1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 41 Builder.CreateStore(Value, Cell); 42 } 43 } 44 45 static bool isAggregateTypeForABI(QualType T) { 46 return !CodeGenFunction::hasScalarEvaluationKind(T) || 47 T->isMemberFunctionPointerType(); 48 } 49 50 ABIInfo::~ABIInfo() {} 51 52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 53 CGCXXABI &CXXABI) { 54 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 55 if (!RD) 56 return CGCXXABI::RAA_Default; 57 return CXXABI.getRecordArgABI(RD); 58 } 59 60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 61 CGCXXABI &CXXABI) { 62 const RecordType *RT = T->getAs<RecordType>(); 63 if (!RT) 64 return CGCXXABI::RAA_Default; 65 return getRecordArgABI(RT, CXXABI); 66 } 67 68 /// Pass transparent unions as if they were the type of the first element. Sema 69 /// should ensure that all elements of the union have the same "machine type". 70 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 71 if (const RecordType *UT = Ty->getAsUnionType()) { 72 const RecordDecl *UD = UT->getDecl(); 73 if (UD->hasAttr<TransparentUnionAttr>()) { 74 assert(!UD->field_empty() && "sema created an empty transparent union"); 75 return UD->field_begin()->getType(); 76 } 77 } 78 return Ty; 79 } 80 81 CGCXXABI &ABIInfo::getCXXABI() const { 82 return CGT.getCXXABI(); 83 } 84 85 ASTContext &ABIInfo::getContext() const { 86 return CGT.getContext(); 87 } 88 89 llvm::LLVMContext &ABIInfo::getVMContext() const { 90 return CGT.getLLVMContext(); 91 } 92 93 const llvm::DataLayout &ABIInfo::getDataLayout() const { 94 return CGT.getDataLayout(); 95 } 96 97 const TargetInfo &ABIInfo::getTarget() const { 98 return CGT.getTarget(); 99 } 100 101 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 102 return false; 103 } 104 105 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 106 uint64_t Members) const { 107 return false; 108 } 109 110 void ABIArgInfo::dump() const { 111 raw_ostream &OS = llvm::errs(); 112 OS << "(ABIArgInfo Kind="; 113 switch (TheKind) { 114 case Direct: 115 OS << "Direct Type="; 116 if (llvm::Type *Ty = getCoerceToType()) 117 Ty->print(OS); 118 else 119 OS << "null"; 120 break; 121 case Extend: 122 OS << "Extend"; 123 break; 124 case Ignore: 125 OS << "Ignore"; 126 break; 127 case InAlloca: 128 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 129 break; 130 case Indirect: 131 OS << "Indirect Align=" << getIndirectAlign() 132 << " ByVal=" << getIndirectByVal() 133 << " Realign=" << getIndirectRealign(); 134 break; 135 case Expand: 136 OS << "Expand"; 137 break; 138 } 139 OS << ")\n"; 140 } 141 142 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 143 144 // If someone can figure out a general rule for this, that would be great. 145 // It's probably just doomed to be platform-dependent, though. 146 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 147 // Verified for: 148 // x86-64 FreeBSD, Linux, Darwin 149 // x86-32 FreeBSD, Linux, Darwin 150 // PowerPC Linux, Darwin 151 // ARM Darwin (*not* EABI) 152 // AArch64 Linux 153 return 32; 154 } 155 156 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 157 const FunctionNoProtoType *fnType) const { 158 // The following conventions are known to require this to be false: 159 // x86_stdcall 160 // MIPS 161 // For everything else, we just prefer false unless we opt out. 162 return false; 163 } 164 165 void 166 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 167 llvm::SmallString<24> &Opt) const { 168 // This assumes the user is passing a library name like "rt" instead of a 169 // filename like "librt.a/so", and that they don't care whether it's static or 170 // dynamic. 171 Opt = "-l"; 172 Opt += Lib; 173 } 174 175 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 176 177 /// isEmptyField - Return true iff a the field is "empty", that is it 178 /// is an unnamed bit-field or an (array of) empty record(s). 179 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 180 bool AllowArrays) { 181 if (FD->isUnnamedBitfield()) 182 return true; 183 184 QualType FT = FD->getType(); 185 186 // Constant arrays of empty records count as empty, strip them off. 187 // Constant arrays of zero length always count as empty. 188 if (AllowArrays) 189 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 190 if (AT->getSize() == 0) 191 return true; 192 FT = AT->getElementType(); 193 } 194 195 const RecordType *RT = FT->getAs<RecordType>(); 196 if (!RT) 197 return false; 198 199 // C++ record fields are never empty, at least in the Itanium ABI. 200 // 201 // FIXME: We should use a predicate for whether this behavior is true in the 202 // current ABI. 203 if (isa<CXXRecordDecl>(RT->getDecl())) 204 return false; 205 206 return isEmptyRecord(Context, FT, AllowArrays); 207 } 208 209 /// isEmptyRecord - Return true iff a structure contains only empty 210 /// fields. Note that a structure with a flexible array member is not 211 /// considered empty. 212 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 213 const RecordType *RT = T->getAs<RecordType>(); 214 if (!RT) 215 return 0; 216 const RecordDecl *RD = RT->getDecl(); 217 if (RD->hasFlexibleArrayMember()) 218 return false; 219 220 // If this is a C++ record, check the bases first. 221 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 222 for (const auto &I : CXXRD->bases()) 223 if (!isEmptyRecord(Context, I.getType(), true)) 224 return false; 225 226 for (const auto *I : RD->fields()) 227 if (!isEmptyField(Context, I, AllowArrays)) 228 return false; 229 return true; 230 } 231 232 /// isSingleElementStruct - Determine if a structure is a "single 233 /// element struct", i.e. it has exactly one non-empty field or 234 /// exactly one field which is itself a single element 235 /// struct. Structures with flexible array members are never 236 /// considered single element structs. 237 /// 238 /// \return The field declaration for the single non-empty field, if 239 /// it exists. 240 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 241 const RecordType *RT = T->getAsStructureType(); 242 if (!RT) 243 return nullptr; 244 245 const RecordDecl *RD = RT->getDecl(); 246 if (RD->hasFlexibleArrayMember()) 247 return nullptr; 248 249 const Type *Found = nullptr; 250 251 // If this is a C++ record, check the bases first. 252 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 253 for (const auto &I : CXXRD->bases()) { 254 // Ignore empty records. 255 if (isEmptyRecord(Context, I.getType(), true)) 256 continue; 257 258 // If we already found an element then this isn't a single-element struct. 259 if (Found) 260 return nullptr; 261 262 // If this is non-empty and not a single element struct, the composite 263 // cannot be a single element struct. 264 Found = isSingleElementStruct(I.getType(), Context); 265 if (!Found) 266 return nullptr; 267 } 268 } 269 270 // Check for single element. 271 for (const auto *FD : RD->fields()) { 272 QualType FT = FD->getType(); 273 274 // Ignore empty fields. 275 if (isEmptyField(Context, FD, true)) 276 continue; 277 278 // If we already found an element then this isn't a single-element 279 // struct. 280 if (Found) 281 return nullptr; 282 283 // Treat single element arrays as the element. 284 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 285 if (AT->getSize().getZExtValue() != 1) 286 break; 287 FT = AT->getElementType(); 288 } 289 290 if (!isAggregateTypeForABI(FT)) { 291 Found = FT.getTypePtr(); 292 } else { 293 Found = isSingleElementStruct(FT, Context); 294 if (!Found) 295 return nullptr; 296 } 297 } 298 299 // We don't consider a struct a single-element struct if it has 300 // padding beyond the element type. 301 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 302 return nullptr; 303 304 return Found; 305 } 306 307 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 308 // Treat complex types as the element type. 309 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 310 Ty = CTy->getElementType(); 311 312 // Check for a type which we know has a simple scalar argument-passing 313 // convention without any padding. (We're specifically looking for 32 314 // and 64-bit integer and integer-equivalents, float, and double.) 315 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 316 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 317 return false; 318 319 uint64_t Size = Context.getTypeSize(Ty); 320 return Size == 32 || Size == 64; 321 } 322 323 /// canExpandIndirectArgument - Test whether an argument type which is to be 324 /// passed indirectly (on the stack) would have the equivalent layout if it was 325 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 326 /// inhibiting optimizations. 327 /// 328 // FIXME: This predicate is missing many cases, currently it just follows 329 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 330 // should probably make this smarter, or better yet make the LLVM backend 331 // capable of handling it. 332 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 333 // We can only expand structure types. 334 const RecordType *RT = Ty->getAs<RecordType>(); 335 if (!RT) 336 return false; 337 338 // We can only expand (C) structures. 339 // 340 // FIXME: This needs to be generalized to handle classes as well. 341 const RecordDecl *RD = RT->getDecl(); 342 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 343 return false; 344 345 uint64_t Size = 0; 346 347 for (const auto *FD : RD->fields()) { 348 if (!is32Or64BitBasicType(FD->getType(), Context)) 349 return false; 350 351 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 352 // how to expand them yet, and the predicate for telling if a bitfield still 353 // counts as "basic" is more complicated than what we were doing previously. 354 if (FD->isBitField()) 355 return false; 356 357 Size += Context.getTypeSize(FD->getType()); 358 } 359 360 // Make sure there are not any holes in the struct. 361 if (Size != Context.getTypeSize(Ty)) 362 return false; 363 364 return true; 365 } 366 367 namespace { 368 /// DefaultABIInfo - The default implementation for ABI specific 369 /// details. This implementation provides information which results in 370 /// self-consistent and sensible LLVM IR generation, but does not 371 /// conform to any particular ABI. 372 class DefaultABIInfo : public ABIInfo { 373 public: 374 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 375 376 ABIArgInfo classifyReturnType(QualType RetTy) const; 377 ABIArgInfo classifyArgumentType(QualType RetTy) const; 378 379 void computeInfo(CGFunctionInfo &FI) const override { 380 if (!getCXXABI().classifyReturnType(FI)) 381 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 382 for (auto &I : FI.arguments()) 383 I.info = classifyArgumentType(I.type); 384 } 385 386 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 387 CodeGenFunction &CGF) const override; 388 }; 389 390 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 391 public: 392 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 393 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 394 }; 395 396 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 397 CodeGenFunction &CGF) const { 398 return nullptr; 399 } 400 401 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 402 if (isAggregateTypeForABI(Ty)) 403 return ABIArgInfo::getIndirect(0); 404 405 // Treat an enum type as its underlying type. 406 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 407 Ty = EnumTy->getDecl()->getIntegerType(); 408 409 return (Ty->isPromotableIntegerType() ? 410 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 411 } 412 413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 414 if (RetTy->isVoidType()) 415 return ABIArgInfo::getIgnore(); 416 417 if (isAggregateTypeForABI(RetTy)) 418 return ABIArgInfo::getIndirect(0); 419 420 // Treat an enum type as its underlying type. 421 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 422 RetTy = EnumTy->getDecl()->getIntegerType(); 423 424 return (RetTy->isPromotableIntegerType() ? 425 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 426 } 427 428 //===----------------------------------------------------------------------===// 429 // le32/PNaCl bitcode ABI Implementation 430 // 431 // This is a simplified version of the x86_32 ABI. Arguments and return values 432 // are always passed on the stack. 433 //===----------------------------------------------------------------------===// 434 435 class PNaClABIInfo : public ABIInfo { 436 public: 437 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 438 439 ABIArgInfo classifyReturnType(QualType RetTy) const; 440 ABIArgInfo classifyArgumentType(QualType RetTy) const; 441 442 void computeInfo(CGFunctionInfo &FI) const override; 443 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 444 CodeGenFunction &CGF) const override; 445 }; 446 447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 448 public: 449 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 450 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 451 }; 452 453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 454 if (!getCXXABI().classifyReturnType(FI)) 455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 456 457 for (auto &I : FI.arguments()) 458 I.info = classifyArgumentType(I.type); 459 } 460 461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 462 CodeGenFunction &CGF) const { 463 return nullptr; 464 } 465 466 /// \brief Classify argument of given type \p Ty. 467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 468 if (isAggregateTypeForABI(Ty)) { 469 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 470 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 471 return ABIArgInfo::getIndirect(0); 472 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 473 // Treat an enum type as its underlying type. 474 Ty = EnumTy->getDecl()->getIntegerType(); 475 } else if (Ty->isFloatingType()) { 476 // Floating-point types don't go inreg. 477 return ABIArgInfo::getDirect(); 478 } 479 480 return (Ty->isPromotableIntegerType() ? 481 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 482 } 483 484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 485 if (RetTy->isVoidType()) 486 return ABIArgInfo::getIgnore(); 487 488 // In the PNaCl ABI we always return records/structures on the stack. 489 if (isAggregateTypeForABI(RetTy)) 490 return ABIArgInfo::getIndirect(0); 491 492 // Treat an enum type as its underlying type. 493 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 494 RetTy = EnumTy->getDecl()->getIntegerType(); 495 496 return (RetTy->isPromotableIntegerType() ? 497 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 498 } 499 500 /// IsX86_MMXType - Return true if this is an MMX type. 501 bool IsX86_MMXType(llvm::Type *IRType) { 502 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 503 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 504 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 505 IRType->getScalarSizeInBits() != 64; 506 } 507 508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 509 StringRef Constraint, 510 llvm::Type* Ty) { 511 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 512 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 513 // Invalid MMX constraint 514 return nullptr; 515 } 516 517 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 518 } 519 520 // No operation needed 521 return Ty; 522 } 523 524 /// Returns true if this type can be passed in SSE registers with the 525 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 526 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 527 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 528 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 529 return true; 530 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 531 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 532 // registers specially. 533 unsigned VecSize = Context.getTypeSize(VT); 534 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 535 return true; 536 } 537 return false; 538 } 539 540 /// Returns true if this aggregate is small enough to be passed in SSE registers 541 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 542 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 543 return NumMembers <= 4; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // X86-32 ABI Implementation 548 //===----------------------------------------------------------------------===// 549 550 /// \brief Similar to llvm::CCState, but for Clang. 551 struct CCState { 552 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 553 554 unsigned CC; 555 unsigned FreeRegs; 556 unsigned FreeSSERegs; 557 }; 558 559 /// X86_32ABIInfo - The X86-32 ABI information. 560 class X86_32ABIInfo : public ABIInfo { 561 enum Class { 562 Integer, 563 Float 564 }; 565 566 static const unsigned MinABIStackAlignInBytes = 4; 567 568 bool IsDarwinVectorABI; 569 bool IsSmallStructInRegABI; 570 bool IsWin32StructABI; 571 unsigned DefaultNumRegisterParameters; 572 573 static bool isRegisterSize(unsigned Size) { 574 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 575 } 576 577 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 578 // FIXME: Assumes vectorcall is in use. 579 return isX86VectorTypeForVectorCall(getContext(), Ty); 580 } 581 582 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 583 uint64_t NumMembers) const override { 584 // FIXME: Assumes vectorcall is in use. 585 return isX86VectorCallAggregateSmallEnough(NumMembers); 586 } 587 588 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 589 590 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 591 /// such that the argument will be passed in memory. 592 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 593 594 ABIArgInfo getIndirectReturnResult(CCState &State) const; 595 596 /// \brief Return the alignment to use for the given type on the stack. 597 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 598 599 Class classify(QualType Ty) const; 600 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 601 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 602 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 603 604 /// \brief Rewrite the function info so that all memory arguments use 605 /// inalloca. 606 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 607 608 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 609 unsigned &StackOffset, ABIArgInfo &Info, 610 QualType Type) const; 611 612 public: 613 614 void computeInfo(CGFunctionInfo &FI) const override; 615 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 616 CodeGenFunction &CGF) const override; 617 618 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 619 unsigned r) 620 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 621 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 622 }; 623 624 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 625 public: 626 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 627 bool d, bool p, bool w, unsigned r) 628 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 629 630 static bool isStructReturnInRegABI( 631 const llvm::Triple &Triple, const CodeGenOptions &Opts); 632 633 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 634 CodeGen::CodeGenModule &CGM) const override; 635 636 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 637 // Darwin uses different dwarf register numbers for EH. 638 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 639 return 4; 640 } 641 642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 643 llvm::Value *Address) const override; 644 645 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 646 StringRef Constraint, 647 llvm::Type* Ty) const override { 648 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 649 } 650 651 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 652 std::string &Constraints, 653 std::vector<llvm::Type *> &ResultRegTypes, 654 std::vector<llvm::Type *> &ResultTruncRegTypes, 655 std::vector<LValue> &ResultRegDests, 656 std::string &AsmString, 657 unsigned NumOutputs) const override; 658 659 llvm::Constant * 660 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 661 unsigned Sig = (0xeb << 0) | // jmp rel8 662 (0x06 << 8) | // .+0x08 663 ('F' << 16) | 664 ('T' << 24); 665 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 666 } 667 668 }; 669 670 } 671 672 /// Rewrite input constraint references after adding some output constraints. 673 /// In the case where there is one output and one input and we add one output, 674 /// we need to replace all operand references greater than or equal to 1: 675 /// mov $0, $1 676 /// mov eax, $1 677 /// The result will be: 678 /// mov $0, $2 679 /// mov eax, $2 680 static void rewriteInputConstraintReferences(unsigned FirstIn, 681 unsigned NumNewOuts, 682 std::string &AsmString) { 683 std::string Buf; 684 llvm::raw_string_ostream OS(Buf); 685 size_t Pos = 0; 686 while (Pos < AsmString.size()) { 687 size_t DollarStart = AsmString.find('$', Pos); 688 if (DollarStart == std::string::npos) 689 DollarStart = AsmString.size(); 690 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 691 if (DollarEnd == std::string::npos) 692 DollarEnd = AsmString.size(); 693 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 694 Pos = DollarEnd; 695 size_t NumDollars = DollarEnd - DollarStart; 696 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 697 // We have an operand reference. 698 size_t DigitStart = Pos; 699 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 700 if (DigitEnd == std::string::npos) 701 DigitEnd = AsmString.size(); 702 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 703 unsigned OperandIndex; 704 if (!OperandStr.getAsInteger(10, OperandIndex)) { 705 if (OperandIndex >= FirstIn) 706 OperandIndex += NumNewOuts; 707 OS << OperandIndex; 708 } else { 709 OS << OperandStr; 710 } 711 Pos = DigitEnd; 712 } 713 } 714 AsmString = std::move(OS.str()); 715 } 716 717 /// Add output constraints for EAX:EDX because they are return registers. 718 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 719 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 720 std::vector<llvm::Type *> &ResultRegTypes, 721 std::vector<llvm::Type *> &ResultTruncRegTypes, 722 std::vector<LValue> &ResultRegDests, std::string &AsmString, 723 unsigned NumOutputs) const { 724 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 725 726 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 727 // larger. 728 if (!Constraints.empty()) 729 Constraints += ','; 730 if (RetWidth <= 32) { 731 Constraints += "={eax}"; 732 ResultRegTypes.push_back(CGF.Int32Ty); 733 } else { 734 // Use the 'A' constraint for EAX:EDX. 735 Constraints += "=A"; 736 ResultRegTypes.push_back(CGF.Int64Ty); 737 } 738 739 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 740 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 741 ResultTruncRegTypes.push_back(CoerceTy); 742 743 // Coerce the integer by bitcasting the return slot pointer. 744 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 745 CoerceTy->getPointerTo())); 746 ResultRegDests.push_back(ReturnSlot); 747 748 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 749 } 750 751 /// shouldReturnTypeInRegister - Determine if the given type should be 752 /// passed in a register (for the Darwin ABI). 753 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 754 ASTContext &Context) const { 755 uint64_t Size = Context.getTypeSize(Ty); 756 757 // Type must be register sized. 758 if (!isRegisterSize(Size)) 759 return false; 760 761 if (Ty->isVectorType()) { 762 // 64- and 128- bit vectors inside structures are not returned in 763 // registers. 764 if (Size == 64 || Size == 128) 765 return false; 766 767 return true; 768 } 769 770 // If this is a builtin, pointer, enum, complex type, member pointer, or 771 // member function pointer it is ok. 772 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 773 Ty->isAnyComplexType() || Ty->isEnumeralType() || 774 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 775 return true; 776 777 // Arrays are treated like records. 778 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 779 return shouldReturnTypeInRegister(AT->getElementType(), Context); 780 781 // Otherwise, it must be a record type. 782 const RecordType *RT = Ty->getAs<RecordType>(); 783 if (!RT) return false; 784 785 // FIXME: Traverse bases here too. 786 787 // Structure types are passed in register if all fields would be 788 // passed in a register. 789 for (const auto *FD : RT->getDecl()->fields()) { 790 // Empty fields are ignored. 791 if (isEmptyField(Context, FD, true)) 792 continue; 793 794 // Check fields recursively. 795 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 796 return false; 797 } 798 return true; 799 } 800 801 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 802 // If the return value is indirect, then the hidden argument is consuming one 803 // integer register. 804 if (State.FreeRegs) { 805 --State.FreeRegs; 806 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 807 } 808 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 809 } 810 811 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 812 if (RetTy->isVoidType()) 813 return ABIArgInfo::getIgnore(); 814 815 const Type *Base = nullptr; 816 uint64_t NumElts = 0; 817 if (State.CC == llvm::CallingConv::X86_VectorCall && 818 isHomogeneousAggregate(RetTy, Base, NumElts)) { 819 // The LLVM struct type for such an aggregate should lower properly. 820 return ABIArgInfo::getDirect(); 821 } 822 823 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 824 // On Darwin, some vectors are returned in registers. 825 if (IsDarwinVectorABI) { 826 uint64_t Size = getContext().getTypeSize(RetTy); 827 828 // 128-bit vectors are a special case; they are returned in 829 // registers and we need to make sure to pick a type the LLVM 830 // backend will like. 831 if (Size == 128) 832 return ABIArgInfo::getDirect(llvm::VectorType::get( 833 llvm::Type::getInt64Ty(getVMContext()), 2)); 834 835 // Always return in register if it fits in a general purpose 836 // register, or if it is 64 bits and has a single element. 837 if ((Size == 8 || Size == 16 || Size == 32) || 838 (Size == 64 && VT->getNumElements() == 1)) 839 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 840 Size)); 841 842 return getIndirectReturnResult(State); 843 } 844 845 return ABIArgInfo::getDirect(); 846 } 847 848 if (isAggregateTypeForABI(RetTy)) { 849 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 850 // Structures with flexible arrays are always indirect. 851 if (RT->getDecl()->hasFlexibleArrayMember()) 852 return getIndirectReturnResult(State); 853 } 854 855 // If specified, structs and unions are always indirect. 856 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 857 return getIndirectReturnResult(State); 858 859 // Small structures which are register sized are generally returned 860 // in a register. 861 if (shouldReturnTypeInRegister(RetTy, getContext())) { 862 uint64_t Size = getContext().getTypeSize(RetTy); 863 864 // As a special-case, if the struct is a "single-element" struct, and 865 // the field is of type "float" or "double", return it in a 866 // floating-point register. (MSVC does not apply this special case.) 867 // We apply a similar transformation for pointer types to improve the 868 // quality of the generated IR. 869 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 870 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 871 || SeltTy->hasPointerRepresentation()) 872 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 873 874 // FIXME: We should be able to narrow this integer in cases with dead 875 // padding. 876 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 877 } 878 879 return getIndirectReturnResult(State); 880 } 881 882 // Treat an enum type as its underlying type. 883 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 884 RetTy = EnumTy->getDecl()->getIntegerType(); 885 886 return (RetTy->isPromotableIntegerType() ? 887 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 888 } 889 890 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 891 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 892 } 893 894 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 895 const RecordType *RT = Ty->getAs<RecordType>(); 896 if (!RT) 897 return 0; 898 const RecordDecl *RD = RT->getDecl(); 899 900 // If this is a C++ record, check the bases first. 901 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 902 for (const auto &I : CXXRD->bases()) 903 if (!isRecordWithSSEVectorType(Context, I.getType())) 904 return false; 905 906 for (const auto *i : RD->fields()) { 907 QualType FT = i->getType(); 908 909 if (isSSEVectorType(Context, FT)) 910 return true; 911 912 if (isRecordWithSSEVectorType(Context, FT)) 913 return true; 914 } 915 916 return false; 917 } 918 919 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 920 unsigned Align) const { 921 // Otherwise, if the alignment is less than or equal to the minimum ABI 922 // alignment, just use the default; the backend will handle this. 923 if (Align <= MinABIStackAlignInBytes) 924 return 0; // Use default alignment. 925 926 // On non-Darwin, the stack type alignment is always 4. 927 if (!IsDarwinVectorABI) { 928 // Set explicit alignment, since we may need to realign the top. 929 return MinABIStackAlignInBytes; 930 } 931 932 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 933 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 934 isRecordWithSSEVectorType(getContext(), Ty))) 935 return 16; 936 937 return MinABIStackAlignInBytes; 938 } 939 940 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 941 CCState &State) const { 942 if (!ByVal) { 943 if (State.FreeRegs) { 944 --State.FreeRegs; // Non-byval indirects just use one pointer. 945 return ABIArgInfo::getIndirectInReg(0, false); 946 } 947 return ABIArgInfo::getIndirect(0, false); 948 } 949 950 // Compute the byval alignment. 951 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 952 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 953 if (StackAlign == 0) 954 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 955 956 // If the stack alignment is less than the type alignment, realign the 957 // argument. 958 bool Realign = TypeAlign > StackAlign; 959 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 960 } 961 962 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 963 const Type *T = isSingleElementStruct(Ty, getContext()); 964 if (!T) 965 T = Ty.getTypePtr(); 966 967 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 968 BuiltinType::Kind K = BT->getKind(); 969 if (K == BuiltinType::Float || K == BuiltinType::Double) 970 return Float; 971 } 972 return Integer; 973 } 974 975 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 976 bool &NeedsPadding) const { 977 NeedsPadding = false; 978 Class C = classify(Ty); 979 if (C == Float) 980 return false; 981 982 unsigned Size = getContext().getTypeSize(Ty); 983 unsigned SizeInRegs = (Size + 31) / 32; 984 985 if (SizeInRegs == 0) 986 return false; 987 988 if (SizeInRegs > State.FreeRegs) { 989 State.FreeRegs = 0; 990 return false; 991 } 992 993 State.FreeRegs -= SizeInRegs; 994 995 if (State.CC == llvm::CallingConv::X86_FastCall || 996 State.CC == llvm::CallingConv::X86_VectorCall) { 997 if (Size > 32) 998 return false; 999 1000 if (Ty->isIntegralOrEnumerationType()) 1001 return true; 1002 1003 if (Ty->isPointerType()) 1004 return true; 1005 1006 if (Ty->isReferenceType()) 1007 return true; 1008 1009 if (State.FreeRegs) 1010 NeedsPadding = true; 1011 1012 return false; 1013 } 1014 1015 return true; 1016 } 1017 1018 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1019 CCState &State) const { 1020 // FIXME: Set alignment on indirect arguments. 