1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> // std::sort 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 // Helper for coercing an aggregate argument or return value into an integer 39 // array of the same size (including padding) and alignment. This alternate 40 // coercion happens only for the RenderScript ABI and can be removed after 41 // runtimes that rely on it are no longer supported. 42 // 43 // RenderScript assumes that the size of the argument / return value in the IR 44 // is the same as the size of the corresponding qualified type. This helper 45 // coerces the aggregate type into an array of the same size (including 46 // padding). This coercion is used in lieu of expansion of struct members or 47 // other canonical coercions that return a coerced-type of larger size. 48 // 49 // Ty - The argument / return value type 50 // Context - The associated ASTContext 51 // LLVMContext - The associated LLVMContext 52 static ABIArgInfo coerceToIntArray(QualType Ty, 53 ASTContext &Context, 54 llvm::LLVMContext &LLVMContext) { 55 // Alignment and Size are measured in bits. 56 const uint64_t Size = Context.getTypeSize(Ty); 57 const uint64_t Alignment = Context.getTypeAlign(Ty); 58 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 59 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 60 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 61 } 62 63 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 64 llvm::Value *Array, 65 llvm::Value *Value, 66 unsigned FirstIndex, 67 unsigned LastIndex) { 68 // Alternatively, we could emit this as a loop in the source. 69 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 70 llvm::Value *Cell = 71 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 72 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 73 } 74 } 75 76 static bool isAggregateTypeForABI(QualType T) { 77 return !CodeGenFunction::hasScalarEvaluationKind(T) || 78 T->isMemberFunctionPointerType(); 79 } 80 81 ABIArgInfo 82 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 83 llvm::Type *Padding) const { 84 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 85 ByRef, Realign, Padding); 86 } 87 88 ABIArgInfo 89 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 90 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 91 /*ByRef*/ false, Realign); 92 } 93 94 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 95 QualType Ty) const { 96 return Address::invalid(); 97 } 98 99 ABIInfo::~ABIInfo() {} 100 101 /// Does the given lowering require more than the given number of 102 /// registers when expanded? 103 /// 104 /// This is intended to be the basis of a reasonable basic implementation 105 /// of should{Pass,Return}IndirectlyForSwift. 106 /// 107 /// For most targets, a limit of four total registers is reasonable; this 108 /// limits the amount of code required in order to move around the value 109 /// in case it wasn't produced immediately prior to the call by the caller 110 /// (or wasn't produced in exactly the right registers) or isn't used 111 /// immediately within the callee. But some targets may need to further 112 /// limit the register count due to an inability to support that many 113 /// return registers. 114 static bool occupiesMoreThan(CodeGenTypes &cgt, 115 ArrayRef<llvm::Type*> scalarTypes, 116 unsigned maxAllRegisters) { 117 unsigned intCount = 0, fpCount = 0; 118 for (llvm::Type *type : scalarTypes) { 119 if (type->isPointerTy()) { 120 intCount++; 121 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 122 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 123 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 124 } else { 125 assert(type->isVectorTy() || type->isFloatingPointTy()); 126 fpCount++; 127 } 128 } 129 130 return (intCount + fpCount > maxAllRegisters); 131 } 132 133 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 134 llvm::Type *eltTy, 135 unsigned numElts) const { 136 // The default implementation of this assumes that the target guarantees 137 // 128-bit SIMD support but nothing more. 138 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 139 } 140 141 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 142 CGCXXABI &CXXABI) { 143 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 144 if (!RD) { 145 if (!RT->getDecl()->canPassInRegisters()) 146 return CGCXXABI::RAA_Indirect; 147 return CGCXXABI::RAA_Default; 148 } 149 return CXXABI.getRecordArgABI(RD); 150 } 151 152 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 153 CGCXXABI &CXXABI) { 154 const RecordType *RT = T->getAs<RecordType>(); 155 if (!RT) 156 return CGCXXABI::RAA_Default; 157 return getRecordArgABI(RT, CXXABI); 158 } 159 160 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 161 const ABIInfo &Info) { 162 QualType Ty = FI.getReturnType(); 163 164 if (const auto *RT = Ty->getAs<RecordType>()) 165 if (!isa<CXXRecordDecl>(RT->getDecl()) && 166 !RT->getDecl()->canPassInRegisters()) { 167 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 168 return true; 169 } 170 171 return CXXABI.classifyReturnType(FI); 172 } 173 174 /// Pass transparent unions as if they were the type of the first element. Sema 175 /// should ensure that all elements of the union have the same "machine type". 176 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 177 if (const RecordType *UT = Ty->getAsUnionType()) { 178 const RecordDecl *UD = UT->getDecl(); 179 if (UD->hasAttr<TransparentUnionAttr>()) { 180 assert(!UD->field_empty() && "sema created an empty transparent union"); 181 return UD->field_begin()->getType(); 182 } 183 } 184 return Ty; 185 } 186 187 CGCXXABI &ABIInfo::getCXXABI() const { 188 return CGT.getCXXABI(); 189 } 190 191 ASTContext &ABIInfo::getContext() const { 192 return CGT.getContext(); 193 } 194 195 llvm::LLVMContext &ABIInfo::getVMContext() const { 196 return CGT.getLLVMContext(); 197 } 198 199 const llvm::DataLayout &ABIInfo::getDataLayout() const { 200 return CGT.getDataLayout(); 201 } 202 203 const TargetInfo &ABIInfo::getTarget() const { 204 return CGT.getTarget(); 205 } 206 207 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 208 return CGT.getCodeGenOpts(); 209 } 210 211 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 212 213 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 214 return false; 215 } 216 217 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 218 uint64_t Members) const { 219 return false; 220 } 221 222 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 223 raw_ostream &OS = llvm::errs(); 224 OS << "(ABIArgInfo Kind="; 225 switch (TheKind) { 226 case Direct: 227 OS << "Direct Type="; 228 if (llvm::Type *Ty = getCoerceToType()) 229 Ty->print(OS); 230 else 231 OS << "null"; 232 break; 233 case Extend: 234 OS << "Extend"; 235 break; 236 case Ignore: 237 OS << "Ignore"; 238 break; 239 case InAlloca: 240 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 241 break; 242 case Indirect: 243 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 244 << " ByVal=" << getIndirectByVal() 245 << " Realign=" << getIndirectRealign(); 246 break; 247 case Expand: 248 OS << "Expand"; 249 break; 250 case CoerceAndExpand: 251 OS << "CoerceAndExpand Type="; 252 getCoerceAndExpandType()->print(OS); 253 break; 254 } 255 OS << ")\n"; 256 } 257 258 // Dynamically round a pointer up to a multiple of the given alignment. 259 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 260 llvm::Value *Ptr, 261 CharUnits Align) { 262 llvm::Value *PtrAsInt = Ptr; 263 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 264 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 265 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 267 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 268 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 269 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 270 Ptr->getType(), 271 Ptr->getName() + ".aligned"); 272 return PtrAsInt; 273 } 274 275 /// Emit va_arg for a platform using the common void* representation, 276 /// where arguments are simply emitted in an array of slots on the stack. 277 /// 278 /// This version implements the core direct-value passing rules. 279 /// 280 /// \param SlotSize - The size and alignment of a stack slot. 281 /// Each argument will be allocated to a multiple of this number of 282 /// slots, and all the slots will be aligned to this value. 283 /// \param AllowHigherAlign - The slot alignment is not a cap; 284 /// an argument type with an alignment greater than the slot size 285 /// will be emitted on a higher-alignment address, potentially 286 /// leaving one or more empty slots behind as padding. If this 287 /// is false, the returned address might be less-aligned than 288 /// DirectAlign. 289 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 290 Address VAListAddr, 291 llvm::Type *DirectTy, 292 CharUnits DirectSize, 293 CharUnits DirectAlign, 294 CharUnits SlotSize, 295 bool AllowHigherAlign) { 296 // Cast the element type to i8* if necessary. Some platforms define 297 // va_list as a struct containing an i8* instead of just an i8*. 298 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 299 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 300 301 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 302 303 // If the CC aligns values higher than the slot size, do so if needed. 304 Address Addr = Address::invalid(); 305 if (AllowHigherAlign && DirectAlign > SlotSize) { 306 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 307 DirectAlign); 308 } else { 309 Addr = Address(Ptr, SlotSize); 310 } 311 312 // Advance the pointer past the argument, then store that back. 313 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 314 Address NextPtr = 315 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 316 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 // Try to preserve the source's name to make IR more readable. 455 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 456 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 457 } 458 459 llvm::Constant * 460 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 461 LangAS SrcAddr, LangAS DestAddr, 462 llvm::Type *DestTy) const { 463 // Since target may map different address spaces in AST to the same address 464 // space, an address space conversion may end up as a bitcast. 465 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 466 } 467 468 llvm::SyncScope::ID 469 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 470 SyncScope Scope, 471 llvm::AtomicOrdering Ordering, 472 llvm::LLVMContext &Ctx) const { 473 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 474 } 475 476 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 477 478 /// isEmptyField - Return true iff a the field is "empty", that is it 479 /// is an unnamed bit-field or an (array of) empty record(s). 480 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 481 bool AllowArrays) { 482 if (FD->isUnnamedBitfield()) 483 return true; 484 485 QualType FT = FD->getType(); 486 487 // Constant arrays of empty records count as empty, strip them off. 488 // Constant arrays of zero length always count as empty. 489 if (AllowArrays) 490 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 491 if (AT->getSize() == 0) 492 return true; 493 FT = AT->getElementType(); 494 } 495 496 const RecordType *RT = FT->getAs<RecordType>(); 497 if (!RT) 498 return false; 499 500 // C++ record fields are never empty, at least in the Itanium ABI. 501 // 502 // FIXME: We should use a predicate for whether this behavior is true in the 503 // current ABI. 504 if (isa<CXXRecordDecl>(RT->getDecl())) 505 return false; 506 507 return isEmptyRecord(Context, FT, AllowArrays); 508 } 509 510 /// isEmptyRecord - Return true iff a structure contains only empty 511 /// fields. Note that a structure with a flexible array member is not 512 /// considered empty. 513 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 514 const RecordType *RT = T->getAs<RecordType>(); 515 if (!RT) 516 return false; 517 const RecordDecl *RD = RT->getDecl(); 518 if (RD->hasFlexibleArrayMember()) 519 return false; 520 521 // If this is a C++ record, check the bases first. 522 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 523 for (const auto &I : CXXRD->bases()) 524 if (!isEmptyRecord(Context, I.getType(), true)) 525 return false; 526 527 for (const auto *I : RD->fields()) 528 if (!isEmptyField(Context, I, AllowArrays)) 529 return false; 530 return true; 531 } 532 533 /// isSingleElementStruct - Determine if a structure is a "single 534 /// element struct", i.e. it has exactly one non-empty field or 535 /// exactly one field which is itself a single element 536 /// struct. Structures with flexible array members are never 537 /// considered single element structs. 538 /// 539 /// \return The field declaration for the single non-empty field, if 540 /// it exists. 541 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 542 const RecordType *RT = T->getAs<RecordType>(); 543 if (!RT) 544 return nullptr; 545 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return nullptr; 549 550 const Type *Found = nullptr; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 554 for (const auto &I : CXXRD->bases()) { 555 // Ignore empty records. 556 if (isEmptyRecord(Context, I.getType(), true)) 557 continue; 558 559 // If we already found an element then this isn't a single-element struct. 560 if (Found) 561 return nullptr; 562 563 // If this is non-empty and not a single element struct, the composite 564 // cannot be a single element struct. 565 Found = isSingleElementStruct(I.getType(), Context); 566 if (!Found) 567 return nullptr; 568 } 569 } 570 571 // Check for single element. 572 for (const auto *FD : RD->fields()) { 573 QualType FT = FD->getType(); 574 575 // Ignore empty fields. 576 if (isEmptyField(Context, FD, true)) 577 continue; 578 579 // If we already found an element then this isn't a single-element 580 // struct. 581 if (Found) 582 return nullptr; 583 584 // Treat single element arrays as the element. 585 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 586 if (AT->getSize().getZExtValue() != 1) 587 break; 588 FT = AT->getElementType(); 589 } 590 591 if (!isAggregateTypeForABI(FT)) { 592 Found = FT.getTypePtr(); 593 } else { 594 Found = isSingleElementStruct(FT, Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // We don't consider a struct a single-element struct if it has 601 // padding beyond the element type. 602 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 603 return nullptr; 604 605 return Found; 606 } 607 608 namespace { 609 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 610 const ABIArgInfo &AI) { 611 // This default implementation defers to the llvm backend's va_arg 612 // instruction. It can handle only passing arguments directly 613 // (typically only handled in the backend for primitive types), or 614 // aggregates passed indirectly by pointer (NOTE: if the "byval" 615 // flag has ABI impact in the callee, this implementation cannot 616 // work.) 617 618 // Only a few cases are covered here at the moment -- those needed 619 // by the default abi. 620 llvm::Value *Val; 621 622 if (AI.isIndirect()) { 623 assert(!AI.getPaddingType() && 624 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 625 assert( 626 !AI.getIndirectRealign() && 627 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 628 629 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 630 CharUnits TyAlignForABI = TyInfo.second; 631 632 llvm::Type *BaseTy = 633 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 634 llvm::Value *Addr = 635 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 636 return Address(Addr, TyAlignForABI); 637 } else { 638 assert((AI.isDirect() || AI.isExtend()) && 639 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 640 641 assert(!AI.getInReg() && 642 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getPaddingType() && 644 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 645 assert(!AI.getDirectOffset() && 646 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 647 assert(!AI.getCoerceToType() && 648 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 649 650 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 651 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 652 CGF.Builder.CreateStore(Val, Temp); 653 return Temp; 654 } 655 } 656 657 /// DefaultABIInfo - The default implementation for ABI specific 658 /// details. This implementation provides information which results in 659 /// self-consistent and sensible LLVM IR generation, but does not 660 /// conform to any particular ABI. 661 class DefaultABIInfo : public ABIInfo { 662 public: 663 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 664 665 ABIArgInfo classifyReturnType(QualType RetTy) const; 666 ABIArgInfo classifyArgumentType(QualType RetTy) const; 667 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &I : FI.arguments()) 672 I.info = classifyArgumentType(I.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override { 677 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 678 } 679 }; 680 681 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 682 public: 683 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 684 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 685 }; 686 687 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 688 Ty = useFirstFieldIfTransparentUnion(Ty); 689 690 if (isAggregateTypeForABI(Ty)) { 691 // Records with non-trivial destructors/copy-constructors should not be 692 // passed by value. 693 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 694 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 695 696 return getNaturalAlignIndirect(Ty); 697 } 698 699 // Treat an enum type as its underlying type. 700 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 701 Ty = EnumTy->getDecl()->getIntegerType(); 702 703 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 704 : ABIArgInfo::getDirect()); 705 } 706 707 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 708 if (RetTy->isVoidType()) 709 return ABIArgInfo::getIgnore(); 710 711 if (isAggregateTypeForABI(RetTy)) 712 return getNaturalAlignIndirect(RetTy); 713 714 // Treat an enum type as its underlying type. 715 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 716 RetTy = EnumTy->getDecl()->getIntegerType(); 717 718 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 719 : ABIArgInfo::getDirect()); 720 } 721 722 //===----------------------------------------------------------------------===// 723 // WebAssembly ABI Implementation 724 // 725 // This is a very simple ABI that relies a lot on DefaultABIInfo. 726 //===----------------------------------------------------------------------===// 727 728 class WebAssemblyABIInfo final : public SwiftABIInfo { 729 DefaultABIInfo defaultInfo; 730 731 public: 732 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 733 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 734 735 private: 736 ABIArgInfo classifyReturnType(QualType RetTy) const; 737 ABIArgInfo classifyArgumentType(QualType Ty) const; 738 739 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 740 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 741 // overload them. 742 void computeInfo(CGFunctionInfo &FI) const override { 743 if (!getCXXABI().classifyReturnType(FI)) 744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 745 for (auto &Arg : FI.arguments()) 746 Arg.info = classifyArgumentType(Arg.type); 747 } 748 749 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 750 QualType Ty) const override; 751 752 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 753 bool asReturnValue) const override { 754 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 755 } 756 757 bool isSwiftErrorInRegister() const override { 758 return false; 759 } 760 }; 761 762 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 763 public: 764 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 765 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 766 767 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 768 CodeGen::CodeGenModule &CGM) const override { 769 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 770 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 771 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 772 llvm::Function *Fn = cast<llvm::Function>(GV); 773 llvm::AttrBuilder B; 774 B.addAttribute("wasm-import-module", Attr->getImportModule()); 775 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 776 } 777 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 778 llvm::Function *Fn = cast<llvm::Function>(GV); 779 llvm::AttrBuilder B; 780 B.addAttribute("wasm-import-name", Attr->getImportName()); 781 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 782 } 783 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 784 llvm::Function *Fn = cast<llvm::Function>(GV); 785 llvm::AttrBuilder B; 786 B.addAttribute("wasm-export-name", Attr->getExportName()); 787 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 788 } 789 } 790 791 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 792 llvm::Function *Fn = cast<llvm::Function>(GV); 793 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 794 Fn->addFnAttr("no-prototype"); 795 } 796 } 797 }; 798 799 /// Classify argument of given type \p Ty. 800 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 801 Ty = useFirstFieldIfTransparentUnion(Ty); 802 803 if (isAggregateTypeForABI(Ty)) { 804 // Records with non-trivial destructors/copy-constructors should not be 805 // passed by value. 806 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 807 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 808 // Ignore empty structs/unions. 809 if (isEmptyRecord(getContext(), Ty, true)) 810 return ABIArgInfo::getIgnore(); 811 // Lower single-element structs to just pass a regular value. TODO: We 812 // could do reasonable-size multiple-element structs too, using getExpand(), 813 // though watch out for things like bitfields. 814 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 815 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 816 } 817 818 // Otherwise just do the default thing. 819 return defaultInfo.classifyArgumentType(Ty); 820 } 821 822 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 823 if (isAggregateTypeForABI(RetTy)) { 824 // Records with non-trivial destructors/copy-constructors should not be 825 // returned by value. 826 if (!getRecordArgABI(RetTy, getCXXABI())) { 827 // Ignore empty structs/unions. 828 if (isEmptyRecord(getContext(), RetTy, true)) 829 return ABIArgInfo::getIgnore(); 830 // Lower single-element structs to just return a regular value. TODO: We 831 // could do reasonable-size multiple-element structs too, using 832 // ABIArgInfo::getDirect(). 833 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 834 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 835 } 836 } 837 838 // Otherwise just do the default thing. 839 return defaultInfo.classifyReturnType(RetTy); 840 } 841 842 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 843 QualType Ty) const { 844 bool IsIndirect = isAggregateTypeForABI(Ty) && 845 !isEmptyRecord(getContext(), Ty, true) && 846 !isSingleElementStruct(Ty, getContext()); 847 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 848 getContext().getTypeInfoInChars(Ty), 849 CharUnits::fromQuantity(4), 850 /*AllowHigherAlign=*/true); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // le32/PNaCl bitcode ABI Implementation 855 // 856 // This is a simplified version of the x86_32 ABI. Arguments and return values 857 // are always passed on the stack. 858 //===----------------------------------------------------------------------===// 859 860 class PNaClABIInfo : public ABIInfo { 861 public: 862 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 863 864 ABIArgInfo classifyReturnType(QualType RetTy) const; 865 ABIArgInfo classifyArgumentType(QualType RetTy) const; 866 867 void computeInfo(CGFunctionInfo &FI) const override; 868 Address EmitVAArg(CodeGenFunction &CGF, 869 Address VAListAddr, QualType Ty) const override; 870 }; 871 872 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 873 public: 874 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 875 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 876 }; 877 878 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 879 if (!getCXXABI().classifyReturnType(FI)) 880 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 881 882 for (auto &I : FI.arguments()) 883 I.info = classifyArgumentType(I.type); 884 } 885 886 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 887 QualType Ty) const { 888 // The PNaCL ABI is a bit odd, in that varargs don't use normal 889 // function classification. Structs get passed directly for varargs 890 // functions, through a rewriting transform in 891 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 892 // this target to actually support a va_arg instructions with an 893 // aggregate type, unlike other targets. 894 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 895 } 896 897 /// Classify argument of given type \p Ty. 898 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 899 if (isAggregateTypeForABI(Ty)) { 900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 901 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 902 return getNaturalAlignIndirect(Ty); 903 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 904 // Treat an enum type as its underlying type. 905 Ty = EnumTy->getDecl()->getIntegerType(); 906 } else if (Ty->isFloatingType()) { 907 // Floating-point types don't go inreg. 908 return ABIArgInfo::getDirect(); 909 } 910 911 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 912 : ABIArgInfo::getDirect()); 913 } 914 915 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 916 if (RetTy->isVoidType()) 917 return ABIArgInfo::getIgnore(); 918 919 // In the PNaCl ABI we always return records/structures on the stack. 920 if (isAggregateTypeForABI(RetTy)) 921 return getNaturalAlignIndirect(RetTy); 922 923 // Treat an enum type as its underlying type. 924 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 925 RetTy = EnumTy->getDecl()->getIntegerType(); 926 927 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 928 : ABIArgInfo::getDirect()); 929 } 930 931 /// IsX86_MMXType - Return true if this is an MMX type. 932 bool IsX86_MMXType(llvm::Type *IRType) { 933 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 934 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 935 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 936 IRType->getScalarSizeInBits() != 64; 937 } 938 939 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 940 StringRef Constraint, 941 llvm::Type* Ty) { 942 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 943 .Cases("y", "&y", "^Ym", true) 944 .Default(false); 945 if (IsMMXCons && Ty->isVectorTy()) { 946 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 947 // Invalid MMX constraint 948 return nullptr; 949 } 950 951 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 952 } 953 954 // No operation needed 955 return Ty; 956 } 957 958 /// Returns true if this type can be passed in SSE registers with the 959 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 960 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 961 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 962 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 963 if (BT->getKind() == BuiltinType::LongDouble) { 964 if (&Context.getTargetInfo().getLongDoubleFormat() == 965 &llvm::APFloat::x87DoubleExtended()) 966 return false; 967 } 968 return true; 969 } 970 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 971 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 972 // registers specially. 973 unsigned VecSize = Context.getTypeSize(VT); 974 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 975 return true; 976 } 977 return false; 978 } 979 980 /// Returns true if this aggregate is small enough to be passed in SSE registers 981 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 982 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 983 return NumMembers <= 4; 984 } 985 986 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 987 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 988 auto AI = ABIArgInfo::getDirect(T); 989 AI.setInReg(true); 990 AI.setCanBeFlattened(false); 991 return AI; 992 } 993 994 //===----------------------------------------------------------------------===// 995 // X86-32 ABI Implementation 996 //===----------------------------------------------------------------------===// 997 998 /// Similar to llvm::CCState, but for Clang. 999 struct CCState { 1000 CCState(CGFunctionInfo &FI) 1001 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1002 1003 llvm::SmallBitVector IsPreassigned; 1004 unsigned CC = CallingConv::CC_C; 1005 unsigned FreeRegs = 0; 1006 unsigned FreeSSERegs = 0; 1007 }; 1008 1009 enum { 1010 // Vectorcall only allows the first 6 parameters to be passed in registers. 1011 VectorcallMaxParamNumAsReg = 6 1012 }; 1013 1014 /// X86_32ABIInfo - The X86-32 ABI information. 1015 class X86_32ABIInfo : public SwiftABIInfo { 1016 enum Class { 1017 Integer, 1018 Float 1019 }; 1020 1021 static const unsigned MinABIStackAlignInBytes = 4; 1022 1023 bool IsDarwinVectorABI; 1024 bool IsRetSmallStructInRegABI; 1025 bool IsWin32StructABI; 1026 bool IsSoftFloatABI; 1027 bool IsMCUABI; 1028 unsigned DefaultNumRegisterParameters; 1029 1030 static bool isRegisterSize(unsigned Size) { 1031 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1032 } 1033 1034 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1035 // FIXME: Assumes vectorcall is in use. 1036 return isX86VectorTypeForVectorCall(getContext(), Ty); 1037 } 1038 1039 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1040 uint64_t NumMembers) const override { 1041 // FIXME: Assumes vectorcall is in use. 1042 return isX86VectorCallAggregateSmallEnough(NumMembers); 1043 } 1044 1045 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1046 1047 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1048 /// such that the argument will be passed in memory. 1049 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1050 1051 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1052 1053 /// Return the alignment to use for the given type on the stack. 1054 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1055 1056 Class classify(QualType Ty) const; 1057 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1058 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1059 1060 /// Updates the number of available free registers, returns 1061 /// true if any registers were allocated. 1062 bool updateFreeRegs(QualType Ty, CCState &State) const; 1063 1064 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1065 bool &NeedsPadding) const; 1066 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1067 1068 bool canExpandIndirectArgument(QualType Ty) const; 1069 1070 /// Rewrite the function info so that all memory arguments use 1071 /// inalloca. 1072 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1073 1074 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1075 CharUnits &StackOffset, ABIArgInfo &Info, 1076 QualType Type) const; 1077 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1078 1079 public: 1080 1081 void computeInfo(CGFunctionInfo &FI) const override; 1082 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1083 QualType Ty) const override; 1084 1085 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1086 bool RetSmallStructInRegABI, bool Win32StructABI, 1087 unsigned NumRegisterParameters, bool SoftFloatABI) 1088 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1089 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1090 IsWin32StructABI(Win32StructABI), 1091 IsSoftFloatABI(SoftFloatABI), 1092 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1093 DefaultNumRegisterParameters(NumRegisterParameters) {} 1094 1095 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1096 bool asReturnValue) const override { 1097 // LLVM's x86-32 lowering currently only assigns up to three 1098 // integer registers and three fp registers. Oddly, it'll use up to 1099 // four vector registers for vectors, but those can overlap with the 1100 // scalar registers. 1101 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1102 } 1103 1104 bool isSwiftErrorInRegister() const override { 1105 // x86-32 lowering does not support passing swifterror in a register. 1106 return false; 1107 } 1108 }; 1109 1110 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1111 public: 1112 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1113 bool RetSmallStructInRegABI, bool Win32StructABI, 1114 unsigned NumRegisterParameters, bool SoftFloatABI) 1115 : TargetCodeGenInfo(new X86_32ABIInfo( 1116 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1117 NumRegisterParameters, SoftFloatABI)) {} 1118 1119 static bool isStructReturnInRegABI( 1120 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1121 1122 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1123 CodeGen::CodeGenModule &CGM) const override; 1124 1125 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1126 // Darwin uses different dwarf register numbers for EH. 1127 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1128 return 4; 1129 } 1130 1131 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1132 llvm::Value *Address) const override; 1133 1134 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1135 StringRef Constraint, 1136 llvm::Type* Ty) const override { 1137 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1138 } 1139 1140 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1141 std::string &Constraints, 1142 std::vector<llvm::Type *> &ResultRegTypes, 1143 std::vector<llvm::Type *> &ResultTruncRegTypes, 1144 std::vector<LValue> &ResultRegDests, 1145 std::string &AsmString, 1146 unsigned NumOutputs) const override; 1147 1148 llvm::Constant * 1149 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1150 unsigned Sig = (0xeb << 0) | // jmp rel8 1151 (0x06 << 8) | // .+0x08 1152 ('v' << 16) | 1153 ('2' << 24); 1154 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1155 } 1156 1157 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1158 return "movl\t%ebp, %ebp" 1159 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1160 } 1161 }; 1162 1163 } 1164 1165 /// Rewrite input constraint references after adding some output constraints. 1166 /// In the case where there is one output and one input and we add one output, 1167 /// we need to replace all operand references greater than or equal to 1: 1168 /// mov $0, $1 1169 /// mov eax, $1 1170 /// The result will be: 1171 /// mov $0, $2 1172 /// mov eax, $2 1173 static void rewriteInputConstraintReferences(unsigned FirstIn, 1174 unsigned NumNewOuts, 1175 std::string &AsmString) { 1176 std::string Buf; 1177 llvm::raw_string_ostream OS(Buf); 1178 size_t Pos = 0; 1179 while (Pos < AsmString.size()) { 1180 size_t DollarStart = AsmString.find('$', Pos); 1181 if (DollarStart == std::string::npos) 1182 DollarStart = AsmString.size(); 1183 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1184 if (DollarEnd == std::string::npos) 1185 DollarEnd = AsmString.size(); 1186 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1187 Pos = DollarEnd; 1188 size_t NumDollars = DollarEnd - DollarStart; 1189 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1190 // We have an operand reference. 1191 size_t DigitStart = Pos; 1192 if (AsmString[DigitStart] == '{') { 1193 OS << '{'; 1194 ++DigitStart; 1195 } 1196 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1197 if (DigitEnd == std::string::npos) 1198 DigitEnd = AsmString.size(); 1199 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1200 unsigned OperandIndex; 1201 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1202 if (OperandIndex >= FirstIn) 1203 OperandIndex += NumNewOuts; 1204 OS << OperandIndex; 1205 } else { 1206 OS << OperandStr; 1207 } 1208 Pos = DigitEnd; 1209 } 1210 } 1211 AsmString = std::move(OS.str()); 1212 } 1213 1214 /// Add output constraints for EAX:EDX because they are return registers. 1215 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1216 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1217 std::vector<llvm::Type *> &ResultRegTypes, 1218 std::vector<llvm::Type *> &ResultTruncRegTypes, 1219 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1220 unsigned NumOutputs) const { 1221 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1222 1223 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1224 // larger. 1225 if (!Constraints.empty()) 1226 Constraints += ','; 1227 if (RetWidth <= 32) { 1228 Constraints += "={eax}"; 1229 ResultRegTypes.push_back(CGF.Int32Ty); 1230 } else { 1231 // Use the 'A' constraint for EAX:EDX. 1232 Constraints += "=A"; 1233 ResultRegTypes.push_back(CGF.Int64Ty); 1234 } 1235 1236 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1237 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1238 ResultTruncRegTypes.push_back(CoerceTy); 1239 1240 // Coerce the integer by bitcasting the return slot pointer. 1241 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1242 CoerceTy->getPointerTo())); 1243 ResultRegDests.push_back(ReturnSlot); 1244 1245 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1246 } 1247 1248 /// shouldReturnTypeInRegister - Determine if the given type should be 1249 /// returned in a register (for the Darwin and MCU ABI). 1250 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1251 ASTContext &Context) const { 1252 uint64_t Size = Context.getTypeSize(Ty); 1253 1254 // For i386, type must be register sized. 1255 // For the MCU ABI, it only needs to be <= 8-byte 1256 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1257 return false; 1258 1259 if (Ty->isVectorType()) { 1260 // 64- and 128- bit vectors inside structures are not returned in 1261 // registers. 1262 if (Size == 64 || Size == 128) 1263 return false; 1264 1265 return true; 1266 } 1267 1268 // If this is a builtin, pointer, enum, complex type, member pointer, or 1269 // member function pointer it is ok. 1270 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1271 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1272 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1273 return true; 1274 1275 // Arrays are treated like records. 1276 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1277 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1278 1279 // Otherwise, it must be a record type. 1280 const RecordType *RT = Ty->getAs<RecordType>(); 1281 if (!RT) return false; 1282 1283 // FIXME: Traverse bases here too. 1284 1285 // Structure types are passed in register if all fields would be 1286 // passed in a register. 1287 for (const auto *FD : RT->getDecl()->fields()) { 1288 // Empty fields are ignored. 1289 if (isEmptyField(Context, FD, true)) 1290 continue; 1291 1292 // Check fields recursively. 1293 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1300 // Treat complex types as the element type. 1301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1302 Ty = CTy->getElementType(); 1303 1304 // Check for a type which we know has a simple scalar argument-passing 1305 // convention without any padding. (We're specifically looking for 32 1306 // and 64-bit integer and integer-equivalents, float, and double.) 1307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1309 return false; 1310 1311 uint64_t Size = Context.getTypeSize(Ty); 1312 return Size == 32 || Size == 64; 1313 } 1314 1315 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1316 uint64_t &Size) { 1317 for (const auto *FD : RD->fields()) { 1318 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1319 // argument is smaller than 32-bits, expanding the struct will create 1320 // alignment padding. 1321 if (!is32Or64BitBasicType(FD->getType(), Context)) 1322 return false; 1323 1324 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1325 // how to expand them yet, and the predicate for telling if a bitfield still 1326 // counts as "basic" is more complicated than what we were doing previously. 1327 if (FD->isBitField()) 1328 return false; 1329 1330 Size += Context.getTypeSize(FD->getType()); 1331 } 1332 return true; 1333 } 1334 1335 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1336 uint64_t &Size) { 1337 // Don't do this if there are any non-empty bases. 1338 for (const CXXBaseSpecifier &Base : RD->bases()) { 1339 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1340 Size)) 1341 return false; 1342 } 1343 if (!addFieldSizes(Context, RD, Size)) 1344 return false; 1345 return true; 1346 } 1347 1348 /// Test whether an argument type which is to be passed indirectly (on the 1349 /// stack) would have the equivalent layout if it was expanded into separate 1350 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1351 /// optimizations. 1352 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1353 // We can only expand structure types. 1354 const RecordType *RT = Ty->getAs<RecordType>(); 1355 if (!RT) 1356 return false; 1357 const RecordDecl *RD = RT->getDecl(); 1358 uint64_t Size = 0; 1359 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1360 if (!IsWin32StructABI) { 1361 // On non-Windows, we have to conservatively match our old bitcode 1362 // prototypes in order to be ABI-compatible at the bitcode level. 1363 if (!CXXRD->isCLike()) 1364 return false; 1365 } else { 1366 // Don't do this for dynamic classes. 1367 if (CXXRD->isDynamicClass()) 1368 return false; 1369 } 1370 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1371 return false; 1372 } else { 1373 if (!addFieldSizes(getContext(), RD, Size)) 1374 return false; 1375 } 1376 1377 // We can do this if there was no alignment padding. 1378 return Size == getContext().getTypeSize(Ty); 1379 } 1380 1381 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1382 // If the return value is indirect, then the hidden argument is consuming one 1383 // integer register. 1384 if (State.FreeRegs) { 1385 --State.FreeRegs; 1386 if (!IsMCUABI) 1387 return getNaturalAlignIndirectInReg(RetTy); 1388 } 1389 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1390 } 1391 1392 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1393 CCState &State) const { 1394 if (RetTy->isVoidType()) 1395 return ABIArgInfo::getIgnore(); 1396 1397 const Type *Base = nullptr; 1398 uint64_t NumElts = 0; 1399 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1400 State.CC == llvm::CallingConv::X86_RegCall) && 1401 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1402 // The LLVM struct type for such an aggregate should lower properly. 1403 return ABIArgInfo::getDirect(); 1404 } 1405 1406 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1407 // On Darwin, some vectors are returned in registers. 1408 if (IsDarwinVectorABI) { 1409 uint64_t Size = getContext().getTypeSize(RetTy); 1410 1411 // 128-bit vectors are a special case; they are returned in 1412 // registers and we need to make sure to pick a type the LLVM 1413 // backend will like. 1414 if (Size == 128) 1415 return ABIArgInfo::getDirect(llvm::VectorType::get( 1416 llvm::Type::getInt64Ty(getVMContext()), 2)); 1417 1418 // Always return in register if it fits in a general purpose 1419 // register, or if it is 64 bits and has a single element. 1420 if ((Size == 8 || Size == 16 || Size == 32) || 1421 (Size == 64 && VT->getNumElements() == 1)) 1422 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1423 Size)); 1424 1425 return getIndirectReturnResult(RetTy, State); 1426 } 1427 1428 return ABIArgInfo::getDirect(); 1429 } 1430 1431 if (isAggregateTypeForABI(RetTy)) { 1432 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1433 // Structures with flexible arrays are always indirect. 