or an (array of) empty record(s).
157 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
158                          bool AllowArrays) {
159   if (FD->isUnnamedBitfield())
160     return true;
161 
162   QualType FT = FD->getType();
163 
164   // Constant arrays of empty records count as empty, strip them off.
165   // Constant arrays of zero length always count as empty.
166   if (AllowArrays)
167     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
168       if (AT->getSize() == 0)
169         return true;
170       FT = AT->getElementType();
171     }
172 
173   const RecordType *RT = FT->getAs<RecordType>();
174   if (!RT)
175     return false;
176 
177   // C++ record fields are never empty, at least in the Itanium ABI.
178   //
179   // FIXME: We should use a predicate for whether this behavior is true in the
180   // current ABI.
181   if (isa<CXXRecordDecl>(RT->getDecl()))
182     return false;
183 
184   return isEmptyRecord(Context, FT, AllowArrays);
185 }
186 
187 /// isEmptyRecord - Return true iff a structure contains only empty
188 /// fields. Note that a structure with a flexible array member is not
189 /// considered empty.
190 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
191   const RecordType *RT = T->getAs<RecordType>();
192   if (!RT)
193     return 0;
194   const RecordDecl *RD = RT->getDecl();
195   if (RD->hasFlexibleArrayMember())
196     return false;
197 
198   // If this is a C++ record, check the bases first.
199   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
200     for (const auto &I : CXXRD->bases())
201       if (!isEmptyRecord(Context, I.getType(), true))
202         return false;
203 
204   for (const auto *I : RD->fields())
205     if (!isEmptyField(Context, I, AllowArrays))
206       return false;
207   return true;
208 }
209 
210 /// isSingleElementStruct - Determine if a structure is a "single
211 /// element struct", i.e. it has exactly one non-empty field or
212 /// exactly one field which is itself a single element
213 /// struct. Structures with flexible array members are never
214 /// considered single element structs.
215 ///
216 /// \return The field declaration for the single non-empty field, if
217 /// it exists.
218 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
219   const RecordType *RT = T->getAsStructureType();
220   if (!RT)
221     return nullptr;
222 
223   const RecordDecl *RD = RT->getDecl();
224   if (RD->hasFlexibleArrayMember())
225     return nullptr;
226 
227   const Type *Found = nullptr;
228 
229   // If this is a C++ record, check the bases first.
230   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
231     for (const auto &I : CXXRD->bases()) {
232       // Ignore empty records.
233       if (isEmptyRecord(Context, I.getType(), true))
234         continue;
235 
236       // If we already found an element then this isn't a single-element struct.
237       if (Found)
238         return nullptr;
239 
240       // If this is non-empty and not a single element struct, the composite
241       // cannot be a single element struct.
242       Found = isSingleElementStruct(I.getType(), Context);
243       if (!Found)
244         return nullptr;
245     }
246   }
247 
248   // Check for single element.
249   for (const auto *FD : RD->fields()) {
250     QualType FT = FD->getType();
251 
252     // Ignore empty fields.
253     if (isEmptyField(Context, FD, true))
254       continue;
255 
256     // If we already found an element then this isn't a single-element
257     // struct.
258     if (Found)
259       return nullptr;
260 
261     // Treat single element arrays as the element.
262     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
263       if (AT->getSize().getZExtValue() != 1)
264         break;
265       FT = AT->getElementType();
266     }
267 
268     if (!isAggregateTypeForABI(FT)) {
269       Found = FT.getTypePtr();
270     } else {
271       Found = isSingleElementStruct(FT, Context);
272       if (!Found)
273         return nullptr;
274     }
275   }
276 
277   // We don't consider a struct a single-element struct if it has
278   // padding beyond the element type.
279   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
280     return nullptr;
281 
282   return Found;
283 }
284 
285 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
286   // Treat complex types as the element type.
287   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
288     Ty = CTy->getElementType();
289 
290   // Check for a type which we know has a simple scalar argument-passing
291   // convention without any padding.  (We're specifically looking for 32
292   // and 64-bit integer and integer-equivalents, float, and double.)
293   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
294       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
295     return false;
296 
297   uint64_t Size = Context.getTypeSize(Ty);
298   return Size == 32 || Size == 64;
299 }
300 
301 /// canExpandIndirectArgument - Test whether an argument type which is to be
302 /// passed indirectly (on the stack) would have the equivalent layout if it was
303 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
304 /// inhibiting optimizations.
305 ///
306 // FIXME: This predicate is missing many cases, currently it just follows
307 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
308 // should probably make this smarter, or better yet make the LLVM backend
309 // capable of handling it.
310 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
311   // We can only expand structure types.
312   const RecordType *RT = Ty->getAs<RecordType>();
313   if (!RT)
314     return false;
315 
316   // We can only expand (C) structures.
317   //
318   // FIXME: This needs to be generalized to handle classes as well.
319   const RecordDecl *RD = RT->getDecl();
320   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
321     return false;
322 
323   uint64_t Size = 0;
324 
325   for (const auto *FD : RD->fields()) {
326     if (!is32Or64BitBasicType(FD->getType(), Context))
327       return false;
328 
329     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
330     // how to expand them yet, and the predicate for telling if a bitfield still
331     // counts as "basic" is more complicated than what we were doing previously.
332     if (FD->isBitField())
333       return false;
334 
335     Size += Context.getTypeSize(FD->getType());
336   }
337 
338   // Make sure there are not any holes in the struct.
339   if (Size != Context.getTypeSize(Ty))
340     return false;
341 
342   return true;
343 }
344 
345 namespace {
346 /// DefaultABIInfo - The default implementation for ABI specific
347 /// details. This implementation provides information which results in
348 /// self-consistent and sensible LLVM IR generation, but does not
349 /// conform to any particular ABI.
350 class DefaultABIInfo : public ABIInfo {
351 public:
352   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
353 
354   ABIArgInfo classifyReturnType(QualType RetTy) const;
355   ABIArgInfo classifyArgumentType(QualType RetTy) const;
356 
357   void computeInfo(CGFunctionInfo &FI) const override {
358     if (!getCXXABI().classifyReturnType(FI))
359       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
360     for (auto &I : FI.arguments())
361       I.info = classifyArgumentType(I.type);
362   }
363 
364   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
365                          CodeGenFunction &CGF) const override;
366 };
367 
368 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
369 public:
370   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
371     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
372 };
373 
374 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
375                                        CodeGenFunction &CGF) const {
376   return nullptr;
377 }
378 
379 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
380   if (isAggregateTypeForABI(Ty))
381     return ABIArgInfo::getIndirect(0);
382 
383   // Treat an enum type as its underlying type.
384   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
385     Ty = EnumTy->getDecl()->getIntegerType();
386 
387   return (Ty->isPromotableIntegerType() ?
388           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
389 }
390 
391 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
392   if (RetTy->isVoidType())
393     return ABIArgInfo::getIgnore();
394 
395   if (isAggregateTypeForABI(RetTy))
396     return ABIArgInfo::getIndirect(0);
397 
398   // Treat an enum type as its underlying type.
399   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
400     RetTy = EnumTy->getDecl()->getIntegerType();
401 
402   return (RetTy->isPromotableIntegerType() ?
403           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
404 }
405 
406 //===----------------------------------------------------------------------===//
407 // le32/PNaCl bitcode ABI Implementation
408 //
409 // This is a simplified version of the x86_32 ABI.  Arguments and return values
410 // are always passed on the stack.
411 //===----------------------------------------------------------------------===//
412 
413 class PNaClABIInfo : public ABIInfo {
414  public:
415   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
416 
417   ABIArgInfo classifyReturnType(QualType RetTy) const;
418   ABIArgInfo classifyArgumentType(QualType RetTy) const;
419 
420   void computeInfo(CGFunctionInfo &FI) const override;
421   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
422                          CodeGenFunction &CGF) const override;
423 };
424 
425 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
426  public:
427   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
428     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
429 };
430 
431 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
432   if (!getCXXABI().classifyReturnType(FI))
433     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
434 
435   for (auto &I : FI.arguments())
436     I.info = classifyArgumentType(I.type);
437 }
438 
439 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
440                                        CodeGenFunction &CGF) const {
441   return nullptr;
442 }
443 
444 /// \brief Classify argument of given type \p Ty.
445 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
446   if (isAggregateTypeForABI(Ty)) {
447     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
448       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
449     return ABIArgInfo::getIndirect(0);
450   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
451     // Treat an enum type as its underlying type.
452     Ty = EnumTy->getDecl()->getIntegerType();
453   } else if (Ty->isFloatingType()) {
454     // Floating-point types don't go inreg.
455     return ABIArgInfo::getDirect();
456   }
457 
458   return (Ty->isPromotableIntegerType() ?
459           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
460 }
461 
462 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
463   if (RetTy->isVoidType())
464     return ABIArgInfo::getIgnore();
465 
466   // In the PNaCl ABI we always return records/structures on the stack.
467   if (isAggregateTypeForABI(RetTy))
468     return ABIArgInfo::getIndirect(0);
469 
470   // Treat an enum type as its underlying type.
471   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
472     RetTy = EnumTy->getDecl()->getIntegerType();
473 
474   return (RetTy->isPromotableIntegerType() ?
475           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
476 }
477 
478 /// IsX86_MMXType - Return true if this is an MMX type.
479 bool IsX86_MMXType(llvm::Type *IRType) {
480   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
481   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483     IRType->getScalarSizeInBits() != 64;
484 }
485 
486 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                           StringRef Constraint,
488                                           llvm::Type* Ty) {
489   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
490     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
491       // Invalid MMX constraint
492       return nullptr;
493     }
494 
495     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
496   }
497 
498   // No operation needed
499   return Ty;
500 }
501 
502 //===----------------------------------------------------------------------===//
503 // X86-32 ABI Implementation
504 //===----------------------------------------------------------------------===//
505 
506 /// \brief Similar to llvm::CCState, but for Clang.
507 struct CCState {
508   CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
509 
510   unsigned CC;
511   unsigned FreeRegs;
512   unsigned StackOffset;
513   bool UseInAlloca;
514 };
515 
516 /// X86_32ABIInfo - The X86-32 ABI information.
517 class X86_32ABIInfo : public ABIInfo {
518   enum Class {
519     Integer,
520     Float
521   };
522 
523   static const unsigned MinABIStackAlignInBytes = 4;
524 
525   bool IsDarwinVectorABI;
526   bool IsSmallStructInRegABI;
527   bool IsWin32StructABI;
528   unsigned DefaultNumRegisterParameters;
529 
530   static bool isRegisterSize(unsigned Size) {
531     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
532   }
533 
534   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
535 
536   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
537   /// such that the argument will be passed in memory.
538   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
539 
540   ABIArgInfo getIndirectReturnResult(CCState &State) const;
541 
542   /// \brief Return the alignment to use for the given type on the stack.
543   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
544 
545   Class classify(QualType Ty) const;
546   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
547   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
548   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
549 
550   /// \brief Rewrite the function info so that all memory arguments use
551   /// inalloca.
552   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
553 
554   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
555                            unsigned &StackOffset, ABIArgInfo &Info,
556                            QualType Type) const;
557 
558 public:
559 
560   void computeInfo(CGFunctionInfo &FI) const override;
561   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
562                          CodeGenFunction &CGF) const override;
563 
564   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
565                 unsigned r)
566     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
567       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
568 };
569 
570 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
571 public:
572   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
573       bool d, bool p, bool w, unsigned r)
574     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
575 
576   static bool isStructReturnInRegABI(
577       const llvm::Triple &Triple, const CodeGenOptions &Opts);
578 
579   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
580                            CodeGen::CodeGenModule &CGM) const override;
581 
582   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
583     // Darwin uses different dwarf register numbers for EH.
584     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
585     return 4;
586   }
587 
588   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
589                                llvm::Value *Address) const override;
590 
591   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
592                                   StringRef Constraint,
593                                   llvm::Type* Ty) const override {
594     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
595   }
596 
597   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
598                                 std::string &Constraints,
599                                 std::vector<llvm::Type *> &ResultRegTypes,
600                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
601                                 std::vector<LValue> &ResultRegDests,
602                                 std::string &AsmString,
603                                 unsigned NumOutputs) const override;
604 
605   llvm::Constant *
606   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
607     unsigned Sig = (0xeb << 0) |  // jmp rel8
608                    (0x06 << 8) |  //           .+0x08
609                    ('F' << 16) |
610                    ('T' << 24);
611     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
612   }
613 
614 };
615 
616 }
617 
618 /// Rewrite input constraint references after adding some output constraints.
619 /// In the case where there is one output and one input and we add one output,
620 /// we need to replace all operand references greater than or equal to 1:
621 ///     mov $0, $1
622 ///     mov eax, $1
623 /// The result will be:
624 ///     mov $0, $2
625 ///     mov eax, $2
626 static void rewriteInputConstraintReferences(unsigned FirstIn,
627                                              unsigned NumNewOuts,
628                                              std::string &AsmString) {
629   std::string Buf;
630   llvm::raw_string_ostream OS(Buf);
631   size_t Pos = 0;
632   while (Pos < AsmString.size()) {
633     size_t DollarStart = AsmString.find('$', Pos);
634     if (DollarStart == std::string::npos)
635       DollarStart = AsmString.size();
636     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
637     if (DollarEnd == std::string::npos)
638       DollarEnd = AsmString.size();
639     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
640     Pos = DollarEnd;
641     size_t NumDollars = DollarEnd - DollarStart;
642     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
643       // We have an operand reference.
644       size_t DigitStart = Pos;
645       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
646       if (DigitEnd == std::string::npos)
647         DigitEnd = AsmString.size();
648       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
649       unsigned OperandIndex;
650       if (!OperandStr.getAsInteger(10, OperandIndex)) {
651         if (OperandIndex >= FirstIn)
652           OperandIndex += NumNewOuts;
653         OS << OperandIndex;
654       } else {
655         OS << OperandStr;
656       }
657       Pos = DigitEnd;
658     }
659   }
660   AsmString = std::move(OS.str());
661 }
662 
663 /// Add output constraints for EAX:EDX because they are return registers.
664 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
665     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
666     std::vector<llvm::Type *> &ResultRegTypes,
667     std::vector<llvm::Type *> &ResultTruncRegTypes,
668     std::vector<LValue> &ResultRegDests, std::string &AsmString,
669     unsigned NumOutputs) const {
670   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
671 
672   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
673   // larger.
674   if (!Constraints.empty())
675     Constraints += ',';
676   if (RetWidth <= 32) {
677     Constraints += "={eax}";
678     ResultRegTypes.push_back(CGF.Int32Ty);
679   } else {
680     // Use the 'A' constraint for EAX:EDX.
681     Constraints += "=A";
682     ResultRegTypes.push_back(CGF.Int64Ty);
683   }
684 
685   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
686   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
687   ResultTruncRegTypes.push_back(CoerceTy);
688 
689   // Coerce the integer by bitcasting the return slot pointer.
690   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
691                                                   CoerceTy->getPointerTo()));
692   ResultRegDests.push_back(ReturnSlot);
693 
694   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
695 }
696 
697 /// shouldReturnTypeInRegister - Determine if the given type should be
698 /// passed in a register (for the Darwin ABI).
699 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
700                                                ASTContext &Context) const {
701   uint64_t Size = Context.getTypeSize(Ty);
702 
703   // Type must be register sized.
704   if (!isRegisterSize(Size))
705     return false;
706 
707   if (Ty->isVectorType()) {
708     // 64- and 128- bit vectors inside structures are not returned in
709     // registers.
710     if (Size == 64 || Size == 128)
711       return false;
712 
713     return true;
714   }
715 
716   // If this is a builtin, pointer, enum, complex type, member pointer, or
717   // member function pointer it is ok.
718   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
719       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
720       Ty->isBlockPointerType() || Ty->isMemberPointerType())
721     return true;
722 
723   // Arrays are treated like records.
724   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
725     return shouldReturnTypeInRegister(AT->getElementType(), Context);
726 
727   // Otherwise, it must be a record type.
728   const RecordType *RT = Ty->getAs<RecordType>();
729   if (!RT) return false;
730 
731   // FIXME: Traverse bases here too.
732 
733   // Structure types are passed in register if all fields would be
734   // passed in a register.
735   for (const auto *FD : RT->getDecl()->fields()) {
736     // Empty fields are ignored.
737     if (isEmptyField(Context, FD, true))
738       continue;
739 
740     // Check fields recursively.
741     if (!shouldReturnTypeInRegister(FD->getType(), Context))
742       return false;
743   }
744   return true;
745 }
746 
747 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
748   // If the return value is indirect, then the hidden argument is consuming one
749   // integer register.
750   if (State.FreeRegs) {
751     --State.FreeRegs;
752     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
753   }
754   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
755 }
756 
757 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
758   if (RetTy->isVoidType())
759     return ABIArgInfo::getIgnore();
760 
761   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
762     // On Darwin, some vectors are returned in registers.
763     if (IsDarwinVectorABI) {
764       uint64_t Size = getContext().getTypeSize(RetTy);
765 
766       // 128-bit vectors are a special case; they are returned in
767       // registers and we need to make sure to pick a type the LLVM
768       // backend will like.
769       if (Size == 128)
770         return ABIArgInfo::getDirect(llvm::VectorType::get(
771                   llvm::Type::getInt64Ty(getVMContext()), 2));
772 
773       // Always return in register if it fits in a general purpose
774       // register, or if it is 64 bits and has a single element.
775       if ((Size == 8 || Size == 16 || Size == 32) ||
776           (Size == 64 && VT->getNumElements() == 1))
777         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
778                                                             Size));
779 
780       return getIndirectReturnResult(State);
781     }
782 
783     return ABIArgInfo::getDirect();
784   }
785 
786   if (isAggregateTypeForABI(RetTy)) {
787     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
788       // Structures with flexible arrays are always indirect.
789       if (RT->getDecl()->hasFlexibleArrayMember())
790         return getIndirectReturnResult(State);
791     }
792 
793     // If specified, structs and unions are always indirect.
794     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
795       return getIndirectReturnResult(State);
796 
797     // Small structures which are register sized are generally returned
798     // in a register.
799     if (shouldReturnTypeInRegister(RetTy, getContext())) {
800       uint64_t Size = getContext().getTypeSize(RetTy);
801 
802       // As a special-case, if the struct is a "single-element" struct, and
803       // the field is of type "float" or "double", return it in a
804       // floating-point register. (MSVC does not apply this special case.)
805       // We apply a similar transformation for pointer types to improve the
806       // quality of the generated IR.
807       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
808         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
809             || SeltTy->hasPointerRepresentation())
810           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
811 
812       // FIXME: We should be able to narrow this integer in cases with dead
813       // padding.
814       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
815     }
816 
817     return getIndirectReturnResult(State);
818   }
819 
820   // Treat an enum type as its underlying type.
821   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
822     RetTy = EnumTy->getDecl()->getIntegerType();
823 
824   return (RetTy->isPromotableIntegerType() ?
825           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
826 }
827 
828 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
829   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
830 }
831 
832 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
833   const RecordType *RT = Ty->getAs<RecordType>();
834   if (!RT)
835     return 0;
836   const RecordDecl *RD = RT->getDecl();
837 
838   // If this is a C++ record, check the bases first.
839   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
840     for (const auto &I : CXXRD->bases())
841       if (!isRecordWithSSEVectorType(Context, I.getType()))
842         return false;
843 
844   for (const auto *i : RD->fields()) {
845     QualType FT = i->getType();
846 
847     if (isSSEVectorType(Context, FT))
848       return true;
849 
850     if (isRecordWithSSEVectorType(Context, FT))
851       return true;
852   }
853 
854   return false;
855 }
856 
857 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
858                                                  unsigned Align) const {
859   // Otherwise, if the alignment is less than or equal to the minimum ABI
860   // alignment, just use the default; the backend will handle this.
861   if (Align <= MinABIStackAlignInBytes)
862     return 0; // Use default alignment.
863 
864   // On non-Darwin, the stack type alignment is always 4.
865   if (!IsDarwinVectorABI) {
866     // Set explicit alignment, since we may need to realign the top.
867     return MinABIStackAlignInBytes;
868   }
869 
870   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
871   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
872                       isRecordWithSSEVectorType(getContext(), Ty)))
873     return 16;
874 
875   return MinABIStackAlignInBytes;
876 }
877 
878 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
879                                             CCState &State) const {
880   if (!ByVal) {
881     if (State.FreeRegs) {
882       --State.FreeRegs; // Non-byval indirects just use one pointer.
883       return ABIArgInfo::getIndirectInReg(0, false);
884     }
885     return ABIArgInfo::getIndirect(0, false);
886   }
887 
888   // Compute the byval alignment.
889   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
890   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
891   if (StackAlign == 0)
892     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
893 
894   // If the stack alignment is less than the type alignment, realign the
895   // argument.
896   bool Realign = TypeAlign > StackAlign;
897   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
898 }
899 
900 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
901   const Type *T = isSingleElementStruct(Ty, getContext());
902   if (!T)
903     T = Ty.getTypePtr();
904 
905   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
906     BuiltinType::Kind K = BT->getKind();
907     if (K == BuiltinType::Float || K == BuiltinType::Double)
908       return Float;
909   }
910   return Integer;
911 }
912 
913 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
914                                    bool &NeedsPadding) const {
915   NeedsPadding = false;
916   Class C = classify(Ty);
917   if (C == Float)
918     return false;
919 
920   unsigned Size = getContext().getTypeSize(Ty);
921   unsigned SizeInRegs = (Size + 31) / 32;
922 
923   if (SizeInRegs == 0)
924     return false;
925 
926   if (SizeInRegs > State.FreeRegs) {
927     State.FreeRegs = 0;
928     return false;
929   }
930 
931   State.FreeRegs -= SizeInRegs;
932 
933   if (State.CC == llvm::CallingConv::X86_FastCall) {
934     if (Size > 32)
935       return false;
936 
937     if (Ty->isIntegralOrEnumerationType())
938       return true;
939 
940     if (Ty->isPointerType())
941       return true;
942 
943     if (Ty->isReferenceType())
944       return true;
945 
946     if (State.FreeRegs)
947       NeedsPadding = true;
948 
949     return false;
950   }
951 
952   return true;
953 }
954 
955 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
956                                                CCState &State) const {
957   // FIXME: Set alignment on indirect arguments.
958   if (isAggregateTypeForABI(Ty)) {
959     if (const RecordType *RT = Ty->getAs<RecordType>()) {
960       // Check with the C++ ABI first.
961       CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
962       if (RAA == CGCXXABI::RAA_Indirect) {
963         return getIndirectResult(Ty, false, State);
964       } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
965         // The field index doesn't matter, we'll fix it up later.
966         return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
967       }
968 
969       // Structs are always byval on win32, regardless of what they contain.
970       if (IsWin32StructABI)
971         return getIndirectResult(Ty, true, State);
972 
973       // Structures with flexible arrays are always indirect.
974       if (RT->getDecl()->hasFlexibleArrayMember())
975         return getIndirectResult(Ty, true, State);
976     }
977 
978     // Ignore empty structs/unions.
979     if (isEmptyRecord(getContext(), Ty, true))
980       return ABIArgInfo::getIgnore();
981 
982     llvm::LLVMContext &LLVMContext = getVMContext();
983     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
984     bool NeedsPadding;
985     if (shouldUseInReg(Ty, State, NeedsPadding)) {
986       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
987       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
988       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
989       return ABIArgInfo::getDirectInReg(Result);
990     }
991     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
992 
993     // Expand small (<= 128-bit) record types when we know that the stack layout
994     // of those arguments will match the struct. This is important because the
995     // LLVM backend isn't smart enough to remove byval, which inhibits many
996     // optimizations.
997     if (getContext().getTypeSize(Ty) <= 4*32 &&
998         canExpandIndirectArgument(Ty, getContext()))
999       return ABIArgInfo::getExpandWithPadding(
1000           State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
1001 
1002     return getIndirectResult(Ty, true, State);
1003   }
1004 
1005   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1006     // On Darwin, some vectors are passed in memory, we handle this by passing
1007     // it as an i8/i16/i32/i64.
1008     if (IsDarwinVectorABI) {
1009       uint64_t Size = getContext().getTypeSize(Ty);
1010       if ((Size == 8 || Size == 16 || Size == 32) ||
1011           (Size == 64 && VT->getNumElements() == 1))
1012         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1013                                                             Size));
1014     }
1015 
1016     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1017       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1018 
1019     return ABIArgInfo::getDirect();
1020   }
1021 
1022 
1023   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1024     Ty = EnumTy->getDecl()->getIntegerType();
1025 
1026   bool NeedsPadding;
1027   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1028 
1029   if (Ty->isPromotableIntegerType()) {
1030     if (InReg)
1031       return ABIArgInfo::getExtendInReg();
1032     return ABIArgInfo::getExtend();
1033   }
1034   if (InReg)
1035     return ABIArgInfo::getDirectInReg();
1036   return ABIArgInfo::getDirect();
1037 }
1038 
1039 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1040   CCState State(FI.getCallingConvention());
1041   if (State.CC == llvm::CallingConv::X86_FastCall)
1042     State.FreeRegs = 2;
1043   else if (FI.getHasRegParm())
1044     State.FreeRegs = FI.getRegParm();
1045   else
1046     State.FreeRegs = DefaultNumRegisterParameters;
1047 
1048   if (!getCXXABI().classifyReturnType(FI)) {
1049     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1050   } else if (FI.getReturnInfo().isIndirect()) {
1051     // The C++ ABI is not aware of register usage, so we have to check if the
1052     // return value was sret and put it in a register ourselves if appropriate.