1021 1022 Ty = useFirstFieldIfTransparentUnion(Ty); 1023 1024 // Check with the C++ ABI first. 1025 const RecordType *RT = Ty->getAs<RecordType>(); 1026 if (RT) { 1027 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1028 if (RAA == CGCXXABI::RAA_Indirect) { 1029 return getIndirectResult(Ty, false, State); 1030 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1031 // The field index doesn't matter, we'll fix it up later. 1032 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1033 } 1034 } 1035 1036 // vectorcall adds the concept of a homogenous vector aggregate, similar 1037 // to other targets. 1038 const Type *Base = nullptr; 1039 uint64_t NumElts = 0; 1040 if (State.CC == llvm::CallingConv::X86_VectorCall && 1041 isHomogeneousAggregate(Ty, Base, NumElts)) { 1042 if (State.FreeSSERegs >= NumElts) { 1043 State.FreeSSERegs -= NumElts; 1044 if (Ty->isBuiltinType() || Ty->isVectorType()) 1045 return ABIArgInfo::getDirect(); 1046 return ABIArgInfo::getExpand(); 1047 } 1048 return getIndirectResult(Ty, /*ByVal=*/false, State); 1049 } 1050 1051 if (isAggregateTypeForABI(Ty)) { 1052 if (RT) { 1053 // Structs are always byval on win32, regardless of what they contain. 1054 if (IsWin32StructABI) 1055 return getIndirectResult(Ty, true, State); 1056 1057 // Structures with flexible arrays are always indirect. 1058 if (RT->getDecl()->hasFlexibleArrayMember()) 1059 return getIndirectResult(Ty, true, State); 1060 } 1061 1062 // Ignore empty structs/unions. 1063 if (isEmptyRecord(getContext(), Ty, true)) 1064 return ABIArgInfo::getIgnore(); 1065 1066 llvm::LLVMContext &LLVMContext = getVMContext(); 1067 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1068 bool NeedsPadding; 1069 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1070 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1071 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1072 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1073 return ABIArgInfo::getDirectInReg(Result); 1074 } 1075 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1076 1077 // Expand small (<= 128-bit) record types when we know that the stack layout 1078 // of those arguments will match the struct. This is important because the 1079 // LLVM backend isn't smart enough to remove byval, which inhibits many 1080 // optimizations. 1081 if (getContext().getTypeSize(Ty) <= 4*32 && 1082 canExpandIndirectArgument(Ty, getContext())) 1083 return ABIArgInfo::getExpandWithPadding( 1084 State.CC == llvm::CallingConv::X86_FastCall || 1085 State.CC == llvm::CallingConv::X86_VectorCall, 1086 PaddingType); 1087 1088 return getIndirectResult(Ty, true, State); 1089 } 1090 1091 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1092 // On Darwin, some vectors are passed in memory, we handle this by passing 1093 // it as an i8/i16/i32/i64. 1094 if (IsDarwinVectorABI) { 1095 uint64_t Size = getContext().getTypeSize(Ty); 1096 if ((Size == 8 || Size == 16 || Size == 32) || 1097 (Size == 64 && VT->getNumElements() == 1)) 1098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1099 Size)); 1100 } 1101 1102 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1103 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1104 1105 return ABIArgInfo::getDirect(); 1106 } 1107 1108 1109 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1110 Ty = EnumTy->getDecl()->getIntegerType(); 1111 1112 bool NeedsPadding; 1113 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1114 1115 if (Ty->isPromotableIntegerType()) { 1116 if (InReg) 1117 return ABIArgInfo::getExtendInReg(); 1118 return ABIArgInfo::getExtend(); 1119 } 1120 if (InReg) 1121 return ABIArgInfo::getDirectInReg(); 1122 return ABIArgInfo::getDirect(); 1123 } 1124 1125 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1126 CCState State(FI.getCallingConvention()); 1127 if (State.CC == llvm::CallingConv::X86_FastCall) 1128 State.FreeRegs = 2; 1129 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1130 State.FreeRegs = 2; 1131 State.FreeSSERegs = 6; 1132 } else if (FI.getHasRegParm()) 1133 State.FreeRegs = FI.getRegParm(); 1134 else 1135 State.FreeRegs = DefaultNumRegisterParameters; 1136 1137 if (!getCXXABI().classifyReturnType(FI)) { 1138 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1139 } else if (FI.getReturnInfo().isIndirect()) { 1140 // The C++ ABI is not aware of register usage, so we have to check if the 1141 // return value was sret and put it in a register ourselves if appropriate. 1142 if (State.FreeRegs) { 1143 --State.FreeRegs; // The sret parameter consumes a register. 1144 FI.getReturnInfo().setInReg(true); 1145 } 1146 } 1147 1148 // The chain argument effectively gives us another free register. 1149 if (FI.isChainCall()) 1150 ++State.FreeRegs; 1151 1152 bool UsedInAlloca = false; 1153 for (auto &I : FI.arguments()) { 1154 I.info = classifyArgumentType(I.type, State); 1155 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1156 } 1157 1158 // If we needed to use inalloca for any argument, do a second pass and rewrite 1159 // all the memory arguments to use inalloca. 1160 if (UsedInAlloca) 1161 rewriteWithInAlloca(FI); 1162 } 1163 1164 void 1165 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1166 unsigned &StackOffset, 1167 ABIArgInfo &Info, QualType Type) const { 1168 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1169 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1170 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1171 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1172 1173 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1174 // byte aligned. 1175 if (StackOffset % 4U) { 1176 unsigned OldOffset = StackOffset; 1177 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1178 unsigned NumBytes = StackOffset - OldOffset; 1179 assert(NumBytes); 1180 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1181 Ty = llvm::ArrayType::get(Ty, NumBytes); 1182 FrameFields.push_back(Ty); 1183 } 1184 } 1185 1186 static bool isArgInAlloca(const ABIArgInfo &Info) { 1187 // Leave ignored and inreg arguments alone. 1188 switch (Info.getKind()) { 1189 case ABIArgInfo::InAlloca: 1190 return true; 1191 case ABIArgInfo::Indirect: 1192 assert(Info.getIndirectByVal()); 1193 return true; 1194 case ABIArgInfo::Ignore: 1195 return false; 1196 case ABIArgInfo::Direct: 1197 case ABIArgInfo::Extend: 1198 case ABIArgInfo::Expand: 1199 if (Info.getInReg()) 1200 return false; 1201 return true; 1202 } 1203 llvm_unreachable("invalid enum"); 1204 } 1205 1206 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1207 assert(IsWin32StructABI && "inalloca only supported on win32"); 1208 1209 // Build a packed struct type for all of the arguments in memory. 1210 SmallVector<llvm::Type *, 6> FrameFields; 1211 1212 unsigned StackOffset = 0; 1213 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1214 1215 // Put 'this' into the struct before 'sret', if necessary. 1216 bool IsThisCall = 1217 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1218 ABIArgInfo &Ret = FI.getReturnInfo(); 1219 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1220 isArgInAlloca(I->info)) { 1221 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1222 ++I; 1223 } 1224 1225 // Put the sret parameter into the inalloca struct if it's in memory. 1226 if (Ret.isIndirect() && !Ret.getInReg()) { 1227 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1228 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1229 // On Windows, the hidden sret parameter is always returned in eax. 1230 Ret.setInAllocaSRet(IsWin32StructABI); 1231 } 1232 1233 // Skip the 'this' parameter in ecx. 1234 if (IsThisCall) 1235 ++I; 1236 1237 // Put arguments passed in memory into the struct. 1238 for (; I != E; ++I) { 1239 if (isArgInAlloca(I->info)) 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 } 1242 1243 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1244 /*isPacked=*/true)); 1245 } 1246 1247 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1248 CodeGenFunction &CGF) const { 1249 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1250 1251 CGBuilderTy &Builder = CGF.Builder; 1252 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1253 "ap"); 1254 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1255 1256 // Compute if the address needs to be aligned 1257 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1258 Align = getTypeStackAlignInBytes(Ty, Align); 1259 Align = std::max(Align, 4U); 1260 if (Align > 4) { 1261 // addr = (addr + align - 1) & -align; 1262 llvm::Value *Offset = 1263 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1264 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1265 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1266 CGF.Int32Ty); 1267 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1268 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1269 Addr->getType(), 1270 "ap.cur.aligned"); 1271 } 1272 1273 llvm::Type *PTy = 1274 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1275 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1276 1277 uint64_t Offset = 1278 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1279 llvm::Value *NextAddr = 1280 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1281 "ap.next"); 1282 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1283 1284 return AddrTyped; 1285 } 1286 1287 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1288 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1289 assert(Triple.getArch() == llvm::Triple::x86); 1290 1291 switch (Opts.getStructReturnConvention()) { 1292 case CodeGenOptions::SRCK_Default: 1293 break; 1294 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1295 return false; 1296 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1297 return true; 1298 } 1299 1300 if (Triple.isOSDarwin()) 1301 return true; 1302 1303 switch (Triple.getOS()) { 1304 case llvm::Triple::DragonFly: 1305 case llvm::Triple::FreeBSD: 1306 case llvm::Triple::OpenBSD: 1307 case llvm::Triple::Bitrig: 1308 case llvm::Triple::Win32: 1309 return true; 1310 default: 1311 return false; 1312 } 1313 } 1314 1315 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1316 llvm::GlobalValue *GV, 1317 CodeGen::CodeGenModule &CGM) const { 1318 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1319 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1320 // Get the LLVM function. 1321 llvm::Function *Fn = cast<llvm::Function>(GV); 1322 1323 // Now add the 'alignstack' attribute with a value of 16. 1324 llvm::AttrBuilder B; 1325 B.addStackAlignmentAttr(16); 1326 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1327 llvm::AttributeSet::get(CGM.getLLVMContext(), 1328 llvm::AttributeSet::FunctionIndex, 1329 B)); 1330 } 1331 } 1332 } 1333 1334 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1335 CodeGen::CodeGenFunction &CGF, 1336 llvm::Value *Address) const { 1337 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1338 1339 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1340 1341 // 0-7 are the eight integer registers; the order is different 1342 // on Darwin (for EH), but the range is the same. 1343 // 8 is %eip. 1344 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1345 1346 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1347 // 12-16 are st(0..4). Not sure why we stop at 4. 1348 // These have size 16, which is sizeof(long double) on 1349 // platforms with 8-byte alignment for that type. 1350 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1351 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1352 1353 } else { 1354 // 9 is %eflags, which doesn't get a size on Darwin for some 1355 // reason. 1356 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1357 1358 // 11-16 are st(0..5). Not sure why we stop at 5. 1359 // These have size 12, which is sizeof(long double) on 1360 // platforms with 4-byte alignment for that type. 1361 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1362 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1363 } 1364 1365 return false; 1366 } 1367 1368 //===----------------------------------------------------------------------===// 1369 // X86-64 ABI Implementation 1370 //===----------------------------------------------------------------------===// 1371 1372 1373 namespace { 1374 /// X86_64ABIInfo - The X86_64 ABI information. 1375 class X86_64ABIInfo : public ABIInfo { 1376 enum Class { 1377 Integer = 0, 1378 SSE, 1379 SSEUp, 1380 X87, 1381 X87Up, 1382 ComplexX87, 1383 NoClass, 1384 Memory 1385 }; 1386 1387 /// merge - Implement the X86_64 ABI merging algorithm. 1388 /// 1389 /// Merge an accumulating classification \arg Accum with a field 1390 /// classification \arg Field. 1391 /// 1392 /// \param Accum - The accumulating classification. This should 1393 /// always be either NoClass or the result of a previous merge 1394 /// call. In addition, this should never be Memory (the caller 1395 /// should just return Memory for the aggregate). 1396 static Class merge(Class Accum, Class Field); 1397 1398 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1399 /// 1400 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1401 /// final MEMORY or SSE classes when necessary. 1402 /// 1403 /// \param AggregateSize - The size of the current aggregate in 1404 /// the classification process. 1405 /// 1406 /// \param Lo - The classification for the parts of the type 1407 /// residing in the low word of the containing object. 1408 /// 1409 /// \param Hi - The classification for the parts of the type 1410 /// residing in the higher words of the containing object. 1411 /// 1412 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1413 1414 /// classify - Determine the x86_64 register classes in which the 1415 /// given type T should be passed. 1416 /// 1417 /// \param Lo - The classification for the parts of the type 1418 /// residing in the low word of the containing object. 1419 /// 1420 /// \param Hi - The classification for the parts of the type 1421 /// residing in the high word of the containing object. 1422 /// 1423 /// \param OffsetBase - The bit offset of this type in the 1424 /// containing object. Some parameters are classified different 1425 /// depending on whether they straddle an eightbyte boundary. 1426 /// 1427 /// \param isNamedArg - Whether the argument in question is a "named" 1428 /// argument, as used in AMD64-ABI 3.5.7. 1429 /// 1430 /// If a word is unused its result will be NoClass; if a type should 1431 /// be passed in Memory then at least the classification of \arg Lo 1432 /// will be Memory. 1433 /// 1434 /// The \arg Lo class will be NoClass iff the argument is ignored. 1435 /// 1436 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1437 /// also be ComplexX87. 1438 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1439 bool isNamedArg) const; 1440 1441 llvm::Type *GetByteVectorType(QualType Ty) const; 1442 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1443 unsigned IROffset, QualType SourceTy, 1444 unsigned SourceOffset) const; 1445 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1446 unsigned IROffset, QualType SourceTy, 1447 unsigned SourceOffset) const; 1448 1449 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1450 /// such that the argument will be returned in memory. 1451 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1452 1453 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1454 /// such that the argument will be passed in memory. 1455 /// 1456 /// \param freeIntRegs - The number of free integer registers remaining 1457 /// available. 1458 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1459 1460 ABIArgInfo classifyReturnType(QualType RetTy) const; 1461 1462 ABIArgInfo classifyArgumentType(QualType Ty, 1463 unsigned freeIntRegs, 1464 unsigned &neededInt, 1465 unsigned &neededSSE, 1466 bool isNamedArg) const; 1467 1468 bool IsIllegalVectorType(QualType Ty) const; 1469 1470 /// The 0.98 ABI revision clarified a lot of ambiguities, 1471 /// unfortunately in ways that were not always consistent with 1472 /// certain previous compilers. In particular, platforms which 1473 /// required strict binary compatibility with older versions of GCC 1474 /// may need to exempt themselves. 1475 bool honorsRevision0_98() const { 1476 return !getTarget().getTriple().isOSDarwin(); 1477 } 1478 1479 bool HasAVX; 1480 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1481 // 64-bit hardware. 1482 bool Has64BitPointers; 1483 1484 public: 1485 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1486 ABIInfo(CGT), HasAVX(hasavx), 1487 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1488 } 1489 1490 bool isPassedUsingAVXType(QualType type) const { 1491 unsigned neededInt, neededSSE; 1492 // The freeIntRegs argument doesn't matter here. 1493 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1494 /*isNamedArg*/true); 1495 if (info.isDirect()) { 1496 llvm::Type *ty = info.getCoerceToType(); 1497 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1498 return (vectorTy->getBitWidth() > 128); 1499 } 1500 return false; 1501 } 1502 1503 void computeInfo(CGFunctionInfo &FI) const override; 1504 1505 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1506 CodeGenFunction &CGF) const override; 1507 }; 1508 1509 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1510 class WinX86_64ABIInfo : public ABIInfo { 1511 1512 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1513 bool IsReturnType) const; 1514 1515 public: 1516 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1517 1518 void computeInfo(CGFunctionInfo &FI) const override; 1519 1520 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1521 CodeGenFunction &CGF) const override; 1522 1523 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1524 // FIXME: Assumes vectorcall is in use. 1525 return isX86VectorTypeForVectorCall(getContext(), Ty); 1526 } 1527 1528 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1529 uint64_t NumMembers) const override { 1530 // FIXME: Assumes vectorcall is in use. 1531 return isX86VectorCallAggregateSmallEnough(NumMembers); 1532 } 1533 }; 1534 1535 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1536 bool HasAVX; 1537 public: 1538 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1539 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {} 1540 1541 const X86_64ABIInfo &getABIInfo() const { 1542 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1543 } 1544 1545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1546 return 7; 1547 } 1548 1549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1550 llvm::Value *Address) const override { 1551 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1552 1553 // 0-15 are the 16 integer registers. 1554 // 16 is %rip. 1555 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1556 return false; 1557 } 1558 1559 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1560 StringRef Constraint, 1561 llvm::Type* Ty) const override { 1562 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1563 } 1564 1565 bool isNoProtoCallVariadic(const CallArgList &args, 1566 const FunctionNoProtoType *fnType) const override { 1567 // The default CC on x86-64 sets %al to the number of SSA 1568 // registers used, and GCC sets this when calling an unprototyped 1569 // function, so we override the default behavior. However, don't do 1570 // that when AVX types are involved: the ABI explicitly states it is 1571 // undefined, and it doesn't work in practice because of how the ABI 1572 // defines varargs anyway. 1573 if (fnType->getCallConv() == CC_C) { 1574 bool HasAVXType = false; 1575 for (CallArgList::const_iterator 1576 it = args.begin(), ie = args.end(); it != ie; ++it) { 1577 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1578 HasAVXType = true; 1579 break; 1580 } 1581 } 1582 1583 if (!HasAVXType) 1584 return true; 1585 } 1586 1587 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1588 } 1589 1590 llvm::Constant * 1591 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1592 unsigned Sig = (0xeb << 0) | // jmp rel8 1593 (0x0a << 8) | // .+0x0c 1594 ('F' << 16) | 1595 ('T' << 24); 1596 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1597 } 1598 1599 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1600 return HasAVX ? 32 : 16; 1601 } 1602 }; 1603 1604 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1605 // If the argument does not end in .lib, automatically add the suffix. This 1606 // matches the behavior of MSVC. 1607 std::string ArgStr = Lib; 1608 if (!Lib.endswith_lower(".lib")) 1609 ArgStr += ".lib"; 1610 return ArgStr; 1611 } 1612 1613 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1614 public: 1615 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1616 bool d, bool p, bool w, unsigned RegParms) 1617 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1618 1619 void getDependentLibraryOption(llvm::StringRef Lib, 1620 llvm::SmallString<24> &Opt) const override { 1621 Opt = "/DEFAULTLIB:"; 1622 Opt += qualifyWindowsLibrary(Lib); 1623 } 1624 1625 void getDetectMismatchOption(llvm::StringRef Name, 1626 llvm::StringRef Value, 1627 llvm::SmallString<32> &Opt) const override { 1628 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1629 } 1630 }; 1631 1632 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1633 bool HasAVX; 1634 public: 1635 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1636 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {} 1637 1638 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1639 return 7; 1640 } 1641 1642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1643 llvm::Value *Address) const override { 1644 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1645 1646 // 0-15 are the 16 integer registers. 1647 // 16 is %rip. 1648 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1649 return false; 1650 } 1651 1652 void getDependentLibraryOption(llvm::StringRef Lib, 1653 llvm::SmallString<24> &Opt) const override { 1654 Opt = "/DEFAULTLIB:"; 1655 Opt += qualifyWindowsLibrary(Lib); 1656 } 1657 1658 void getDetectMismatchOption(llvm::StringRef Name, 1659 llvm::StringRef Value, 1660 llvm::SmallString<32> &Opt) const override { 1661 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1662 } 1663 1664 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1665 return HasAVX ? 32 : 16; 1666 } 1667 }; 1668 1669 } 1670 1671 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1672 Class &Hi) const { 1673 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1674 // 1675 // (a) If one of the classes is Memory, the whole argument is passed in 1676 // memory. 1677 // 1678 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1679 // memory. 1680 // 1681 // (c) If the size of the aggregate exceeds two eightbytes and the first 1682 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1683 // argument is passed in memory. NOTE: This is necessary to keep the 1684 // ABI working for processors that don't support the __m256 type. 1685 // 1686 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1687 // 1688 // Some of these are enforced by the merging logic. Others can arise 1689 // only with unions; for example: 1690 // union { _Complex double; unsigned; } 1691 // 1692 // Note that clauses (b) and (c) were added in 0.98. 1693 // 1694 if (Hi == Memory) 1695 Lo = Memory; 1696 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1697 Lo = Memory; 1698 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1699 Lo = Memory; 1700 if (Hi == SSEUp && Lo != SSE) 1701 Hi = SSE; 1702 } 1703 1704 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1705 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1706 // classified recursively so that always two fields are 1707 // considered. The resulting class is calculated according to 1708 // the classes of the fields in the eightbyte: 1709 // 1710 // (a) If both classes are equal, this is the resulting class. 1711 // 1712 // (b) If one of the classes is NO_CLASS, the resulting class is 1713 // the other class. 1714 // 1715 // (c) If one of the classes is MEMORY, the result is the MEMORY 1716 // class. 1717 // 1718 // (d) If one of the classes is INTEGER, the result is the 1719 // INTEGER. 1720 // 1721 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1722 // MEMORY is used as class. 1723 // 1724 // (f) Otherwise class SSE is used. 1725 1726 // Accum should never be memory (we should have returned) or 1727 // ComplexX87 (because this cannot be passed in a structure). 1728 assert((Accum != Memory && Accum != ComplexX87) && 1729 "Invalid accumulated classification during merge."); 1730 if (Accum == Field || Field == NoClass) 1731 return Accum; 1732 if (Field == Memory) 1733 return Memory; 1734 if (Accum == NoClass) 1735 return Field; 1736 if (Accum == Integer || Field == Integer) 1737 return Integer; 1738 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1739 Accum == X87 || Accum == X87Up) 1740 return Memory; 1741 return SSE; 1742 } 1743 1744 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1745 Class &Lo, Class &Hi, bool isNamedArg) const { 1746 // FIXME: This code can be simplified by introducing a simple value class for 1747 // Class pairs with appropriate constructor methods for the various 1748 // situations. 1749 1750 // FIXME: Some of the split computations are wrong; unaligned vectors 1751 // shouldn't be passed in registers for example, so there is no chance they 1752 // can straddle an eightbyte. Verify & simplify. 1753 1754 Lo = Hi = NoClass; 1755 1756 Class &Current = OffsetBase < 64 ? Lo : Hi; 1757 Current = Memory; 1758 1759 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1760 BuiltinType::Kind k = BT->getKind(); 1761 1762 if (k == BuiltinType::Void) { 1763 Current = NoClass; 1764 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1765 Lo = Integer; 1766 Hi = Integer; 1767 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1768 Current = Integer; 1769 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1770 (k == BuiltinType::LongDouble && 1771 getTarget().getTriple().isOSNaCl())) { 1772 Current = SSE; 1773 } else if (k == BuiltinType::LongDouble) { 1774 Lo = X87; 1775 Hi = X87Up; 1776 } 1777 // FIXME: _Decimal32 and _Decimal64 are SSE. 1778 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1779 return; 1780 } 1781 1782 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1783 // Classify the underlying integer type. 1784 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1785 return; 1786 } 1787 1788 if (Ty->hasPointerRepresentation()) { 1789 Current = Integer; 1790 return; 1791 } 1792 1793 if (Ty->isMemberPointerType()) { 1794 if (Ty->isMemberFunctionPointerType()) { 1795 if (Has64BitPointers) { 1796 // If Has64BitPointers, this is an {i64, i64}, so classify both 1797 // Lo and Hi now. 1798 Lo = Hi = Integer; 1799 } else { 1800 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1801 // straddles an eightbyte boundary, Hi should be classified as well. 1802 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1803 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1804 if (EB_FuncPtr != EB_ThisAdj) { 1805 Lo = Hi = Integer; 1806 } else { 1807 Current = Integer; 1808 } 1809 } 1810 } else { 1811 Current = Integer; 1812 } 1813 return; 1814 } 1815 1816 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1817 uint64_t Size = getContext().getTypeSize(VT); 1818 if (Size == 32) { 1819 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1820 // float> as integer. 1821 Current = Integer; 1822 1823 // If this type crosses an eightbyte boundary, it should be 1824 // split. 1825 uint64_t EB_Real = (OffsetBase) / 64; 1826 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1827 if (EB_Real != EB_Imag) 1828 Hi = Lo; 1829 } else if (Size == 64) { 1830 // gcc passes <1 x double> in memory. :( 1831 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1832 return; 1833 1834 // gcc passes <1 x long long> as INTEGER. 1835 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1836 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1837 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1838 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1839 Current = Integer; 1840 else 1841 Current = SSE; 1842 1843 // If this type crosses an eightbyte boundary, it should be 1844 // split. 1845 if (OffsetBase && OffsetBase != 64) 1846 Hi = Lo; 1847 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1848 // Arguments of 256-bits are split into four eightbyte chunks. The 1849 // least significant one belongs to class SSE and all the others to class 1850 // SSEUP. The original Lo and Hi design considers that types can't be 1851 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1852 // This design isn't correct for 256-bits, but since there're no cases 1853 // where the upper parts would need to be inspected, avoid adding 1854 // complexity and just consider Hi to match the 64-256 part. 1855 // 1856 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1857 // registers if they are "named", i.e. not part of the "..." of a 1858 // variadic function. 1859 Lo = SSE; 1860 Hi = SSEUp; 1861 } 1862 return; 1863 } 1864 1865 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1866 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1867 1868 uint64_t Size = getContext().getTypeSize(Ty); 1869 if (ET->isIntegralOrEnumerationType()) { 1870 if (Size <= 64) 1871 Current = Integer; 1872 else if (Size <= 128) 1873 Lo = Hi = Integer; 1874 } else if (ET == getContext().FloatTy) 1875 Current = SSE; 1876 else if (ET == getContext().DoubleTy || 1877 (ET == getContext().LongDoubleTy && 1878 getTarget().getTriple().isOSNaCl())) 1879 Lo = Hi = SSE; 1880 else if (ET == getContext().LongDoubleTy) 1881 Current = ComplexX87; 1882 1883 // If this complex type crosses an eightbyte boundary then it 1884 // should be split. 1885 uint64_t EB_Real = (OffsetBase) / 64; 1886 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1887 if (Hi == NoClass && EB_Real != EB_Imag) 1888 Hi = Lo; 1889 1890 return; 1891 } 1892 1893 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1894 // Arrays are treated like structures. 1895 1896 uint64_t Size = getContext().getTypeSize(Ty); 1897 1898 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1899 // than four eightbytes, ..., it has class MEMORY. 1900 if (Size > 256) 1901 return; 1902 1903 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1904 // fields, it has class MEMORY. 1905 // 1906 // Only need to check alignment of array base. 1907 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1908 return; 1909 1910 // Otherwise implement simplified merge. We could be smarter about 1911 // this, but it isn't worth it and would be harder to verify. 1912 Current = NoClass; 1913 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1914 uint64_t ArraySize = AT->getSize().getZExtValue(); 1915 1916 // The only case a 256-bit wide vector could be used is when the array 1917 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1918 // to work for sizes wider than 128, early check and fallback to memory. 