1434 if (RT->getDecl()->hasFlexibleArrayMember()) 1435 return getIndirectReturnResult(RetTy, State); 1436 } 1437 1438 // If specified, structs and unions are always indirect. 1439 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1440 return getIndirectReturnResult(RetTy, State); 1441 1442 // Ignore empty structs/unions. 1443 if (isEmptyRecord(getContext(), RetTy, true)) 1444 return ABIArgInfo::getIgnore(); 1445 1446 // Small structures which are register sized are generally returned 1447 // in a register. 1448 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1449 uint64_t Size = getContext().getTypeSize(RetTy); 1450 1451 // As a special-case, if the struct is a "single-element" struct, and 1452 // the field is of type "float" or "double", return it in a 1453 // floating-point register. (MSVC does not apply this special case.) 1454 // We apply a similar transformation for pointer types to improve the 1455 // quality of the generated IR. 1456 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1457 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1458 || SeltTy->hasPointerRepresentation()) 1459 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1460 1461 // FIXME: We should be able to narrow this integer in cases with dead 1462 // padding. 1463 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1464 } 1465 1466 return getIndirectReturnResult(RetTy, State); 1467 } 1468 1469 // Treat an enum type as its underlying type. 1470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1471 RetTy = EnumTy->getDecl()->getIntegerType(); 1472 1473 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1474 : ABIArgInfo::getDirect()); 1475 } 1476 1477 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1478 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1479 } 1480 1481 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1482 const RecordType *RT = Ty->getAs<RecordType>(); 1483 if (!RT) 1484 return 0; 1485 const RecordDecl *RD = RT->getDecl(); 1486 1487 // If this is a C++ record, check the bases first. 1488 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1489 for (const auto &I : CXXRD->bases()) 1490 if (!isRecordWithSSEVectorType(Context, I.getType())) 1491 return false; 1492 1493 for (const auto *i : RD->fields()) { 1494 QualType FT = i->getType(); 1495 1496 if (isSSEVectorType(Context, FT)) 1497 return true; 1498 1499 if (isRecordWithSSEVectorType(Context, FT)) 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1507 unsigned Align) const { 1508 // Otherwise, if the alignment is less than or equal to the minimum ABI 1509 // alignment, just use the default; the backend will handle this. 1510 if (Align <= MinABIStackAlignInBytes) 1511 return 0; // Use default alignment. 1512 1513 // On non-Darwin, the stack type alignment is always 4. 1514 if (!IsDarwinVectorABI) { 1515 // Set explicit alignment, since we may need to realign the top. 1516 return MinABIStackAlignInBytes; 1517 } 1518 1519 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1520 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1521 isRecordWithSSEVectorType(getContext(), Ty))) 1522 return 16; 1523 1524 return MinABIStackAlignInBytes; 1525 } 1526 1527 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1528 CCState &State) const { 1529 if (!ByVal) { 1530 if (State.FreeRegs) { 1531 --State.FreeRegs; // Non-byval indirects just use one pointer. 1532 if (!IsMCUABI) 1533 return getNaturalAlignIndirectInReg(Ty); 1534 } 1535 return getNaturalAlignIndirect(Ty, false); 1536 } 1537 1538 // Compute the byval alignment. 1539 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1540 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1541 if (StackAlign == 0) 1542 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1543 1544 // If the stack alignment is less than the type alignment, realign the 1545 // argument. 1546 bool Realign = TypeAlign > StackAlign; 1547 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1548 /*ByVal=*/true, Realign); 1549 } 1550 1551 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1552 const Type *T = isSingleElementStruct(Ty, getContext()); 1553 if (!T) 1554 T = Ty.getTypePtr(); 1555 1556 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1557 BuiltinType::Kind K = BT->getKind(); 1558 if (K == BuiltinType::Float || K == BuiltinType::Double) 1559 return Float; 1560 } 1561 return Integer; 1562 } 1563 1564 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1565 if (!IsSoftFloatABI) { 1566 Class C = classify(Ty); 1567 if (C == Float) 1568 return false; 1569 } 1570 1571 unsigned Size = getContext().getTypeSize(Ty); 1572 unsigned SizeInRegs = (Size + 31) / 32; 1573 1574 if (SizeInRegs == 0) 1575 return false; 1576 1577 if (!IsMCUABI) { 1578 if (SizeInRegs > State.FreeRegs) { 1579 State.FreeRegs = 0; 1580 return false; 1581 } 1582 } else { 1583 // The MCU psABI allows passing parameters in-reg even if there are 1584 // earlier parameters that are passed on the stack. Also, 1585 // it does not allow passing >8-byte structs in-register, 1586 // even if there are 3 free registers available. 1587 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1588 return false; 1589 } 1590 1591 State.FreeRegs -= SizeInRegs; 1592 return true; 1593 } 1594 1595 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1596 bool &InReg, 1597 bool &NeedsPadding) const { 1598 // On Windows, aggregates other than HFAs are never passed in registers, and 1599 // they do not consume register slots. Homogenous floating-point aggregates 1600 // (HFAs) have already been dealt with at this point. 1601 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1602 return false; 1603 1604 NeedsPadding = false; 1605 InReg = !IsMCUABI; 1606 1607 if (!updateFreeRegs(Ty, State)) 1608 return false; 1609 1610 if (IsMCUABI) 1611 return true; 1612 1613 if (State.CC == llvm::CallingConv::X86_FastCall || 1614 State.CC == llvm::CallingConv::X86_VectorCall || 1615 State.CC == llvm::CallingConv::X86_RegCall) { 1616 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1617 NeedsPadding = true; 1618 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1626 if (!updateFreeRegs(Ty, State)) 1627 return false; 1628 1629 if (IsMCUABI) 1630 return false; 1631 1632 if (State.CC == llvm::CallingConv::X86_FastCall || 1633 State.CC == llvm::CallingConv::X86_VectorCall || 1634 State.CC == llvm::CallingConv::X86_RegCall) { 1635 if (getContext().getTypeSize(Ty) > 32) 1636 return false; 1637 1638 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1639 Ty->isReferenceType()); 1640 } 1641 1642 return true; 1643 } 1644 1645 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1646 // Vectorcall x86 works subtly different than in x64, so the format is 1647 // a bit different than the x64 version. First, all vector types (not HVAs) 1648 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1649 // This differs from the x64 implementation, where the first 6 by INDEX get 1650 // registers. 1651 // In the second pass over the arguments, HVAs are passed in the remaining 1652 // vector registers if possible, or indirectly by address. The address will be 1653 // passed in ECX/EDX if available. Any other arguments are passed according to 1654 // the usual fastcall rules. 1655 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1656 for (int I = 0, E = Args.size(); I < E; ++I) { 1657 const Type *Base = nullptr; 1658 uint64_t NumElts = 0; 1659 const QualType &Ty = Args[I].type; 1660 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1661 isHomogeneousAggregate(Ty, Base, NumElts)) { 1662 if (State.FreeSSERegs >= NumElts) { 1663 State.FreeSSERegs -= NumElts; 1664 Args[I].info = ABIArgInfo::getDirect(); 1665 State.IsPreassigned.set(I); 1666 } 1667 } 1668 } 1669 } 1670 1671 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1672 CCState &State) const { 1673 // FIXME: Set alignment on indirect arguments. 1674 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1675 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1676 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1677 1678 Ty = useFirstFieldIfTransparentUnion(Ty); 1679 TypeInfo TI = getContext().getTypeInfo(Ty); 1680 1681 // Check with the C++ ABI first. 1682 const RecordType *RT = Ty->getAs<RecordType>(); 1683 if (RT) { 1684 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1685 if (RAA == CGCXXABI::RAA_Indirect) { 1686 return getIndirectResult(Ty, false, State); 1687 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1688 // The field index doesn't matter, we'll fix it up later. 1689 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1690 } 1691 } 1692 1693 // Regcall uses the concept of a homogenous vector aggregate, similar 1694 // to other targets. 1695 const Type *Base = nullptr; 1696 uint64_t NumElts = 0; 1697 if ((IsRegCall || IsVectorCall) && 1698 isHomogeneousAggregate(Ty, Base, NumElts)) { 1699 if (State.FreeSSERegs >= NumElts) { 1700 State.FreeSSERegs -= NumElts; 1701 1702 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1703 // does. 1704 if (IsVectorCall) 1705 return getDirectX86Hva(); 1706 1707 if (Ty->isBuiltinType() || Ty->isVectorType()) 1708 return ABIArgInfo::getDirect(); 1709 return ABIArgInfo::getExpand(); 1710 } 1711 return getIndirectResult(Ty, /*ByVal=*/false, State); 1712 } 1713 1714 if (isAggregateTypeForABI(Ty)) { 1715 // Structures with flexible arrays are always indirect. 1716 // FIXME: This should not be byval! 1717 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1718 return getIndirectResult(Ty, true, State); 1719 1720 // Ignore empty structs/unions on non-Windows. 1721 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1722 return ABIArgInfo::getIgnore(); 1723 1724 llvm::LLVMContext &LLVMContext = getVMContext(); 1725 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1726 bool NeedsPadding = false; 1727 bool InReg; 1728 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1729 unsigned SizeInRegs = (TI.Width + 31) / 32; 1730 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1731 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1732 if (InReg) 1733 return ABIArgInfo::getDirectInReg(Result); 1734 else 1735 return ABIArgInfo::getDirect(Result); 1736 } 1737 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1738 1739 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1740 // added in MSVC 2015. 1741 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1742 return getIndirectResult(Ty, /*ByVal=*/false, State); 1743 1744 // Expand small (<= 128-bit) record types when we know that the stack layout 1745 // of those arguments will match the struct. This is important because the 1746 // LLVM backend isn't smart enough to remove byval, which inhibits many 1747 // optimizations. 1748 // Don't do this for the MCU if there are still free integer registers 1749 // (see X86_64 ABI for full explanation). 1750 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1751 canExpandIndirectArgument(Ty)) 1752 return ABIArgInfo::getExpandWithPadding( 1753 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1754 1755 return getIndirectResult(Ty, true, State); 1756 } 1757 1758 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1759 // On Windows, vectors are passed directly if registers are available, or 1760 // indirectly if not. This avoids the need to align argument memory. Pass 1761 // user-defined vector types larger than 512 bits indirectly for simplicity. 1762 if (IsWin32StructABI) { 1763 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1764 --State.FreeSSERegs; 1765 return ABIArgInfo::getDirectInReg(); 1766 } 1767 return getIndirectResult(Ty, /*ByVal=*/false, State); 1768 } 1769 1770 // On Darwin, some vectors are passed in memory, we handle this by passing 1771 // it as an i8/i16/i32/i64. 1772 if (IsDarwinVectorABI) { 1773 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1774 (TI.Width == 64 && VT->getNumElements() == 1)) 1775 return ABIArgInfo::getDirect( 1776 llvm::IntegerType::get(getVMContext(), TI.Width)); 1777 } 1778 1779 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1780 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1781 1782 return ABIArgInfo::getDirect(); 1783 } 1784 1785 1786 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1787 Ty = EnumTy->getDecl()->getIntegerType(); 1788 1789 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1790 1791 if (Ty->isPromotableIntegerType()) { 1792 if (InReg) 1793 return ABIArgInfo::getExtendInReg(Ty); 1794 return ABIArgInfo::getExtend(Ty); 1795 } 1796 1797 if (InReg) 1798 return ABIArgInfo::getDirectInReg(); 1799 return ABIArgInfo::getDirect(); 1800 } 1801 1802 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1803 CCState State(FI); 1804 if (IsMCUABI) 1805 State.FreeRegs = 3; 1806 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1807 State.FreeRegs = 2; 1808 State.FreeSSERegs = 3; 1809 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1810 State.FreeRegs = 2; 1811 State.FreeSSERegs = 6; 1812 } else if (FI.getHasRegParm()) 1813 State.FreeRegs = FI.getRegParm(); 1814 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1815 State.FreeRegs = 5; 1816 State.FreeSSERegs = 8; 1817 } else if (IsWin32StructABI) { 1818 // Since MSVC 2015, the first three SSE vectors have been passed in 1819 // registers. The rest are passed indirectly. 1820 State.FreeRegs = DefaultNumRegisterParameters; 1821 State.FreeSSERegs = 3; 1822 } else 1823 State.FreeRegs = DefaultNumRegisterParameters; 1824 1825 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1826 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1827 } else if (FI.getReturnInfo().isIndirect()) { 1828 // The C++ ABI is not aware of register usage, so we have to check if the 1829 // return value was sret and put it in a register ourselves if appropriate. 1830 if (State.FreeRegs) { 1831 --State.FreeRegs; // The sret parameter consumes a register. 1832 if (!IsMCUABI) 1833 FI.getReturnInfo().setInReg(true); 1834 } 1835 } 1836 1837 // The chain argument effectively gives us another free register. 1838 if (FI.isChainCall()) 1839 ++State.FreeRegs; 1840 1841 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1842 // arguments to XMM registers as available. 1843 if (State.CC == llvm::CallingConv::X86_VectorCall) 1844 runVectorCallFirstPass(FI, State); 1845 1846 bool UsedInAlloca = false; 1847 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1848 for (int I = 0, E = Args.size(); I < E; ++I) { 1849 // Skip arguments that have already been assigned. 1850 if (State.IsPreassigned.test(I)) 1851 continue; 1852 1853 Args[I].info = classifyArgumentType(Args[I].type, State); 1854 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1855 } 1856 1857 // If we needed to use inalloca for any argument, do a second pass and rewrite 1858 // all the memory arguments to use inalloca. 1859 if (UsedInAlloca) 1860 rewriteWithInAlloca(FI); 1861 } 1862 1863 void 1864 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1865 CharUnits &StackOffset, ABIArgInfo &Info, 1866 QualType Type) const { 1867 // Arguments are always 4-byte-aligned. 1868 CharUnits WordSize = CharUnits::fromQuantity(4); 1869 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1870 1871 // sret pointers and indirect things will require an extra pointer 1872 // indirection, unless they are byval. Most things are byval, and will not 1873 // require this indirection. 1874 bool IsIndirect = false; 1875 if (Info.isIndirect() && !Info.getIndirectByVal()) 1876 IsIndirect = true; 1877 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1878 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1879 if (IsIndirect) 1880 LLTy = LLTy->getPointerTo(0); 1881 FrameFields.push_back(LLTy); 1882 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1883 1884 // Insert padding bytes to respect alignment. 1885 CharUnits FieldEnd = StackOffset; 1886 StackOffset = FieldEnd.alignTo(WordSize); 1887 if (StackOffset != FieldEnd) { 1888 CharUnits NumBytes = StackOffset - FieldEnd; 1889 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1890 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1891 FrameFields.push_back(Ty); 1892 } 1893 } 1894 1895 static bool isArgInAlloca(const ABIArgInfo &Info) { 1896 // Leave ignored and inreg arguments alone. 1897 switch (Info.getKind()) { 1898 case ABIArgInfo::InAlloca: 1899 return true; 1900 case ABIArgInfo::Ignore: 1901 return false; 1902 case ABIArgInfo::Indirect: 1903 case ABIArgInfo::Direct: 1904 case ABIArgInfo::Extend: 1905 return !Info.getInReg(); 1906 case ABIArgInfo::Expand: 1907 case ABIArgInfo::CoerceAndExpand: 1908 // These are aggregate types which are never passed in registers when 1909 // inalloca is involved. 1910 return true; 1911 } 1912 llvm_unreachable("invalid enum"); 1913 } 1914 1915 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1916 assert(IsWin32StructABI && "inalloca only supported on win32"); 1917 1918 // Build a packed struct type for all of the arguments in memory. 1919 SmallVector<llvm::Type *, 6> FrameFields; 1920 1921 // The stack alignment is always 4. 1922 CharUnits StackAlign = CharUnits::fromQuantity(4); 1923 1924 CharUnits StackOffset; 1925 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1926 1927 // Put 'this' into the struct before 'sret', if necessary. 1928 bool IsThisCall = 1929 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1930 ABIArgInfo &Ret = FI.getReturnInfo(); 1931 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1932 isArgInAlloca(I->info)) { 1933 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1934 ++I; 1935 } 1936 1937 // Put the sret parameter into the inalloca struct if it's in memory. 1938 if (Ret.isIndirect() && !Ret.getInReg()) { 1939 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 1940 // On Windows, the hidden sret parameter is always returned in eax. 1941 Ret.setInAllocaSRet(IsWin32StructABI); 1942 } 1943 1944 // Skip the 'this' parameter in ecx. 1945 if (IsThisCall) 1946 ++I; 1947 1948 // Put arguments passed in memory into the struct. 1949 for (; I != E; ++I) { 1950 if (isArgInAlloca(I->info)) 1951 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1952 } 1953 1954 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1955 /*isPacked=*/true), 1956 StackAlign); 1957 } 1958 1959 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1960 Address VAListAddr, QualType Ty) const { 1961 1962 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1963 1964 // x86-32 changes the alignment of certain arguments on the stack. 1965 // 1966 // Just messing with TypeInfo like this works because we never pass 1967 // anything indirectly. 1968 TypeInfo.second = CharUnits::fromQuantity( 1969 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1970 1971 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1972 TypeInfo, CharUnits::fromQuantity(4), 1973 /*AllowHigherAlign*/ true); 1974 } 1975 1976 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1977 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1978 assert(Triple.getArch() == llvm::Triple::x86); 1979 1980 switch (Opts.getStructReturnConvention()) { 1981 case CodeGenOptions::SRCK_Default: 1982 break; 1983 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1984 return false; 1985 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1986 return true; 1987 } 1988 1989 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1990 return true; 1991 1992 switch (Triple.getOS()) { 1993 case llvm::Triple::DragonFly: 1994 case llvm::Triple::FreeBSD: 1995 case llvm::Triple::OpenBSD: 1996 case llvm::Triple::Win32: 1997 return true; 1998 default: 1999 return false; 2000 } 2001 } 2002 2003 void X86_32TargetCodeGenInfo::setTargetAttributes( 2004 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2005 if (GV->isDeclaration()) 2006 return; 2007 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2008 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2009 llvm::Function *Fn = cast<llvm::Function>(GV); 2010 Fn->addFnAttr("stackrealign"); 2011 } 2012 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2013 llvm::Function *Fn = cast<llvm::Function>(GV); 2014 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2015 } 2016 } 2017 } 2018 2019 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2020 CodeGen::CodeGenFunction &CGF, 2021 llvm::Value *Address) const { 2022 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2023 2024 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2025 2026 // 0-7 are the eight integer registers; the order is different 2027 // on Darwin (for EH), but the range is the same. 2028 // 8 is %eip. 2029 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2030 2031 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2032 // 12-16 are st(0..4). Not sure why we stop at 4. 2033 // These have size 16, which is sizeof(long double) on 2034 // platforms with 8-byte alignment for that type. 2035 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2036 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2037 2038 } else { 2039 // 9 is %eflags, which doesn't get a size on Darwin for some 2040 // reason. 2041 Builder.CreateAlignedStore( 2042 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2043 CharUnits::One()); 2044 2045 // 11-16 are st(0..5). Not sure why we stop at 5. 2046 // These have size 12, which is sizeof(long double) on 2047 // platforms with 4-byte alignment for that type. 2048 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2049 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2050 } 2051 2052 return false; 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // X86-64 ABI Implementation 2057 //===----------------------------------------------------------------------===// 2058 2059 2060 namespace { 2061 /// The AVX ABI level for X86 targets. 2062 enum class X86AVXABILevel { 2063 None, 2064 AVX, 2065 AVX512 2066 }; 2067 2068 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2069 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2070 switch (AVXLevel) { 2071 case X86AVXABILevel::AVX512: 2072 return 512; 2073 case X86AVXABILevel::AVX: 2074 return 256; 2075 case X86AVXABILevel::None: 2076 return 128; 2077 } 2078 llvm_unreachable("Unknown AVXLevel"); 2079 } 2080 2081 /// X86_64ABIInfo - The X86_64 ABI information. 2082 class X86_64ABIInfo : public SwiftABIInfo { 2083 enum Class { 2084 Integer = 0, 2085 SSE, 2086 SSEUp, 2087 X87, 2088 X87Up, 2089 ComplexX87, 2090 NoClass, 2091 Memory 2092 }; 2093 2094 /// merge - Implement the X86_64 ABI merging algorithm. 2095 /// 2096 /// Merge an accumulating classification \arg Accum with a field 2097 /// classification \arg Field. 2098 /// 2099 /// \param Accum - The accumulating classification. This should 2100 /// always be either NoClass or the result of a previous merge 2101 /// call. In addition, this should never be Memory (the caller 2102 /// should just return Memory for the aggregate). 2103 static Class merge(Class Accum, Class Field); 2104 2105 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2106 /// 2107 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2108 /// final MEMORY or SSE classes when necessary. 2109 /// 2110 /// \param AggregateSize - The size of the current aggregate in 2111 /// the classification process. 2112 /// 2113 /// \param Lo - The classification for the parts of the type 2114 /// residing in the low word of the containing object. 2115 /// 2116 /// \param Hi - The classification for the parts of the type 2117 /// residing in the higher words of the containing object. 2118 /// 2119 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2120 2121 /// classify - Determine the x86_64 register classes in which the 2122 /// given type T should be passed. 2123 /// 2124 /// \param Lo - The classification for the parts of the type 2125 /// residing in the low word of the containing object. 2126 /// 2127 /// \param Hi - The classification for the parts of the type 2128 /// residing in the high word of the containing object. 2129 /// 2130 /// \param OffsetBase - The bit offset of this type in the 2131 /// containing object. Some parameters are classified different 2132 /// depending on whether they straddle an eightbyte boundary. 2133 /// 2134 /// \param isNamedArg - Whether the argument in question is a "named" 2135 /// argument, as used in AMD64-ABI 3.5.7. 2136 /// 2137 /// If a word is unused its result will be NoClass; if a type should 2138 /// be passed in Memory then at least the classification of \arg Lo 2139 /// will be Memory. 2140 /// 2141 /// The \arg Lo class will be NoClass iff the argument is ignored. 2142 /// 2143 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2144 /// also be ComplexX87. 2145 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2146 bool isNamedArg) const; 2147 2148 llvm::Type *GetByteVectorType(QualType Ty) const; 2149 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2150 unsigned IROffset, QualType SourceTy, 2151 unsigned SourceOffset) const; 2152 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2153 unsigned IROffset, QualType SourceTy, 2154 unsigned SourceOffset) const; 2155 2156 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2157 /// such that the argument will be returned in memory. 2158 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2159 2160 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2161 /// such that the argument will be passed in memory. 2162 /// 2163 /// \param freeIntRegs - The number of free integer registers remaining 2164 /// available. 2165 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2166 2167 ABIArgInfo classifyReturnType(QualType RetTy) const; 2168 2169 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2170 unsigned &neededInt, unsigned &neededSSE, 2171 bool isNamedArg) const; 2172 2173 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2174 unsigned &NeededSSE) const; 2175 2176 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2177 unsigned &NeededSSE) const; 2178 2179 bool IsIllegalVectorType(QualType Ty) const; 2180 2181 /// The 0.98 ABI revision clarified a lot of ambiguities, 2182 /// unfortunately in ways that were not always consistent with 2183 /// certain previous compilers. In particular, platforms which 2184 /// required strict binary compatibility with older versions of GCC 2185 /// may need to exempt themselves. 2186 bool honorsRevision0_98() const { 2187 return !getTarget().getTriple().isOSDarwin(); 2188 } 2189 2190 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2191 /// classify it as INTEGER (for compatibility with older clang compilers). 2192 bool classifyIntegerMMXAsSSE() const { 2193 // Clang <= 3.8 did not do this. 2194 if (getContext().getLangOpts().getClangABICompat() <= 2195 LangOptions::ClangABI::Ver3_8) 2196 return false; 2197 2198 const llvm::Triple &Triple = getTarget().getTriple(); 2199 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2200 return false; 2201 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2202 return false; 2203 return true; 2204 } 2205 2206 // GCC classifies vectors of __int128 as memory. 2207 bool passInt128VectorsInMem() const { 2208 // Clang <= 9.0 did not do this. 2209 if (getContext().getLangOpts().getClangABICompat() <= 2210 LangOptions::ClangABI::Ver9) 2211 return false; 2212 2213 const llvm::Triple &T = getTarget().getTriple(); 2214 return T.isOSLinux() || T.isOSNetBSD(); 2215 } 2216 2217 X86AVXABILevel AVXLevel; 2218 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2219 // 64-bit hardware. 2220 bool Has64BitPointers; 2221 2222 public: 2223 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2224 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2225 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2226 } 2227 2228 bool isPassedUsingAVXType(QualType type) const { 2229 unsigned neededInt, neededSSE; 2230 // The freeIntRegs argument doesn't matter here. 2231 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2232 /*isNamedArg*/true); 2233 if (info.isDirect()) { 2234 llvm::Type *ty = info.getCoerceToType(); 2235 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2236 return (vectorTy->getBitWidth() > 128); 2237 } 2238 return false; 2239 } 2240 2241 void computeInfo(CGFunctionInfo &FI) const override; 2242 2243 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2244 QualType Ty) const override; 2245 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2246 QualType Ty) const override; 2247 2248 bool has64BitPointers() const { 2249 return Has64BitPointers; 2250 } 2251 2252 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2253 bool asReturnValue) const override { 2254 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2255 } 2256 bool isSwiftErrorInRegister() const override { 2257 return true; 2258 } 2259 }; 2260 2261 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2262 class WinX86_64ABIInfo : public SwiftABIInfo { 2263 public: 2264 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2265 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2266 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2267 2268 void computeInfo(CGFunctionInfo &FI) const override; 2269 2270 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2271 QualType Ty) const override; 2272 2273 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2274 // FIXME: Assumes vectorcall is in use. 2275 return isX86VectorTypeForVectorCall(getContext(), Ty); 2276 } 2277 2278 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2279 uint64_t NumMembers) const override { 2280 // FIXME: Assumes vectorcall is in use. 2281 return isX86VectorCallAggregateSmallEnough(NumMembers); 2282 } 2283 2284 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2285 bool asReturnValue) const override { 2286 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2287 } 2288 2289 bool isSwiftErrorInRegister() const override { 2290 return true; 2291 } 2292 2293 private: 2294 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2295 bool IsVectorCall, bool IsRegCall) const; 2296 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2297 const ABIArgInfo ¤t) const; 2298 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2299 bool IsVectorCall, bool IsRegCall) const; 2300 2301 X86AVXABILevel AVXLevel; 2302 2303 bool IsMingw64; 2304 }; 2305 2306 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2307 public: 2308 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2309 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2310 2311 const X86_64ABIInfo &getABIInfo() const { 2312 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2313 } 2314 2315 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2316 /// the autoreleaseRV/retainRV optimization. 2317 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2318 return true; 2319 } 2320 2321 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2322 return 7; 2323 } 2324 2325 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2326 llvm::Value *Address) const override { 2327 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2328 2329 // 0-15 are the 16 integer registers. 2330 // 16 is %rip. 2331 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2332 return false; 2333 } 2334 2335 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2336 StringRef Constraint, 2337 llvm::Type* Ty) const override { 2338 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2339 } 2340 2341 bool isNoProtoCallVariadic(const CallArgList &args, 2342 const FunctionNoProtoType *fnType) const override { 2343 // The default CC on x86-64 sets %al to the number of SSA 2344 // registers used, and GCC sets this when calling an unprototyped 2345 // function, so we override the default behavior. However, don't do 2346 // that when AVX types are involved: the ABI explicitly states it is 2347 // undefined, and it doesn't work in practice because of how the ABI 2348 // defines varargs anyway. 2349 if (fnType->getCallConv() == CC_C) { 2350 bool HasAVXType = false; 2351 for (CallArgList::const_iterator 2352 it = args.begin(), ie = args.end(); it != ie; ++it) { 2353 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2354 HasAVXType = true; 2355 break; 2356 } 2357 } 2358 2359 if (!HasAVXType) 2360 return true; 2361 } 2362 2363 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2364 } 2365 2366 llvm::Constant * 2367 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2368 unsigned Sig = (0xeb << 0) | // jmp rel8 2369 (0x06 << 8) | // .+0x08 2370 ('v' << 16) | 2371 ('2' << 24); 2372 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2373 } 2374 2375 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2376 CodeGen::CodeGenModule &CGM) const override { 2377 if (GV->isDeclaration()) 2378 return; 2379 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2380 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2381 llvm::Function *Fn = cast<llvm::Function>(GV); 2382 Fn->addFnAttr("stackrealign"); 2383 } 2384 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2385 llvm::Function *Fn = cast<llvm::Function>(GV); 2386 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2387 } 2388 } 2389 } 2390 }; 2391 2392 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2393 // If the argument does not end in .lib, automatically add the suffix. 2394 // If the argument contains a space, enclose it in quotes. 2395 // This matches the behavior of MSVC. 2396 bool Quote = (Lib.find(" ") != StringRef::npos); 2397 std::string ArgStr = Quote ? "\"" : ""; 2398 ArgStr += Lib; 2399 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2400 ArgStr += ".lib"; 2401 ArgStr += Quote ? "\"" : ""; 2402 return ArgStr; 2403 } 2404 2405 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2406 public: 2407 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2408 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2409 unsigned NumRegisterParameters) 2410 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2411 Win32StructABI, NumRegisterParameters, false) {} 2412 2413 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2414 CodeGen::CodeGenModule &CGM) const override; 2415 2416 void getDependentLibraryOption(llvm::StringRef Lib, 2417 llvm::SmallString<24> &Opt) const override { 2418 Opt = "/DEFAULTLIB:"; 2419 Opt += qualifyWindowsLibrary(Lib); 2420 } 2421 2422 void getDetectMismatchOption(llvm::StringRef Name, 2423 llvm::StringRef Value, 2424 llvm::SmallString<32> &Opt) const override { 2425 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2426 } 2427 }; 2428 2429 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2430 CodeGen::CodeGenModule &CGM) { 2431 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2432 2433 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2434 Fn->addFnAttr("stack-probe-size", 2435 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2436 if (CGM.getCodeGenOpts().NoStackArgProbe) 2437 Fn->addFnAttr("no-stack-arg-probe"); 2438 } 2439 } 2440 2441 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2442 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2443 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2444 if (GV->isDeclaration()) 2445 return; 2446 addStackProbeTargetAttributes(D, GV, CGM); 2447 } 2448 2449 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2450 public: 2451 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2452 X86AVXABILevel AVXLevel) 2453 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2454 2455 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2456 CodeGen::CodeGenModule &CGM) const override; 2457 2458 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2459 return 7; 2460 } 2461 2462 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2463 llvm::Value *Address) const override { 2464 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2465 2466 // 0-15 are the 16 integer registers. 2467 // 16 is %rip. 2468 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2469 return false; 2470 } 2471 2472 void getDependentLibraryOption(llvm::StringRef Lib, 2473 llvm::SmallString<24> &Opt) const override { 2474 Opt = "/DEFAULTLIB:"; 2475 Opt += qualifyWindowsLibrary(Lib); 2476 } 2477 2478 void getDetectMismatchOption(llvm::StringRef Name, 2479 llvm::StringRef Value, 2480 llvm::SmallString<32> &Opt) const override { 2481 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2482 } 2483 }; 2484 2485 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2486 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2487 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2488 if (GV->isDeclaration()) 2489 return; 2490 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2491 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2492 llvm::Function *Fn = cast<llvm::Function>(GV); 2493 Fn->addFnAttr("stackrealign"); 2494 } 2495 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2496 llvm::Function *Fn = cast<llvm::Function>(GV); 2497 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2498 } 2499 } 2500 2501 addStackProbeTargetAttributes(D, GV, CGM); 2502 } 2503 } 2504 2505 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2506 Class &Hi) const { 2507 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2508 // 2509 // (a) If one of the classes is Memory, the whole argument is passed in 2510 // memory. 2511 // 2512 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2513 // memory. 2514 // 2515 // (c) If the size of the aggregate exceeds two eightbytes and the first 2516 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2517 // argument is passed in memory. NOTE: This is necessary to keep the 2518 // ABI working for processors that don't support the __m256 type. 2519 // 2520 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2521 // 2522 // Some of these are enforced by the merging logic. Others can arise 2523 // only with unions; for example: 2524 // union { _Complex double; unsigned; } 2525 // 2526 // Note that clauses (b) and (c) were added in 0.98. 2527 // 2528 if (Hi == Memory) 2529 Lo = Memory; 2530 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2531 Lo = Memory; 2532 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2533 Lo = Memory; 2534 if (Hi == SSEUp && Lo != SSE) 2535 Hi = SSE; 2536 } 2537 2538 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2539 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2540 // classified recursively so that always two fields are 2541 // considered. The resulting class is calculated according to 2542 // the classes of the fields in the eightbyte: 2543 // 2544 // (a) If both classes are equal, this is the resulting class. 2545 // 2546 // (b) If one of the classes is NO_CLASS, the resulting class is 2547 // the other class. 2548 // 2549 // (c) If one of the classes is MEMORY, the result is the MEMORY 2550 // class. 2551 // 2552 // (d) If one of the classes is INTEGER, the result is the 2553 // INTEGER. 2554 // 2555 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2556 // MEMORY is used as class. 2557 // 2558 // (f) Otherwise class SSE is used. 2559 2560 // Accum should never be memory (we should have returned) or 2561 // ComplexX87 (because this cannot be passed in a structure). 2562 assert((Accum != Memory && Accum != ComplexX87) && 2563 "Invalid accumulated classification during merge."); 2564 if (Accum == Field || Field == NoClass) 2565 return Accum; 2566 if (Field == Memory) 2567 return Memory; 2568 if (Accum == NoClass) 2569 return Field; 2570 if (Accum == Integer || Field == Integer) 2571 return Integer; 2572 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2573 Accum == X87 || Accum == X87Up) 2574 return Memory; 2575 return SSE; 2576 } 2577 2578 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2579 Class &Lo, Class &Hi, bool isNamedArg) const { 2580 // FIXME: This code can be simplified by introducing a simple value class for 2581 // Class pairs with appropriate constructor methods for the various 2582 // situations. 2583 2584 // FIXME: Some of the split computations are wrong; unaligned vectors 2585 // shouldn't be passed in registers for example, so there is no chance they 2586 // can straddle an eightbyte. Verify & simplify. 2587 2588 Lo = Hi = NoClass; 2589 2590 Class &Current = OffsetBase < 64 ? Lo : Hi; 2591 Current = Memory; 2592 2593 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2594 BuiltinType::Kind k = BT->getKind(); 2595 2596 if (k == BuiltinType::Void) { 2597 Current = NoClass; 2598 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2599 Lo = Integer; 2600 Hi = Integer; 2601 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2602 Current = Integer; 2603 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2604 Current = SSE; 2605 } else if (k == BuiltinType::LongDouble) { 2606 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2607 if (LDF == &llvm::APFloat::IEEEquad()) { 2608 Lo = SSE; 2609 Hi = SSEUp; 2610 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2611 Lo = X87; 2612 Hi = X87Up; 2613 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2614 Current = SSE; 2615 } else 2616 llvm_unreachable("unexpected long double representation!"); 2617 } 2618 // FIXME: _Decimal32 and _Decimal64 are SSE. 2619 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2620 return; 2621 } 2622 2623 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2624 // Classify the underlying integer type. 2625 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2626 return; 2627 } 2628 2629 if (Ty->hasPointerRepresentation()) { 2630 Current = Integer; 2631 return; 2632 } 2633 2634 if (Ty->isMemberPointerType()) { 2635 if (Ty->isMemberFunctionPointerType()) { 2636 if (Has64BitPointers) { 2637 // If Has64BitPointers, this is an {i64, i64}, so classify both 2638 // Lo and Hi now. 2639 Lo = Hi = Integer; 2640 } else { 2641 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2642 // straddles an eightbyte boundary, Hi should be classified as well. 2643 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2644 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2645 if (EB_FuncPtr != EB_ThisAdj) { 2646 Lo = Hi = Integer; 2647 } else { 2648 Current = Integer; 2649 } 2650 } 2651 } else { 2652 Current = Integer; 2653 } 2654 return; 2655 } 2656 2657 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2658 uint64_t Size = getContext().getTypeSize(VT); 2659 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2660 // gcc passes the following as integer: 2661 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2662 // 2 bytes - <2 x char>, <1 x short> 2663 // 1 byte - <1 x char> 2664 Current = Integer; 2665 2666 // If this type crosses an eightbyte boundary, it should be 2667 // split. 2668 uint64_t EB_Lo = (OffsetBase) / 64; 2669 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2670 if (EB_Lo != EB_Hi) 2671 Hi = Lo; 2672 } else if (Size == 64) { 2673 QualType ElementType = VT->getElementType(); 2674 2675 // gcc passes <1 x double> in memory. :( 2676 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2677 return; 2678 2679 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2680 // pass them as integer. For platforms where clang is the de facto 2681 // platform compiler, we must continue to use integer. 2682 if (!classifyIntegerMMXAsSSE() && 2683 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2684 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2685 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2686 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2687 Current = Integer; 2688 else 2689 Current = SSE; 2690 2691 // If this type crosses an eightbyte boundary, it should be 2692 // split. 