1053     if (State.FreeRegs) {
1054       --State.FreeRegs;  // The sret parameter consumes a register.
1055       FI.getReturnInfo().setInReg(true);
1056     }
1057   }
1058 
1059   bool UsedInAlloca = false;
1060   for (auto &I : FI.arguments()) {
1061     I.info = classifyArgumentType(I.type, State);
1062     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1063   }
1064 
1065   // If we needed to use inalloca for any argument, do a second pass and rewrite
1066   // all the memory arguments to use inalloca.
1067   if (UsedInAlloca)
1068     rewriteWithInAlloca(FI);
1069 }
1070 
1071 void
1072 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1073                                    unsigned &StackOffset,
1074                                    ABIArgInfo &Info, QualType Type) const {
1075   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1076   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1077   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1078   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1079 
1080   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1081   // byte aligned.
1082   if (StackOffset % 4U) {
1083     unsigned OldOffset = StackOffset;
1084     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1085     unsigned NumBytes = StackOffset - OldOffset;
1086     assert(NumBytes);
1087     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1088     Ty = llvm::ArrayType::get(Ty, NumBytes);
1089     FrameFields.push_back(Ty);
1090   }
1091 }
1092 
1093 static bool isArgInAlloca(const ABIArgInfo &Info) {
1094   // Leave ignored and inreg arguments alone.
1095   switch (Info.getKind()) {
1096   case ABIArgInfo::InAlloca:
1097     return true;
1098   case ABIArgInfo::Indirect:
1099     assert(Info.getIndirectByVal());
1100     return true;
1101   case ABIArgInfo::Ignore:
1102     return false;
1103   case ABIArgInfo::Direct:
1104   case ABIArgInfo::Extend:
1105   case ABIArgInfo::Expand:
1106     if (Info.getInReg())
1107       return false;
1108     return true;
1109   }
1110   llvm_unreachable("invalid enum");
1111 }
1112 
1113 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1114   assert(IsWin32StructABI && "inalloca only supported on win32");
1115 
1116   // Build a packed struct type for all of the arguments in memory.
1117   SmallVector<llvm::Type *, 6> FrameFields;
1118 
1119   unsigned StackOffset = 0;
1120   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1121 
1122   // Put 'this' into the struct before 'sret', if necessary.
1123   bool IsThisCall =
1124       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1125   ABIArgInfo &Ret = FI.getReturnInfo();
1126   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1127       isArgInAlloca(I->info)) {
1128     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1129     ++I;
1130   }
1131 
1132   // Put the sret parameter into the inalloca struct if it's in memory.
1133   if (Ret.isIndirect() && !Ret.getInReg()) {
1134     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1135     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1136     // On Windows, the hidden sret parameter is always returned in eax.
1137     Ret.setInAllocaSRet(IsWin32StructABI);
1138   }
1139 
1140   // Skip the 'this' parameter in ecx.
1141   if (IsThisCall)
1142     ++I;
1143 
1144   // Put arguments passed in memory into the struct.
1145   for (; I != E; ++I) {
1146     if (isArgInAlloca(I->info))
1147       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1148   }
1149 
1150   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1151                                         /*isPacked=*/true));
1152 }
1153 
1154 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1155                                       CodeGenFunction &CGF) const {
1156   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1157 
1158   CGBuilderTy &Builder = CGF.Builder;
1159   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1160                                                        "ap");
1161   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1162 
1163   // Compute if the address needs to be aligned
1164   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1165   Align = getTypeStackAlignInBytes(Ty, Align);
1166   Align = std::max(Align, 4U);
1167   if (Align > 4) {
1168     // addr = (addr + align - 1) & -align;
1169     llvm::Value *Offset =
1170       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1171     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1172     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1173                                                     CGF.Int32Ty);
1174     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1175     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1176                                       Addr->getType(),
1177                                       "ap.cur.aligned");
1178   }
1179 
1180   llvm::Type *PTy =
1181     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1182   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1183 
1184   uint64_t Offset =
1185     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1186   llvm::Value *NextAddr =
1187     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1188                       "ap.next");
1189   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1190 
1191   return AddrTyped;
1192 }
1193 
1194 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1195     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1196   assert(Triple.getArch() == llvm::Triple::x86);
1197 
1198   switch (Opts.getStructReturnConvention()) {
1199   case CodeGenOptions::SRCK_Default:
1200     break;
1201   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1202     return false;
1203   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1204     return true;
1205   }
1206 
1207   if (Triple.isOSDarwin())
1208     return true;
1209 
1210   switch (Triple.getOS()) {
1211   case llvm::Triple::DragonFly:
1212   case llvm::Triple::FreeBSD:
1213   case llvm::Triple::OpenBSD:
1214   case llvm::Triple::Bitrig:
1215     return true;
1216   case llvm::Triple::Win32:
1217     switch (Triple.getEnvironment()) {
1218     case llvm::Triple::UnknownEnvironment:
1219     case llvm::Triple::Cygnus:
1220     case llvm::Triple::GNU:
1221     case llvm::Triple::MSVC:
1222       return true;
1223     default:
1224       return false;
1225     }
1226   default:
1227     return false;
1228   }
1229 }
1230 
1231 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1232                                                   llvm::GlobalValue *GV,
1233                                             CodeGen::CodeGenModule &CGM) const {
1234   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1235     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1236       // Get the LLVM function.
1237       llvm::Function *Fn = cast<llvm::Function>(GV);
1238 
1239       // Now add the 'alignstack' attribute with a value of 16.
1240       llvm::AttrBuilder B;
1241       B.addStackAlignmentAttr(16);
1242       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1243                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1244                                               llvm::AttributeSet::FunctionIndex,
1245                                               B));
1246     }
1247   }
1248 }
1249 
1250 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1251                                                CodeGen::CodeGenFunction &CGF,
1252                                                llvm::Value *Address) const {
1253   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1254 
1255   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1256 
1257   // 0-7 are the eight integer registers;  the order is different
1258   //   on Darwin (for EH), but the range is the same.
1259   // 8 is %eip.
1260   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1261 
1262   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1263     // 12-16 are st(0..4).  Not sure why we stop at 4.
1264     // These have size 16, which is sizeof(long double) on
1265     // platforms with 8-byte alignment for that type.
1266     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1267     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1268 
1269   } else {
1270     // 9 is %eflags, which doesn't get a size on Darwin for some
1271     // reason.
1272     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1273 
1274     // 11-16 are st(0..5).  Not sure why we stop at 5.
1275     // These have size 12, which is sizeof(long double) on
1276     // platforms with 4-byte alignment for that type.
1277     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1278     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1279   }
1280 
1281   return false;
1282 }
1283 
1284 //===----------------------------------------------------------------------===//
1285 // X86-64 ABI Implementation
1286 //===----------------------------------------------------------------------===//
1287 
1288 
1289 namespace {
1290 /// X86_64ABIInfo - The X86_64 ABI information.
1291 class X86_64ABIInfo : public ABIInfo {
1292   enum Class {
1293     Integer = 0,
1294     SSE,
1295     SSEUp,
1296     X87,
1297     X87Up,
1298     ComplexX87,
1299     NoClass,
1300     Memory
1301   };
1302 
1303   /// merge - Implement the X86_64 ABI merging algorithm.
1304   ///
1305   /// Merge an accumulating classification \arg Accum with a field
1306   /// classification \arg Field.
1307   ///
1308   /// \param Accum - The accumulating classification. This should
1309   /// always be either NoClass or the result of a previous merge
1310   /// call. In addition, this should never be Memory (the caller
1311   /// should just return Memory for the aggregate).
1312   static Class merge(Class Accum, Class Field);
1313 
1314   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1315   ///
1316   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1317   /// final MEMORY or SSE classes when necessary.
1318   ///
1319   /// \param AggregateSize - The size of the current aggregate in
1320   /// the classification process.
1321   ///
1322   /// \param Lo - The classification for the parts of the type
1323   /// residing in the low word of the containing object.
1324   ///
1325   /// \param Hi - The classification for the parts of the type
1326   /// residing in the higher words of the containing object.
1327   ///
1328   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1329 
1330   /// classify - Determine the x86_64 register classes in which the
1331   /// given type T should be passed.
1332   ///
1333   /// \param Lo - The classification for the parts of the type
1334   /// residing in the low word of the containing object.
1335   ///
1336   /// \param Hi - The classification for the parts of the type
1337   /// residing in the high word of the containing object.
1338   ///
1339   /// \param OffsetBase - The bit offset of this type in the
1340   /// containing object.  Some parameters are classified different
1341   /// depending on whether they straddle an eightbyte boundary.
1342   ///
1343   /// \param isNamedArg - Whether the argument in question is a "named"
1344   /// argument, as used in AMD64-ABI 3.5.7.
1345   ///
1346   /// If a word is unused its result will be NoClass; if a type should
1347   /// be passed in Memory then at least the classification of \arg Lo
1348   /// will be Memory.
1349   ///
1350   /// The \arg Lo class will be NoClass iff the argument is ignored.
1351   ///
1352   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1353   /// also be ComplexX87.
1354   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1355                 bool isNamedArg) const;
1356 
1357   llvm::Type *GetByteVectorType(QualType Ty) const;
1358   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1359                                  unsigned IROffset, QualType SourceTy,
1360                                  unsigned SourceOffset) const;
1361   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1362                                      unsigned IROffset, QualType SourceTy,
1363                                      unsigned SourceOffset) const;
1364 
1365   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1366   /// such that the argument will be returned in memory.
1367   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1368 
1369   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1370   /// such that the argument will be passed in memory.
1371   ///
1372   /// \param freeIntRegs - The number of free integer registers remaining
1373   /// available.
1374   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1375 
1376   ABIArgInfo classifyReturnType(QualType RetTy) const;
1377 
1378   ABIArgInfo classifyArgumentType(QualType Ty,
1379                                   unsigned freeIntRegs,
1380                                   unsigned &neededInt,
1381                                   unsigned &neededSSE,
1382                                   bool isNamedArg) const;
1383 
1384   bool IsIllegalVectorType(QualType Ty) const;
1385 
1386   /// The 0.98 ABI revision clarified a lot of ambiguities,
1387   /// unfortunately in ways that were not always consistent with
1388   /// certain previous compilers.  In particular, platforms which
1389   /// required strict binary compatibility with older versions of GCC
1390   /// may need to exempt themselves.
1391   bool honorsRevision0_98() const {
1392     return !getTarget().getTriple().isOSDarwin();
1393   }
1394 
1395   bool HasAVX;
1396   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1397   // 64-bit hardware.
1398   bool Has64BitPointers;
1399 
1400 public:
1401   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1402       ABIInfo(CGT), HasAVX(hasavx),
1403       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1404   }
1405 
1406   bool isPassedUsingAVXType(QualType type) const {
1407     unsigned neededInt, neededSSE;
1408     // The freeIntRegs argument doesn't matter here.
1409     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1410                                            /*isNamedArg*/true);
1411     if (info.isDirect()) {
1412       llvm::Type *ty = info.getCoerceToType();
1413       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1414         return (vectorTy->getBitWidth() > 128);
1415     }
1416     return false;
1417   }
1418 
1419   void computeInfo(CGFunctionInfo &FI) const override;
1420 
1421   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1422                          CodeGenFunction &CGF) const override;
1423 };
1424 
1425 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1426 class WinX86_64ABIInfo : public ABIInfo {
1427 
1428   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1429 
1430 public:
1431   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1432 
1433   void computeInfo(CGFunctionInfo &FI) const override;
1434 
1435   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1436                          CodeGenFunction &CGF) const override;
1437 };
1438 
1439 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1440   bool HasAVX;
1441 public:
1442   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1443       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1444 
1445   const X86_64ABIInfo &getABIInfo() const {
1446     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1447   }
1448 
1449   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1450     return 7;
1451   }
1452 
1453   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1454                                llvm::Value *Address) const override {
1455     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1456 
1457     // 0-15 are the 16 integer registers.
1458     // 16 is %rip.
1459     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1460     return false;
1461   }
1462 
1463   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1464                                   StringRef Constraint,
1465                                   llvm::Type* Ty) const override {
1466     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1467   }
1468 
1469   bool isNoProtoCallVariadic(const CallArgList &args,
1470                              const FunctionNoProtoType *fnType) const override {
1471     // The default CC on x86-64 sets %al to the number of SSA
1472     // registers used, and GCC sets this when calling an unprototyped
1473     // function, so we override the default behavior.  However, don't do
1474     // that when AVX types are involved: the ABI explicitly states it is
1475     // undefined, and it doesn't work in practice because of how the ABI
1476     // defines varargs anyway.
1477     if (fnType->getCallConv() == CC_C) {
1478       bool HasAVXType = false;
1479       for (CallArgList::const_iterator
1480              it = args.begin(), ie = args.end(); it != ie; ++it) {
1481         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1482           HasAVXType = true;
1483           break;
1484         }
1485       }
1486 
1487       if (!HasAVXType)
1488         return true;
1489     }
1490 
1491     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1492   }
1493 
1494   llvm::Constant *
1495   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1496     unsigned Sig = (0xeb << 0) |  // jmp rel8
1497                    (0x0a << 8) |  //           .+0x0c
1498                    ('F' << 16) |
1499                    ('T' << 24);
1500     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1501   }
1502 
1503   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1504     return HasAVX ? 32 : 16;
1505   }
1506 };
1507 
1508 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1509   // If the argument does not end in .lib, automatically add the suffix. This
1510   // matches the behavior of MSVC.
1511   std::string ArgStr = Lib;
1512   if (!Lib.endswith_lower(".lib"))
1513     ArgStr += ".lib";
1514   return ArgStr;
1515 }
1516 
1517 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1518 public:
1519   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1520         bool d, bool p, bool w, unsigned RegParms)
1521     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1522 
1523   void getDependentLibraryOption(llvm::StringRef Lib,
1524                                  llvm::SmallString<24> &Opt) const override {
1525     Opt = "/DEFAULTLIB:";
1526     Opt += qualifyWindowsLibrary(Lib);
1527   }
1528 
1529   void getDetectMismatchOption(llvm::StringRef Name,
1530                                llvm::StringRef Value,
1531                                llvm::SmallString<32> &Opt) const override {
1532     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1533   }
1534 };
1535 
1536 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1537   bool HasAVX;
1538 public:
1539   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1540     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1541 
1542   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1543     return 7;
1544   }
1545 
1546   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1547                                llvm::Value *Address) const override {
1548     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1549 
1550     // 0-15 are the 16 integer registers.
1551     // 16 is %rip.
1552     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1553     return false;
1554   }
1555 
1556   void getDependentLibraryOption(llvm::StringRef Lib,
1557                                  llvm::SmallString<24> &Opt) const override {
1558     Opt = "/DEFAULTLIB:";
1559     Opt += qualifyWindowsLibrary(Lib);
1560   }
1561 
1562   void getDetectMismatchOption(llvm::StringRef Name,
1563                                llvm::StringRef Value,
1564                                llvm::SmallString<32> &Opt) const override {
1565     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1566   }
1567 
1568   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1569     return HasAVX ? 32 : 16;
1570   }
1571 };
1572 
1573 }
1574 
1575 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1576                               Class &Hi) const {
1577   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1578   //
1579   // (a) If one of the classes is Memory, the whole argument is passed in
1580   //     memory.
1581   //
1582   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1583   //     memory.
1584   //
1585   // (c) If the size of the aggregate exceeds two eightbytes and the first
1586   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1587   //     argument is passed in memory. NOTE: This is necessary to keep the
1588   //     ABI working for processors that don't support the __m256 type.
1589   //
1590   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1591   //
1592   // Some of these are enforced by the merging logic.  Others can arise
1593   // only with unions; for example:
1594   //   union { _Complex double; unsigned; }
1595   //
1596   // Note that clauses (b) and (c) were added in 0.98.
1597   //
1598   if (Hi == Memory)
1599     Lo = Memory;
1600   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1601     Lo = Memory;
1602   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1603     Lo = Memory;
1604   if (Hi == SSEUp && Lo != SSE)
1605     Hi = SSE;
1606 }
1607 
1608 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1609   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1610   // classified recursively so that always two fields are
1611   // considered. The resulting class is calculated according to
1612   // the classes of the fields in the eightbyte:
1613   //
1614   // (a) If both classes are equal, this is the resulting class.
1615   //
1616   // (b) If one of the classes is NO_CLASS, the resulting class is
1617   // the other class.
1618   //
1619   // (c) If one of the classes is MEMORY, the result is the MEMORY
1620   // class.
1621   //
1622   // (d) If one of the classes is INTEGER, the result is the
1623   // INTEGER.
1624   //
1625   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1626   // MEMORY is used as class.
1627   //
1628   // (f) Otherwise class SSE is used.
1629 
1630   // Accum should never be memory (we should have returned) or
1631   // ComplexX87 (because this cannot be passed in a structure).
1632   assert((Accum != Memory && Accum != ComplexX87) &&
1633          "Invalid accumulated classification during merge.");
1634   if (Accum == Field || Field == NoClass)
1635     return Accum;
1636   if (Field == Memory)
1637     return Memory;
1638   if (Accum == NoClass)
1639     return Field;
1640   if (Accum == Integer || Field == Integer)
1641     return Integer;
1642   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1643       Accum == X87 || Accum == X87Up)
1644     return Memory;
1645   return SSE;
1646 }
1647 
1648 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1649                              Class &Lo, Class &Hi, bool isNamedArg) const {
1650   // FIXME: This code can be simplified by introducing a simple value class for
1651   // Class pairs with appropriate constructor methods for the various
1652   // situations.
1653 
1654   // FIXME: Some of the split computations are wrong; unaligned vectors
1655   // shouldn't be passed in registers for example, so there is no chance they
1656   // can straddle an eightbyte. Verify & simplify.
1657 
1658   Lo = Hi = NoClass;
1659 
1660   Class &Current = OffsetBase < 64 ? Lo : Hi;
1661   Current = Memory;
1662 
1663   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1664     BuiltinType::Kind k = BT->getKind();
1665 
1666     if (k == BuiltinType::Void) {
1667       Current = NoClass;
1668     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1669       Lo = Integer;
1670       Hi = Integer;
1671     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1672       Current = Integer;
1673     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1674                (k == BuiltinType::LongDouble &&
1675                 getTarget().getTriple().isOSNaCl())) {
1676       Current = SSE;
1677     } else if (k == BuiltinType::LongDouble) {
1678       Lo = X87;
1679       Hi = X87Up;
1680     }
1681     // FIXME: _Decimal32 and _Decimal64 are SSE.
1682     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1683     return;
1684   }
1685 
1686   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1687     // Classify the underlying integer type.
1688     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1689     return;
1690   }
1691 
1692   if (Ty->hasPointerRepresentation()) {
1693     Current = Integer;
1694     return;
1695   }
1696 
1697   if (Ty->isMemberPointerType()) {
1698     if (Ty->isMemberFunctionPointerType()) {
1699       if (Has64BitPointers) {
1700         // If Has64BitPointers, this is an {i64, i64}, so classify both
1701         // Lo and Hi now.
1702         Lo = Hi = Integer;
1703       } else {
1704         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1705         // straddles an eightbyte boundary, Hi should be classified as well.
1706         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1707         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1708         if (EB_FuncPtr != EB_ThisAdj) {
1709           Lo = Hi = Integer;
1710         } else {
1711           Current = Integer;
1712         }
1713       }
1714     } else {
1715       Current = Integer;
1716     }
1717     return;
1718   }
1719 
1720   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1721     uint64_t Size = getContext().getTypeSize(VT);
1722     if (Size == 32) {
1723       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1724       // float> as integer.
1725       Current = Integer;
1726 
1727       // If this type crosses an eightbyte boundary, it should be
1728       // split.
1729       uint64_t EB_Real = (OffsetBase) / 64;
1730       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1731       if (EB_Real != EB_Imag)
1732         Hi = Lo;
1733     } else if (Size == 64) {
1734       // gcc passes <1 x double> in memory. :(
1735       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1736         return;
1737 
1738       // gcc passes <1 x long long> as INTEGER.
1739       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1740           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1741           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1742           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1743         Current = Integer;
1744       else
1745         Current = SSE;
1746 
1747       // If this type crosses an eightbyte boundary, it should be
1748       // split.
1749       if (OffsetBase && OffsetBase != 64)
1750         Hi = Lo;
1751     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1752       // Arguments of 256-bits are split into four eightbyte chunks. The
1753       // least significant one belongs to class SSE and all the others to class
1754       // SSEUP. The original Lo and Hi design considers that types can't be
1755       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1756       // This design isn't correct for 256-bits, but since there're no cases
1757       // where the upper parts would need to be inspected, avoid adding
1758       // complexity and just consider Hi to match the 64-256 part.
1759       //
1760       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1761       // registers if they are "named", i.e. not part of the "..." of a
1762       // variadic function.
1763       Lo = SSE;
1764       Hi = SSEUp;
1765     }
1766     return;
1767   }
1768 
1769   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1770     QualType ET = getContext().getCanonicalType(CT->getElementType());
1771 
1772     uint64_t Size = getContext().getTypeSize(Ty);
1773     if (ET->isIntegralOrEnumerationType()) {
1774       if (Size <= 64)
1775         Current = Integer;
1776       else if (Size <= 128)
1777         Lo = Hi = Integer;
1778     } else if (ET == getContext().FloatTy)
1779       Current = SSE;
1780     else if (ET == getContext().DoubleTy ||
1781              (ET == getContext().LongDoubleTy &&
1782               getTarget().getTriple().isOSNaCl()))
1783       Lo = Hi = SSE;
1784     else if (ET == getContext().LongDoubleTy)
1785       Current = ComplexX87;
1786 
1787     // If this complex type crosses an eightbyte boundary then it
1788     // should be split.
1789     uint64_t EB_Real = (OffsetBase) / 64;
1790     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1791     if (Hi == NoClass && EB_Real != EB_Imag)
1792       Hi = Lo;
1793 
1794     return;
1795   }
1796 
1797   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1798     // Arrays are treated like structures.
1799 
1800     uint64_t Size = getContext().getTypeSize(Ty);
1801 
1802     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1803     // than four eightbytes, ..., it has class MEMORY.
1804     if (Size > 256)
1805       return;
1806 
1807     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1808     // fields, it has class MEMORY.
1809     //
1810     // Only need to check alignment of array base.
1811     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1812       return;
1813 
1814     // Otherwise implement simplified merge. We could be smarter about
1815     // this, but it isn't worth it and would be harder to verify.
1816     Current = NoClass;
1817     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1818     uint64_t ArraySize = AT->getSize().getZExtValue();
1819 
1820     // The only case a 256-bit wide vector could be used is when the array
1821     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1822     // to work for sizes wider than 128, early check and fallback to memory.
1823     if (Size > 128 && EltSize != 256)
1824       return;
1825 
1826     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1827       Class FieldLo, FieldHi;
1828       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1829       Lo = merge(Lo, FieldLo);
1830       Hi = merge(Hi, FieldHi);
1831       if (Lo == Memory || Hi == Memory)
1832         break;
1833     }
1834 
1835     postMerge(Size, Lo, Hi);
1836     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1837     return;
1838   }
1839 
1840   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1841     uint64_t Size = getContext().getTypeSize(Ty);
1842 
1843     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1844     // than four eightbytes, ..., it has class MEMORY.
1845     if (Size > 256)
1846       return;
1847 
1848     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1849     // copy constructor or a non-trivial destructor, it is passed by invisible
1850     // reference.
1851     if (getRecordArgABI(RT, getCXXABI()))
1852       return;
1853 
1854     const RecordDecl *RD = RT->getDecl();
1855 
1856     // Assume variable sized types are passed in memory.
1857     if (RD->hasFlexibleArrayMember())
1858       return;
1859 
1860     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1861 
1862     // Reset Lo class, this will be recomputed.
1863     Current = NoClass;
1864 
1865     // If this is a C++ record, classify the bases first.
1866     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1867       for (const auto &I : CXXRD->bases()) {
1868         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1869                "Unexpected base class!");
1870         const CXXRecordDecl *Base =
1871           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1872 
1873         // Classify this field.
1874         //
1875         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1876         // single eightbyte, each is classified separately. Each eightbyte gets
1877         // initialized to class NO_CLASS.
1878         Class FieldLo, FieldHi;
1879         uint64_t Offset =
1880           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1881         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1882         Lo = merge(Lo, FieldLo);
1883         Hi = merge(Hi, FieldHi);
1884         if (Lo == Memory || Hi == Memory)
1885           break;
1886       }
1887     }
1888 
1889     // Classify the fields one at a time, merging the results.
1890     unsigned idx = 0;
1891     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1892            i != e; ++i, ++idx) {
1893       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1894       bool BitField = i->isBitField();
1895 
1896       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1897       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1898       //
1899       // The only case a 256-bit wide vector could be used is when the struct
1900       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1901       // to work for sizes wider than 128, early check and fallback to memory.
1902       //
1903       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1904         Lo = Memory;
1905         return;
1906       }
1907       // Note, skip this test for bit-fields, see below.
1908       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1909         Lo = Memory;
1910         return;
1911       }
1912 
1913       // Classify this field.
1914       //
1915       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1916       // exceeds a single eightbyte, each is classified
1917       // separately. Each eightbyte gets initialized to class
1918       // NO_CLASS.