1919 if (Size > 128 && EltSize != 256) 1920 return; 1921 1922 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1923 Class FieldLo, FieldHi; 1924 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1925 Lo = merge(Lo, FieldLo); 1926 Hi = merge(Hi, FieldHi); 1927 if (Lo == Memory || Hi == Memory) 1928 break; 1929 } 1930 1931 postMerge(Size, Lo, Hi); 1932 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1933 return; 1934 } 1935 1936 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1937 uint64_t Size = getContext().getTypeSize(Ty); 1938 1939 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1940 // than four eightbytes, ..., it has class MEMORY. 1941 if (Size > 256) 1942 return; 1943 1944 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1945 // copy constructor or a non-trivial destructor, it is passed by invisible 1946 // reference. 1947 if (getRecordArgABI(RT, getCXXABI())) 1948 return; 1949 1950 const RecordDecl *RD = RT->getDecl(); 1951 1952 // Assume variable sized types are passed in memory. 1953 if (RD->hasFlexibleArrayMember()) 1954 return; 1955 1956 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1957 1958 // Reset Lo class, this will be recomputed. 1959 Current = NoClass; 1960 1961 // If this is a C++ record, classify the bases first. 1962 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1963 for (const auto &I : CXXRD->bases()) { 1964 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1965 "Unexpected base class!"); 1966 const CXXRecordDecl *Base = 1967 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1968 1969 // Classify this field. 1970 // 1971 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1972 // single eightbyte, each is classified separately. Each eightbyte gets 1973 // initialized to class NO_CLASS. 1974 Class FieldLo, FieldHi; 1975 uint64_t Offset = 1976 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1977 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1978 Lo = merge(Lo, FieldLo); 1979 Hi = merge(Hi, FieldHi); 1980 if (Lo == Memory || Hi == Memory) 1981 break; 1982 } 1983 } 1984 1985 // Classify the fields one at a time, merging the results. 1986 unsigned idx = 0; 1987 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1988 i != e; ++i, ++idx) { 1989 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1990 bool BitField = i->isBitField(); 1991 1992 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1993 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1994 // 1995 // The only case a 256-bit wide vector could be used is when the struct 1996 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1997 // to work for sizes wider than 128, early check and fallback to memory. 1998 // 1999 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2000 Lo = Memory; 2001 return; 2002 } 2003 // Note, skip this test for bit-fields, see below. 2004 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2005 Lo = Memory; 2006 return; 2007 } 2008 2009 // Classify this field. 2010 // 2011 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2012 // exceeds a single eightbyte, each is classified 2013 // separately. Each eightbyte gets initialized to class 2014 // NO_CLASS. 2015 Class FieldLo, FieldHi; 2016 2017 // Bit-fields require special handling, they do not force the 2018 // structure to be passed in memory even if unaligned, and 2019 // therefore they can straddle an eightbyte. 2020 if (BitField) { 2021 // Ignore padding bit-fields. 2022 if (i->isUnnamedBitfield()) 2023 continue; 2024 2025 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2026 uint64_t Size = i->getBitWidthValue(getContext()); 2027 2028 uint64_t EB_Lo = Offset / 64; 2029 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2030 2031 if (EB_Lo) { 2032 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2033 FieldLo = NoClass; 2034 FieldHi = Integer; 2035 } else { 2036 FieldLo = Integer; 2037 FieldHi = EB_Hi ? Integer : NoClass; 2038 } 2039 } else 2040 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2041 Lo = merge(Lo, FieldLo); 2042 Hi = merge(Hi, FieldHi); 2043 if (Lo == Memory || Hi == Memory) 2044 break; 2045 } 2046 2047 postMerge(Size, Lo, Hi); 2048 } 2049 } 2050 2051 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2052 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2053 // place naturally. 2054 if (!isAggregateTypeForABI(Ty)) { 2055 // Treat an enum type as its underlying type. 2056 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2057 Ty = EnumTy->getDecl()->getIntegerType(); 2058 2059 return (Ty->isPromotableIntegerType() ? 2060 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2061 } 2062 2063 return ABIArgInfo::getIndirect(0); 2064 } 2065 2066 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2067 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2068 uint64_t Size = getContext().getTypeSize(VecTy); 2069 unsigned LargestVector = HasAVX ? 256 : 128; 2070 if (Size <= 64 || Size > LargestVector) 2071 return true; 2072 } 2073 2074 return false; 2075 } 2076 2077 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2078 unsigned freeIntRegs) const { 2079 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2080 // place naturally. 2081 // 2082 // This assumption is optimistic, as there could be free registers available 2083 // when we need to pass this argument in memory, and LLVM could try to pass 2084 // the argument in the free register. This does not seem to happen currently, 2085 // but this code would be much safer if we could mark the argument with 2086 // 'onstack'. See PR12193. 2087 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2088 // Treat an enum type as its underlying type. 2089 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2090 Ty = EnumTy->getDecl()->getIntegerType(); 2091 2092 return (Ty->isPromotableIntegerType() ? 2093 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2094 } 2095 2096 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2097 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2098 2099 // Compute the byval alignment. We specify the alignment of the byval in all 2100 // cases so that the mid-level optimizer knows the alignment of the byval. 2101 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2102 2103 // Attempt to avoid passing indirect results using byval when possible. This 2104 // is important for good codegen. 2105 // 2106 // We do this by coercing the value into a scalar type which the backend can 2107 // handle naturally (i.e., without using byval). 2108 // 2109 // For simplicity, we currently only do this when we have exhausted all of the 2110 // free integer registers. Doing this when there are free integer registers 2111 // would require more care, as we would have to ensure that the coerced value 2112 // did not claim the unused register. That would require either reording the 2113 // arguments to the function (so that any subsequent inreg values came first), 2114 // or only doing this optimization when there were no following arguments that 2115 // might be inreg. 2116 // 2117 // We currently expect it to be rare (particularly in well written code) for 2118 // arguments to be passed on the stack when there are still free integer 2119 // registers available (this would typically imply large structs being passed 2120 // by value), so this seems like a fair tradeoff for now. 2121 // 2122 // We can revisit this if the backend grows support for 'onstack' parameter 2123 // attributes. See PR12193. 2124 if (freeIntRegs == 0) { 2125 uint64_t Size = getContext().getTypeSize(Ty); 2126 2127 // If this type fits in an eightbyte, coerce it into the matching integral 2128 // type, which will end up on the stack (with alignment 8). 2129 if (Align == 8 && Size <= 64) 2130 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2131 Size)); 2132 } 2133 2134 return ABIArgInfo::getIndirect(Align); 2135 } 2136 2137 /// GetByteVectorType - The ABI specifies that a value should be passed in an 2138 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 2139 /// vector register. 2140 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2141 llvm::Type *IRType = CGT.ConvertType(Ty); 2142 2143 // Wrapper structs that just contain vectors are passed just like vectors, 2144 // strip them off if present. 2145 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 2146 while (STy && STy->getNumElements() == 1) { 2147 IRType = STy->getElementType(0); 2148 STy = dyn_cast<llvm::StructType>(IRType); 2149 } 2150 2151 // If the preferred type is a 16-byte vector, prefer to pass it. 2152 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 2153 llvm::Type *EltTy = VT->getElementType(); 2154 unsigned BitWidth = VT->getBitWidth(); 2155 if ((BitWidth >= 128 && BitWidth <= 256) && 2156 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 2157 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 2158 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 2159 EltTy->isIntegerTy(128))) 2160 return VT; 2161 } 2162 2163 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 2164 } 2165 2166 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2167 /// is known to either be off the end of the specified type or being in 2168 /// alignment padding. The user type specified is known to be at most 128 bits 2169 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2170 /// classification that put one of the two halves in the INTEGER class. 2171 /// 2172 /// It is conservatively correct to return false. 2173 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2174 unsigned EndBit, ASTContext &Context) { 2175 // If the bytes being queried are off the end of the type, there is no user 2176 // data hiding here. This handles analysis of builtins, vectors and other 2177 // types that don't contain interesting padding. 2178 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2179 if (TySize <= StartBit) 2180 return true; 2181 2182 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2183 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2184 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2185 2186 // Check each element to see if the element overlaps with the queried range. 2187 for (unsigned i = 0; i != NumElts; ++i) { 2188 // If the element is after the span we care about, then we're done.. 2189 unsigned EltOffset = i*EltSize; 2190 if (EltOffset >= EndBit) break; 2191 2192 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2193 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2194 EndBit-EltOffset, Context)) 2195 return false; 2196 } 2197 // If it overlaps no elements, then it is safe to process as padding. 2198 return true; 2199 } 2200 2201 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2202 const RecordDecl *RD = RT->getDecl(); 2203 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2204 2205 // If this is a C++ record, check the bases first. 2206 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2207 for (const auto &I : CXXRD->bases()) { 2208 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2209 "Unexpected base class!"); 2210 const CXXRecordDecl *Base = 2211 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2212 2213 // If the base is after the span we care about, ignore it. 2214 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2215 if (BaseOffset >= EndBit) continue; 2216 2217 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2218 if (!BitsContainNoUserData(I.getType(), BaseStart, 2219 EndBit-BaseOffset, Context)) 2220 return false; 2221 } 2222 } 2223 2224 // Verify that no field has data that overlaps the region of interest. Yes 2225 // this could be sped up a lot by being smarter about queried fields, 2226 // however we're only looking at structs up to 16 bytes, so we don't care 2227 // much. 2228 unsigned idx = 0; 2229 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2230 i != e; ++i, ++idx) { 2231 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2232 2233 // If we found a field after the region we care about, then we're done. 2234 if (FieldOffset >= EndBit) break; 2235 2236 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2237 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2238 Context)) 2239 return false; 2240 } 2241 2242 // If nothing in this record overlapped the area of interest, then we're 2243 // clean. 2244 return true; 2245 } 2246 2247 return false; 2248 } 2249 2250 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2251 /// float member at the specified offset. For example, {int,{float}} has a 2252 /// float at offset 4. It is conservatively correct for this routine to return 2253 /// false. 2254 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2255 const llvm::DataLayout &TD) { 2256 // Base case if we find a float. 2257 if (IROffset == 0 && IRType->isFloatTy()) 2258 return true; 2259 2260 // If this is a struct, recurse into the field at the specified offset. 2261 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2262 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2263 unsigned Elt = SL->getElementContainingOffset(IROffset); 2264 IROffset -= SL->getElementOffset(Elt); 2265 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2266 } 2267 2268 // If this is an array, recurse into the field at the specified offset. 2269 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2270 llvm::Type *EltTy = ATy->getElementType(); 2271 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2272 IROffset -= IROffset/EltSize*EltSize; 2273 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2274 } 2275 2276 return false; 2277 } 2278 2279 2280 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2281 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2282 llvm::Type *X86_64ABIInfo:: 2283 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2284 QualType SourceTy, unsigned SourceOffset) const { 2285 // The only three choices we have are either double, <2 x float>, or float. We 2286 // pass as float if the last 4 bytes is just padding. This happens for 2287 // structs that contain 3 floats. 2288 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2289 SourceOffset*8+64, getContext())) 2290 return llvm::Type::getFloatTy(getVMContext()); 2291 2292 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2293 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2294 // case. 2295 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2296 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2297 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2298 2299 return llvm::Type::getDoubleTy(getVMContext()); 2300 } 2301 2302 2303 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2304 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2305 /// about the high or low part of an up-to-16-byte struct. This routine picks 2306 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2307 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2308 /// etc). 2309 /// 2310 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2311 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2312 /// the 8-byte value references. PrefType may be null. 2313 /// 2314 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2315 /// an offset into this that we're processing (which is always either 0 or 8). 2316 /// 2317 llvm::Type *X86_64ABIInfo:: 2318 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2319 QualType SourceTy, unsigned SourceOffset) const { 2320 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2321 // returning an 8-byte unit starting with it. See if we can safely use it. 2322 if (IROffset == 0) { 2323 // Pointers and int64's always fill the 8-byte unit. 2324 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2325 IRType->isIntegerTy(64)) 2326 return IRType; 2327 2328 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2329 // goodness in the source type is just tail padding. This is allowed to 2330 // kick in for struct {double,int} on the int, but not on 2331 // struct{double,int,int} because we wouldn't return the second int. We 2332 // have to do this analysis on the source type because we can't depend on 2333 // unions being lowered a specific way etc. 2334 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2335 IRType->isIntegerTy(32) || 2336 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2337 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2338 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2339 2340 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2341 SourceOffset*8+64, getContext())) 2342 return IRType; 2343 } 2344 } 2345 2346 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2347 // If this is a struct, recurse into the field at the specified offset. 2348 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2349 if (IROffset < SL->getSizeInBytes()) { 2350 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2351 IROffset -= SL->getElementOffset(FieldIdx); 2352 2353 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2354 SourceTy, SourceOffset); 2355 } 2356 } 2357 2358 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2359 llvm::Type *EltTy = ATy->getElementType(); 2360 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2361 unsigned EltOffset = IROffset/EltSize*EltSize; 2362 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2363 SourceOffset); 2364 } 2365 2366 // Okay, we don't have any better idea of what to pass, so we pass this in an 2367 // integer register that isn't too big to fit the rest of the struct. 2368 unsigned TySizeInBytes = 2369 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2370 2371 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2372 2373 // It is always safe to classify this as an integer type up to i64 that 2374 // isn't larger than the structure. 2375 return llvm::IntegerType::get(getVMContext(), 2376 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2377 } 2378 2379 2380 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2381 /// be used as elements of a two register pair to pass or return, return a 2382 /// first class aggregate to represent them. For example, if the low part of 2383 /// a by-value argument should be passed as i32* and the high part as float, 2384 /// return {i32*, float}. 2385 static llvm::Type * 2386 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2387 const llvm::DataLayout &TD) { 2388 // In order to correctly satisfy the ABI, we need to the high part to start 2389 // at offset 8. If the high and low parts we inferred are both 4-byte types 2390 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2391 // the second element at offset 8. Check for this: 2392 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2393 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2394 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2395 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2396 2397 // To handle this, we have to increase the size of the low part so that the 2398 // second element will start at an 8 byte offset. We can't increase the size 2399 // of the second element because it might make us access off the end of the 2400 // struct. 2401 if (HiStart != 8) { 2402 // There are only two sorts of types the ABI generation code can produce for 2403 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2404 // Promote these to a larger type. 2405 if (Lo->isFloatTy()) 2406 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2407 else { 2408 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2409 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2410 } 2411 } 2412 2413 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2414 2415 2416 // Verify that the second element is at an 8-byte offset. 2417 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2418 "Invalid x86-64 argument pair!"); 2419 return Result; 2420 } 2421 2422 ABIArgInfo X86_64ABIInfo:: 2423 classifyReturnType(QualType RetTy) const { 2424 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2425 // classification algorithm. 2426 X86_64ABIInfo::Class Lo, Hi; 2427 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2428 2429 // Check some invariants. 2430 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2431 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2432 2433 llvm::Type *ResType = nullptr; 2434 switch (Lo) { 2435 case NoClass: 2436 if (Hi == NoClass) 2437 return ABIArgInfo::getIgnore(); 2438 // If the low part is just padding, it takes no register, leave ResType 2439 // null. 2440 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2441 "Unknown missing lo part"); 2442 break; 2443 2444 case SSEUp: 2445 case X87Up: 2446 llvm_unreachable("Invalid classification for lo word."); 2447 2448 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2449 // hidden argument. 2450 case Memory: 2451 return getIndirectReturnResult(RetTy); 2452 2453 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2454 // available register of the sequence %rax, %rdx is used. 2455 case Integer: 2456 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2457 2458 // If we have a sign or zero extended integer, make sure to return Extend 2459 // so that the parameter gets the right LLVM IR attributes. 2460 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2461 // Treat an enum type as its underlying type. 2462 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2463 RetTy = EnumTy->getDecl()->getIntegerType(); 2464 2465 if (RetTy->isIntegralOrEnumerationType() && 2466 RetTy->isPromotableIntegerType()) 2467 return ABIArgInfo::getExtend(); 2468 } 2469 break; 2470 2471 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2472 // available SSE register of the sequence %xmm0, %xmm1 is used. 2473 case SSE: 2474 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2475 break; 2476 2477 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2478 // returned on the X87 stack in %st0 as 80-bit x87 number. 2479 case X87: 2480 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2481 break; 2482 2483 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2484 // part of the value is returned in %st0 and the imaginary part in 2485 // %st1. 2486 case ComplexX87: 2487 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2488 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2489 llvm::Type::getX86_FP80Ty(getVMContext()), 2490 nullptr); 2491 break; 2492 } 2493 2494 llvm::Type *HighPart = nullptr; 2495 switch (Hi) { 2496 // Memory was handled previously and X87 should 2497 // never occur as a hi class. 2498 case Memory: 2499 case X87: 2500 llvm_unreachable("Invalid classification for hi word."); 2501 2502 case ComplexX87: // Previously handled. 2503 case NoClass: 2504 break; 2505 2506 case Integer: 2507 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2508 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2509 return ABIArgInfo::getDirect(HighPart, 8); 2510 break; 2511 case SSE: 2512 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2513 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2514 return ABIArgInfo::getDirect(HighPart, 8); 2515 break; 2516 2517 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2518 // is passed in the next available eightbyte chunk if the last used 2519 // vector register. 2520 // 2521 // SSEUP should always be preceded by SSE, just widen. 2522 case SSEUp: 2523 assert(Lo == SSE && "Unexpected SSEUp classification."); 2524 ResType = GetByteVectorType(RetTy); 2525 break; 2526 2527 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2528 // returned together with the previous X87 value in %st0. 2529 case X87Up: 2530 // If X87Up is preceded by X87, we don't need to do 2531 // anything. However, in some cases with unions it may not be 2532 // preceded by X87. In such situations we follow gcc and pass the 2533 // extra bits in an SSE reg. 2534 if (Lo != X87) { 2535 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2536 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2537 return ABIArgInfo::getDirect(HighPart, 8); 2538 } 2539 break; 2540 } 2541 2542 // If a high part was specified, merge it together with the low part. It is 2543 // known to pass in the high eightbyte of the result. We do this by forming a 2544 // first class struct aggregate with the high and low part: {low, high} 2545 if (HighPart) 2546 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2547 2548 return ABIArgInfo::getDirect(ResType); 2549 } 2550 2551 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2552 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2553 bool isNamedArg) 2554 const 2555 { 2556 Ty = useFirstFieldIfTransparentUnion(Ty); 2557 2558 X86_64ABIInfo::Class Lo, Hi; 2559 classify(Ty, 0, Lo, Hi, isNamedArg); 2560 2561 // Check some invariants. 2562 // FIXME: Enforce these by construction. 2563 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2564 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2565 2566 neededInt = 0; 2567 neededSSE = 0; 2568 llvm::Type *ResType = nullptr; 2569 switch (Lo) { 2570 case NoClass: 2571 if (Hi == NoClass) 2572 return ABIArgInfo::getIgnore(); 2573 // If the low part is just padding, it takes no register, leave ResType 2574 // null. 2575 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2576 "Unknown missing lo part"); 2577 break; 2578 2579 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2580 // on the stack. 2581 case Memory: 2582 2583 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2584 // COMPLEX_X87, it is passed in memory. 2585 case X87: 2586 case ComplexX87: 2587 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2588 ++neededInt; 2589 return getIndirectResult(Ty, freeIntRegs); 2590 2591 case SSEUp: 2592 case X87Up: 2593 llvm_unreachable("Invalid classification for lo word."); 2594 2595 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2596 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2597 // and %r9 is used. 2598 case Integer: 2599 ++neededInt; 2600 2601 // Pick an 8-byte type based on the preferred type. 2602 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2603 2604 // If we have a sign or zero extended integer, make sure to return Extend 2605 // so that the parameter gets the right LLVM IR attributes. 2606 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2607 // Treat an enum type as its underlying type. 2608 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2609 Ty = EnumTy->getDecl()->getIntegerType(); 2610 2611 if (Ty->isIntegralOrEnumerationType() && 2612 Ty->isPromotableIntegerType()) 2613 return ABIArgInfo::getExtend(); 2614 } 2615 2616 break; 2617 2618 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2619 // available SSE register is used, the registers are taken in the 2620 // order from %xmm0 to %xmm7. 2621 case SSE: { 2622 llvm::Type *IRType = CGT.ConvertType(Ty); 2623 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2624 ++neededSSE; 2625 break; 2626 } 2627 } 2628 2629 llvm::Type *HighPart = nullptr; 2630 switch (Hi) { 2631 // Memory was handled previously, ComplexX87 and X87 should 2632 // never occur as hi classes, and X87Up must be preceded by X87, 2633 // which is passed in memory. 2634 case Memory: 2635 case X87: 2636 case ComplexX87: 2637 llvm_unreachable("Invalid classification for hi word."); 2638 2639 case NoClass: break; 2640 2641 case Integer: 2642 ++neededInt; 2643 // Pick an 8-byte type based on the preferred type. 2644 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2645 2646 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2647 return ABIArgInfo::getDirect(HighPart, 8); 2648 break; 2649 2650 // X87Up generally doesn't occur here (long double is passed in 2651 // memory), except in situations involving unions. 2652 case X87Up: 2653 case SSE: 2654 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2655 2656 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2657 return ABIArgInfo::getDirect(HighPart, 8); 2658 2659 ++neededSSE; 2660 break; 2661 2662 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2663 // eightbyte is passed in the upper half of the last used SSE 2664 // register. This only happens when 128-bit vectors are passed. 2665 case SSEUp: 2666 assert(Lo == SSE && "Unexpected SSEUp classification"); 2667 ResType = GetByteVectorType(Ty); 2668 break; 2669 } 2670 2671 // If a high part was specified, merge it together with the low part. It is 2672 // known to pass in the high eightbyte of the result. We do this by forming a 2673 // first class struct aggregate with the high and low part: {low, high} 2674 if (HighPart) 2675 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2676 2677 return ABIArgInfo::getDirect(ResType); 2678 } 2679 2680 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2681 2682 if (!getCXXABI().classifyReturnType(FI)) 2683 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2684 2685 // Keep track of the number of assigned registers. 2686 unsigned freeIntRegs = 6, freeSSERegs = 8; 2687 2688 // If the return value is indirect, then the hidden argument is consuming one 2689 // integer register. 2690 if (FI.getReturnInfo().isIndirect()) 2691 --freeIntRegs; 2692 2693 // The chain argument effectively gives us another free register. 2694 if (FI.isChainCall()) 2695 ++freeIntRegs; 2696 2697 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2698 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2699 // get assigned (in left-to-right order) for passing as follows... 2700 unsigned ArgNo = 0; 2701 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2702 it != ie; ++it, ++ArgNo) { 2703 bool IsNamedArg = ArgNo < NumRequiredArgs; 2704 2705 unsigned neededInt, neededSSE; 2706 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2707 neededSSE, IsNamedArg); 2708 2709 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2710 // eightbyte of an argument, the whole argument is passed on the 2711 // stack. If registers have already been assigned for some 2712 // eightbytes of such an argument, the assignments get reverted. 2713 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2714 freeIntRegs -= neededInt; 2715 freeSSERegs -= neededSSE; 2716 } else { 2717 it->info = getIndirectResult(it->type, freeIntRegs); 2718 } 2719 } 2720 } 2721 2722 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2723 QualType Ty, 2724 CodeGenFunction &CGF) { 2725 llvm::Value *overflow_arg_area_p = 2726 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2727 llvm::Value *overflow_arg_area = 2728 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2729 2730 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2731 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2732 // It isn't stated explicitly in the standard, but in practice we use 2733 // alignment greater than 16 where necessary. 2734 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2735 if (Align > 8) { 2736 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2737 llvm::Value *Offset = 2738 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2739 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2740 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2741 CGF.Int64Ty); 2742 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2743 overflow_arg_area = 2744 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2745 overflow_arg_area->getType(), 2746 "overflow_arg_area.align"); 2747 } 2748 2749 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2750 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2751 llvm::Value *Res = 2752 CGF.Builder.CreateBitCast(overflow_arg_area, 2753 llvm::PointerType::getUnqual(LTy)); 2754 2755 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2756 // l->overflow_arg_area + sizeof(type). 2757 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2758 // an 8 byte boundary. 