2693 if (OffsetBase && OffsetBase != 64) 2694 Hi = Lo; 2695 } else if (Size == 128 || 2696 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2697 QualType ElementType = VT->getElementType(); 2698 2699 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2700 if (passInt128VectorsInMem() && Size != 128 && 2701 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2702 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2703 return; 2704 2705 // Arguments of 256-bits are split into four eightbyte chunks. The 2706 // least significant one belongs to class SSE and all the others to class 2707 // SSEUP. The original Lo and Hi design considers that types can't be 2708 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2709 // This design isn't correct for 256-bits, but since there're no cases 2710 // where the upper parts would need to be inspected, avoid adding 2711 // complexity and just consider Hi to match the 64-256 part. 2712 // 2713 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2714 // registers if they are "named", i.e. not part of the "..." of a 2715 // variadic function. 2716 // 2717 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2718 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2719 Lo = SSE; 2720 Hi = SSEUp; 2721 } 2722 return; 2723 } 2724 2725 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2726 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2727 2728 uint64_t Size = getContext().getTypeSize(Ty); 2729 if (ET->isIntegralOrEnumerationType()) { 2730 if (Size <= 64) 2731 Current = Integer; 2732 else if (Size <= 128) 2733 Lo = Hi = Integer; 2734 } else if (ET == getContext().FloatTy) { 2735 Current = SSE; 2736 } else if (ET == getContext().DoubleTy) { 2737 Lo = Hi = SSE; 2738 } else if (ET == getContext().LongDoubleTy) { 2739 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2740 if (LDF == &llvm::APFloat::IEEEquad()) 2741 Current = Memory; 2742 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2743 Current = ComplexX87; 2744 else if (LDF == &llvm::APFloat::IEEEdouble()) 2745 Lo = Hi = SSE; 2746 else 2747 llvm_unreachable("unexpected long double representation!"); 2748 } 2749 2750 // If this complex type crosses an eightbyte boundary then it 2751 // should be split. 2752 uint64_t EB_Real = (OffsetBase) / 64; 2753 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2754 if (Hi == NoClass && EB_Real != EB_Imag) 2755 Hi = Lo; 2756 2757 return; 2758 } 2759 2760 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2761 // Arrays are treated like structures. 2762 2763 uint64_t Size = getContext().getTypeSize(Ty); 2764 2765 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2766 // than eight eightbytes, ..., it has class MEMORY. 2767 if (Size > 512) 2768 return; 2769 2770 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2771 // fields, it has class MEMORY. 2772 // 2773 // Only need to check alignment of array base. 2774 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2775 return; 2776 2777 // Otherwise implement simplified merge. We could be smarter about 2778 // this, but it isn't worth it and would be harder to verify. 2779 Current = NoClass; 2780 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2781 uint64_t ArraySize = AT->getSize().getZExtValue(); 2782 2783 // The only case a 256-bit wide vector could be used is when the array 2784 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2785 // to work for sizes wider than 128, early check and fallback to memory. 2786 // 2787 if (Size > 128 && 2788 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2789 return; 2790 2791 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2792 Class FieldLo, FieldHi; 2793 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2794 Lo = merge(Lo, FieldLo); 2795 Hi = merge(Hi, FieldHi); 2796 if (Lo == Memory || Hi == Memory) 2797 break; 2798 } 2799 2800 postMerge(Size, Lo, Hi); 2801 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2802 return; 2803 } 2804 2805 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2806 uint64_t Size = getContext().getTypeSize(Ty); 2807 2808 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2809 // than eight eightbytes, ..., it has class MEMORY. 2810 if (Size > 512) 2811 return; 2812 2813 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2814 // copy constructor or a non-trivial destructor, it is passed by invisible 2815 // reference. 2816 if (getRecordArgABI(RT, getCXXABI())) 2817 return; 2818 2819 const RecordDecl *RD = RT->getDecl(); 2820 2821 // Assume variable sized types are passed in memory. 2822 if (RD->hasFlexibleArrayMember()) 2823 return; 2824 2825 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2826 2827 // Reset Lo class, this will be recomputed. 2828 Current = NoClass; 2829 2830 // If this is a C++ record, classify the bases first. 2831 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2832 for (const auto &I : CXXRD->bases()) { 2833 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2834 "Unexpected base class!"); 2835 const auto *Base = 2836 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2837 2838 // Classify this field. 2839 // 2840 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2841 // single eightbyte, each is classified separately. Each eightbyte gets 2842 // initialized to class NO_CLASS. 2843 Class FieldLo, FieldHi; 2844 uint64_t Offset = 2845 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2846 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2847 Lo = merge(Lo, FieldLo); 2848 Hi = merge(Hi, FieldHi); 2849 if (Lo == Memory || Hi == Memory) { 2850 postMerge(Size, Lo, Hi); 2851 return; 2852 } 2853 } 2854 } 2855 2856 // Classify the fields one at a time, merging the results. 2857 unsigned idx = 0; 2858 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2859 i != e; ++i, ++idx) { 2860 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2861 bool BitField = i->isBitField(); 2862 2863 // Ignore padding bit-fields. 2864 if (BitField && i->isUnnamedBitfield()) 2865 continue; 2866 2867 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2868 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2869 // 2870 // The only case a 256-bit wide vector could be used is when the struct 2871 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2872 // to work for sizes wider than 128, early check and fallback to memory. 2873 // 2874 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2875 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2876 Lo = Memory; 2877 postMerge(Size, Lo, Hi); 2878 return; 2879 } 2880 // Note, skip this test for bit-fields, see below. 2881 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2882 Lo = Memory; 2883 postMerge(Size, Lo, Hi); 2884 return; 2885 } 2886 2887 // Classify this field. 2888 // 2889 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2890 // exceeds a single eightbyte, each is classified 2891 // separately. Each eightbyte gets initialized to class 2892 // NO_CLASS. 2893 Class FieldLo, FieldHi; 2894 2895 // Bit-fields require special handling, they do not force the 2896 // structure to be passed in memory even if unaligned, and 2897 // therefore they can straddle an eightbyte. 2898 if (BitField) { 2899 assert(!i->isUnnamedBitfield()); 2900 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2901 uint64_t Size = i->getBitWidthValue(getContext()); 2902 2903 uint64_t EB_Lo = Offset / 64; 2904 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2905 2906 if (EB_Lo) { 2907 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2908 FieldLo = NoClass; 2909 FieldHi = Integer; 2910 } else { 2911 FieldLo = Integer; 2912 FieldHi = EB_Hi ? Integer : NoClass; 2913 } 2914 } else 2915 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2916 Lo = merge(Lo, FieldLo); 2917 Hi = merge(Hi, FieldHi); 2918 if (Lo == Memory || Hi == Memory) 2919 break; 2920 } 2921 2922 postMerge(Size, Lo, Hi); 2923 } 2924 } 2925 2926 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2927 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2928 // place naturally. 2929 if (!isAggregateTypeForABI(Ty)) { 2930 // Treat an enum type as its underlying type. 2931 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2932 Ty = EnumTy->getDecl()->getIntegerType(); 2933 2934 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2935 : ABIArgInfo::getDirect()); 2936 } 2937 2938 return getNaturalAlignIndirect(Ty); 2939 } 2940 2941 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2942 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2943 uint64_t Size = getContext().getTypeSize(VecTy); 2944 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2945 if (Size <= 64 || Size > LargestVector) 2946 return true; 2947 QualType EltTy = VecTy->getElementType(); 2948 if (passInt128VectorsInMem() && 2949 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2950 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2951 return true; 2952 } 2953 2954 return false; 2955 } 2956 2957 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2958 unsigned freeIntRegs) const { 2959 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2960 // place naturally. 2961 // 2962 // This assumption is optimistic, as there could be free registers available 2963 // when we need to pass this argument in memory, and LLVM could try to pass 2964 // the argument in the free register. This does not seem to happen currently, 2965 // but this code would be much safer if we could mark the argument with 2966 // 'onstack'. See PR12193. 2967 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2968 // Treat an enum type as its underlying type. 2969 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2970 Ty = EnumTy->getDecl()->getIntegerType(); 2971 2972 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2973 : ABIArgInfo::getDirect()); 2974 } 2975 2976 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2977 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2978 2979 // Compute the byval alignment. We specify the alignment of the byval in all 2980 // cases so that the mid-level optimizer knows the alignment of the byval. 2981 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2982 2983 // Attempt to avoid passing indirect results using byval when possible. This 2984 // is important for good codegen. 2985 // 2986 // We do this by coercing the value into a scalar type which the backend can 2987 // handle naturally (i.e., without using byval). 2988 // 2989 // For simplicity, we currently only do this when we have exhausted all of the 2990 // free integer registers. Doing this when there are free integer registers 2991 // would require more care, as we would have to ensure that the coerced value 2992 // did not claim the unused register. That would require either reording the 2993 // arguments to the function (so that any subsequent inreg values came first), 2994 // or only doing this optimization when there were no following arguments that 2995 // might be inreg. 2996 // 2997 // We currently expect it to be rare (particularly in well written code) for 2998 // arguments to be passed on the stack when there are still free integer 2999 // registers available (this would typically imply large structs being passed 3000 // by value), so this seems like a fair tradeoff for now. 3001 // 3002 // We can revisit this if the backend grows support for 'onstack' parameter 3003 // attributes. See PR12193. 3004 if (freeIntRegs == 0) { 3005 uint64_t Size = getContext().getTypeSize(Ty); 3006 3007 // If this type fits in an eightbyte, coerce it into the matching integral 3008 // type, which will end up on the stack (with alignment 8). 3009 if (Align == 8 && Size <= 64) 3010 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3011 Size)); 3012 } 3013 3014 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3015 } 3016 3017 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3018 /// register. Pick an LLVM IR type that will be passed as a vector register. 3019 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3020 // Wrapper structs/arrays that only contain vectors are passed just like 3021 // vectors; strip them off if present. 3022 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3023 Ty = QualType(InnerTy, 0); 3024 3025 llvm::Type *IRType = CGT.ConvertType(Ty); 3026 if (isa<llvm::VectorType>(IRType)) { 3027 // Don't pass vXi128 vectors in their native type, the backend can't 3028 // legalize them. 3029 if (passInt128VectorsInMem() && 3030 IRType->getVectorElementType()->isIntegerTy(128)) { 3031 // Use a vXi64 vector. 3032 uint64_t Size = getContext().getTypeSize(Ty); 3033 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3034 Size / 64); 3035 } 3036 3037 return IRType; 3038 } 3039 3040 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3041 return IRType; 3042 3043 // We couldn't find the preferred IR vector type for 'Ty'. 3044 uint64_t Size = getContext().getTypeSize(Ty); 3045 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3046 3047 3048 // Return a LLVM IR vector type based on the size of 'Ty'. 3049 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3050 Size / 64); 3051 } 3052 3053 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3054 /// is known to either be off the end of the specified type or being in 3055 /// alignment padding. The user type specified is known to be at most 128 bits 3056 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3057 /// classification that put one of the two halves in the INTEGER class. 3058 /// 3059 /// It is conservatively correct to return false. 3060 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3061 unsigned EndBit, ASTContext &Context) { 3062 // If the bytes being queried are off the end of the type, there is no user 3063 // data hiding here. This handles analysis of builtins, vectors and other 3064 // types that don't contain interesting padding. 3065 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3066 if (TySize <= StartBit) 3067 return true; 3068 3069 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3070 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3071 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3072 3073 // Check each element to see if the element overlaps with the queried range. 3074 for (unsigned i = 0; i != NumElts; ++i) { 3075 // If the element is after the span we care about, then we're done.. 3076 unsigned EltOffset = i*EltSize; 3077 if (EltOffset >= EndBit) break; 3078 3079 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3080 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3081 EndBit-EltOffset, Context)) 3082 return false; 3083 } 3084 // If it overlaps no elements, then it is safe to process as padding. 3085 return true; 3086 } 3087 3088 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3089 const RecordDecl *RD = RT->getDecl(); 3090 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3091 3092 // If this is a C++ record, check the bases first. 3093 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3094 for (const auto &I : CXXRD->bases()) { 3095 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3096 "Unexpected base class!"); 3097 const auto *Base = 3098 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3099 3100 // If the base is after the span we care about, ignore it. 3101 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3102 if (BaseOffset >= EndBit) continue; 3103 3104 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3105 if (!BitsContainNoUserData(I.getType(), BaseStart, 3106 EndBit-BaseOffset, Context)) 3107 return false; 3108 } 3109 } 3110 3111 // Verify that no field has data that overlaps the region of interest. Yes 3112 // this could be sped up a lot by being smarter about queried fields, 3113 // however we're only looking at structs up to 16 bytes, so we don't care 3114 // much. 3115 unsigned idx = 0; 3116 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3117 i != e; ++i, ++idx) { 3118 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3119 3120 // If we found a field after the region we care about, then we're done. 3121 if (FieldOffset >= EndBit) break; 3122 3123 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3124 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3125 Context)) 3126 return false; 3127 } 3128 3129 // If nothing in this record overlapped the area of interest, then we're 3130 // clean. 3131 return true; 3132 } 3133 3134 return false; 3135 } 3136 3137 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3138 /// float member at the specified offset. For example, {int,{float}} has a 3139 /// float at offset 4. It is conservatively correct for this routine to return 3140 /// false. 3141 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3142 const llvm::DataLayout &TD) { 3143 // Base case if we find a float. 3144 if (IROffset == 0 && IRType->isFloatTy()) 3145 return true; 3146 3147 // If this is a struct, recurse into the field at the specified offset. 3148 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3149 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3150 unsigned Elt = SL->getElementContainingOffset(IROffset); 3151 IROffset -= SL->getElementOffset(Elt); 3152 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3153 } 3154 3155 // If this is an array, recurse into the field at the specified offset. 3156 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3157 llvm::Type *EltTy = ATy->getElementType(); 3158 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3159 IROffset -= IROffset/EltSize*EltSize; 3160 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3161 } 3162 3163 return false; 3164 } 3165 3166 3167 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3168 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3169 llvm::Type *X86_64ABIInfo:: 3170 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3171 QualType SourceTy, unsigned SourceOffset) const { 3172 // The only three choices we have are either double, <2 x float>, or float. We 3173 // pass as float if the last 4 bytes is just padding. This happens for 3174 // structs that contain 3 floats. 3175 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3176 SourceOffset*8+64, getContext())) 3177 return llvm::Type::getFloatTy(getVMContext()); 3178 3179 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3180 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3181 // case. 3182 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3183 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3184 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3185 3186 return llvm::Type::getDoubleTy(getVMContext()); 3187 } 3188 3189 3190 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3191 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3192 /// about the high or low part of an up-to-16-byte struct. This routine picks 3193 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3194 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3195 /// etc). 3196 /// 3197 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3198 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3199 /// the 8-byte value references. PrefType may be null. 3200 /// 3201 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3202 /// an offset into this that we're processing (which is always either 0 or 8). 3203 /// 3204 llvm::Type *X86_64ABIInfo:: 3205 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3206 QualType SourceTy, unsigned SourceOffset) const { 3207 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3208 // returning an 8-byte unit starting with it. See if we can safely use it. 3209 if (IROffset == 0) { 3210 // Pointers and int64's always fill the 8-byte unit. 3211 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3212 IRType->isIntegerTy(64)) 3213 return IRType; 3214 3215 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3216 // goodness in the source type is just tail padding. This is allowed to 3217 // kick in for struct {double,int} on the int, but not on 3218 // struct{double,int,int} because we wouldn't return the second int. We 3219 // have to do this analysis on the source type because we can't depend on 3220 // unions being lowered a specific way etc. 3221 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3222 IRType->isIntegerTy(32) || 3223 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3224 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3225 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3226 3227 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3228 SourceOffset*8+64, getContext())) 3229 return IRType; 3230 } 3231 } 3232 3233 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3234 // If this is a struct, recurse into the field at the specified offset. 3235 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3236 if (IROffset < SL->getSizeInBytes()) { 3237 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3238 IROffset -= SL->getElementOffset(FieldIdx); 3239 3240 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3241 SourceTy, SourceOffset); 3242 } 3243 } 3244 3245 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3246 llvm::Type *EltTy = ATy->getElementType(); 3247 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3248 unsigned EltOffset = IROffset/EltSize*EltSize; 3249 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3250 SourceOffset); 3251 } 3252 3253 // Okay, we don't have any better idea of what to pass, so we pass this in an 3254 // integer register that isn't too big to fit the rest of the struct. 3255 unsigned TySizeInBytes = 3256 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3257 3258 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3259 3260 // It is always safe to classify this as an integer type up to i64 that 3261 // isn't larger than the structure. 3262 return llvm::IntegerType::get(getVMContext(), 3263 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3264 } 3265 3266 3267 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3268 /// be used as elements of a two register pair to pass or return, return a 3269 /// first class aggregate to represent them. For example, if the low part of 3270 /// a by-value argument should be passed as i32* and the high part as float, 3271 /// return {i32*, float}. 3272 static llvm::Type * 3273 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3274 const llvm::DataLayout &TD) { 3275 // In order to correctly satisfy the ABI, we need to the high part to start 3276 // at offset 8. If the high and low parts we inferred are both 4-byte types 3277 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3278 // the second element at offset 8. Check for this: 3279 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3280 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3281 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3282 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3283 3284 // To handle this, we have to increase the size of the low part so that the 3285 // second element will start at an 8 byte offset. We can't increase the size 3286 // of the second element because it might make us access off the end of the 3287 // struct. 3288 if (HiStart != 8) { 3289 // There are usually two sorts of types the ABI generation code can produce 3290 // for the low part of a pair that aren't 8 bytes in size: float or 3291 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3292 // NaCl). 3293 // Promote these to a larger type. 3294 if (Lo->isFloatTy()) 3295 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3296 else { 3297 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3298 && "Invalid/unknown lo type"); 3299 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3300 } 3301 } 3302 3303 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3304 3305 // Verify that the second element is at an 8-byte offset. 3306 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3307 "Invalid x86-64 argument pair!"); 3308 return Result; 3309 } 3310 3311 ABIArgInfo X86_64ABIInfo:: 3312 classifyReturnType(QualType RetTy) const { 3313 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3314 // classification algorithm. 3315 X86_64ABIInfo::Class Lo, Hi; 3316 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3317 3318 // Check some invariants. 3319 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3320 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3321 3322 llvm::Type *ResType = nullptr; 3323 switch (Lo) { 3324 case NoClass: 3325 if (Hi == NoClass) 3326 return ABIArgInfo::getIgnore(); 3327 // If the low part is just padding, it takes no register, leave ResType 3328 // null. 3329 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3330 "Unknown missing lo part"); 3331 break; 3332 3333 case SSEUp: 3334 case X87Up: 3335 llvm_unreachable("Invalid classification for lo word."); 3336 3337 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3338 // hidden argument. 3339 case Memory: 3340 return getIndirectReturnResult(RetTy); 3341 3342 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3343 // available register of the sequence %rax, %rdx is used. 3344 case Integer: 3345 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3346 3347 // If we have a sign or zero extended integer, make sure to return Extend 3348 // so that the parameter gets the right LLVM IR attributes. 3349 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3350 // Treat an enum type as its underlying type. 3351 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3352 RetTy = EnumTy->getDecl()->getIntegerType(); 3353 3354 if (RetTy->isIntegralOrEnumerationType() && 3355 RetTy->isPromotableIntegerType()) 3356 return ABIArgInfo::getExtend(RetTy); 3357 } 3358 break; 3359 3360 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3361 // available SSE register of the sequence %xmm0, %xmm1 is used. 3362 case SSE: 3363 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3364 break; 3365 3366 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3367 // returned on the X87 stack in %st0 as 80-bit x87 number. 3368 case X87: 3369 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3370 break; 3371 3372 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3373 // part of the value is returned in %st0 and the imaginary part in 3374 // %st1. 3375 case ComplexX87: 3376 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3377 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3378 llvm::Type::getX86_FP80Ty(getVMContext())); 3379 break; 3380 } 3381 3382 llvm::Type *HighPart = nullptr; 3383 switch (Hi) { 3384 // Memory was handled previously and X87 should 3385 // never occur as a hi class. 3386 case Memory: 3387 case X87: 3388 llvm_unreachable("Invalid classification for hi word."); 3389 3390 case ComplexX87: // Previously handled. 3391 case NoClass: 3392 break; 3393 3394 case Integer: 3395 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3396 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3397 return ABIArgInfo::getDirect(HighPart, 8); 3398 break; 3399 case SSE: 3400 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3401 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3402 return ABIArgInfo::getDirect(HighPart, 8); 3403 break; 3404 3405 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3406 // is passed in the next available eightbyte chunk if the last used 3407 // vector register. 3408 // 3409 // SSEUP should always be preceded by SSE, just widen. 3410 case SSEUp: 3411 assert(Lo == SSE && "Unexpected SSEUp classification."); 3412 ResType = GetByteVectorType(RetTy); 3413 break; 3414 3415 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3416 // returned together with the previous X87 value in %st0. 3417 case X87Up: 3418 // If X87Up is preceded by X87, we don't need to do 3419 // anything. However, in some cases with unions it may not be 3420 // preceded by X87. In such situations we follow gcc and pass the 3421 // extra bits in an SSE reg. 3422 if (Lo != X87) { 3423 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3424 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3425 return ABIArgInfo::getDirect(HighPart, 8); 3426 } 3427 break; 3428 } 3429 3430 // If a high part was specified, merge it together with the low part. It is 3431 // known to pass in the high eightbyte of the result. We do this by forming a 3432 // first class struct aggregate with the high and low part: {low, high} 3433 if (HighPart) 3434 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3435 3436 return ABIArgInfo::getDirect(ResType); 3437 } 3438 3439 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3440 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3441 bool isNamedArg) 3442 const 3443 { 3444 Ty = useFirstFieldIfTransparentUnion(Ty); 3445 3446 X86_64ABIInfo::Class Lo, Hi; 3447 classify(Ty, 0, Lo, Hi, isNamedArg); 3448 3449 // Check some invariants. 3450 // FIXME: Enforce these by construction. 3451 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3452 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3453 3454 neededInt = 0; 3455 neededSSE = 0; 3456 llvm::Type *ResType = nullptr; 3457 switch (Lo) { 3458 case NoClass: 3459 if (Hi == NoClass) 3460 return ABIArgInfo::getIgnore(); 3461 // If the low part is just padding, it takes no register, leave ResType 3462 // null. 3463 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3464 "Unknown missing lo part"); 3465 break; 3466 3467 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3468 // on the stack. 3469 case Memory: 3470 3471 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3472 // COMPLEX_X87, it is passed in memory. 3473 case X87: 3474 case ComplexX87: 3475 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3476 ++neededInt; 3477 return getIndirectResult(Ty, freeIntRegs); 3478 3479 case SSEUp: 3480 case X87Up: 3481 llvm_unreachable("Invalid classification for lo word."); 3482 3483 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3484 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3485 // and %r9 is used. 3486 case Integer: 3487 ++neededInt; 3488 3489 // Pick an 8-byte type based on the preferred type. 3490 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3491 3492 // If we have a sign or zero extended integer, make sure to return Extend 3493 // so that the parameter gets the right LLVM IR attributes. 3494 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3495 // Treat an enum type as its underlying type. 3496 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3497 Ty = EnumTy->getDecl()->getIntegerType(); 3498 3499 if (Ty->isIntegralOrEnumerationType() && 3500 Ty->isPromotableIntegerType()) 3501 return ABIArgInfo::getExtend(Ty); 3502 } 3503 3504 break; 3505 3506 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3507 // available SSE register is used, the registers are taken in the 3508 // order from %xmm0 to %xmm7. 3509 case SSE: { 3510 llvm::Type *IRType = CGT.ConvertType(Ty); 3511 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3512 ++neededSSE; 3513 break; 3514 } 3515 } 3516 3517 llvm::Type *HighPart = nullptr; 3518 switch (Hi) { 3519 // Memory was handled previously, ComplexX87 and X87 should 3520 // never occur as hi classes, and X87Up must be preceded by X87, 3521 // which is passed in memory. 3522 case Memory: 3523 case X87: 3524 case ComplexX87: 3525 llvm_unreachable("Invalid classification for hi word."); 3526 3527 case NoClass: break; 3528 3529 case Integer: 3530 ++neededInt; 3531 // Pick an 8-byte type based on the preferred type. 3532 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3533 3534 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3535 return ABIArgInfo::getDirect(HighPart, 8); 3536 break; 3537 3538 // X87Up generally doesn't occur here (long double is passed in 3539 // memory), except in situations involving unions. 3540 case X87Up: 3541 case SSE: 3542 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3543 3544 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3545 return ABIArgInfo::getDirect(HighPart, 8); 3546 3547 ++neededSSE; 3548 break; 3549 3550 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3551 // eightbyte is passed in the upper half of the last used SSE 3552 // register. This only happens when 128-bit vectors are passed. 3553 case SSEUp: 3554 assert(Lo == SSE && "Unexpected SSEUp classification"); 3555 ResType = GetByteVectorType(Ty); 3556 break; 3557 } 3558 3559 // If a high part was specified, merge it together with the low part. It is 3560 // known to pass in the high eightbyte of the result. We do this by forming a 3561 // first class struct aggregate with the high and low part: {low, high} 3562 if (HighPart) 3563 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3564 3565 return ABIArgInfo::getDirect(ResType); 3566 } 3567 3568 ABIArgInfo 3569 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3570 unsigned &NeededSSE) const { 3571 auto RT = Ty->getAs<RecordType>(); 3572 assert(RT && "classifyRegCallStructType only valid with struct types"); 3573 3574 if (RT->getDecl()->hasFlexibleArrayMember()) 3575 return getIndirectReturnResult(Ty); 3576 3577 // Sum up bases 3578 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3579 if (CXXRD->isDynamicClass()) { 3580 NeededInt = NeededSSE = 0; 3581 return getIndirectReturnResult(Ty); 3582 } 3583 3584 for (const auto &I : CXXRD->bases()) 3585 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3586 .isIndirect()) { 3587 NeededInt = NeededSSE = 0; 3588 return getIndirectReturnResult(Ty); 3589 } 3590 } 3591 3592 // Sum up members 3593 for (const auto *FD : RT->getDecl()->fields()) { 3594 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3595 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3596 .isIndirect()) { 3597 NeededInt = NeededSSE = 0; 3598 return getIndirectReturnResult(Ty); 3599 } 3600 } else { 3601 unsigned LocalNeededInt, LocalNeededSSE; 3602 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3603 LocalNeededSSE, true) 3604 .isIndirect()) { 3605 NeededInt = NeededSSE = 0; 3606 return getIndirectReturnResult(Ty); 3607 } 3608 NeededInt += LocalNeededInt; 3609 NeededSSE += LocalNeededSSE; 3610 } 3611 } 3612 3613 return ABIArgInfo::getDirect(); 3614 } 3615 3616 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3617 unsigned &NeededInt, 3618 unsigned &NeededSSE) const { 3619 3620 NeededInt = 0; 3621 NeededSSE = 0; 3622 3623 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3624 } 3625 3626 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3627 3628 const unsigned CallingConv = FI.getCallingConvention(); 3629 // It is possible to force Win64 calling convention on any x86_64 target by 3630 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3631 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3632 if (CallingConv == llvm::CallingConv::Win64) { 3633 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3634 Win64ABIInfo.computeInfo(FI); 3635 return; 3636 } 3637 3638 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3639 3640 // Keep track of the number of assigned registers. 3641 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3642 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3643 unsigned NeededInt, NeededSSE; 3644 3645 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3646 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3647 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3648 FI.getReturnInfo() = 3649 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3650 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3651 FreeIntRegs -= NeededInt; 3652 FreeSSERegs -= NeededSSE; 3653 } else { 3654 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3655 } 3656 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3657 // Complex Long Double Type is passed in Memory when Regcall 3658 // calling convention is used. 3659 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3660 if (getContext().getCanonicalType(CT->getElementType()) == 3661 getContext().LongDoubleTy) 3662 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3663 } else 3664 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3665 } 3666 3667 // If the return value is indirect, then the hidden argument is consuming one 3668 // integer register. 3669 if (FI.getReturnInfo().isIndirect()) 3670 --FreeIntRegs; 3671 3672 // The chain argument effectively gives us another free register. 3673 if (FI.isChainCall()) 3674 ++FreeIntRegs; 3675 3676 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3677 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3678 // get assigned (in left-to-right order) for passing as follows... 3679 unsigned ArgNo = 0; 3680 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3681 it != ie; ++it, ++ArgNo) { 3682 bool IsNamedArg = ArgNo < NumRequiredArgs; 3683 3684 if (IsRegCall && it->type->isStructureOrClassType()) 3685 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3686 else 3687 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3688 NeededSSE, IsNamedArg); 3689 3690 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3691 // eightbyte of an argument, the whole argument is passed on the 3692 // stack. If registers have already been assigned for some 3693 // eightbytes of such an argument, the assignments get reverted. 3694 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3695 FreeIntRegs -= NeededInt; 3696 FreeSSERegs -= NeededSSE; 3697 } else { 3698 it->info = getIndirectResult(it->type, FreeIntRegs); 3699 } 3700 } 3701 } 3702 3703 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3704 Address VAListAddr, QualType Ty) { 3705 Address overflow_arg_area_p = 3706 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3707 llvm::Value *overflow_arg_area = 3708 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3709 3710 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3711 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3712 // It isn't stated explicitly in the standard, but in practice we use 3713 // alignment greater than 16 where necessary. 3714 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3715 if (Align > CharUnits::fromQuantity(8)) { 3716 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3717 Align); 3718 } 3719 3720 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3721 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3722 llvm::Value *Res = 3723 CGF.Builder.CreateBitCast(overflow_arg_area, 3724 llvm::PointerType::getUnqual(LTy)); 3725 3726 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3727 // l->overflow_arg_area + sizeof(type). 3728 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3729 // an 8 byte boundary. 3730 3731 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3732 llvm::Value *Offset = 3733 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3734 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3735 "overflow_arg_area.next"); 3736 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3737 3738 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3739 return Address(Res, Align); 3740 } 3741 3742 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3743 QualType Ty) const { 3744 // Assume that va_list type is correct; should be pointer to LLVM type: 3745 // struct { 3746 // i32 gp_offset; 3747 // i32 fp_offset; 3748 // i8* overflow_arg_area; 3749 // i8* reg_save_area; 3750 // }; 3751 unsigned neededInt, neededSSE; 3752 3753 Ty = getContext().getCanonicalType(Ty); 3754 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3755 /*isNamedArg*/false); 3756 3757 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3758 // in the registers. If not go to step 7. 3759 if (!neededInt && !neededSSE) 3760 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3761 3762 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3763 // general purpose registers needed to pass type and num_fp to hold 3764 // the number of floating point registers needed. 3765 3766 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3767 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3768 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3769 // 3770 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3771 // register save space). 3772 3773 llvm::Value *InRegs = nullptr; 3774 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3775 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3776 if (neededInt) { 3777 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3778 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3779 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3780 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3781 } 3782 3783 if (neededSSE) { 3784 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3785 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3786 llvm::Value *FitsInFP = 3787 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3788 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3789 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3790 } 3791 3792 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3793 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3794 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3795 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3796 3797 // Emit code to load the value if it was passed in registers. 3798 3799 CGF.EmitBlock(InRegBlock); 3800 3801 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3802 // an offset of l->gp_offset and/or l->fp_offset. This may require 3803 // copying to a temporary location in case the parameter is passed 3804 // in different register classes or requires an alignment greater 3805 // than 8 for general purpose registers and 16 for XMM registers. 3806 // 3807 // FIXME: This really results in shameful code when we end up needing to 3808 // collect arguments from different places; often what should result in a 3809 // simple assembling of a structure from scattered addresses has many more 3810 // loads than necessary. Can we clean this up? 3811 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3812 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3813 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3814 3815 Address RegAddr = Address::invalid(); 3816 if (neededInt && neededSSE) { 3817 // FIXME: Cleanup. 3818 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3819 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3820 Address Tmp = CGF.CreateMemTemp(Ty); 3821 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3822 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3823 llvm::Type *TyLo = ST->getElementType(0); 3824 llvm::Type *TyHi = ST->getElementType(1); 3825 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3826 "Unexpected ABI info for mixed regs"); 3827 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3828 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3829 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3830 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3831 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3832 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3833 3834 // Copy the first element. 3835 // FIXME: Our choice of alignment here and below is probably pessimistic. 3836 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3837 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3838 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3839 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3840 3841 // Copy the second element. 3842 V = CGF.Builder.CreateAlignedLoad( 3843 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3844 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3845 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3846 3847 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3848 } else if (neededInt) { 3849 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3850 CharUnits::fromQuantity(8)); 3851 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3852 3853 // Copy to a temporary if necessary to ensure the appropriate alignment. 