1919       Class FieldLo, FieldHi;
1920 
1921       // Bit-fields require special handling, they do not force the
1922       // structure to be passed in memory even if unaligned, and
1923       // therefore they can straddle an eightbyte.
1924       if (BitField) {
1925         // Ignore padding bit-fields.
1926         if (i->isUnnamedBitfield())
1927           continue;
1928 
1929         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1930         uint64_t Size = i->getBitWidthValue(getContext());
1931 
1932         uint64_t EB_Lo = Offset / 64;
1933         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1934 
1935         if (EB_Lo) {
1936           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1937           FieldLo = NoClass;
1938           FieldHi = Integer;
1939         } else {
1940           FieldLo = Integer;
1941           FieldHi = EB_Hi ? Integer : NoClass;
1942         }
1943       } else
1944         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1945       Lo = merge(Lo, FieldLo);
1946       Hi = merge(Hi, FieldHi);
1947       if (Lo == Memory || Hi == Memory)
1948         break;
1949     }
1950 
1951     postMerge(Size, Lo, Hi);
1952   }
1953 }
1954 
1955 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1956   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1957   // place naturally.
1958   if (!isAggregateTypeForABI(Ty)) {
1959     // Treat an enum type as its underlying type.
1960     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1961       Ty = EnumTy->getDecl()->getIntegerType();
1962 
1963     return (Ty->isPromotableIntegerType() ?
1964             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1965   }
1966 
1967   return ABIArgInfo::getIndirect(0);
1968 }
1969 
1970 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1971   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1972     uint64_t Size = getContext().getTypeSize(VecTy);
1973     unsigned LargestVector = HasAVX ? 256 : 128;
1974     if (Size <= 64 || Size > LargestVector)
1975       return true;
1976   }
1977 
1978   return false;
1979 }
1980 
1981 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1982                                             unsigned freeIntRegs) const {
1983   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1984   // place naturally.
1985   //
1986   // This assumption is optimistic, as there could be free registers available
1987   // when we need to pass this argument in memory, and LLVM could try to pass
1988   // the argument in the free register. This does not seem to happen currently,
1989   // but this code would be much safer if we could mark the argument with
1990   // 'onstack'. See PR12193.
1991   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1992     // Treat an enum type as its underlying type.
1993     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1994       Ty = EnumTy->getDecl()->getIntegerType();
1995 
1996     return (Ty->isPromotableIntegerType() ?
1997             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1998   }
1999 
2000   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2001     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2002 
2003   // Compute the byval alignment. We specify the alignment of the byval in all
2004   // cases so that the mid-level optimizer knows the alignment of the byval.
2005   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2006 
2007   // Attempt to avoid passing indirect results using byval when possible. This
2008   // is important for good codegen.
2009   //
2010   // We do this by coercing the value into a scalar type which the backend can
2011   // handle naturally (i.e., without using byval).
2012   //
2013   // For simplicity, we currently only do this when we have exhausted all of the
2014   // free integer registers. Doing this when there are free integer registers
2015   // would require more care, as we would have to ensure that the coerced value
2016   // did not claim the unused register. That would require either reording the
2017   // arguments to the function (so that any subsequent inreg values came first),
2018   // or only doing this optimization when there were no following arguments that
2019   // might be inreg.
2020   //
2021   // We currently expect it to be rare (particularly in well written code) for
2022   // arguments to be passed on the stack when there are still free integer
2023   // registers available (this would typically imply large structs being passed
2024   // by value), so this seems like a fair tradeoff for now.
2025   //
2026   // We can revisit this if the backend grows support for 'onstack' parameter
2027   // attributes. See PR12193.
2028   if (freeIntRegs == 0) {
2029     uint64_t Size = getContext().getTypeSize(Ty);
2030 
2031     // If this type fits in an eightbyte, coerce it into the matching integral
2032     // type, which will end up on the stack (with alignment 8).
2033     if (Align == 8 && Size <= 64)
2034       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2035                                                           Size));
2036   }
2037 
2038   return ABIArgInfo::getIndirect(Align);
2039 }
2040 
2041 /// GetByteVectorType - The ABI specifies that a value should be passed in an
2042 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
2043 /// vector register.
2044 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2045   llvm::Type *IRType = CGT.ConvertType(Ty);
2046 
2047   // Wrapper structs that just contain vectors are passed just like vectors,
2048   // strip them off if present.
2049   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
2050   while (STy && STy->getNumElements() == 1) {
2051     IRType = STy->getElementType(0);
2052     STy = dyn_cast<llvm::StructType>(IRType);
2053   }
2054 
2055   // If the preferred type is a 16-byte vector, prefer to pass it.
2056   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
2057     llvm::Type *EltTy = VT->getElementType();
2058     unsigned BitWidth = VT->getBitWidth();
2059     if ((BitWidth >= 128 && BitWidth <= 256) &&
2060         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
2061          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
2062          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
2063          EltTy->isIntegerTy(128)))
2064       return VT;
2065   }
2066 
2067   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
2068 }
2069 
2070 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2071 /// is known to either be off the end of the specified type or being in
2072 /// alignment padding.  The user type specified is known to be at most 128 bits
2073 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2074 /// classification that put one of the two halves in the INTEGER class.
2075 ///
2076 /// It is conservatively correct to return false.
2077 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2078                                   unsigned EndBit, ASTContext &Context) {
2079   // If the bytes being queried are off the end of the type, there is no user
2080   // data hiding here.  This handles analysis of builtins, vectors and other
2081   // types that don't contain interesting padding.
2082   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2083   if (TySize <= StartBit)
2084     return true;
2085 
2086   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2087     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2088     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2089 
2090     // Check each element to see if the element overlaps with the queried range.
2091     for (unsigned i = 0; i != NumElts; ++i) {
2092       // If the element is after the span we care about, then we're done..
2093       unsigned EltOffset = i*EltSize;
2094       if (EltOffset >= EndBit) break;
2095 
2096       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2097       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2098                                  EndBit-EltOffset, Context))
2099         return false;
2100     }
2101     // If it overlaps no elements, then it is safe to process as padding.
2102     return true;
2103   }
2104 
2105   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2106     const RecordDecl *RD = RT->getDecl();
2107     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2108 
2109     // If this is a C++ record, check the bases first.
2110     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2111       for (const auto &I : CXXRD->bases()) {
2112         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2113                "Unexpected base class!");
2114         const CXXRecordDecl *Base =
2115           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2116 
2117         // If the base is after the span we care about, ignore it.
2118         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2119         if (BaseOffset >= EndBit) continue;
2120 
2121         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2122         if (!BitsContainNoUserData(I.getType(), BaseStart,
2123                                    EndBit-BaseOffset, Context))
2124           return false;
2125       }
2126     }
2127 
2128     // Verify that no field has data that overlaps the region of interest.  Yes
2129     // this could be sped up a lot by being smarter about queried fields,
2130     // however we're only looking at structs up to 16 bytes, so we don't care
2131     // much.
2132     unsigned idx = 0;
2133     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2134          i != e; ++i, ++idx) {
2135       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2136 
2137       // If we found a field after the region we care about, then we're done.
2138       if (FieldOffset >= EndBit) break;
2139 
2140       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2141       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2142                                  Context))
2143         return false;
2144     }
2145 
2146     // If nothing in this record overlapped the area of interest, then we're
2147     // clean.
2148     return true;
2149   }
2150 
2151   return false;
2152 }
2153 
2154 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2155 /// float member at the specified offset.  For example, {int,{float}} has a
2156 /// float at offset 4.  It is conservatively correct for this routine to return
2157 /// false.
2158 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2159                                   const llvm::DataLayout &TD) {
2160   // Base case if we find a float.
2161   if (IROffset == 0 && IRType->isFloatTy())
2162     return true;
2163 
2164   // If this is a struct, recurse into the field at the specified offset.
2165   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2166     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2167     unsigned Elt = SL->getElementContainingOffset(IROffset);
2168     IROffset -= SL->getElementOffset(Elt);
2169     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2170   }
2171 
2172   // If this is an array, recurse into the field at the specified offset.
2173   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2174     llvm::Type *EltTy = ATy->getElementType();
2175     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2176     IROffset -= IROffset/EltSize*EltSize;
2177     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2178   }
2179 
2180   return false;
2181 }
2182 
2183 
2184 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2185 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2186 llvm::Type *X86_64ABIInfo::
2187 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2188                    QualType SourceTy, unsigned SourceOffset) const {
2189   // The only three choices we have are either double, <2 x float>, or float. We
2190   // pass as float if the last 4 bytes is just padding.  This happens for
2191   // structs that contain 3 floats.
2192   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2193                             SourceOffset*8+64, getContext()))
2194     return llvm::Type::getFloatTy(getVMContext());
2195 
2196   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2197   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2198   // case.
2199   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2200       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2201     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2202 
2203   return llvm::Type::getDoubleTy(getVMContext());
2204 }
2205 
2206 
2207 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2208 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2209 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2210 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2211 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2212 /// etc).
2213 ///
2214 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2215 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2216 /// the 8-byte value references.  PrefType may be null.
2217 ///
2218 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2219 /// an offset into this that we're processing (which is always either 0 or 8).
2220 ///
2221 llvm::Type *X86_64ABIInfo::
2222 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2223                        QualType SourceTy, unsigned SourceOffset) const {
2224   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2225   // returning an 8-byte unit starting with it.  See if we can safely use it.
2226   if (IROffset == 0) {
2227     // Pointers and int64's always fill the 8-byte unit.
2228     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2229         IRType->isIntegerTy(64))
2230       return IRType;
2231 
2232     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2233     // goodness in the source type is just tail padding.  This is allowed to
2234     // kick in for struct {double,int} on the int, but not on
2235     // struct{double,int,int} because we wouldn't return the second int.  We
2236     // have to do this analysis on the source type because we can't depend on
2237     // unions being lowered a specific way etc.
2238     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2239         IRType->isIntegerTy(32) ||
2240         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2241       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2242           cast<llvm::IntegerType>(IRType)->getBitWidth();
2243 
2244       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2245                                 SourceOffset*8+64, getContext()))
2246         return IRType;
2247     }
2248   }
2249 
2250   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2251     // If this is a struct, recurse into the field at the specified offset.
2252     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2253     if (IROffset < SL->getSizeInBytes()) {
2254       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2255       IROffset -= SL->getElementOffset(FieldIdx);
2256 
2257       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2258                                     SourceTy, SourceOffset);
2259     }
2260   }
2261 
2262   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2263     llvm::Type *EltTy = ATy->getElementType();
2264     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2265     unsigned EltOffset = IROffset/EltSize*EltSize;
2266     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2267                                   SourceOffset);
2268   }
2269 
2270   // Okay, we don't have any better idea of what to pass, so we pass this in an
2271   // integer register that isn't too big to fit the rest of the struct.
2272   unsigned TySizeInBytes =
2273     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2274 
2275   assert(TySizeInBytes != SourceOffset && "Empty field?");
2276 
2277   // It is always safe to classify this as an integer type up to i64 that
2278   // isn't larger than the structure.
2279   return llvm::IntegerType::get(getVMContext(),
2280                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2281 }
2282 
2283 
2284 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2285 /// be used as elements of a two register pair to pass or return, return a
2286 /// first class aggregate to represent them.  For example, if the low part of
2287 /// a by-value argument should be passed as i32* and the high part as float,
2288 /// return {i32*, float}.
2289 static llvm::Type *
2290 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2291                            const llvm::DataLayout &TD) {
2292   // In order to correctly satisfy the ABI, we need to the high part to start
2293   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2294   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2295   // the second element at offset 8.  Check for this:
2296   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2297   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2298   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2299   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2300 
2301   // To handle this, we have to increase the size of the low part so that the
2302   // second element will start at an 8 byte offset.  We can't increase the size
2303   // of the second element because it might make us access off the end of the
2304   // struct.
2305   if (HiStart != 8) {
2306     // There are only two sorts of types the ABI generation code can produce for
2307     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2308     // Promote these to a larger type.
2309     if (Lo->isFloatTy())
2310       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2311     else {
2312       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2313       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2314     }
2315   }
2316 
2317   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2318 
2319 
2320   // Verify that the second element is at an 8-byte offset.
2321   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2322          "Invalid x86-64 argument pair!");
2323   return Result;
2324 }
2325 
2326 ABIArgInfo X86_64ABIInfo::
2327 classifyReturnType(QualType RetTy) const {
2328   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2329   // classification algorithm.
2330   X86_64ABIInfo::Class Lo, Hi;
2331   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2332 
2333   // Check some invariants.
2334   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2335   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2336 
2337   llvm::Type *ResType = nullptr;
2338   switch (Lo) {
2339   case NoClass:
2340     if (Hi == NoClass)
2341       return ABIArgInfo::getIgnore();
2342     // If the low part is just padding, it takes no register, leave ResType
2343     // null.
2344     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2345            "Unknown missing lo part");
2346     break;
2347 
2348   case SSEUp:
2349   case X87Up:
2350     llvm_unreachable("Invalid classification for lo word.");
2351 
2352     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2353     // hidden argument.
2354   case Memory:
2355     return getIndirectReturnResult(RetTy);
2356 
2357     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2358     // available register of the sequence %rax, %rdx is used.
2359   case Integer:
2360     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2361 
2362     // If we have a sign or zero extended integer, make sure to return Extend
2363     // so that the parameter gets the right LLVM IR attributes.
2364     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2365       // Treat an enum type as its underlying type.
2366       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2367         RetTy = EnumTy->getDecl()->getIntegerType();
2368 
2369       if (RetTy->isIntegralOrEnumerationType() &&
2370           RetTy->isPromotableIntegerType())
2371         return ABIArgInfo::getExtend();
2372     }
2373     break;
2374 
2375     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2376     // available SSE register of the sequence %xmm0, %xmm1 is used.
2377   case SSE:
2378     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2379     break;
2380 
2381     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2382     // returned on the X87 stack in %st0 as 80-bit x87 number.
2383   case X87:
2384     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2385     break;
2386 
2387     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2388     // part of the value is returned in %st0 and the imaginary part in
2389     // %st1.
2390   case ComplexX87:
2391     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2392     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2393                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2394                                     NULL);
2395     break;
2396   }
2397 
2398   llvm::Type *HighPart = nullptr;
2399   switch (Hi) {
2400     // Memory was handled previously and X87 should
2401     // never occur as a hi class.
2402   case Memory:
2403   case X87:
2404     llvm_unreachable("Invalid classification for hi word.");
2405 
2406   case ComplexX87: // Previously handled.
2407   case NoClass:
2408     break;
2409 
2410   case Integer:
2411     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2412     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2413       return ABIArgInfo::getDirect(HighPart, 8);
2414     break;
2415   case SSE:
2416     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2417     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2418       return ABIArgInfo::getDirect(HighPart, 8);
2419     break;
2420 
2421     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2422     // is passed in the next available eightbyte chunk if the last used
2423     // vector register.
2424     //
2425     // SSEUP should always be preceded by SSE, just widen.
2426   case SSEUp:
2427     assert(Lo == SSE && "Unexpected SSEUp classification.");
2428     ResType = GetByteVectorType(RetTy);
2429     break;
2430 
2431     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2432     // returned together with the previous X87 value in %st0.
2433   case X87Up:
2434     // If X87Up is preceded by X87, we don't need to do
2435     // anything. However, in some cases with unions it may not be
2436     // preceded by X87. In such situations we follow gcc and pass the
2437     // extra bits in an SSE reg.
2438     if (Lo != X87) {
2439       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2440       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2441         return ABIArgInfo::getDirect(HighPart, 8);
2442     }
2443     break;
2444   }
2445 
2446   // If a high part was specified, merge it together with the low part.  It is
2447   // known to pass in the high eightbyte of the result.  We do this by forming a
2448   // first class struct aggregate with the high and low part: {low, high}
2449   if (HighPart)
2450     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2451 
2452   return ABIArgInfo::getDirect(ResType);
2453 }
2454 
2455 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2456   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2457   bool isNamedArg)
2458   const
2459 {
2460   X86_64ABIInfo::Class Lo, Hi;
2461   classify(Ty, 0, Lo, Hi, isNamedArg);
2462 
2463   // Check some invariants.
2464   // FIXME: Enforce these by construction.
2465   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2466   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2467 
2468   neededInt = 0;
2469   neededSSE = 0;
2470   llvm::Type *ResType = nullptr;
2471   switch (Lo) {
2472   case NoClass:
2473     if (Hi == NoClass)
2474       return ABIArgInfo::getIgnore();
2475     // If the low part is just padding, it takes no register, leave ResType
2476     // null.
2477     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2478            "Unknown missing lo part");
2479     break;
2480 
2481     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2482     // on the stack.
2483   case Memory:
2484 
2485     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2486     // COMPLEX_X87, it is passed in memory.
2487   case X87:
2488   case ComplexX87:
2489     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2490       ++neededInt;
2491     return getIndirectResult(Ty, freeIntRegs);
2492 
2493   case SSEUp:
2494   case X87Up:
2495     llvm_unreachable("Invalid classification for lo word.");
2496 
2497     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2498     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2499     // and %r9 is used.
2500   case Integer:
2501     ++neededInt;
2502 
2503     // Pick an 8-byte type based on the preferred type.
2504     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2505 
2506     // If we have a sign or zero extended integer, make sure to return Extend
2507     // so that the parameter gets the right LLVM IR attributes.
2508     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2509       // Treat an enum type as its underlying type.
2510       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2511         Ty = EnumTy->getDecl()->getIntegerType();
2512 
2513       if (Ty->isIntegralOrEnumerationType() &&
2514           Ty->isPromotableIntegerType())
2515         return ABIArgInfo::getExtend();
2516     }
2517 
2518     break;
2519 
2520     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2521     // available SSE register is used, the registers are taken in the
2522     // order from %xmm0 to %xmm7.
2523   case SSE: {
2524     llvm::Type *IRType = CGT.ConvertType(Ty);
2525     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2526     ++neededSSE;
2527     break;
2528   }
2529   }
2530 
2531   llvm::Type *HighPart = nullptr;
2532   switch (Hi) {
2533     // Memory was handled previously, ComplexX87 and X87 should
2534     // never occur as hi classes, and X87Up must be preceded by X87,
2535     // which is passed in memory.
2536   case Memory:
2537   case X87:
2538   case ComplexX87:
2539     llvm_unreachable("Invalid classification for hi word.");
2540 
2541   case NoClass: break;
2542 
2543   case Integer:
2544     ++neededInt;
2545     // Pick an 8-byte type based on the preferred type.
2546     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2547 
2548     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2549       return ABIArgInfo::getDirect(HighPart, 8);
2550     break;
2551 
2552     // X87Up generally doesn't occur here (long double is passed in
2553     // memory), except in situations involving unions.
2554   case X87Up:
2555   case SSE:
2556     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2557 
2558     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2559       return ABIArgInfo::getDirect(HighPart, 8);
2560 
2561     ++neededSSE;
2562     break;
2563 
2564     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2565     // eightbyte is passed in the upper half of the last used SSE
2566     // register.  This only happens when 128-bit vectors are passed.
2567   case SSEUp:
2568     assert(Lo == SSE && "Unexpected SSEUp classification");
2569     ResType = GetByteVectorType(Ty);
2570     break;
2571   }
2572 
2573   // If a high part was specified, merge it together with the low part.  It is
2574   // known to pass in the high eightbyte of the result.  We do this by forming a
2575   // first class struct aggregate with the high and low part: {low, high}
2576   if (HighPart)
2577     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2578 
2579   return ABIArgInfo::getDirect(ResType);
2580 }
2581 
2582 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2583 
2584   if (!getCXXABI().classifyReturnType(FI))
2585     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2586 
2587   // Keep track of the number of assigned registers.
2588   unsigned freeIntRegs = 6, freeSSERegs = 8;
2589 
2590   // If the return value is indirect, then the hidden argument is consuming one
2591   // integer register.
2592   if (FI.getReturnInfo().isIndirect())
2593     --freeIntRegs;
2594 
2595   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2596   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2597   // get assigned (in left-to-right order) for passing as follows...
2598   unsigned ArgNo = 0;
2599   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2600        it != ie; ++it, ++ArgNo) {
2601     bool IsNamedArg = ArgNo < NumRequiredArgs;
2602 
2603     unsigned neededInt, neededSSE;
2604     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2605                                     neededSSE, IsNamedArg);
2606 
2607     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2608     // eightbyte of an argument, the whole argument is passed on the
2609     // stack. If registers have already been assigned for some
2610     // eightbytes of such an argument, the assignments get reverted.
2611     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2612       freeIntRegs -= neededInt;
2613       freeSSERegs -= neededSSE;
2614     } else {
2615       it->info = getIndirectResult(it->type, freeIntRegs);
2616     }
2617   }
2618 }
2619 
2620 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2621                                         QualType Ty,
2622                                         CodeGenFunction &CGF) {
2623   llvm::Value *overflow_arg_area_p =
2624     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2625   llvm::Value *overflow_arg_area =
2626     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2627 
2628   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2629   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2630   // It isn't stated explicitly in the standard, but in practice we use
2631   // alignment greater than 16 where necessary.
2632   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2633   if (Align > 8) {
2634     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2635     llvm::Value *Offset =
2636       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2637     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2638     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2639                                                     CGF.Int64Ty);
2640     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2641     overflow_arg_area =
2642       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2643                                  overflow_arg_area->getType(),
2644                                  "overflow_arg_area.align");
2645   }
2646 
2647   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2648   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2649   llvm::Value *Res =
2650     CGF.Builder.CreateBitCast(overflow_arg_area,
2651                               llvm::PointerType::getUnqual(LTy));
2652 
2653   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2654   // l->overflow_arg_area + sizeof(type).
2655   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2656   // an 8 byte boundary.
2657 
2658   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2659   llvm::Value *Offset =
2660       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2661   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2662                                             "overflow_arg_area.next");
2663   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2664 
2665   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2666   return Res;
2667 }
2668 
2669 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2670                                       CodeGenFunction &CGF) const {
2671   // Assume that va_list type is correct; should be pointer to LLVM type:
2672   // struct {
2673   //   i32 gp_offset;
2674   //   i32 fp_offset;
2675   //   i8* overflow_arg_area;
2676   //   i8* reg_save_area;
2677   // };
2678   unsigned neededInt, neededSSE;
2679 
2680   Ty = CGF.getContext().getCanonicalType(Ty);
2681   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2682                                        /*isNamedArg*/false);
2683 
2684   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2685   // in the registers. If not go to step 7.
2686   if (!neededInt && !neededSSE)
2687     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2688 
2689   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2690   // general purpose registers needed to pass type and num_fp to hold
2691   // the number of floating point registers needed.
2692 
2693   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2694   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2695   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2696   //
2697   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2698   // register save space).
2699 
2700   llvm::Value *InRegs = nullptr;
2701   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2702   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2703   if (neededInt) {
2704     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2705     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2706     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2707     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2708   }
2709 
2710   if (neededSSE) {
2711     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2712     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2713     llvm::Value *FitsInFP =
2714       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2715     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2716     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2717   }
2718 
2719   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2720   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2721   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2722   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2723 
2724   // Emit code to load the value if it was passed in registers.
2725 
2726   CGF.EmitBlock(InRegBlock);
2727 
2728   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2729   // an offset of l->gp_offset and/or l->fp_offset. This may require
2730   // copying to a temporary location in case the parameter is passed
2731   // in different register classes or requires an alignment greater
2732   // than 8 for general purpose registers and 16 for XMM registers.
2733   //
2734   // FIXME: This really results in shameful code when we end up needing to
2735   // collect arguments from different places; often what should result in a
2736   // simple assembling of a structure from scattered addresses has many more
2737   // loads than necessary. Can we clean this up?
2738   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2739   llvm::Value *RegAddr =
2740     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2741                            "reg_save_area");
2742   if (neededInt && neededSSE) {
2743     // FIXME: Cleanup.
2744     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2745     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2746     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2747     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2748     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2749     llvm::Type *TyLo = ST->getElementType(0);
2750     llvm::Type *TyHi = ST->getElementType(1);
2751     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2752            "Unexpected ABI info for mixed regs");
2753     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2754     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2755     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2756     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2757     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2758     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2759     llvm::Value *V =
2760       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2761     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2762     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2763     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2764 
2765     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2766                                         llvm::PointerType::getUnqual(LTy));
2767   } else if (neededInt) {
2768     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2769     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2770                                         llvm::PointerType::getUnqual(LTy));
2771 
2772     // Copy to a temporary if necessary to ensure the appropriate alignment.
2773     std::pair<CharUnits, CharUnits> SizeAlign =
2774         CGF.getContext().getTypeInfoInChars(Ty);
2775     uint64_t TySize = SizeAlign.first.getQuantity();
2776     unsigned TyAlign = SizeAlign.second.getQuantity();
2777     if (TyAlign > 8) {
2778       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2779       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2780       RegAddr = Tmp;
2781     }
2782   } else if (neededSSE == 1) {
2783     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2784     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2785                                         llvm::PointerType::getUnqual(LTy));
2786   } else {
2787     assert(neededSSE == 2 && "Invalid number of needed registers!");
2788     // SSE registers are spaced 16 bytes apart in the register save
2789     // area, we need to collect the two eightbytes together.