2759 2760 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2761 llvm::Value *Offset = 2762 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2763 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2764 "overflow_arg_area.next"); 2765 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2766 2767 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2768 return Res; 2769 } 2770 2771 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2772 CodeGenFunction &CGF) const { 2773 // Assume that va_list type is correct; should be pointer to LLVM type: 2774 // struct { 2775 // i32 gp_offset; 2776 // i32 fp_offset; 2777 // i8* overflow_arg_area; 2778 // i8* reg_save_area; 2779 // }; 2780 unsigned neededInt, neededSSE; 2781 2782 Ty = CGF.getContext().getCanonicalType(Ty); 2783 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2784 /*isNamedArg*/false); 2785 2786 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2787 // in the registers. If not go to step 7. 2788 if (!neededInt && !neededSSE) 2789 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2790 2791 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2792 // general purpose registers needed to pass type and num_fp to hold 2793 // the number of floating point registers needed. 2794 2795 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2796 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2797 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2798 // 2799 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2800 // register save space). 2801 2802 llvm::Value *InRegs = nullptr; 2803 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2804 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2805 if (neededInt) { 2806 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2807 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2808 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2809 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2810 } 2811 2812 if (neededSSE) { 2813 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2814 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2815 llvm::Value *FitsInFP = 2816 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2817 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2818 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2819 } 2820 2821 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2822 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2823 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2824 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2825 2826 // Emit code to load the value if it was passed in registers. 2827 2828 CGF.EmitBlock(InRegBlock); 2829 2830 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2831 // an offset of l->gp_offset and/or l->fp_offset. This may require 2832 // copying to a temporary location in case the parameter is passed 2833 // in different register classes or requires an alignment greater 2834 // than 8 for general purpose registers and 16 for XMM registers. 2835 // 2836 // FIXME: This really results in shameful code when we end up needing to 2837 // collect arguments from different places; often what should result in a 2838 // simple assembling of a structure from scattered addresses has many more 2839 // loads than necessary. Can we clean this up? 2840 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2841 llvm::Value *RegAddr = 2842 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2843 "reg_save_area"); 2844 if (neededInt && neededSSE) { 2845 // FIXME: Cleanup. 2846 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2847 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2848 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2849 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2850 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2851 llvm::Type *TyLo = ST->getElementType(0); 2852 llvm::Type *TyHi = ST->getElementType(1); 2853 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2854 "Unexpected ABI info for mixed regs"); 2855 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2856 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2857 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2858 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2859 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2860 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2861 llvm::Value *V = 2862 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2863 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2864 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2865 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2866 2867 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2868 llvm::PointerType::getUnqual(LTy)); 2869 } else if (neededInt) { 2870 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2871 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2872 llvm::PointerType::getUnqual(LTy)); 2873 2874 // Copy to a temporary if necessary to ensure the appropriate alignment. 2875 std::pair<CharUnits, CharUnits> SizeAlign = 2876 CGF.getContext().getTypeInfoInChars(Ty); 2877 uint64_t TySize = SizeAlign.first.getQuantity(); 2878 unsigned TyAlign = SizeAlign.second.getQuantity(); 2879 if (TyAlign > 8) { 2880 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2881 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2882 RegAddr = Tmp; 2883 } 2884 } else if (neededSSE == 1) { 2885 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2886 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2887 llvm::PointerType::getUnqual(LTy)); 2888 } else { 2889 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2890 // SSE registers are spaced 16 bytes apart in the register save 2891 // area, we need to collect the two eightbytes together. 2892 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2893 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2894 llvm::Type *DoubleTy = CGF.DoubleTy; 2895 llvm::Type *DblPtrTy = 2896 llvm::PointerType::getUnqual(DoubleTy); 2897 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2898 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2899 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2900 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2901 DblPtrTy)); 2902 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2903 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2904 DblPtrTy)); 2905 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2906 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2907 llvm::PointerType::getUnqual(LTy)); 2908 } 2909 2910 // AMD64-ABI 3.5.7p5: Step 5. Set: 2911 // l->gp_offset = l->gp_offset + num_gp * 8 2912 // l->fp_offset = l->fp_offset + num_fp * 16. 2913 if (neededInt) { 2914 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2915 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2916 gp_offset_p); 2917 } 2918 if (neededSSE) { 2919 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2920 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2921 fp_offset_p); 2922 } 2923 CGF.EmitBranch(ContBlock); 2924 2925 // Emit code to load the value if it was passed in memory. 2926 2927 CGF.EmitBlock(InMemBlock); 2928 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2929 2930 // Return the appropriate result. 2931 2932 CGF.EmitBlock(ContBlock); 2933 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2934 "vaarg.addr"); 2935 ResAddr->addIncoming(RegAddr, InRegBlock); 2936 ResAddr->addIncoming(MemAddr, InMemBlock); 2937 return ResAddr; 2938 } 2939 2940 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 2941 bool IsReturnType) const { 2942 2943 if (Ty->isVoidType()) 2944 return ABIArgInfo::getIgnore(); 2945 2946 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2947 Ty = EnumTy->getDecl()->getIntegerType(); 2948 2949 TypeInfo Info = getContext().getTypeInfo(Ty); 2950 uint64_t Width = Info.Width; 2951 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 2952 2953 const RecordType *RT = Ty->getAs<RecordType>(); 2954 if (RT) { 2955 if (!IsReturnType) { 2956 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2957 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2958 } 2959 2960 if (RT->getDecl()->hasFlexibleArrayMember()) 2961 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2962 2963 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2964 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2965 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2966 Width)); 2967 } 2968 2969 // vectorcall adds the concept of a homogenous vector aggregate, similar to 2970 // other targets. 2971 const Type *Base = nullptr; 2972 uint64_t NumElts = 0; 2973 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 2974 if (FreeSSERegs >= NumElts) { 2975 FreeSSERegs -= NumElts; 2976 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 2977 return ABIArgInfo::getDirect(); 2978 return ABIArgInfo::getExpand(); 2979 } 2980 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 2981 } 2982 2983 2984 if (Ty->isMemberPointerType()) { 2985 // If the member pointer is represented by an LLVM int or ptr, pass it 2986 // directly. 2987 llvm::Type *LLTy = CGT.ConvertType(Ty); 2988 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2989 return ABIArgInfo::getDirect(); 2990 } 2991 2992 if (RT || Ty->isMemberPointerType()) { 2993 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2994 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2995 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 2996 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2997 2998 // Otherwise, coerce it to a small integer. 2999 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3000 } 3001 3002 // Bool type is always extended to the ABI, other builtin types are not 3003 // extended. 3004 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3005 if (BT && BT->getKind() == BuiltinType::Bool) 3006 return ABIArgInfo::getExtend(); 3007 3008 return ABIArgInfo::getDirect(); 3009 } 3010 3011 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3012 bool IsVectorCall = 3013 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3014 3015 // We can use up to 4 SSE return registers with vectorcall. 3016 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3017 if (!getCXXABI().classifyReturnType(FI)) 3018 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3019 3020 // We can use up to 6 SSE register parameters with vectorcall. 3021 FreeSSERegs = IsVectorCall ? 6 : 0; 3022 for (auto &I : FI.arguments()) 3023 I.info = classify(I.type, FreeSSERegs, false); 3024 } 3025 3026 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3027 CodeGenFunction &CGF) const { 3028 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3029 3030 CGBuilderTy &Builder = CGF.Builder; 3031 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3032 "ap"); 3033 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3034 llvm::Type *PTy = 3035 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3036 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3037 3038 uint64_t Offset = 3039 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3040 llvm::Value *NextAddr = 3041 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3042 "ap.next"); 3043 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3044 3045 return AddrTyped; 3046 } 3047 3048 namespace { 3049 3050 class NaClX86_64ABIInfo : public ABIInfo { 3051 public: 3052 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 3053 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 3054 void computeInfo(CGFunctionInfo &FI) const override; 3055 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3056 CodeGenFunction &CGF) const override; 3057 private: 3058 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 3059 X86_64ABIInfo NInfo; // Used for everything else. 3060 }; 3061 3062 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 3063 bool HasAVX; 3064 public: 3065 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 3066 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) { 3067 } 3068 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3069 return HasAVX ? 32 : 16; 3070 } 3071 }; 3072 3073 } 3074 3075 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3076 if (FI.getASTCallingConvention() == CC_PnaclCall) 3077 PInfo.computeInfo(FI); 3078 else 3079 NInfo.computeInfo(FI); 3080 } 3081 3082 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3083 CodeGenFunction &CGF) const { 3084 // Always use the native convention; calling pnacl-style varargs functions 3085 // is unuspported. 3086 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 3087 } 3088 3089 3090 // PowerPC-32 3091 namespace { 3092 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3093 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3094 public: 3095 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3096 3097 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3098 CodeGenFunction &CGF) const override; 3099 }; 3100 3101 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3102 public: 3103 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3104 3105 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3106 // This is recovered from gcc output. 3107 return 1; // r1 is the dedicated stack pointer 3108 } 3109 3110 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3111 llvm::Value *Address) const override; 3112 3113 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3114 return 16; // Natural alignment for Altivec vectors. 3115 } 3116 }; 3117 3118 } 3119 3120 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3121 QualType Ty, 3122 CodeGenFunction &CGF) const { 3123 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3124 // TODO: Implement this. For now ignore. 3125 (void)CTy; 3126 return nullptr; 3127 } 3128 3129 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3130 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3131 llvm::Type *CharPtr = CGF.Int8PtrTy; 3132 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3133 3134 CGBuilderTy &Builder = CGF.Builder; 3135 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3136 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3137 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3138 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3139 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3140 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3141 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3142 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3143 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3144 // Align GPR when TY is i64. 3145 if (isI64) { 3146 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3147 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3148 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3149 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3150 } 3151 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3152 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3153 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3154 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3155 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3156 3157 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR, 3158 Builder.getInt8(8), "cond"); 3159 3160 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR, 3161 Builder.getInt8(isInt ? 4 : 8)); 3162 3163 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3164 3165 if (Ty->isFloatingType()) 3166 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3167 3168 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3169 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3170 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3171 3172 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3173 3174 CGF.EmitBlock(UsingRegs); 3175 3176 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3177 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3178 // Increase the GPR/FPR indexes. 3179 if (isInt) { 3180 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3181 Builder.CreateStore(GPR, GPRPtr); 3182 } else { 3183 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3184 Builder.CreateStore(FPR, FPRPtr); 3185 } 3186 CGF.EmitBranch(Cont); 3187 3188 CGF.EmitBlock(UsingOverflow); 3189 3190 // Increase the overflow area. 3191 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3192 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3193 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr); 3194 CGF.EmitBranch(Cont); 3195 3196 CGF.EmitBlock(Cont); 3197 3198 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3199 Result->addIncoming(Result1, UsingRegs); 3200 Result->addIncoming(Result2, UsingOverflow); 3201 3202 if (Ty->isAggregateType()) { 3203 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ; 3204 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3205 } 3206 3207 return Result; 3208 } 3209 3210 bool 3211 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3212 llvm::Value *Address) const { 3213 // This is calculated from the LLVM and GCC tables and verified 3214 // against gcc output. AFAIK all ABIs use the same encoding. 3215 3216 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3217 3218 llvm::IntegerType *i8 = CGF.Int8Ty; 3219 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3220 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3221 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3222 3223 // 0-31: r0-31, the 4-byte general-purpose registers 3224 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3225 3226 // 32-63: fp0-31, the 8-byte floating-point registers 3227 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3228 3229 // 64-76 are various 4-byte special-purpose registers: 3230 // 64: mq 3231 // 65: lr 3232 // 66: ctr 3233 // 67: ap 3234 // 68-75 cr0-7 3235 // 76: xer 3236 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3237 3238 // 77-108: v0-31, the 16-byte vector registers 3239 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3240 3241 // 109: vrsave 3242 // 110: vscr 3243 // 111: spe_acc 3244 // 112: spefscr 3245 // 113: sfp 3246 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3247 3248 return false; 3249 } 3250 3251 // PowerPC-64 3252 3253 namespace { 3254 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3255 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3256 public: 3257 enum ABIKind { 3258 ELFv1 = 0, 3259 ELFv2 3260 }; 3261 3262 private: 3263 static const unsigned GPRBits = 64; 3264 ABIKind Kind; 3265 3266 public: 3267 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 3268 : DefaultABIInfo(CGT), Kind(Kind) {} 3269 3270 bool isPromotableTypeForABI(QualType Ty) const; 3271 bool isAlignedParamType(QualType Ty) const; 3272 3273 ABIArgInfo classifyReturnType(QualType RetTy) const; 3274 ABIArgInfo classifyArgumentType(QualType Ty) const; 3275 3276 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3277 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3278 uint64_t Members) const override; 3279 3280 // TODO: We can add more logic to computeInfo to improve performance. 3281 // Example: For aggregate arguments that fit in a register, we could 3282 // use getDirectInReg (as is done below for structs containing a single 3283 // floating-point value) to avoid pushing them to memory on function 3284 // entry. This would require changing the logic in PPCISelLowering 3285 // when lowering the parameters in the caller and args in the callee. 3286 void computeInfo(CGFunctionInfo &FI) const override { 3287 if (!getCXXABI().classifyReturnType(FI)) 3288 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3289 for (auto &I : FI.arguments()) { 3290 // We rely on the default argument classification for the most part. 3291 // One exception: An aggregate containing a single floating-point 3292 // or vector item must be passed in a register if one is available. 3293 const Type *T = isSingleElementStruct(I.type, getContext()); 3294 if (T) { 3295 const BuiltinType *BT = T->getAs<BuiltinType>(); 3296 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 3297 (BT && BT->isFloatingPoint())) { 3298 QualType QT(T, 0); 3299 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3300 continue; 3301 } 3302 } 3303 I.info = classifyArgumentType(I.type); 3304 } 3305 } 3306 3307 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3308 CodeGenFunction &CGF) const override; 3309 }; 3310 3311 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3312 public: 3313 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3314 PPC64_SVR4_ABIInfo::ABIKind Kind) 3315 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} 3316 3317 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3318 // This is recovered from gcc output. 3319 return 1; // r1 is the dedicated stack pointer 3320 } 3321 3322 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3323 llvm::Value *Address) const override; 3324 3325 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3326 return 16; // Natural alignment for Altivec and VSX vectors. 3327 } 3328 }; 3329 3330 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3331 public: 3332 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3333 3334 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3335 // This is recovered from gcc output. 3336 return 1; // r1 is the dedicated stack pointer 3337 } 3338 3339 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3340 llvm::Value *Address) const override; 3341 3342 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3343 return 16; // Natural alignment for Altivec vectors. 3344 } 3345 }; 3346 3347 } 3348 3349 // Return true if the ABI requires Ty to be passed sign- or zero- 3350 // extended to 64 bits. 3351 bool 3352 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3353 // Treat an enum type as its underlying type. 3354 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3355 Ty = EnumTy->getDecl()->getIntegerType(); 3356 3357 // Promotable integer types are required to be promoted by the ABI. 3358 if (Ty->isPromotableIntegerType()) 3359 return true; 3360 3361 // In addition to the usual promotable integer types, we also need to 3362 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3363 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3364 switch (BT->getKind()) { 3365 case BuiltinType::Int: 3366 case BuiltinType::UInt: 3367 return true; 3368 default: 3369 break; 3370 } 3371 3372 return false; 3373 } 3374 3375 /// isAlignedParamType - Determine whether a type requires 16-byte 3376 /// alignment in the parameter area. 3377 bool 3378 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3379 // Complex types are passed just like their elements. 3380 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3381 Ty = CTy->getElementType(); 3382 3383 // Only vector types of size 16 bytes need alignment (larger types are 3384 // passed via reference, smaller types are not aligned). 3385 if (Ty->isVectorType()) 3386 return getContext().getTypeSize(Ty) == 128; 3387 3388 // For single-element float/vector structs, we consider the whole type 3389 // to have the same alignment requirements as its single element. 3390 const Type *AlignAsType = nullptr; 3391 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3392 if (EltType) { 3393 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3394 if ((EltType->isVectorType() && 3395 getContext().getTypeSize(EltType) == 128) || 3396 (BT && BT->isFloatingPoint())) 3397 AlignAsType = EltType; 3398 } 3399 3400 // Likewise for ELFv2 homogeneous aggregates. 3401 const Type *Base = nullptr; 3402 uint64_t Members = 0; 3403 if (!AlignAsType && Kind == ELFv2 && 3404 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3405 AlignAsType = Base; 3406 3407 // With special case aggregates, only vector base types need alignment. 3408 if (AlignAsType) 3409 return AlignAsType->isVectorType(); 3410 3411 // Otherwise, we only need alignment for any aggregate type that 3412 // has an alignment requirement of >= 16 bytes. 3413 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3414 return true; 3415 3416 return false; 3417 } 3418 3419 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3420 /// aggregate. Base is set to the base element type, and Members is set 3421 /// to the number of base elements. 3422 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3423 uint64_t &Members) const { 3424 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3425 uint64_t NElements = AT->getSize().getZExtValue(); 3426 if (NElements == 0) 3427 return false; 3428 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3429 return false; 3430 Members *= NElements; 3431 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3432 const RecordDecl *RD = RT->getDecl(); 3433 if (RD->hasFlexibleArrayMember()) 3434 return false; 3435 3436 Members = 0; 3437 3438 // If this is a C++ record, check the bases first. 3439 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3440 for (const auto &I : CXXRD->bases()) { 3441 // Ignore empty records. 3442 if (isEmptyRecord(getContext(), I.getType(), true)) 3443 continue; 3444 3445 uint64_t FldMembers; 3446 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3447 return false; 3448 3449 Members += FldMembers; 3450 } 3451 } 3452 3453 for (const auto *FD : RD->fields()) { 3454 // Ignore (non-zero arrays of) empty records. 3455 QualType FT = FD->getType(); 3456 while (const ConstantArrayType *AT = 3457 getContext().getAsConstantArrayType(FT)) { 3458 if (AT->getSize().getZExtValue() == 0) 3459 return false; 3460 FT = AT->getElementType(); 3461 } 3462 if (isEmptyRecord(getContext(), FT, true)) 3463 continue; 3464 3465 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3466 if (getContext().getLangOpts().CPlusPlus && 3467 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3468 continue; 3469 3470 uint64_t FldMembers; 3471 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3472 return false; 3473 3474 Members = (RD->isUnion() ? 3475 std::max(Members, FldMembers) : Members + FldMembers); 3476 } 3477 3478 if (!Base) 3479 return false; 3480 3481 // Ensure there is no padding. 3482 if (getContext().getTypeSize(Base) * Members != 3483 getContext().getTypeSize(Ty)) 3484 return false; 3485 } else { 3486 Members = 1; 3487 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3488 Members = 2; 3489 Ty = CT->getElementType(); 3490 } 3491 3492 // Most ABIs only support float, double, and some vector type widths. 3493 if (!isHomogeneousAggregateBaseType(Ty)) 3494 return false; 3495 3496 // The base type must be the same for all members. Types that 3497 // agree in both total size and mode (float vs. vector) are 3498 // treated as being equivalent here. 3499 const Type *TyPtr = Ty.getTypePtr(); 3500 if (!Base) 3501 Base = TyPtr; 3502 3503 if (Base->isVectorType() != TyPtr->isVectorType() || 3504 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3505 return false; 3506 } 3507 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3508 } 3509 3510 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3511 // Homogeneous aggregates for ELFv2 must have base types of float, 3512 // double, long double, or 128-bit vectors. 3513 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3514 if (BT->getKind() == BuiltinType::Float || 3515 BT->getKind() == BuiltinType::Double || 3516 BT->getKind() == BuiltinType::LongDouble) 3517 return true; 3518 } 3519 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3520 if (getContext().getTypeSize(VT) == 128) 3521 return true; 3522 } 3523 return false; 3524 } 3525 3526 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3527 const Type *Base, uint64_t Members) const { 3528 // Vector types require one register, floating point types require one 3529 // or two registers depending on their size. 3530 uint32_t NumRegs = 3531 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3532 3533 // Homogeneous Aggregates may occupy at most 8 registers. 3534 return Members * NumRegs <= 8; 3535 } 3536 3537 ABIArgInfo 3538 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3539 Ty = useFirstFieldIfTransparentUnion(Ty); 3540 3541 if (Ty->isAnyComplexType()) 3542 return ABIArgInfo::getDirect(); 3543 3544 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3545 // or via reference (larger than 16 bytes). 3546 if (Ty->isVectorType()) { 3547 uint64_t Size = getContext().getTypeSize(Ty); 3548 if (Size > 128) 3549 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3550 else if (Size < 128) { 3551 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3552 return ABIArgInfo::getDirect(CoerceTy); 3553 } 3554 } 3555 3556 if (isAggregateTypeForABI(Ty)) { 3557 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3558 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3559 3560 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3561 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3562 3563 // ELFv2 homogeneous aggregates are passed as array types. 3564 const Type *Base = nullptr; 3565 uint64_t Members = 0; 3566 if (Kind == ELFv2 && 3567 isHomogeneousAggregate(Ty, Base, Members)) { 3568 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3569 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3570 return ABIArgInfo::getDirect(CoerceTy); 3571 } 3572 3573 // If an aggregate may end up fully in registers, we do not 3574 // use the ByVal method, but pass the aggregate as array. 3575 // This is usually beneficial since we avoid forcing the 3576 // back-end to store the argument to memory. 3577 uint64_t Bits = getContext().getTypeSize(Ty); 3578 if (Bits > 0 && Bits <= 8 * GPRBits) { 3579 llvm::Type *CoerceTy; 3580 3581 // Types up to 8 bytes are passed as integer type (which will be 3582 // properly aligned in the argument save area doubleword). 3583 if (Bits <= GPRBits) 3584 CoerceTy = llvm::IntegerType::get(getVMContext(), 3585 llvm::RoundUpToAlignment(Bits, 8)); 3586 // Larger types are passed as arrays, with the base type selected 3587 // according to the required alignment in the save area. 3588 else { 3589 uint64_t RegBits = ABIAlign * 8; 3590 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3591 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3592 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3593 } 3594 3595 return ABIArgInfo::getDirect(CoerceTy); 3596 } 3597 3598 // All other aggregates are passed ByVal. 3599 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3600 /*Realign=*/TyAlign > ABIAlign); 3601 } 3602 3603 return (isPromotableTypeForABI(Ty) ? 3604 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3605 } 3606 3607 ABIArgInfo 3608 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3609 if (RetTy->isVoidType()) 3610 return ABIArgInfo::getIgnore(); 3611 3612 if (RetTy->isAnyComplexType()) 3613 return ABIArgInfo::getDirect(); 3614 3615 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3616 // or via reference (larger than 16 bytes). 3617 if (RetTy->isVectorType()) { 3618 uint64_t Size = getContext().getTypeSize(RetTy); 3619 if (Size > 128) 3620 return ABIArgInfo::getIndirect(0); 3621 else if (Size < 128) { 3622 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3623 return ABIArgInfo::getDirect(CoerceTy); 3624 } 3625 } 3626 3627 if (isAggregateTypeForABI(RetTy)) { 3628 // ELFv2 homogeneous aggregates are returned as array types. 3629 const Type *Base = nullptr; 3630 uint64_t Members = 0; 3631 if (Kind == ELFv2 && 3632 isHomogeneousAggregate(RetTy, Base, Members)) { 3633 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3634 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3635 return ABIArgInfo::getDirect(CoerceTy); 3636 } 3637 3638 // ELFv2 small aggregates are returned in up to two registers. 