3854 std::pair<CharUnits, CharUnits> SizeAlign = 3855 getContext().getTypeInfoInChars(Ty); 3856 uint64_t TySize = SizeAlign.first.getQuantity(); 3857 CharUnits TyAlign = SizeAlign.second; 3858 3859 // Copy into a temporary if the type is more aligned than the 3860 // register save area. 3861 if (TyAlign.getQuantity() > 8) { 3862 Address Tmp = CGF.CreateMemTemp(Ty); 3863 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3864 RegAddr = Tmp; 3865 } 3866 3867 } else if (neededSSE == 1) { 3868 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3869 CharUnits::fromQuantity(16)); 3870 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3871 } else { 3872 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3873 // SSE registers are spaced 16 bytes apart in the register save 3874 // area, we need to collect the two eightbytes together. 3875 // The ABI isn't explicit about this, but it seems reasonable 3876 // to assume that the slots are 16-byte aligned, since the stack is 3877 // naturally 16-byte aligned and the prologue is expected to store 3878 // all the SSE registers to the RSA. 3879 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3880 CharUnits::fromQuantity(16)); 3881 Address RegAddrHi = 3882 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3883 CharUnits::fromQuantity(16)); 3884 llvm::Type *ST = AI.canHaveCoerceToType() 3885 ? AI.getCoerceToType() 3886 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3887 llvm::Value *V; 3888 Address Tmp = CGF.CreateMemTemp(Ty); 3889 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3890 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3891 RegAddrLo, ST->getStructElementType(0))); 3892 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3893 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3894 RegAddrHi, ST->getStructElementType(1))); 3895 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3896 3897 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3898 } 3899 3900 // AMD64-ABI 3.5.7p5: Step 5. Set: 3901 // l->gp_offset = l->gp_offset + num_gp * 8 3902 // l->fp_offset = l->fp_offset + num_fp * 16. 3903 if (neededInt) { 3904 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3905 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3906 gp_offset_p); 3907 } 3908 if (neededSSE) { 3909 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3910 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3911 fp_offset_p); 3912 } 3913 CGF.EmitBranch(ContBlock); 3914 3915 // Emit code to load the value if it was passed in memory. 3916 3917 CGF.EmitBlock(InMemBlock); 3918 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3919 3920 // Return the appropriate result. 3921 3922 CGF.EmitBlock(ContBlock); 3923 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3924 "vaarg.addr"); 3925 return ResAddr; 3926 } 3927 3928 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3929 QualType Ty) const { 3930 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3931 CGF.getContext().getTypeInfoInChars(Ty), 3932 CharUnits::fromQuantity(8), 3933 /*allowHigherAlign*/ false); 3934 } 3935 3936 ABIArgInfo 3937 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3938 const ABIArgInfo ¤t) const { 3939 // Assumes vectorCall calling convention. 3940 const Type *Base = nullptr; 3941 uint64_t NumElts = 0; 3942 3943 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3944 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3945 FreeSSERegs -= NumElts; 3946 return getDirectX86Hva(); 3947 } 3948 return current; 3949 } 3950 3951 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3952 bool IsReturnType, bool IsVectorCall, 3953 bool IsRegCall) const { 3954 3955 if (Ty->isVoidType()) 3956 return ABIArgInfo::getIgnore(); 3957 3958 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3959 Ty = EnumTy->getDecl()->getIntegerType(); 3960 3961 TypeInfo Info = getContext().getTypeInfo(Ty); 3962 uint64_t Width = Info.Width; 3963 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3964 3965 const RecordType *RT = Ty->getAs<RecordType>(); 3966 if (RT) { 3967 if (!IsReturnType) { 3968 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3969 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3970 } 3971 3972 if (RT->getDecl()->hasFlexibleArrayMember()) 3973 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3974 3975 } 3976 3977 const Type *Base = nullptr; 3978 uint64_t NumElts = 0; 3979 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3980 // other targets. 3981 if ((IsVectorCall || IsRegCall) && 3982 isHomogeneousAggregate(Ty, Base, NumElts)) { 3983 if (IsRegCall) { 3984 if (FreeSSERegs >= NumElts) { 3985 FreeSSERegs -= NumElts; 3986 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3987 return ABIArgInfo::getDirect(); 3988 return ABIArgInfo::getExpand(); 3989 } 3990 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3991 } else if (IsVectorCall) { 3992 if (FreeSSERegs >= NumElts && 3993 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3994 FreeSSERegs -= NumElts; 3995 return ABIArgInfo::getDirect(); 3996 } else if (IsReturnType) { 3997 return ABIArgInfo::getExpand(); 3998 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3999 // HVAs are delayed and reclassified in the 2nd step. 4000 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4001 } 4002 } 4003 } 4004 4005 if (Ty->isMemberPointerType()) { 4006 // If the member pointer is represented by an LLVM int or ptr, pass it 4007 // directly. 4008 llvm::Type *LLTy = CGT.ConvertType(Ty); 4009 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4010 return ABIArgInfo::getDirect(); 4011 } 4012 4013 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4014 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4015 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4016 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4017 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4018 4019 // Otherwise, coerce it to a small integer. 4020 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4021 } 4022 4023 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4024 switch (BT->getKind()) { 4025 case BuiltinType::Bool: 4026 // Bool type is always extended to the ABI, other builtin types are not 4027 // extended. 4028 return ABIArgInfo::getExtend(Ty); 4029 4030 case BuiltinType::LongDouble: 4031 // Mingw64 GCC uses the old 80 bit extended precision floating point 4032 // unit. It passes them indirectly through memory. 4033 if (IsMingw64) { 4034 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4035 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4036 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4037 } 4038 break; 4039 4040 case BuiltinType::Int128: 4041 case BuiltinType::UInt128: 4042 // If it's a parameter type, the normal ABI rule is that arguments larger 4043 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4044 // even though it isn't particularly efficient. 4045 if (!IsReturnType) 4046 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4047 4048 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4049 // Clang matches them for compatibility. 4050 return ABIArgInfo::getDirect( 4051 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4052 4053 default: 4054 break; 4055 } 4056 } 4057 4058 return ABIArgInfo::getDirect(); 4059 } 4060 4061 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4062 unsigned FreeSSERegs, 4063 bool IsVectorCall, 4064 bool IsRegCall) const { 4065 unsigned Count = 0; 4066 for (auto &I : FI.arguments()) { 4067 // Vectorcall in x64 only permits the first 6 arguments to be passed 4068 // as XMM/YMM registers. 4069 if (Count < VectorcallMaxParamNumAsReg) 4070 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4071 else { 4072 // Since these cannot be passed in registers, pretend no registers 4073 // are left. 4074 unsigned ZeroSSERegsAvail = 0; 4075 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4076 IsVectorCall, IsRegCall); 4077 } 4078 ++Count; 4079 } 4080 4081 for (auto &I : FI.arguments()) { 4082 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4083 } 4084 } 4085 4086 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4087 const unsigned CC = FI.getCallingConvention(); 4088 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4089 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4090 4091 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4092 // classification rules. 4093 if (CC == llvm::CallingConv::X86_64_SysV) { 4094 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4095 SysVABIInfo.computeInfo(FI); 4096 return; 4097 } 4098 4099 unsigned FreeSSERegs = 0; 4100 if (IsVectorCall) { 4101 // We can use up to 4 SSE return registers with vectorcall. 4102 FreeSSERegs = 4; 4103 } else if (IsRegCall) { 4104 // RegCall gives us 16 SSE registers. 4105 FreeSSERegs = 16; 4106 } 4107 4108 if (!getCXXABI().classifyReturnType(FI)) 4109 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4110 IsVectorCall, IsRegCall); 4111 4112 if (IsVectorCall) { 4113 // We can use up to 6 SSE register parameters with vectorcall. 4114 FreeSSERegs = 6; 4115 } else if (IsRegCall) { 4116 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4117 FreeSSERegs = 16; 4118 } 4119 4120 if (IsVectorCall) { 4121 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4122 } else { 4123 for (auto &I : FI.arguments()) 4124 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4125 } 4126 4127 } 4128 4129 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4130 QualType Ty) const { 4131 4132 bool IsIndirect = false; 4133 4134 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4135 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4136 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4137 uint64_t Width = getContext().getTypeSize(Ty); 4138 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4139 } 4140 4141 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4142 CGF.getContext().getTypeInfoInChars(Ty), 4143 CharUnits::fromQuantity(8), 4144 /*allowHigherAlign*/ false); 4145 } 4146 4147 // PowerPC-32 4148 namespace { 4149 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4150 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4151 bool IsSoftFloatABI; 4152 4153 CharUnits getParamTypeAlignment(QualType Ty) const; 4154 4155 public: 4156 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4157 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4158 4159 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4160 QualType Ty) const override; 4161 }; 4162 4163 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4164 public: 4165 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4166 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4167 4168 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4169 // This is recovered from gcc output. 4170 return 1; // r1 is the dedicated stack pointer 4171 } 4172 4173 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4174 llvm::Value *Address) const override; 4175 }; 4176 } 4177 4178 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4179 // Complex types are passed just like their elements 4180 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4181 Ty = CTy->getElementType(); 4182 4183 if (Ty->isVectorType()) 4184 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4185 : 4); 4186 4187 // For single-element float/vector structs, we consider the whole type 4188 // to have the same alignment requirements as its single element. 4189 const Type *AlignTy = nullptr; 4190 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4191 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4192 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4193 (BT && BT->isFloatingPoint())) 4194 AlignTy = EltType; 4195 } 4196 4197 if (AlignTy) 4198 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4199 return CharUnits::fromQuantity(4); 4200 } 4201 4202 // TODO: this implementation is now likely redundant with 4203 // DefaultABIInfo::EmitVAArg. 4204 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4205 QualType Ty) const { 4206 if (getTarget().getTriple().isOSDarwin()) { 4207 auto TI = getContext().getTypeInfoInChars(Ty); 4208 TI.second = getParamTypeAlignment(Ty); 4209 4210 CharUnits SlotSize = CharUnits::fromQuantity(4); 4211 return emitVoidPtrVAArg(CGF, VAList, Ty, 4212 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4213 /*AllowHigherAlign=*/true); 4214 } 4215 4216 const unsigned OverflowLimit = 8; 4217 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4218 // TODO: Implement this. For now ignore. 4219 (void)CTy; 4220 return Address::invalid(); // FIXME? 4221 } 4222 4223 // struct __va_list_tag { 4224 // unsigned char gpr; 4225 // unsigned char fpr; 4226 // unsigned short reserved; 4227 // void *overflow_arg_area; 4228 // void *reg_save_area; 4229 // }; 4230 4231 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4232 bool isInt = 4233 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4234 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4235 4236 // All aggregates are passed indirectly? That doesn't seem consistent 4237 // with the argument-lowering code. 4238 bool isIndirect = Ty->isAggregateType(); 4239 4240 CGBuilderTy &Builder = CGF.Builder; 4241 4242 // The calling convention either uses 1-2 GPRs or 1 FPR. 4243 Address NumRegsAddr = Address::invalid(); 4244 if (isInt || IsSoftFloatABI) { 4245 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4246 } else { 4247 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4248 } 4249 4250 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4251 4252 // "Align" the register count when TY is i64. 4253 if (isI64 || (isF64 && IsSoftFloatABI)) { 4254 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4255 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4256 } 4257 4258 llvm::Value *CC = 4259 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4260 4261 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4262 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4263 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4264 4265 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4266 4267 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4268 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4269 4270 // Case 1: consume registers. 4271 Address RegAddr = Address::invalid(); 4272 { 4273 CGF.EmitBlock(UsingRegs); 4274 4275 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4276 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4277 CharUnits::fromQuantity(8)); 4278 assert(RegAddr.getElementType() == CGF.Int8Ty); 4279 4280 // Floating-point registers start after the general-purpose registers. 4281 if (!(isInt || IsSoftFloatABI)) { 4282 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4283 CharUnits::fromQuantity(32)); 4284 } 4285 4286 // Get the address of the saved value by scaling the number of 4287 // registers we've used by the number of 4288 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4289 llvm::Value *RegOffset = 4290 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4291 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4292 RegAddr.getPointer(), RegOffset), 4293 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4294 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4295 4296 // Increase the used-register count. 4297 NumRegs = 4298 Builder.CreateAdd(NumRegs, 4299 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4300 Builder.CreateStore(NumRegs, NumRegsAddr); 4301 4302 CGF.EmitBranch(Cont); 4303 } 4304 4305 // Case 2: consume space in the overflow area. 4306 Address MemAddr = Address::invalid(); 4307 { 4308 CGF.EmitBlock(UsingOverflow); 4309 4310 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4311 4312 // Everything in the overflow area is rounded up to a size of at least 4. 4313 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4314 4315 CharUnits Size; 4316 if (!isIndirect) { 4317 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4318 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4319 } else { 4320 Size = CGF.getPointerSize(); 4321 } 4322 4323 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4324 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4325 OverflowAreaAlign); 4326 // Round up address of argument to alignment 4327 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4328 if (Align > OverflowAreaAlign) { 4329 llvm::Value *Ptr = OverflowArea.getPointer(); 4330 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4331 Align); 4332 } 4333 4334 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4335 4336 // Increase the overflow area. 4337 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4338 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4339 CGF.EmitBranch(Cont); 4340 } 4341 4342 CGF.EmitBlock(Cont); 4343 4344 // Merge the cases with a phi. 4345 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4346 "vaarg.addr"); 4347 4348 // Load the pointer if the argument was passed indirectly. 4349 if (isIndirect) { 4350 Result = Address(Builder.CreateLoad(Result, "aggr"), 4351 getContext().getTypeAlignInChars(Ty)); 4352 } 4353 4354 return Result; 4355 } 4356 4357 bool 4358 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4359 llvm::Value *Address) const { 4360 // This is calculated from the LLVM and GCC tables and verified 4361 // against gcc output. AFAIK all ABIs use the same encoding. 4362 4363 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4364 4365 llvm::IntegerType *i8 = CGF.Int8Ty; 4366 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4367 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4368 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4369 4370 // 0-31: r0-31, the 4-byte general-purpose registers 4371 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4372 4373 // 32-63: fp0-31, the 8-byte floating-point registers 4374 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4375 4376 // 64-76 are various 4-byte special-purpose registers: 4377 // 64: mq 4378 // 65: lr 4379 // 66: ctr 4380 // 67: ap 4381 // 68-75 cr0-7 4382 // 76: xer 4383 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4384 4385 // 77-108: v0-31, the 16-byte vector registers 4386 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4387 4388 // 109: vrsave 4389 // 110: vscr 4390 // 111: spe_acc 4391 // 112: spefscr 4392 // 113: sfp 4393 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4394 4395 return false; 4396 } 4397 4398 // PowerPC-64 4399 4400 namespace { 4401 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4402 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4403 public: 4404 enum ABIKind { 4405 ELFv1 = 0, 4406 ELFv2 4407 }; 4408 4409 private: 4410 static const unsigned GPRBits = 64; 4411 ABIKind Kind; 4412 bool HasQPX; 4413 bool IsSoftFloatABI; 4414 4415 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4416 // will be passed in a QPX register. 4417 bool IsQPXVectorTy(const Type *Ty) const { 4418 if (!HasQPX) 4419 return false; 4420 4421 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4422 unsigned NumElements = VT->getNumElements(); 4423 if (NumElements == 1) 4424 return false; 4425 4426 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4427 if (getContext().getTypeSize(Ty) <= 256) 4428 return true; 4429 } else if (VT->getElementType()-> 4430 isSpecificBuiltinType(BuiltinType::Float)) { 4431 if (getContext().getTypeSize(Ty) <= 128) 4432 return true; 4433 } 4434 } 4435 4436 return false; 4437 } 4438 4439 bool IsQPXVectorTy(QualType Ty) const { 4440 return IsQPXVectorTy(Ty.getTypePtr()); 4441 } 4442 4443 public: 4444 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4445 bool SoftFloatABI) 4446 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4447 IsSoftFloatABI(SoftFloatABI) {} 4448 4449 bool isPromotableTypeForABI(QualType Ty) const; 4450 CharUnits getParamTypeAlignment(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4456 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4457 uint64_t Members) const override; 4458 4459 // TODO: We can add more logic to computeInfo to improve performance. 4460 // Example: For aggregate arguments that fit in a register, we could 4461 // use getDirectInReg (as is done below for structs containing a single 4462 // floating-point value) to avoid pushing them to memory on function 4463 // entry. This would require changing the logic in PPCISelLowering 4464 // when lowering the parameters in the caller and args in the callee. 4465 void computeInfo(CGFunctionInfo &FI) const override { 4466 if (!getCXXABI().classifyReturnType(FI)) 4467 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4468 for (auto &I : FI.arguments()) { 4469 // We rely on the default argument classification for the most part. 4470 // One exception: An aggregate containing a single floating-point 4471 // or vector item must be passed in a register if one is available. 4472 const Type *T = isSingleElementStruct(I.type, getContext()); 4473 if (T) { 4474 const BuiltinType *BT = T->getAs<BuiltinType>(); 4475 if (IsQPXVectorTy(T) || 4476 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4477 (BT && BT->isFloatingPoint())) { 4478 QualType QT(T, 0); 4479 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4480 continue; 4481 } 4482 } 4483 I.info = classifyArgumentType(I.type); 4484 } 4485 } 4486 4487 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4488 QualType Ty) const override; 4489 4490 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4491 bool asReturnValue) const override { 4492 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4493 } 4494 4495 bool isSwiftErrorInRegister() const override { 4496 return false; 4497 } 4498 }; 4499 4500 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4501 4502 public: 4503 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4504 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4505 bool SoftFloatABI) 4506 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4507 SoftFloatABI)) {} 4508 4509 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4510 // This is recovered from gcc output. 4511 return 1; // r1 is the dedicated stack pointer 4512 } 4513 4514 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4515 llvm::Value *Address) const override; 4516 }; 4517 4518 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4519 public: 4520 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4521 4522 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4523 // This is recovered from gcc output. 4524 return 1; // r1 is the dedicated stack pointer 4525 } 4526 4527 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4528 llvm::Value *Address) const override; 4529 }; 4530 4531 } 4532 4533 // Return true if the ABI requires Ty to be passed sign- or zero- 4534 // extended to 64 bits. 4535 bool 4536 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4537 // Treat an enum type as its underlying type. 4538 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4539 Ty = EnumTy->getDecl()->getIntegerType(); 4540 4541 // Promotable integer types are required to be promoted by the ABI. 4542 if (Ty->isPromotableIntegerType()) 4543 return true; 4544 4545 // In addition to the usual promotable integer types, we also need to 4546 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4547 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4548 switch (BT->getKind()) { 4549 case BuiltinType::Int: 4550 case BuiltinType::UInt: 4551 return true; 4552 default: 4553 break; 4554 } 4555 4556 return false; 4557 } 4558 4559 /// isAlignedParamType - Determine whether a type requires 16-byte or 4560 /// higher alignment in the parameter area. Always returns at least 8. 4561 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4562 // Complex types are passed just like their elements. 4563 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4564 Ty = CTy->getElementType(); 4565 4566 // Only vector types of size 16 bytes need alignment (larger types are 4567 // passed via reference, smaller types are not aligned). 4568 if (IsQPXVectorTy(Ty)) { 4569 if (getContext().getTypeSize(Ty) > 128) 4570 return CharUnits::fromQuantity(32); 4571 4572 return CharUnits::fromQuantity(16); 4573 } else if (Ty->isVectorType()) { 4574 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4575 } 4576 4577 // For single-element float/vector structs, we consider the whole type 4578 // to have the same alignment requirements as its single element. 4579 const Type *AlignAsType = nullptr; 4580 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4581 if (EltType) { 4582 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4583 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4584 getContext().getTypeSize(EltType) == 128) || 4585 (BT && BT->isFloatingPoint())) 4586 AlignAsType = EltType; 4587 } 4588 4589 // Likewise for ELFv2 homogeneous aggregates. 4590 const Type *Base = nullptr; 4591 uint64_t Members = 0; 4592 if (!AlignAsType && Kind == ELFv2 && 4593 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4594 AlignAsType = Base; 4595 4596 // With special case aggregates, only vector base types need alignment. 4597 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4598 if (getContext().getTypeSize(AlignAsType) > 128) 4599 return CharUnits::fromQuantity(32); 4600 4601 return CharUnits::fromQuantity(16); 4602 } else if (AlignAsType) { 4603 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4604 } 4605 4606 // Otherwise, we only need alignment for any aggregate type that 4607 // has an alignment requirement of >= 16 bytes. 4608 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4609 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4610 return CharUnits::fromQuantity(32); 4611 return CharUnits::fromQuantity(16); 4612 } 4613 4614 return CharUnits::fromQuantity(8); 4615 } 4616 4617 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4618 /// aggregate. Base is set to the base element type, and Members is set 4619 /// to the number of base elements. 4620 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4621 uint64_t &Members) const { 4622 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4623 uint64_t NElements = AT->getSize().getZExtValue(); 4624 if (NElements == 0) 4625 return false; 4626 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4627 return false; 4628 Members *= NElements; 4629 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4630 const RecordDecl *RD = RT->getDecl(); 4631 if (RD->hasFlexibleArrayMember()) 4632 return false; 4633 4634 Members = 0; 4635 4636 // If this is a C++ record, check the bases first. 4637 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4638 for (const auto &I : CXXRD->bases()) { 4639 // Ignore empty records. 4640 if (isEmptyRecord(getContext(), I.getType(), true)) 4641 continue; 4642 4643 uint64_t FldMembers; 4644 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4645 return false; 4646 4647 Members += FldMembers; 4648 } 4649 } 4650 4651 for (const auto *FD : RD->fields()) { 4652 // Ignore (non-zero arrays of) empty records. 4653 QualType FT = FD->getType(); 4654 while (const ConstantArrayType *AT = 4655 getContext().getAsConstantArrayType(FT)) { 4656 if (AT->getSize().getZExtValue() == 0) 4657 return false; 4658 FT = AT->getElementType(); 4659 } 4660 if (isEmptyRecord(getContext(), FT, true)) 4661 continue; 4662 4663 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4664 if (getContext().getLangOpts().CPlusPlus && 4665 FD->isZeroLengthBitField(getContext())) 4666 continue; 4667 4668 uint64_t FldMembers; 4669 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4670 return false; 4671 4672 Members = (RD->isUnion() ? 4673 std::max(Members, FldMembers) : Members + FldMembers); 4674 } 4675 4676 if (!Base) 4677 return false; 4678 4679 // Ensure there is no padding. 4680 if (getContext().getTypeSize(Base) * Members != 4681 getContext().getTypeSize(Ty)) 4682 return false; 4683 } else { 4684 Members = 1; 4685 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4686 Members = 2; 4687 Ty = CT->getElementType(); 4688 } 4689 4690 // Most ABIs only support float, double, and some vector type widths. 4691 if (!isHomogeneousAggregateBaseType(Ty)) 4692 return false; 4693 4694 // The base type must be the same for all members. Types that 4695 // agree in both total size and mode (float vs. vector) are 4696 // treated as being equivalent here. 4697 const Type *TyPtr = Ty.getTypePtr(); 4698 if (!Base) { 4699 Base = TyPtr; 4700 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4701 // so make sure to widen it explicitly. 4702 if (const VectorType *VT = Base->getAs<VectorType>()) { 4703 QualType EltTy = VT->getElementType(); 4704 unsigned NumElements = 4705 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4706 Base = getContext() 4707 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4708 .getTypePtr(); 4709 } 4710 } 4711 4712 if (Base->isVectorType() != TyPtr->isVectorType() || 4713 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4714 return false; 4715 } 4716 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4717 } 4718 4719 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4720 // Homogeneous aggregates for ELFv2 must have base types of float, 4721 // double, long double, or 128-bit vectors. 4722 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4723 if (BT->getKind() == BuiltinType::Float || 4724 BT->getKind() == BuiltinType::Double || 4725 BT->getKind() == BuiltinType::LongDouble || 4726 (getContext().getTargetInfo().hasFloat128Type() && 4727 (BT->getKind() == BuiltinType::Float128))) { 4728 if (IsSoftFloatABI) 4729 return false; 4730 return true; 4731 } 4732 } 4733 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4734 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4735 return true; 4736 } 4737 return false; 4738 } 4739 4740 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4741 const Type *Base, uint64_t Members) const { 4742 // Vector and fp128 types require one register, other floating point types 4743 // require one or two registers depending on their size. 4744 uint32_t NumRegs = 4745 ((getContext().getTargetInfo().hasFloat128Type() && 4746 Base->isFloat128Type()) || 4747 Base->isVectorType()) ? 1 4748 : (getContext().getTypeSize(Base) + 63) / 64; 4749 4750 // Homogeneous Aggregates may occupy at most 8 registers. 4751 return Members * NumRegs <= 8; 4752 } 4753 4754 ABIArgInfo 4755 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4756 Ty = useFirstFieldIfTransparentUnion(Ty); 4757 4758 if (Ty->isAnyComplexType()) 4759 return ABIArgInfo::getDirect(); 4760 4761 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4762 // or via reference (larger than 16 bytes). 4763 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4764 uint64_t Size = getContext().getTypeSize(Ty); 4765 if (Size > 128) 4766 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4767 else if (Size < 128) { 4768 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4769 return ABIArgInfo::getDirect(CoerceTy); 4770 } 4771 } 4772 4773 if (isAggregateTypeForABI(Ty)) { 4774 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4775 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4776 4777 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4778 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4779 4780 // ELFv2 homogeneous aggregates are passed as array types. 4781 const Type *Base = nullptr; 4782 uint64_t Members = 0; 4783 if (Kind == ELFv2 && 4784 isHomogeneousAggregate(Ty, Base, Members)) { 4785 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4786 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4787 return ABIArgInfo::getDirect(CoerceTy); 4788 } 4789 4790 // If an aggregate may end up fully in registers, we do not 4791 // use the ByVal method, but pass the aggregate as array. 4792 // This is usually beneficial since we avoid forcing the 4793 // back-end to store the argument to memory. 4794 uint64_t Bits = getContext().getTypeSize(Ty); 4795 if (Bits > 0 && Bits <= 8 * GPRBits) { 4796 llvm::Type *CoerceTy; 4797 4798 // Types up to 8 bytes are passed as integer type (which will be 4799 // properly aligned in the argument save area doubleword). 4800 if (Bits <= GPRBits) 4801 CoerceTy = 4802 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4803 // Larger types are passed as arrays, with the base type selected 4804 // according to the required alignment in the save area. 4805 else { 4806 uint64_t RegBits = ABIAlign * 8; 4807 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4808 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4809 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4810 } 4811 4812 return ABIArgInfo::getDirect(CoerceTy); 4813 } 4814 4815 // All other aggregates are passed ByVal. 4816 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4817 /*ByVal=*/true, 4818 /*Realign=*/TyAlign > ABIAlign); 4819 } 4820 4821 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4822 : ABIArgInfo::getDirect()); 4823 } 4824 4825 ABIArgInfo 4826 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4827 if (RetTy->isVoidType()) 4828 return ABIArgInfo::getIgnore(); 4829 4830 if (RetTy->isAnyComplexType()) 4831 return ABIArgInfo::getDirect(); 4832 4833 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4834 // or via reference (larger than 16 bytes). 4835 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4836 uint64_t Size = getContext().getTypeSize(RetTy); 4837 if (Size > 128) 4838 return getNaturalAlignIndirect(RetTy); 4839 else if (Size < 128) { 4840 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4841 return ABIArgInfo::getDirect(CoerceTy); 4842 } 4843 } 4844 4845 if (isAggregateTypeForABI(RetTy)) { 4846 // ELFv2 homogeneous aggregates are returned as array types. 4847 const Type *Base = nullptr; 4848 uint64_t Members = 0; 4849 if (Kind == ELFv2 && 4850 isHomogeneousAggregate(RetTy, Base, Members)) { 4851 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4852 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4853 return ABIArgInfo::getDirect(CoerceTy); 4854 } 4855 4856 // ELFv2 small aggregates are returned in up to two registers. 4857 uint64_t Bits = getContext().getTypeSize(RetTy); 4858 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4859 if (Bits == 0) 4860 return ABIArgInfo::getIgnore(); 4861 4862 llvm::Type *CoerceTy; 4863 if (Bits > GPRBits) { 4864 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4865 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4866 } else 4867 CoerceTy = 4868 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4869 return ABIArgInfo::getDirect(CoerceTy); 4870 } 4871 4872 // All other aggregates are returned indirectly. 4873 return getNaturalAlignIndirect(RetTy); 4874 } 4875 4876 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4877 : ABIArgInfo::getDirect()); 4878 } 4879 4880 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4881 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4882 QualType Ty) const { 4883 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4884 TypeInfo.second = getParamTypeAlignment(Ty); 4885 4886 CharUnits SlotSize = CharUnits::fromQuantity(8); 4887 4888 // If we have a complex type and the base type is smaller than 8 bytes, 4889 // the ABI calls for the real and imaginary parts to be right-adjusted 4890 // in separate doublewords. However, Clang expects us to produce a 4891 // pointer to a structure with the two parts packed tightly. So generate 4892 // loads of the real and imaginary parts relative to the va_list pointer, 4893 // and store them to a temporary structure. 4894 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4895 CharUnits EltSize = TypeInfo.first / 2; 4896 if (EltSize < SlotSize) { 4897 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4898 SlotSize * 2, SlotSize, 4899 SlotSize, /*AllowHigher*/ true); 4900 4901 Address RealAddr = Addr; 4902 Address ImagAddr = RealAddr; 4903 if (CGF.CGM.getDataLayout().isBigEndian()) { 4904 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4905 SlotSize - EltSize); 4906 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4907 2 * SlotSize - EltSize); 4908 } else { 4909 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4910 } 4911 4912 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4913 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4914 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4915 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4916 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4917 4918 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4919 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4920 /*init*/ true); 4921 return Temp; 4922 } 4923 } 4924 4925 // Otherwise, just use the general rule. 4926 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4927 TypeInfo, SlotSize, /*AllowHigher*/ true); 4928 } 4929 4930 static bool 4931 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4932 llvm::Value *Address) { 4933 // This is calculated from the LLVM and GCC tables and verified 4934 // against gcc output. AFAIK all ABIs use the same encoding. 4935 4936 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4937 4938 llvm::IntegerType *i8 = CGF.Int8Ty; 4939 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4940 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4941 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4942 4943 // 0-31: r0-31, the 8-byte general-purpose registers 4944 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4945 4946 // 32-63: fp0-31, the 8-byte floating-point registers 4947 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4948 4949 // 64-67 are various 8-byte special-purpose registers: 4950 // 64: mq 4951 // 65: lr 4952 // 66: ctr 4953 // 67: ap 4954 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4955 4956 // 68-76 are various 4-byte special-purpose registers: 4957 // 68-75 cr0-7 4958 // 76: xer 4959 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4960 4961 // 77-108: v0-31, the 16-byte vector registers 4962 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4963 4964 // 109: vrsave 4965 // 110: vscr 4966 // 111: spe_acc 4967 // 112: spefscr 4968 // 113: sfp 4969 // 114: tfhar 4970 // 115: tfiar 4971 // 116: texasr 4972 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4973 4974 return false; 4975 } 4976 4977 bool 4978 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4979 CodeGen::CodeGenFunction &CGF, 4980 llvm::Value *Address) const { 4981 4982 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4983 } 4984 4985 bool 4986 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4987 llvm::Value *Address) const { 4988 4989 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4990 } 4991 4992 //===----------------------------------------------------------------------===// 4993 // AArch64 ABI Implementation 4994 //===----------------------------------------------------------------------===// 4995 4996 namespace { 4997 4998 class AArch64ABIInfo : public SwiftABIInfo { 4999 public: 5000 enum ABIKind { 5001 AAPCS = 0, 5002 DarwinPCS, 5003 Win64 5004 }; 5005 5006 private: 5007 ABIKind Kind; 5008 5009 public: 5010 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5011 : SwiftABIInfo(CGT), Kind(Kind) {} 5012 5013 private: 5014 ABIKind getABIKind() const { return Kind; } 5015 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5016 5017 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5018 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5019 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5020 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5021 uint64_t Members) const override; 5022 5023 bool isIllegalVectorType(QualType Ty) const; 5024 5025 void computeInfo(CGFunctionInfo &FI) const override { 5026 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5027 FI.getReturnInfo() = 5028 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5029 5030 for (auto &it : FI.arguments()) 5031 it.info = classifyArgumentType(it.type); 5032 } 5033 5034 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5035 CodeGenFunction &CGF) const; 5036 5037 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5038 CodeGenFunction &CGF) const; 5039 5040 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5041 QualType Ty) const override { 5042 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5043 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5044 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5045 } 5046 5047 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5048 QualType Ty) const override; 5049 5050 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5051 bool asReturnValue) const override { 5052 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5053 } 5054 bool isSwiftErrorInRegister() const override { 5055 return true; 5056 } 5057 5058 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5059 unsigned elts) const override; 5060 }; 5061 5062 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5063 public: 5064 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5065 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5066 5067 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5068 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5069 } 5070 5071 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5072 return 31; 5073 } 5074 5075 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5076 5077 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5078 CodeGen::CodeGenModule &CGM) const override { 5079 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5080 if (!FD) 5081 return; 5082 5083 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5084 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5085 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5086 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5087 ParsedTargetAttr Attr = TA->parse(); 5088 if (!Attr.BranchProtection.empty()) { 5089 TargetInfo::BranchProtectionInfo BPI; 5090 StringRef Error; 5091 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5092 BPI, Error); 5093 assert(Error.empty()); 5094 Scope = BPI.SignReturnAddr; 5095 Key = BPI.SignKey; 5096 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5097 } 5098 } 5099 5100 auto *Fn = cast<llvm::Function>(GV); 5101 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5102 Fn->addFnAttr("sign-return-address", 5103 Scope == CodeGenOptions::SignReturnAddressScope::All 5104 ? "all" 5105 : "non-leaf"); 5106 5107 Fn->addFnAttr("sign-return-address-key", 5108 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5109 ? "a_key" 5110 : "b_key"); 5111 } 5112 5113 if (BranchTargetEnforcement) 5114 Fn->addFnAttr("branch-target-enforcement"); 5115 } 5116 }; 5117 5118 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5119 public: 5120 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5121 : AArch64TargetCodeGenInfo(CGT, K) {} 5122 5123 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5124 CodeGen::CodeGenModule &CGM) const override; 5125 5126 void getDependentLibraryOption(llvm::StringRef Lib, 5127 llvm::SmallString<24> &Opt) const override { 5128 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5129 } 5130 5131 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5132 llvm::SmallString<32> &Opt) const override { 5133 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5134 } 5135 }; 5136 5137 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5138 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5139 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5140 if (GV->isDeclaration()) 5141 return; 5142 addStackProbeTargetAttributes(D, GV, CGM); 5143 } 5144 } 5145 5146 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5147 Ty = useFirstFieldIfTransparentUnion(Ty); 5148 5149 // Handle illegal vector types here. 5150 if (isIllegalVectorType(Ty)) { 5151 uint64_t Size = getContext().getTypeSize(Ty); 5152 // Android promotes <2 x i8> to i16, not i32 5153 if (isAndroid() && (Size <= 16)) { 5154 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5155 return ABIArgInfo::getDirect(ResType); 5156 } 5157 if (Size <= 32) { 5158 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5159 return ABIArgInfo::getDirect(ResType); 5160 } 5161 if (Size == 64) { 5162 llvm::Type *ResType = 5163 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5164 return ABIArgInfo::getDirect(ResType); 5165 } 5166 if (Size == 128) { 5167 llvm::Type *ResType = 5168 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5169 return ABIArgInfo::getDirect(ResType); 5170 } 5171 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5172 } 5173 5174 if (!isAggregateTypeForABI(Ty)) { 5175 // Treat an enum type as its underlying type. 5176 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5177 Ty = EnumTy->getDecl()->getIntegerType(); 5178 5179 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5180 ? ABIArgInfo::getExtend(Ty) 5181 : ABIArgInfo::getDirect()); 5182 } 5183 5184 // Structures with either a non-trivial destructor or a non-trivial 5185 // copy constructor are always indirect. 