1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) { 144 if (!RT->getDecl()->canPassInRegisters()) 145 return CGCXXABI::RAA_Indirect; 146 return CGCXXABI::RAA_Default; 147 } 148 return CXXABI.getRecordArgABI(RD); 149 } 150 151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 152 CGCXXABI &CXXABI) { 153 const RecordType *RT = T->getAs<RecordType>(); 154 if (!RT) 155 return CGCXXABI::RAA_Default; 156 return getRecordArgABI(RT, CXXABI); 157 } 158 159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 160 const ABIInfo &Info) { 161 QualType Ty = FI.getReturnType(); 162 163 if (const auto *RT = Ty->getAs<RecordType>()) 164 if (!isa<CXXRecordDecl>(RT->getDecl()) && 165 !RT->getDecl()->canPassInRegisters()) { 166 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 167 return true; 168 } 169 170 return CXXABI.classifyReturnType(FI); 171 } 172 173 /// Pass transparent unions as if they were the type of the first element. Sema 174 /// should ensure that all elements of the union have the same "machine type". 175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 176 if (const RecordType *UT = Ty->getAsUnionType()) { 177 const RecordDecl *UD = UT->getDecl(); 178 if (UD->hasAttr<TransparentUnionAttr>()) { 179 assert(!UD->field_empty() && "sema created an empty transparent union"); 180 return UD->field_begin()->getType(); 181 } 182 } 183 return Ty; 184 } 185 186 CGCXXABI &ABIInfo::getCXXABI() const { 187 return CGT.getCXXABI(); 188 } 189 190 ASTContext &ABIInfo::getContext() const { 191 return CGT.getContext(); 192 } 193 194 llvm::LLVMContext &ABIInfo::getVMContext() const { 195 return CGT.getLLVMContext(); 196 } 197 198 const llvm::DataLayout &ABIInfo::getDataLayout() const { 199 return CGT.getDataLayout(); 200 } 201 202 const TargetInfo &ABIInfo::getTarget() const { 203 return CGT.getTarget(); 204 } 205 206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 207 return CGT.getCodeGenOpts(); 208 } 209 210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 211 212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 213 return false; 214 } 215 216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 217 uint64_t Members) const { 218 return false; 219 } 220 221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 222 raw_ostream &OS = llvm::errs(); 223 OS << "(ABIArgInfo Kind="; 224 switch (TheKind) { 225 case Direct: 226 OS << "Direct Type="; 227 if (llvm::Type *Ty = getCoerceToType()) 228 Ty->print(OS); 229 else 230 OS << "null"; 231 break; 232 case Extend: 233 OS << "Extend"; 234 break; 235 case Ignore: 236 OS << "Ignore"; 237 break; 238 case InAlloca: 239 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 240 break; 241 case Indirect: 242 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 243 << " ByVal=" << getIndirectByVal() 244 << " Realign=" << getIndirectRealign(); 245 break; 246 case Expand: 247 OS << "Expand"; 248 break; 249 case CoerceAndExpand: 250 OS << "CoerceAndExpand Type="; 251 getCoerceAndExpandType()->print(OS); 252 break; 253 } 254 OS << ")\n"; 255 } 256 257 // Dynamically round a pointer up to a multiple of the given alignment. 258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 259 llvm::Value *Ptr, 260 CharUnits Align) { 261 llvm::Value *PtrAsInt = Ptr; 262 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 263 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 264 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 265 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 266 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 268 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 269 Ptr->getType(), 270 Ptr->getName() + ".aligned"); 271 return PtrAsInt; 272 } 273 274 /// Emit va_arg for a platform using the common void* representation, 275 /// where arguments are simply emitted in an array of slots on the stack. 276 /// 277 /// This version implements the core direct-value passing rules. 278 /// 279 /// \param SlotSize - The size and alignment of a stack slot. 280 /// Each argument will be allocated to a multiple of this number of 281 /// slots, and all the slots will be aligned to this value. 282 /// \param AllowHigherAlign - The slot alignment is not a cap; 283 /// an argument type with an alignment greater than the slot size 284 /// will be emitted on a higher-alignment address, potentially 285 /// leaving one or more empty slots behind as padding. If this 286 /// is false, the returned address might be less-aligned than 287 /// DirectAlign. 288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 289 Address VAListAddr, 290 llvm::Type *DirectTy, 291 CharUnits DirectSize, 292 CharUnits DirectAlign, 293 CharUnits SlotSize, 294 bool AllowHigherAlign) { 295 // Cast the element type to i8* if necessary. Some platforms define 296 // va_list as a struct containing an i8* instead of just an i8*. 297 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 298 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 299 300 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 301 302 // If the CC aligns values higher than the slot size, do so if needed. 303 Address Addr = Address::invalid(); 304 if (AllowHigherAlign && DirectAlign > SlotSize) { 305 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 306 DirectAlign); 307 } else { 308 Addr = Address(Ptr, SlotSize); 309 } 310 311 // Advance the pointer past the argument, then store that back. 312 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 313 llvm::Value *NextPtr = 314 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 315 "argp.next"); 316 CGF.Builder.CreateStore(NextPtr, VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 455 } 456 457 llvm::Constant * 458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 459 LangAS SrcAddr, LangAS DestAddr, 460 llvm::Type *DestTy) const { 461 // Since target may map different address spaces in AST to the same address 462 // space, an address space conversion may end up as a bitcast. 