3639 uint64_t Bits = getContext().getTypeSize(RetTy); 3640 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3641 if (Bits == 0) 3642 return ABIArgInfo::getIgnore(); 3643 3644 llvm::Type *CoerceTy; 3645 if (Bits > GPRBits) { 3646 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3647 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3648 } else 3649 CoerceTy = llvm::IntegerType::get(getVMContext(), 3650 llvm::RoundUpToAlignment(Bits, 8)); 3651 return ABIArgInfo::getDirect(CoerceTy); 3652 } 3653 3654 // All other aggregates are returned indirectly. 3655 return ABIArgInfo::getIndirect(0); 3656 } 3657 3658 return (isPromotableTypeForABI(RetTy) ? 3659 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3660 } 3661 3662 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3663 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3664 QualType Ty, 3665 CodeGenFunction &CGF) const { 3666 llvm::Type *BP = CGF.Int8PtrTy; 3667 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3668 3669 CGBuilderTy &Builder = CGF.Builder; 3670 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3671 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3672 3673 // Handle types that require 16-byte alignment in the parameter save area. 3674 if (isAlignedParamType(Ty)) { 3675 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3676 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3677 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3678 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3679 } 3680 3681 // Update the va_list pointer. The pointer should be bumped by the 3682 // size of the object. We can trust getTypeSize() except for a complex 3683 // type whose base type is smaller than a doubleword. For these, the 3684 // size of the object is 16 bytes; see below for further explanation. 3685 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3686 QualType BaseTy; 3687 unsigned CplxBaseSize = 0; 3688 3689 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3690 BaseTy = CTy->getElementType(); 3691 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3692 if (CplxBaseSize < 8) 3693 SizeInBytes = 16; 3694 } 3695 3696 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3697 llvm::Value *NextAddr = 3698 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3699 "ap.next"); 3700 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3701 3702 // If we have a complex type and the base type is smaller than 8 bytes, 3703 // the ABI calls for the real and imaginary parts to be right-adjusted 3704 // in separate doublewords. However, Clang expects us to produce a 3705 // pointer to a structure with the two parts packed tightly. So generate 3706 // loads of the real and imaginary parts relative to the va_list pointer, 3707 // and store them to a temporary structure. 3708 if (CplxBaseSize && CplxBaseSize < 8) { 3709 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3710 llvm::Value *ImagAddr = RealAddr; 3711 if (CGF.CGM.getDataLayout().isBigEndian()) { 3712 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3713 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3714 } else { 3715 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3716 } 3717 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3718 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3719 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3720 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3721 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3722 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3723 "vacplx"); 3724 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3725 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3726 Builder.CreateStore(Real, RealPtr, false); 3727 Builder.CreateStore(Imag, ImagPtr, false); 3728 return Ptr; 3729 } 3730 3731 // If the argument is smaller than 8 bytes, it is right-adjusted in 3732 // its doubleword slot. Adjust the pointer to pick it up from the 3733 // correct offset. 3734 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3735 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3736 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3737 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3738 } 3739 3740 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3741 return Builder.CreateBitCast(Addr, PTy); 3742 } 3743 3744 static bool 3745 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3746 llvm::Value *Address) { 3747 // This is calculated from the LLVM and GCC tables and verified 3748 // against gcc output. AFAIK all ABIs use the same encoding. 3749 3750 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3751 3752 llvm::IntegerType *i8 = CGF.Int8Ty; 3753 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3754 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3755 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3756 3757 // 0-31: r0-31, the 8-byte general-purpose registers 3758 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3759 3760 // 32-63: fp0-31, the 8-byte floating-point registers 3761 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3762 3763 // 64-76 are various 4-byte special-purpose registers: 3764 // 64: mq 3765 // 65: lr 3766 // 66: ctr 3767 // 67: ap 3768 // 68-75 cr0-7 3769 // 76: xer 3770 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3771 3772 // 77-108: v0-31, the 16-byte vector registers 3773 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3774 3775 // 109: vrsave 3776 // 110: vscr 3777 // 111: spe_acc 3778 // 112: spefscr 3779 // 113: sfp 3780 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3781 3782 return false; 3783 } 3784 3785 bool 3786 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3787 CodeGen::CodeGenFunction &CGF, 3788 llvm::Value *Address) const { 3789 3790 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3791 } 3792 3793 bool 3794 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3795 llvm::Value *Address) const { 3796 3797 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3798 } 3799 3800 //===----------------------------------------------------------------------===// 3801 // AArch64 ABI Implementation 3802 //===----------------------------------------------------------------------===// 3803 3804 namespace { 3805 3806 class AArch64ABIInfo : public ABIInfo { 3807 public: 3808 enum ABIKind { 3809 AAPCS = 0, 3810 DarwinPCS 3811 }; 3812 3813 private: 3814 ABIKind Kind; 3815 3816 public: 3817 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3818 3819 private: 3820 ABIKind getABIKind() const { return Kind; } 3821 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3822 3823 ABIArgInfo classifyReturnType(QualType RetTy) const; 3824 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3825 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3826 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3827 uint64_t Members) const override; 3828 3829 bool isIllegalVectorType(QualType Ty) const; 3830 3831 void computeInfo(CGFunctionInfo &FI) const override { 3832 if (!getCXXABI().classifyReturnType(FI)) 3833 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3834 3835 for (auto &it : FI.arguments()) 3836 it.info = classifyArgumentType(it.type); 3837 } 3838 3839 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3840 CodeGenFunction &CGF) const; 3841 3842 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3843 CodeGenFunction &CGF) const; 3844 3845 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3846 CodeGenFunction &CGF) const override { 3847 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3848 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3849 } 3850 }; 3851 3852 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3853 public: 3854 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3855 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3856 3857 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3858 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3859 } 3860 3861 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3862 3863 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3864 }; 3865 } 3866 3867 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3868 Ty = useFirstFieldIfTransparentUnion(Ty); 3869 3870 // Handle illegal vector types here. 3871 if (isIllegalVectorType(Ty)) { 3872 uint64_t Size = getContext().getTypeSize(Ty); 3873 if (Size <= 32) { 3874 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3875 return ABIArgInfo::getDirect(ResType); 3876 } 3877 if (Size == 64) { 3878 llvm::Type *ResType = 3879 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3880 return ABIArgInfo::getDirect(ResType); 3881 } 3882 if (Size == 128) { 3883 llvm::Type *ResType = 3884 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3885 return ABIArgInfo::getDirect(ResType); 3886 } 3887 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3888 } 3889 3890 if (!isAggregateTypeForABI(Ty)) { 3891 // Treat an enum type as its underlying type. 3892 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3893 Ty = EnumTy->getDecl()->getIntegerType(); 3894 3895 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3896 ? ABIArgInfo::getExtend() 3897 : ABIArgInfo::getDirect()); 3898 } 3899 3900 // Structures with either a non-trivial destructor or a non-trivial 3901 // copy constructor are always indirect. 3902 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3903 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3904 CGCXXABI::RAA_DirectInMemory); 3905 } 3906 3907 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3908 // elsewhere for GNU compatibility. 3909 if (isEmptyRecord(getContext(), Ty, true)) { 3910 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3911 return ABIArgInfo::getIgnore(); 3912 3913 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3914 } 3915 3916 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3917 const Type *Base = nullptr; 3918 uint64_t Members = 0; 3919 if (isHomogeneousAggregate(Ty, Base, Members)) { 3920 return ABIArgInfo::getDirect( 3921 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 3922 } 3923 3924 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3925 uint64_t Size = getContext().getTypeSize(Ty); 3926 if (Size <= 128) { 3927 unsigned Alignment = getContext().getTypeAlign(Ty); 3928 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3929 3930 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3931 // For aggregates with 16-byte alignment, we use i128. 3932 if (Alignment < 128 && Size == 128) { 3933 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3934 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3935 } 3936 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3937 } 3938 3939 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3940 } 3941 3942 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3943 if (RetTy->isVoidType()) 3944 return ABIArgInfo::getIgnore(); 3945 3946 // Large vector types should be returned via memory. 3947 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3948 return ABIArgInfo::getIndirect(0); 3949 3950 if (!isAggregateTypeForABI(RetTy)) { 3951 // Treat an enum type as its underlying type. 3952 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3953 RetTy = EnumTy->getDecl()->getIntegerType(); 3954 3955 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3956 ? ABIArgInfo::getExtend() 3957 : ABIArgInfo::getDirect()); 3958 } 3959 3960 if (isEmptyRecord(getContext(), RetTy, true)) 3961 return ABIArgInfo::getIgnore(); 3962 3963 const Type *Base = nullptr; 3964 uint64_t Members = 0; 3965 if (isHomogeneousAggregate(RetTy, Base, Members)) 3966 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3967 return ABIArgInfo::getDirect(); 3968 3969 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3970 uint64_t Size = getContext().getTypeSize(RetTy); 3971 if (Size <= 128) { 3972 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3973 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3974 } 3975 3976 return ABIArgInfo::getIndirect(0); 3977 } 3978 3979 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3980 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3981 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3982 // Check whether VT is legal. 3983 unsigned NumElements = VT->getNumElements(); 3984 uint64_t Size = getContext().getTypeSize(VT); 3985 // NumElements should be power of 2 between 1 and 16. 3986 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3987 return true; 3988 return Size != 64 && (Size != 128 || NumElements == 1); 3989 } 3990 return false; 3991 } 3992 3993 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3994 // Homogeneous aggregates for AAPCS64 must have base types of a floating 3995 // point type or a short-vector type. This is the same as the 32-bit ABI, 3996 // but with the difference that any floating-point type is allowed, 3997 // including __fp16. 3998 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3999 if (BT->isFloatingPoint()) 4000 return true; 4001 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4002 unsigned VecSize = getContext().getTypeSize(VT); 4003 if (VecSize == 64 || VecSize == 128) 4004 return true; 4005 } 4006 return false; 4007 } 4008 4009 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4010 uint64_t Members) const { 4011 return Members <= 4; 4012 } 4013 4014 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4015 QualType Ty, 4016 CodeGenFunction &CGF) const { 4017 ABIArgInfo AI = classifyArgumentType(Ty); 4018 bool IsIndirect = AI.isIndirect(); 4019 4020 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4021 if (IsIndirect) 4022 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4023 else if (AI.getCoerceToType()) 4024 BaseTy = AI.getCoerceToType(); 4025 4026 unsigned NumRegs = 1; 4027 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4028 BaseTy = ArrTy->getElementType(); 4029 NumRegs = ArrTy->getNumElements(); 4030 } 4031 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4032 4033 // The AArch64 va_list type and handling is specified in the Procedure Call 4034 // Standard, section B.4: 4035 // 4036 // struct { 4037 // void *__stack; 4038 // void *__gr_top; 4039 // void *__vr_top; 4040 // int __gr_offs; 4041 // int __vr_offs; 4042 // }; 4043 4044 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4045 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4046 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4047 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4048 auto &Ctx = CGF.getContext(); 4049 4050 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4051 int reg_top_index; 4052 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4053 if (!IsFPR) { 4054 // 3 is the field number of __gr_offs 4055 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 4056 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4057 reg_top_index = 1; // field number for __gr_top 4058 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4059 } else { 4060 // 4 is the field number of __vr_offs. 4061 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 4062 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4063 reg_top_index = 2; // field number for __vr_top 4064 RegSize = 16 * NumRegs; 4065 } 4066 4067 //======================================= 4068 // Find out where argument was passed 4069 //======================================= 4070 4071 // If reg_offs >= 0 we're already using the stack for this type of 4072 // argument. We don't want to keep updating reg_offs (in case it overflows, 4073 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4074 // whatever they get). 4075 llvm::Value *UsingStack = nullptr; 4076 UsingStack = CGF.Builder.CreateICmpSGE( 4077 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4078 4079 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4080 4081 // Otherwise, at least some kind of argument could go in these registers, the 4082 // question is whether this particular type is too big. 4083 CGF.EmitBlock(MaybeRegBlock); 4084 4085 // Integer arguments may need to correct register alignment (for example a 4086 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4087 // align __gr_offs to calculate the potential address. 4088 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4089 int Align = Ctx.getTypeAlign(Ty) / 8; 4090 4091 reg_offs = CGF.Builder.CreateAdd( 4092 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4093 "align_regoffs"); 4094 reg_offs = CGF.Builder.CreateAnd( 4095 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4096 "aligned_regoffs"); 4097 } 4098 4099 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4100 llvm::Value *NewOffset = nullptr; 4101 NewOffset = CGF.Builder.CreateAdd( 4102 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4103 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4104 4105 // Now we're in a position to decide whether this argument really was in 4106 // registers or not. 4107 llvm::Value *InRegs = nullptr; 4108 InRegs = CGF.Builder.CreateICmpSLE( 4109 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4110 4111 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4112 4113 //======================================= 4114 // Argument was in registers 4115 //======================================= 4116 4117 // Now we emit the code for if the argument was originally passed in 4118 // registers. First start the appropriate block: 4119 CGF.EmitBlock(InRegBlock); 4120 4121 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4122 reg_top_p = 4123 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 4124 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4125 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4126 llvm::Value *RegAddr = nullptr; 4127 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4128 4129 if (IsIndirect) { 4130 // If it's been passed indirectly (actually a struct), whatever we find from 4131 // stored registers or on the stack will actually be a struct **. 4132 MemTy = llvm::PointerType::getUnqual(MemTy); 4133 } 4134 4135 const Type *Base = nullptr; 4136 uint64_t NumMembers = 0; 4137 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4138 if (IsHFA && NumMembers > 1) { 4139 // Homogeneous aggregates passed in registers will have their elements split 4140 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4141 // qN+1, ...). We reload and store into a temporary local variable 4142 // contiguously. 4143 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4144 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4145 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4146 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 4147 int Offset = 0; 4148 4149 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4150 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4151 for (unsigned i = 0; i < NumMembers; ++i) { 4152 llvm::Value *BaseOffset = 4153 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4154 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4155 LoadAddr = CGF.Builder.CreateBitCast( 4156 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4157 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 4158 4159 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4160 CGF.Builder.CreateStore(Elem, StoreAddr); 4161 } 4162 4163 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4164 } else { 4165 // Otherwise the object is contiguous in memory 4166 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4167 if (CGF.CGM.getDataLayout().isBigEndian() && 4168 (IsHFA || !isAggregateTypeForABI(Ty)) && 4169 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4170 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4171 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4172 4173 BaseAddr = CGF.Builder.CreateAdd( 4174 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4175 4176 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4177 } 4178 4179 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4180 } 4181 4182 CGF.EmitBranch(ContBlock); 4183 4184 //======================================= 4185 // Argument was on the stack 4186 //======================================= 4187 CGF.EmitBlock(OnStackBlock); 4188 4189 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4190 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 4191 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4192 4193 // Again, stack arguments may need realigmnent. In this case both integer and 4194 // floating-point ones might be affected. 4195 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4196 int Align = Ctx.getTypeAlign(Ty) / 8; 4197 4198 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4199 4200 OnStackAddr = CGF.Builder.CreateAdd( 4201 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4202 "align_stack"); 4203 OnStackAddr = CGF.Builder.CreateAnd( 4204 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4205 "align_stack"); 4206 4207 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4208 } 4209 4210 uint64_t StackSize; 4211 if (IsIndirect) 4212 StackSize = 8; 4213 else 4214 StackSize = Ctx.getTypeSize(Ty) / 8; 4215 4216 // All stack slots are 8 bytes 4217 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4218 4219 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4220 llvm::Value *NewStack = 4221 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4222 4223 // Write the new value of __stack for the next call to va_arg 4224 CGF.Builder.CreateStore(NewStack, stack_p); 4225 4226 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4227 Ctx.getTypeSize(Ty) < 64) { 4228 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4229 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4230 4231 OnStackAddr = CGF.Builder.CreateAdd( 4232 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4233 4234 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4235 } 4236 4237 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4238 4239 CGF.EmitBranch(ContBlock); 4240 4241 //======================================= 4242 // Tidy up 4243 //======================================= 4244 CGF.EmitBlock(ContBlock); 4245 4246 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4247 ResAddr->addIncoming(RegAddr, InRegBlock); 4248 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4249 4250 if (IsIndirect) 4251 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4252 4253 return ResAddr; 4254 } 4255 4256 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 4257 CodeGenFunction &CGF) const { 4258 // We do not support va_arg for aggregates or illegal vector types. 4259 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4260 // other cases. 4261 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4262 return nullptr; 4263 4264 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4265 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4266 4267 const Type *Base = nullptr; 4268 uint64_t Members = 0; 4269 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4270 4271 bool isIndirect = false; 4272 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4273 // be passed indirectly. 4274 if (Size > 16 && !isHA) { 4275 isIndirect = true; 4276 Size = 8; 4277 Align = 8; 4278 } 4279 4280 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4281 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4282 4283 CGBuilderTy &Builder = CGF.Builder; 4284 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4285 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4286 4287 if (isEmptyRecord(getContext(), Ty, true)) { 4288 // These are ignored for parameter passing purposes. 4289 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4290 return Builder.CreateBitCast(Addr, PTy); 4291 } 4292 4293 const uint64_t MinABIAlign = 8; 4294 if (Align > MinABIAlign) { 4295 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4296 Addr = Builder.CreateGEP(Addr, Offset); 4297 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4298 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4299 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4300 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4301 } 4302 4303 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4304 llvm::Value *NextAddr = Builder.CreateGEP( 4305 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4306 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4307 4308 if (isIndirect) 4309 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4310 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4311 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4312 4313 return AddrTyped; 4314 } 4315 4316 //===----------------------------------------------------------------------===// 4317 // ARM ABI Implementation 4318 //===----------------------------------------------------------------------===// 4319 4320 namespace { 4321 4322 class ARMABIInfo : public ABIInfo { 4323 public: 4324 enum ABIKind { 4325 APCS = 0, 4326 AAPCS = 1, 4327 AAPCS_VFP 4328 }; 4329 4330 private: 4331 ABIKind Kind; 4332 mutable int VFPRegs[16]; 4333 const unsigned NumVFPs; 4334 const unsigned NumGPRs; 4335 mutable unsigned AllocatedGPRs; 4336 mutable unsigned AllocatedVFPs; 4337 4338 public: 4339 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 4340 NumVFPs(16), NumGPRs(4) { 4341 setCCs(); 4342 resetAllocatedRegs(); 4343 } 4344 4345 bool isEABI() const { 4346 switch (getTarget().getTriple().getEnvironment()) { 4347 case llvm::Triple::Android: 4348 case llvm::Triple::EABI: 4349 case llvm::Triple::EABIHF: 4350 case llvm::Triple::GNUEABI: 4351 case llvm::Triple::GNUEABIHF: 4352 return true; 4353 default: 4354 return false; 4355 } 4356 } 4357 4358 bool isEABIHF() const { 4359 switch (getTarget().getTriple().getEnvironment()) { 4360 case llvm::Triple::EABIHF: 4361 case llvm::Triple::GNUEABIHF: 4362 return true; 4363 default: 4364 return false; 4365 } 4366 } 4367 4368 ABIKind getABIKind() const { return Kind; } 4369 4370 private: 4371 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4372 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 4373 bool &IsCPRC) const; 4374 bool isIllegalVectorType(QualType Ty) const; 4375 4376 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4377 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4378 uint64_t Members) const override; 4379 4380 void computeInfo(CGFunctionInfo &FI) const override; 4381 4382 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4383 CodeGenFunction &CGF) const override; 4384 4385 llvm::CallingConv::ID getLLVMDefaultCC() const; 4386 llvm::CallingConv::ID getABIDefaultCC() const; 4387 void setCCs(); 4388 4389 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 4390 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 4391 void resetAllocatedRegs(void) const; 4392 }; 4393 4394 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4395 public: 4396 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4397 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4398 4399 const ARMABIInfo &getABIInfo() const { 4400 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4401 } 4402 4403 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4404 return 13; 4405 } 4406 4407 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4408 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4409 } 4410 4411 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4412 llvm::Value *Address) const override { 4413 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4414 4415 // 0-15 are the 16 integer registers. 4416 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4417 return false; 4418 } 4419 4420 unsigned getSizeOfUnwindException() const override { 4421 if (getABIInfo().isEABI()) return 88; 4422 return TargetCodeGenInfo::getSizeOfUnwindException(); 4423 } 4424 4425 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4426 CodeGen::CodeGenModule &CGM) const override { 4427 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4428 if (!FD) 4429 return; 4430 4431 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4432 if (!Attr) 4433 return; 4434 4435 const char *Kind; 4436 switch (Attr->getInterrupt()) { 4437 case ARMInterruptAttr::Generic: Kind = ""; break; 4438 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4439 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4440 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4441 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4442 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4443 } 4444 4445 llvm::Function *Fn = cast<llvm::Function>(GV); 4446 4447 Fn->addFnAttr("interrupt", Kind); 4448 4449 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4450 return; 4451 4452 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4453 // however this is not necessarily true on taking any interrupt. Instruct 4454 // the backend to perform a realignment as part of the function prologue. 4455 llvm::AttrBuilder B; 4456 B.addStackAlignmentAttr(8); 4457 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4458 llvm::AttributeSet::get(CGM.getLLVMContext(), 4459 llvm::AttributeSet::FunctionIndex, 4460 B)); 4461 } 4462 4463 }; 4464 4465 } 4466 4467 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4468 // To correctly handle Homogeneous Aggregate, we need to keep track of the 4469 // VFP registers allocated so far. 4470 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4471 // VFP registers of the appropriate type unallocated then the argument is 4472 // allocated to the lowest-numbered sequence of such registers. 4473 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4474 // unallocated are marked as unavailable. 4475 resetAllocatedRegs(); 4476 4477 if (getCXXABI().classifyReturnType(FI)) { 4478 if (FI.getReturnInfo().isIndirect()) 4479 markAllocatedGPRs(1, 1); 4480 } else { 4481 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4482 } 4483 for (auto &I : FI.arguments()) { 4484 unsigned PreAllocationVFPs = AllocatedVFPs; 4485 unsigned PreAllocationGPRs = AllocatedGPRs; 4486 bool IsCPRC = false; 4487 // 6.1.2.3 There is one VFP co-processor register class using registers 4488 // s0-s15 (d0-d7) for passing arguments. 4489 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 4490 4491 // If we have allocated some arguments onto the stack (due to running 4492 // out of VFP registers), we cannot split an argument between GPRs and 4493 // the stack. If this situation occurs, we add padding to prevent the 4494 // GPRs from being used. In this situation, the current argument could 4495 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 4496 // unusable anyway. 4497 // We do not have to do this if the argument is being passed ByVal, as the 4498 // backend can handle that situation correctly. 4499 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4500 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); 4501 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && 4502 StackUsed && !IsByVal) { 4503 llvm::Type *PaddingTy = llvm::ArrayType::get( 4504 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4505 if (I.info.canHaveCoerceToType()) { 4506 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 4507 0 /* offset */, PaddingTy, true); 4508 } else { 4509 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4510 PaddingTy, true); 4511 } 4512 } 4513 } 4514 4515 // Always honor user-specified calling convention. 