5186 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5187 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5188 CGCXXABI::RAA_DirectInMemory); 5189 } 5190 5191 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5192 // elsewhere for GNU compatibility. 5193 uint64_t Size = getContext().getTypeSize(Ty); 5194 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5195 if (IsEmpty || Size == 0) { 5196 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5197 return ABIArgInfo::getIgnore(); 5198 5199 // GNU C mode. The only argument that gets ignored is an empty one with size 5200 // 0. 5201 if (IsEmpty && Size == 0) 5202 return ABIArgInfo::getIgnore(); 5203 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5204 } 5205 5206 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5207 const Type *Base = nullptr; 5208 uint64_t Members = 0; 5209 if (isHomogeneousAggregate(Ty, Base, Members)) { 5210 return ABIArgInfo::getDirect( 5211 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5212 } 5213 5214 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5215 if (Size <= 128) { 5216 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5217 // same size and alignment. 5218 if (getTarget().isRenderScriptTarget()) { 5219 return coerceToIntArray(Ty, getContext(), getVMContext()); 5220 } 5221 unsigned Alignment; 5222 if (Kind == AArch64ABIInfo::AAPCS) { 5223 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5224 Alignment = Alignment < 128 ? 64 : 128; 5225 } else { 5226 Alignment = std::max(getContext().getTypeAlign(Ty), 5227 (unsigned)getTarget().getPointerWidth(0)); 5228 } 5229 Size = llvm::alignTo(Size, Alignment); 5230 5231 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5232 // For aggregates with 16-byte alignment, we use i128. 5233 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5234 return ABIArgInfo::getDirect( 5235 Size == Alignment ? BaseTy 5236 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5237 } 5238 5239 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5240 } 5241 5242 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5243 bool IsVariadic) const { 5244 if (RetTy->isVoidType()) 5245 return ABIArgInfo::getIgnore(); 5246 5247 // Large vector types should be returned via memory. 5248 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5249 return getNaturalAlignIndirect(RetTy); 5250 5251 if (!isAggregateTypeForABI(RetTy)) { 5252 // Treat an enum type as its underlying type. 5253 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5254 RetTy = EnumTy->getDecl()->getIntegerType(); 5255 5256 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5257 ? ABIArgInfo::getExtend(RetTy) 5258 : ABIArgInfo::getDirect()); 5259 } 5260 5261 uint64_t Size = getContext().getTypeSize(RetTy); 5262 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5263 return ABIArgInfo::getIgnore(); 5264 5265 const Type *Base = nullptr; 5266 uint64_t Members = 0; 5267 if (isHomogeneousAggregate(RetTy, Base, Members) && 5268 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5269 IsVariadic)) 5270 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5271 return ABIArgInfo::getDirect(); 5272 5273 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5274 if (Size <= 128) { 5275 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5276 // same size and alignment. 5277 if (getTarget().isRenderScriptTarget()) { 5278 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5279 } 5280 unsigned Alignment = getContext().getTypeAlign(RetTy); 5281 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5282 5283 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5284 // For aggregates with 16-byte alignment, we use i128. 5285 if (Alignment < 128 && Size == 128) { 5286 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5287 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5288 } 5289 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5290 } 5291 5292 return getNaturalAlignIndirect(RetTy); 5293 } 5294 5295 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5296 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5297 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5298 // Check whether VT is legal. 5299 unsigned NumElements = VT->getNumElements(); 5300 uint64_t Size = getContext().getTypeSize(VT); 5301 // NumElements should be power of 2. 5302 if (!llvm::isPowerOf2_32(NumElements)) 5303 return true; 5304 5305 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5306 // vectors for some reason. 5307 llvm::Triple Triple = getTarget().getTriple(); 5308 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5309 Triple.isOSBinFormatMachO()) 5310 return Size <= 32; 5311 5312 return Size != 64 && (Size != 128 || NumElements == 1); 5313 } 5314 return false; 5315 } 5316 5317 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5318 llvm::Type *eltTy, 5319 unsigned elts) const { 5320 if (!llvm::isPowerOf2_32(elts)) 5321 return false; 5322 if (totalSize.getQuantity() != 8 && 5323 (totalSize.getQuantity() != 16 || elts == 1)) 5324 return false; 5325 return true; 5326 } 5327 5328 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5329 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5330 // point type or a short-vector type. This is the same as the 32-bit ABI, 5331 // but with the difference that any floating-point type is allowed, 5332 // including __fp16. 5333 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5334 if (BT->isFloatingPoint()) 5335 return true; 5336 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5337 unsigned VecSize = getContext().getTypeSize(VT); 5338 if (VecSize == 64 || VecSize == 128) 5339 return true; 5340 } 5341 return false; 5342 } 5343 5344 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5345 uint64_t Members) const { 5346 return Members <= 4; 5347 } 5348 5349 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5350 QualType Ty, 5351 CodeGenFunction &CGF) const { 5352 ABIArgInfo AI = classifyArgumentType(Ty); 5353 bool IsIndirect = AI.isIndirect(); 5354 5355 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5356 if (IsIndirect) 5357 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5358 else if (AI.getCoerceToType()) 5359 BaseTy = AI.getCoerceToType(); 5360 5361 unsigned NumRegs = 1; 5362 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5363 BaseTy = ArrTy->getElementType(); 5364 NumRegs = ArrTy->getNumElements(); 5365 } 5366 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5367 5368 // The AArch64 va_list type and handling is specified in the Procedure Call 5369 // Standard, section B.4: 5370 // 5371 // struct { 5372 // void *__stack; 5373 // void *__gr_top; 5374 // void *__vr_top; 5375 // int __gr_offs; 5376 // int __vr_offs; 5377 // }; 5378 5379 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5380 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5381 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5382 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5383 5384 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5385 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5386 5387 Address reg_offs_p = Address::invalid(); 5388 llvm::Value *reg_offs = nullptr; 5389 int reg_top_index; 5390 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5391 if (!IsFPR) { 5392 // 3 is the field number of __gr_offs 5393 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5394 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5395 reg_top_index = 1; // field number for __gr_top 5396 RegSize = llvm::alignTo(RegSize, 8); 5397 } else { 5398 // 4 is the field number of __vr_offs. 5399 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5400 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5401 reg_top_index = 2; // field number for __vr_top 5402 RegSize = 16 * NumRegs; 5403 } 5404 5405 //======================================= 5406 // Find out where argument was passed 5407 //======================================= 5408 5409 // If reg_offs >= 0 we're already using the stack for this type of 5410 // argument. We don't want to keep updating reg_offs (in case it overflows, 5411 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5412 // whatever they get). 5413 llvm::Value *UsingStack = nullptr; 5414 UsingStack = CGF.Builder.CreateICmpSGE( 5415 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5416 5417 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5418 5419 // Otherwise, at least some kind of argument could go in these registers, the 5420 // question is whether this particular type is too big. 5421 CGF.EmitBlock(MaybeRegBlock); 5422 5423 // Integer arguments may need to correct register alignment (for example a 5424 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5425 // align __gr_offs to calculate the potential address. 5426 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5427 int Align = TyAlign.getQuantity(); 5428 5429 reg_offs = CGF.Builder.CreateAdd( 5430 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5431 "align_regoffs"); 5432 reg_offs = CGF.Builder.CreateAnd( 5433 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5434 "aligned_regoffs"); 5435 } 5436 5437 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5438 // The fact that this is done unconditionally reflects the fact that 5439 // allocating an argument to the stack also uses up all the remaining 5440 // registers of the appropriate kind. 5441 llvm::Value *NewOffset = nullptr; 5442 NewOffset = CGF.Builder.CreateAdd( 5443 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5444 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5445 5446 // Now we're in a position to decide whether this argument really was in 5447 // registers or not. 5448 llvm::Value *InRegs = nullptr; 5449 InRegs = CGF.Builder.CreateICmpSLE( 5450 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5451 5452 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5453 5454 //======================================= 5455 // Argument was in registers 5456 //======================================= 5457 5458 // Now we emit the code for if the argument was originally passed in 5459 // registers. First start the appropriate block: 5460 CGF.EmitBlock(InRegBlock); 5461 5462 llvm::Value *reg_top = nullptr; 5463 Address reg_top_p = 5464 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5465 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5466 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5467 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5468 Address RegAddr = Address::invalid(); 5469 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5470 5471 if (IsIndirect) { 5472 // If it's been passed indirectly (actually a struct), whatever we find from 5473 // stored registers or on the stack will actually be a struct **. 5474 MemTy = llvm::PointerType::getUnqual(MemTy); 5475 } 5476 5477 const Type *Base = nullptr; 5478 uint64_t NumMembers = 0; 5479 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5480 if (IsHFA && NumMembers > 1) { 5481 // Homogeneous aggregates passed in registers will have their elements split 5482 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5483 // qN+1, ...). We reload and store into a temporary local variable 5484 // contiguously. 5485 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5486 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5487 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5488 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5489 Address Tmp = CGF.CreateTempAlloca(HFATy, 5490 std::max(TyAlign, BaseTyInfo.second)); 5491 5492 // On big-endian platforms, the value will be right-aligned in its slot. 5493 int Offset = 0; 5494 if (CGF.CGM.getDataLayout().isBigEndian() && 5495 BaseTyInfo.first.getQuantity() < 16) 5496 Offset = 16 - BaseTyInfo.first.getQuantity(); 5497 5498 for (unsigned i = 0; i < NumMembers; ++i) { 5499 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5500 Address LoadAddr = 5501 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5502 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5503 5504 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5505 5506 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5507 CGF.Builder.CreateStore(Elem, StoreAddr); 5508 } 5509 5510 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5511 } else { 5512 // Otherwise the object is contiguous in memory. 5513 5514 // It might be right-aligned in its slot. 5515 CharUnits SlotSize = BaseAddr.getAlignment(); 5516 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5517 (IsHFA || !isAggregateTypeForABI(Ty)) && 5518 TySize < SlotSize) { 5519 CharUnits Offset = SlotSize - TySize; 5520 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5521 } 5522 5523 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5524 } 5525 5526 CGF.EmitBranch(ContBlock); 5527 5528 //======================================= 5529 // Argument was on the stack 5530 //======================================= 5531 CGF.EmitBlock(OnStackBlock); 5532 5533 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5534 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5535 5536 // Again, stack arguments may need realignment. In this case both integer and 5537 // floating-point ones might be affected. 5538 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5539 int Align = TyAlign.getQuantity(); 5540 5541 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5542 5543 OnStackPtr = CGF.Builder.CreateAdd( 5544 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5545 "align_stack"); 5546 OnStackPtr = CGF.Builder.CreateAnd( 5547 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5548 "align_stack"); 5549 5550 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5551 } 5552 Address OnStackAddr(OnStackPtr, 5553 std::max(CharUnits::fromQuantity(8), TyAlign)); 5554 5555 // All stack slots are multiples of 8 bytes. 5556 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5557 CharUnits StackSize; 5558 if (IsIndirect) 5559 StackSize = StackSlotSize; 5560 else 5561 StackSize = TySize.alignTo(StackSlotSize); 5562 5563 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5564 llvm::Value *NewStack = 5565 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5566 5567 // Write the new value of __stack for the next call to va_arg 5568 CGF.Builder.CreateStore(NewStack, stack_p); 5569 5570 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5571 TySize < StackSlotSize) { 5572 CharUnits Offset = StackSlotSize - TySize; 5573 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5574 } 5575 5576 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5577 5578 CGF.EmitBranch(ContBlock); 5579 5580 //======================================= 5581 // Tidy up 5582 //======================================= 5583 CGF.EmitBlock(ContBlock); 5584 5585 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5586 OnStackAddr, OnStackBlock, "vaargs.addr"); 5587 5588 if (IsIndirect) 5589 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5590 TyAlign); 5591 5592 return ResAddr; 5593 } 5594 5595 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5596 CodeGenFunction &CGF) const { 5597 // The backend's lowering doesn't support va_arg for aggregates or 5598 // illegal vector types. Lower VAArg here for these cases and use 5599 // the LLVM va_arg instruction for everything else. 5600 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5601 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5602 5603 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5604 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5605 5606 // Empty records are ignored for parameter passing purposes. 5607 if (isEmptyRecord(getContext(), Ty, true)) { 5608 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5609 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5610 return Addr; 5611 } 5612 5613 // The size of the actual thing passed, which might end up just 5614 // being a pointer for indirect types. 5615 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5616 5617 // Arguments bigger than 16 bytes which aren't homogeneous 5618 // aggregates should be passed indirectly. 5619 bool IsIndirect = false; 5620 if (TyInfo.first.getQuantity() > 16) { 5621 const Type *Base = nullptr; 5622 uint64_t Members = 0; 5623 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5624 } 5625 5626 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5627 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5628 } 5629 5630 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5631 QualType Ty) const { 5632 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5633 CGF.getContext().getTypeInfoInChars(Ty), 5634 CharUnits::fromQuantity(8), 5635 /*allowHigherAlign*/ false); 5636 } 5637 5638 //===----------------------------------------------------------------------===// 5639 // ARM ABI Implementation 5640 //===----------------------------------------------------------------------===// 5641 5642 namespace { 5643 5644 class ARMABIInfo : public SwiftABIInfo { 5645 public: 5646 enum ABIKind { 5647 APCS = 0, 5648 AAPCS = 1, 5649 AAPCS_VFP = 2, 5650 AAPCS16_VFP = 3, 5651 }; 5652 5653 private: 5654 ABIKind Kind; 5655 5656 public: 5657 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5658 : SwiftABIInfo(CGT), Kind(_Kind) { 5659 setCCs(); 5660 } 5661 5662 bool isEABI() const { 5663 switch (getTarget().getTriple().getEnvironment()) { 5664 case llvm::Triple::Android: 5665 case llvm::Triple::EABI: 5666 case llvm::Triple::EABIHF: 5667 case llvm::Triple::GNUEABI: 5668 case llvm::Triple::GNUEABIHF: 5669 case llvm::Triple::MuslEABI: 5670 case llvm::Triple::MuslEABIHF: 5671 return true; 5672 default: 5673 return false; 5674 } 5675 } 5676 5677 bool isEABIHF() const { 5678 switch (getTarget().getTriple().getEnvironment()) { 5679 case llvm::Triple::EABIHF: 5680 case llvm::Triple::GNUEABIHF: 5681 case llvm::Triple::MuslEABIHF: 5682 return true; 5683 default: 5684 return false; 5685 } 5686 } 5687 5688 ABIKind getABIKind() const { return Kind; } 5689 5690 private: 5691 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5692 unsigned functionCallConv) const; 5693 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5694 unsigned functionCallConv) const; 5695 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5696 uint64_t Members) const; 5697 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5698 bool isIllegalVectorType(QualType Ty) const; 5699 bool containsAnyFP16Vectors(QualType Ty) const; 5700 5701 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5702 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5703 uint64_t Members) const override; 5704 5705 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5706 5707 void computeInfo(CGFunctionInfo &FI) const override; 5708 5709 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5710 QualType Ty) const override; 5711 5712 llvm::CallingConv::ID getLLVMDefaultCC() const; 5713 llvm::CallingConv::ID getABIDefaultCC() const; 5714 void setCCs(); 5715 5716 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5717 bool asReturnValue) const override { 5718 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5719 } 5720 bool isSwiftErrorInRegister() const override { 5721 return true; 5722 } 5723 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5724 unsigned elts) const override; 5725 }; 5726 5727 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5728 public: 5729 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5730 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5731 5732 const ARMABIInfo &getABIInfo() const { 5733 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5734 } 5735 5736 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5737 return 13; 5738 } 5739 5740 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5741 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5742 } 5743 5744 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5745 llvm::Value *Address) const override { 5746 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5747 5748 // 0-15 are the 16 integer registers. 5749 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5750 return false; 5751 } 5752 5753 unsigned getSizeOfUnwindException() const override { 5754 if (getABIInfo().isEABI()) return 88; 5755 return TargetCodeGenInfo::getSizeOfUnwindException(); 5756 } 5757 5758 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5759 CodeGen::CodeGenModule &CGM) const override { 5760 if (GV->isDeclaration()) 5761 return; 5762 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5763 if (!FD) 5764 return; 5765 5766 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5767 if (!Attr) 5768 return; 5769 5770 const char *Kind; 5771 switch (Attr->getInterrupt()) { 5772 case ARMInterruptAttr::Generic: Kind = ""; break; 5773 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5774 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5775 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5776 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5777 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5778 } 5779 5780 llvm::Function *Fn = cast<llvm::Function>(GV); 5781 5782 Fn->addFnAttr("interrupt", Kind); 5783 5784 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5785 if (ABI == ARMABIInfo::APCS) 5786 return; 5787 5788 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5789 // however this is not necessarily true on taking any interrupt. Instruct 5790 // the backend to perform a realignment as part of the function prologue. 5791 llvm::AttrBuilder B; 5792 B.addStackAlignmentAttr(8); 5793 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5794 } 5795 }; 5796 5797 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5798 public: 5799 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5800 : ARMTargetCodeGenInfo(CGT, K) {} 5801 5802 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5803 CodeGen::CodeGenModule &CGM) const override; 5804 5805 void getDependentLibraryOption(llvm::StringRef Lib, 5806 llvm::SmallString<24> &Opt) const override { 5807 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5808 } 5809 5810 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5811 llvm::SmallString<32> &Opt) const override { 5812 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5813 } 5814 }; 5815 5816 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5817 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5818 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5819 if (GV->isDeclaration()) 5820 return; 5821 addStackProbeTargetAttributes(D, GV, CGM); 5822 } 5823 } 5824 5825 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5826 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5827 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5828 FI.getCallingConvention()); 5829 5830 for (auto &I : FI.arguments()) 5831 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5832 FI.getCallingConvention()); 5833 5834 5835 // Always honor user-specified calling convention. 5836 if (FI.getCallingConvention() != llvm::CallingConv::C) 5837 return; 5838 5839 llvm::CallingConv::ID cc = getRuntimeCC(); 5840 if (cc != llvm::CallingConv::C) 5841 FI.setEffectiveCallingConvention(cc); 5842 } 5843 5844 /// Return the default calling convention that LLVM will use. 5845 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5846 // The default calling convention that LLVM will infer. 5847 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5848 return llvm::CallingConv::ARM_AAPCS_VFP; 5849 else if (isEABI()) 5850 return llvm::CallingConv::ARM_AAPCS; 5851 else 5852 return llvm::CallingConv::ARM_APCS; 5853 } 5854 5855 /// Return the calling convention that our ABI would like us to use 5856 /// as the C calling convention. 5857 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5858 switch (getABIKind()) { 5859 case APCS: return llvm::CallingConv::ARM_APCS; 5860 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5861 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5862 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5863 } 5864 llvm_unreachable("bad ABI kind"); 5865 } 5866 5867 void ARMABIInfo::setCCs() { 5868 assert(getRuntimeCC() == llvm::CallingConv::C); 5869 5870 // Don't muddy up the IR with a ton of explicit annotations if 5871 // they'd just match what LLVM will infer from the triple. 5872 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5873 if (abiCC != getLLVMDefaultCC()) 5874 RuntimeCC = abiCC; 5875 } 5876 5877 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5878 uint64_t Size = getContext().getTypeSize(Ty); 5879 if (Size <= 32) { 5880 llvm::Type *ResType = 5881 llvm::Type::getInt32Ty(getVMContext()); 5882 return ABIArgInfo::getDirect(ResType); 5883 } 5884 if (Size == 64 || Size == 128) { 5885 llvm::Type *ResType = llvm::VectorType::get( 5886 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5887 return ABIArgInfo::getDirect(ResType); 5888 } 5889 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5890 } 5891 5892 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5893 const Type *Base, 5894 uint64_t Members) const { 5895 assert(Base && "Base class should be set for homogeneous aggregate"); 5896 // Base can be a floating-point or a vector. 5897 if (const VectorType *VT = Base->getAs<VectorType>()) { 5898 // FP16 vectors should be converted to integer vectors 5899 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5900 uint64_t Size = getContext().getTypeSize(VT); 5901 llvm::Type *NewVecTy = llvm::VectorType::get( 5902 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5903 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5904 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5905 } 5906 } 5907 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5908 } 5909 5910 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5911 unsigned functionCallConv) const { 5912 // 6.1.2.1 The following argument types are VFP CPRCs: 5913 // A single-precision floating-point type (including promoted 5914 // half-precision types); A double-precision floating-point type; 5915 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5916 // with a Base Type of a single- or double-precision floating-point type, 5917 // 64-bit containerized vectors or 128-bit containerized vectors with one 5918 // to four Elements. 5919 // Variadic functions should always marshal to the base standard. 5920 bool IsAAPCS_VFP = 5921 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5922 5923 Ty = useFirstFieldIfTransparentUnion(Ty); 5924 5925 // Handle illegal vector types here. 5926 if (isIllegalVectorType(Ty)) 5927 return coerceIllegalVector(Ty); 5928 5929 // _Float16 and __fp16 get passed as if it were an int or float, but with 5930 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5931 // half type natively, and does not need to interwork with AAPCS code. 5932 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5933 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5934 llvm::Type *ResType = IsAAPCS_VFP ? 5935 llvm::Type::getFloatTy(getVMContext()) : 5936 llvm::Type::getInt32Ty(getVMContext()); 5937 return ABIArgInfo::getDirect(ResType); 5938 } 5939 5940 if (!isAggregateTypeForABI(Ty)) { 5941 // Treat an enum type as its underlying type. 5942 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5943 Ty = EnumTy->getDecl()->getIntegerType(); 5944 } 5945 5946 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5947 : ABIArgInfo::getDirect()); 5948 } 5949 5950 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5951 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5952 } 5953 5954 // Ignore empty records. 5955 if (isEmptyRecord(getContext(), Ty, true)) 5956 return ABIArgInfo::getIgnore(); 5957 5958 if (IsAAPCS_VFP) { 5959 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5960 // into VFP registers. 5961 const Type *Base = nullptr; 5962 uint64_t Members = 0; 5963 if (isHomogeneousAggregate(Ty, Base, Members)) 5964 return classifyHomogeneousAggregate(Ty, Base, Members); 5965 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5966 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5967 // this convention even for a variadic function: the backend will use GPRs 5968 // if needed. 5969 const Type *Base = nullptr; 5970 uint64_t Members = 0; 5971 if (isHomogeneousAggregate(Ty, Base, Members)) { 5972 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5973 llvm::Type *Ty = 5974 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5975 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5976 } 5977 } 5978 5979 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5980 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5981 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5982 // bigger than 128-bits, they get placed in space allocated by the caller, 5983 // and a pointer is passed. 5984 return ABIArgInfo::getIndirect( 5985 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5986 } 5987 5988 // Support byval for ARM. 5989 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5990 // most 8-byte. We realign the indirect argument if type alignment is bigger 5991 // than ABI alignment. 5992 uint64_t ABIAlign = 4; 5993 uint64_t TyAlign; 5994 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5995 getABIKind() == ARMABIInfo::AAPCS) { 5996 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5997 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5998 } else { 5999 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6000 } 6001 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6002 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6003 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6004 /*ByVal=*/true, 6005 /*Realign=*/TyAlign > ABIAlign); 6006 } 6007 6008 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6009 // same size and alignment. 6010 if (getTarget().isRenderScriptTarget()) { 6011 return coerceToIntArray(Ty, getContext(), getVMContext()); 6012 } 6013 6014 // Otherwise, pass by coercing to a structure of the appropriate size. 6015 llvm::Type* ElemTy; 6016 unsigned SizeRegs; 6017 // FIXME: Try to match the types of the arguments more accurately where 6018 // we can. 6019 if (TyAlign <= 4) { 6020 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6021 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6022 } else { 6023 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6024 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6025 } 6026 6027 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6028 } 6029 6030 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6031 llvm::LLVMContext &VMContext) { 6032 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6033 // is called integer-like if its size is less than or equal to one word, and 6034 // the offset of each of its addressable sub-fields is zero. 6035 6036 uint64_t Size = Context.getTypeSize(Ty); 6037 6038 // Check that the type fits in a word. 6039 if (Size > 32) 6040 return false; 6041 6042 // FIXME: Handle vector types! 6043 if (Ty->isVectorType()) 6044 return false; 6045 6046 // Float types are never treated as "integer like". 6047 if (Ty->isRealFloatingType()) 6048 return false; 6049 6050 // If this is a builtin or pointer type then it is ok. 6051 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6052 return true; 6053 6054 // Small complex integer types are "integer like". 6055 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6056 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6057 6058 // Single element and zero sized arrays should be allowed, by the definition 6059 // above, but they are not. 6060 6061 // Otherwise, it must be a record type. 6062 const RecordType *RT = Ty->getAs<RecordType>(); 6063 if (!RT) return false; 6064 6065 // Ignore records with flexible arrays. 6066 const RecordDecl *RD = RT->getDecl(); 6067 if (RD->hasFlexibleArrayMember()) 6068 return false; 6069 6070 // Check that all sub-fields are at offset 0, and are themselves "integer 6071 // like". 6072 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6073 6074 bool HadField = false; 6075 unsigned idx = 0; 6076 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6077 i != e; ++i, ++idx) { 6078 const FieldDecl *FD = *i; 6079 6080 // Bit-fields are not addressable, we only need to verify they are "integer 6081 // like". We still have to disallow a subsequent non-bitfield, for example: 6082 // struct { int : 0; int x } 6083 // is non-integer like according to gcc. 6084 if (FD->isBitField()) { 6085 if (!RD->isUnion()) 6086 HadField = true; 6087 6088 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6089 return false; 6090 6091 continue; 6092 } 6093 6094 // Check if this field is at offset 0. 6095 if (Layout.getFieldOffset(idx) != 0) 6096 return false; 6097 6098 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6099 return false; 6100 6101 // Only allow at most one field in a structure. This doesn't match the 6102 // wording above, but follows gcc in situations with a field following an 6103 // empty structure. 6104 if (!RD->isUnion()) { 6105 if (HadField) 6106 return false; 6107 6108 HadField = true; 6109 } 6110 } 6111 6112 return true; 6113 } 6114 6115 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6116 unsigned functionCallConv) const { 6117 6118 // Variadic functions should always marshal to the base standard. 6119 bool IsAAPCS_VFP = 6120 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6121 6122 if (RetTy->isVoidType()) 6123 return ABIArgInfo::getIgnore(); 6124 6125 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6126 // Large vector types should be returned via memory. 6127 if (getContext().getTypeSize(RetTy) > 128) 6128 return getNaturalAlignIndirect(RetTy); 6129 // FP16 vectors should be converted to integer vectors 6130 if (!getTarget().hasLegalHalfType() && 6131 (VT->getElementType()->isFloat16Type() || 6132 VT->getElementType()->isHalfType())) 6133 return coerceIllegalVector(RetTy); 6134 } 6135 6136 // _Float16 and __fp16 get returned as if it were an int or float, but with 6137 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6138 // half type natively, and does not need to interwork with AAPCS code. 6139 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6140 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6141 llvm::Type *ResType = IsAAPCS_VFP ? 6142 llvm::Type::getFloatTy(getVMContext()) : 6143 llvm::Type::getInt32Ty(getVMContext()); 6144 return ABIArgInfo::getDirect(ResType); 6145 } 6146 6147 if (!isAggregateTypeForABI(RetTy)) { 6148 // Treat an enum type as its underlying type. 6149 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6150 RetTy = EnumTy->getDecl()->getIntegerType(); 6151 6152 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6153 : ABIArgInfo::getDirect(); 6154 } 6155 6156 // Are we following APCS? 6157 if (getABIKind() == APCS) { 6158 if (isEmptyRecord(getContext(), RetTy, false)) 6159 return ABIArgInfo::getIgnore(); 6160 6161 // Complex types are all returned as packed integers. 6162 // 6163 // FIXME: Consider using 2 x vector types if the back end handles them 6164 // correctly. 6165 if (RetTy->isAnyComplexType()) 6166 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6167 getVMContext(), getContext().getTypeSize(RetTy))); 6168 6169 // Integer like structures are returned in r0. 6170 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6171 // Return in the smallest viable integer type. 6172 uint64_t Size = getContext().getTypeSize(RetTy); 6173 if (Size <= 8) 6174 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6175 if (Size <= 16) 6176 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6177 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6178 } 6179 6180 // Otherwise return in memory. 6181 return getNaturalAlignIndirect(RetTy); 6182 } 6183 6184 // Otherwise this is an AAPCS variant. 6185 6186 if (isEmptyRecord(getContext(), RetTy, true)) 6187 return ABIArgInfo::getIgnore(); 6188 6189 // Check for homogeneous aggregates with AAPCS-VFP. 6190 if (IsAAPCS_VFP) { 6191 const Type *Base = nullptr; 6192 uint64_t Members = 0; 6193 if (isHomogeneousAggregate(RetTy, Base, Members)) 6194 return classifyHomogeneousAggregate(RetTy, Base, Members); 6195 } 6196 6197 // Aggregates <= 4 bytes are returned in r0; other aggregates 6198 // are returned indirectly. 6199 uint64_t Size = getContext().getTypeSize(RetTy); 6200 if (Size <= 32) { 6201 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6202 // same size and alignment. 6203 if (getTarget().isRenderScriptTarget()) { 6204 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6205 } 6206 if (getDataLayout().isBigEndian()) 6207 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6208 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6209 6210 // Return in the smallest viable integer type. 6211 if (Size <= 8) 6212 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6213 if (Size <= 16) 6214 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6215 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6216 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6217 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6218 llvm::Type *CoerceTy = 6219 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6220 return ABIArgInfo::getDirect(CoerceTy); 6221 } 6222 6223 return getNaturalAlignIndirect(RetTy); 6224 } 6225 6226 /// isIllegalVector - check whether Ty is an illegal vector type. 6227 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6228 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6229 // On targets that don't support FP16, FP16 is expanded into float, and we 6230 // don't want the ABI to depend on whether or not FP16 is supported in 6231 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6232 if (!getTarget().hasLegalHalfType() && 6233 (VT->getElementType()->isFloat16Type() || 6234 VT->getElementType()->isHalfType())) 6235 return true; 6236 if (isAndroid()) { 6237 // Android shipped using Clang 3.1, which supported a slightly different 6238 // vector ABI. The primary differences were that 3-element vector types 6239 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6240 // accepts that legacy behavior for Android only. 6241 // Check whether VT is legal. 6242 unsigned NumElements = VT->getNumElements(); 6243 // NumElements should be power of 2 or equal to 3. 6244 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6245 return true; 6246 } else { 6247 // Check whether VT is legal. 6248 unsigned NumElements = VT->getNumElements(); 6249 uint64_t Size = getContext().getTypeSize(VT); 6250 // NumElements should be power of 2. 6251 if (!llvm::isPowerOf2_32(NumElements)) 6252 return true; 6253 // Size should be greater than 32 bits. 6254 return Size <= 32; 6255 } 6256 } 6257 return false; 6258 } 6259 6260 /// Return true if a type contains any 16-bit floating point vectors 6261 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6262 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6263 uint64_t NElements = AT->getSize().getZExtValue(); 6264 if (NElements == 0) 6265 return false; 6266 return containsAnyFP16Vectors(AT->getElementType()); 6267 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6268 const RecordDecl *RD = RT->getDecl(); 6269 6270 // If this is a C++ record, check the bases first. 6271 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6272 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6273 return containsAnyFP16Vectors(B.getType()); 6274 })) 6275 return true; 6276 6277 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6278 return FD && containsAnyFP16Vectors(FD->getType()); 6279 })) 6280 return true; 6281 6282 return false; 6283 } else { 6284 if (const VectorType *VT = Ty->getAs<VectorType>()) 6285 return (VT->getElementType()->isFloat16Type() || 6286 VT->getElementType()->isHalfType()); 6287 return false; 6288 } 6289 } 6290 6291 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6292 llvm::Type *eltTy, 6293 unsigned numElts) const { 6294 if (!llvm::isPowerOf2_32(numElts)) 6295 return false; 6296 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6297 if (size > 64) 6298 return false; 6299 if (vectorSize.getQuantity() != 8 && 6300 (vectorSize.getQuantity() != 16 || numElts == 1)) 6301 return false; 6302 return true; 6303 } 6304 6305 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6306 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6307 // double, or 64-bit or 128-bit vectors. 6308 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6309 if (BT->getKind() == BuiltinType::Float || 6310 BT->getKind() == BuiltinType::Double || 6311 BT->getKind() == BuiltinType::LongDouble) 6312 return true; 6313 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6314 unsigned VecSize = getContext().getTypeSize(VT); 6315 if (VecSize == 64 || VecSize == 128) 6316 return true; 6317 } 6318 return false; 6319 } 6320 6321 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6322 uint64_t Members) const { 6323 return Members <= 4; 6324 } 6325 6326 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6327 bool acceptHalf) const { 6328 // Give precedence to user-specified calling conventions. 6329 if (callConvention != llvm::CallingConv::C) 6330 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6331 else 6332 return (getABIKind() == AAPCS_VFP) || 6333 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6334 } 6335 6336 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6337 QualType Ty) const { 6338 CharUnits SlotSize = CharUnits::fromQuantity(4); 6339 6340 // Empty records are ignored for parameter passing purposes. 6341 if (isEmptyRecord(getContext(), Ty, true)) { 6342 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6343 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6344 return Addr; 6345 } 6346 6347 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6348 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6349 6350 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6351 bool IsIndirect = false; 6352 const Type *Base = nullptr; 6353 uint64_t Members = 0; 6354 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6355 IsIndirect = true; 6356 6357 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6358 // allocated by the caller. 6359 } else if (TySize > CharUnits::fromQuantity(16) && 6360 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6361 !isHomogeneousAggregate(Ty, Base, Members)) { 6362 IsIndirect = true; 6363 6364 // Otherwise, bound the type's ABI alignment. 6365 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6366 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6367 // Our callers should be prepared to handle an under-aligned address. 