2790     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2791     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2792     llvm::Type *DoubleTy = CGF.DoubleTy;
2793     llvm::Type *DblPtrTy =
2794       llvm::PointerType::getUnqual(DoubleTy);
2795     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2796     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2797     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2798     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2799                                                          DblPtrTy));
2800     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2801     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2802                                                          DblPtrTy));
2803     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2804     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2805                                         llvm::PointerType::getUnqual(LTy));
2806   }
2807 
2808   // AMD64-ABI 3.5.7p5: Step 5. Set:
2809   // l->gp_offset = l->gp_offset + num_gp * 8
2810   // l->fp_offset = l->fp_offset + num_fp * 16.
2811   if (neededInt) {
2812     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2813     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2814                             gp_offset_p);
2815   }
2816   if (neededSSE) {
2817     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2818     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2819                             fp_offset_p);
2820   }
2821   CGF.EmitBranch(ContBlock);
2822 
2823   // Emit code to load the value if it was passed in memory.
2824 
2825   CGF.EmitBlock(InMemBlock);
2826   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2827 
2828   // Return the appropriate result.
2829 
2830   CGF.EmitBlock(ContBlock);
2831   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2832                                                  "vaarg.addr");
2833   ResAddr->addIncoming(RegAddr, InRegBlock);
2834   ResAddr->addIncoming(MemAddr, InMemBlock);
2835   return ResAddr;
2836 }
2837 
2838 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2839 
2840   if (Ty->isVoidType())
2841     return ABIArgInfo::getIgnore();
2842 
2843   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2844     Ty = EnumTy->getDecl()->getIntegerType();
2845 
2846   uint64_t Size = getContext().getTypeSize(Ty);
2847 
2848   const RecordType *RT = Ty->getAs<RecordType>();
2849   if (RT) {
2850     if (!IsReturnType) {
2851       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2852         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2853     }
2854 
2855     if (RT->getDecl()->hasFlexibleArrayMember())
2856       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2857 
2858     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2859     if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2860       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2861                                                           Size));
2862   }
2863 
2864   if (Ty->isMemberPointerType()) {
2865     // If the member pointer is represented by an LLVM int or ptr, pass it
2866     // directly.
2867     llvm::Type *LLTy = CGT.ConvertType(Ty);
2868     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2869       return ABIArgInfo::getDirect();
2870   }
2871 
2872   if (RT || Ty->isMemberPointerType()) {
2873     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2874     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2875     if (Size > 64 || !llvm::isPowerOf2_64(Size))
2876       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2877 
2878     // Otherwise, coerce it to a small integer.
2879     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
2880   }
2881 
2882   // Bool type is always extended to the ABI, other builtin types are not
2883   // extended.
2884   const BuiltinType *BT = Ty->getAs<BuiltinType>();
2885   if (BT && BT->getKind() == BuiltinType::Bool)
2886     return ABIArgInfo::getExtend();
2887 
2888   return ABIArgInfo::getDirect();
2889 }
2890 
2891 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2892   if (!getCXXABI().classifyReturnType(FI))
2893     FI.getReturnInfo() = classify(FI.getReturnType(), true);
2894 
2895   for (auto &I : FI.arguments())
2896     I.info = classify(I.type, false);
2897 }
2898 
2899 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2900                                       CodeGenFunction &CGF) const {
2901   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2902 
2903   CGBuilderTy &Builder = CGF.Builder;
2904   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2905                                                        "ap");
2906   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2907   llvm::Type *PTy =
2908     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2909   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2910 
2911   uint64_t Offset =
2912     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2913   llvm::Value *NextAddr =
2914     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2915                       "ap.next");
2916   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2917 
2918   return AddrTyped;
2919 }
2920 
2921 namespace {
2922 
2923 class NaClX86_64ABIInfo : public ABIInfo {
2924  public:
2925   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2926       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2927   void computeInfo(CGFunctionInfo &FI) const override;
2928   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2929                          CodeGenFunction &CGF) const override;
2930  private:
2931   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2932   X86_64ABIInfo NInfo; // Used for everything else.
2933 };
2934 
2935 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2936   bool HasAVX;
2937  public:
2938    NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2939        : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {
2940    }
2941    unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
2942      return HasAVX ? 32 : 16;
2943    }
2944 };
2945 
2946 }
2947 
2948 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2949   if (FI.getASTCallingConvention() == CC_PnaclCall)
2950     PInfo.computeInfo(FI);
2951   else
2952     NInfo.computeInfo(FI);
2953 }
2954 
2955 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2956                                           CodeGenFunction &CGF) const {
2957   // Always use the native convention; calling pnacl-style varargs functions
2958   // is unuspported.
2959   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2960 }
2961 
2962 
2963 // PowerPC-32
2964 
2965 namespace {
2966 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2967 public:
2968   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2969 
2970   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2971     // This is recovered from gcc output.
2972     return 1; // r1 is the dedicated stack pointer
2973   }
2974 
2975   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2976                                llvm::Value *Address) const override;
2977 
2978   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
2979     return 16; // Natural alignment for Altivec vectors.
2980   }
2981 };
2982 
2983 }
2984 
2985 bool
2986 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2987                                                 llvm::Value *Address) const {
2988   // This is calculated from the LLVM and GCC tables and verified
2989   // against gcc output.  AFAIK all ABIs use the same encoding.
2990 
2991   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2992 
2993   llvm::IntegerType *i8 = CGF.Int8Ty;
2994   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2995   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2996   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2997 
2998   // 0-31: r0-31, the 4-byte general-purpose registers
2999   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3000 
3001   // 32-63: fp0-31, the 8-byte floating-point registers
3002   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3003 
3004   // 64-76 are various 4-byte special-purpose registers:
3005   // 64: mq
3006   // 65: lr
3007   // 66: ctr
3008   // 67: ap
3009   // 68-75 cr0-7
3010   // 76: xer
3011   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3012 
3013   // 77-108: v0-31, the 16-byte vector registers
3014   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3015 
3016   // 109: vrsave
3017   // 110: vscr
3018   // 111: spe_acc
3019   // 112: spefscr
3020   // 113: sfp
3021   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3022 
3023   return false;
3024 }
3025 
3026 // PowerPC-64
3027 
3028 namespace {
3029 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3030 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3031 public:
3032   enum ABIKind {
3033     ELFv1 = 0,
3034     ELFv2
3035   };
3036 
3037 private:
3038   static const unsigned GPRBits = 64;
3039   ABIKind Kind;
3040 
3041 public:
3042   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3043     : DefaultABIInfo(CGT), Kind(Kind) {}
3044 
3045   bool isPromotableTypeForABI(QualType Ty) const;
3046   bool isAlignedParamType(QualType Ty) const;
3047   bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3048                               uint64_t &Members) const;
3049 
3050   ABIArgInfo classifyReturnType(QualType RetTy) const;
3051   ABIArgInfo classifyArgumentType(QualType Ty) const;
3052 
3053   // TODO: We can add more logic to computeInfo to improve performance.
3054   // Example: For aggregate arguments that fit in a register, we could
3055   // use getDirectInReg (as is done below for structs containing a single
3056   // floating-point value) to avoid pushing them to memory on function
3057   // entry.  This would require changing the logic in PPCISelLowering
3058   // when lowering the parameters in the caller and args in the callee.
3059   void computeInfo(CGFunctionInfo &FI) const override {
3060     if (!getCXXABI().classifyReturnType(FI))
3061       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3062     for (auto &I : FI.arguments()) {
3063       // We rely on the default argument classification for the most part.
3064       // One exception:  An aggregate containing a single floating-point
3065       // or vector item must be passed in a register if one is available.
3066       const Type *T = isSingleElementStruct(I.type, getContext());
3067       if (T) {
3068         const BuiltinType *BT = T->getAs<BuiltinType>();
3069         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3070             (BT && BT->isFloatingPoint())) {
3071           QualType QT(T, 0);
3072           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3073           continue;
3074         }
3075       }
3076       I.info = classifyArgumentType(I.type);
3077     }
3078   }
3079 
3080   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3081                          CodeGenFunction &CGF) const override;
3082 };
3083 
3084 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3085 public:
3086   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3087                                PPC64_SVR4_ABIInfo::ABIKind Kind)
3088     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3089 
3090   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3091     // This is recovered from gcc output.
3092     return 1; // r1 is the dedicated stack pointer
3093   }
3094 
3095   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3096                                llvm::Value *Address) const override;
3097 
3098   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3099     return 16; // Natural alignment for Altivec and VSX vectors.
3100   }
3101 };
3102 
3103 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3104 public:
3105   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3106 
3107   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3108     // This is recovered from gcc output.
3109     return 1; // r1 is the dedicated stack pointer
3110   }
3111 
3112   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3113                                llvm::Value *Address) const override;
3114 
3115   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3116     return 16; // Natural alignment for Altivec vectors.
3117   }
3118 };
3119 
3120 }
3121 
3122 // Return true if the ABI requires Ty to be passed sign- or zero-
3123 // extended to 64 bits.
3124 bool
3125 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3126   // Treat an enum type as its underlying type.
3127   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3128     Ty = EnumTy->getDecl()->getIntegerType();
3129 
3130   // Promotable integer types are required to be promoted by the ABI.
3131   if (Ty->isPromotableIntegerType())
3132     return true;
3133 
3134   // In addition to the usual promotable integer types, we also need to
3135   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3136   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3137     switch (BT->getKind()) {
3138     case BuiltinType::Int:
3139     case BuiltinType::UInt:
3140       return true;
3141     default:
3142       break;
3143     }
3144 
3145   return false;
3146 }
3147 
3148 /// isAlignedParamType - Determine whether a type requires 16-byte
3149 /// alignment in the parameter area.
3150 bool
3151 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3152   // Complex types are passed just like their elements.
3153   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3154     Ty = CTy->getElementType();
3155 
3156   // Only vector types of size 16 bytes need alignment (larger types are
3157   // passed via reference, smaller types are not aligned).
3158   if (Ty->isVectorType())
3159     return getContext().getTypeSize(Ty) == 128;
3160 
3161   // For single-element float/vector structs, we consider the whole type
3162   // to have the same alignment requirements as its single element.
3163   const Type *AlignAsType = nullptr;
3164   const Type *EltType = isSingleElementStruct(Ty, getContext());
3165   if (EltType) {
3166     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3167     if ((EltType->isVectorType() &&
3168          getContext().getTypeSize(EltType) == 128) ||
3169         (BT && BT->isFloatingPoint()))
3170       AlignAsType = EltType;
3171   }
3172 
3173   // Likewise for ELFv2 homogeneous aggregates.
3174   const Type *Base = nullptr;
3175   uint64_t Members = 0;
3176   if (!AlignAsType && Kind == ELFv2 &&
3177       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3178     AlignAsType = Base;
3179 
3180   // With special case aggregates, only vector base types need alignment.
3181   if (AlignAsType)
3182     return AlignAsType->isVectorType();
3183 
3184   // Otherwise, we only need alignment for any aggregate type that
3185   // has an alignment requirement of >= 16 bytes.
3186   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3187     return true;
3188 
3189   return false;
3190 }
3191 
3192 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3193 /// aggregate.  Base is set to the base element type, and Members is set
3194 /// to the number of base elements.
3195 bool
3196 PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3197                                            uint64_t &Members) const {
3198   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3199     uint64_t NElements = AT->getSize().getZExtValue();
3200     if (NElements == 0)
3201       return false;
3202     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3203       return false;
3204     Members *= NElements;
3205   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3206     const RecordDecl *RD = RT->getDecl();
3207     if (RD->hasFlexibleArrayMember())
3208       return false;
3209 
3210     Members = 0;
3211     for (const auto *FD : RD->fields()) {
3212       // Ignore (non-zero arrays of) empty records.
3213       QualType FT = FD->getType();
3214       while (const ConstantArrayType *AT =
3215              getContext().getAsConstantArrayType(FT)) {
3216         if (AT->getSize().getZExtValue() == 0)
3217           return false;
3218         FT = AT->getElementType();
3219       }
3220       if (isEmptyRecord(getContext(), FT, true))
3221         continue;
3222 
3223       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3224       if (getContext().getLangOpts().CPlusPlus &&
3225           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3226         continue;
3227 
3228       uint64_t FldMembers;
3229       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3230         return false;
3231 
3232       Members = (RD->isUnion() ?
3233                  std::max(Members, FldMembers) : Members + FldMembers);
3234     }
3235 
3236     if (!Base)
3237       return false;
3238 
3239     // Ensure there is no padding.
3240     if (getContext().getTypeSize(Base) * Members !=
3241         getContext().getTypeSize(Ty))
3242       return false;
3243   } else {
3244     Members = 1;
3245     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3246       Members = 2;
3247       Ty = CT->getElementType();
3248     }
3249 
3250     // Homogeneous aggregates for ELFv2 must have base types of float,
3251     // double, long double, or 128-bit vectors.
3252     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3253       if (BT->getKind() != BuiltinType::Float &&
3254           BT->getKind() != BuiltinType::Double &&
3255           BT->getKind() != BuiltinType::LongDouble)
3256         return false;
3257     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3258       if (getContext().getTypeSize(VT) != 128)
3259         return false;
3260     } else {
3261       return false;
3262     }
3263 
3264     // The base type must be the same for all members.  Types that
3265     // agree in both total size and mode (float vs. vector) are
3266     // treated as being equivalent here.
3267     const Type *TyPtr = Ty.getTypePtr();
3268     if (!Base)
3269       Base = TyPtr;
3270 
3271     if (Base->isVectorType() != TyPtr->isVectorType() ||
3272         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3273       return false;
3274   }
3275 
3276   // Vector types require one register, floating point types require one
3277   // or two registers depending on their size.
3278   uint32_t NumRegs = Base->isVectorType() ? 1 :
3279                        (getContext().getTypeSize(Base) + 63) / 64;
3280 
3281   // Homogeneous Aggregates may occupy at most 8 registers.
3282   return (Members > 0 && Members * NumRegs <= 8);
3283 }
3284 
3285 ABIArgInfo
3286 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3287   if (Ty->isAnyComplexType())
3288     return ABIArgInfo::getDirect();
3289 
3290   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3291   // or via reference (larger than 16 bytes).
3292   if (Ty->isVectorType()) {
3293     uint64_t Size = getContext().getTypeSize(Ty);
3294     if (Size > 128)
3295       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3296     else if (Size < 128) {
3297       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3298       return ABIArgInfo::getDirect(CoerceTy);
3299     }
3300   }
3301 
3302   if (isAggregateTypeForABI(Ty)) {
3303     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3304       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3305 
3306     uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3307     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3308 
3309     // ELFv2 homogeneous aggregates are passed as array types.
3310     const Type *Base = nullptr;
3311     uint64_t Members = 0;
3312     if (Kind == ELFv2 &&
3313         isHomogeneousAggregate(Ty, Base, Members)) {
3314       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3315       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3316       return ABIArgInfo::getDirect(CoerceTy);
3317     }
3318 
3319     // If an aggregate may end up fully in registers, we do not
3320     // use the ByVal method, but pass the aggregate as array.
3321     // This is usually beneficial since we avoid forcing the
3322     // back-end to store the argument to memory.
3323     uint64_t Bits = getContext().getTypeSize(Ty);
3324     if (Bits > 0 && Bits <= 8 * GPRBits) {
3325       llvm::Type *CoerceTy;
3326 
3327       // Types up to 8 bytes are passed as integer type (which will be
3328       // properly aligned in the argument save area doubleword).
3329       if (Bits <= GPRBits)
3330         CoerceTy = llvm::IntegerType::get(getVMContext(),
3331                                           llvm::RoundUpToAlignment(Bits, 8));
3332       // Larger types are passed as arrays, with the base type selected
3333       // according to the required alignment in the save area.
3334       else {
3335         uint64_t RegBits = ABIAlign * 8;
3336         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3337         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3338         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3339       }
3340 
3341       return ABIArgInfo::getDirect(CoerceTy);
3342     }
3343 
3344     // All other aggregates are passed ByVal.
3345     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3346                                    /*Realign=*/TyAlign > ABIAlign);
3347   }
3348 
3349   return (isPromotableTypeForABI(Ty) ?
3350           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3351 }
3352 
3353 ABIArgInfo
3354 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3355   if (RetTy->isVoidType())
3356     return ABIArgInfo::getIgnore();
3357 
3358   if (RetTy->isAnyComplexType())
3359     return ABIArgInfo::getDirect();
3360 
3361   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3362   // or via reference (larger than 16 bytes).
3363   if (RetTy->isVectorType()) {
3364     uint64_t Size = getContext().getTypeSize(RetTy);
3365     if (Size > 128)
3366       return ABIArgInfo::getIndirect(0);
3367     else if (Size < 128) {
3368       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3369       return ABIArgInfo::getDirect(CoerceTy);
3370     }
3371   }
3372 
3373   if (isAggregateTypeForABI(RetTy)) {
3374     // ELFv2 homogeneous aggregates are returned as array types.
3375     const Type *Base = nullptr;
3376     uint64_t Members = 0;
3377     if (Kind == ELFv2 &&
3378         isHomogeneousAggregate(RetTy, Base, Members)) {
3379       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3380       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3381       return ABIArgInfo::getDirect(CoerceTy);
3382     }
3383 
3384     // ELFv2 small aggregates are returned in up to two registers.
3385     uint64_t Bits = getContext().getTypeSize(RetTy);
3386     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3387       if (Bits == 0)
3388         return ABIArgInfo::getIgnore();
3389 
3390       llvm::Type *CoerceTy;
3391       if (Bits > GPRBits) {
3392         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3393         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL);
3394       } else
3395         CoerceTy = llvm::IntegerType::get(getVMContext(),
3396                                           llvm::RoundUpToAlignment(Bits, 8));
3397       return ABIArgInfo::getDirect(CoerceTy);
3398     }
3399 
3400     // All other aggregates are returned indirectly.
3401     return ABIArgInfo::getIndirect(0);
3402   }
3403 
3404   return (isPromotableTypeForABI(RetTy) ?
3405           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3406 }
3407 
3408 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3409 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3410                                            QualType Ty,
3411                                            CodeGenFunction &CGF) const {
3412   llvm::Type *BP = CGF.Int8PtrTy;
3413   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3414 
3415   CGBuilderTy &Builder = CGF.Builder;
3416   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3417   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3418 
3419   // Handle types that require 16-byte alignment in the parameter save area.
3420   if (isAlignedParamType(Ty)) {
3421     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3422     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3423     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3424     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3425   }
3426 
3427   // Update the va_list pointer.  The pointer should be bumped by the
3428   // size of the object.  We can trust getTypeSize() except for a complex
3429   // type whose base type is smaller than a doubleword.  For these, the
3430   // size of the object is 16 bytes; see below for further explanation.
3431   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3432   QualType BaseTy;
3433   unsigned CplxBaseSize = 0;
3434 
3435   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3436     BaseTy = CTy->getElementType();
3437     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3438     if (CplxBaseSize < 8)
3439       SizeInBytes = 16;
3440   }
3441 
3442   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3443   llvm::Value *NextAddr =
3444     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3445                       "ap.next");
3446   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3447 
3448   // If we have a complex type and the base type is smaller than 8 bytes,
3449   // the ABI calls for the real and imaginary parts to be right-adjusted
3450   // in separate doublewords.  However, Clang expects us to produce a
3451   // pointer to a structure with the two parts packed tightly.  So generate
3452   // loads of the real and imaginary parts relative to the va_list pointer,
3453   // and store them to a temporary structure.
3454   if (CplxBaseSize && CplxBaseSize < 8) {
3455     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3456     llvm::Value *ImagAddr = RealAddr;
3457     if (CGF.CGM.getDataLayout().isBigEndian()) {
3458       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3459       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3460     } else {
3461       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3462     }
3463     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3464     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3465     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3466     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3467     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3468     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3469                                             "vacplx");
3470     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3471     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3472     Builder.CreateStore(Real, RealPtr, false);
3473     Builder.CreateStore(Imag, ImagPtr, false);
3474     return Ptr;
3475   }
3476 
3477   // If the argument is smaller than 8 bytes, it is right-adjusted in
3478   // its doubleword slot.  Adjust the pointer to pick it up from the
3479   // correct offset.
3480   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3481     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3482     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3483     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3484   }
3485 
3486   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3487   return Builder.CreateBitCast(Addr, PTy);
3488 }
3489 
3490 static bool
3491 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3492                               llvm::Value *Address) {
3493   // This is calculated from the LLVM and GCC tables and verified
3494   // against gcc output.  AFAIK all ABIs use the same encoding.
3495 
3496   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3497 
3498   llvm::IntegerType *i8 = CGF.Int8Ty;
3499   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3500   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3501   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3502 
3503   // 0-31: r0-31, the 8-byte general-purpose registers
3504   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3505 
3506   // 32-63: fp0-31, the 8-byte floating-point registers
3507   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3508 
3509   // 64-76 are various 4-byte special-purpose registers:
3510   // 64: mq
3511   // 65: lr
3512   // 66: ctr
3513   // 67: ap
3514   // 68-75 cr0-7
3515   // 76: xer
3516   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3517 
3518   // 77-108: v0-31, the 16-byte vector registers
3519   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3520 
3521   // 109: vrsave
3522   // 110: vscr
3523   // 111: spe_acc
3524   // 112: spefscr
3525   // 113: sfp
3526   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3527 
3528   return false;
3529 }
3530 
3531 bool
3532 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3533   CodeGen::CodeGenFunction &CGF,
3534   llvm::Value *Address) const {
3535 
3536   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3537 }
3538 
3539 bool
3540 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3541                                                 llvm::Value *Address) const {
3542 
3543   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3544 }
3545 
3546 //===----------------------------------------------------------------------===//
3547 // AArch64 ABI Implementation
3548 //===----------------------------------------------------------------------===//
3549 
3550 namespace {
3551 
3552 class AArch64ABIInfo : public ABIInfo {
3553 public:
3554   enum ABIKind {
3555     AAPCS = 0,
3556     DarwinPCS
3557   };
3558 
3559 private:
3560   ABIKind Kind;
3561 
3562 public:
3563   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3564 
3565 private:
3566   ABIKind getABIKind() const { return Kind; }
3567   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3568 
3569   ABIArgInfo classifyReturnType(QualType RetTy) const;
3570   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
3571                                   bool &IsHA, unsigned &AllocatedGPR,
3572                                   bool &IsSmallAggr, bool IsNamedArg) const;
3573   bool isIllegalVectorType(QualType Ty) const;
3574 
3575   virtual void computeInfo(CGFunctionInfo &FI) const {
3576     // To correctly handle Homogeneous Aggregate, we need to keep track of the
3577     // number of SIMD and Floating-point registers allocated so far.
3578     // If the argument is an HFA or an HVA and there are sufficient unallocated
3579     // SIMD and Floating-point registers, then the argument is allocated to SIMD
3580     // and Floating-point Registers (with one register per member of the HFA or
3581     // HVA). Otherwise, the NSRN is set to 8.
3582     unsigned AllocatedVFP = 0;
3583 
3584     // To correctly handle small aggregates, we need to keep track of the number
3585     // of GPRs allocated so far. If the small aggregate can't all fit into
3586     // registers, it will be on stack. We don't allow the aggregate to be
3587     // partially in registers.
3588     unsigned AllocatedGPR = 0;
3589 
3590     // Find the number of named arguments. Variadic arguments get special
3591     // treatment with the Darwin ABI.
3592     unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3593 
3594     if (!getCXXABI().classifyReturnType(FI))
3595       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3596     unsigned ArgNo = 0;
3597     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3598          it != ie; ++it, ++ArgNo) {
3599       unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
3600       bool IsHA = false, IsSmallAggr = false;
3601       const unsigned NumVFPs = 8;
3602       const unsigned NumGPRs = 8;
3603       bool IsNamedArg = ArgNo < NumRequiredArgs;
3604       it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
3605                                       AllocatedGPR, IsSmallAggr, IsNamedArg);
3606 
3607       // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
3608       // as sequences of floats since they'll get "holes" inserted as
3609       // padding by the back end.
3610       if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
3611           getContext().getTypeAlign(it->type) < 64) {
3612         uint32_t NumStackSlots = getContext().getTypeSize(it->type);
3613         NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
3614 
3615         llvm::Type *CoerceTy = llvm::ArrayType::get(
3616             llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
3617         it->info = ABIArgInfo::getDirect(CoerceTy);
3618       }
3619 
3620       // If we do not have enough VFP registers for the HA, any VFP registers
3621       // that are unallocated are marked as unavailable. To achieve this, we add
3622       // padding of (NumVFPs - PreAllocation) floats.
3623       if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3624         llvm::Type *PaddingTy = llvm::ArrayType::get(
3625             llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3626         it->info.setPaddingType(PaddingTy);
3627       }
3628 
3629       // If we do not have enough GPRs for the small aggregate, any GPR regs
3630       // that are unallocated are marked as unavailable.
3631       if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
3632         llvm::Type *PaddingTy = llvm::ArrayType::get(
3633             llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
3634         it->info =
3635             ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
3636       }
3637     }
3638   }
3639 
3640   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3641                                CodeGenFunction &CGF) const;
3642 
3643   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3644                               CodeGenFunction &CGF) const;
3645 
3646   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3647                                  CodeGenFunction &CGF) const {
3648     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3649                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3650   }
3651 };
3652 
3653 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3654 public:
3655   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3656       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3657 
3658   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3659     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3660   }
3661 
3662   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3663 
3664   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3665 };
3666 }
3667 
3668 static bool isARMHomogeneousAggregate(QualType Ty, const Type *&Base,
3669                                    ASTContext &Context,
3670                                    bool isAArch64,
3671                                    uint64_t *HAMembers = nullptr);
3672 
3673 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
3674                                                 unsigned &AllocatedVFP,
3675                                                 bool &IsHA,
3676                                                 unsigned &AllocatedGPR,
3677                                                 bool &IsSmallAggr,
3678                                                 bool IsNamedArg) const {
3679   // Handle illegal vector types here.