4516 if (FI.getCallingConvention() != llvm::CallingConv::C) 4517 return; 4518 4519 llvm::CallingConv::ID cc = getRuntimeCC(); 4520 if (cc != llvm::CallingConv::C) 4521 FI.setEffectiveCallingConvention(cc); 4522 } 4523 4524 /// Return the default calling convention that LLVM will use. 4525 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4526 // The default calling convention that LLVM will infer. 4527 if (isEABIHF()) 4528 return llvm::CallingConv::ARM_AAPCS_VFP; 4529 else if (isEABI()) 4530 return llvm::CallingConv::ARM_AAPCS; 4531 else 4532 return llvm::CallingConv::ARM_APCS; 4533 } 4534 4535 /// Return the calling convention that our ABI would like us to use 4536 /// as the C calling convention. 4537 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4538 switch (getABIKind()) { 4539 case APCS: return llvm::CallingConv::ARM_APCS; 4540 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4541 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4542 } 4543 llvm_unreachable("bad ABI kind"); 4544 } 4545 4546 void ARMABIInfo::setCCs() { 4547 assert(getRuntimeCC() == llvm::CallingConv::C); 4548 4549 // Don't muddy up the IR with a ton of explicit annotations if 4550 // they'd just match what LLVM will infer from the triple. 4551 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4552 if (abiCC != getLLVMDefaultCC()) 4553 RuntimeCC = abiCC; 4554 4555 BuiltinCC = (getABIKind() == APCS ? 4556 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4557 } 4558 4559 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4560 /// number of VFP registers (unit is S register) requested. 4561 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4562 unsigned NumRequired) const { 4563 // Early Exit. 4564 if (AllocatedVFPs >= 16) { 4565 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4566 // the stack. 4567 AllocatedVFPs = 17; 4568 return; 4569 } 4570 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4571 // VFP registers of the appropriate type unallocated then the argument is 4572 // allocated to the lowest-numbered sequence of such registers. 4573 for (unsigned I = 0; I < 16; I += Alignment) { 4574 bool FoundSlot = true; 4575 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4576 if (J >= 16 || VFPRegs[J]) { 4577 FoundSlot = false; 4578 break; 4579 } 4580 if (FoundSlot) { 4581 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4582 VFPRegs[J] = 1; 4583 AllocatedVFPs += NumRequired; 4584 return; 4585 } 4586 } 4587 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4588 // unallocated are marked as unavailable. 4589 for (unsigned I = 0; I < 16; I++) 4590 VFPRegs[I] = 1; 4591 AllocatedVFPs = 17; // We do not have enough VFP registers. 4592 } 4593 4594 /// Update AllocatedGPRs to record the number of general purpose registers 4595 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4596 /// this represents arguments being stored on the stack. 4597 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4598 unsigned NumRequired) const { 4599 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4600 4601 if (Alignment == 2 && AllocatedGPRs & 0x1) 4602 AllocatedGPRs += 1; 4603 4604 AllocatedGPRs += NumRequired; 4605 } 4606 4607 void ARMABIInfo::resetAllocatedRegs(void) const { 4608 AllocatedGPRs = 0; 4609 AllocatedVFPs = 0; 4610 for (unsigned i = 0; i < NumVFPs; ++i) 4611 VFPRegs[i] = 0; 4612 } 4613 4614 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4615 bool &IsCPRC) const { 4616 // We update number of allocated VFPs according to 4617 // 6.1.2.1 The following argument types are VFP CPRCs: 4618 // A single-precision floating-point type (including promoted 4619 // half-precision types); A double-precision floating-point type; 4620 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4621 // with a Base Type of a single- or double-precision floating-point type, 4622 // 64-bit containerized vectors or 128-bit containerized vectors with one 4623 // to four Elements. 4624 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4625 4626 Ty = useFirstFieldIfTransparentUnion(Ty); 4627 4628 // Handle illegal vector types here. 4629 if (isIllegalVectorType(Ty)) { 4630 uint64_t Size = getContext().getTypeSize(Ty); 4631 if (Size <= 32) { 4632 llvm::Type *ResType = 4633 llvm::Type::getInt32Ty(getVMContext()); 4634 markAllocatedGPRs(1, 1); 4635 return ABIArgInfo::getDirect(ResType); 4636 } 4637 if (Size == 64) { 4638 llvm::Type *ResType = llvm::VectorType::get( 4639 llvm::Type::getInt32Ty(getVMContext()), 2); 4640 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4641 markAllocatedGPRs(2, 2); 4642 } else { 4643 markAllocatedVFPs(2, 2); 4644 IsCPRC = true; 4645 } 4646 return ABIArgInfo::getDirect(ResType); 4647 } 4648 if (Size == 128) { 4649 llvm::Type *ResType = llvm::VectorType::get( 4650 llvm::Type::getInt32Ty(getVMContext()), 4); 4651 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4652 markAllocatedGPRs(2, 4); 4653 } else { 4654 markAllocatedVFPs(4, 4); 4655 IsCPRC = true; 4656 } 4657 return ABIArgInfo::getDirect(ResType); 4658 } 4659 markAllocatedGPRs(1, 1); 4660 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4661 } 4662 // Update VFPRegs for legal vector types. 4663 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4664 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4665 uint64_t Size = getContext().getTypeSize(VT); 4666 // Size of a legal vector should be power of 2 and above 64. 4667 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4668 IsCPRC = true; 4669 } 4670 } 4671 // Update VFPRegs for floating point types. 4672 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4673 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4674 if (BT->getKind() == BuiltinType::Half || 4675 BT->getKind() == BuiltinType::Float) { 4676 markAllocatedVFPs(1, 1); 4677 IsCPRC = true; 4678 } 4679 if (BT->getKind() == BuiltinType::Double || 4680 BT->getKind() == BuiltinType::LongDouble) { 4681 markAllocatedVFPs(2, 2); 4682 IsCPRC = true; 4683 } 4684 } 4685 } 4686 4687 if (!isAggregateTypeForABI(Ty)) { 4688 // Treat an enum type as its underlying type. 4689 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4690 Ty = EnumTy->getDecl()->getIntegerType(); 4691 } 4692 4693 unsigned Size = getContext().getTypeSize(Ty); 4694 if (!IsCPRC) 4695 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4696 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4697 : ABIArgInfo::getDirect()); 4698 } 4699 4700 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4701 markAllocatedGPRs(1, 1); 4702 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4703 } 4704 4705 // Ignore empty records. 4706 if (isEmptyRecord(getContext(), Ty, true)) 4707 return ABIArgInfo::getIgnore(); 4708 4709 if (IsEffectivelyAAPCS_VFP) { 4710 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4711 // into VFP registers. 4712 const Type *Base = nullptr; 4713 uint64_t Members = 0; 4714 if (isHomogeneousAggregate(Ty, Base, Members)) { 4715 assert(Base && "Base class should be set for homogeneous aggregate"); 4716 // Base can be a floating-point or a vector. 4717 if (Base->isVectorType()) { 4718 // ElementSize is in number of floats. 4719 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4720 markAllocatedVFPs(ElementSize, 4721 Members * ElementSize); 4722 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4723 markAllocatedVFPs(1, Members); 4724 else { 4725 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4726 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4727 markAllocatedVFPs(2, Members * 2); 4728 } 4729 IsCPRC = true; 4730 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4731 } 4732 } 4733 4734 // Support byval for ARM. 4735 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4736 // most 8-byte. We realign the indirect argument if type alignment is bigger 4737 // than ABI alignment. 4738 uint64_t ABIAlign = 4; 4739 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4740 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4741 getABIKind() == ARMABIInfo::AAPCS) 4742 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4743 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4744 // Update Allocated GPRs. Since this is only used when the size of the 4745 // argument is greater than 64 bytes, this will always use up any available 4746 // registers (of which there are 4). We also don't care about getting the 4747 // alignment right, because general-purpose registers cannot be back-filled. 4748 markAllocatedGPRs(1, 4); 4749 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4750 /*Realign=*/TyAlign > ABIAlign); 4751 } 4752 4753 // Otherwise, pass by coercing to a structure of the appropriate size. 4754 llvm::Type* ElemTy; 4755 unsigned SizeRegs; 4756 // FIXME: Try to match the types of the arguments more accurately where 4757 // we can. 4758 if (getContext().getTypeAlign(Ty) <= 32) { 4759 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4760 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4761 markAllocatedGPRs(1, SizeRegs); 4762 } else { 4763 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4764 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4765 markAllocatedGPRs(2, SizeRegs * 2); 4766 } 4767 4768 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4769 } 4770 4771 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4772 llvm::LLVMContext &VMContext) { 4773 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4774 // is called integer-like if its size is less than or equal to one word, and 4775 // the offset of each of its addressable sub-fields is zero. 4776 4777 uint64_t Size = Context.getTypeSize(Ty); 4778 4779 // Check that the type fits in a word. 4780 if (Size > 32) 4781 return false; 4782 4783 // FIXME: Handle vector types! 4784 if (Ty->isVectorType()) 4785 return false; 4786 4787 // Float types are never treated as "integer like". 4788 if (Ty->isRealFloatingType()) 4789 return false; 4790 4791 // If this is a builtin or pointer type then it is ok. 4792 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4793 return true; 4794 4795 // Small complex integer types are "integer like". 4796 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4797 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4798 4799 // Single element and zero sized arrays should be allowed, by the definition 4800 // above, but they are not. 4801 4802 // Otherwise, it must be a record type. 4803 const RecordType *RT = Ty->getAs<RecordType>(); 4804 if (!RT) return false; 4805 4806 // Ignore records with flexible arrays. 4807 const RecordDecl *RD = RT->getDecl(); 4808 if (RD->hasFlexibleArrayMember()) 4809 return false; 4810 4811 // Check that all sub-fields are at offset 0, and are themselves "integer 4812 // like". 4813 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4814 4815 bool HadField = false; 4816 unsigned idx = 0; 4817 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4818 i != e; ++i, ++idx) { 4819 const FieldDecl *FD = *i; 4820 4821 // Bit-fields are not addressable, we only need to verify they are "integer 4822 // like". We still have to disallow a subsequent non-bitfield, for example: 4823 // struct { int : 0; int x } 4824 // is non-integer like according to gcc. 4825 if (FD->isBitField()) { 4826 if (!RD->isUnion()) 4827 HadField = true; 4828 4829 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4830 return false; 4831 4832 continue; 4833 } 4834 4835 // Check if this field is at offset 0. 4836 if (Layout.getFieldOffset(idx) != 0) 4837 return false; 4838 4839 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4840 return false; 4841 4842 // Only allow at most one field in a structure. This doesn't match the 4843 // wording above, but follows gcc in situations with a field following an 4844 // empty structure. 4845 if (!RD->isUnion()) { 4846 if (HadField) 4847 return false; 4848 4849 HadField = true; 4850 } 4851 } 4852 4853 return true; 4854 } 4855 4856 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4857 bool isVariadic) const { 4858 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4859 4860 if (RetTy->isVoidType()) 4861 return ABIArgInfo::getIgnore(); 4862 4863 // Large vector types should be returned via memory. 4864 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4865 markAllocatedGPRs(1, 1); 4866 return ABIArgInfo::getIndirect(0); 4867 } 4868 4869 if (!isAggregateTypeForABI(RetTy)) { 4870 // Treat an enum type as its underlying type. 4871 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4872 RetTy = EnumTy->getDecl()->getIntegerType(); 4873 4874 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4875 : ABIArgInfo::getDirect(); 4876 } 4877 4878 // Are we following APCS? 4879 if (getABIKind() == APCS) { 4880 if (isEmptyRecord(getContext(), RetTy, false)) 4881 return ABIArgInfo::getIgnore(); 4882 4883 // Complex types are all returned as packed integers. 4884 // 4885 // FIXME: Consider using 2 x vector types if the back end handles them 4886 // correctly. 4887 if (RetTy->isAnyComplexType()) 4888 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4889 getVMContext(), getContext().getTypeSize(RetTy))); 4890 4891 // Integer like structures are returned in r0. 4892 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4893 // Return in the smallest viable integer type. 4894 uint64_t Size = getContext().getTypeSize(RetTy); 4895 if (Size <= 8) 4896 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4897 if (Size <= 16) 4898 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4899 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4900 } 4901 4902 // Otherwise return in memory. 4903 markAllocatedGPRs(1, 1); 4904 return ABIArgInfo::getIndirect(0); 4905 } 4906 4907 // Otherwise this is an AAPCS variant. 4908 4909 if (isEmptyRecord(getContext(), RetTy, true)) 4910 return ABIArgInfo::getIgnore(); 4911 4912 // Check for homogeneous aggregates with AAPCS-VFP. 4913 if (IsEffectivelyAAPCS_VFP) { 4914 const Type *Base = nullptr; 4915 uint64_t Members; 4916 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4917 assert(Base && "Base class should be set for homogeneous aggregate"); 4918 // Homogeneous Aggregates are returned directly. 4919 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4920 } 4921 } 4922 4923 // Aggregates <= 4 bytes are returned in r0; other aggregates 4924 // are returned indirectly. 4925 uint64_t Size = getContext().getTypeSize(RetTy); 4926 if (Size <= 32) { 4927 if (getDataLayout().isBigEndian()) 4928 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4929 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4930 4931 // Return in the smallest viable integer type. 4932 if (Size <= 8) 4933 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4934 if (Size <= 16) 4935 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4936 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4937 } 4938 4939 markAllocatedGPRs(1, 1); 4940 return ABIArgInfo::getIndirect(0); 4941 } 4942 4943 /// isIllegalVector - check whether Ty is an illegal vector type. 4944 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4945 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4946 // Check whether VT is legal. 4947 unsigned NumElements = VT->getNumElements(); 4948 uint64_t Size = getContext().getTypeSize(VT); 4949 // NumElements should be power of 2. 4950 if ((NumElements & (NumElements - 1)) != 0) 4951 return true; 4952 // Size should be greater than 32 bits. 4953 return Size <= 32; 4954 } 4955 return false; 4956 } 4957 4958 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4959 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4960 // double, or 64-bit or 128-bit vectors. 4961 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4962 if (BT->getKind() == BuiltinType::Float || 4963 BT->getKind() == BuiltinType::Double || 4964 BT->getKind() == BuiltinType::LongDouble) 4965 return true; 4966 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4967 unsigned VecSize = getContext().getTypeSize(VT); 4968 if (VecSize == 64 || VecSize == 128) 4969 return true; 4970 } 4971 return false; 4972 } 4973 4974 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4975 uint64_t Members) const { 4976 return Members <= 4; 4977 } 4978 4979 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4980 CodeGenFunction &CGF) const { 4981 llvm::Type *BP = CGF.Int8PtrTy; 4982 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4983 4984 CGBuilderTy &Builder = CGF.Builder; 4985 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4986 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4987 4988 if (isEmptyRecord(getContext(), Ty, true)) { 4989 // These are ignored for parameter passing purposes. 4990 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4991 return Builder.CreateBitCast(Addr, PTy); 4992 } 4993 4994 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4995 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4996 bool IsIndirect = false; 4997 4998 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4999 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5000 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5001 getABIKind() == ARMABIInfo::AAPCS) 5002 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5003 else 5004 TyAlign = 4; 5005 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5006 if (isIllegalVectorType(Ty) && Size > 16) { 5007 IsIndirect = true; 5008 Size = 4; 5009 TyAlign = 4; 5010 } 5011 5012 // Handle address alignment for ABI alignment > 4 bytes. 5013 if (TyAlign > 4) { 5014 assert((TyAlign & (TyAlign - 1)) == 0 && 5015 "Alignment is not power of 2!"); 5016 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 5017 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 5018 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 5019 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 5020 } 5021 5022 uint64_t Offset = 5023 llvm::RoundUpToAlignment(Size, 4); 5024 llvm::Value *NextAddr = 5025 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5026 "ap.next"); 5027 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5028 5029 if (IsIndirect) 5030 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5031 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5032 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5033 // may not be correctly aligned for the vector type. We create an aligned 5034 // temporary space and copy the content over from ap.cur to the temporary 5035 // space. This is necessary if the natural alignment of the type is greater 5036 // than the ABI alignment. 5037 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5038 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5039 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5040 "var.align"); 5041 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5042 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5043 Builder.CreateMemCpy(Dst, Src, 5044 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5045 TyAlign, false); 5046 Addr = AlignedTemp; //The content is in aligned location. 5047 } 5048 llvm::Type *PTy = 5049 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5050 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5051 5052 return AddrTyped; 5053 } 5054 5055 namespace { 5056 5057 class NaClARMABIInfo : public ABIInfo { 5058 public: 5059 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 5060 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 5061 void computeInfo(CGFunctionInfo &FI) const override; 5062 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5063 CodeGenFunction &CGF) const override; 5064 private: 5065 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 5066 ARMABIInfo NInfo; // Used for everything else. 5067 }; 5068 5069 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 5070 public: 5071 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 5072 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 5073 }; 5074 5075 } 5076 5077 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5078 if (FI.getASTCallingConvention() == CC_PnaclCall) 5079 PInfo.computeInfo(FI); 5080 else 5081 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 5082 } 5083 5084 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5085 CodeGenFunction &CGF) const { 5086 // Always use the native convention; calling pnacl-style varargs functions 5087 // is unsupported. 5088 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 5089 } 5090 5091 //===----------------------------------------------------------------------===// 5092 // NVPTX ABI Implementation 5093 //===----------------------------------------------------------------------===// 5094 5095 namespace { 5096 5097 class NVPTXABIInfo : public ABIInfo { 5098 public: 5099 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5100 5101 ABIArgInfo classifyReturnType(QualType RetTy) const; 5102 ABIArgInfo classifyArgumentType(QualType Ty) const; 5103 5104 void computeInfo(CGFunctionInfo &FI) const override; 5105 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5106 CodeGenFunction &CFG) const override; 5107 }; 5108 5109 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5110 public: 5111 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5112 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5113 5114 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5115 CodeGen::CodeGenModule &M) const override; 5116 private: 5117 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5118 // resulting MDNode to the nvvm.annotations MDNode. 5119 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5120 }; 5121 5122 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5123 if (RetTy->isVoidType()) 5124 return ABIArgInfo::getIgnore(); 5125 5126 // note: this is different from default ABI 5127 if (!RetTy->isScalarType()) 5128 return ABIArgInfo::getDirect(); 5129 5130 // Treat an enum type as its underlying type. 5131 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5132 RetTy = EnumTy->getDecl()->getIntegerType(); 5133 5134 return (RetTy->isPromotableIntegerType() ? 5135 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5136 } 5137 5138 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5139 // Treat an enum type as its underlying type. 5140 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5141 Ty = EnumTy->getDecl()->getIntegerType(); 5142 5143 // Return aggregates type as indirect by value 5144 if (isAggregateTypeForABI(Ty)) 5145 return ABIArgInfo::getIndirect(0, /* byval */ true); 5146 5147 return (Ty->isPromotableIntegerType() ? 5148 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5149 } 5150 5151 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5152 if (!getCXXABI().classifyReturnType(FI)) 5153 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5154 for (auto &I : FI.arguments()) 5155 I.info = classifyArgumentType(I.type); 5156 5157 // Always honor user-specified calling convention. 5158 if (FI.getCallingConvention() != llvm::CallingConv::C) 5159 return; 5160 5161 FI.setEffectiveCallingConvention(getRuntimeCC()); 5162 } 5163 5164 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5165 CodeGenFunction &CFG) const { 5166 llvm_unreachable("NVPTX does not support varargs"); 5167 } 5168 5169 void NVPTXTargetCodeGenInfo:: 5170 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5171 CodeGen::CodeGenModule &M) const{ 5172 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5173 if (!FD) return; 5174 5175 llvm::Function *F = cast<llvm::Function>(GV); 5176 5177 // Perform special handling in OpenCL mode 5178 if (M.getLangOpts().OpenCL) { 5179 // Use OpenCL function attributes to check for kernel functions 5180 // By default, all functions are device functions 5181 if (FD->hasAttr<OpenCLKernelAttr>()) { 5182 // OpenCL __kernel functions get kernel metadata 5183 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5184 addNVVMMetadata(F, "kernel", 1); 5185 // And kernel functions are not subject to inlining 5186 F->addFnAttr(llvm::Attribute::NoInline); 5187 } 5188 } 5189 5190 // Perform special handling in CUDA mode. 5191 if (M.getLangOpts().CUDA) { 5192 // CUDA __global__ functions get a kernel metadata entry. Since 5193 // __global__ functions cannot be called from the device, we do not 5194 // need to set the noinline attribute. 5195 if (FD->hasAttr<CUDAGlobalAttr>()) { 5196 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5197 addNVVMMetadata(F, "kernel", 1); 5198 } 5199 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 5200 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5201 addNVVMMetadata(F, "maxntidx", 5202 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 5203 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 5204 // zero value from getMinBlocks either means it was not specified in 5205 // __launch_bounds__ or the user specified a 0 value. In both cases, we 5206 // don't have to add a PTX directive. 5207 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 5208 if (MinCTASM > 0) { 5209 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5210 addNVVMMetadata(F, "minctasm", MinCTASM); 5211 } 5212 } 5213 } 5214 } 5215 5216 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5217 int Operand) { 5218 llvm::Module *M = F->getParent(); 5219 llvm::LLVMContext &Ctx = M->getContext(); 5220 5221 // Get "nvvm.annotations" metadata node 5222 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5223 5224 llvm::Metadata *MDVals[] = { 5225 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5226 llvm::ConstantAsMetadata::get( 5227 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5228 // Append metadata to nvvm.annotations 5229 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5230 } 5231 } 5232 5233 //===----------------------------------------------------------------------===// 5234 // SystemZ ABI Implementation 5235 //===----------------------------------------------------------------------===// 5236 5237 namespace { 5238 5239 class SystemZABIInfo : public ABIInfo { 5240 public: 5241 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5242 5243 bool isPromotableIntegerType(QualType Ty) const; 5244 bool isCompoundType(QualType Ty) const; 5245 bool isFPArgumentType(QualType Ty) const; 5246 5247 ABIArgInfo classifyReturnType(QualType RetTy) const; 5248 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5249 5250 void computeInfo(CGFunctionInfo &FI) const override { 5251 if (!getCXXABI().classifyReturnType(FI)) 5252 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5253 for (auto &I : FI.arguments()) 5254 I.info = classifyArgumentType(I.type); 5255 } 5256 5257 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5258 CodeGenFunction &CGF) const override; 5259 }; 5260 5261 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5262 public: 5263 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 5264 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 5265 }; 5266 5267 } 5268 5269 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5270 // Treat an enum type as its underlying type. 5271 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5272 Ty = EnumTy->getDecl()->getIntegerType(); 5273 5274 // Promotable integer types are required to be promoted by the ABI. 5275 if (Ty->isPromotableIntegerType()) 5276 return true; 5277 5278 // 32-bit values must also be promoted. 5279 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5280 switch (BT->getKind()) { 5281 case BuiltinType::Int: 5282 case BuiltinType::UInt: 5283 return true; 5284 default: 5285 return false; 5286 } 5287 return false; 5288 } 5289 5290 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5291 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 5292 } 5293 5294 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5295 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5296 switch (BT->getKind()) { 5297 case BuiltinType::Float: 5298 case BuiltinType::Double: 5299 return true; 5300 default: 5301 return false; 5302 } 5303 5304 if (const RecordType *RT = Ty->getAsStructureType()) { 5305 const RecordDecl *RD = RT->getDecl(); 5306 bool Found = false; 5307 5308 // If this is a C++ record, check the bases first. 5309 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5310 for (const auto &I : CXXRD->bases()) { 5311 QualType Base = I.getType(); 5312 5313 // Empty bases don't affect things either way. 5314 if (isEmptyRecord(getContext(), Base, true)) 5315 continue; 5316 5317 if (Found) 5318 return false; 5319 Found = isFPArgumentType(Base); 5320 if (!Found) 5321 return false; 5322 } 5323 5324 // Check the fields. 5325 for (const auto *FD : RD->fields()) { 5326 // Empty bitfields don't affect things either way. 5327 // Unlike isSingleElementStruct(), empty structure and array fields 5328 // do count. So do anonymous bitfields that aren't zero-sized. 5329 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5330 return true; 5331 5332 // Unlike isSingleElementStruct(), arrays do not count. 5333 // Nested isFPArgumentType structures still do though. 5334 if (Found) 5335 return false; 5336 Found = isFPArgumentType(FD->getType()); 5337 if (!Found) 5338 return false; 5339 } 5340 5341 // Unlike isSingleElementStruct(), trailing padding is allowed. 5342 // An 8-byte aligned struct s { float f; } is passed as a double. 5343 return Found; 5344 } 5345 5346 return false; 5347 } 5348 5349 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5350 CodeGenFunction &CGF) const { 5351 // Assume that va_list type is correct; should be pointer to LLVM type: 5352 // struct { 5353 // i64 __gpr; 5354 // i64 __fpr; 5355 // i8 *__overflow_arg_area; 5356 // i8 *__reg_save_area; 5357 // }; 5358 5359 // Every argument occupies 8 bytes and is passed by preference in either 5360 // GPRs or FPRs. 5361 Ty = CGF.getContext().getCanonicalType(Ty); 5362 ABIArgInfo AI = classifyArgumentType(Ty); 5363 bool InFPRs = isFPArgumentType(Ty); 5364 5365 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5366 bool IsIndirect = AI.isIndirect(); 5367 unsigned UnpaddedBitSize; 5368 if (IsIndirect) { 5369 APTy = llvm::PointerType::getUnqual(APTy); 5370 UnpaddedBitSize = 64; 5371 } else 5372 UnpaddedBitSize = getContext().getTypeSize(Ty); 5373 unsigned PaddedBitSize = 64; 5374 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5375 5376 unsigned PaddedSize = PaddedBitSize / 8; 5377 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5378 5379 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5380 if (InFPRs) { 5381 MaxRegs = 4; // Maximum of 4 FPR arguments 5382 RegCountField = 1; // __fpr 5383 RegSaveIndex = 16; // save offset for f0 5384 RegPadding = 0; // floats are passed in the high bits of an FPR 5385 } else { 5386 MaxRegs = 5; // Maximum of 5 GPR arguments 5387 RegCountField = 0; // __gpr 5388 RegSaveIndex = 2; // save offset for r2 5389 RegPadding = Padding; // values are passed in the low bits of a GPR 5390 } 5391 5392 llvm::Value *RegCountPtr = 5393 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5394 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5395 llvm::Type *IndexTy = RegCount->getType(); 5396 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5397 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5398 "fits_in_regs"); 5399 5400 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5401 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5402 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5403 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5404 5405 // Emit code to load the value if it was passed in registers. 5406 CGF.EmitBlock(InRegBlock); 5407 5408 // Work out the address of an argument register. 