6368 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6369 getABIKind() == ARMABIInfo::AAPCS) { 6370 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6371 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6372 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6373 // ARMv7k allows type alignment up to 16 bytes. 6374 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6375 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6376 } else { 6377 TyAlignForABI = CharUnits::fromQuantity(4); 6378 } 6379 6380 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6381 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6382 SlotSize, /*AllowHigherAlign*/ true); 6383 } 6384 6385 //===----------------------------------------------------------------------===// 6386 // NVPTX ABI Implementation 6387 //===----------------------------------------------------------------------===// 6388 6389 namespace { 6390 6391 class NVPTXABIInfo : public ABIInfo { 6392 public: 6393 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6394 6395 ABIArgInfo classifyReturnType(QualType RetTy) const; 6396 ABIArgInfo classifyArgumentType(QualType Ty) const; 6397 6398 void computeInfo(CGFunctionInfo &FI) const override; 6399 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6400 QualType Ty) const override; 6401 }; 6402 6403 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6404 public: 6405 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6406 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6407 6408 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6409 CodeGen::CodeGenModule &M) const override; 6410 bool shouldEmitStaticExternCAliases() const override; 6411 6412 private: 6413 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6414 // resulting MDNode to the nvvm.annotations MDNode. 6415 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6416 }; 6417 6418 /// Checks if the type is unsupported directly by the current target. 6419 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6420 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6421 return true; 6422 if (!Context.getTargetInfo().hasFloat128Type() && 6423 (T->isFloat128Type() || 6424 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6425 return true; 6426 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6427 Context.getTypeSize(T) > 64) 6428 return true; 6429 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6430 return isUnsupportedType(Context, AT->getElementType()); 6431 const auto *RT = T->getAs<RecordType>(); 6432 if (!RT) 6433 return false; 6434 const RecordDecl *RD = RT->getDecl(); 6435 6436 // If this is a C++ record, check the bases first. 6437 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6438 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6439 if (isUnsupportedType(Context, I.getType())) 6440 return true; 6441 6442 for (const FieldDecl *I : RD->fields()) 6443 if (isUnsupportedType(Context, I->getType())) 6444 return true; 6445 return false; 6446 } 6447 6448 /// Coerce the given type into an array with maximum allowed size of elements. 6449 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6450 llvm::LLVMContext &LLVMContext, 6451 unsigned MaxSize) { 6452 // Alignment and Size are measured in bits. 6453 const uint64_t Size = Context.getTypeSize(Ty); 6454 const uint64_t Alignment = Context.getTypeAlign(Ty); 6455 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6456 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6457 const uint64_t NumElements = (Size + Div - 1) / Div; 6458 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6459 } 6460 6461 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6462 if (RetTy->isVoidType()) 6463 return ABIArgInfo::getIgnore(); 6464 6465 if (getContext().getLangOpts().OpenMP && 6466 getContext().getLangOpts().OpenMPIsDevice && 6467 isUnsupportedType(getContext(), RetTy)) 6468 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6469 6470 // note: this is different from default ABI 6471 if (!RetTy->isScalarType()) 6472 return ABIArgInfo::getDirect(); 6473 6474 // Treat an enum type as its underlying type. 6475 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6476 RetTy = EnumTy->getDecl()->getIntegerType(); 6477 6478 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6479 : ABIArgInfo::getDirect()); 6480 } 6481 6482 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6483 // Treat an enum type as its underlying type. 6484 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6485 Ty = EnumTy->getDecl()->getIntegerType(); 6486 6487 // Return aggregates type as indirect by value 6488 if (isAggregateTypeForABI(Ty)) 6489 return getNaturalAlignIndirect(Ty, /* byval */ true); 6490 6491 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6492 : ABIArgInfo::getDirect()); 6493 } 6494 6495 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6496 if (!getCXXABI().classifyReturnType(FI)) 6497 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6498 for (auto &I : FI.arguments()) 6499 I.info = classifyArgumentType(I.type); 6500 6501 // Always honor user-specified calling convention. 6502 if (FI.getCallingConvention() != llvm::CallingConv::C) 6503 return; 6504 6505 FI.setEffectiveCallingConvention(getRuntimeCC()); 6506 } 6507 6508 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6509 QualType Ty) const { 6510 llvm_unreachable("NVPTX does not support varargs"); 6511 } 6512 6513 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6514 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6515 if (GV->isDeclaration()) 6516 return; 6517 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6518 if (!FD) return; 6519 6520 llvm::Function *F = cast<llvm::Function>(GV); 6521 6522 // Perform special handling in OpenCL mode 6523 if (M.getLangOpts().OpenCL) { 6524 // Use OpenCL function attributes to check for kernel functions 6525 // By default, all functions are device functions 6526 if (FD->hasAttr<OpenCLKernelAttr>()) { 6527 // OpenCL __kernel functions get kernel metadata 6528 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6529 addNVVMMetadata(F, "kernel", 1); 6530 // And kernel functions are not subject to inlining 6531 F->addFnAttr(llvm::Attribute::NoInline); 6532 } 6533 } 6534 6535 // Perform special handling in CUDA mode. 6536 if (M.getLangOpts().CUDA) { 6537 // CUDA __global__ functions get a kernel metadata entry. Since 6538 // __global__ functions cannot be called from the device, we do not 6539 // need to set the noinline attribute. 6540 if (FD->hasAttr<CUDAGlobalAttr>()) { 6541 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6542 addNVVMMetadata(F, "kernel", 1); 6543 } 6544 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6545 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6546 llvm::APSInt MaxThreads(32); 6547 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6548 if (MaxThreads > 0) 6549 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6550 6551 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6552 // not specified in __launch_bounds__ or if the user specified a 0 value, 6553 // we don't have to add a PTX directive. 6554 if (Attr->getMinBlocks()) { 6555 llvm::APSInt MinBlocks(32); 6556 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6557 if (MinBlocks > 0) 6558 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6559 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6560 } 6561 } 6562 } 6563 } 6564 6565 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6566 int Operand) { 6567 llvm::Module *M = F->getParent(); 6568 llvm::LLVMContext &Ctx = M->getContext(); 6569 6570 // Get "nvvm.annotations" metadata node 6571 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6572 6573 llvm::Metadata *MDVals[] = { 6574 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6575 llvm::ConstantAsMetadata::get( 6576 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6577 // Append metadata to nvvm.annotations 6578 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6579 } 6580 6581 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6582 return false; 6583 } 6584 } 6585 6586 //===----------------------------------------------------------------------===// 6587 // SystemZ ABI Implementation 6588 //===----------------------------------------------------------------------===// 6589 6590 namespace { 6591 6592 class SystemZABIInfo : public SwiftABIInfo { 6593 bool HasVector; 6594 6595 public: 6596 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6597 : SwiftABIInfo(CGT), HasVector(HV) {} 6598 6599 bool isPromotableIntegerType(QualType Ty) const; 6600 bool isCompoundType(QualType Ty) const; 6601 bool isVectorArgumentType(QualType Ty) const; 6602 bool isFPArgumentType(QualType Ty) const; 6603 QualType GetSingleElementType(QualType Ty) const; 6604 6605 ABIArgInfo classifyReturnType(QualType RetTy) const; 6606 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6607 6608 void computeInfo(CGFunctionInfo &FI) const override { 6609 if (!getCXXABI().classifyReturnType(FI)) 6610 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6611 for (auto &I : FI.arguments()) 6612 I.info = classifyArgumentType(I.type); 6613 } 6614 6615 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6616 QualType Ty) const override; 6617 6618 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6619 bool asReturnValue) const override { 6620 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6621 } 6622 bool isSwiftErrorInRegister() const override { 6623 return false; 6624 } 6625 }; 6626 6627 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6628 public: 6629 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6630 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6631 }; 6632 6633 } 6634 6635 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6636 // Treat an enum type as its underlying type. 6637 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6638 Ty = EnumTy->getDecl()->getIntegerType(); 6639 6640 // Promotable integer types are required to be promoted by the ABI. 6641 if (Ty->isPromotableIntegerType()) 6642 return true; 6643 6644 // 32-bit values must also be promoted. 6645 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6646 switch (BT->getKind()) { 6647 case BuiltinType::Int: 6648 case BuiltinType::UInt: 6649 return true; 6650 default: 6651 return false; 6652 } 6653 return false; 6654 } 6655 6656 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6657 return (Ty->isAnyComplexType() || 6658 Ty->isVectorType() || 6659 isAggregateTypeForABI(Ty)); 6660 } 6661 6662 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6663 return (HasVector && 6664 Ty->isVectorType() && 6665 getContext().getTypeSize(Ty) <= 128); 6666 } 6667 6668 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6669 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6670 switch (BT->getKind()) { 6671 case BuiltinType::Float: 6672 case BuiltinType::Double: 6673 return true; 6674 default: 6675 return false; 6676 } 6677 6678 return false; 6679 } 6680 6681 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6682 if (const RecordType *RT = Ty->getAsStructureType()) { 6683 const RecordDecl *RD = RT->getDecl(); 6684 QualType Found; 6685 6686 // If this is a C++ record, check the bases first. 6687 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6688 for (const auto &I : CXXRD->bases()) { 6689 QualType Base = I.getType(); 6690 6691 // Empty bases don't affect things either way. 6692 if (isEmptyRecord(getContext(), Base, true)) 6693 continue; 6694 6695 if (!Found.isNull()) 6696 return Ty; 6697 Found = GetSingleElementType(Base); 6698 } 6699 6700 // Check the fields. 6701 for (const auto *FD : RD->fields()) { 6702 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6703 // Unlike isSingleElementStruct(), empty structure and array fields 6704 // do count. So do anonymous bitfields that aren't zero-sized. 6705 if (getContext().getLangOpts().CPlusPlus && 6706 FD->isZeroLengthBitField(getContext())) 6707 continue; 6708 6709 // Unlike isSingleElementStruct(), arrays do not count. 6710 // Nested structures still do though. 6711 if (!Found.isNull()) 6712 return Ty; 6713 Found = GetSingleElementType(FD->getType()); 6714 } 6715 6716 // Unlike isSingleElementStruct(), trailing padding is allowed. 6717 // An 8-byte aligned struct s { float f; } is passed as a double. 6718 if (!Found.isNull()) 6719 return Found; 6720 } 6721 6722 return Ty; 6723 } 6724 6725 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6726 QualType Ty) const { 6727 // Assume that va_list type is correct; should be pointer to LLVM type: 6728 // struct { 6729 // i64 __gpr; 6730 // i64 __fpr; 6731 // i8 *__overflow_arg_area; 6732 // i8 *__reg_save_area; 6733 // }; 6734 6735 // Every non-vector argument occupies 8 bytes and is passed by preference 6736 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6737 // always passed on the stack. 6738 Ty = getContext().getCanonicalType(Ty); 6739 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6740 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6741 llvm::Type *DirectTy = ArgTy; 6742 ABIArgInfo AI = classifyArgumentType(Ty); 6743 bool IsIndirect = AI.isIndirect(); 6744 bool InFPRs = false; 6745 bool IsVector = false; 6746 CharUnits UnpaddedSize; 6747 CharUnits DirectAlign; 6748 if (IsIndirect) { 6749 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6750 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6751 } else { 6752 if (AI.getCoerceToType()) 6753 ArgTy = AI.getCoerceToType(); 6754 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6755 IsVector = ArgTy->isVectorTy(); 6756 UnpaddedSize = TyInfo.first; 6757 DirectAlign = TyInfo.second; 6758 } 6759 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6760 if (IsVector && UnpaddedSize > PaddedSize) 6761 PaddedSize = CharUnits::fromQuantity(16); 6762 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6763 6764 CharUnits Padding = (PaddedSize - UnpaddedSize); 6765 6766 llvm::Type *IndexTy = CGF.Int64Ty; 6767 llvm::Value *PaddedSizeV = 6768 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6769 6770 if (IsVector) { 6771 // Work out the address of a vector argument on the stack. 6772 // Vector arguments are always passed in the high bits of a 6773 // single (8 byte) or double (16 byte) stack slot. 6774 Address OverflowArgAreaPtr = 6775 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6776 Address OverflowArgArea = 6777 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6778 TyInfo.second); 6779 Address MemAddr = 6780 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6781 6782 // Update overflow_arg_area_ptr pointer 6783 llvm::Value *NewOverflowArgArea = 6784 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6785 "overflow_arg_area"); 6786 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6787 6788 return MemAddr; 6789 } 6790 6791 assert(PaddedSize.getQuantity() == 8); 6792 6793 unsigned MaxRegs, RegCountField, RegSaveIndex; 6794 CharUnits RegPadding; 6795 if (InFPRs) { 6796 MaxRegs = 4; // Maximum of 4 FPR arguments 6797 RegCountField = 1; // __fpr 6798 RegSaveIndex = 16; // save offset for f0 6799 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6800 } else { 6801 MaxRegs = 5; // Maximum of 5 GPR arguments 6802 RegCountField = 0; // __gpr 6803 RegSaveIndex = 2; // save offset for r2 6804 RegPadding = Padding; // values are passed in the low bits of a GPR 6805 } 6806 6807 Address RegCountPtr = 6808 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6809 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6810 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6811 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6812 "fits_in_regs"); 6813 6814 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6815 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6816 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6817 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6818 6819 // Emit code to load the value if it was passed in registers. 6820 CGF.EmitBlock(InRegBlock); 6821 6822 // Work out the address of an argument register. 6823 llvm::Value *ScaledRegCount = 6824 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6825 llvm::Value *RegBase = 6826 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6827 + RegPadding.getQuantity()); 6828 llvm::Value *RegOffset = 6829 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6830 Address RegSaveAreaPtr = 6831 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6832 llvm::Value *RegSaveArea = 6833 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6834 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6835 "raw_reg_addr"), 6836 PaddedSize); 6837 Address RegAddr = 6838 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6839 6840 // Update the register count 6841 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6842 llvm::Value *NewRegCount = 6843 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6844 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6845 CGF.EmitBranch(ContBlock); 6846 6847 // Emit code to load the value if it was passed in memory. 6848 CGF.EmitBlock(InMemBlock); 6849 6850 // Work out the address of a stack argument. 6851 Address OverflowArgAreaPtr = 6852 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6853 Address OverflowArgArea = 6854 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6855 PaddedSize); 6856 Address RawMemAddr = 6857 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6858 Address MemAddr = 6859 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6860 6861 // Update overflow_arg_area_ptr pointer 6862 llvm::Value *NewOverflowArgArea = 6863 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6864 "overflow_arg_area"); 6865 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6866 CGF.EmitBranch(ContBlock); 6867 6868 // Return the appropriate result. 6869 CGF.EmitBlock(ContBlock); 6870 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6871 MemAddr, InMemBlock, "va_arg.addr"); 6872 6873 if (IsIndirect) 6874 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6875 TyInfo.second); 6876 6877 return ResAddr; 6878 } 6879 6880 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6881 if (RetTy->isVoidType()) 6882 return ABIArgInfo::getIgnore(); 6883 if (isVectorArgumentType(RetTy)) 6884 return ABIArgInfo::getDirect(); 6885 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6886 return getNaturalAlignIndirect(RetTy); 6887 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6888 : ABIArgInfo::getDirect()); 6889 } 6890 6891 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6892 // Handle the generic C++ ABI. 6893 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6894 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6895 6896 // Integers and enums are extended to full register width. 6897 if (isPromotableIntegerType(Ty)) 6898 return ABIArgInfo::getExtend(Ty); 6899 6900 // Handle vector types and vector-like structure types. Note that 6901 // as opposed to float-like structure types, we do not allow any 6902 // padding for vector-like structures, so verify the sizes match. 6903 uint64_t Size = getContext().getTypeSize(Ty); 6904 QualType SingleElementTy = GetSingleElementType(Ty); 6905 if (isVectorArgumentType(SingleElementTy) && 6906 getContext().getTypeSize(SingleElementTy) == Size) 6907 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6908 6909 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6910 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6911 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6912 6913 // Handle small structures. 6914 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6915 // Structures with flexible arrays have variable length, so really 6916 // fail the size test above. 6917 const RecordDecl *RD = RT->getDecl(); 6918 if (RD->hasFlexibleArrayMember()) 6919 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6920 6921 // The structure is passed as an unextended integer, a float, or a double. 6922 llvm::Type *PassTy; 6923 if (isFPArgumentType(SingleElementTy)) { 6924 assert(Size == 32 || Size == 64); 6925 if (Size == 32) 6926 PassTy = llvm::Type::getFloatTy(getVMContext()); 6927 else 6928 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6929 } else 6930 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6931 return ABIArgInfo::getDirect(PassTy); 6932 } 6933 6934 // Non-structure compounds are passed indirectly. 6935 if (isCompoundType(Ty)) 6936 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6937 6938 return ABIArgInfo::getDirect(nullptr); 6939 } 6940 6941 //===----------------------------------------------------------------------===// 6942 // MSP430 ABI Implementation 6943 //===----------------------------------------------------------------------===// 6944 6945 namespace { 6946 6947 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6948 public: 6949 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6950 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6951 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6952 CodeGen::CodeGenModule &M) const override; 6953 }; 6954 6955 } 6956 6957 void MSP430TargetCodeGenInfo::setTargetAttributes( 6958 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6959 if (GV->isDeclaration()) 6960 return; 6961 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6962 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6963 if (!InterruptAttr) 6964 return; 6965 6966 // Handle 'interrupt' attribute: 6967 llvm::Function *F = cast<llvm::Function>(GV); 6968 6969 // Step 1: Set ISR calling convention. 6970 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6971 6972 // Step 2: Add attributes goodness. 6973 F->addFnAttr(llvm::Attribute::NoInline); 6974 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6975 } 6976 } 6977 6978 //===----------------------------------------------------------------------===// 6979 // MIPS ABI Implementation. This works for both little-endian and 6980 // big-endian variants. 6981 //===----------------------------------------------------------------------===// 6982 6983 namespace { 6984 class MipsABIInfo : public ABIInfo { 6985 bool IsO32; 6986 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6987 void CoerceToIntArgs(uint64_t TySize, 6988 SmallVectorImpl<llvm::Type *> &ArgList) const; 6989 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6990 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6991 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6992 public: 6993 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6994 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6995 StackAlignInBytes(IsO32 ? 8 : 16) {} 6996 6997 ABIArgInfo classifyReturnType(QualType RetTy) const; 6998 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6999 void computeInfo(CGFunctionInfo &FI) const override; 7000 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7001 QualType Ty) const override; 7002 ABIArgInfo extendType(QualType Ty) const; 7003 }; 7004 7005 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7006 unsigned SizeOfUnwindException; 7007 public: 7008 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7009 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 7010 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7011 7012 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7013 return 29; 7014 } 7015 7016 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7017 CodeGen::CodeGenModule &CGM) const override { 7018 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7019 if (!FD) return; 7020 llvm::Function *Fn = cast<llvm::Function>(GV); 7021 7022 if (FD->hasAttr<MipsLongCallAttr>()) 7023 Fn->addFnAttr("long-call"); 7024 else if (FD->hasAttr<MipsShortCallAttr>()) 7025 Fn->addFnAttr("short-call"); 7026 7027 // Other attributes do not have a meaning for declarations. 7028 if (GV->isDeclaration()) 7029 return; 7030 7031 if (FD->hasAttr<Mips16Attr>()) { 7032 Fn->addFnAttr("mips16"); 7033 } 7034 else if (FD->hasAttr<NoMips16Attr>()) { 7035 Fn->addFnAttr("nomips16"); 7036 } 7037 7038 if (FD->hasAttr<MicroMipsAttr>()) 7039 Fn->addFnAttr("micromips"); 7040 else if (FD->hasAttr<NoMicroMipsAttr>()) 7041 Fn->addFnAttr("nomicromips"); 7042 7043 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7044 if (!Attr) 7045 return; 7046 7047 const char *Kind; 7048 switch (Attr->getInterrupt()) { 7049 case MipsInterruptAttr::eic: Kind = "eic"; break; 7050 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7051 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7052 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7053 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7054 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7055 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7056 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7057 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7058 } 7059 7060 Fn->addFnAttr("interrupt", Kind); 7061 7062 } 7063 7064 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7065 llvm::Value *Address) const override; 7066 7067 unsigned getSizeOfUnwindException() const override { 7068 return SizeOfUnwindException; 7069 } 7070 }; 7071 } 7072 7073 void MipsABIInfo::CoerceToIntArgs( 7074 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7075 llvm::IntegerType *IntTy = 7076 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7077 7078 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7079 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7080 ArgList.push_back(IntTy); 7081 7082 // If necessary, add one more integer type to ArgList. 7083 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7084 7085 if (R) 7086 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7087 } 7088 7089 // In N32/64, an aligned double precision floating point field is passed in 7090 // a register. 7091 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7092 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7093 7094 if (IsO32) { 7095 CoerceToIntArgs(TySize, ArgList); 7096 return llvm::StructType::get(getVMContext(), ArgList); 7097 } 7098 7099 if (Ty->isComplexType()) 7100 return CGT.ConvertType(Ty); 7101 7102 const RecordType *RT = Ty->getAs<RecordType>(); 7103 7104 // Unions/vectors are passed in integer registers. 7105 if (!RT || !RT->isStructureOrClassType()) { 7106 CoerceToIntArgs(TySize, ArgList); 7107 return llvm::StructType::get(getVMContext(), ArgList); 7108 } 7109 7110 const RecordDecl *RD = RT->getDecl(); 7111 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7112 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7113 7114 uint64_t LastOffset = 0; 7115 unsigned idx = 0; 7116 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7117 7118 // Iterate over fields in the struct/class and check if there are any aligned 7119 // double fields. 7120 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7121 i != e; ++i, ++idx) { 7122 const QualType Ty = i->getType(); 7123 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7124 7125 if (!BT || BT->getKind() != BuiltinType::Double) 7126 continue; 7127 7128 uint64_t Offset = Layout.getFieldOffset(idx); 7129 if (Offset % 64) // Ignore doubles that are not aligned. 7130 continue; 7131 7132 // Add ((Offset - LastOffset) / 64) args of type i64. 7133 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7134 ArgList.push_back(I64); 7135 7136 // Add double type. 7137 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7138 LastOffset = Offset + 64; 7139 } 7140 7141 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7142 ArgList.append(IntArgList.begin(), IntArgList.end()); 7143 7144 return llvm::StructType::get(getVMContext(), ArgList); 7145 } 7146 7147 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7148 uint64_t Offset) const { 7149 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7150 return nullptr; 7151 7152 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7153 } 7154 7155 ABIArgInfo 7156 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7157 Ty = useFirstFieldIfTransparentUnion(Ty); 7158 7159 uint64_t OrigOffset = Offset; 7160 uint64_t TySize = getContext().getTypeSize(Ty); 7161 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7162 7163 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7164 (uint64_t)StackAlignInBytes); 7165 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7166 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7167 7168 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7169 // Ignore empty aggregates. 7170 if (TySize == 0) 7171 return ABIArgInfo::getIgnore(); 7172 7173 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7174 Offset = OrigOffset + MinABIStackAlignInBytes; 7175 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7176 } 7177 7178 // If we have reached here, aggregates are passed directly by coercing to 7179 // another structure type. Padding is inserted if the offset of the 7180 // aggregate is unaligned. 7181 ABIArgInfo ArgInfo = 7182 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7183 getPaddingType(OrigOffset, CurrOffset)); 7184 ArgInfo.setInReg(true); 7185 return ArgInfo; 7186 } 7187 7188 // Treat an enum type as its underlying type. 7189 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7190 Ty = EnumTy->getDecl()->getIntegerType(); 7191 7192 // All integral types are promoted to the GPR width. 7193 if (Ty->isIntegralOrEnumerationType()) 7194 return extendType(Ty); 7195 7196 return ABIArgInfo::getDirect( 7197 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7198 } 7199 7200 llvm::Type* 7201 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7202 const RecordType *RT = RetTy->getAs<RecordType>(); 7203 SmallVector<llvm::Type*, 8> RTList; 7204 7205 if (RT && RT->isStructureOrClassType()) { 7206 const RecordDecl *RD = RT->getDecl(); 7207 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7208 unsigned FieldCnt = Layout.getFieldCount(); 7209 7210 // N32/64 returns struct/classes in floating point registers if the 7211 // following conditions are met: 7212 // 1. The size of the struct/class is no larger than 128-bit. 7213 // 2. The struct/class has one or two fields all of which are floating 7214 // point types. 7215 // 3. The offset of the first field is zero (this follows what gcc does). 7216 // 7217 // Any other composite results are returned in integer registers. 7218 // 7219 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7220 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7221 for (; b != e; ++b) { 7222 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7223 7224 if (!BT || !BT->isFloatingPoint()) 7225 break; 7226 7227 RTList.push_back(CGT.ConvertType(b->getType())); 7228 } 7229 7230 if (b == e) 7231 return llvm::StructType::get(getVMContext(), RTList, 7232 RD->hasAttr<PackedAttr>()); 7233 7234 RTList.clear(); 7235 } 7236 } 7237 7238 CoerceToIntArgs(Size, RTList); 7239 return llvm::StructType::get(getVMContext(), RTList); 7240 } 7241 7242 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7243 uint64_t Size = getContext().getTypeSize(RetTy); 7244 7245 if (RetTy->isVoidType()) 7246 return ABIArgInfo::getIgnore(); 7247 7248 // O32 doesn't treat zero-sized structs differently from other structs. 7249 // However, N32/N64 ignores zero sized return values. 7250 if (!IsO32 && Size == 0) 7251 return ABIArgInfo::getIgnore(); 7252 7253 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7254 if (Size <= 128) { 7255 if (RetTy->isAnyComplexType()) 7256 return ABIArgInfo::getDirect(); 7257 7258 // O32 returns integer vectors in registers and N32/N64 returns all small 7259 // aggregates in registers. 7260 if (!IsO32 || 7261 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7262 ABIArgInfo ArgInfo = 7263 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7264 ArgInfo.setInReg(true); 7265 return ArgInfo; 7266 } 7267 } 7268 7269 return getNaturalAlignIndirect(RetTy); 7270 } 7271 7272 // Treat an enum type as its underlying type. 7273 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7274 RetTy = EnumTy->getDecl()->getIntegerType(); 7275 7276 if (RetTy->isPromotableIntegerType()) 7277 return ABIArgInfo::getExtend(RetTy); 7278 7279 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7280 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7281 return ABIArgInfo::getSignExtend(RetTy); 7282 7283 return ABIArgInfo::getDirect(); 7284 } 7285 7286 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7287 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7288 if (!getCXXABI().classifyReturnType(FI)) 7289 RetInfo = classifyReturnType(FI.getReturnType()); 7290 7291 // Check if a pointer to an aggregate is passed as a hidden argument. 7292 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7293 7294 for (auto &I : FI.arguments()) 7295 I.info = classifyArgumentType(I.type, Offset); 7296 } 7297 7298 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7299 QualType OrigTy) const { 7300 QualType Ty = OrigTy; 7301 7302 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7303 // Pointers are also promoted in the same way but this only matters for N32. 7304 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7305 unsigned PtrWidth = getTarget().getPointerWidth(0); 7306 bool DidPromote = false; 7307 if ((Ty->isIntegerType() && 7308 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7309 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7310 DidPromote = true; 7311 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7312 Ty->isSignedIntegerType()); 7313 } 7314 7315 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7316 7317 // The alignment of things in the argument area is never larger than 7318 // StackAlignInBytes. 7319 TyInfo.second = 7320 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7321 7322 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7323 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7324 7325 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7326 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7327 7328 7329 // If there was a promotion, "unpromote" into a temporary. 7330 // TODO: can we just use a pointer into a subset of the original slot? 7331 if (DidPromote) { 7332 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7333 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7334 7335 // Truncate down to the right width. 7336 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7337 : CGF.IntPtrTy); 7338 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7339 if (OrigTy->isPointerType()) 7340 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7341 7342 CGF.Builder.CreateStore(V, Temp); 7343 Addr = Temp; 7344 } 7345 7346 return Addr; 7347 } 7348 7349 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7350 int TySize = getContext().getTypeSize(Ty); 7351 7352 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7353 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7354 return ABIArgInfo::getSignExtend(Ty); 7355 7356 return ABIArgInfo::getExtend(Ty); 7357 } 7358 7359 bool 7360 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7361 llvm::Value *Address) const { 7362 // This information comes from gcc's implementation, which seems to 7363 // as canonical as it gets. 7364 7365 // Everything on MIPS is 4 bytes. Double-precision FP registers 7366 // are aliased to pairs of single-precision FP registers. 7367 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7368 7369 // 0-31 are the general purpose registers, $0 - $31. 7370 // 32-63 are the floating-point registers, $f0 - $f31. 7371 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7372 // 66 is the (notional, I think) register for signal-handler return. 7373 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7374 7375 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7376 // They are one bit wide and ignored here. 7377 7378 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7379 // (coprocessor 1 is the FP unit) 7380 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7381 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7382 // 176-181 are the DSP accumulator registers. 7383 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7384 return false; 7385 } 7386 7387 //===----------------------------------------------------------------------===// 7388 // AVR ABI Implementation. 7389 //===----------------------------------------------------------------------===// 7390 7391 namespace { 7392 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7393 public: 7394 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7395 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7396 7397 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7398 CodeGen::CodeGenModule &CGM) const override { 7399 if (GV->isDeclaration()) 7400 return; 7401 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7402 if (!FD) return; 7403 auto *Fn = cast<llvm::Function>(GV); 7404 7405 if (FD->getAttr<AVRInterruptAttr>()) 7406 Fn->addFnAttr("interrupt"); 7407 7408 if (FD->getAttr<AVRSignalAttr>()) 7409 Fn->addFnAttr("signal"); 7410 } 7411 }; 7412 } 7413 7414 //===----------------------------------------------------------------------===// 7415 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7416 // Currently subclassed only to implement custom OpenCL C function attribute 7417 // handling. 7418 //===----------------------------------------------------------------------===// 7419 7420 namespace { 7421 7422 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7423 public: 7424 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7425 : DefaultTargetCodeGenInfo(CGT) {} 7426 7427 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7428 CodeGen::CodeGenModule &M) const override; 7429 }; 7430 7431 void TCETargetCodeGenInfo::setTargetAttributes( 7432 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7433 if (GV->isDeclaration()) 7434 return; 7435 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7436 if (!FD) return; 7437 7438 llvm::Function *F = cast<llvm::Function>(GV); 7439 7440 if (M.getLangOpts().OpenCL) { 7441 if (FD->hasAttr<OpenCLKernelAttr>()) { 7442 // OpenCL C Kernel functions are not subject to inlining 7443 F->addFnAttr(llvm::Attribute::NoInline); 7444 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7445 if (Attr) { 7446 // Convert the reqd_work_group_size() attributes to metadata. 7447 llvm::LLVMContext &Context = F->getContext(); 7448 llvm::NamedMDNode *OpenCLMetadata = 7449 M.getModule().getOrInsertNamedMetadata( 7450 "opencl.kernel_wg_size_info"); 7451 7452 SmallVector<llvm::Metadata *, 5> Operands; 7453 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7454 7455 Operands.push_back( 7456 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7457 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7458 Operands.push_back( 7459 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7460 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7461 Operands.push_back( 7462 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7463 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7464 7465 // Add a boolean constant operand for "required" (true) or "hint" 7466 // (false) for implementing the work_group_size_hint attr later. 7467 // Currently always true as the hint is not yet implemented. 7468 Operands.push_back( 7469 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7470 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7471 } 7472 } 7473 } 7474 } 7475 7476 } 7477 7478 //===----------------------------------------------------------------------===// 7479 // Hexagon ABI Implementation 7480 //===----------------------------------------------------------------------===// 7481 7482 namespace { 7483 7484 class HexagonABIInfo : public ABIInfo { 7485 7486 7487 public: 7488 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7489 7490 private: 7491 7492 ABIArgInfo classifyReturnType(QualType RetTy) const; 7493 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7494 7495 void computeInfo(CGFunctionInfo &FI) const override; 7496 7497 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7498 QualType Ty) const override; 7499 }; 7500 7501 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7502 public: 7503 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7504 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7505 7506 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7507 return 29; 7508 } 7509 }; 7510 7511 } 7512 7513 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7514 if (!getCXXABI().classifyReturnType(FI)) 7515 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7516 for (auto &I : FI.arguments()) 7517 I.info = classifyArgumentType(I.type); 7518 } 7519 7520 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7521 if (!isAggregateTypeForABI(Ty)) { 7522 // Treat an enum type as its underlying type. 7523 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7524 Ty = EnumTy->getDecl()->getIntegerType(); 7525 7526 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7527 : ABIArgInfo::getDirect()); 7528 } 7529 7530 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7531 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7532 7533 // Ignore empty records. 7534 if (isEmptyRecord(getContext(), Ty, true)) 7535 return ABIArgInfo::getIgnore(); 7536 7537 uint64_t Size = getContext().getTypeSize(Ty); 7538 if (Size > 64) 7539 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7540 // Pass in the smallest viable integer type. 7541 else if (Size > 32) 7542 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7543 else if (Size > 16) 7544 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7545 else if (Size > 8) 7546 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7547 else 7548 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7549 } 7550 7551 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7552 if (RetTy->isVoidType()) 7553 return ABIArgInfo::getIgnore(); 7554 7555 // Large vector types should be returned via memory. 7556 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7557 return getNaturalAlignIndirect(RetTy); 7558 7559 if (!isAggregateTypeForABI(RetTy)) { 7560 // Treat an enum type as its underlying type. 7561 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7562 RetTy = EnumTy->getDecl()->getIntegerType(); 7563 7564 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7565 : ABIArgInfo::getDirect()); 7566 } 7567 7568 if (isEmptyRecord(getContext(), RetTy, true)) 7569 return ABIArgInfo::getIgnore(); 7570 7571 // Aggregates <= 8 bytes are returned in r0; other aggregates 7572 // are returned indirectly. 7573 uint64_t Size = getContext().getTypeSize(RetTy); 7574 if (Size <= 64) { 7575 // Return in the smallest viable integer type. 7576 if (Size <= 8) 7577 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7578 if (Size <= 16) 7579 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7580 if (Size <= 32) 7581 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7582 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7583 } 7584 7585 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7586 } 7587 7588 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7589 QualType Ty) const { 7590 // FIXME: Someone needs to audit that this handle alignment correctly. 