3680   if (isIllegalVectorType(Ty)) {
3681     uint64_t Size = getContext().getTypeSize(Ty);
3682     if (Size <= 32) {
3683       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3684       AllocatedGPR++;
3685       return ABIArgInfo::getDirect(ResType);
3686     }
3687     if (Size == 64) {
3688       llvm::Type *ResType =
3689           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3690       AllocatedVFP++;
3691       return ABIArgInfo::getDirect(ResType);
3692     }
3693     if (Size == 128) {
3694       llvm::Type *ResType =
3695           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3696       AllocatedVFP++;
3697       return ABIArgInfo::getDirect(ResType);
3698     }
3699     AllocatedGPR++;
3700     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3701   }
3702   if (Ty->isVectorType())
3703     // Size of a legal vector should be either 64 or 128.
3704     AllocatedVFP++;
3705   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3706     if (BT->getKind() == BuiltinType::Half ||
3707         BT->getKind() == BuiltinType::Float ||
3708         BT->getKind() == BuiltinType::Double ||
3709         BT->getKind() == BuiltinType::LongDouble)
3710       AllocatedVFP++;
3711   }
3712 
3713   if (!isAggregateTypeForABI(Ty)) {
3714     // Treat an enum type as its underlying type.
3715     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3716       Ty = EnumTy->getDecl()->getIntegerType();
3717 
3718     if (!Ty->isFloatingType() && !Ty->isVectorType()) {
3719       unsigned Alignment = getContext().getTypeAlign(Ty);
3720       if (!isDarwinPCS() && Alignment > 64)
3721         AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3722 
3723       int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3724       AllocatedGPR += RegsNeeded;
3725     }
3726     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3727                 ? ABIArgInfo::getExtend()
3728                 : ABIArgInfo::getDirect());
3729   }
3730 
3731   // Structures with either a non-trivial destructor or a non-trivial
3732   // copy constructor are always indirect.
3733   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3734     AllocatedGPR++;
3735     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3736                                           CGCXXABI::RAA_DirectInMemory);
3737   }
3738 
3739   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3740   // elsewhere for GNU compatibility.
3741   if (isEmptyRecord(getContext(), Ty, true)) {
3742     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3743       return ABIArgInfo::getIgnore();
3744 
3745     ++AllocatedGPR;
3746     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3747   }
3748 
3749   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3750   const Type *Base = nullptr;
3751   uint64_t Members = 0;
3752   if (isARMHomogeneousAggregate(Ty, Base, getContext(), true, &Members)) {
3753     IsHA = true;
3754     if (!IsNamedArg && isDarwinPCS()) {
3755       // With the Darwin ABI, variadic arguments are always passed on the stack
3756       // and should not be expanded. Treat variadic HFAs as arrays of doubles.
3757       uint64_t Size = getContext().getTypeSize(Ty);
3758       llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
3759       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3760     }
3761     AllocatedVFP += Members;
3762     return ABIArgInfo::getExpand();
3763   }
3764 
3765   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3766   uint64_t Size = getContext().getTypeSize(Ty);
3767   if (Size <= 128) {
3768     unsigned Alignment = getContext().getTypeAlign(Ty);
3769     if (!isDarwinPCS() && Alignment > 64)
3770       AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3771 
3772     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3773     AllocatedGPR += Size / 64;
3774     IsSmallAggr = true;
3775     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3776     // For aggregates with 16-byte alignment, we use i128.
3777     if (Alignment < 128 && Size == 128) {
3778       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3779       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3780     }
3781     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3782   }
3783 
3784   AllocatedGPR++;
3785   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3786 }
3787 
3788 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3789   if (RetTy->isVoidType())
3790     return ABIArgInfo::getIgnore();
3791 
3792   // Large vector types should be returned via memory.
3793   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3794     return ABIArgInfo::getIndirect(0);
3795 
3796   if (!isAggregateTypeForABI(RetTy)) {
3797     // Treat an enum type as its underlying type.
3798     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3799       RetTy = EnumTy->getDecl()->getIntegerType();
3800 
3801     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3802                 ? ABIArgInfo::getExtend()
3803                 : ABIArgInfo::getDirect());
3804   }
3805 
3806   if (isEmptyRecord(getContext(), RetTy, true))
3807     return ABIArgInfo::getIgnore();
3808 
3809   const Type *Base = nullptr;
3810   if (isARMHomogeneousAggregate(RetTy, Base, getContext(), true))
3811     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3812     return ABIArgInfo::getDirect();
3813 
3814   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3815   uint64_t Size = getContext().getTypeSize(RetTy);
3816   if (Size <= 128) {
3817     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3818     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3819   }
3820 
3821   return ABIArgInfo::getIndirect(0);
3822 }
3823 
3824 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
3825 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3826   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3827     // Check whether VT is legal.
3828     unsigned NumElements = VT->getNumElements();
3829     uint64_t Size = getContext().getTypeSize(VT);
3830     // NumElements should be power of 2 between 1 and 16.
3831     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3832       return true;
3833     return Size != 64 && (Size != 128 || NumElements == 1);
3834   }
3835   return false;
3836 }
3837 
3838 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
3839                                      int AllocatedGPR, int AllocatedVFP,
3840                                      bool IsIndirect, CodeGenFunction &CGF) {
3841   // The AArch64 va_list type and handling is specified in the Procedure Call
3842   // Standard, section B.4:
3843   //
3844   // struct {
3845   //   void *__stack;
3846   //   void *__gr_top;
3847   //   void *__vr_top;
3848   //   int __gr_offs;
3849   //   int __vr_offs;
3850   // };
3851 
3852   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3853   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3854   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3855   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3856   auto &Ctx = CGF.getContext();
3857 
3858   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
3859   int reg_top_index;
3860   int RegSize;
3861   if (AllocatedGPR) {
3862     assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
3863     // 3 is the field number of __gr_offs
3864     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3865     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3866     reg_top_index = 1; // field number for __gr_top
3867     RegSize = 8 * AllocatedGPR;
3868   } else {
3869     assert(!AllocatedGPR && "Argument must go in VFP or int regs");
3870     // 4 is the field number of __vr_offs.
3871     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3872     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3873     reg_top_index = 2; // field number for __vr_top
3874     RegSize = 16 * AllocatedVFP;
3875   }
3876 
3877   //=======================================
3878   // Find out where argument was passed
3879   //=======================================
3880 
3881   // If reg_offs >= 0 we're already using the stack for this type of
3882   // argument. We don't want to keep updating reg_offs (in case it overflows,
3883   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3884   // whatever they get).
3885   llvm::Value *UsingStack = nullptr;
3886   UsingStack = CGF.Builder.CreateICmpSGE(
3887       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
3888 
3889   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3890 
3891   // Otherwise, at least some kind of argument could go in these registers, the
3892   // question is whether this particular type is too big.
3893   CGF.EmitBlock(MaybeRegBlock);
3894 
3895   // Integer arguments may need to correct register alignment (for example a
3896   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3897   // align __gr_offs to calculate the potential address.
3898   if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3899     int Align = Ctx.getTypeAlign(Ty) / 8;
3900 
3901     reg_offs = CGF.Builder.CreateAdd(
3902         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3903         "align_regoffs");
3904     reg_offs = CGF.Builder.CreateAnd(
3905         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3906         "aligned_regoffs");
3907   }
3908 
3909   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3910   llvm::Value *NewOffset = nullptr;
3911   NewOffset = CGF.Builder.CreateAdd(
3912       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
3913   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3914 
3915   // Now we're in a position to decide whether this argument really was in
3916   // registers or not.
3917   llvm::Value *InRegs = nullptr;
3918   InRegs = CGF.Builder.CreateICmpSLE(
3919       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
3920 
3921   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
3922 
3923   //=======================================
3924   // Argument was in registers
3925   //=======================================
3926 
3927   // Now we emit the code for if the argument was originally passed in
3928   // registers. First start the appropriate block:
3929   CGF.EmitBlock(InRegBlock);
3930 
3931   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
3932   reg_top_p =
3933       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
3934   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
3935   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
3936   llvm::Value *RegAddr = nullptr;
3937   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
3938 
3939   if (IsIndirect) {
3940     // If it's been passed indirectly (actually a struct), whatever we find from
3941     // stored registers or on the stack will actually be a struct **.
3942     MemTy = llvm::PointerType::getUnqual(MemTy);
3943   }
3944 
3945   const Type *Base = nullptr;
3946   uint64_t NumMembers;
3947   bool IsHFA = isARMHomogeneousAggregate(Ty, Base, Ctx, true, &NumMembers);
3948   if (IsHFA && NumMembers > 1) {
3949     // Homogeneous aggregates passed in registers will have their elements split
3950     // and stored 16-bytes apart regardless of size (they're notionally in qN,
3951     // qN+1, ...). We reload and store into a temporary local variable
3952     // contiguously.
3953     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
3954     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
3955     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
3956     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
3957     int Offset = 0;
3958 
3959     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
3960       Offset = 16 - Ctx.getTypeSize(Base) / 8;
3961     for (unsigned i = 0; i < NumMembers; ++i) {
3962       llvm::Value *BaseOffset =
3963           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
3964       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
3965       LoadAddr = CGF.Builder.CreateBitCast(
3966           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
3967       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
3968 
3969       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
3970       CGF.Builder.CreateStore(Elem, StoreAddr);
3971     }
3972 
3973     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
3974   } else {
3975     // Otherwise the object is contiguous in memory
3976     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
3977     if (CGF.CGM.getDataLayout().isBigEndian() &&
3978         (IsHFA || !isAggregateTypeForABI(Ty)) &&
3979         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
3980       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
3981       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
3982 
3983       BaseAddr = CGF.Builder.CreateAdd(
3984           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3985 
3986       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
3987     }
3988 
3989     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
3990   }
3991 
3992   CGF.EmitBranch(ContBlock);
3993 
3994   //=======================================
3995   // Argument was on the stack
3996   //=======================================
3997   CGF.EmitBlock(OnStackBlock);
3998 
3999   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4000   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4001   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4002 
4003   // Again, stack arguments may need realigmnent. In this case both integer and
4004   // floating-point ones might be affected.
4005   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4006     int Align = Ctx.getTypeAlign(Ty) / 8;
4007 
4008     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4009 
4010     OnStackAddr = CGF.Builder.CreateAdd(
4011         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4012         "align_stack");
4013     OnStackAddr = CGF.Builder.CreateAnd(
4014         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4015         "align_stack");
4016 
4017     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4018   }
4019 
4020   uint64_t StackSize;
4021   if (IsIndirect)
4022     StackSize = 8;
4023   else
4024     StackSize = Ctx.getTypeSize(Ty) / 8;
4025 
4026   // All stack slots are 8 bytes
4027   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4028 
4029   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4030   llvm::Value *NewStack =
4031       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4032 
4033   // Write the new value of __stack for the next call to va_arg
4034   CGF.Builder.CreateStore(NewStack, stack_p);
4035 
4036   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4037       Ctx.getTypeSize(Ty) < 64) {
4038     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4039     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4040 
4041     OnStackAddr = CGF.Builder.CreateAdd(
4042         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4043 
4044     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4045   }
4046 
4047   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4048 
4049   CGF.EmitBranch(ContBlock);
4050 
4051   //=======================================
4052   // Tidy up
4053   //=======================================
4054   CGF.EmitBlock(ContBlock);
4055 
4056   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4057   ResAddr->addIncoming(RegAddr, InRegBlock);
4058   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4059 
4060   if (IsIndirect)
4061     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4062 
4063   return ResAddr;
4064 }
4065 
4066 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
4067                                           CodeGenFunction &CGF) const {
4068 
4069   unsigned AllocatedGPR = 0, AllocatedVFP = 0;
4070   bool IsHA = false, IsSmallAggr = false;
4071   ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
4072                                        IsSmallAggr, false /*IsNamedArg*/);
4073 
4074   return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
4075                           AI.isIndirect(), CGF);
4076 }
4077 
4078 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4079                                            CodeGenFunction &CGF) const {
4080   // We do not support va_arg for aggregates or illegal vector types.
4081   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4082   // other cases.
4083   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4084     return nullptr;
4085 
4086   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4087   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4088 
4089   const Type *Base = nullptr;
4090   bool isHA = isARMHomogeneousAggregate(Ty, Base, getContext(), true);
4091 
4092   bool isIndirect = false;
4093   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4094   // be passed indirectly.
4095   if (Size > 16 && !isHA) {
4096     isIndirect = true;
4097     Size = 8;
4098     Align = 8;
4099   }
4100 
4101   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4102   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4103 
4104   CGBuilderTy &Builder = CGF.Builder;
4105   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4106   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4107 
4108   if (isEmptyRecord(getContext(), Ty, true)) {
4109     // These are ignored for parameter passing purposes.
4110     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4111     return Builder.CreateBitCast(Addr, PTy);
4112   }
4113 
4114   const uint64_t MinABIAlign = 8;
4115   if (Align > MinABIAlign) {
4116     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4117     Addr = Builder.CreateGEP(Addr, Offset);
4118     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4119     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4120     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4121     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4122   }
4123 
4124   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4125   llvm::Value *NextAddr = Builder.CreateGEP(
4126       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4127   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4128 
4129   if (isIndirect)
4130     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4131   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4132   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4133 
4134   return AddrTyped;
4135 }
4136 
4137 //===----------------------------------------------------------------------===//
4138 // ARM ABI Implementation
4139 //===----------------------------------------------------------------------===//
4140 
4141 namespace {
4142 
4143 class ARMABIInfo : public ABIInfo {
4144 public:
4145   enum ABIKind {
4146     APCS = 0,
4147     AAPCS = 1,
4148     AAPCS_VFP
4149   };
4150 
4151 private:
4152   ABIKind Kind;
4153   mutable int VFPRegs[16];
4154   const unsigned NumVFPs;
4155   const unsigned NumGPRs;
4156   mutable unsigned AllocatedGPRs;
4157   mutable unsigned AllocatedVFPs;
4158 
4159 public:
4160   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
4161     NumVFPs(16), NumGPRs(4) {
4162     setRuntimeCC();
4163     resetAllocatedRegs();
4164   }
4165 
4166   bool isEABI() const {
4167     switch (getTarget().getTriple().getEnvironment()) {
4168     case llvm::Triple::Android:
4169     case llvm::Triple::EABI:
4170     case llvm::Triple::EABIHF:
4171     case llvm::Triple::GNUEABI:
4172     case llvm::Triple::GNUEABIHF:
4173       return true;
4174     default:
4175       return false;
4176     }
4177   }
4178 
4179   bool isEABIHF() const {
4180     switch (getTarget().getTriple().getEnvironment()) {
4181     case llvm::Triple::EABIHF:
4182     case llvm::Triple::GNUEABIHF:
4183       return true;
4184     default:
4185       return false;
4186     }
4187   }
4188 
4189   ABIKind getABIKind() const { return Kind; }
4190 
4191 private:
4192   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4193   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
4194                                   bool &IsCPRC) const;
4195   bool isIllegalVectorType(QualType Ty) const;
4196 
4197   void computeInfo(CGFunctionInfo &FI) const override;
4198 
4199   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4200                          CodeGenFunction &CGF) const override;
4201 
4202   llvm::CallingConv::ID getLLVMDefaultCC() const;
4203   llvm::CallingConv::ID getABIDefaultCC() const;
4204   void setRuntimeCC();
4205 
4206   void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
4207   void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
4208   void resetAllocatedRegs(void) const;
4209 };
4210 
4211 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4212 public:
4213   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4214     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4215 
4216   const ARMABIInfo &getABIInfo() const {
4217     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4218   }
4219 
4220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4221     return 13;
4222   }
4223 
4224   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4225     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4226   }
4227 
4228   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4229                                llvm::Value *Address) const override {
4230     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4231 
4232     // 0-15 are the 16 integer registers.
4233     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4234     return false;
4235   }
4236 
4237   unsigned getSizeOfUnwindException() const override {
4238     if (getABIInfo().isEABI()) return 88;
4239     return TargetCodeGenInfo::getSizeOfUnwindException();
4240   }
4241 
4242   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4243                            CodeGen::CodeGenModule &CGM) const override {
4244     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4245     if (!FD)
4246       return;
4247 
4248     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4249     if (!Attr)
4250       return;
4251 
4252     const char *Kind;
4253     switch (Attr->getInterrupt()) {
4254     case ARMInterruptAttr::Generic: Kind = ""; break;
4255     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4256     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4257     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4258     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4259     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4260     }
4261 
4262     llvm::Function *Fn = cast<llvm::Function>(GV);
4263 
4264     Fn->addFnAttr("interrupt", Kind);
4265 
4266     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4267       return;
4268 
4269     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4270     // however this is not necessarily true on taking any interrupt. Instruct
4271     // the backend to perform a realignment as part of the function prologue.
4272     llvm::AttrBuilder B;
4273     B.addStackAlignmentAttr(8);
4274     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4275                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4276                                               llvm::AttributeSet::FunctionIndex,
4277                                               B));
4278   }
4279 
4280 };
4281 
4282 }
4283 
4284 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4285   // To correctly handle Homogeneous Aggregate, we need to keep track of the
4286   // VFP registers allocated so far.
4287   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4288   // VFP registers of the appropriate type unallocated then the argument is
4289   // allocated to the lowest-numbered sequence of such registers.
4290   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4291   // unallocated are marked as unavailable.
4292   resetAllocatedRegs();
4293 
4294   const bool isAAPCS_VFP =
4295       getABIKind() == ARMABIInfo::AAPCS_VFP && !FI.isVariadic();
4296 
4297   if (getCXXABI().classifyReturnType(FI)) {
4298     if (FI.getReturnInfo().isIndirect())
4299       markAllocatedGPRs(1, 1);
4300   } else {
4301     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4302   }
4303   for (auto &I : FI.arguments()) {
4304     unsigned PreAllocationVFPs = AllocatedVFPs;
4305     unsigned PreAllocationGPRs = AllocatedGPRs;
4306     bool IsCPRC = false;
4307     // 6.1.2.3 There is one VFP co-processor register class using registers
4308     // s0-s15 (d0-d7) for passing arguments.
4309     I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
4310 
4311     // If we have allocated some arguments onto the stack (due to running
4312     // out of VFP registers), we cannot split an argument between GPRs and
4313     // the stack. If this situation occurs, we add padding to prevent the
4314     // GPRs from being used. In this situation, the current argument could
4315     // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4316     // unusable anyway.
4317     // We do not have to do this if the argument is being passed ByVal, as the
4318     // backend can handle that situation correctly.
4319     const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4320     const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
4321     if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
4322         StackUsed && !IsByVal) {
4323       llvm::Type *PaddingTy = llvm::ArrayType::get(
4324           llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4325       if (I.info.canHaveCoerceToType()) {
4326         I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
4327                                        PaddingTy, !isAAPCS_VFP);
4328       } else {
4329         I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4330                                        PaddingTy, !isAAPCS_VFP);
4331       }
4332     }
4333   }
4334 
4335   // Always honor user-specified calling convention.
4336   if (FI.getCallingConvention() != llvm::CallingConv::C)
4337     return;
4338 
4339   llvm::CallingConv::ID cc = getRuntimeCC();
4340   if (cc != llvm::CallingConv::C)
4341     FI.setEffectiveCallingConvention(cc);
4342 }
4343 
4344 /// Return the default calling convention that LLVM will use.
4345 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4346   // The default calling convention that LLVM will infer.
4347   if (isEABIHF())
4348     return llvm::CallingConv::ARM_AAPCS_VFP;
4349   else if (isEABI())
4350     return llvm::CallingConv::ARM_AAPCS;
4351   else
4352     return llvm::CallingConv::ARM_APCS;
4353 }
4354 
4355 /// Return the calling convention that our ABI would like us to use
4356 /// as the C calling convention.
4357 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4358   switch (getABIKind()) {
4359   case APCS: return llvm::CallingConv::ARM_APCS;
4360   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4361   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4362   }
4363   llvm_unreachable("bad ABI kind");
4364 }
4365 
4366 void ARMABIInfo::setRuntimeCC() {
4367   assert(getRuntimeCC() == llvm::CallingConv::C);
4368 
4369   // Don't muddy up the IR with a ton of explicit annotations if
4370   // they'd just match what LLVM will infer from the triple.
4371   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4372   if (abiCC != getLLVMDefaultCC())
4373     RuntimeCC = abiCC;
4374 }
4375 
4376 /// isARMHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
4377 /// aggregate.  If HAMembers is non-null, the number of base elements
4378 /// contained in the type is returned through it; this is used for the
4379 /// recursive calls that check aggregate component types.
4380 static bool isARMHomogeneousAggregate(QualType Ty, const Type *&Base,
4381                                    ASTContext &Context, bool isAArch64,
4382                                    uint64_t *HAMembers) {
4383   uint64_t Members = 0;
4384   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
4385     if (!isARMHomogeneousAggregate(AT->getElementType(), Base, Context, isAArch64, &Members))
4386       return false;
4387     Members *= AT->getSize().getZExtValue();
4388   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4389     const RecordDecl *RD = RT->getDecl();
4390     if (RD->hasFlexibleArrayMember())
4391       return false;
4392 
4393     Members = 0;
4394     for (const auto *FD : RD->fields()) {
4395       uint64_t FldMembers;
4396       if (!isARMHomogeneousAggregate(FD->getType(), Base, Context, isAArch64, &FldMembers))
4397         return false;
4398 
4399       Members = (RD->isUnion() ?
4400                  std::max(Members, FldMembers) : Members + FldMembers);
4401     }
4402   } else {
4403     Members = 1;
4404     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4405       Members = 2;
4406       Ty = CT->getElementType();
4407     }
4408 
4409     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4410     // double, or 64-bit or 128-bit vectors. "long double" has the same machine
4411     // type as double, so it is also allowed as a base type.
4412     // Homogeneous aggregates for AAPCS64 must have base types of a floating
4413     // point type or a short-vector type. This is the same as the 32-bit ABI,
4414     // but with the difference that any floating-point type is allowed,
4415     // including __fp16.
4416     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4417       if (isAArch64) {
4418         if (!BT->isFloatingPoint())
4419           return false;
4420       } else {
4421         if (BT->getKind() != BuiltinType::Float &&
4422             BT->getKind() != BuiltinType::Double &&
4423             BT->getKind() != BuiltinType::LongDouble)
4424           return false;
4425       }
4426     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4427       unsigned VecSize = Context.getTypeSize(VT);
4428       if (VecSize != 64 && VecSize != 128)
4429         return false;
4430     } else {
4431       return false;
4432     }
4433 
4434     // The base type must be the same for all members.  Vector types of the
4435     // same total size are treated as being equivalent here.
4436     const Type *TyPtr = Ty.getTypePtr();
4437     if (!Base)
4438       Base = TyPtr;
4439 
4440     if (Base != TyPtr) {
4441       // Homogeneous aggregates are defined as containing members with the
4442       // same machine type. There are two cases in which two members have
4443       // different TypePtrs but the same machine type:
4444 
4445       // 1) Vectors of the same length, regardless of the type and number
4446       //    of their members.
4447       const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
4448         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4449 
4450       // 2) In the 32-bit AAPCS, `double' and `long double' have the same
4451       //    machine type. This is not the case for the 64-bit AAPCS.
4452       const bool SameSizeDoubles =
4453            (   (   Base->isSpecificBuiltinType(BuiltinType::Double)
4454                 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
4455             || (   Base->isSpecificBuiltinType(BuiltinType::LongDouble)
4456                 && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
4457         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4458 
4459       if (!SameLengthVectors && !SameSizeDoubles)
4460         return false;
4461     }
4462   }
4463 
4464   // Homogeneous Aggregates can have at most 4 members of the base type.
4465   if (HAMembers)
4466     *HAMembers = Members;
4467 
4468   return (Members > 0 && Members <= 4);
4469 }
4470 
4471 /// markAllocatedVFPs - update VFPRegs according to the alignment and
4472 /// number of VFP registers (unit is S register) requested.
4473 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4474                                    unsigned NumRequired) const {
4475   // Early Exit.
4476   if (AllocatedVFPs >= 16) {
4477     // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4478     // the stack.
4479     AllocatedVFPs = 17;
4480     return;
4481   }
4482   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4483   // VFP registers of the appropriate type unallocated then the argument is
4484   // allocated to the lowest-numbered sequence of such registers.
4485   for (unsigned I = 0; I < 16; I += Alignment) {
4486     bool FoundSlot = true;
4487     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4488       if (J >= 16 || VFPRegs[J]) {
4489          FoundSlot = false;
4490          break;
4491       }
4492     if (FoundSlot) {
4493       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4494         VFPRegs[J] = 1;
4495       AllocatedVFPs += NumRequired;
4496       return;
4497     }
4498   }
4499   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4500   // unallocated are marked as unavailable.
4501   for (unsigned I = 0; I < 16; I++)
4502     VFPRegs[I] = 1;
4503   AllocatedVFPs = 17; // We do not have enough VFP registers.
4504 }
4505 
4506 /// Update AllocatedGPRs to record the number of general purpose registers
4507 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4508 /// this represents arguments being stored on the stack.