463 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 464 } 465 466 llvm::SyncScope::ID 467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 468 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 469 } 470 471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 472 473 /// isEmptyField - Return true iff a the field is "empty", that is it 474 /// is an unnamed bit-field or an (array of) empty record(s). 475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 476 bool AllowArrays) { 477 if (FD->isUnnamedBitfield()) 478 return true; 479 480 QualType FT = FD->getType(); 481 482 // Constant arrays of empty records count as empty, strip them off. 483 // Constant arrays of zero length always count as empty. 484 if (AllowArrays) 485 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 486 if (AT->getSize() == 0) 487 return true; 488 FT = AT->getElementType(); 489 } 490 491 const RecordType *RT = FT->getAs<RecordType>(); 492 if (!RT) 493 return false; 494 495 // C++ record fields are never empty, at least in the Itanium ABI. 496 // 497 // FIXME: We should use a predicate for whether this behavior is true in the 498 // current ABI. 499 if (isa<CXXRecordDecl>(RT->getDecl())) 500 return false; 501 502 return isEmptyRecord(Context, FT, AllowArrays); 503 } 504 505 /// isEmptyRecord - Return true iff a structure contains only empty 506 /// fields. Note that a structure with a flexible array member is not 507 /// considered empty. 508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 509 const RecordType *RT = T->getAs<RecordType>(); 510 if (!RT) 511 return false; 512 const RecordDecl *RD = RT->getDecl(); 513 if (RD->hasFlexibleArrayMember()) 514 return false; 515 516 // If this is a C++ record, check the bases first. 517 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 518 for (const auto &I : CXXRD->bases()) 519 if (!isEmptyRecord(Context, I.getType(), true)) 520 return false; 521 522 for (const auto *I : RD->fields()) 523 if (!isEmptyField(Context, I, AllowArrays)) 524 return false; 525 return true; 526 } 527 528 /// isSingleElementStruct - Determine if a structure is a "single 529 /// element struct", i.e. it has exactly one non-empty field or 530 /// exactly one field which is itself a single element 531 /// struct. Structures with flexible array members are never 532 /// considered single element structs. 533 /// 534 /// \return The field declaration for the single non-empty field, if 535 /// it exists. 536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 537 const RecordType *RT = T->getAs<RecordType>(); 538 if (!RT) 539 return nullptr; 540 541 const RecordDecl *RD = RT->getDecl(); 542 if (RD->hasFlexibleArrayMember()) 543 return nullptr; 544 545 const Type *Found = nullptr; 546 547 // If this is a C++ record, check the bases first. 548 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 549 for (const auto &I : CXXRD->bases()) { 550 // Ignore empty records. 551 if (isEmptyRecord(Context, I.getType(), true)) 552 continue; 553 554 // If we already found an element then this isn't a single-element struct. 555 if (Found) 556 return nullptr; 557 558 // If this is non-empty and not a single element struct, the composite 559 // cannot be a single element struct. 560 Found = isSingleElementStruct(I.getType(), Context); 561 if (!Found) 562 return nullptr; 563 } 564 } 565 566 // Check for single element. 567 for (const auto *FD : RD->fields()) { 568 QualType FT = FD->getType(); 569 570 // Ignore empty fields. 571 if (isEmptyField(Context, FD, true)) 572 continue; 573 574 // If we already found an element then this isn't a single-element 575 // struct. 576 if (Found) 577 return nullptr; 578 579 // Treat single element arrays as the element. 580 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 581 if (AT->getSize().getZExtValue() != 1) 582 break; 583 FT = AT->getElementType(); 584 } 585 586 if (!isAggregateTypeForABI(FT)) { 587 Found = FT.getTypePtr(); 588 } else { 589 Found = isSingleElementStruct(FT, Context); 590 if (!Found) 591 return nullptr; 592 } 593 } 594 595 // We don't consider a struct a single-element struct if it has 596 // padding beyond the element type. 597 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 598 return nullptr; 599 600 return Found; 601 } 602 603 namespace { 604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 605 const ABIArgInfo &AI) { 606 // This default implementation defers to the llvm backend's va_arg 607 // instruction. It can handle only passing arguments directly 608 // (typically only handled in the backend for primitive types), or 609 // aggregates passed indirectly by pointer (NOTE: if the "byval" 610 // flag has ABI impact in the callee, this implementation cannot 611 // work.) 612 613 // Only a few cases are covered here at the moment -- those needed 614 // by the default abi. 615 llvm::Value *Val; 616 617 if (AI.isIndirect()) { 618 assert(!AI.getPaddingType() && 619 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 620 assert( 621 !AI.getIndirectRealign() && 622 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 623 624 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 