7591 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7592 getContext().getTypeInfoInChars(Ty), 7593 CharUnits::fromQuantity(4), 7594 /*AllowHigherAlign*/ true); 7595 } 7596 7597 //===----------------------------------------------------------------------===// 7598 // Lanai ABI Implementation 7599 //===----------------------------------------------------------------------===// 7600 7601 namespace { 7602 class LanaiABIInfo : public DefaultABIInfo { 7603 public: 7604 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7605 7606 bool shouldUseInReg(QualType Ty, CCState &State) const; 7607 7608 void computeInfo(CGFunctionInfo &FI) const override { 7609 CCState State(FI); 7610 // Lanai uses 4 registers to pass arguments unless the function has the 7611 // regparm attribute set. 7612 if (FI.getHasRegParm()) { 7613 State.FreeRegs = FI.getRegParm(); 7614 } else { 7615 State.FreeRegs = 4; 7616 } 7617 7618 if (!getCXXABI().classifyReturnType(FI)) 7619 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7620 for (auto &I : FI.arguments()) 7621 I.info = classifyArgumentType(I.type, State); 7622 } 7623 7624 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7625 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7626 }; 7627 } // end anonymous namespace 7628 7629 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7630 unsigned Size = getContext().getTypeSize(Ty); 7631 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7632 7633 if (SizeInRegs == 0) 7634 return false; 7635 7636 if (SizeInRegs > State.FreeRegs) { 7637 State.FreeRegs = 0; 7638 return false; 7639 } 7640 7641 State.FreeRegs -= SizeInRegs; 7642 7643 return true; 7644 } 7645 7646 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7647 CCState &State) const { 7648 if (!ByVal) { 7649 if (State.FreeRegs) { 7650 --State.FreeRegs; // Non-byval indirects just use one pointer. 7651 return getNaturalAlignIndirectInReg(Ty); 7652 } 7653 return getNaturalAlignIndirect(Ty, false); 7654 } 7655 7656 // Compute the byval alignment. 7657 const unsigned MinABIStackAlignInBytes = 4; 7658 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7659 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7660 /*Realign=*/TypeAlign > 7661 MinABIStackAlignInBytes); 7662 } 7663 7664 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7665 CCState &State) const { 7666 // Check with the C++ ABI first. 7667 const RecordType *RT = Ty->getAs<RecordType>(); 7668 if (RT) { 7669 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7670 if (RAA == CGCXXABI::RAA_Indirect) { 7671 return getIndirectResult(Ty, /*ByVal=*/false, State); 7672 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7673 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7674 } 7675 } 7676 7677 if (isAggregateTypeForABI(Ty)) { 7678 // Structures with flexible arrays are always indirect. 7679 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7680 return getIndirectResult(Ty, /*ByVal=*/true, State); 7681 7682 // Ignore empty structs/unions. 7683 if (isEmptyRecord(getContext(), Ty, true)) 7684 return ABIArgInfo::getIgnore(); 7685 7686 llvm::LLVMContext &LLVMContext = getVMContext(); 7687 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7688 if (SizeInRegs <= State.FreeRegs) { 7689 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7690 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7691 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7692 State.FreeRegs -= SizeInRegs; 7693 return ABIArgInfo::getDirectInReg(Result); 7694 } else { 7695 State.FreeRegs = 0; 7696 } 7697 return getIndirectResult(Ty, true, State); 7698 } 7699 7700 // Treat an enum type as its underlying type. 7701 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7702 Ty = EnumTy->getDecl()->getIntegerType(); 7703 7704 bool InReg = shouldUseInReg(Ty, State); 7705 if (Ty->isPromotableIntegerType()) { 7706 if (InReg) 7707 return ABIArgInfo::getDirectInReg(); 7708 return ABIArgInfo::getExtend(Ty); 7709 } 7710 if (InReg) 7711 return ABIArgInfo::getDirectInReg(); 7712 return ABIArgInfo::getDirect(); 7713 } 7714 7715 namespace { 7716 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7717 public: 7718 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7719 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7720 }; 7721 } 7722 7723 //===----------------------------------------------------------------------===// 7724 // AMDGPU ABI Implementation 7725 //===----------------------------------------------------------------------===// 7726 7727 namespace { 7728 7729 class AMDGPUABIInfo final : public DefaultABIInfo { 7730 private: 7731 static const unsigned MaxNumRegsForArgsRet = 16; 7732 7733 unsigned numRegsForType(QualType Ty) const; 7734 7735 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7736 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7737 uint64_t Members) const override; 7738 7739 // Coerce HIP pointer arguments from generic pointers to global ones. 7740 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 7741 unsigned ToAS) const { 7742 // Structure types. 7743 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 7744 SmallVector<llvm::Type *, 8> EltTys; 7745 bool Changed = false; 7746 for (auto T : STy->elements()) { 7747 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7748 EltTys.push_back(NT); 7749 Changed |= (NT != T); 7750 } 7751 // Skip if there is no change in element types. 7752 if (!Changed) 7753 return STy; 7754 if (STy->hasName()) 7755 return llvm::StructType::create( 7756 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 7757 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 7758 } 7759 // Arrary types. 7760 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 7761 auto T = ATy->getElementType(); 7762 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7763 // Skip if there is no change in that element type. 7764 if (NT == T) 7765 return ATy; 7766 return llvm::ArrayType::get(NT, ATy->getNumElements()); 7767 } 7768 // Single value types. 7769 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 7770 return llvm::PointerType::get( 7771 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 7772 return Ty; 7773 } 7774 7775 public: 7776 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7777 DefaultABIInfo(CGT) {} 7778 7779 ABIArgInfo classifyReturnType(QualType RetTy) const; 7780 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7781 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7782 7783 void computeInfo(CGFunctionInfo &FI) const override; 7784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7785 QualType Ty) const override; 7786 }; 7787 7788 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7789 return true; 7790 } 7791 7792 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7793 const Type *Base, uint64_t Members) const { 7794 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7795 7796 // Homogeneous Aggregates may occupy at most 16 registers. 7797 return Members * NumRegs <= MaxNumRegsForArgsRet; 7798 } 7799 7800 /// Estimate number of registers the type will use when passed in registers. 7801 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7802 unsigned NumRegs = 0; 7803 7804 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7805 // Compute from the number of elements. The reported size is based on the 7806 // in-memory size, which includes the padding 4th element for 3-vectors. 7807 QualType EltTy = VT->getElementType(); 7808 unsigned EltSize = getContext().getTypeSize(EltTy); 7809 7810 // 16-bit element vectors should be passed as packed. 7811 if (EltSize == 16) 7812 return (VT->getNumElements() + 1) / 2; 7813 7814 unsigned EltNumRegs = (EltSize + 31) / 32; 7815 return EltNumRegs * VT->getNumElements(); 7816 } 7817 7818 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7819 const RecordDecl *RD = RT->getDecl(); 7820 assert(!RD->hasFlexibleArrayMember()); 7821 7822 for (const FieldDecl *Field : RD->fields()) { 7823 QualType FieldTy = Field->getType(); 7824 NumRegs += numRegsForType(FieldTy); 7825 } 7826 7827 return NumRegs; 7828 } 7829 7830 return (getContext().getTypeSize(Ty) + 31) / 32; 7831 } 7832 7833 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7834 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7835 7836 if (!getCXXABI().classifyReturnType(FI)) 7837 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7838 7839 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7840 for (auto &Arg : FI.arguments()) { 7841 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7842 Arg.info = classifyKernelArgumentType(Arg.type); 7843 } else { 7844 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7845 } 7846 } 7847 } 7848 7849 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7850 QualType Ty) const { 7851 llvm_unreachable("AMDGPU does not support varargs"); 7852 } 7853 7854 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7855 if (isAggregateTypeForABI(RetTy)) { 7856 // Records with non-trivial destructors/copy-constructors should not be 7857 // returned by value. 7858 if (!getRecordArgABI(RetTy, getCXXABI())) { 7859 // Ignore empty structs/unions. 7860 if (isEmptyRecord(getContext(), RetTy, true)) 7861 return ABIArgInfo::getIgnore(); 7862 7863 // Lower single-element structs to just return a regular value. 7864 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7865 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7866 7867 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7868 const RecordDecl *RD = RT->getDecl(); 7869 if (RD->hasFlexibleArrayMember()) 7870 return DefaultABIInfo::classifyReturnType(RetTy); 7871 } 7872 7873 // Pack aggregates <= 4 bytes into single VGPR or pair. 7874 uint64_t Size = getContext().getTypeSize(RetTy); 7875 if (Size <= 16) 7876 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7877 7878 if (Size <= 32) 7879 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7880 7881 if (Size <= 64) { 7882 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7883 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7884 } 7885 7886 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7887 return ABIArgInfo::getDirect(); 7888 } 7889 } 7890 7891 // Otherwise just do the default thing. 7892 return DefaultABIInfo::classifyReturnType(RetTy); 7893 } 7894 7895 /// For kernels all parameters are really passed in a special buffer. It doesn't 7896 /// make sense to pass anything byval, so everything must be direct. 7897 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7898 Ty = useFirstFieldIfTransparentUnion(Ty); 7899 7900 // TODO: Can we omit empty structs? 7901 7902 llvm::Type *LTy = nullptr; 7903 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7904 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 7905 7906 if (getContext().getLangOpts().HIP) { 7907 if (!LTy) 7908 LTy = CGT.ConvertType(Ty); 7909 LTy = coerceKernelArgumentType( 7910 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 7911 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 7912 } 7913 7914 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7915 // individual elements, which confuses the Clover OpenCL backend; therefore we 7916 // have to set it to false here. Other args of getDirect() are just defaults. 7917 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 7918 } 7919 7920 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7921 unsigned &NumRegsLeft) const { 7922 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7923 7924 Ty = useFirstFieldIfTransparentUnion(Ty); 7925 7926 if (isAggregateTypeForABI(Ty)) { 7927 // Records with non-trivial destructors/copy-constructors should not be 7928 // passed by value. 7929 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7930 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7931 7932 // Ignore empty structs/unions. 7933 if (isEmptyRecord(getContext(), Ty, true)) 7934 return ABIArgInfo::getIgnore(); 7935 7936 // Lower single-element structs to just pass a regular value. TODO: We 7937 // could do reasonable-size multiple-element structs too, using getExpand(), 7938 // though watch out for things like bitfields. 7939 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7940 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7941 7942 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7943 const RecordDecl *RD = RT->getDecl(); 7944 if (RD->hasFlexibleArrayMember()) 7945 return DefaultABIInfo::classifyArgumentType(Ty); 7946 } 7947 7948 // Pack aggregates <= 8 bytes into single VGPR or pair. 7949 uint64_t Size = getContext().getTypeSize(Ty); 7950 if (Size <= 64) { 7951 unsigned NumRegs = (Size + 31) / 32; 7952 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7953 7954 if (Size <= 16) 7955 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7956 7957 if (Size <= 32) 7958 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7959 7960 // XXX: Should this be i64 instead, and should the limit increase? 7961 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7962 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7963 } 7964 7965 if (NumRegsLeft > 0) { 7966 unsigned NumRegs = numRegsForType(Ty); 7967 if (NumRegsLeft >= NumRegs) { 7968 NumRegsLeft -= NumRegs; 7969 return ABIArgInfo::getDirect(); 7970 } 7971 } 7972 } 7973 7974 // Otherwise just do the default thing. 7975 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7976 if (!ArgInfo.isIndirect()) { 7977 unsigned NumRegs = numRegsForType(Ty); 7978 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7979 } 7980 7981 return ArgInfo; 7982 } 7983 7984 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7985 public: 7986 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7987 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7988 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7989 CodeGen::CodeGenModule &M) const override; 7990 unsigned getOpenCLKernelCallingConv() const override; 7991 7992 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7993 llvm::PointerType *T, QualType QT) const override; 7994 7995 LangAS getASTAllocaAddressSpace() const override { 7996 return getLangASFromTargetAS( 7997 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7998 } 7999 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8000 const VarDecl *D) const override; 8001 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8002 SyncScope Scope, 8003 llvm::AtomicOrdering Ordering, 8004 llvm::LLVMContext &Ctx) const override; 8005 llvm::Function * 8006 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8007 llvm::Function *BlockInvokeFunc, 8008 llvm::Value *BlockLiteral) const override; 8009 bool shouldEmitStaticExternCAliases() const override; 8010 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8011 }; 8012 } 8013 8014 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8015 llvm::GlobalValue *GV) { 8016 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8017 return false; 8018 8019 return D->hasAttr<OpenCLKernelAttr>() || 8020 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8021 (isa<VarDecl>(D) && 8022 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8023 D->hasAttr<HIPPinnedShadowAttr>())); 8024 } 8025 8026 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8027 llvm::GlobalValue *GV) { 8028 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8029 return false; 8030 8031 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8032 } 8033 8034 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8035 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8036 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8037 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8038 GV->setDSOLocal(false); 8039 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8040 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8041 GV->setDSOLocal(true); 8042 } 8043 8044 if (GV->isDeclaration()) 8045 return; 8046 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8047 if (!FD) 8048 return; 8049 8050 llvm::Function *F = cast<llvm::Function>(GV); 8051 8052 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8053 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8054 8055 8056 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8057 FD->hasAttr<OpenCLKernelAttr>(); 8058 const bool IsHIPKernel = M.getLangOpts().HIP && 8059 FD->hasAttr<CUDAGlobalAttr>(); 8060 if ((IsOpenCLKernel || IsHIPKernel) && 8061 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8062 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8063 8064 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8065 if (ReqdWGS || FlatWGS) { 8066 unsigned Min = 0; 8067 unsigned Max = 0; 8068 if (FlatWGS) { 8069 Min = FlatWGS->getMin() 8070 ->EvaluateKnownConstInt(M.getContext()) 8071 .getExtValue(); 8072 Max = FlatWGS->getMax() 8073 ->EvaluateKnownConstInt(M.getContext()) 8074 .getExtValue(); 8075 } 8076 if (ReqdWGS && Min == 0 && Max == 0) 8077 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8078 8079 if (Min != 0) { 8080 assert(Min <= Max && "Min must be less than or equal Max"); 8081 8082 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8083 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8084 } else 8085 assert(Max == 0 && "Max must be zero"); 8086 } else if (IsOpenCLKernel || IsHIPKernel) { 8087 // By default, restrict the maximum size to a value specified by 8088 // --gpu-max-threads-per-block=n or its default value. 8089 std::string AttrVal = 8090 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8091 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8092 } 8093 8094 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8095 unsigned Min = 8096 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8097 unsigned Max = Attr->getMax() ? Attr->getMax() 8098 ->EvaluateKnownConstInt(M.getContext()) 8099 .getExtValue() 8100 : 0; 8101 8102 if (Min != 0) { 8103 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8104 8105 std::string AttrVal = llvm::utostr(Min); 8106 if (Max != 0) 8107 AttrVal = AttrVal + "," + llvm::utostr(Max); 8108 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8109 } else 8110 assert(Max == 0 && "Max must be zero"); 8111 } 8112 8113 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8114 unsigned NumSGPR = Attr->getNumSGPR(); 8115 8116 if (NumSGPR != 0) 8117 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8118 } 8119 8120 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8121 uint32_t NumVGPR = Attr->getNumVGPR(); 8122 8123 if (NumVGPR != 0) 8124 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8125 } 8126 } 8127 8128 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8129 return llvm::CallingConv::AMDGPU_KERNEL; 8130 } 8131 8132 // Currently LLVM assumes null pointers always have value 0, 8133 // which results in incorrectly transformed IR. Therefore, instead of 8134 // emitting null pointers in private and local address spaces, a null 8135 // pointer in generic address space is emitted which is casted to a 8136 // pointer in local or private address space. 8137 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8138 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8139 QualType QT) const { 8140 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8141 return llvm::ConstantPointerNull::get(PT); 8142 8143 auto &Ctx = CGM.getContext(); 8144 auto NPT = llvm::PointerType::get(PT->getElementType(), 8145 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8146 return llvm::ConstantExpr::getAddrSpaceCast( 8147 llvm::ConstantPointerNull::get(NPT), PT); 8148 } 8149 8150 LangAS 8151 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8152 const VarDecl *D) const { 8153 assert(!CGM.getLangOpts().OpenCL && 8154 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8155 "Address space agnostic languages only"); 8156 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8157 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8158 if (!D) 8159 return DefaultGlobalAS; 8160 8161 LangAS AddrSpace = D->getType().getAddressSpace(); 8162 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8163 if (AddrSpace != LangAS::Default) 8164 return AddrSpace; 8165 8166 if (CGM.isTypeConstant(D->getType(), false)) { 8167 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8168 return ConstAS.getValue(); 8169 } 8170 return DefaultGlobalAS; 8171 } 8172 8173 llvm::SyncScope::ID 8174 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8175 SyncScope Scope, 8176 llvm::AtomicOrdering Ordering, 8177 llvm::LLVMContext &Ctx) const { 8178 std::string Name; 8179 switch (Scope) { 8180 case SyncScope::OpenCLWorkGroup: 8181 Name = "workgroup"; 8182 break; 8183 case SyncScope::OpenCLDevice: 8184 Name = "agent"; 8185 break; 8186 case SyncScope::OpenCLAllSVMDevices: 8187 Name = ""; 8188 break; 8189 case SyncScope::OpenCLSubGroup: 8190 Name = "wavefront"; 8191 } 8192 8193 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8194 if (!Name.empty()) 8195 Name = Twine(Twine(Name) + Twine("-")).str(); 8196 8197 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8198 } 8199 8200 return Ctx.getOrInsertSyncScopeID(Name); 8201 } 8202 8203 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8204 return false; 8205 } 8206 8207 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8208 const FunctionType *&FT) const { 8209 FT = getABIInfo().getContext().adjustFunctionType( 8210 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8211 } 8212 8213 //===----------------------------------------------------------------------===// 8214 // SPARC v8 ABI Implementation. 8215 // Based on the SPARC Compliance Definition version 2.4.1. 8216 // 8217 // Ensures that complex values are passed in registers. 8218 // 8219 namespace { 8220 class SparcV8ABIInfo : public DefaultABIInfo { 8221 public: 8222 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8223 8224 private: 8225 ABIArgInfo classifyReturnType(QualType RetTy) const; 8226 void computeInfo(CGFunctionInfo &FI) const override; 8227 }; 8228 } // end anonymous namespace 8229 8230 8231 ABIArgInfo 8232 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8233 if (Ty->isAnyComplexType()) { 8234 return ABIArgInfo::getDirect(); 8235 } 8236 else { 8237 return DefaultABIInfo::classifyReturnType(Ty); 8238 } 8239 } 8240 8241 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8242 8243 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8244 for (auto &Arg : FI.arguments()) 8245 Arg.info = classifyArgumentType(Arg.type); 8246 } 8247 8248 namespace { 8249 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8250 public: 8251 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8252 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8253 }; 8254 } // end anonymous namespace 8255 8256 //===----------------------------------------------------------------------===// 8257 // SPARC v9 ABI Implementation. 8258 // Based on the SPARC Compliance Definition version 2.4.1. 8259 // 8260 // Function arguments a mapped to a nominal "parameter array" and promoted to 8261 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8262 // the array, structs larger than 16 bytes are passed indirectly. 8263 // 8264 // One case requires special care: 8265 // 8266 // struct mixed { 8267 // int i; 8268 // float f; 8269 // }; 8270 // 8271 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8272 // parameter array, but the int is passed in an integer register, and the float 8273 // is passed in a floating point register. This is represented as two arguments 8274 // with the LLVM IR inreg attribute: 8275 // 8276 // declare void f(i32 inreg %i, float inreg %f) 8277 // 8278 // The code generator will only allocate 4 bytes from the parameter array for 8279 // the inreg arguments. All other arguments are allocated a multiple of 8 8280 // bytes. 8281 // 8282 namespace { 8283 class SparcV9ABIInfo : public ABIInfo { 8284 public: 8285 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8286 8287 private: 8288 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8289 void computeInfo(CGFunctionInfo &FI) const override; 8290 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8291 QualType Ty) const override; 8292 8293 // Coercion type builder for structs passed in registers. The coercion type 8294 // serves two purposes: 8295 // 8296 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8297 // in registers. 8298 // 2. Expose aligned floating point elements as first-level elements, so the 8299 // code generator knows to pass them in floating point registers. 8300 // 8301 // We also compute the InReg flag which indicates that the struct contains 8302 // aligned 32-bit floats. 8303 // 8304 struct CoerceBuilder { 8305 llvm::LLVMContext &Context; 8306 const llvm::DataLayout &DL; 8307 SmallVector<llvm::Type*, 8> Elems; 8308 uint64_t Size; 8309 bool InReg; 8310 8311 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8312 : Context(c), DL(dl), Size(0), InReg(false) {} 8313 8314 // Pad Elems with integers until Size is ToSize. 8315 void pad(uint64_t ToSize) { 8316 assert(ToSize >= Size && "Cannot remove elements"); 8317 if (ToSize == Size) 8318 return; 8319 8320 // Finish the current 64-bit word. 8321 uint64_t Aligned = llvm::alignTo(Size, 64); 8322 if (Aligned > Size && Aligned <= ToSize) { 8323 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8324 Size = Aligned; 8325 } 8326 8327 // Add whole 64-bit words. 8328 while (Size + 64 <= ToSize) { 8329 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8330 Size += 64; 8331 } 8332 8333 // Final in-word padding. 8334 if (Size < ToSize) { 8335 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8336 Size = ToSize; 8337 } 8338 } 8339 8340 // Add a floating point element at Offset. 8341 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8342 // Unaligned floats are treated as integers. 8343 if (Offset % Bits) 8344 return; 8345 // The InReg flag is only required if there are any floats < 64 bits. 8346 if (Bits < 64) 8347 InReg = true; 8348 pad(Offset); 8349 Elems.push_back(Ty); 8350 Size = Offset + Bits; 8351 } 8352 8353 // Add a struct type to the coercion type, starting at Offset (in bits). 8354 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8355 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8356 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8357 llvm::Type *ElemTy = StrTy->getElementType(i); 8358 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8359 switch (ElemTy->getTypeID()) { 8360 case llvm::Type::StructTyID: 8361 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8362 break; 8363 case llvm::Type::FloatTyID: 8364 addFloat(ElemOffset, ElemTy, 32); 8365 break; 8366 case llvm::Type::DoubleTyID: 8367 addFloat(ElemOffset, ElemTy, 64); 8368 break; 8369 case llvm::Type::FP128TyID: 8370 addFloat(ElemOffset, ElemTy, 128); 8371 break; 8372 case llvm::Type::PointerTyID: 8373 if (ElemOffset % 64 == 0) { 8374 pad(ElemOffset); 8375 Elems.push_back(ElemTy); 8376 Size += 64; 8377 } 8378 break; 8379 default: 8380 break; 8381 } 8382 } 8383 } 8384 8385 // Check if Ty is a usable substitute for the coercion type. 8386 bool isUsableType(llvm::StructType *Ty) const { 8387 return llvm::makeArrayRef(Elems) == Ty->elements(); 8388 } 8389 8390 // Get the coercion type as a literal struct type. 8391 llvm::Type *getType() const { 8392 if (Elems.size() == 1) 8393 return Elems.front(); 8394 else 8395 return llvm::StructType::get(Context, Elems); 8396 } 8397 }; 8398 }; 8399 } // end anonymous namespace 8400 8401 ABIArgInfo 8402 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8403 if (Ty->isVoidType()) 8404 return ABIArgInfo::getIgnore(); 8405 8406 uint64_t Size = getContext().getTypeSize(Ty); 8407 8408 // Anything too big to fit in registers is passed with an explicit indirect 8409 // pointer / sret pointer. 8410 if (Size > SizeLimit) 8411 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8412 8413 // Treat an enum type as its underlying type. 8414 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8415 Ty = EnumTy->getDecl()->getIntegerType(); 8416 8417 // Integer types smaller than a register are extended. 8418 if (Size < 64 && Ty->isIntegerType()) 8419 return ABIArgInfo::getExtend(Ty); 8420 8421 // Other non-aggregates go in registers. 8422 if (!isAggregateTypeForABI(Ty)) 8423 return ABIArgInfo::getDirect(); 8424 8425 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8426 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8427 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8428 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8429 8430 // This is a small aggregate type that should be passed in registers. 8431 // Build a coercion type from the LLVM struct type. 8432 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8433 if (!StrTy) 8434 return ABIArgInfo::getDirect(); 8435 8436 CoerceBuilder CB(getVMContext(), getDataLayout()); 8437 CB.addStruct(0, StrTy); 8438 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8439 8440 // Try to use the original type for coercion. 8441 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8442 8443 if (CB.InReg) 8444 return ABIArgInfo::getDirectInReg(CoerceTy); 8445 else 8446 return ABIArgInfo::getDirect(CoerceTy); 8447 } 8448 8449 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8450 QualType Ty) const { 8451 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8452 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8453 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8454 AI.setCoerceToType(ArgTy); 8455 8456 CharUnits SlotSize = CharUnits::fromQuantity(8); 8457 8458 CGBuilderTy &Builder = CGF.Builder; 8459 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8460 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8461 8462 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8463 8464 Address ArgAddr = Address::invalid(); 8465 CharUnits Stride; 8466 switch (AI.getKind()) { 8467 case ABIArgInfo::Expand: 8468 case ABIArgInfo::CoerceAndExpand: 8469 case ABIArgInfo::InAlloca: 8470 llvm_unreachable("Unsupported ABI kind for va_arg"); 8471 8472 case ABIArgInfo::Extend: { 8473 Stride = SlotSize; 8474 CharUnits Offset = SlotSize - TypeInfo.first; 8475 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8476 break; 8477 } 8478 8479 case ABIArgInfo::Direct: { 8480 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8481 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8482 ArgAddr = Addr; 8483 break; 8484 } 8485 8486 case ABIArgInfo::Indirect: 8487 Stride = SlotSize; 8488 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8489 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8490 TypeInfo.second); 8491 break; 8492 8493 case ABIArgInfo::Ignore: 8494 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8495 } 8496 8497 // Update VAList. 8498 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8499 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8500 8501 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8502 } 8503 8504 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8505 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8506 for (auto &I : FI.arguments()) 8507 I.info = classifyType(I.type, 16 * 8); 8508 } 8509 8510 namespace { 8511 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8512 public: 8513 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8514 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8515 8516 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8517 return 14; 8518 } 8519 8520 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8521 llvm::Value *Address) const override; 8522 }; 8523 } // end anonymous namespace 8524 8525 bool 8526 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8527 llvm::Value *Address) const { 8528 // This is calculated from the LLVM and GCC tables and verified 8529 // against gcc output. AFAIK all ABIs use the same encoding. 8530 8531 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8532 8533 llvm::IntegerType *i8 = CGF.Int8Ty; 8534 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8535 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8536 8537 // 0-31: the 8-byte general-purpose registers 8538 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8539 8540 // 32-63: f0-31, the 4-byte floating-point registers 8541 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8542 8543 // Y = 64 8544 // PSR = 65 8545 // WIM = 66 8546 // TBR = 67 8547 // PC = 68 8548 // NPC = 69 8549 // FSR = 70 8550 // CSR = 71 8551 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8552 8553 // 72-87: d0-15, the 8-byte floating-point registers 8554 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8555 8556 return false; 8557 } 8558 8559 // ARC ABI implementation. 8560 namespace { 8561 8562 class ARCABIInfo : public DefaultABIInfo { 8563 public: 8564 using DefaultABIInfo::DefaultABIInfo; 8565 8566 private: 8567 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8568 QualType Ty) const override; 8569 8570 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8571 if (!State.FreeRegs) 8572 return; 8573 if (Info.isIndirect() && Info.getInReg()) 8574 State.FreeRegs--; 8575 else if (Info.isDirect() && Info.getInReg()) { 8576 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8577 if (sz < State.FreeRegs) 8578 State.FreeRegs -= sz; 8579 else 8580 State.FreeRegs = 0; 8581 } 8582 } 8583 8584 void computeInfo(CGFunctionInfo &FI) const override { 8585 CCState State(FI); 8586 // ARC uses 8 registers to pass arguments. 8587 State.FreeRegs = 8; 8588 8589 if (!getCXXABI().classifyReturnType(FI)) 8590 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8591 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8592 for (auto &I : FI.arguments()) { 8593 I.info = classifyArgumentType(I.type, State.FreeRegs); 8594 updateState(I.info, I.type, State); 8595 } 8596 } 8597 8598 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8599 ABIArgInfo getIndirectByValue(QualType Ty) const; 8600 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8601 ABIArgInfo classifyReturnType(QualType RetTy) const; 8602 }; 8603 8604 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8605 public: 8606 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8607 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8608 }; 8609 8610 8611 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8612 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8613 getNaturalAlignIndirect(Ty, false); 8614 } 8615 8616 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8617 // Compute the byval alignment. 8618 const unsigned MinABIStackAlignInBytes = 4; 8619 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8620 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8621 TypeAlign > MinABIStackAlignInBytes); 8622 } 8623 8624 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8625 QualType Ty) const { 8626 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8627 getContext().getTypeInfoInChars(Ty), 8628 CharUnits::fromQuantity(4), true); 8629 } 8630 8631 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8632 uint8_t FreeRegs) const { 8633 // Handle the generic C++ ABI. 8634 const RecordType *RT = Ty->getAs<RecordType>(); 8635 if (RT) { 8636 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8637 if (RAA == CGCXXABI::RAA_Indirect) 8638 return getIndirectByRef(Ty, FreeRegs > 0); 8639 8640 if (RAA == CGCXXABI::RAA_DirectInMemory) 8641 return getIndirectByValue(Ty); 8642 } 8643 8644 // Treat an enum type as its underlying type. 8645 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8646 Ty = EnumTy->getDecl()->getIntegerType(); 8647 8648 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8649 8650 if (isAggregateTypeForABI(Ty)) { 8651 // Structures with flexible arrays are always indirect. 8652 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8653 return getIndirectByValue(Ty); 8654 8655 // Ignore empty structs/unions. 8656 if (isEmptyRecord(getContext(), Ty, true)) 8657 return ABIArgInfo::getIgnore(); 8658 8659 llvm::LLVMContext &LLVMContext = getVMContext(); 8660 8661 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8662 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8663 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8664 8665 return FreeRegs >= SizeInRegs ? 8666 ABIArgInfo::getDirectInReg(Result) : 8667 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8668 } 8669 8670 return Ty->isPromotableIntegerType() ? 8671 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8672 ABIArgInfo::getExtend(Ty)) : 8673 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8674 ABIArgInfo::getDirect()); 8675 } 8676 8677 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8678 if (RetTy->isAnyComplexType()) 8679 return ABIArgInfo::getDirectInReg(); 8680 8681 // Arguments of size > 4 registers are indirect. 8682 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8683 if (RetSize > 4) 8684 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8685 8686 return DefaultABIInfo::classifyReturnType(RetTy); 8687 } 8688 8689 } // End anonymous namespace. 8690 8691 //===----------------------------------------------------------------------===// 8692 // XCore ABI Implementation 8693 //===----------------------------------------------------------------------===// 8694 8695 namespace { 8696 8697 /// A SmallStringEnc instance is used to build up the TypeString by passing 8698 /// it by reference between functions that append to it. 8699 typedef llvm::SmallString<128> SmallStringEnc; 8700 8701 /// TypeStringCache caches the meta encodings of Types. 8702 /// 8703 /// The reason for caching TypeStrings is two fold: 8704 /// 1. To cache a type's encoding for later uses; 8705 /// 2. As a means to break recursive member type inclusion. 8706 /// 8707 /// A cache Entry can have a Status of: 8708 /// NonRecursive: The type encoding is not recursive; 8709 /// Recursive: The type encoding is recursive; 8710 /// Incomplete: An incomplete TypeString; 8711 /// IncompleteUsed: An incomplete TypeString that has been used in a 8712 /// Recursive type encoding. 8713 /// 8714 /// A NonRecursive entry will have all of its sub-members expanded as fully 8715 /// as possible. Whilst it may contain types which are recursive, the type 8716 /// itself is not recursive and thus its encoding may be safely used whenever 8717 /// the type is encountered. 8718 /// 8719 /// A Recursive entry will have all of its sub-members expanded as fully as 8720 /// possible. The type itself is recursive and it may contain other types which 8721 /// are recursive. The Recursive encoding must not be used during the expansion 8722 /// of a recursive type's recursive branch. For simplicity the code uses 8723 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8724 /// 8725 /// An Incomplete entry is always a RecordType and only encodes its 8726 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8727 /// are placed into the cache during type expansion as a means to identify and 8728 /// handle recursive inclusion of types as sub-members. If there is recursion 8729 /// the entry becomes IncompleteUsed. 8730 /// 8731 /// During the expansion of a RecordType's members: 8732 /// 8733 /// If the cache contains a NonRecursive encoding for the member type, the 8734 /// cached encoding is used; 8735 /// 8736 /// If the cache contains a Recursive encoding for the member type, the 8737 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8738 /// 8739 /// If the member is a RecordType, an Incomplete encoding is placed into the 8740 /// cache to break potential recursive inclusion of itself as a sub-member; 8741 /// 8742 /// Once a member RecordType has been expanded, its temporary incomplete 8743 /// entry is removed from the cache. If a Recursive encoding was swapped out 8744 /// it is swapped back in; 8745 /// 8746 /// If an incomplete entry is used to expand a sub-member, the incomplete 8747 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8748 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8749 /// 8750 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8751 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8752 /// Else the member is part of a recursive type and thus the recursion has 8753 /// been exited too soon for the encoding to be correct for the member. 8754 /// 8755 class TypeStringCache { 8756 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8757 struct Entry { 8758 std::string Str; // The encoded TypeString for the type. 8759 enum Status State; // Information about the encoding in 'Str'. 8760 std::string Swapped; // A temporary place holder for a Recursive encoding 8761 // during the expansion of RecordType's members. 8762 }; 8763 std::map<const IdentifierInfo *, struct Entry> Map; 8764 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8765 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8766 public: 8767 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8768 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8769 bool removeIncomplete(const IdentifierInfo *ID); 8770 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8771 bool IsRecursive); 8772 StringRef lookupStr(const IdentifierInfo *ID); 8773 }; 8774 8775 /// TypeString encodings for enum & union fields must be order. 8776 /// FieldEncoding is a helper for this ordering process. 8777 class FieldEncoding { 8778 bool HasName; 8779 std::string Enc; 8780 public: 8781 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8782 StringRef str() { return Enc; } 8783 bool operator<(const FieldEncoding &rhs) const { 8784 if (HasName != rhs.HasName) return HasName; 8785 return Enc < rhs.Enc; 8786 } 8787 }; 8788 8789 class XCoreABIInfo : public DefaultABIInfo { 8790 public: 8791 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8792 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8793 QualType Ty) const override; 8794 }; 8795 8796 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8797 mutable TypeStringCache TSC; 8798 public: 8799 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8800 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8801 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8802 CodeGen::CodeGenModule &M) const override; 8803 }; 8804 8805 } // End anonymous namespace. 8806 8807 // TODO: this implementation is likely now redundant with the default 8808 // EmitVAArg. 8809 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8810 QualType Ty) const { 8811 CGBuilderTy &Builder = CGF.Builder; 8812 8813 // Get the VAList. 8814 CharUnits SlotSize = CharUnits::fromQuantity(4); 8815 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8816 8817 // Handle the argument. 8818 ABIArgInfo AI = classifyArgumentType(Ty); 8819 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8820 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8821 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8822 AI.setCoerceToType(ArgTy); 8823 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8824 8825 Address Val = Address::invalid(); 8826 CharUnits ArgSize = CharUnits::Zero(); 8827 switch (AI.getKind()) { 8828 case ABIArgInfo::Expand: 8829 case ABIArgInfo::CoerceAndExpand: 8830 case ABIArgInfo::InAlloca: 8831 llvm_unreachable("Unsupported ABI kind for va_arg"); 8832 case ABIArgInfo::Ignore: 8833 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8834 ArgSize = CharUnits::Zero(); 8835 break; 8836 case ABIArgInfo::Extend: 8837 case ABIArgInfo::Direct: 8838 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8839 ArgSize = CharUnits::fromQuantity( 8840 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8841 ArgSize = ArgSize.alignTo(SlotSize); 8842 break; 8843 case ABIArgInfo::Indirect: 8844 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8845 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8846 ArgSize = SlotSize; 8847 break; 8848 } 8849 8850 // Increment the VAList. 8851 if (!ArgSize.isZero()) { 8852 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8853 Builder.CreateStore(APN.getPointer(), VAListAddr); 8854 } 8855 8856 return Val; 8857 } 8858 8859 /// During the expansion of a RecordType, an incomplete TypeString is placed 8860 /// into the cache as a means to identify and break recursion. 8861 /// If there is a Recursive encoding in the cache, it is swapped out and will 8862 /// be reinserted by removeIncomplete(). 