5409 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5410 llvm::Value *ScaledRegCount = 5411 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5412 llvm::Value *RegBase = 5413 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5414 llvm::Value *RegOffset = 5415 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5416 llvm::Value *RegSaveAreaPtr = 5417 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5418 llvm::Value *RegSaveArea = 5419 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5420 llvm::Value *RawRegAddr = 5421 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5422 llvm::Value *RegAddr = 5423 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5424 5425 // Update the register count 5426 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5427 llvm::Value *NewRegCount = 5428 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5429 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5430 CGF.EmitBranch(ContBlock); 5431 5432 // Emit code to load the value if it was passed in memory. 5433 CGF.EmitBlock(InMemBlock); 5434 5435 // Work out the address of a stack argument. 5436 llvm::Value *OverflowArgAreaPtr = 5437 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5438 llvm::Value *OverflowArgArea = 5439 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5440 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5441 llvm::Value *RawMemAddr = 5442 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5443 llvm::Value *MemAddr = 5444 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5445 5446 // Update overflow_arg_area_ptr pointer 5447 llvm::Value *NewOverflowArgArea = 5448 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5449 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5450 CGF.EmitBranch(ContBlock); 5451 5452 // Return the appropriate result. 5453 CGF.EmitBlock(ContBlock); 5454 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5455 ResAddr->addIncoming(RegAddr, InRegBlock); 5456 ResAddr->addIncoming(MemAddr, InMemBlock); 5457 5458 if (IsIndirect) 5459 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5460 5461 return ResAddr; 5462 } 5463 5464 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5465 if (RetTy->isVoidType()) 5466 return ABIArgInfo::getIgnore(); 5467 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5468 return ABIArgInfo::getIndirect(0); 5469 return (isPromotableIntegerType(RetTy) ? 5470 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5471 } 5472 5473 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5474 // Handle the generic C++ ABI. 5475 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5476 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5477 5478 // Integers and enums are extended to full register width. 5479 if (isPromotableIntegerType(Ty)) 5480 return ABIArgInfo::getExtend(); 5481 5482 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5483 uint64_t Size = getContext().getTypeSize(Ty); 5484 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5485 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5486 5487 // Handle small structures. 5488 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5489 // Structures with flexible arrays have variable length, so really 5490 // fail the size test above. 5491 const RecordDecl *RD = RT->getDecl(); 5492 if (RD->hasFlexibleArrayMember()) 5493 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5494 5495 // The structure is passed as an unextended integer, a float, or a double. 5496 llvm::Type *PassTy; 5497 if (isFPArgumentType(Ty)) { 5498 assert(Size == 32 || Size == 64); 5499 if (Size == 32) 5500 PassTy = llvm::Type::getFloatTy(getVMContext()); 5501 else 5502 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5503 } else 5504 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5505 return ABIArgInfo::getDirect(PassTy); 5506 } 5507 5508 // Non-structure compounds are passed indirectly. 5509 if (isCompoundType(Ty)) 5510 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5511 5512 return ABIArgInfo::getDirect(nullptr); 5513 } 5514 5515 //===----------------------------------------------------------------------===// 5516 // MSP430 ABI Implementation 5517 //===----------------------------------------------------------------------===// 5518 5519 namespace { 5520 5521 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5522 public: 5523 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5524 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5525 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5526 CodeGen::CodeGenModule &M) const override; 5527 }; 5528 5529 } 5530 5531 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5532 llvm::GlobalValue *GV, 5533 CodeGen::CodeGenModule &M) const { 5534 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5535 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5536 // Handle 'interrupt' attribute: 5537 llvm::Function *F = cast<llvm::Function>(GV); 5538 5539 // Step 1: Set ISR calling convention. 5540 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5541 5542 // Step 2: Add attributes goodness. 5543 F->addFnAttr(llvm::Attribute::NoInline); 5544 5545 // Step 3: Emit ISR vector alias. 5546 unsigned Num = attr->getNumber() / 2; 5547 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5548 "__isr_" + Twine(Num), F); 5549 } 5550 } 5551 } 5552 5553 //===----------------------------------------------------------------------===// 5554 // MIPS ABI Implementation. This works for both little-endian and 5555 // big-endian variants. 5556 //===----------------------------------------------------------------------===// 5557 5558 namespace { 5559 class MipsABIInfo : public ABIInfo { 5560 bool IsO32; 5561 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5562 void CoerceToIntArgs(uint64_t TySize, 5563 SmallVectorImpl<llvm::Type *> &ArgList) const; 5564 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5565 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5566 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5567 public: 5568 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5569 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5570 StackAlignInBytes(IsO32 ? 8 : 16) {} 5571 5572 ABIArgInfo classifyReturnType(QualType RetTy) const; 5573 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5574 void computeInfo(CGFunctionInfo &FI) const override; 5575 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5576 CodeGenFunction &CGF) const override; 5577 }; 5578 5579 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5580 unsigned SizeOfUnwindException; 5581 public: 5582 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5583 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5584 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5585 5586 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5587 return 29; 5588 } 5589 5590 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5591 CodeGen::CodeGenModule &CGM) const override { 5592 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5593 if (!FD) return; 5594 llvm::Function *Fn = cast<llvm::Function>(GV); 5595 if (FD->hasAttr<Mips16Attr>()) { 5596 Fn->addFnAttr("mips16"); 5597 } 5598 else if (FD->hasAttr<NoMips16Attr>()) { 5599 Fn->addFnAttr("nomips16"); 5600 } 5601 } 5602 5603 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5604 llvm::Value *Address) const override; 5605 5606 unsigned getSizeOfUnwindException() const override { 5607 return SizeOfUnwindException; 5608 } 5609 }; 5610 } 5611 5612 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5613 SmallVectorImpl<llvm::Type *> &ArgList) const { 5614 llvm::IntegerType *IntTy = 5615 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5616 5617 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5618 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5619 ArgList.push_back(IntTy); 5620 5621 // If necessary, add one more integer type to ArgList. 5622 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5623 5624 if (R) 5625 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5626 } 5627 5628 // In N32/64, an aligned double precision floating point field is passed in 5629 // a register. 5630 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5631 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5632 5633 if (IsO32) { 5634 CoerceToIntArgs(TySize, ArgList); 5635 return llvm::StructType::get(getVMContext(), ArgList); 5636 } 5637 5638 if (Ty->isComplexType()) 5639 return CGT.ConvertType(Ty); 5640 5641 const RecordType *RT = Ty->getAs<RecordType>(); 5642 5643 // Unions/vectors are passed in integer registers. 5644 if (!RT || !RT->isStructureOrClassType()) { 5645 CoerceToIntArgs(TySize, ArgList); 5646 return llvm::StructType::get(getVMContext(), ArgList); 5647 } 5648 5649 const RecordDecl *RD = RT->getDecl(); 5650 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5651 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5652 5653 uint64_t LastOffset = 0; 5654 unsigned idx = 0; 5655 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5656 5657 // Iterate over fields in the struct/class and check if there are any aligned 5658 // double fields. 5659 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5660 i != e; ++i, ++idx) { 5661 const QualType Ty = i->getType(); 5662 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5663 5664 if (!BT || BT->getKind() != BuiltinType::Double) 5665 continue; 5666 5667 uint64_t Offset = Layout.getFieldOffset(idx); 5668 if (Offset % 64) // Ignore doubles that are not aligned. 5669 continue; 5670 5671 // Add ((Offset - LastOffset) / 64) args of type i64. 5672 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5673 ArgList.push_back(I64); 5674 5675 // Add double type. 5676 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5677 LastOffset = Offset + 64; 5678 } 5679 5680 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5681 ArgList.append(IntArgList.begin(), IntArgList.end()); 5682 5683 return llvm::StructType::get(getVMContext(), ArgList); 5684 } 5685 5686 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5687 uint64_t Offset) const { 5688 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5689 return nullptr; 5690 5691 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5692 } 5693 5694 ABIArgInfo 5695 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5696 Ty = useFirstFieldIfTransparentUnion(Ty); 5697 5698 uint64_t OrigOffset = Offset; 5699 uint64_t TySize = getContext().getTypeSize(Ty); 5700 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5701 5702 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5703 (uint64_t)StackAlignInBytes); 5704 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5705 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5706 5707 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5708 // Ignore empty aggregates. 5709 if (TySize == 0) 5710 return ABIArgInfo::getIgnore(); 5711 5712 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5713 Offset = OrigOffset + MinABIStackAlignInBytes; 5714 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5715 } 5716 5717 // If we have reached here, aggregates are passed directly by coercing to 5718 // another structure type. Padding is inserted if the offset of the 5719 // aggregate is unaligned. 5720 ABIArgInfo ArgInfo = 5721 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5722 getPaddingType(OrigOffset, CurrOffset)); 5723 ArgInfo.setInReg(true); 5724 return ArgInfo; 5725 } 5726 5727 // Treat an enum type as its underlying type. 5728 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5729 Ty = EnumTy->getDecl()->getIntegerType(); 5730 5731 // All integral types are promoted to the GPR width. 5732 if (Ty->isIntegralOrEnumerationType()) 5733 return ABIArgInfo::getExtend(); 5734 5735 return ABIArgInfo::getDirect( 5736 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5737 } 5738 5739 llvm::Type* 5740 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5741 const RecordType *RT = RetTy->getAs<RecordType>(); 5742 SmallVector<llvm::Type*, 8> RTList; 5743 5744 if (RT && RT->isStructureOrClassType()) { 5745 const RecordDecl *RD = RT->getDecl(); 5746 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5747 unsigned FieldCnt = Layout.getFieldCount(); 5748 5749 // N32/64 returns struct/classes in floating point registers if the 5750 // following conditions are met: 5751 // 1. The size of the struct/class is no larger than 128-bit. 5752 // 2. The struct/class has one or two fields all of which are floating 5753 // point types. 5754 // 3. The offset of the first field is zero (this follows what gcc does). 5755 // 5756 // Any other composite results are returned in integer registers. 5757 // 5758 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5759 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5760 for (; b != e; ++b) { 5761 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5762 5763 if (!BT || !BT->isFloatingPoint()) 5764 break; 5765 5766 RTList.push_back(CGT.ConvertType(b->getType())); 5767 } 5768 5769 if (b == e) 5770 return llvm::StructType::get(getVMContext(), RTList, 5771 RD->hasAttr<PackedAttr>()); 5772 5773 RTList.clear(); 5774 } 5775 } 5776 5777 CoerceToIntArgs(Size, RTList); 5778 return llvm::StructType::get(getVMContext(), RTList); 5779 } 5780 5781 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5782 uint64_t Size = getContext().getTypeSize(RetTy); 5783 5784 if (RetTy->isVoidType()) 5785 return ABIArgInfo::getIgnore(); 5786 5787 // O32 doesn't treat zero-sized structs differently from other structs. 5788 // However, N32/N64 ignores zero sized return values. 5789 if (!IsO32 && Size == 0) 5790 return ABIArgInfo::getIgnore(); 5791 5792 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5793 if (Size <= 128) { 5794 if (RetTy->isAnyComplexType()) 5795 return ABIArgInfo::getDirect(); 5796 5797 // O32 returns integer vectors in registers and N32/N64 returns all small 5798 // aggregates in registers. 5799 if (!IsO32 || 5800 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5801 ABIArgInfo ArgInfo = 5802 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5803 ArgInfo.setInReg(true); 5804 return ArgInfo; 5805 } 5806 } 5807 5808 return ABIArgInfo::getIndirect(0); 5809 } 5810 5811 // Treat an enum type as its underlying type. 5812 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5813 RetTy = EnumTy->getDecl()->getIntegerType(); 5814 5815 return (RetTy->isPromotableIntegerType() ? 5816 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5817 } 5818 5819 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5820 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5821 if (!getCXXABI().classifyReturnType(FI)) 5822 RetInfo = classifyReturnType(FI.getReturnType()); 5823 5824 // Check if a pointer to an aggregate is passed as a hidden argument. 5825 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5826 5827 for (auto &I : FI.arguments()) 5828 I.info = classifyArgumentType(I.type, Offset); 5829 } 5830 5831 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5832 CodeGenFunction &CGF) const { 5833 llvm::Type *BP = CGF.Int8PtrTy; 5834 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5835 5836 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5837 // Pointers are also promoted in the same way but this only matters for N32. 5838 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5839 unsigned PtrWidth = getTarget().getPointerWidth(0); 5840 if ((Ty->isIntegerType() && 5841 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5842 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5843 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5844 Ty->isSignedIntegerType()); 5845 } 5846 5847 CGBuilderTy &Builder = CGF.Builder; 5848 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5849 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5850 int64_t TypeAlign = 5851 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5852 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5853 llvm::Value *AddrTyped; 5854 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5855 5856 if (TypeAlign > MinABIStackAlignInBytes) { 5857 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5858 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5859 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5860 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5861 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5862 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5863 } 5864 else 5865 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5866 5867 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5868 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5869 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5870 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5871 llvm::Value *NextAddr = 5872 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5873 "ap.next"); 5874 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5875 5876 return AddrTyped; 5877 } 5878 5879 bool 5880 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5881 llvm::Value *Address) const { 5882 // This information comes from gcc's implementation, which seems to 5883 // as canonical as it gets. 5884 5885 // Everything on MIPS is 4 bytes. Double-precision FP registers 5886 // are aliased to pairs of single-precision FP registers. 5887 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5888 5889 // 0-31 are the general purpose registers, $0 - $31. 5890 // 32-63 are the floating-point registers, $f0 - $f31. 5891 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5892 // 66 is the (notional, I think) register for signal-handler return. 5893 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5894 5895 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5896 // They are one bit wide and ignored here. 5897 5898 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5899 // (coprocessor 1 is the FP unit) 5900 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5901 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5902 // 176-181 are the DSP accumulator registers. 5903 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5904 return false; 5905 } 5906 5907 //===----------------------------------------------------------------------===// 5908 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5909 // Currently subclassed only to implement custom OpenCL C function attribute 5910 // handling. 5911 //===----------------------------------------------------------------------===// 5912 5913 namespace { 5914 5915 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5916 public: 5917 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5918 : DefaultTargetCodeGenInfo(CGT) {} 5919 5920 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5921 CodeGen::CodeGenModule &M) const override; 5922 }; 5923 5924 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5925 llvm::GlobalValue *GV, 5926 CodeGen::CodeGenModule &M) const { 5927 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5928 if (!FD) return; 5929 5930 llvm::Function *F = cast<llvm::Function>(GV); 5931 5932 if (M.getLangOpts().OpenCL) { 5933 if (FD->hasAttr<OpenCLKernelAttr>()) { 5934 // OpenCL C Kernel functions are not subject to inlining 5935 F->addFnAttr(llvm::Attribute::NoInline); 5936 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5937 if (Attr) { 5938 // Convert the reqd_work_group_size() attributes to metadata. 5939 llvm::LLVMContext &Context = F->getContext(); 5940 llvm::NamedMDNode *OpenCLMetadata = 5941 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5942 5943 SmallVector<llvm::Metadata *, 5> Operands; 5944 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5945 5946 Operands.push_back( 5947 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5948 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5949 Operands.push_back( 5950 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5951 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5952 Operands.push_back( 5953 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5954 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5955 5956 // Add a boolean constant operand for "required" (true) or "hint" (false) 5957 // for implementing the work_group_size_hint attr later. Currently 5958 // always true as the hint is not yet implemented. 5959 Operands.push_back( 5960 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5961 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5962 } 5963 } 5964 } 5965 } 5966 5967 } 5968 5969 //===----------------------------------------------------------------------===// 5970 // Hexagon ABI Implementation 5971 //===----------------------------------------------------------------------===// 5972 5973 namespace { 5974 5975 class HexagonABIInfo : public ABIInfo { 5976 5977 5978 public: 5979 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5980 5981 private: 5982 5983 ABIArgInfo classifyReturnType(QualType RetTy) const; 5984 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5985 5986 void computeInfo(CGFunctionInfo &FI) const override; 5987 5988 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5989 CodeGenFunction &CGF) const override; 5990 }; 5991 5992 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5993 public: 5994 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5995 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5996 5997 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5998 return 29; 5999 } 6000 }; 6001 6002 } 6003 6004 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6005 if (!getCXXABI().classifyReturnType(FI)) 6006 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6007 for (auto &I : FI.arguments()) 6008 I.info = classifyArgumentType(I.type); 6009 } 6010 6011 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6012 if (!isAggregateTypeForABI(Ty)) { 6013 // Treat an enum type as its underlying type. 6014 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6015 Ty = EnumTy->getDecl()->getIntegerType(); 6016 6017 return (Ty->isPromotableIntegerType() ? 6018 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6019 } 6020 6021 // Ignore empty records. 6022 if (isEmptyRecord(getContext(), Ty, true)) 6023 return ABIArgInfo::getIgnore(); 6024 6025 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6026 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6027 6028 uint64_t Size = getContext().getTypeSize(Ty); 6029 if (Size > 64) 6030 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6031 // Pass in the smallest viable integer type. 6032 else if (Size > 32) 6033 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6034 else if (Size > 16) 6035 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6036 else if (Size > 8) 6037 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6038 else 6039 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6040 } 6041 6042 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6043 if (RetTy->isVoidType()) 6044 return ABIArgInfo::getIgnore(); 6045 6046 // Large vector types should be returned via memory. 6047 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6048 return ABIArgInfo::getIndirect(0); 6049 6050 if (!isAggregateTypeForABI(RetTy)) { 6051 // Treat an enum type as its underlying type. 6052 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6053 RetTy = EnumTy->getDecl()->getIntegerType(); 6054 6055 return (RetTy->isPromotableIntegerType() ? 6056 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6057 } 6058 6059 if (isEmptyRecord(getContext(), RetTy, true)) 6060 return ABIArgInfo::getIgnore(); 6061 6062 // Aggregates <= 8 bytes are returned in r0; other aggregates 6063 // are returned indirectly. 6064 uint64_t Size = getContext().getTypeSize(RetTy); 6065 if (Size <= 64) { 6066 // Return in the smallest viable integer type. 6067 if (Size <= 8) 6068 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6069 if (Size <= 16) 6070 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6071 if (Size <= 32) 6072 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6073 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6074 } 6075 6076 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6077 } 6078 6079 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6080 CodeGenFunction &CGF) const { 6081 // FIXME: Need to handle alignment 6082 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6083 6084 CGBuilderTy &Builder = CGF.Builder; 6085 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6086 "ap"); 6087 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6088 llvm::Type *PTy = 6089 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6090 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6091 6092 uint64_t Offset = 6093 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6094 llvm::Value *NextAddr = 6095 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6096 "ap.next"); 6097 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6098 6099 return AddrTyped; 6100 } 6101 6102 //===----------------------------------------------------------------------===// 6103 // AMDGPU ABI Implementation 6104 //===----------------------------------------------------------------------===// 6105 6106 namespace { 6107 6108 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6109 public: 6110 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6111 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6112 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6113 CodeGen::CodeGenModule &M) const override; 6114 }; 6115 6116 } 6117 6118 void AMDGPUTargetCodeGenInfo::SetTargetAttributes( 6119 const Decl *D, 6120 llvm::GlobalValue *GV, 6121 CodeGen::CodeGenModule &M) const { 6122 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6123 if (!FD) 6124 return; 6125 6126 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6127 llvm::Function *F = cast<llvm::Function>(GV); 6128 uint32_t NumVGPR = Attr->getNumVGPR(); 6129 if (NumVGPR != 0) 6130 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6131 } 6132 6133 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6134 llvm::Function *F = cast<llvm::Function>(GV); 6135 unsigned NumSGPR = Attr->getNumSGPR(); 6136 if (NumSGPR != 0) 6137 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6138 } 6139 } 6140 6141 6142 //===----------------------------------------------------------------------===// 6143 // SPARC v9 ABI Implementation. 6144 // Based on the SPARC Compliance Definition version 2.4.1. 6145 // 6146 // Function arguments a mapped to a nominal "parameter array" and promoted to 6147 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6148 // the array, structs larger than 16 bytes are passed indirectly. 6149 // 6150 // One case requires special care: 6151 // 6152 // struct mixed { 6153 // int i; 6154 // float f; 6155 // }; 6156 // 6157 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6158 // parameter array, but the int is passed in an integer register, and the float 6159 // is passed in a floating point register. This is represented as two arguments 6160 // with the LLVM IR inreg attribute: 6161 // 6162 // declare void f(i32 inreg %i, float inreg %f) 6163 // 6164 // The code generator will only allocate 4 bytes from the parameter array for 6165 // the inreg arguments. All other arguments are allocated a multiple of 8 6166 // bytes. 6167 // 6168 namespace { 6169 class SparcV9ABIInfo : public ABIInfo { 6170 public: 6171 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6172 6173 private: 6174 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6175 void computeInfo(CGFunctionInfo &FI) const override; 6176 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6177 CodeGenFunction &CGF) const override; 6178 6179 // Coercion type builder for structs passed in registers. The coercion type 6180 // serves two purposes: 6181 // 6182 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6183 // in registers. 6184 // 2. Expose aligned floating point elements as first-level elements, so the 6185 // code generator knows to pass them in floating point registers. 6186 // 6187 // We also compute the InReg flag which indicates that the struct contains 6188 // aligned 32-bit floats. 6189 // 6190 struct CoerceBuilder { 6191 llvm::LLVMContext &Context; 6192 const llvm::DataLayout &DL; 6193 SmallVector<llvm::Type*, 8> Elems; 6194 uint64_t Size; 6195 bool InReg; 6196 6197 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6198 : Context(c), DL(dl), Size(0), InReg(false) {} 6199 6200 // Pad Elems with integers until Size is ToSize. 6201 void pad(uint64_t ToSize) { 6202 assert(ToSize >= Size && "Cannot remove elements"); 6203 if (ToSize == Size) 6204 return; 6205 6206 // Finish the current 64-bit word. 6207 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6208 if (Aligned > Size && Aligned <= ToSize) { 6209 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6210 Size = Aligned; 6211 } 6212 6213 // Add whole 64-bit words. 6214 while (Size + 64 <= ToSize) { 6215 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6216 Size += 64; 6217 } 6218 6219 // Final in-word padding. 6220 if (Size < ToSize) { 6221 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6222 Size = ToSize; 6223 } 6224 } 6225 6226 // Add a floating point element at Offset. 6227 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6228 // Unaligned floats are treated as integers. 6229 if (Offset % Bits) 6230 return; 6231 // The InReg flag is only required if there are any floats < 64 bits. 6232 if (Bits < 64) 6233 InReg = true; 6234 pad(Offset); 6235 Elems.push_back(Ty); 6236 Size = Offset + Bits; 6237 } 6238 6239 // Add a struct type to the coercion type, starting at Offset (in bits). 6240 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6241 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6242 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6243 llvm::Type *ElemTy = StrTy->getElementType(i); 6244 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6245 switch (ElemTy->getTypeID()) { 6246 case llvm::Type::StructTyID: 6247 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6248 break; 6249 case llvm::Type::FloatTyID: 6250 addFloat(ElemOffset, ElemTy, 32); 6251 break; 6252 case llvm::Type::DoubleTyID: 6253 addFloat(ElemOffset, ElemTy, 64); 6254 break; 6255 case llvm::Type::FP128TyID: 6256 addFloat(ElemOffset, ElemTy, 128); 6257 break; 6258 case llvm::Type::PointerTyID: 6259 if (ElemOffset % 64 == 0) { 6260 pad(ElemOffset); 6261 Elems.push_back(ElemTy); 6262 Size += 64; 6263 } 6264 break; 6265 default: 6266 break; 6267 } 6268 } 6269 } 6270 6271 // Check if Ty is a usable substitute for the coercion type. 6272 bool isUsableType(llvm::StructType *Ty) const { 6273 if (Ty->getNumElements() != Elems.size()) 6274 return false; 6275 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 6276 if (Elems[i] != Ty->getElementType(i)) 6277 return false; 6278 return true; 6279 } 6280 6281 // Get the coercion type as a literal struct type. 6282 llvm::Type *getType() const { 6283 if (Elems.size() == 1) 6284 return Elems.front(); 6285 else 6286 return llvm::StructType::get(Context, Elems); 6287 } 6288 }; 6289 }; 6290 } // end anonymous namespace 6291 6292 ABIArgInfo 6293 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6294 if (Ty->isVoidType()) 6295 return ABIArgInfo::getIgnore(); 6296 6297 uint64_t Size = getContext().getTypeSize(Ty); 6298 6299 // Anything too big to fit in registers is passed with an explicit indirect 6300 // pointer / sret pointer. 