625 CharUnits TyAlignForABI = TyInfo.second; 626 627 llvm::Type *BaseTy = 628 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 629 llvm::Value *Addr = 630 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 631 return Address(Addr, TyAlignForABI); 632 } else { 633 assert((AI.isDirect() || AI.isExtend()) && 634 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 635 636 assert(!AI.getInReg() && 637 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 638 assert(!AI.getPaddingType() && 639 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 640 assert(!AI.getDirectOffset() && 641 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 642 assert(!AI.getCoerceToType() && 643 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 644 645 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 646 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 647 CGF.Builder.CreateStore(Val, Temp); 648 return Temp; 649 } 650 } 651 652 /// DefaultABIInfo - The default implementation for ABI specific 653 /// details. This implementation provides information which results in 654 /// self-consistent and sensible LLVM IR generation, but does not 655 /// conform to any particular ABI. 656 class DefaultABIInfo : public ABIInfo { 657 public: 658 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 659 660 ABIArgInfo classifyReturnType(QualType RetTy) const; 661 ABIArgInfo classifyArgumentType(QualType RetTy) const; 662 663 void computeInfo(CGFunctionInfo &FI) const override { 664 if (!getCXXABI().classifyReturnType(FI)) 665 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 666 for (auto &I : FI.arguments()) 667 I.info = classifyArgumentType(I.type); 668 } 669 670 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 671 QualType Ty) const override { 672 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 673 } 674 }; 675 676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 677 public: 678 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 679 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 680 }; 681 682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 683 Ty = useFirstFieldIfTransparentUnion(Ty); 684 685 if (isAggregateTypeForABI(Ty)) { 686 // Records with non-trivial destructors/copy-constructors should not be 687 // passed by value. 688 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 689 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 690 691 return getNaturalAlignIndirect(Ty); 692 } 693 694 // Treat an enum type as its underlying type. 695 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 696 Ty = EnumTy->getDecl()->getIntegerType(); 697 698 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 699 : ABIArgInfo::getDirect()); 700 } 701 702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 703 if (RetTy->isVoidType()) 704 return ABIArgInfo::getIgnore(); 705 706 if (isAggregateTypeForABI(RetTy)) 707 return getNaturalAlignIndirect(RetTy); 708 709 // Treat an enum type as its underlying type. 710 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 711 RetTy = EnumTy->getDecl()->getIntegerType(); 712 713 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 714 : ABIArgInfo::getDirect()); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // WebAssembly ABI Implementation 719 // 720 // This is a very simple ABI that relies a lot on DefaultABIInfo. 721 //===----------------------------------------------------------------------===// 722 723 class WebAssemblyABIInfo final : public DefaultABIInfo { 724 public: 725 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 726 : DefaultABIInfo(CGT) {} 727 728 private: 729 ABIArgInfo classifyReturnType(QualType RetTy) const; 730 ABIArgInfo classifyArgumentType(QualType Ty) const; 731 732 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 733 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 734 // overload them. 735 void computeInfo(CGFunctionInfo &FI) const override { 736 if (!getCXXABI().classifyReturnType(FI)) 737 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 738 for (auto &Arg : FI.arguments()) 739 Arg.info = classifyArgumentType(Arg.type); 740 } 741 742 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const override; 744 }; 745 746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 747 public: 748 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 749 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 750 751 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 752 CodeGen::CodeGenModule &CGM) const override { 753 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 754 llvm::Function *Fn = cast<llvm::Function>(GV); 755 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 756 Fn->addFnAttr("no-prototype"); 757 } 758 } 759 }; 760 761 /// Classify argument of given type \p Ty. 762 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 763 Ty = useFirstFieldIfTransparentUnion(Ty); 764 765 if (isAggregateTypeForABI(Ty)) { 766 // Records with non-trivial destructors/copy-constructors should not be 767 // passed by value. 768 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 769 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 770 // Ignore empty structs/unions. 771 if (isEmptyRecord(getContext(), Ty, true)) 772 return ABIArgInfo::getIgnore(); 773 // Lower single-element structs to just pass a regular value. TODO: We 774 // could do reasonable-size multiple-element structs too, using getExpand(), 775 // though watch out for things like bitfields. 