8863 /// All other types of encoding should have been used rather than arriving here. 8864 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8865 std::string StubEnc) { 8866 if (!ID) 8867 return; 8868 Entry &E = Map[ID]; 8869 assert( (E.Str.empty() || E.State == Recursive) && 8870 "Incorrectly use of addIncomplete"); 8871 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8872 E.Swapped.swap(E.Str); // swap out the Recursive 8873 E.Str.swap(StubEnc); 8874 E.State = Incomplete; 8875 ++IncompleteCount; 8876 } 8877 8878 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8879 /// must be removed from the cache. 8880 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8881 /// Returns true if the RecordType was defined recursively. 8882 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8883 if (!ID) 8884 return false; 8885 auto I = Map.find(ID); 8886 assert(I != Map.end() && "Entry not present"); 8887 Entry &E = I->second; 8888 assert( (E.State == Incomplete || 8889 E.State == IncompleteUsed) && 8890 "Entry must be an incomplete type"); 8891 bool IsRecursive = false; 8892 if (E.State == IncompleteUsed) { 8893 // We made use of our Incomplete encoding, thus we are recursive. 8894 IsRecursive = true; 8895 --IncompleteUsedCount; 8896 } 8897 if (E.Swapped.empty()) 8898 Map.erase(I); 8899 else { 8900 // Swap the Recursive back. 8901 E.Swapped.swap(E.Str); 8902 E.Swapped.clear(); 8903 E.State = Recursive; 8904 } 8905 --IncompleteCount; 8906 return IsRecursive; 8907 } 8908 8909 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8910 /// Recursive (viz: all sub-members were expanded as fully as possible). 8911 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8912 bool IsRecursive) { 8913 if (!ID || IncompleteUsedCount) 8914 return; // No key or it is is an incomplete sub-type so don't add. 8915 Entry &E = Map[ID]; 8916 if (IsRecursive && !E.Str.empty()) { 8917 assert(E.State==Recursive && E.Str.size() == Str.size() && 8918 "This is not the same Recursive entry"); 8919 // The parent container was not recursive after all, so we could have used 8920 // this Recursive sub-member entry after all, but we assumed the worse when 8921 // we started viz: IncompleteCount!=0. 8922 return; 8923 } 8924 assert(E.Str.empty() && "Entry already present"); 8925 E.Str = Str.str(); 8926 E.State = IsRecursive? Recursive : NonRecursive; 8927 } 8928 8929 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8930 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8931 /// encoding is Recursive, return an empty StringRef. 8932 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8933 if (!ID) 8934 return StringRef(); // We have no key. 8935 auto I = Map.find(ID); 8936 if (I == Map.end()) 8937 return StringRef(); // We have no encoding. 8938 Entry &E = I->second; 8939 if (E.State == Recursive && IncompleteCount) 8940 return StringRef(); // We don't use Recursive encodings for member types. 8941 8942 if (E.State == Incomplete) { 8943 // The incomplete type is being used to break out of recursion. 8944 E.State = IncompleteUsed; 8945 ++IncompleteUsedCount; 8946 } 8947 return E.Str; 8948 } 8949 8950 /// The XCore ABI includes a type information section that communicates symbol 8951 /// type information to the linker. The linker uses this information to verify 8952 /// safety/correctness of things such as array bound and pointers et al. 8953 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8954 /// This type information (TypeString) is emitted into meta data for all global 8955 /// symbols: definitions, declarations, functions & variables. 8956 /// 8957 /// The TypeString carries type, qualifier, name, size & value details. 8958 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8959 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8960 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8961 /// 8962 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8963 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8964 8965 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8966 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8967 CodeGen::CodeGenModule &CGM) const { 8968 SmallStringEnc Enc; 8969 if (getTypeString(Enc, D, CGM, TSC)) { 8970 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8971 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8972 llvm::MDString::get(Ctx, Enc.str())}; 8973 llvm::NamedMDNode *MD = 8974 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8975 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8976 } 8977 } 8978 8979 //===----------------------------------------------------------------------===// 8980 // SPIR ABI Implementation 8981 //===----------------------------------------------------------------------===// 8982 8983 namespace { 8984 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8985 public: 8986 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8987 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8988 unsigned getOpenCLKernelCallingConv() const override; 8989 }; 8990 8991 } // End anonymous namespace. 8992 8993 namespace clang { 8994 namespace CodeGen { 8995 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8996 DefaultABIInfo SPIRABI(CGM.getTypes()); 8997 SPIRABI.computeInfo(FI); 8998 } 8999 } 9000 } 9001 9002 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9003 return llvm::CallingConv::SPIR_KERNEL; 9004 } 9005 9006 static bool appendType(SmallStringEnc &Enc, QualType QType, 9007 const CodeGen::CodeGenModule &CGM, 9008 TypeStringCache &TSC); 9009 9010 /// Helper function for appendRecordType(). 9011 /// Builds a SmallVector containing the encoded field types in declaration 9012 /// order. 9013 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9014 const RecordDecl *RD, 9015 const CodeGen::CodeGenModule &CGM, 9016 TypeStringCache &TSC) { 9017 for (const auto *Field : RD->fields()) { 9018 SmallStringEnc Enc; 9019 Enc += "m("; 9020 Enc += Field->getName(); 9021 Enc += "){"; 9022 if (Field->isBitField()) { 9023 Enc += "b("; 9024 llvm::raw_svector_ostream OS(Enc); 9025 OS << Field->getBitWidthValue(CGM.getContext()); 9026 Enc += ':'; 9027 } 9028 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9029 return false; 9030 if (Field->isBitField()) 9031 Enc += ')'; 9032 Enc += '}'; 9033 FE.emplace_back(!Field->getName().empty(), Enc); 9034 } 9035 return true; 9036 } 9037 9038 /// Appends structure and union types to Enc and adds encoding to cache. 9039 /// Recursively calls appendType (via extractFieldType) for each field. 9040 /// Union types have their fields ordered according to the ABI. 9041 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9042 const CodeGen::CodeGenModule &CGM, 9043 TypeStringCache &TSC, const IdentifierInfo *ID) { 9044 // Append the cached TypeString if we have one. 9045 StringRef TypeString = TSC.lookupStr(ID); 9046 if (!TypeString.empty()) { 9047 Enc += TypeString; 9048 return true; 9049 } 9050 9051 // Start to emit an incomplete TypeString. 9052 size_t Start = Enc.size(); 9053 Enc += (RT->isUnionType()? 'u' : 's'); 9054 Enc += '('; 9055 if (ID) 9056 Enc += ID->getName(); 9057 Enc += "){"; 9058 9059 // We collect all encoded fields and order as necessary. 9060 bool IsRecursive = false; 9061 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9062 if (RD && !RD->field_empty()) { 9063 // An incomplete TypeString stub is placed in the cache for this RecordType 9064 // so that recursive calls to this RecordType will use it whilst building a 9065 // complete TypeString for this RecordType. 9066 SmallVector<FieldEncoding, 16> FE; 9067 std::string StubEnc(Enc.substr(Start).str()); 9068 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9069 TSC.addIncomplete(ID, std::move(StubEnc)); 9070 if (!extractFieldType(FE, RD, CGM, TSC)) { 9071 (void) TSC.removeIncomplete(ID); 9072 return false; 9073 } 9074 IsRecursive = TSC.removeIncomplete(ID); 9075 // The ABI requires unions to be sorted but not structures. 9076 // See FieldEncoding::operator< for sort algorithm. 9077 if (RT->isUnionType()) 9078 llvm::sort(FE); 9079 // We can now complete the TypeString. 9080 unsigned E = FE.size(); 9081 for (unsigned I = 0; I != E; ++I) { 9082 if (I) 9083 Enc += ','; 9084 Enc += FE[I].str(); 9085 } 9086 } 9087 Enc += '}'; 9088 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9089 return true; 9090 } 9091 9092 /// Appends enum types to Enc and adds the encoding to the cache. 9093 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9094 TypeStringCache &TSC, 9095 const IdentifierInfo *ID) { 9096 // Append the cached TypeString if we have one. 9097 StringRef TypeString = TSC.lookupStr(ID); 9098 if (!TypeString.empty()) { 9099 Enc += TypeString; 9100 return true; 9101 } 9102 9103 size_t Start = Enc.size(); 9104 Enc += "e("; 9105 if (ID) 9106 Enc += ID->getName(); 9107 Enc += "){"; 9108 9109 // We collect all encoded enumerations and order them alphanumerically. 9110 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9111 SmallVector<FieldEncoding, 16> FE; 9112 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9113 ++I) { 9114 SmallStringEnc EnumEnc; 9115 EnumEnc += "m("; 9116 EnumEnc += I->getName(); 9117 EnumEnc += "){"; 9118 I->getInitVal().toString(EnumEnc); 9119 EnumEnc += '}'; 9120 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9121 } 9122 llvm::sort(FE); 9123 unsigned E = FE.size(); 9124 for (unsigned I = 0; I != E; ++I) { 9125 if (I) 9126 Enc += ','; 9127 Enc += FE[I].str(); 9128 } 9129 } 9130 Enc += '}'; 9131 TSC.addIfComplete(ID, Enc.substr(Start), false); 9132 return true; 9133 } 9134 9135 /// Appends type's qualifier to Enc. 9136 /// This is done prior to appending the type's encoding. 9137 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9138 // Qualifiers are emitted in alphabetical order. 9139 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9140 int Lookup = 0; 9141 if (QT.isConstQualified()) 9142 Lookup += 1<<0; 9143 if (QT.isRestrictQualified()) 9144 Lookup += 1<<1; 9145 if (QT.isVolatileQualified()) 9146 Lookup += 1<<2; 9147 Enc += Table[Lookup]; 9148 } 9149 9150 /// Appends built-in types to Enc. 9151 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9152 const char *EncType; 9153 switch (BT->getKind()) { 9154 case BuiltinType::Void: 9155 EncType = "0"; 9156 break; 9157 case BuiltinType::Bool: 9158 EncType = "b"; 9159 break; 9160 case BuiltinType::Char_U: 9161 EncType = "uc"; 9162 break; 9163 case BuiltinType::UChar: 9164 EncType = "uc"; 9165 break; 9166 case BuiltinType::SChar: 9167 EncType = "sc"; 9168 break; 9169 case BuiltinType::UShort: 9170 EncType = "us"; 9171 break; 9172 case BuiltinType::Short: 9173 EncType = "ss"; 9174 break; 9175 case BuiltinType::UInt: 9176 EncType = "ui"; 9177 break; 9178 case BuiltinType::Int: 9179 EncType = "si"; 9180 break; 9181 case BuiltinType::ULong: 9182 EncType = "ul"; 9183 break; 9184 case BuiltinType::Long: 9185 EncType = "sl"; 9186 break; 9187 case BuiltinType::ULongLong: 9188 EncType = "ull"; 9189 break; 9190 case BuiltinType::LongLong: 9191 EncType = "sll"; 9192 break; 9193 case BuiltinType::Float: 9194 EncType = "ft"; 9195 break; 9196 case BuiltinType::Double: 9197 EncType = "d"; 9198 break; 9199 case BuiltinType::LongDouble: 9200 EncType = "ld"; 9201 break; 9202 default: 9203 return false; 9204 } 9205 Enc += EncType; 9206 return true; 9207 } 9208 9209 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9210 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9211 const CodeGen::CodeGenModule &CGM, 9212 TypeStringCache &TSC) { 9213 Enc += "p("; 9214 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9215 return false; 9216 Enc += ')'; 9217 return true; 9218 } 9219 9220 /// Appends array encoding to Enc before calling appendType for the element. 9221 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9222 const ArrayType *AT, 9223 const CodeGen::CodeGenModule &CGM, 9224 TypeStringCache &TSC, StringRef NoSizeEnc) { 9225 if (AT->getSizeModifier() != ArrayType::Normal) 9226 return false; 9227 Enc += "a("; 9228 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9229 CAT->getSize().toStringUnsigned(Enc); 9230 else 9231 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9232 Enc += ':'; 9233 // The Qualifiers should be attached to the type rather than the array. 9234 appendQualifier(Enc, QT); 9235 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9236 return false; 9237 Enc += ')'; 9238 return true; 9239 } 9240 9241 /// Appends a function encoding to Enc, calling appendType for the return type 9242 /// and the arguments. 9243 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9244 const CodeGen::CodeGenModule &CGM, 9245 TypeStringCache &TSC) { 9246 Enc += "f{"; 9247 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9248 return false; 9249 Enc += "}("; 9250 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9251 // N.B. we are only interested in the adjusted param types. 9252 auto I = FPT->param_type_begin(); 9253 auto E = FPT->param_type_end(); 9254 if (I != E) { 9255 do { 9256 if (!appendType(Enc, *I, CGM, TSC)) 9257 return false; 9258 ++I; 9259 if (I != E) 9260 Enc += ','; 9261 } while (I != E); 9262 if (FPT->isVariadic()) 9263 Enc += ",va"; 9264 } else { 9265 if (FPT->isVariadic()) 9266 Enc += "va"; 9267 else 9268 Enc += '0'; 9269 } 9270 } 9271 Enc += ')'; 9272 return true; 9273 } 9274 9275 /// Handles the type's qualifier before dispatching a call to handle specific 9276 /// type encodings. 9277 static bool appendType(SmallStringEnc &Enc, QualType QType, 9278 const CodeGen::CodeGenModule &CGM, 9279 TypeStringCache &TSC) { 9280 9281 QualType QT = QType.getCanonicalType(); 9282 9283 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9284 // The Qualifiers should be attached to the type rather than the array. 9285 // Thus we don't call appendQualifier() here. 9286 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9287 9288 appendQualifier(Enc, QT); 9289 9290 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9291 return appendBuiltinType(Enc, BT); 9292 9293 if (const PointerType *PT = QT->getAs<PointerType>()) 9294 return appendPointerType(Enc, PT, CGM, TSC); 9295 9296 if (const EnumType *ET = QT->getAs<EnumType>()) 9297 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9298 9299 if (const RecordType *RT = QT->getAsStructureType()) 9300 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9301 9302 if (const RecordType *RT = QT->getAsUnionType()) 9303 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9304 9305 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9306 return appendFunctionType(Enc, FT, CGM, TSC); 9307 9308 return false; 9309 } 9310 9311 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9312 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9313 if (!D) 9314 return false; 9315 9316 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9317 if (FD->getLanguageLinkage() != CLanguageLinkage) 9318 return false; 9319 return appendType(Enc, FD->getType(), CGM, TSC); 9320 } 9321 9322 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9323 if (VD->getLanguageLinkage() != CLanguageLinkage) 9324 return false; 9325 QualType QT = VD->getType().getCanonicalType(); 9326 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9327 // Global ArrayTypes are given a size of '*' if the size is unknown. 9328 // The Qualifiers should be attached to the type rather than the array. 9329 // Thus we don't call appendQualifier() here. 9330 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9331 } 9332 return appendType(Enc, QT, CGM, TSC); 9333 } 9334 return false; 9335 } 9336 9337 //===----------------------------------------------------------------------===// 9338 // RISCV ABI Implementation 9339 //===----------------------------------------------------------------------===// 9340 9341 namespace { 9342 class RISCVABIInfo : public DefaultABIInfo { 9343 private: 9344 // Size of the integer ('x') registers in bits. 9345 unsigned XLen; 9346 // Size of the floating point ('f') registers in bits. Note that the target 9347 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9348 // with soft float ABI has FLen==0). 9349 unsigned FLen; 9350 static const int NumArgGPRs = 8; 9351 static const int NumArgFPRs = 8; 9352 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9353 llvm::Type *&Field1Ty, 9354 CharUnits &Field1Off, 9355 llvm::Type *&Field2Ty, 9356 CharUnits &Field2Off) const; 9357 9358 public: 9359 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9360 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9361 9362 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9363 // non-virtual, but computeInfo is virtual, so we overload it. 9364 void computeInfo(CGFunctionInfo &FI) const override; 9365 9366 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9367 int &ArgFPRsLeft) const; 9368 ABIArgInfo classifyReturnType(QualType RetTy) const; 9369 9370 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9371 QualType Ty) const override; 9372 9373 ABIArgInfo extendType(QualType Ty) const; 9374 9375 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9376 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9377 CharUnits &Field2Off, int &NeededArgGPRs, 9378 int &NeededArgFPRs) const; 9379 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9380 CharUnits Field1Off, 9381 llvm::Type *Field2Ty, 9382 CharUnits Field2Off) const; 9383 }; 9384 } // end anonymous namespace 9385 9386 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9387 QualType RetTy = FI.getReturnType(); 9388 if (!getCXXABI().classifyReturnType(FI)) 9389 FI.getReturnInfo() = classifyReturnType(RetTy); 9390 9391 // IsRetIndirect is true if classifyArgumentType indicated the value should 9392 // be passed indirect, or if the type size is a scalar greater than 2*XLen 9393 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 9394 // in LLVM IR, relying on the backend lowering code to rewrite the argument 9395 // list and pass indirectly on RV32. 9396 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 9397 if (!IsRetIndirect && RetTy->isScalarType() && 9398 getContext().getTypeSize(RetTy) > (2 * XLen)) { 9399 if (RetTy->isComplexType() && FLen) { 9400 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 9401 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 9402 } else { 9403 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 9404 IsRetIndirect = true; 9405 } 9406 } 9407 9408 // We must track the number of GPRs used in order to conform to the RISC-V 9409 // ABI, as integer scalars passed in registers should have signext/zeroext 9410 // when promoted, but are anyext if passed on the stack. As GPR usage is 9411 // different for variadic arguments, we must also track whether we are 9412 // examining a vararg or not. 9413 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9414 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9415 int NumFixedArgs = FI.getNumRequiredArgs(); 9416 9417 int ArgNum = 0; 9418 for (auto &ArgInfo : FI.arguments()) { 9419 bool IsFixed = ArgNum < NumFixedArgs; 9420 ArgInfo.info = 9421 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9422 ArgNum++; 9423 } 9424 } 9425 9426 // Returns true if the struct is a potential candidate for the floating point 9427 // calling convention. If this function returns true, the caller is 9428 // responsible for checking that if there is only a single field then that 9429 // field is a float. 9430 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9431 llvm::Type *&Field1Ty, 9432 CharUnits &Field1Off, 9433 llvm::Type *&Field2Ty, 9434 CharUnits &Field2Off) const { 9435 bool IsInt = Ty->isIntegralOrEnumerationType(); 9436 bool IsFloat = Ty->isRealFloatingType(); 9437 9438 if (IsInt || IsFloat) { 9439 uint64_t Size = getContext().getTypeSize(Ty); 9440 if (IsInt && Size > XLen) 9441 return false; 9442 // Can't be eligible if larger than the FP registers. Half precision isn't 9443 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9444 // default to the integer ABI in that case. 9445 if (IsFloat && (Size > FLen || Size < 32)) 9446 return false; 9447 // Can't be eligible if an integer type was already found (int+int pairs 9448 // are not eligible). 9449 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9450 return false; 9451 if (!Field1Ty) { 9452 Field1Ty = CGT.ConvertType(Ty); 9453 Field1Off = CurOff; 9454 return true; 9455 } 9456 if (!Field2Ty) { 9457 Field2Ty = CGT.ConvertType(Ty); 9458 Field2Off = CurOff; 9459 return true; 9460 } 9461 return false; 9462 } 9463 9464 if (auto CTy = Ty->getAs<ComplexType>()) { 9465 if (Field1Ty) 9466 return false; 9467 QualType EltTy = CTy->getElementType(); 9468 if (getContext().getTypeSize(EltTy) > FLen) 9469 return false; 9470 Field1Ty = CGT.ConvertType(EltTy); 9471 Field1Off = CurOff; 9472 assert(CurOff.isZero() && "Unexpected offset for first field"); 9473 Field2Ty = Field1Ty; 9474 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9475 return true; 9476 } 9477 9478 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9479 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9480 QualType EltTy = ATy->getElementType(); 9481 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9482 for (uint64_t i = 0; i < ArraySize; ++i) { 9483 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9484 Field1Off, Field2Ty, Field2Off); 9485 if (!Ret) 9486 return false; 9487 CurOff += EltSize; 9488 } 9489 return true; 9490 } 9491 9492 if (const auto *RTy = Ty->getAs<RecordType>()) { 9493 // Structures with either a non-trivial destructor or a non-trivial 9494 // copy constructor are not eligible for the FP calling convention. 9495 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9496 return false; 9497 if (isEmptyRecord(getContext(), Ty, true)) 9498 return true; 9499 const RecordDecl *RD = RTy->getDecl(); 9500 // Unions aren't eligible unless they're empty (which is caught above). 9501 if (RD->isUnion()) 9502 return false; 9503 int ZeroWidthBitFieldCount = 0; 9504 for (const FieldDecl *FD : RD->fields()) { 9505 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9506 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9507 QualType QTy = FD->getType(); 9508 if (FD->isBitField()) { 9509 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9510 // Allow a bitfield with a type greater than XLen as long as the 9511 // bitwidth is XLen or less. 9512 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9513 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9514 if (BitWidth == 0) { 9515 ZeroWidthBitFieldCount++; 9516 continue; 9517 } 9518 } 9519 9520 bool Ret = detectFPCCEligibleStructHelper( 9521 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9522 Field1Ty, Field1Off, Field2Ty, Field2Off); 9523 if (!Ret) 9524 return false; 9525 9526 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9527 // or int+fp structs, but are ignored for a struct with an fp field and 9528 // any number of zero-width bitfields. 9529 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9530 return false; 9531 } 9532 return Field1Ty != nullptr; 9533 } 9534 9535 return false; 9536 } 9537 9538 // Determine if a struct is eligible for passing according to the floating 9539 // point calling convention (i.e., when flattened it contains a single fp 9540 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9541 // NeededArgGPRs are incremented appropriately. 9542 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9543 CharUnits &Field1Off, 9544 llvm::Type *&Field2Ty, 9545 CharUnits &Field2Off, 9546 int &NeededArgGPRs, 9547 int &NeededArgFPRs) const { 9548 Field1Ty = nullptr; 9549 Field2Ty = nullptr; 9550 NeededArgGPRs = 0; 9551 NeededArgFPRs = 0; 9552 bool IsCandidate = detectFPCCEligibleStructHelper( 9553 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9554 // Not really a candidate if we have a single int but no float. 9555 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9556 return false; 9557 if (!IsCandidate) 9558 return false; 9559 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9560 NeededArgFPRs++; 9561 else if (Field1Ty) 9562 NeededArgGPRs++; 9563 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9564 NeededArgFPRs++; 9565 else if (Field2Ty) 9566 NeededArgGPRs++; 9567 return IsCandidate; 9568 } 9569 9570 // Call getCoerceAndExpand for the two-element flattened struct described by 9571 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9572 // appropriate coerceToType and unpaddedCoerceToType. 9573 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9574 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9575 CharUnits Field2Off) const { 9576 SmallVector<llvm::Type *, 3> CoerceElts; 9577 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9578 if (!Field1Off.isZero()) 9579 CoerceElts.push_back(llvm::ArrayType::get( 9580 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9581 9582 CoerceElts.push_back(Field1Ty); 9583 UnpaddedCoerceElts.push_back(Field1Ty); 9584 9585 if (!Field2Ty) { 9586 return ABIArgInfo::getCoerceAndExpand( 9587 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9588 UnpaddedCoerceElts[0]); 9589 } 9590 9591 CharUnits Field2Align = 9592 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9593 CharUnits Field1Size = 9594 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9595 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9596 9597 CharUnits Padding = CharUnits::Zero(); 9598 if (Field2Off > Field2OffNoPadNoPack) 9599 Padding = Field2Off - Field2OffNoPadNoPack; 9600 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9601 Padding = Field2Off - Field1Size; 9602 9603 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9604 9605 if (!Padding.isZero()) 9606 CoerceElts.push_back(llvm::ArrayType::get( 9607 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9608 9609 CoerceElts.push_back(Field2Ty); 9610 UnpaddedCoerceElts.push_back(Field2Ty); 9611 9612 auto CoerceToType = 9613 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 9614 auto UnpaddedCoerceToType = 9615 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 9616 9617 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 9618 } 9619 9620 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9621 int &ArgGPRsLeft, 9622 int &ArgFPRsLeft) const { 9623 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9624 Ty = useFirstFieldIfTransparentUnion(Ty); 9625 9626 // Structures with either a non-trivial destructor or a non-trivial 9627 // copy constructor are always passed indirectly. 9628 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9629 if (ArgGPRsLeft) 9630 ArgGPRsLeft -= 1; 9631 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9632 CGCXXABI::RAA_DirectInMemory); 9633 } 9634 9635 // Ignore empty structs/unions. 9636 if (isEmptyRecord(getContext(), Ty, true)) 9637 return ABIArgInfo::getIgnore(); 9638 9639 uint64_t Size = getContext().getTypeSize(Ty); 9640 9641 // Pass floating point values via FPRs if possible. 9642 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 9643 ArgFPRsLeft--; 9644 return ABIArgInfo::getDirect(); 9645 } 9646 9647 // Complex types for the hard float ABI must be passed direct rather than 9648 // using CoerceAndExpand. 9649 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 9650 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 9651 if (getContext().getTypeSize(EltTy) <= FLen) { 9652 ArgFPRsLeft -= 2; 9653 return ABIArgInfo::getDirect(); 9654 } 9655 } 9656 9657 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 9658 llvm::Type *Field1Ty = nullptr; 9659 llvm::Type *Field2Ty = nullptr; 9660 CharUnits Field1Off = CharUnits::Zero(); 9661 CharUnits Field2Off = CharUnits::Zero(); 9662 int NeededArgGPRs; 9663 int NeededArgFPRs; 9664 bool IsCandidate = 9665 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 9666 NeededArgGPRs, NeededArgFPRs); 9667 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 9668 NeededArgFPRs <= ArgFPRsLeft) { 9669 ArgGPRsLeft -= NeededArgGPRs; 9670 ArgFPRsLeft -= NeededArgFPRs; 9671 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 9672 Field2Off); 9673 } 9674 } 9675 9676 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9677 bool MustUseStack = false; 9678 // Determine the number of GPRs needed to pass the current argument 9679 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9680 // register pairs, so may consume 3 registers. 9681 int NeededArgGPRs = 1; 9682 if (!IsFixed && NeededAlign == 2 * XLen) 9683 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9684 else if (Size > XLen && Size <= 2 * XLen) 9685 NeededArgGPRs = 2; 9686 9687 if (NeededArgGPRs > ArgGPRsLeft) { 9688 MustUseStack = true; 9689 NeededArgGPRs = ArgGPRsLeft; 9690 } 9691 9692 ArgGPRsLeft -= NeededArgGPRs; 9693 9694 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9695 // Treat an enum type as its underlying type. 9696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9697 Ty = EnumTy->getDecl()->getIntegerType(); 9698 9699 // All integral types are promoted to XLen width, unless passed on the 9700 // stack. 9701 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9702 return extendType(Ty); 9703 } 9704 9705 return ABIArgInfo::getDirect(); 9706 } 9707 9708 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9709 // so coerce to integers. 9710 if (Size <= 2 * XLen) { 9711 unsigned Alignment = getContext().getTypeAlign(Ty); 9712 9713 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9714 // required, and a 2-element XLen array if only XLen alignment is required. 9715 if (Size <= XLen) { 9716 return ABIArgInfo::getDirect( 9717 llvm::IntegerType::get(getVMContext(), XLen)); 9718 } else if (Alignment == 2 * XLen) { 9719 return ABIArgInfo::getDirect( 9720 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9721 } else { 9722 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9723 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9724 } 9725 } 9726 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9727 } 9728 9729 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9730 if (RetTy->isVoidType()) 9731 return ABIArgInfo::getIgnore(); 9732 9733 int ArgGPRsLeft = 2; 9734 int ArgFPRsLeft = FLen ? 2 : 0; 9735 9736 // The rules for return and argument types are the same, so defer to 9737 // classifyArgumentType. 9738 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 9739 ArgFPRsLeft); 9740 } 9741 9742 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9743 QualType Ty) const { 9744 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9745 9746 // Empty records are ignored for parameter passing purposes. 9747 if (isEmptyRecord(getContext(), Ty, true)) { 9748 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9749 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9750 return Addr; 9751 } 9752 9753 std::pair<CharUnits, CharUnits> SizeAndAlign = 9754 getContext().getTypeInfoInChars(Ty); 9755 9756 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9757 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9758 9759 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9760 SlotSize, /*AllowHigherAlign=*/true); 9761 } 9762 9763 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9764 int TySize = getContext().getTypeSize(Ty); 9765 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9766 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9767 return ABIArgInfo::getSignExtend(Ty); 9768 return ABIArgInfo::getExtend(Ty); 9769 } 9770 9771 namespace { 9772 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9773 public: 9774 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 9775 unsigned FLen) 9776 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 9777 9778 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9779 CodeGen::CodeGenModule &CGM) const override { 9780 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9781 if (!FD) return; 9782 9783 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9784 if (!Attr) 9785 return; 9786 9787 const char *Kind; 9788 switch (Attr->getInterrupt()) { 9789 case RISCVInterruptAttr::user: Kind = "user"; break; 9790 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9791 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9792 } 9793 9794 auto *Fn = cast<llvm::Function>(GV); 9795 9796 Fn->addFnAttr("interrupt", Kind); 9797 } 9798 }; 9799 } // namespace 9800 9801 //===----------------------------------------------------------------------===// 9802 // Driver code 9803 //===----------------------------------------------------------------------===// 9804 9805 bool CodeGenModule::supportsCOMDAT() const { 9806 return getTriple().supportsCOMDAT(); 9807 } 9808 9809 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9810 if (TheTargetCodeGenInfo) 9811 return *TheTargetCodeGenInfo; 9812 9813 // Helper to set the unique_ptr while still keeping the return value. 9814 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9815 this->TheTargetCodeGenInfo.reset(P); 9816 return *P; 9817 }; 9818 9819 const llvm::Triple &Triple = getTarget().getTriple(); 9820 switch (Triple.getArch()) { 9821 default: 9822 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9823 9824 case llvm::Triple::le32: 9825 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9826 case llvm::Triple::mips: 9827 case llvm::Triple::mipsel: 9828 if (Triple.getOS() == llvm::Triple::NaCl) 9829 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9830 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9831 9832 case llvm::Triple::mips64: 9833 case llvm::Triple::mips64el: 9834 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9835 9836 case llvm::Triple::avr: 9837 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9838 9839 case llvm::Triple::aarch64: 9840 case llvm::Triple::aarch64_32: 9841 case llvm::Triple::aarch64_be: { 9842 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9843 if (getTarget().getABI() == "darwinpcs") 9844 Kind = AArch64ABIInfo::DarwinPCS; 9845 else if (Triple.isOSWindows()) 9846 return SetCGInfo( 9847 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9848 9849 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9850 } 9851 9852 case llvm::Triple::wasm32: 9853 case llvm::Triple::wasm64: 9854 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9855 9856 case llvm::Triple::arm: 9857 case llvm::Triple::armeb: 9858 case llvm::Triple::thumb: 9859 case llvm::Triple::thumbeb: { 9860 if (Triple.getOS() == llvm::Triple::Win32) { 9861 return SetCGInfo( 9862 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9863 } 9864 9865 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9866 StringRef ABIStr = getTarget().getABI(); 9867 if (ABIStr == "apcs-gnu") 9868 Kind = ARMABIInfo::APCS; 9869 else if (ABIStr == "aapcs16") 9870 Kind = ARMABIInfo::AAPCS16_VFP; 9871 else if (CodeGenOpts.FloatABI == "hard" || 9872 (CodeGenOpts.FloatABI != "soft" && 9873 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9874 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9875 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9876 Kind = ARMABIInfo::AAPCS_VFP; 9877 9878 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9879 } 9880 9881 case llvm::Triple::ppc: 9882 return SetCGInfo( 9883 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || 9884 getTarget().hasFeature("spe"))); 9885 case llvm::Triple::ppc64: 9886 if (Triple.isOSBinFormatELF()) { 9887 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9888 if (getTarget().getABI() == "elfv2") 9889 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9890 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9891 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9892 9893 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9894 IsSoftFloat)); 9895 } else 9896 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9897 case llvm::Triple::ppc64le: { 9898 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9899 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9900 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9901 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9902 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9903 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9904 9905 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9906 IsSoftFloat)); 9907 } 9908 9909 case llvm::Triple::nvptx: 9910 case llvm::Triple::nvptx64: 9911 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9912 9913 case llvm::Triple::msp430: 9914 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9915 9916 case llvm::Triple::riscv32: 9917 case llvm::Triple::riscv64: { 9918 StringRef ABIStr = getTarget().getABI(); 9919 unsigned XLen = getTarget().getPointerWidth(0); 9920 unsigned ABIFLen = 0; 9921 if (ABIStr.endswith("f")) 9922 ABIFLen = 32; 9923 else if (ABIStr.endswith("d")) 9924 ABIFLen = 64; 9925 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 9926 } 9927 9928 case llvm::Triple::systemz: { 9929 bool HasVector = getTarget().getABI() == "vector"; 9930 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9931 } 9932 9933 case llvm::Triple::tce: 9934 case llvm::Triple::tcele: 9935 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9936 9937 case llvm::Triple::x86: { 9938 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9939 bool RetSmallStructInRegABI = 9940 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9941 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9942 9943 if (Triple.getOS() == llvm::Triple::Win32) { 9944 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9945 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9946 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9947 } else { 9948 return SetCGInfo(new X86_32TargetCodeGenInfo( 9949 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9950 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9951 CodeGenOpts.FloatABI == "soft")); 9952 } 9953 } 9954 9955 case llvm::Triple::x86_64: { 9956 StringRef ABI = getTarget().getABI(); 9957 X86AVXABILevel AVXLevel = 9958 (ABI == "avx512" 9959 ? X86AVXABILevel::AVX512 9960 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9961 9962 switch (Triple.getOS()) { 9963 case llvm::Triple::Win32: 9964 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9965 default: 9966 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9967 } 9968 } 9969 case llvm::Triple::hexagon: 9970 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9971 case llvm::Triple::lanai: 9972 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9973 case llvm::Triple::r600: 9974 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9975 case llvm::Triple::amdgcn: 9976 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9977 case llvm::Triple::sparc: 9978 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9979 case llvm::Triple::sparcv9: 9980 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9981 case llvm::Triple::xcore: 9982 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9983 case llvm::Triple::arc: 9984 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9985 case llvm::Triple::spir: 9986 case llvm::Triple::spir64: 9987 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9988 } 9989 } 9990 9991 /// Create an OpenCL kernel for an enqueued block. 9992 /// 9993 /// The kernel has the same function type as the block invoke function. Its 9994 /// name is the name of the block invoke function postfixed with "_kernel". 9995 /// It simply calls the block invoke function then returns. 9996 llvm::Function * 9997 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9998 llvm::Function *Invoke, 9999 llvm::Value *BlockLiteral) const { 10000 auto *InvokeFT = Invoke->getFunctionType(); 10001 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10002 for (auto &P : InvokeFT->params()) 10003 ArgTys.push_back(P); 10004 auto &C = CGF.getLLVMContext(); 10005 std::string Name = Invoke->getName().str() + "_kernel"; 10006 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10007 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10008 &CGF.CGM.getModule()); 10009 auto IP = CGF.Builder.saveIP(); 10010 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10011 auto &Builder = CGF.Builder; 10012 Builder.SetInsertPoint(BB); 10013 llvm::SmallVector<llvm::Value *, 2> Args; 10014 for (auto &A : F->args()) 10015 Args.push_back(&A); 10016 Builder.CreateCall(Invoke, Args); 10017 Builder.CreateRetVoid(); 10018 Builder.restoreIP(IP); 10019 return F; 10020 } 10021 10022 /// Create an OpenCL kernel for an enqueued block. 10023 /// 10024 /// The type of the first argument (the block literal) is the struct type 10025 /// of the block literal instead of a pointer type. The first argument 10026 /// (block literal) is passed directly by value to the kernel. The kernel 10027 /// allocates the same type of struct on stack and stores the block literal 10028 /// to it and passes its pointer to the block invoke function. The kernel 10029 /// has "enqueued-block" function attribute and kernel argument metadata. 10030 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10031 CodeGenFunction &CGF, llvm::Function *Invoke, 10032 llvm::Value *BlockLiteral) const { 10033 auto &Builder = CGF.Builder; 10034 auto &C = CGF.getLLVMContext(); 10035 10036 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10037 auto *InvokeFT = Invoke->getFunctionType(); 10038 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10039 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10040 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10041 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10042 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10043 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10044 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10045 10046 ArgTys.push_back(BlockTy); 10047 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10048 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10049 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10050 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10051 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10052 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10053 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10054 ArgTys.push_back(InvokeFT->getParamType(I)); 10055 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10056 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10057 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10058 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10059 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10060 ArgNames.push_back( 10061 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10062 } 10063 std::string Name = Invoke->getName().str() + "_kernel"; 10064 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10065 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10066 &CGF.CGM.getModule()); 10067 F->addFnAttr("enqueued-block"); 10068 auto IP = CGF.Builder.saveIP(); 10069 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10070 Builder.SetInsertPoint(BB); 10071 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10072 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10073 BlockPtr->setAlignment(BlockAlign); 10074 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10075 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10076 llvm::SmallVector<llvm::Value *, 2> Args; 10077 Args.push_back(Cast); 10078 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10079 Args.push_back(I); 10080 Builder.CreateCall(Invoke, Args); 10081 Builder.CreateRetVoid(); 10082 Builder.restoreIP(IP); 10083 10084 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10085 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10086 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10087 F->setMetadata("kernel_arg_base_type", 10088 llvm::MDNode::get(C, ArgBaseTypeNames)); 10089 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10090 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10091 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10092 10093 return F; 10094 } 10095