6301 if (Size > SizeLimit) 6302 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6303 6304 // Treat an enum type as its underlying type. 6305 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6306 Ty = EnumTy->getDecl()->getIntegerType(); 6307 6308 // Integer types smaller than a register are extended. 6309 if (Size < 64 && Ty->isIntegerType()) 6310 return ABIArgInfo::getExtend(); 6311 6312 // Other non-aggregates go in registers. 6313 if (!isAggregateTypeForABI(Ty)) 6314 return ABIArgInfo::getDirect(); 6315 6316 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6317 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6318 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6319 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6320 6321 // This is a small aggregate type that should be passed in registers. 6322 // Build a coercion type from the LLVM struct type. 6323 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6324 if (!StrTy) 6325 return ABIArgInfo::getDirect(); 6326 6327 CoerceBuilder CB(getVMContext(), getDataLayout()); 6328 CB.addStruct(0, StrTy); 6329 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6330 6331 // Try to use the original type for coercion. 6332 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6333 6334 if (CB.InReg) 6335 return ABIArgInfo::getDirectInReg(CoerceTy); 6336 else 6337 return ABIArgInfo::getDirect(CoerceTy); 6338 } 6339 6340 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6341 CodeGenFunction &CGF) const { 6342 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6343 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6344 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6345 AI.setCoerceToType(ArgTy); 6346 6347 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6348 CGBuilderTy &Builder = CGF.Builder; 6349 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6350 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6351 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6352 llvm::Value *ArgAddr; 6353 unsigned Stride; 6354 6355 switch (AI.getKind()) { 6356 case ABIArgInfo::Expand: 6357 case ABIArgInfo::InAlloca: 6358 llvm_unreachable("Unsupported ABI kind for va_arg"); 6359 6360 case ABIArgInfo::Extend: 6361 Stride = 8; 6362 ArgAddr = Builder 6363 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6364 "extend"); 6365 break; 6366 6367 case ABIArgInfo::Direct: 6368 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6369 ArgAddr = Addr; 6370 break; 6371 6372 case ABIArgInfo::Indirect: 6373 Stride = 8; 6374 ArgAddr = Builder.CreateBitCast(Addr, 6375 llvm::PointerType::getUnqual(ArgPtrTy), 6376 "indirect"); 6377 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6378 break; 6379 6380 case ABIArgInfo::Ignore: 6381 return llvm::UndefValue::get(ArgPtrTy); 6382 } 6383 6384 // Update VAList. 6385 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6386 Builder.CreateStore(Addr, VAListAddrAsBPP); 6387 6388 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6389 } 6390 6391 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6392 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6393 for (auto &I : FI.arguments()) 6394 I.info = classifyType(I.type, 16 * 8); 6395 } 6396 6397 namespace { 6398 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6399 public: 6400 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6401 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6402 6403 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6404 return 14; 6405 } 6406 6407 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6408 llvm::Value *Address) const override; 6409 }; 6410 } // end anonymous namespace 6411 6412 bool 6413 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6414 llvm::Value *Address) const { 6415 // This is calculated from the LLVM and GCC tables and verified 6416 // against gcc output. AFAIK all ABIs use the same encoding. 6417 6418 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6419 6420 llvm::IntegerType *i8 = CGF.Int8Ty; 6421 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6422 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6423 6424 // 0-31: the 8-byte general-purpose registers 6425 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6426 6427 // 32-63: f0-31, the 4-byte floating-point registers 6428 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6429 6430 // Y = 64 6431 // PSR = 65 6432 // WIM = 66 6433 // TBR = 67 6434 // PC = 68 6435 // NPC = 69 6436 // FSR = 70 6437 // CSR = 71 6438 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6439 6440 // 72-87: d0-15, the 8-byte floating-point registers 6441 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6442 6443 return false; 6444 } 6445 6446 6447 //===----------------------------------------------------------------------===// 6448 // XCore ABI Implementation 6449 //===----------------------------------------------------------------------===// 6450 6451 namespace { 6452 6453 /// A SmallStringEnc instance is used to build up the TypeString by passing 6454 /// it by reference between functions that append to it. 6455 typedef llvm::SmallString<128> SmallStringEnc; 6456 6457 /// TypeStringCache caches the meta encodings of Types. 6458 /// 6459 /// The reason for caching TypeStrings is two fold: 6460 /// 1. To cache a type's encoding for later uses; 6461 /// 2. As a means to break recursive member type inclusion. 6462 /// 6463 /// A cache Entry can have a Status of: 6464 /// NonRecursive: The type encoding is not recursive; 6465 /// Recursive: The type encoding is recursive; 6466 /// Incomplete: An incomplete TypeString; 6467 /// IncompleteUsed: An incomplete TypeString that has been used in a 6468 /// Recursive type encoding. 6469 /// 6470 /// A NonRecursive entry will have all of its sub-members expanded as fully 6471 /// as possible. Whilst it may contain types which are recursive, the type 6472 /// itself is not recursive and thus its encoding may be safely used whenever 6473 /// the type is encountered. 6474 /// 6475 /// A Recursive entry will have all of its sub-members expanded as fully as 6476 /// possible. The type itself is recursive and it may contain other types which 6477 /// are recursive. The Recursive encoding must not be used during the expansion 6478 /// of a recursive type's recursive branch. For simplicity the code uses 6479 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6480 /// 6481 /// An Incomplete entry is always a RecordType and only encodes its 6482 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6483 /// are placed into the cache during type expansion as a means to identify and 6484 /// handle recursive inclusion of types as sub-members. If there is recursion 6485 /// the entry becomes IncompleteUsed. 6486 /// 6487 /// During the expansion of a RecordType's members: 6488 /// 6489 /// If the cache contains a NonRecursive encoding for the member type, the 6490 /// cached encoding is used; 6491 /// 6492 /// If the cache contains a Recursive encoding for the member type, the 6493 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6494 /// 6495 /// If the member is a RecordType, an Incomplete encoding is placed into the 6496 /// cache to break potential recursive inclusion of itself as a sub-member; 6497 /// 6498 /// Once a member RecordType has been expanded, its temporary incomplete 6499 /// entry is removed from the cache. If a Recursive encoding was swapped out 6500 /// it is swapped back in; 6501 /// 6502 /// If an incomplete entry is used to expand a sub-member, the incomplete 6503 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6504 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6505 /// 6506 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6507 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6508 /// Else the member is part of a recursive type and thus the recursion has 6509 /// been exited too soon for the encoding to be correct for the member. 6510 /// 6511 class TypeStringCache { 6512 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6513 struct Entry { 6514 std::string Str; // The encoded TypeString for the type. 6515 enum Status State; // Information about the encoding in 'Str'. 6516 std::string Swapped; // A temporary place holder for a Recursive encoding 6517 // during the expansion of RecordType's members. 6518 }; 6519 std::map<const IdentifierInfo *, struct Entry> Map; 6520 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6521 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6522 public: 6523 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6524 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6525 bool removeIncomplete(const IdentifierInfo *ID); 6526 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6527 bool IsRecursive); 6528 StringRef lookupStr(const IdentifierInfo *ID); 6529 }; 6530 6531 /// TypeString encodings for enum & union fields must be order. 6532 /// FieldEncoding is a helper for this ordering process. 6533 class FieldEncoding { 6534 bool HasName; 6535 std::string Enc; 6536 public: 6537 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6538 StringRef str() {return Enc.c_str();}; 6539 bool operator<(const FieldEncoding &rhs) const { 6540 if (HasName != rhs.HasName) return HasName; 6541 return Enc < rhs.Enc; 6542 } 6543 }; 6544 6545 class XCoreABIInfo : public DefaultABIInfo { 6546 public: 6547 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6548 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6549 CodeGenFunction &CGF) const override; 6550 }; 6551 6552 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6553 mutable TypeStringCache TSC; 6554 public: 6555 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6556 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6557 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6558 CodeGen::CodeGenModule &M) const override; 6559 }; 6560 6561 } // End anonymous namespace. 6562 6563 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6564 CodeGenFunction &CGF) const { 6565 CGBuilderTy &Builder = CGF.Builder; 6566 6567 // Get the VAList. 6568 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6569 CGF.Int8PtrPtrTy); 6570 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6571 6572 // Handle the argument. 6573 ABIArgInfo AI = classifyArgumentType(Ty); 6574 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6575 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6576 AI.setCoerceToType(ArgTy); 6577 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6578 llvm::Value *Val; 6579 uint64_t ArgSize = 0; 6580 switch (AI.getKind()) { 6581 case ABIArgInfo::Expand: 6582 case ABIArgInfo::InAlloca: 6583 llvm_unreachable("Unsupported ABI kind for va_arg"); 6584 case ABIArgInfo::Ignore: 6585 Val = llvm::UndefValue::get(ArgPtrTy); 6586 ArgSize = 0; 6587 break; 6588 case ABIArgInfo::Extend: 6589 case ABIArgInfo::Direct: 6590 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6591 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6592 if (ArgSize < 4) 6593 ArgSize = 4; 6594 break; 6595 case ABIArgInfo::Indirect: 6596 llvm::Value *ArgAddr; 6597 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6598 ArgAddr = Builder.CreateLoad(ArgAddr); 6599 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6600 ArgSize = 4; 6601 break; 6602 } 6603 6604 // Increment the VAList. 6605 if (ArgSize) { 6606 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6607 Builder.CreateStore(APN, VAListAddrAsBPP); 6608 } 6609 return Val; 6610 } 6611 6612 /// During the expansion of a RecordType, an incomplete TypeString is placed 6613 /// into the cache as a means to identify and break recursion. 6614 /// If there is a Recursive encoding in the cache, it is swapped out and will 6615 /// be reinserted by removeIncomplete(). 6616 /// All other types of encoding should have been used rather than arriving here. 6617 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6618 std::string StubEnc) { 6619 if (!ID) 6620 return; 6621 Entry &E = Map[ID]; 6622 assert( (E.Str.empty() || E.State == Recursive) && 6623 "Incorrectly use of addIncomplete"); 6624 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6625 E.Swapped.swap(E.Str); // swap out the Recursive 6626 E.Str.swap(StubEnc); 6627 E.State = Incomplete; 6628 ++IncompleteCount; 6629 } 6630 6631 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6632 /// must be removed from the cache. 6633 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6634 /// Returns true if the RecordType was defined recursively. 6635 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6636 if (!ID) 6637 return false; 6638 auto I = Map.find(ID); 6639 assert(I != Map.end() && "Entry not present"); 6640 Entry &E = I->second; 6641 assert( (E.State == Incomplete || 6642 E.State == IncompleteUsed) && 6643 "Entry must be an incomplete type"); 6644 bool IsRecursive = false; 6645 if (E.State == IncompleteUsed) { 6646 // We made use of our Incomplete encoding, thus we are recursive. 6647 IsRecursive = true; 6648 --IncompleteUsedCount; 6649 } 6650 if (E.Swapped.empty()) 6651 Map.erase(I); 6652 else { 6653 // Swap the Recursive back. 6654 E.Swapped.swap(E.Str); 6655 E.Swapped.clear(); 6656 E.State = Recursive; 6657 } 6658 --IncompleteCount; 6659 return IsRecursive; 6660 } 6661 6662 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6663 /// Recursive (viz: all sub-members were expanded as fully as possible). 6664 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6665 bool IsRecursive) { 6666 if (!ID || IncompleteUsedCount) 6667 return; // No key or it is is an incomplete sub-type so don't add. 6668 Entry &E = Map[ID]; 6669 if (IsRecursive && !E.Str.empty()) { 6670 assert(E.State==Recursive && E.Str.size() == Str.size() && 6671 "This is not the same Recursive entry"); 6672 // The parent container was not recursive after all, so we could have used 6673 // this Recursive sub-member entry after all, but we assumed the worse when 6674 // we started viz: IncompleteCount!=0. 6675 return; 6676 } 6677 assert(E.Str.empty() && "Entry already present"); 6678 E.Str = Str.str(); 6679 E.State = IsRecursive? Recursive : NonRecursive; 6680 } 6681 6682 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6683 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6684 /// encoding is Recursive, return an empty StringRef. 6685 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6686 if (!ID) 6687 return StringRef(); // We have no key. 6688 auto I = Map.find(ID); 6689 if (I == Map.end()) 6690 return StringRef(); // We have no encoding. 6691 Entry &E = I->second; 6692 if (E.State == Recursive && IncompleteCount) 6693 return StringRef(); // We don't use Recursive encodings for member types. 6694 6695 if (E.State == Incomplete) { 6696 // The incomplete type is being used to break out of recursion. 6697 E.State = IncompleteUsed; 6698 ++IncompleteUsedCount; 6699 } 6700 return E.Str.c_str(); 6701 } 6702 6703 /// The XCore ABI includes a type information section that communicates symbol 6704 /// type information to the linker. The linker uses this information to verify 6705 /// safety/correctness of things such as array bound and pointers et al. 6706 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6707 /// This type information (TypeString) is emitted into meta data for all global 6708 /// symbols: definitions, declarations, functions & variables. 6709 /// 6710 /// The TypeString carries type, qualifier, name, size & value details. 6711 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6712 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6713 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6714 /// 6715 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6716 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6717 6718 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6719 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6720 CodeGen::CodeGenModule &CGM) const { 6721 SmallStringEnc Enc; 6722 if (getTypeString(Enc, D, CGM, TSC)) { 6723 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6724 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6725 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6726 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6727 llvm::NamedMDNode *MD = 6728 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6729 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6730 } 6731 } 6732 6733 static bool appendType(SmallStringEnc &Enc, QualType QType, 6734 const CodeGen::CodeGenModule &CGM, 6735 TypeStringCache &TSC); 6736 6737 /// Helper function for appendRecordType(). 6738 /// Builds a SmallVector containing the encoded field types in declaration order. 6739 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6740 const RecordDecl *RD, 6741 const CodeGen::CodeGenModule &CGM, 6742 TypeStringCache &TSC) { 6743 for (const auto *Field : RD->fields()) { 6744 SmallStringEnc Enc; 6745 Enc += "m("; 6746 Enc += Field->getName(); 6747 Enc += "){"; 6748 if (Field->isBitField()) { 6749 Enc += "b("; 6750 llvm::raw_svector_ostream OS(Enc); 6751 OS.resync(); 6752 OS << Field->getBitWidthValue(CGM.getContext()); 6753 OS.flush(); 6754 Enc += ':'; 6755 } 6756 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6757 return false; 6758 if (Field->isBitField()) 6759 Enc += ')'; 6760 Enc += '}'; 6761 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6762 } 6763 return true; 6764 } 6765 6766 /// Appends structure and union types to Enc and adds encoding to cache. 6767 /// Recursively calls appendType (via extractFieldType) for each field. 6768 /// Union types have their fields ordered according to the ABI. 6769 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6770 const CodeGen::CodeGenModule &CGM, 6771 TypeStringCache &TSC, const IdentifierInfo *ID) { 6772 // Append the cached TypeString if we have one. 6773 StringRef TypeString = TSC.lookupStr(ID); 6774 if (!TypeString.empty()) { 6775 Enc += TypeString; 6776 return true; 6777 } 6778 6779 // Start to emit an incomplete TypeString. 6780 size_t Start = Enc.size(); 6781 Enc += (RT->isUnionType()? 'u' : 's'); 6782 Enc += '('; 6783 if (ID) 6784 Enc += ID->getName(); 6785 Enc += "){"; 6786 6787 // We collect all encoded fields and order as necessary. 6788 bool IsRecursive = false; 6789 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6790 if (RD && !RD->field_empty()) { 6791 // An incomplete TypeString stub is placed in the cache for this RecordType 6792 // so that recursive calls to this RecordType will use it whilst building a 6793 // complete TypeString for this RecordType. 6794 SmallVector<FieldEncoding, 16> FE; 6795 std::string StubEnc(Enc.substr(Start).str()); 6796 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6797 TSC.addIncomplete(ID, std::move(StubEnc)); 6798 if (!extractFieldType(FE, RD, CGM, TSC)) { 6799 (void) TSC.removeIncomplete(ID); 6800 return false; 6801 } 6802 IsRecursive = TSC.removeIncomplete(ID); 6803 // The ABI requires unions to be sorted but not structures. 6804 // See FieldEncoding::operator< for sort algorithm. 6805 if (RT->isUnionType()) 6806 std::sort(FE.begin(), FE.end()); 6807 // We can now complete the TypeString. 6808 unsigned E = FE.size(); 6809 for (unsigned I = 0; I != E; ++I) { 6810 if (I) 6811 Enc += ','; 6812 Enc += FE[I].str(); 6813 } 6814 } 6815 Enc += '}'; 6816 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6817 return true; 6818 } 6819 6820 /// Appends enum types to Enc and adds the encoding to the cache. 6821 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6822 TypeStringCache &TSC, 6823 const IdentifierInfo *ID) { 6824 // Append the cached TypeString if we have one. 6825 StringRef TypeString = TSC.lookupStr(ID); 6826 if (!TypeString.empty()) { 6827 Enc += TypeString; 6828 return true; 6829 } 6830 6831 size_t Start = Enc.size(); 6832 Enc += "e("; 6833 if (ID) 6834 Enc += ID->getName(); 6835 Enc += "){"; 6836 6837 // We collect all encoded enumerations and order them alphanumerically. 6838 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6839 SmallVector<FieldEncoding, 16> FE; 6840 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6841 ++I) { 6842 SmallStringEnc EnumEnc; 6843 EnumEnc += "m("; 6844 EnumEnc += I->getName(); 6845 EnumEnc += "){"; 6846 I->getInitVal().toString(EnumEnc); 6847 EnumEnc += '}'; 6848 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6849 } 6850 std::sort(FE.begin(), FE.end()); 6851 unsigned E = FE.size(); 6852 for (unsigned I = 0; I != E; ++I) { 6853 if (I) 6854 Enc += ','; 6855 Enc += FE[I].str(); 6856 } 6857 } 6858 Enc += '}'; 6859 TSC.addIfComplete(ID, Enc.substr(Start), false); 6860 return true; 6861 } 6862 6863 /// Appends type's qualifier to Enc. 6864 /// This is done prior to appending the type's encoding. 6865 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6866 // Qualifiers are emitted in alphabetical order. 6867 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6868 int Lookup = 0; 6869 if (QT.isConstQualified()) 6870 Lookup += 1<<0; 6871 if (QT.isRestrictQualified()) 6872 Lookup += 1<<1; 6873 if (QT.isVolatileQualified()) 6874 Lookup += 1<<2; 6875 Enc += Table[Lookup]; 6876 } 6877 6878 /// Appends built-in types to Enc. 6879 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6880 const char *EncType; 6881 switch (BT->getKind()) { 6882 case BuiltinType::Void: 6883 EncType = "0"; 6884 break; 6885 case BuiltinType::Bool: 6886 EncType = "b"; 6887 break; 6888 case BuiltinType::Char_U: 6889 EncType = "uc"; 6890 break; 6891 case BuiltinType::UChar: 6892 EncType = "uc"; 6893 break; 6894 case BuiltinType::SChar: 6895 EncType = "sc"; 6896 break; 6897 case BuiltinType::UShort: 6898 EncType = "us"; 6899 break; 6900 case BuiltinType::Short: 6901 EncType = "ss"; 6902 break; 6903 case BuiltinType::UInt: 6904 EncType = "ui"; 6905 break; 6906 case BuiltinType::Int: 6907 EncType = "si"; 6908 break; 6909 case BuiltinType::ULong: 6910 EncType = "ul"; 6911 break; 6912 case BuiltinType::Long: 6913 EncType = "sl"; 6914 break; 6915 case BuiltinType::ULongLong: 6916 EncType = "ull"; 6917 break; 6918 case BuiltinType::LongLong: 6919 EncType = "sll"; 6920 break; 6921 case BuiltinType::Float: 6922 EncType = "ft"; 6923 break; 6924 case BuiltinType::Double: 6925 EncType = "d"; 6926 break; 6927 case BuiltinType::LongDouble: 6928 EncType = "ld"; 6929 break; 6930 default: 6931 return false; 6932 } 6933 Enc += EncType; 6934 return true; 6935 } 6936 6937 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6938 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6939 const CodeGen::CodeGenModule &CGM, 6940 TypeStringCache &TSC) { 6941 Enc += "p("; 6942 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6943 return false; 6944 Enc += ')'; 6945 return true; 6946 } 6947 6948 /// Appends array encoding to Enc before calling appendType for the element. 6949 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6950 const ArrayType *AT, 6951 const CodeGen::CodeGenModule &CGM, 6952 TypeStringCache &TSC, StringRef NoSizeEnc) { 6953 if (AT->getSizeModifier() != ArrayType::Normal) 6954 return false; 6955 Enc += "a("; 6956 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6957 CAT->getSize().toStringUnsigned(Enc); 6958 else 6959 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6960 Enc += ':'; 6961 // The Qualifiers should be attached to the type rather than the array. 6962 appendQualifier(Enc, QT); 6963 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6964 return false; 6965 Enc += ')'; 6966 return true; 6967 } 6968 6969 /// Appends a function encoding to Enc, calling appendType for the return type 6970 /// and the arguments. 6971 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6972 const CodeGen::CodeGenModule &CGM, 6973 TypeStringCache &TSC) { 6974 Enc += "f{"; 6975 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6976 return false; 6977 Enc += "}("; 6978 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6979 // N.B. we are only interested in the adjusted param types. 6980 auto I = FPT->param_type_begin(); 6981 auto E = FPT->param_type_end(); 6982 if (I != E) { 6983 do { 6984 if (!appendType(Enc, *I, CGM, TSC)) 6985 return false; 6986 ++I; 6987 if (I != E) 6988 Enc += ','; 6989 } while (I != E); 6990 if (FPT->isVariadic()) 6991 Enc += ",va"; 6992 } else { 6993 if (FPT->isVariadic()) 6994 Enc += "va"; 6995 else 6996 Enc += '0'; 6997 } 6998 } 6999 Enc += ')'; 7000 return true; 7001 } 7002 7003 /// Handles the type's qualifier before dispatching a call to handle specific 7004 /// type encodings. 7005 static bool appendType(SmallStringEnc &Enc, QualType QType, 7006 const CodeGen::CodeGenModule &CGM, 7007 TypeStringCache &TSC) { 7008 7009 QualType QT = QType.getCanonicalType(); 7010 7011 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7012 // The Qualifiers should be attached to the type rather than the array. 7013 // Thus we don't call appendQualifier() here. 7014 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7015 7016 appendQualifier(Enc, QT); 7017 7018 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7019 return appendBuiltinType(Enc, BT); 7020 7021 if (const PointerType *PT = QT->getAs<PointerType>()) 7022 return appendPointerType(Enc, PT, CGM, TSC); 7023 7024 if (const EnumType *ET = QT->getAs<EnumType>()) 7025 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7026 7027 if (const RecordType *RT = QT->getAsStructureType()) 7028 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7029 7030 if (const RecordType *RT = QT->getAsUnionType()) 7031 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7032 7033 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7034 return appendFunctionType(Enc, FT, CGM, TSC); 7035 7036 return false; 7037 } 7038 7039 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7040 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7041 if (!D) 7042 return false; 7043 7044 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7045 if (FD->getLanguageLinkage() != CLanguageLinkage) 7046 return false; 7047 return appendType(Enc, FD->getType(), CGM, TSC); 7048 } 7049 7050 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7051 if (VD->getLanguageLinkage() != CLanguageLinkage) 7052 return false; 7053 QualType QT = VD->getType().getCanonicalType(); 7054 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7055 // Global ArrayTypes are given a size of '*' if the size is unknown. 7056 // The Qualifiers should be attached to the type rather than the array. 7057 // Thus we don't call appendQualifier() here. 7058 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7059 } 7060 return appendType(Enc, QT, CGM, TSC); 7061 } 7062 return false; 7063 } 7064 7065 7066 //===----------------------------------------------------------------------===// 7067 // Driver code 7068 //===----------------------------------------------------------------------===// 7069 7070 const llvm::Triple &CodeGenModule::getTriple() const { 7071 return getTarget().getTriple(); 7072 } 7073 7074 bool CodeGenModule::supportsCOMDAT() const { 7075 return !getTriple().isOSBinFormatMachO(); 7076 } 7077 7078 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7079 if (TheTargetCodeGenInfo) 7080 return *TheTargetCodeGenInfo; 7081 7082 const llvm::Triple &Triple = getTarget().getTriple(); 7083 switch (Triple.getArch()) { 7084 default: 7085 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7086 7087 case llvm::Triple::le32: 7088 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7089 case llvm::Triple::mips: 7090 case llvm::Triple::mipsel: 7091 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7092 7093 case llvm::Triple::mips64: 7094 case llvm::Triple::mips64el: 7095 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7096 7097 case llvm::Triple::aarch64: 7098 case llvm::Triple::aarch64_be: { 7099 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7100 if (getTarget().getABI() == "darwinpcs") 7101 Kind = AArch64ABIInfo::DarwinPCS; 7102 7103 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7104 } 7105 7106 case llvm::Triple::arm: 7107 case llvm::Triple::armeb: 7108 case llvm::Triple::thumb: 7109 case llvm::Triple::thumbeb: 7110 { 7111 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7112 if (getTarget().getABI() == "apcs-gnu") 7113 Kind = ARMABIInfo::APCS; 7114 else if (CodeGenOpts.FloatABI == "hard" || 7115 (CodeGenOpts.FloatABI != "soft" && 7116 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7117 Kind = ARMABIInfo::AAPCS_VFP; 7118 7119 switch (Triple.getOS()) { 7120 case llvm::Triple::NaCl: 7121 return *(TheTargetCodeGenInfo = 7122 new NaClARMTargetCodeGenInfo(Types, Kind)); 7123 default: 7124 return *(TheTargetCodeGenInfo = 7125 new ARMTargetCodeGenInfo(Types, Kind)); 7126 } 7127 } 7128 7129 case llvm::Triple::ppc: 7130 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7131 case llvm::Triple::ppc64: 7132 if (Triple.isOSBinFormatELF()) { 7133 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7134 if (getTarget().getABI() == "elfv2") 7135 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7136 7137 return *(TheTargetCodeGenInfo = 7138 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 7139 } else 7140 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7141 case llvm::Triple::ppc64le: { 7142 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7143 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7144 if (getTarget().getABI() == "elfv1") 7145 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7146 7147 return *(TheTargetCodeGenInfo = 7148 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 7149 } 7150 7151 case llvm::Triple::nvptx: 7152 case llvm::Triple::nvptx64: 7153 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7154 7155 case llvm::Triple::msp430: 7156 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7157 7158 case llvm::Triple::systemz: 7159 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 7160 7161 case llvm::Triple::tce: 7162 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7163 7164 case llvm::Triple::x86: { 7165 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7166 bool IsSmallStructInRegABI = 7167 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7168 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7169 7170 if (Triple.getOS() == llvm::Triple::Win32) { 7171 return *(TheTargetCodeGenInfo = 7172 new WinX86_32TargetCodeGenInfo(Types, 7173 IsDarwinVectorABI, IsSmallStructInRegABI, 7174 IsWin32FloatStructABI, 7175 CodeGenOpts.NumRegisterParameters)); 7176 } else { 7177 return *(TheTargetCodeGenInfo = 7178 new X86_32TargetCodeGenInfo(Types, 7179 IsDarwinVectorABI, IsSmallStructInRegABI, 7180 IsWin32FloatStructABI, 7181 CodeGenOpts.NumRegisterParameters)); 7182 } 7183 } 7184 7185 case llvm::Triple::x86_64: { 7186 bool HasAVX = getTarget().getABI() == "avx"; 7187 7188 switch (Triple.getOS()) { 7189 case llvm::Triple::Win32: 7190 return *(TheTargetCodeGenInfo = 7191 new WinX86_64TargetCodeGenInfo(Types, HasAVX)); 7192 case llvm::Triple::NaCl: 7193 return *(TheTargetCodeGenInfo = 7194 new NaClX86_64TargetCodeGenInfo(Types, HasAVX)); 7195 default: 7196 return *(TheTargetCodeGenInfo = 7197 new X86_64TargetCodeGenInfo(Types, HasAVX)); 7198 } 7199 } 7200 case llvm::Triple::hexagon: 7201 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7202 case llvm::Triple::r600: 7203 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7204 case llvm::Triple::amdgcn: 7205 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7206 case llvm::Triple::sparcv9: 7207 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7208 case llvm::Triple::xcore: 7209 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7210 } 7211 } 7212