4509 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4510                                    unsigned NumRequired) const {
4511   assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4512 
4513   if (Alignment == 2 && AllocatedGPRs & 0x1)
4514     AllocatedGPRs += 1;
4515 
4516   AllocatedGPRs += NumRequired;
4517 }
4518 
4519 void ARMABIInfo::resetAllocatedRegs(void) const {
4520   AllocatedGPRs = 0;
4521   AllocatedVFPs = 0;
4522   for (unsigned i = 0; i < NumVFPs; ++i)
4523     VFPRegs[i] = 0;
4524 }
4525 
4526 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4527                                             bool &IsCPRC) const {
4528   // We update number of allocated VFPs according to
4529   // 6.1.2.1 The following argument types are VFP CPRCs:
4530   //   A single-precision floating-point type (including promoted
4531   //   half-precision types); A double-precision floating-point type;
4532   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4533   //   with a Base Type of a single- or double-precision floating-point type,
4534   //   64-bit containerized vectors or 128-bit containerized vectors with one
4535   //   to four Elements.
4536 
4537   const bool isAAPCS_VFP =
4538       getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic;
4539 
4540   // Handle illegal vector types here.
4541   if (isIllegalVectorType(Ty)) {
4542     uint64_t Size = getContext().getTypeSize(Ty);
4543     if (Size <= 32) {
4544       llvm::Type *ResType =
4545           llvm::Type::getInt32Ty(getVMContext());
4546       markAllocatedGPRs(1, 1);
4547       return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP);
4548     }
4549     if (Size == 64) {
4550       llvm::Type *ResType = llvm::VectorType::get(
4551           llvm::Type::getInt32Ty(getVMContext()), 2);
4552       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4553         markAllocatedGPRs(2, 2);
4554       } else {
4555         markAllocatedVFPs(2, 2);
4556         IsCPRC = true;
4557       }
4558       return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP);
4559     }
4560     if (Size == 128) {
4561       llvm::Type *ResType = llvm::VectorType::get(
4562           llvm::Type::getInt32Ty(getVMContext()), 4);
4563       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4564         markAllocatedGPRs(2, 4);
4565       } else {
4566         markAllocatedVFPs(4, 4);
4567         IsCPRC = true;
4568       }
4569       return ABIArgInfo::getDirect(ResType, 0, nullptr, !isAAPCS_VFP);
4570     }
4571     markAllocatedGPRs(1, 1);
4572     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4573   }
4574   // Update VFPRegs for legal vector types.
4575   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4576     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4577       uint64_t Size = getContext().getTypeSize(VT);
4578       // Size of a legal vector should be power of 2 and above 64.
4579       markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4580       IsCPRC = true;
4581     }
4582   }
4583   // Update VFPRegs for floating point types.
4584   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4585     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4586       if (BT->getKind() == BuiltinType::Half ||
4587           BT->getKind() == BuiltinType::Float) {
4588         markAllocatedVFPs(1, 1);
4589         IsCPRC = true;
4590       }
4591       if (BT->getKind() == BuiltinType::Double ||
4592           BT->getKind() == BuiltinType::LongDouble) {
4593         markAllocatedVFPs(2, 2);
4594         IsCPRC = true;
4595       }
4596     }
4597   }
4598 
4599   if (!isAggregateTypeForABI(Ty)) {
4600     // Treat an enum type as its underlying type.
4601     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4602       Ty = EnumTy->getDecl()->getIntegerType();
4603     }
4604 
4605     unsigned Size = getContext().getTypeSize(Ty);
4606     if (!IsCPRC)
4607       markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4608     return (Ty->isPromotableIntegerType()
4609                 ? ABIArgInfo::getExtend()
4610                 : ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP));
4611   }
4612 
4613   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4614     markAllocatedGPRs(1, 1);
4615     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4616   }
4617 
4618   // Ignore empty records.
4619   if (isEmptyRecord(getContext(), Ty, true))
4620     return ABIArgInfo::getIgnore();
4621 
4622   if (isAAPCS_VFP) {
4623     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4624     // into VFP registers.
4625     const Type *Base = nullptr;
4626     uint64_t Members = 0;
4627     if (isARMHomogeneousAggregate(Ty, Base, getContext(), false, &Members)) {
4628       assert(Base && "Base class should be set for homogeneous aggregate");
4629       // Base can be a floating-point or a vector.
4630       if (Base->isVectorType()) {
4631         // ElementSize is in number of floats.
4632         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4633         markAllocatedVFPs(ElementSize,
4634                           Members * ElementSize);
4635       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4636         markAllocatedVFPs(1, Members);
4637       else {
4638         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4639                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4640         markAllocatedVFPs(2, Members * 2);
4641       }
4642       IsCPRC = true;
4643       return ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP);
4644     }
4645   }
4646 
4647   // Support byval for ARM.
4648   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4649   // most 8-byte. We realign the indirect argument if type alignment is bigger
4650   // than ABI alignment.
4651   uint64_t ABIAlign = 4;
4652   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4653   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4654       getABIKind() == ARMABIInfo::AAPCS)
4655     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4656   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4657     // Update Allocated GPRs. Since this is only used when the size of the
4658     // argument is greater than 64 bytes, this will always use up any available
4659     // registers (of which there are 4). We also don't care about getting the
4660     // alignment right, because general-purpose registers cannot be back-filled.
4661     markAllocatedGPRs(1, 4);
4662     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4663            /*Realign=*/TyAlign > ABIAlign);
4664   }
4665 
4666   // Otherwise, pass by coercing to a structure of the appropriate size.
4667   llvm::Type* ElemTy;
4668   unsigned SizeRegs;
4669   // FIXME: Try to match the types of the arguments more accurately where
4670   // we can.
4671   if (getContext().getTypeAlign(Ty) <= 32) {
4672     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4673     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4674     markAllocatedGPRs(1, SizeRegs);
4675   } else {
4676     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4677     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4678     markAllocatedGPRs(2, SizeRegs * 2);
4679   }
4680 
4681   llvm::Type *STy =
4682     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
4683   return ABIArgInfo::getDirect(STy, 0, nullptr, !isAAPCS_VFP);
4684 }
4685 
4686 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4687                               llvm::LLVMContext &VMContext) {
4688   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4689   // is called integer-like if its size is less than or equal to one word, and
4690   // the offset of each of its addressable sub-fields is zero.
4691 
4692   uint64_t Size = Context.getTypeSize(Ty);
4693 
4694   // Check that the type fits in a word.
4695   if (Size > 32)
4696     return false;
4697 
4698   // FIXME: Handle vector types!
4699   if (Ty->isVectorType())
4700     return false;
4701 
4702   // Float types are never treated as "integer like".
4703   if (Ty->isRealFloatingType())
4704     return false;
4705 
4706   // If this is a builtin or pointer type then it is ok.
4707   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4708     return true;
4709 
4710   // Small complex integer types are "integer like".
4711   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4712     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4713 
4714   // Single element and zero sized arrays should be allowed, by the definition
4715   // above, but they are not.
4716 
4717   // Otherwise, it must be a record type.
4718   const RecordType *RT = Ty->getAs<RecordType>();
4719   if (!RT) return false;
4720 
4721   // Ignore records with flexible arrays.
4722   const RecordDecl *RD = RT->getDecl();
4723   if (RD->hasFlexibleArrayMember())
4724     return false;
4725 
4726   // Check that all sub-fields are at offset 0, and are themselves "integer
4727   // like".
4728   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4729 
4730   bool HadField = false;
4731   unsigned idx = 0;
4732   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4733        i != e; ++i, ++idx) {
4734     const FieldDecl *FD = *i;
4735 
4736     // Bit-fields are not addressable, we only need to verify they are "integer
4737     // like". We still have to disallow a subsequent non-bitfield, for example:
4738     //   struct { int : 0; int x }
4739     // is non-integer like according to gcc.
4740     if (FD->isBitField()) {
4741       if (!RD->isUnion())
4742         HadField = true;
4743 
4744       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4745         return false;
4746 
4747       continue;
4748     }
4749 
4750     // Check if this field is at offset 0.
4751     if (Layout.getFieldOffset(idx) != 0)
4752       return false;
4753 
4754     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4755       return false;
4756 
4757     // Only allow at most one field in a structure. This doesn't match the
4758     // wording above, but follows gcc in situations with a field following an
4759     // empty structure.
4760     if (!RD->isUnion()) {
4761       if (HadField)
4762         return false;
4763 
4764       HadField = true;
4765     }
4766   }
4767 
4768   return true;
4769 }
4770 
4771 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4772                                           bool isVariadic) const {
4773   const bool isAAPCS_VFP =
4774       getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic;
4775 
4776   if (RetTy->isVoidType())
4777     return ABIArgInfo::getIgnore();
4778 
4779   // Large vector types should be returned via memory.
4780   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4781     markAllocatedGPRs(1, 1);
4782     return ABIArgInfo::getIndirect(0);
4783   }
4784 
4785   if (!isAggregateTypeForABI(RetTy)) {
4786     // Treat an enum type as its underlying type.
4787     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4788       RetTy = EnumTy->getDecl()->getIntegerType();
4789 
4790     return (RetTy->isPromotableIntegerType()
4791                 ? ABIArgInfo::getExtend()
4792                 : ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP));
4793   }
4794 
4795   // Are we following APCS?
4796   if (getABIKind() == APCS) {
4797     if (isEmptyRecord(getContext(), RetTy, false))
4798       return ABIArgInfo::getIgnore();
4799 
4800     // Complex types are all returned as packed integers.
4801     //
4802     // FIXME: Consider using 2 x vector types if the back end handles them
4803     // correctly.
4804     if (RetTy->isAnyComplexType())
4805       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4806           getVMContext(), getContext().getTypeSize(RetTy)));
4807 
4808     // Integer like structures are returned in r0.
4809     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4810       // Return in the smallest viable integer type.
4811       uint64_t Size = getContext().getTypeSize(RetTy);
4812       if (Size <= 8)
4813         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4814       if (Size <= 16)
4815         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4816       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4817     }
4818 
4819     // Otherwise return in memory.
4820     markAllocatedGPRs(1, 1);
4821     return ABIArgInfo::getIndirect(0);
4822   }
4823 
4824   // Otherwise this is an AAPCS variant.
4825 
4826   if (isEmptyRecord(getContext(), RetTy, true))
4827     return ABIArgInfo::getIgnore();
4828 
4829   // Check for homogeneous aggregates with AAPCS-VFP.
4830   if (getABIKind() == AAPCS_VFP && !isVariadic) {
4831     const Type *Base = nullptr;
4832     if (isARMHomogeneousAggregate(RetTy, Base, getContext(), false)) {
4833       assert(Base && "Base class should be set for homogeneous aggregate");
4834       // Homogeneous Aggregates are returned directly.
4835       return ABIArgInfo::getDirect(nullptr, 0, nullptr, !isAAPCS_VFP);
4836     }
4837   }
4838 
4839   // Aggregates <= 4 bytes are returned in r0; other aggregates
4840   // are returned indirectly.
4841   uint64_t Size = getContext().getTypeSize(RetTy);
4842   if (Size <= 32) {
4843     if (getDataLayout().isBigEndian())
4844       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4845       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()), 0,
4846                                    nullptr, !isAAPCS_VFP);
4847 
4848     // Return in the smallest viable integer type.
4849     if (Size <= 8)
4850       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()), 0,
4851                                    nullptr, !isAAPCS_VFP);
4852     if (Size <= 16)
4853       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()), 0,
4854                                    nullptr, !isAAPCS_VFP);
4855     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()), 0,
4856                                  nullptr, !isAAPCS_VFP);
4857   }
4858 
4859   markAllocatedGPRs(1, 1);
4860   return ABIArgInfo::getIndirect(0);
4861 }
4862 
4863 /// isIllegalVector - check whether Ty is an illegal vector type.
4864 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4865   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4866     // Check whether VT is legal.
4867     unsigned NumElements = VT->getNumElements();
4868     uint64_t Size = getContext().getTypeSize(VT);
4869     // NumElements should be power of 2.
4870     if ((NumElements & (NumElements - 1)) != 0)
4871       return true;
4872     // Size should be greater than 32 bits.
4873     return Size <= 32;
4874   }
4875   return false;
4876 }
4877 
4878 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4879                                    CodeGenFunction &CGF) const {
4880   llvm::Type *BP = CGF.Int8PtrTy;
4881   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4882 
4883   CGBuilderTy &Builder = CGF.Builder;
4884   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4885   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4886 
4887   if (isEmptyRecord(getContext(), Ty, true)) {
4888     // These are ignored for parameter passing purposes.
4889     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4890     return Builder.CreateBitCast(Addr, PTy);
4891   }
4892 
4893   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4894   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4895   bool IsIndirect = false;
4896 
4897   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4898   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4899   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4900       getABIKind() == ARMABIInfo::AAPCS)
4901     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4902   else
4903     TyAlign = 4;
4904   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4905   if (isIllegalVectorType(Ty) && Size > 16) {
4906     IsIndirect = true;
4907     Size = 4;
4908     TyAlign = 4;
4909   }
4910 
4911   // Handle address alignment for ABI alignment > 4 bytes.
4912   if (TyAlign > 4) {
4913     assert((TyAlign & (TyAlign - 1)) == 0 &&
4914            "Alignment is not power of 2!");
4915     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4916     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4917     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4918     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4919   }
4920 
4921   uint64_t Offset =
4922     llvm::RoundUpToAlignment(Size, 4);
4923   llvm::Value *NextAddr =
4924     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4925                       "ap.next");
4926   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4927 
4928   if (IsIndirect)
4929     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4930   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4931     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4932     // may not be correctly aligned for the vector type. We create an aligned
4933     // temporary space and copy the content over from ap.cur to the temporary
4934     // space. This is necessary if the natural alignment of the type is greater
4935     // than the ABI alignment.
4936     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4937     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4938     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4939                                                     "var.align");
4940     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4941     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4942     Builder.CreateMemCpy(Dst, Src,
4943         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4944         TyAlign, false);
4945     Addr = AlignedTemp; //The content is in aligned location.
4946   }
4947   llvm::Type *PTy =
4948     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4949   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4950 
4951   return AddrTyped;
4952 }
4953 
4954 namespace {
4955 
4956 class NaClARMABIInfo : public ABIInfo {
4957  public:
4958   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4959       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
4960   void computeInfo(CGFunctionInfo &FI) const override;
4961   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4962                          CodeGenFunction &CGF) const override;
4963  private:
4964   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
4965   ARMABIInfo NInfo; // Used for everything else.
4966 };
4967 
4968 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
4969  public:
4970   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4971       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
4972 };
4973 
4974 }
4975 
4976 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4977   if (FI.getASTCallingConvention() == CC_PnaclCall)
4978     PInfo.computeInfo(FI);
4979   else
4980     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
4981 }
4982 
4983 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4984                                        CodeGenFunction &CGF) const {
4985   // Always use the native convention; calling pnacl-style varargs functions
4986   // is unsupported.
4987   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
4988 }
4989 
4990 //===----------------------------------------------------------------------===//
4991 // NVPTX ABI Implementation
4992 //===----------------------------------------------------------------------===//
4993 
4994 namespace {
4995 
4996 class NVPTXABIInfo : public ABIInfo {
4997 public:
4998   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4999 
5000   ABIArgInfo classifyReturnType(QualType RetTy) const;
5001   ABIArgInfo classifyArgumentType(QualType Ty) const;
5002 
5003   void computeInfo(CGFunctionInfo &FI) const override;
5004   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5005                          CodeGenFunction &CFG) const override;
5006 };
5007 
5008 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5009 public:
5010   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5011     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5012 
5013   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5014                            CodeGen::CodeGenModule &M) const override;
5015 private:
5016   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5017   // resulting MDNode to the nvvm.annotations MDNode.
5018   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5019 };
5020 
5021 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5022   if (RetTy->isVoidType())
5023     return ABIArgInfo::getIgnore();
5024 
5025   // note: this is different from default ABI
5026   if (!RetTy->isScalarType())
5027     return ABIArgInfo::getDirect();
5028 
5029   // Treat an enum type as its underlying type.
5030   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5031     RetTy = EnumTy->getDecl()->getIntegerType();
5032 
5033   return (RetTy->isPromotableIntegerType() ?
5034           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5035 }
5036 
5037 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5038   // Treat an enum type as its underlying type.
5039   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5040     Ty = EnumTy->getDecl()->getIntegerType();
5041 
5042   return (Ty->isPromotableIntegerType() ?
5043           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5044 }
5045 
5046 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5047   if (!getCXXABI().classifyReturnType(FI))
5048     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5049   for (auto &I : FI.arguments())
5050     I.info = classifyArgumentType(I.type);
5051 
5052   // Always honor user-specified calling convention.
5053   if (FI.getCallingConvention() != llvm::CallingConv::C)
5054     return;
5055 
5056   FI.setEffectiveCallingConvention(getRuntimeCC());
5057 }
5058 
5059 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5060                                      CodeGenFunction &CFG) const {
5061   llvm_unreachable("NVPTX does not support varargs");
5062 }
5063 
5064 void NVPTXTargetCodeGenInfo::
5065 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5066                     CodeGen::CodeGenModule &M) const{
5067   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5068   if (!FD) return;
5069 
5070   llvm::Function *F = cast<llvm::Function>(GV);
5071 
5072   // Perform special handling in OpenCL mode
5073   if (M.getLangOpts().OpenCL) {
5074     // Use OpenCL function attributes to check for kernel functions
5075     // By default, all functions are device functions
5076     if (FD->hasAttr<OpenCLKernelAttr>()) {
5077       // OpenCL __kernel functions get kernel metadata
5078       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5079       addNVVMMetadata(F, "kernel", 1);
5080       // And kernel functions are not subject to inlining
5081       F->addFnAttr(llvm::Attribute::NoInline);
5082     }
5083   }
5084 
5085   // Perform special handling in CUDA mode.
5086   if (M.getLangOpts().CUDA) {
5087     // CUDA __global__ functions get a kernel metadata entry.  Since
5088     // __global__ functions cannot be called from the device, we do not
5089     // need to set the noinline attribute.
5090     if (FD->hasAttr<CUDAGlobalAttr>()) {
5091       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5092       addNVVMMetadata(F, "kernel", 1);
5093     }
5094     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5095       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5096       addNVVMMetadata(F, "maxntidx",
5097                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5098       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5099       // zero value from getMinBlocks either means it was not specified in
5100       // __launch_bounds__ or the user specified a 0 value. In both cases, we
5101       // don't have to add a PTX directive.
5102       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5103       if (MinCTASM > 0) {
5104         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5105         addNVVMMetadata(F, "minctasm", MinCTASM);
5106       }
5107     }
5108   }
5109 }
5110 
5111 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5112                                              int Operand) {
5113   llvm::Module *M = F->getParent();
5114   llvm::LLVMContext &Ctx = M->getContext();
5115 
5116   // Get "nvvm.annotations" metadata node
5117   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5118 
5119   llvm::Value *MDVals[] = {
5120       F, llvm::MDString::get(Ctx, Name),
5121       llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
5122   // Append metadata to nvvm.annotations
5123   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5124 }
5125 }
5126 
5127 //===----------------------------------------------------------------------===//
5128 // SystemZ ABI Implementation
5129 //===----------------------------------------------------------------------===//
5130 
5131 namespace {
5132 
5133 class SystemZABIInfo : public ABIInfo {
5134 public:
5135   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5136 
5137   bool isPromotableIntegerType(QualType Ty) const;
5138   bool isCompoundType(QualType Ty) const;
5139   bool isFPArgumentType(QualType Ty) const;
5140 
5141   ABIArgInfo classifyReturnType(QualType RetTy) const;
5142   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5143 
5144   void computeInfo(CGFunctionInfo &FI) const override {
5145     if (!getCXXABI().classifyReturnType(FI))
5146       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5147     for (auto &I : FI.arguments())
5148       I.info = classifyArgumentType(I.type);
5149   }
5150 
5151   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5152                          CodeGenFunction &CGF) const override;
5153 };
5154 
5155 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5156 public:
5157   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5158     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5159 };
5160 
5161 }
5162 
5163 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5164   // Treat an enum type as its underlying type.
5165   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5166     Ty = EnumTy->getDecl()->getIntegerType();
5167 
5168   // Promotable integer types are required to be promoted by the ABI.
5169   if (Ty->isPromotableIntegerType())
5170     return true;
5171 
5172   // 32-bit values must also be promoted.
5173   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5174     switch (BT->getKind()) {
5175     case BuiltinType::Int:
5176     case BuiltinType::UInt:
5177       return true;
5178     default:
5179       return false;
5180     }
5181   return false;
5182 }
5183 
5184 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5185   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5186 }
5187 
5188 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5189   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5190     switch (BT->getKind()) {
5191     case BuiltinType::Float:
5192     case BuiltinType::Double:
5193       return true;
5194     default:
5195       return false;
5196     }
5197 
5198   if (const RecordType *RT = Ty->getAsStructureType()) {
5199     const RecordDecl *RD = RT->getDecl();
5200     bool Found = false;
5201 
5202     // If this is a C++ record, check the bases first.
5203     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5204       for (const auto &I : CXXRD->bases()) {
5205         QualType Base = I.getType();
5206 
5207         // Empty bases don't affect things either way.
5208         if (isEmptyRecord(getContext(), Base, true))
5209           continue;
5210 
5211         if (Found)
5212           return false;
5213         Found = isFPArgumentType(Base);
5214         if (!Found)
5215           return false;
5216       }
5217 
5218     // Check the fields.
5219     for (const auto *FD : RD->fields()) {
5220       // Empty bitfields don't affect things either way.
5221       // Unlike isSingleElementStruct(), empty structure and array fields
5222       // do count.  So do anonymous bitfields that aren't zero-sized.
5223       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5224         return true;
5225 
5226       // Unlike isSingleElementStruct(), arrays do not count.
5227       // Nested isFPArgumentType structures still do though.
5228       if (Found)
5229         return false;
5230       Found = isFPArgumentType(FD->getType());
5231       if (!Found)
5232         return false;
5233     }
5234 
5235     // Unlike isSingleElementStruct(), trailing padding is allowed.
5236     // An 8-byte aligned struct s { float f; } is passed as a double.
5237     return Found;
5238   }
5239 
5240   return false;
5241 }
5242 
5243 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5244                                        CodeGenFunction &CGF) const {
5245   // Assume that va_list type is correct; should be pointer to LLVM type:
5246   // struct {
5247   //   i64 __gpr;
5248   //   i64 __fpr;
5249   //   i8 *__overflow_arg_area;
5250   //   i8 *__reg_save_area;
5251   // };
5252 
5253   // Every argument occupies 8 bytes and is passed by preference in either
5254   // GPRs or FPRs.
5255   Ty = CGF.getContext().getCanonicalType(Ty);
5256   ABIArgInfo AI = classifyArgumentType(Ty);
5257   bool InFPRs = isFPArgumentType(Ty);
5258 
5259   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5260   bool IsIndirect = AI.isIndirect();
5261   unsigned UnpaddedBitSize;
5262   if (IsIndirect) {
5263     APTy = llvm::PointerType::getUnqual(APTy);
5264     UnpaddedBitSize = 64;
5265   } else
5266     UnpaddedBitSize = getContext().getTypeSize(Ty);
5267   unsigned PaddedBitSize = 64;
5268   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5269 
5270   unsigned PaddedSize = PaddedBitSize / 8;
5271   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5272 
5273   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5274   if (InFPRs) {
5275     MaxRegs = 4; // Maximum of 4 FPR arguments
5276     RegCountField = 1; // __fpr
5277     RegSaveIndex = 16; // save offset for f0
5278     RegPadding = 0; // floats are passed in the high bits of an FPR
5279   } else {
5280     MaxRegs = 5; // Maximum of 5 GPR arguments
5281     RegCountField = 0; // __gpr
5282     RegSaveIndex = 2; // save offset for r2
5283     RegPadding = Padding; // values are passed in the low bits of a GPR
5284   }
5285 
5286   llvm::Value *RegCountPtr =
5287     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5288   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5289   llvm::Type *IndexTy = RegCount->getType();
5290   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5291   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5292                                                  "fits_in_regs");
5293 
5294   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5295   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5296   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5297   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5298 
5299   // Emit code to load the value if it was passed in registers.
5300   CGF.EmitBlock(InRegBlock);
5301 
5302   // Work out the address of an argument register.
5303   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5304   llvm::Value *ScaledRegCount =
5305     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5306   llvm::Value *RegBase =
5307     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5308   llvm::Value *RegOffset =
5309     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5310   llvm::Value *RegSaveAreaPtr =
5311     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5312   llvm::Value *RegSaveArea =
5313     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5314   llvm::Value *RawRegAddr =
5315     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5316   llvm::Value *RegAddr =
5317     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5318 
5319   // Update the register count
5320   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5321   llvm::Value *NewRegCount =
5322     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5323   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5324   CGF.EmitBranch(ContBlock);
5325 
5326   // Emit code to load the value if it was passed in memory.
5327   CGF.EmitBlock(InMemBlock);
5328 
5329   // Work out the address of a stack argument.
5330   llvm::Value *OverflowArgAreaPtr =
5331     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5332   llvm::Value *OverflowArgArea =
5333     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5334   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5335   llvm::Value *RawMemAddr =
5336     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5337   llvm::Value *MemAddr =
5338     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5339 
5340   // Update overflow_arg_area_ptr pointer
5341   llvm::Value *NewOverflowArgArea =
5342     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5343   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5344   CGF.EmitBranch(ContBlock);
5345 
5346   // Return the appropriate result.
5347   CGF.EmitBlock(ContBlock);
5348   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5349   ResAddr->addIncoming(RegAddr, InRegBlock);
5350   ResAddr->addIncoming(MemAddr, InMemBlock);
5351 
5352   if (IsIndirect)
5353     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5354 
5355   return ResAddr;
5356 }
5357 
5358 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5359   if (RetTy->isVoidType())
5360     return ABIArgInfo::getIgnore();
5361   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5362     return ABIArgInfo::getIndirect(0);
5363   return (isPromotableIntegerType(RetTy) ?
5364           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5365 }
5366 
5367 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5368   // Handle the generic C++ ABI.
5369   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5370     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5371 
5372   // Integers and enums are extended to full register width.
5373   if (isPromotableIntegerType(Ty))
5374     return ABIArgInfo::getExtend();
5375 
5376   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5377   uint64_t Size = getContext().getTypeSize(Ty);
5378   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5379     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5380 
5381   // Handle small structures.
5382   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5383     // Structures with flexible arrays have variable length, so really
5384     // fail the size test above.
5385     const RecordDecl *RD = RT->getDecl();
5386     if (RD->hasFlexibleArrayMember())
5387       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5388 
5389     // The structure is passed as an unextended integer, a float, or a double.
5390     llvm::Type *PassTy;
5391     if (isFPArgumentType(Ty)) {
5392       assert(Size == 32 || Size == 64);
5393       if (Size == 32)
5394         PassTy = llvm::Type::getFloatTy(getVMContext());
5395       else
5396         PassTy = llvm::Type::getDoubleTy(getVMContext());
5397     } else
5398       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5399     return ABIArgInfo::getDirect(PassTy);
5400   }
5401 
5402   // Non-structure compounds are passed indirectly.
5403   if (isCompoundType(Ty))
5404     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5405 
5406   return ABIArgInfo::getDirect(nullptr);
5407 }
5408 
5409 //===----------------------------------------------------------------------===//
5410 // MSP430 ABI Implementation
5411 //===----------------------------------------------------------------------===//
5412 
5413 namespace {
5414 
5415 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5416 public:
5417   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5418     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5419   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5420                            CodeGen::CodeGenModule &M) const override;
5421 };
5422 
5423 }
5424 
5425 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5426                                                   llvm::GlobalValue *GV,
5427                                              CodeGen::CodeGenModule &M) const {
5428   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5429     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5430       // Handle 'interrupt' attribute:
5431       llvm::Function *F = cast<llvm::Function>(GV);
5432 
5433       // Step 1: Set ISR calling convention.
5434       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5435 
5436       // Step 2: Add attributes goodness.
5437       F->addFnAttr(llvm::Attribute::NoInline);
5438 
5439       // Step 3: Emit ISR vector alias.
5440       unsigned Num = attr->getNumber() / 2;
5441       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5442                                 "__isr_" + Twine(Num), F);
5443     }
5444   }
5445 }
5446 
5447 //===----------------------------------------------------------------------===//
5448 // MIPS ABI Implementation.  This works for both little-endian and
5449 // big-endian variants.
5450 //===----------------------------------------------------------------------===//
5451 
5452 namespace {
5453 class MipsABIInfo : public ABIInfo {
5454   bool IsO32;
5455   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5456   void CoerceToIntArgs(uint64_t TySize,
5457                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5458   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5459   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5460   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5461 public:
5462   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5463     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5464     StackAlignInBytes(IsO32 ? 8 : 16) {}
5465 
5466   ABIArgInfo classifyReturnType(QualType RetTy) const;
5467   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5468   void computeInfo(CGFunctionInfo &FI) const override;
5469   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5470                          CodeGenFunction &CGF) const override;
5471 };
5472 
5473 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5474   unsigned SizeOfUnwindException;
5475 public:
5476   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5477     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5478       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5479 
5480   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5481     return 29;
5482   }
5483 
5484   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5485                            CodeGen::CodeGenModule &CGM) const override {
5486     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5487     if (!FD) return;
5488     llvm::Function *Fn = cast<llvm::Function>(GV);
5489     if (FD->hasAttr<Mips16Attr>()) {
5490       Fn->addFnAttr("mips16");
5491     }
5492     else if (FD->hasAttr<NoMips16Attr>()) {
5493       Fn->addFnAttr("nomips16");
5494     }
5495   }
5496 
5497   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5498                                llvm::Value *Address) const override;
5499 
5500   unsigned getSizeOfUnwindException() const override {
5501     return SizeOfUnwindException;
5502   }
5503 };
5504 }
5505 
5506 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5507                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5508   llvm::IntegerType *IntTy =
5509     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5510 
5511   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5512   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5513     ArgList.push_back(IntTy);
5514 
5515   // If necessary, add one more integer type to ArgList.
5516   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5517 
5518   if (R)
5519     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5520 }
5521 
5522 // In N32/64, an aligned double precision floating point field is passed in
5523 // a register.
5524 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5525   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5526 
5527   if (IsO32) {
5528     CoerceToIntArgs(TySize, ArgList);
5529     return llvm::StructType::get(getVMContext(), ArgList);
5530   }
5531 
5532   if (Ty->isComplexType())
5533     return CGT.ConvertType(Ty);
5534 
5535   const RecordType *RT = Ty->getAs<RecordType>();
5536 
5537   // Unions/vectors are passed in integer registers.
5538   if (!RT || !RT->isStructureOrClassType()) {
5539     CoerceToIntArgs(TySize, ArgList);
5540     return llvm::StructType::get(getVMContext(), ArgList);
5541   }
5542 
5543   const RecordDecl *RD = RT->getDecl();
5544   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5545   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5546 
5547   uint64_t LastOffset = 0;
5548   unsigned idx = 0;
5549   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5550 
5551   // Iterate over fields in the struct/class and check if there are any aligned
5552   // double fields.
5553   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5554        i != e; ++i, ++idx) {
5555     const QualType Ty = i->getType();
5556     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5557 
5558     if (!BT || BT->getKind() != BuiltinType::Double)
5559       continue;
5560 
5561     uint64_t Offset = Layout.getFieldOffset(idx);
5562     if (Offset % 64) // Ignore doubles that are not aligned.
5563       continue;
5564 
5565     // Add ((Offset - LastOffset) / 64) args of type i64.
5566     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5567       ArgList.push_back(I64);
5568 
5569     // Add double type.
5570     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5571     LastOffset = Offset + 64;
5572   }
5573 
5574   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5575   ArgList.append(IntArgList.begin(), IntArgList.end());
5576 
5577   return llvm::StructType::get(getVMContext(), ArgList);
5578 }
5579 
5580 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5581                                         uint64_t Offset) const {
5582   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5583     return nullptr;
5584 
5585   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5586 }
5587 
5588 ABIArgInfo
5589 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5590   uint64_t OrigOffset = Offset;
5591   uint64_t TySize = getContext().getTypeSize(Ty);
5592   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5593 
5594   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5595                    (uint64_t)StackAlignInBytes);
5596   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5597   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5598 
5599   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5600     // Ignore empty aggregates.
5601     if (TySize == 0)
5602       return ABIArgInfo::getIgnore();
5603 
5604     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5605       Offset = OrigOffset + MinABIStackAlignInBytes;
5606       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5607     }
5608 
5609     // If we have reached here, aggregates are passed directly by coercing to
5610     // another structure type. Padding is inserted if the offset of the
5611     // aggregate is unaligned.
5612     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5613                                  getPaddingType(OrigOffset, CurrOffset));
5614   }
5615 
5616   // Treat an enum type as its underlying type.
5617   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5618     Ty = EnumTy->getDecl()->getIntegerType();
5619 
5620   if (Ty->isPromotableIntegerType())
5621     return ABIArgInfo::getExtend();
5622 
5623   return ABIArgInfo::getDirect(
5624       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5625 }
5626 
5627 llvm::Type*
5628 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5629   const RecordType *RT = RetTy->getAs<RecordType>();
5630   SmallVector<llvm::Type*, 8> RTList;
5631 
5632   if (RT && RT->isStructureOrClassType()) {
5633     const RecordDecl *RD = RT->getDecl();
5634     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5635     unsigned FieldCnt = Layout.getFieldCount();
5636 
5637     // N32/64 returns struct/classes in floating point registers if the
5638     // following conditions are met:
5639     // 1. The size of the struct/class is no larger than 128-bit.
5640     // 2. The struct/class has one or two fields all of which are floating
5641     //    point types.
5642     // 3. The offset of the first field is zero (this follows what gcc does).
5643     //
5644     // Any other composite results are returned in integer registers.
5645     //
5646     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5647       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5648       for (; b != e; ++b) {
5649         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5650 
5651         if (!BT || !BT->isFloatingPoint())
5652           break;
5653 
5654         RTList.push_back(CGT.ConvertType(b->getType()));
5655       }
5656 
5657       if (b == e)
5658         return llvm::StructType::get(getVMContext(), RTList,
5659                                      RD->hasAttr<PackedAttr>());
5660 
5661       RTList.clear();
5662     }
5663   }
5664 
5665   CoerceToIntArgs(Size, RTList);
5666   return llvm::StructType::get(getVMContext(), RTList);
5667 }
5668 
5669 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5670   uint64_t Size = getContext().getTypeSize(RetTy);
5671 
5672   if (RetTy->isVoidType())
5673     return ABIArgInfo::getIgnore();
5674 
5675   // O32 doesn't treat zero-sized structs differently from other structs.
5676   // However, N32/N64 ignores zero sized return values.
5677   if (!IsO32 && Size == 0)
5678     return ABIArgInfo::getIgnore();
5679 
5680   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5681     if (Size <= 128) {
5682       if (RetTy->isAnyComplexType())
5683         return ABIArgInfo::getDirect();
5684 
5685       // O32 returns integer vectors in registers and N32/N64 returns all small
5686       // aggregates in registers.
5687       if (!IsO32 ||
5688           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5689         ABIArgInfo ArgInfo =
5690             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5691         ArgInfo.setInReg(true);
5692         return ArgInfo;
5693       }
5694     }
5695 
5696     return ABIArgInfo::getIndirect(0);
5697   }
5698 
5699   // Treat an enum type as its underlying type.
5700   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5701     RetTy = EnumTy->getDecl()->getIntegerType();
5702 
5703   return (RetTy->isPromotableIntegerType() ?
5704           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5705 }
5706 
5707 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5708   ABIArgInfo &RetInfo = FI.getReturnInfo();
5709   if (!getCXXABI().classifyReturnType(FI))
5710     RetInfo = classifyReturnType(FI.getReturnType());
5711 
5712   // Check if a pointer to an aggregate is passed as a hidden argument.
5713   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5714 
5715   for (auto &I : FI.arguments())
5716     I.info = classifyArgumentType(I.type, Offset);
5717 }
5718 
5719 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5720                                     CodeGenFunction &CGF) const {
5721   llvm::Type *BP = CGF.Int8PtrTy;
5722   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5723 
5724   CGBuilderTy &Builder = CGF.Builder;
5725   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5726   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5727   int64_t TypeAlign =
5728       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5729   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5730   llvm::Value *AddrTyped;
5731   unsigned PtrWidth = getTarget().getPointerWidth(0);
5732   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5733 
5734   if (TypeAlign > MinABIStackAlignInBytes) {
5735     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5736     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5737     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5738     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5739     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5740     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5741   }
5742   else
5743     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5744 
5745   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5746   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5747   uint64_t Offset =
5748     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5749   llvm::Value *NextAddr =
5750     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5751                       "ap.next");
5752   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5753 
5754   return AddrTyped;
5755 }
5756 
5757 bool
5758 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5759                                                llvm::Value *Address) const {
5760   // This information comes from gcc's implementation, which seems to
5761   // as canonical as it gets.
5762 
5763   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5764   // are aliased to pairs of single-precision FP registers.
5765   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5766 
5767   // 0-31 are the general purpose registers, $0 - $31.
5768   // 32-63 are the floating-point registers, $f0 - $f31.
5769   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5770   // 66 is the (notional, I think) register for signal-handler return.
5771   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5772 
5773   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5774   // They are one bit wide and ignored here.
5775 
5776   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5777   // (coprocessor 1 is the FP unit)
5778   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5779   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5780   // 176-181 are the DSP accumulator registers.
5781   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5782   return false;
5783 }
5784 
5785 //===----------------------------------------------------------------------===//
5786 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5787 // Currently subclassed only to implement custom OpenCL C function attribute
5788 // handling.
5789 //===----------------------------------------------------------------------===//
5790 
5791 namespace {
5792 
5793 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5794 public:
5795   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5796     : DefaultTargetCodeGenInfo(CGT) {}
5797 
5798   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5799                            CodeGen::CodeGenModule &M) const override;
5800 };
5801 
5802 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5803                                                llvm::GlobalValue *GV,
5804                                                CodeGen::CodeGenModule &M) const {
5805   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5806   if (!FD) return;
5807 
5808   llvm::Function *F = cast<llvm::Function>(GV);
5809 
5810   if (M.getLangOpts().OpenCL) {
5811     if (FD->hasAttr<OpenCLKernelAttr>()) {
5812       // OpenCL C Kernel functions are not subject to inlining
5813       F->addFnAttr(llvm::Attribute::NoInline);
5814       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5815       if (Attr) {
5816         // Convert the reqd_work_group_size() attributes to metadata.
5817         llvm::LLVMContext &Context = F->getContext();
5818         llvm::NamedMDNode *OpenCLMetadata =
5819             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5820 
5821         SmallVector<llvm::Value*, 5> Operands;
5822         Operands.push_back(F);
5823 
5824         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5825                              llvm::APInt(32, Attr->getXDim())));
5826         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5827                              llvm::APInt(32, Attr->getYDim())));
5828         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5829                              llvm::APInt(32, Attr->getZDim())));
5830 
5831         // Add a boolean constant operand for "required" (true) or "hint" (false)
5832         // for implementing the work_group_size_hint attr later. Currently
5833         // always true as the hint is not yet implemented.
5834         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5835         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5836       }
5837     }
5838   }
5839 }
5840 
5841 }
5842 
5843 //===----------------------------------------------------------------------===//
5844 // Hexagon ABI Implementation
5845 //===----------------------------------------------------------------------===//
5846 
5847 namespace {
5848 
5849 class HexagonABIInfo : public ABIInfo {
5850 
5851 
5852 public:
5853   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5854 
5855 private:
5856 
5857   ABIArgInfo classifyReturnType(QualType RetTy) const;
5858   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5859 
5860   void computeInfo(CGFunctionInfo &FI) const override;
5861 
5862   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5863                          CodeGenFunction &CGF) const override;
5864 };
5865 
5866 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5867 public:
5868   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5869     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5870 
5871   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5872     return 29;
5873   }
5874 };
5875 
5876 }
5877 
5878 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5879   if (!getCXXABI().classifyReturnType(FI))
5880     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5881   for (auto &I : FI.arguments())
5882     I.info = classifyArgumentType(I.type);
5883 }
5884 
5885 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5886   if (!isAggregateTypeForABI(Ty)) {
5887     // Treat an enum type as its underlying type.
5888     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5889       Ty = EnumTy->getDecl()->getIntegerType();
5890 
5891     return (Ty->isPromotableIntegerType() ?
5892             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5893   }
5894 
5895   // Ignore empty records.
5896   if (isEmptyRecord(getContext(), Ty, true))
5897     return ABIArgInfo::getIgnore();
5898 
5899   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5900     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5901 
5902   uint64_t Size = getContext().getTypeSize(Ty);
5903   if (Size > 64)
5904     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5905     // Pass in the smallest viable integer type.
5906   else if (Size > 32)
5907       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5908   else if (Size > 16)
5909       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5910   else if (Size > 8)
5911       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5912   else
5913       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5914 }
5915 
5916 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5917   if (RetTy->isVoidType())
5918     return ABIArgInfo::getIgnore();
5919 
5920   // Large vector types should be returned via memory.
5921   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5922     return ABIArgInfo::getIndirect(0);
5923 
5924   if (!isAggregateTypeForABI(RetTy)) {
5925     // Treat an enum type as its underlying type.
5926     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5927       RetTy = EnumTy->getDecl()->getIntegerType();
5928 
5929     return (RetTy->isPromotableIntegerType() ?
5930             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5931   }
5932 
5933   if (isEmptyRecord(getContext(), RetTy, true))
5934     return ABIArgInfo::getIgnore();
5935 
5936   // Aggregates <= 8 bytes are returned in r0; other aggregates
5937   // are returned indirectly.
5938   uint64_t Size = getContext().getTypeSize(RetTy);
5939   if (Size <= 64) {
5940     // Return in the smallest viable integer type.
5941     if (Size <= 8)
5942       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5943     if (Size <= 16)
5944       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5945     if (Size <= 32)
5946       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5947     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5948   }
5949 
5950   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5951 }
5952 
5953 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5954                                        CodeGenFunction &CGF) const {
5955   // FIXME: Need to handle alignment
5956   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5957 
5958   CGBuilderTy &Builder = CGF.Builder;
5959   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5960                                                        "ap");
5961   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5962   llvm::Type *PTy =
5963     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5964   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5965 
5966   uint64_t Offset =
5967     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5968   llvm::Value *NextAddr =
5969     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5970                       "ap.next");
5971   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5972 
5973   return AddrTyped;
5974 }
5975 
5976 
5977 //===----------------------------------------------------------------------===//
5978 // SPARC v9 ABI Implementation.
5979 // Based on the SPARC Compliance Definition version 2.4.1.
5980 //
5981 // Function arguments a mapped to a nominal "parameter array" and promoted to
5982 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5983 // the array, structs larger than 16 bytes are passed indirectly.
5984 //
5985 // One case requires special care:
5986 //
5987 //   struct mixed {
5988 //     int i;
5989 //     float f;
5990 //   };
5991 //
5992 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5993 // parameter array, but the int is passed in an integer register, and the float
5994 // is passed in a floating point register. This is represented as two arguments
5995 // with the LLVM IR inreg attribute:
5996 //
5997 //   declare void f(i32 inreg %i, float inreg %f)
5998 //
5999 // The code generator will only allocate 4 bytes from the parameter array for
6000 // the inreg arguments. All other arguments are allocated a multiple of 8
6001 // bytes.
6002 //
6003 namespace {
6004 class SparcV9ABIInfo : public ABIInfo {
6005 public:
6006   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6007 
6008 private:
6009   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6010   void computeInfo(CGFunctionInfo &FI) const override;
6011   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6012                          CodeGenFunction &CGF) const override;
6013 
6014   // Coercion type builder for structs passed in registers. The coercion type
6015   // serves two purposes:
6016   //
6017   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6018   //    in registers.
6019   // 2. Expose aligned floating point elements as first-level elements, so the
6020   //    code generator knows to pass them in floating point registers.
6021   //
6022   // We also compute the InReg flag which indicates that the struct contains
6023   // aligned 32-bit floats.
6024   //
6025   struct CoerceBuilder {
6026     llvm::LLVMContext &Context;
6027     const llvm::DataLayout &DL;
6028     SmallVector<llvm::Type*, 8> Elems;
6029     uint64_t Size;
6030     bool InReg;
6031 
6032     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6033       : Context(c), DL(dl), Size(0), InReg(false) {}
6034 
6035     // Pad Elems with integers until Size is ToSize.
6036     void pad(uint64_t ToSize) {
6037       assert(ToSize >= Size && "Cannot remove elements");
6038       if (ToSize == Size)
6039         return;
6040 
6041       // Finish the current 64-bit word.
6042       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6043       if (Aligned > Size && Aligned <= ToSize) {
6044         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6045         Size = Aligned;
6046       }
6047 
6048       // Add whole 64-bit words.
6049       while (Size + 64 <= ToSize) {
6050         Elems.push_back(llvm::Type::getInt64Ty(Context));
6051         Size += 64;
6052       }
6053 
6054       // Final in-word padding.
6055       if (Size < ToSize) {
6056         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6057         Size = ToSize;
6058       }
6059     }
6060 
6061     // Add a floating point element at Offset.
6062     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6063       // Unaligned floats are treated as integers.
6064       if (Offset % Bits)
6065         return;
6066       // The InReg flag is only required if there are any floats < 64 bits.
6067       if (Bits < 64)
6068         InReg = true;
6069       pad(Offset);
6070       Elems.push_back(Ty);
6071       Size = Offset + Bits;
6072     }
6073 
6074     // Add a struct type to the coercion type, starting at Offset (in bits).
6075     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6076       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6077       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6078         llvm::Type *ElemTy = StrTy->getElementType(i);
6079         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6080         switch (ElemTy->getTypeID()) {
6081         case llvm::Type::StructTyID:
6082           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6083           break;
6084         case llvm::Type::FloatTyID:
6085           addFloat(ElemOffset, ElemTy, 32);
6086           break;
6087         case llvm::Type::DoubleTyID:
6088           addFloat(ElemOffset, ElemTy, 64);
6089           break;
6090         case llvm::Type::FP128TyID:
6091           addFloat(ElemOffset, ElemTy, 128);
6092           break;
6093         case llvm::Type::PointerTyID:
6094           if (ElemOffset % 64 == 0) {
6095             pad(ElemOffset);
6096             Elems.push_back(ElemTy);
6097             Size += 64;
6098           }
6099           break;
6100         default:
6101           break;
6102         }
6103       }
6104     }
6105 
6106     // Check if Ty is a usable substitute for the coercion type.
6107     bool isUsableType(llvm::StructType *Ty) const {
6108       if (Ty->getNumElements() != Elems.size())
6109         return false;
6110       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
6111         if (Elems[i] != Ty->getElementType(i))
6112           return false;
6113       return true;
6114     }
6115 
6116     // Get the coercion type as a literal struct type.
6117     llvm::Type *getType() const {
6118       if (Elems.size() == 1)
6119         return Elems.front();
6120       else
6121         return llvm::StructType::get(Context, Elems);
6122     }
6123   };
6124 };
6125 } // end anonymous namespace
6126 
6127 ABIArgInfo
6128 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6129   if (Ty->isVoidType())
6130     return ABIArgInfo::getIgnore();
6131 
6132   uint64_t Size = getContext().getTypeSize(Ty);
6133 
6134   // Anything too big to fit in registers is passed with an explicit indirect
6135   // pointer / sret pointer.
6136   if (Size > SizeLimit)
6137     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6138 
6139   // Treat an enum type as its underlying type.
6140   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6141     Ty = EnumTy->getDecl()->getIntegerType();
6142 
6143   // Integer types smaller than a register are extended.
6144   if (Size < 64 && Ty->isIntegerType())
6145     return ABIArgInfo::getExtend();
6146 
6147   // Other non-aggregates go in registers.
6148   if (!isAggregateTypeForABI(Ty))
6149     return ABIArgInfo::getDirect();
6150 
6151   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6152   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6153   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6154     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6155 
6156   // This is a small aggregate type that should be passed in registers.
6157   // Build a coercion type from the LLVM struct type.
6158   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6159   if (!StrTy)
6160     return ABIArgInfo::getDirect();
6161 
6162   CoerceBuilder CB(getVMContext(), getDataLayout());
6163   CB.addStruct(0, StrTy);
6164   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6165 
6166   // Try to use the original type for coercion.
6167   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6168 
6169   if (CB.InReg)
6170     return ABIArgInfo::getDirectInReg(CoerceTy);
6171   else
6172     return ABIArgInfo::getDirect(CoerceTy);
6173 }
6174 
6175 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6176                                        CodeGenFunction &CGF) const {
6177   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6178   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6179   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6180     AI.setCoerceToType(ArgTy);
6181 
6182   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6183   CGBuilderTy &Builder = CGF.Builder;
6184   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6185   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6186   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6187   llvm::Value *ArgAddr;
6188   unsigned Stride;
6189 
6190   switch (AI.getKind()) {
6191   case ABIArgInfo::Expand:
6192   case ABIArgInfo::InAlloca:
6193     llvm_unreachable("Unsupported ABI kind for va_arg");
6194 
6195   case ABIArgInfo::Extend:
6196     Stride = 8;
6197     ArgAddr = Builder
6198       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6199                           "extend");
6200     break;
6201 
6202   case ABIArgInfo::Direct:
6203     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6204     ArgAddr = Addr;
6205     break;
6206 
6207   case ABIArgInfo::Indirect:
6208     Stride = 8;
6209     ArgAddr = Builder.CreateBitCast(Addr,
6210                                     llvm::PointerType::getUnqual(ArgPtrTy),
6211                                     "indirect");
6212     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6213     break;
6214 
6215   case ABIArgInfo::Ignore:
6216     return llvm::UndefValue::get(ArgPtrTy);
6217   }
6218 
6219   // Update VAList.
6220   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6221   Builder.CreateStore(Addr, VAListAddrAsBPP);
6222 
6223   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6224 }
6225 
6226 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6227   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6228   for (auto &I : FI.arguments())
6229     I.info = classifyType(I.type, 16 * 8);
6230 }
6231 
6232 namespace {
6233 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6234 public:
6235   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6236     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6237 
6238   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6239     return 14;
6240   }
6241 
6242   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6243                                llvm::Value *Address) const override;
6244 };
6245 } // end anonymous namespace
6246 
6247 bool
6248 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6249                                                 llvm::Value *Address) const {
6250   // This is calculated from the LLVM and GCC tables and verified
6251   // against gcc output.  AFAIK all ABIs use the same encoding.
6252 
6253   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6254 
6255   llvm::IntegerType *i8 = CGF.Int8Ty;
6256   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6257   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6258 
6259   // 0-31: the 8-byte general-purpose registers
6260   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6261 
6262   // 32-63: f0-31, the 4-byte floating-point registers
6263   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6264 
6265   //   Y   = 64
6266   //   PSR = 65
6267   //   WIM = 66
6268   //   TBR = 67
6269   //   PC  = 68
6270   //   NPC = 69
6271   //   FSR = 70
6272   //   CSR = 71
6273   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6274 
6275   // 72-87: d0-15, the 8-byte floating-point registers
6276   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6277 
6278   return false;
6279 }
6280 
6281 
6282 //===----------------------------------------------------------------------===//
6283 // XCore ABI Implementation
6284 //===----------------------------------------------------------------------===//
6285 
6286 namespace {
6287 
6288 /// A SmallStringEnc instance is used to build up the TypeString by passing
6289 /// it by reference between functions that append to it.
6290 typedef llvm::SmallString<128> SmallStringEnc;
6291 
6292 /// TypeStringCache caches the meta encodings of Types.
6293 ///
6294 /// The reason for caching TypeStrings is two fold:
6295 ///   1. To cache a type's encoding for later uses;
6296 ///   2. As a means to break recursive member type inclusion.
6297 ///
6298 /// A cache Entry can have a Status of:
6299 ///   NonRecursive:   The type encoding is not recursive;
6300 ///   Recursive:      The type encoding is recursive;
6301 ///   Incomplete:     An incomplete TypeString;
6302 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6303 ///                   Recursive type encoding.
6304 ///
6305 /// A NonRecursive entry will have all of its sub-members expanded as fully
6306 /// as possible. Whilst it may contain types which are recursive, the type
6307 /// itself is not recursive and thus its encoding may be safely used whenever
6308 /// the type is encountered.
6309 ///
6310 /// A Recursive entry will have all of its sub-members expanded as fully as
6311 /// possible. The type itself is recursive and it may contain other types which
6312 /// are recursive. The Recursive encoding must not be used during the expansion
6313 /// of a recursive type's recursive branch. For simplicity the code uses
6314 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6315 ///
6316 /// An Incomplete entry is always a RecordType and only encodes its
6317 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6318 /// are placed into the cache during type expansion as a means to identify and
6319 /// handle recursive inclusion of types as sub-members. If there is recursion
6320 /// the entry becomes IncompleteUsed.
6321 ///
6322 /// During the expansion of a RecordType's members:
6323 ///
6324 ///   If the cache contains a NonRecursive encoding for the member type, the
6325 ///   cached encoding is used;
6326 ///
6327 ///   If the cache contains a Recursive encoding for the member type, the
6328 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6329 ///
6330 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6331 ///   cache to break potential recursive inclusion of itself as a sub-member;
6332 ///
6333 ///   Once a member RecordType has been expanded, its temporary incomplete
6334 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6335 ///   it is swapped back in;
6336 ///
6337 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6338 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6339 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6340 ///
6341 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6342 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6343 ///   Else the member is part of a recursive type and thus the recursion has
6344 ///   been exited too soon for the encoding to be correct for the member.
6345 ///
6346 class TypeStringCache {
6347   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6348   struct Entry {
6349     std::string Str;     // The encoded TypeString for the type.
6350     enum Status State;   // Information about the encoding in 'Str'.
6351     std::string Swapped; // A temporary place holder for a Recursive encoding
6352                          // during the expansion of RecordType's members.
6353   };
6354   std::map<const IdentifierInfo *, struct Entry> Map;
6355   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6356   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6357 public:
6358   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6359   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6360   bool removeIncomplete(const IdentifierInfo *ID);
6361   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6362                      bool IsRecursive);
6363   StringRef lookupStr(const IdentifierInfo *ID);
6364 };
6365 
6366 /// TypeString encodings for enum & union fields must be order.
6367 /// FieldEncoding is a helper for this ordering process.
6368 class FieldEncoding {
6369   bool HasName;
6370   std::string Enc;
6371 public:
6372   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6373   StringRef str() {return Enc.c_str();};
6374   bool operator<(const FieldEncoding &rhs) const {
6375     if (HasName != rhs.HasName) return HasName;
6376     return Enc < rhs.Enc;
6377   }
6378 };
6379 
6380 class XCoreABIInfo : public DefaultABIInfo {
6381 public:
6382   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6383   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6384                          CodeGenFunction &CGF) const override;
6385 };
6386 
6387 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6388   mutable TypeStringCache TSC;
6389 public:
6390   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6391     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6392   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6393                     CodeGen::CodeGenModule &M) const override;
6394 };
6395 
6396 } // End anonymous namespace.
6397 
6398 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6399                                      CodeGenFunction &CGF) const {
6400   CGBuilderTy &Builder = CGF.Builder;
6401 
6402   // Get the VAList.
6403   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6404                                                        CGF.Int8PtrPtrTy);
6405   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6406 
6407   // Handle the argument.
6408   ABIArgInfo AI = classifyArgumentType(Ty);
6409   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6410   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6411     AI.setCoerceToType(ArgTy);
6412   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6413   llvm::Value *Val;
6414   uint64_t ArgSize = 0;
6415   switch (AI.getKind()) {
6416   case ABIArgInfo::Expand:
6417   case ABIArgInfo::InAlloca:
6418     llvm_unreachable("Unsupported ABI kind for va_arg");
6419   case ABIArgInfo::Ignore:
6420     Val = llvm::UndefValue::get(ArgPtrTy);
6421     ArgSize = 0;
6422     break;
6423   case ABIArgInfo::Extend:
6424   case ABIArgInfo::Direct:
6425     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6426     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6427     if (ArgSize < 4)
6428       ArgSize = 4;
6429     break;
6430   case ABIArgInfo::Indirect:
6431     llvm::Value *ArgAddr;
6432     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6433     ArgAddr = Builder.CreateLoad(ArgAddr);
6434     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6435     ArgSize = 4;
6436     break;
6437   }
6438 
6439   // Increment the VAList.
6440   if (ArgSize) {
6441     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6442     Builder.CreateStore(APN, VAListAddrAsBPP);
6443   }
6444   return Val;
6445 }
6446 
6447 /// During the expansion of a RecordType, an incomplete TypeString is placed
6448 /// into the cache as a means to identify and break recursion.
6449 /// If there is a Recursive encoding in the cache, it is swapped out and will
6450 /// be reinserted by removeIncomplete().
6451 /// All other types of encoding should have been used rather than arriving here.
6452 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6453                                     std::string StubEnc) {
6454   if (!ID)
6455     return;
6456   Entry &E = Map[ID];
6457   assert( (E.Str.empty() || E.State == Recursive) &&
6458          "Incorrectly use of addIncomplete");
6459   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6460   E.Swapped.swap(E.Str); // swap out the Recursive
6461   E.Str.swap(StubEnc);
6462   E.State = Incomplete;
6463   ++IncompleteCount;
6464 }
6465 
6466 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6467 /// must be removed from the cache.
6468 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6469 /// Returns true if the RecordType was defined recursively.
6470 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6471   if (!ID)
6472     return false;
6473   auto I = Map.find(ID);
6474   assert(I != Map.end() && "Entry not present");
6475   Entry &E = I->second;
6476   assert( (E.State == Incomplete ||
6477            E.State == IncompleteUsed) &&
6478          "Entry must be an incomplete type");
6479   bool IsRecursive = false;
6480   if (E.State == IncompleteUsed) {
6481     // We made use of our Incomplete encoding, thus we are recursive.
6482     IsRecursive = true;
6483     --IncompleteUsedCount;
6484   }
6485   if (E.Swapped.empty())
6486     Map.erase(I);
6487   else {
6488     // Swap the Recursive back.
6489     E.Swapped.swap(E.Str);
6490     E.Swapped.clear();
6491     E.State = Recursive;
6492   }
6493   --IncompleteCount;
6494   return IsRecursive;
6495 }
6496 
6497 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6498 /// Recursive (viz: all sub-members were expanded as fully as possible).
6499 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6500                                     bool IsRecursive) {
6501   if (!ID || IncompleteUsedCount)
6502     return; // No key or it is is an incomplete sub-type so don't add.
6503   Entry &E = Map[ID];
6504   if (IsRecursive && !E.Str.empty()) {
6505     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6506            "This is not the same Recursive entry");
6507     // The parent container was not recursive after all, so we could have used
6508     // this Recursive sub-member entry after all, but we assumed the worse when
6509     // we started viz: IncompleteCount!=0.
6510     return;
6511   }
6512   assert(E.Str.empty() && "Entry already present");
6513   E.Str = Str.str();
6514   E.State = IsRecursive? Recursive : NonRecursive;
6515 }
6516 
6517 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6518 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6519 /// encoding is Recursive, return an empty StringRef.
6520 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6521   if (!ID)
6522     return StringRef();   // We have no key.
6523   auto I = Map.find(ID);
6524   if (I == Map.end())
6525     return StringRef();   // We have no encoding.
6526   Entry &E = I->second;
6527   if (E.State == Recursive && IncompleteCount)
6528     return StringRef();   // We don't use Recursive encodings for member types.
6529 
6530   if (E.State == Incomplete) {
6531     // The incomplete type is being used to break out of recursion.
6532     E.State = IncompleteUsed;
6533     ++IncompleteUsedCount;
6534   }
6535   return E.Str.c_str();
6536 }
6537 
6538 /// The XCore ABI includes a type information section that communicates symbol
6539 /// type information to the linker. The linker uses this information to verify
6540 /// safety/correctness of things such as array bound and pointers et al.
6541 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6542 /// This type information (TypeString) is emitted into meta data for all global
6543 /// symbols: definitions, declarations, functions & variables.
6544 ///
6545 /// The TypeString carries type, qualifier, name, size & value details.
6546 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6547 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6548 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6549 ///
6550 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6551                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6552 
6553 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6554 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6555                                           CodeGen::CodeGenModule &CGM) const {
6556   SmallStringEnc Enc;
6557   if (getTypeString(Enc, D, CGM, TSC)) {
6558     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6559     llvm::SmallVector<llvm::Value *, 2> MDVals;
6560     MDVals.push_back(GV);
6561     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6562     llvm::NamedMDNode *MD =
6563       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6564     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6565   }
6566 }
6567 
6568 static bool appendType(SmallStringEnc &Enc, QualType QType,
6569                        const CodeGen::CodeGenModule &CGM,
6570                        TypeStringCache &TSC);
6571 
6572 /// Helper function for appendRecordType().
6573 /// Builds a SmallVector containing the encoded field types in declaration order.
6574 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6575                              const RecordDecl *RD,
6576                              const CodeGen::CodeGenModule &CGM,
6577                              TypeStringCache &TSC) {
6578   for (const auto *Field : RD->fields()) {
6579     SmallStringEnc Enc;
6580     Enc += "m(";
6581     Enc += Field->getName();
6582     Enc += "){";
6583     if (Field->isBitField()) {
6584       Enc += "b(";
6585       llvm::raw_svector_ostream OS(Enc);
6586       OS.resync();
6587       OS << Field->getBitWidthValue(CGM.getContext());
6588       OS.flush();
6589       Enc += ':';
6590     }
6591     if (!appendType(Enc, Field->getType(), CGM, TSC))
6592       return false;
6593     if (Field->isBitField())
6594       Enc += ')';
6595     Enc += '}';
6596     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6597   }
6598   return true;
6599 }
6600 
6601 /// Appends structure and union types to Enc and adds encoding to cache.
6602 /// Recursively calls appendType (via extractFieldType) for each field.
6603 /// Union types have their fields ordered according to the ABI.
6604 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6605                              const CodeGen::CodeGenModule &CGM,
6606                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6607   // Append the cached TypeString if we have one.
6608   StringRef TypeString = TSC.lookupStr(ID);
6609   if (!TypeString.empty()) {
6610     Enc += TypeString;
6611     return true;
6612   }
6613 
6614   // Start to emit an incomplete TypeString.
6615   size_t Start = Enc.size();
6616   Enc += (RT->isUnionType()? 'u' : 's');
6617   Enc += '(';
6618   if (ID)
6619     Enc += ID->getName();
6620   Enc += "){";
6621 
6622   // We collect all encoded fields and order as necessary.
6623   bool IsRecursive = false;
6624   const RecordDecl *RD = RT->getDecl()->getDefinition();
6625   if (RD && !RD->field_empty()) {
6626     // An incomplete TypeString stub is placed in the cache for this RecordType
6627     // so that recursive calls to this RecordType will use it whilst building a
6628     // complete TypeString for this RecordType.
6629     SmallVector<FieldEncoding, 16> FE;
6630     std::string StubEnc(Enc.substr(Start).str());
6631     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6632     TSC.addIncomplete(ID, std::move(StubEnc));
6633     if (!extractFieldType(FE, RD, CGM, TSC)) {
6634       (void) TSC.removeIncomplete(ID);
6635       return false;
6636     }
6637     IsRecursive = TSC.removeIncomplete(ID);
6638     // The ABI requires unions to be sorted but not structures.
6639     // See FieldEncoding::operator< for sort algorithm.
6640     if (RT->isUnionType())
6641       std::sort(FE.begin(), FE.end());
6642     // We can now complete the TypeString.
6643     unsigned E = FE.size();
6644     for (unsigned I = 0; I != E; ++I) {
6645       if (I)
6646         Enc += ',';
6647       Enc += FE[I].str();
6648     }
6649   }
6650   Enc += '}';
6651   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6652   return true;
6653 }
6654 
6655 /// Appends enum types to Enc and adds the encoding to the cache.
6656 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6657                            TypeStringCache &TSC,
6658                            const IdentifierInfo *ID) {
6659   // Append the cached TypeString if we have one.
6660   StringRef TypeString = TSC.lookupStr(ID);
6661   if (!TypeString.empty()) {
6662     Enc += TypeString;
6663     return true;
6664   }
6665 
6666   size_t Start = Enc.size();
6667   Enc += "e(";
6668   if (ID)
6669     Enc += ID->getName();
6670   Enc += "){";
6671 
6672   // We collect all encoded enumerations and order them alphanumerically.
6673   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6674     SmallVector<FieldEncoding, 16> FE;
6675     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6676          ++I) {
6677       SmallStringEnc EnumEnc;
6678       EnumEnc += "m(";
6679       EnumEnc += I->getName();
6680       EnumEnc += "){";
6681       I->getInitVal().toString(EnumEnc);
6682       EnumEnc += '}';
6683       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6684     }
6685     std::sort(FE.begin(), FE.end());
6686     unsigned E = FE.size();
6687     for (unsigned I = 0; I != E; ++I) {
6688       if (I)
6689         Enc += ',';
6690       Enc += FE[I].str();
6691     }
6692   }
6693   Enc += '}';
6694   TSC.addIfComplete(ID, Enc.substr(Start), false);
6695   return true;
6696 }
6697 
6698 /// Appends type's qualifier to Enc.
6699 /// This is done prior to appending the type's encoding.
6700 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6701   // Qualifiers are emitted in alphabetical order.
6702   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6703   int Lookup = 0;
6704   if (QT.isConstQualified())
6705     Lookup += 1<<0;
6706   if (QT.isRestrictQualified())
6707     Lookup += 1<<1;
6708   if (QT.isVolatileQualified())
6709     Lookup += 1<<2;
6710   Enc += Table[Lookup];
6711 }
6712 
6713 /// Appends built-in types to Enc.
6714 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6715   const char *EncType;
6716   switch (BT->getKind()) {
6717     case BuiltinType::Void:
6718       EncType = "0";
6719       break;
6720     case BuiltinType::Bool:
6721       EncType = "b";
6722       break;
6723     case BuiltinType::Char_U:
6724       EncType = "uc";
6725       break;
6726     case BuiltinType::UChar:
6727       EncType = "uc";
6728       break;
6729     case BuiltinType::SChar:
6730       EncType = "sc";
6731       break;
6732     case BuiltinType::UShort:
6733       EncType = "us";
6734       break;
6735     case BuiltinType::Short:
6736       EncType = "ss";
6737       break;
6738     case BuiltinType::UInt:
6739       EncType = "ui";
6740       break;
6741     case BuiltinType::Int:
6742       EncType = "si";
6743       break;
6744     case BuiltinType::ULong:
6745       EncType = "ul";
6746       break;
6747     case BuiltinType::Long:
6748       EncType = "sl";
6749       break;
6750     case BuiltinType::ULongLong:
6751       EncType = "ull";
6752       break;
6753     case BuiltinType::LongLong:
6754       EncType = "sll";
6755       break;
6756     case BuiltinType::Float:
6757       EncType = "ft";
6758       break;
6759     case BuiltinType::Double:
6760       EncType = "d";
6761       break;
6762     case BuiltinType::LongDouble:
6763       EncType = "ld";
6764       break;
6765     default:
6766       return false;
6767   }
6768   Enc += EncType;
6769   return true;
6770 }
6771 
6772 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6773 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6774                               const CodeGen::CodeGenModule &CGM,
6775                               TypeStringCache &TSC) {
6776   Enc += "p(";
6777   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6778     return false;
6779   Enc += ')';
6780   return true;
6781 }
6782 
6783 /// Appends array encoding to Enc before calling appendType for the element.
6784 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6785                             const ArrayType *AT,
6786                             const CodeGen::CodeGenModule &CGM,
6787                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6788   if (AT->getSizeModifier() != ArrayType::Normal)
6789     return false;
6790   Enc += "a(";
6791   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6792     CAT->getSize().toStringUnsigned(Enc);
6793   else
6794     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6795   Enc += ':';
6796   // The Qualifiers should be attached to the type rather than the array.
6797   appendQualifier(Enc, QT);
6798   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6799     return false;
6800   Enc += ')';
6801   return true;
6802 }
6803 
6804 /// Appends a function encoding to Enc, calling appendType for the return type
6805 /// and the arguments.
6806 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6807                              const CodeGen::CodeGenModule &CGM,
6808                              TypeStringCache &TSC) {
6809   Enc += "f{";
6810   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6811     return false;
6812   Enc += "}(";
6813   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6814     // N.B. we are only interested in the adjusted param types.
6815     auto I = FPT->param_type_begin();
6816     auto E = FPT->param_type_end();
6817     if (I != E) {
6818       do {
6819         if (!appendType(Enc, *I, CGM, TSC))
6820           return false;
6821         ++I;
6822         if (I != E)
6823           Enc += ',';
6824       } while (I != E);
6825       if (FPT->isVariadic())
6826         Enc += ",va";
6827     } else {
6828       if (FPT->isVariadic())
6829         Enc += "va";
6830       else
6831         Enc += '0';
6832     }
6833   }
6834   Enc += ')';
6835   return true;
6836 }
6837 
6838 /// Handles the type's qualifier before dispatching a call to handle specific
6839 /// type encodings.
6840 static bool appendType(SmallStringEnc &Enc, QualType QType,
6841                        const CodeGen::CodeGenModule &CGM,
6842                        TypeStringCache &TSC) {
6843 
6844   QualType QT = QType.getCanonicalType();
6845 
6846   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6847     // The Qualifiers should be attached to the type rather than the array.
6848     // Thus we don't call appendQualifier() here.
6849     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6850 
6851   appendQualifier(Enc, QT);
6852 
6853   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6854     return appendBuiltinType(Enc, BT);
6855 
6856   if (const PointerType *PT = QT->getAs<PointerType>())
6857     return appendPointerType(Enc, PT, CGM, TSC);
6858 
6859   if (const EnumType *ET = QT->getAs<EnumType>())
6860     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6861 
6862   if (const RecordType *RT = QT->getAsStructureType())
6863     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6864 
6865   if (const RecordType *RT = QT->getAsUnionType())
6866     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6867 
6868   if (const FunctionType *FT = QT->getAs<FunctionType>())
6869     return appendFunctionType(Enc, FT, CGM, TSC);
6870 
6871   return false;
6872 }
6873 
6874 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6875                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6876   if (!D)
6877     return false;
6878 
6879   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6880     if (FD->getLanguageLinkage() != CLanguageLinkage)
6881       return false;
6882     return appendType(Enc, FD->getType(), CGM, TSC);
6883   }
6884 
6885   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6886     if (VD->getLanguageLinkage() != CLanguageLinkage)
6887       return false;
6888     QualType QT = VD->getType().getCanonicalType();
6889     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6890       // Global ArrayTypes are given a size of '*' if the size is unknown.
6891       // The Qualifiers should be attached to the type rather than the array.
6892       // Thus we don't call appendQualifier() here.
6893       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6894     }
6895     return appendType(Enc, QT, CGM, TSC);
6896   }
6897   return false;
6898 }
6899 
6900 
6901 //===----------------------------------------------------------------------===//
6902 // Driver code
6903 //===----------------------------------------------------------------------===//
6904 
6905 const llvm::Triple &CodeGenModule::getTriple() const {
6906   return getTarget().getTriple();
6907 }
6908 
6909 bool CodeGenModule::supportsCOMDAT() const {
6910   return !getTriple().isOSBinFormatMachO();
6911 }
6912 
6913 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6914   if (TheTargetCodeGenInfo)
6915     return *TheTargetCodeGenInfo;
6916 
6917   const llvm::Triple &Triple = getTarget().getTriple();
6918   switch (Triple.getArch()) {
6919   default:
6920     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6921 
6922   case llvm::Triple::le32:
6923     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6924   case llvm::Triple::mips:
6925   case llvm::Triple::mipsel:
6926     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6927 
6928   case llvm::Triple::mips64:
6929   case llvm::Triple::mips64el:
6930     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6931 
6932   case llvm::Triple::aarch64:
6933   case llvm::Triple::aarch64_be: {
6934     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6935     if (getTarget().getABI() == "darwinpcs")
6936       Kind = AArch64ABIInfo::DarwinPCS;
6937 
6938     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6939   }
6940 
6941   case llvm::Triple::arm:
6942   case llvm::Triple::armeb:
6943   case llvm::Triple::thumb:
6944   case llvm::Triple::thumbeb:
6945     {
6946       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6947       if (getTarget().getABI() == "apcs-gnu")
6948         Kind = ARMABIInfo::APCS;
6949       else if (CodeGenOpts.FloatABI == "hard" ||
6950                (CodeGenOpts.FloatABI != "soft" &&
6951                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6952         Kind = ARMABIInfo::AAPCS_VFP;
6953 
6954       switch (Triple.getOS()) {
6955         case llvm::Triple::NaCl:
6956           return *(TheTargetCodeGenInfo =
6957                    new NaClARMTargetCodeGenInfo(Types, Kind));
6958         default:
6959           return *(TheTargetCodeGenInfo =
6960                    new ARMTargetCodeGenInfo(Types, Kind));
6961       }
6962     }
6963 
6964   case llvm::Triple::ppc:
6965     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6966   case llvm::Triple::ppc64:
6967     if (Triple.isOSBinFormatELF()) {
6968       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
6969       if (getTarget().getABI() == "elfv2")
6970         Kind = PPC64_SVR4_ABIInfo::ELFv2;
6971 
6972       return *(TheTargetCodeGenInfo =
6973                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6974     } else
6975       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6976   case llvm::Triple::ppc64le: {
6977     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6978     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
6979     if (getTarget().getABI() == "elfv1")
6980       Kind = PPC64_SVR4_ABIInfo::ELFv1;
6981 
6982     return *(TheTargetCodeGenInfo =
6983              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6984   }
6985 
6986   case llvm::Triple::nvptx:
6987   case llvm::Triple::nvptx64:
6988     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
6989 
6990   case llvm::Triple::msp430:
6991     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
6992 
6993   case llvm::Triple::systemz:
6994     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
6995 
6996   case llvm::Triple::tce:
6997     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
6998 
6999   case llvm::Triple::x86: {
7000     bool IsDarwinVectorABI = Triple.isOSDarwin();
7001     bool IsSmallStructInRegABI =
7002         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7003     bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
7004 
7005     if (Triple.getOS() == llvm::Triple::Win32) {
7006       return *(TheTargetCodeGenInfo =
7007                new WinX86_32TargetCodeGenInfo(Types,
7008                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7009                                               IsWin32FloatStructABI,
7010                                               CodeGenOpts.NumRegisterParameters));
7011     } else {
7012       return *(TheTargetCodeGenInfo =
7013                new X86_32TargetCodeGenInfo(Types,
7014                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7015                                            IsWin32FloatStructABI,
7016                                            CodeGenOpts.NumRegisterParameters));
7017     }
7018   }
7019 
7020   case llvm::Triple::x86_64: {
7021     bool HasAVX = getTarget().getABI() == "avx";
7022 
7023     switch (Triple.getOS()) {
7024     case llvm::Triple::Win32:
7025       return *(TheTargetCodeGenInfo =
7026                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7027     case llvm::Triple::NaCl:
7028       return *(TheTargetCodeGenInfo =
7029                    new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
7030     default:
7031       return *(TheTargetCodeGenInfo =
7032                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7033     }
7034   }
7035   case llvm::Triple::hexagon:
7036     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7037   case llvm::Triple::sparcv9:
7038     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7039   case llvm::Triple::xcore:
7040     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7041   }
7042 }
7043