776 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 777 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 778 } 779 780 // Otherwise just do the default thing. 781 return DefaultABIInfo::classifyArgumentType(Ty); 782 } 783 784 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 785 if (isAggregateTypeForABI(RetTy)) { 786 // Records with non-trivial destructors/copy-constructors should not be 787 // returned by value. 788 if (!getRecordArgABI(RetTy, getCXXABI())) { 789 // Ignore empty structs/unions. 790 if (isEmptyRecord(getContext(), RetTy, true)) 791 return ABIArgInfo::getIgnore(); 792 // Lower single-element structs to just return a regular value. TODO: We 793 // could do reasonable-size multiple-element structs too, using 794 // ABIArgInfo::getDirect(). 795 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 796 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 797 } 798 } 799 800 // Otherwise just do the default thing. 801 return DefaultABIInfo::classifyReturnType(RetTy); 802 } 803 804 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 805 QualType Ty) const { 806 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 807 getContext().getTypeInfoInChars(Ty), 808 CharUnits::fromQuantity(4), 809 /*AllowHigherAlign=*/ true); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // le32/PNaCl bitcode ABI Implementation 814 // 815 // This is a simplified version of the x86_32 ABI. Arguments and return values 816 // are always passed on the stack. 817 //===----------------------------------------------------------------------===// 818 819 class PNaClABIInfo : public ABIInfo { 820 public: 821 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 822 823 ABIArgInfo classifyReturnType(QualType RetTy) const; 824 ABIArgInfo classifyArgumentType(QualType RetTy) const; 825 826 void computeInfo(CGFunctionInfo &FI) const override; 827 Address EmitVAArg(CodeGenFunction &CGF, 828 Address VAListAddr, QualType Ty) const override; 829 }; 830 831 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 832 public: 833 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 834 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 835 }; 836 837 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 838 if (!getCXXABI().classifyReturnType(FI)) 839 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 840 841 for (auto &I : FI.arguments()) 842 I.info = classifyArgumentType(I.type); 843 } 844 845 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 846 QualType Ty) const { 847 // The PNaCL ABI is a bit odd, in that varargs don't use normal 848 // function classification. Structs get passed directly for varargs 849 // functions, through a rewriting transform in 850 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 851 // this target to actually support a va_arg instructions with an 852 // aggregate type, unlike other targets. 853 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 854 } 855 856 /// Classify argument of given type \p Ty. 857 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 858 if (isAggregateTypeForABI(Ty)) { 859 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 return getNaturalAlignIndirect(Ty); 862 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 863 // Treat an enum type as its underlying type. 864 Ty = EnumTy->getDecl()->getIntegerType(); 865 } else if (Ty->isFloatingType()) { 866 // Floating-point types don't go inreg. 867 return ABIArgInfo::getDirect(); 868 } 869 870 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 871 : ABIArgInfo::getDirect()); 872 } 873 874 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 875 if (RetTy->isVoidType()) 876 return ABIArgInfo::getIgnore(); 877 878 // In the PNaCl ABI we always return records/structures on the stack. 879 if (isAggregateTypeForABI(RetTy)) 880 return getNaturalAlignIndirect(RetTy); 881 882 // Treat an enum type as its underlying type. 883 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 884 RetTy = EnumTy->getDecl()->getIntegerType(); 885 886 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 887 : ABIArgInfo::getDirect()); 888 } 889 890 /// IsX86_MMXType - Return true if this is an MMX type. 891 bool IsX86_MMXType(llvm::Type *IRType) { 892 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 893 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 894 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 895 IRType->getScalarSizeInBits() != 64; 896 } 897 898 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 899 StringRef Constraint, 900 llvm::Type* Ty) { 901 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 902 .Cases("y", "&y", "^Ym", true) 903 .Default(false); 904 if (IsMMXCons && Ty->isVectorTy()) { 905 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 906 // Invalid MMX constraint 907 return nullptr; 908 } 909 910 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 911 } 912 913 // No operation needed 914 return Ty; 915 } 916 917 /// Returns true if this type can be passed in SSE registers with the 918 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 919 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 920 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 921 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 922 if (BT->getKind() == BuiltinType::LongDouble) { 923 if (&Context.getTargetInfo().getLongDoubleFormat() == 924 &llvm::APFloat::x87DoubleExtended()) 925 return false; 926 } 927 return true; 928 } 929 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 930 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 931 // registers specially. 932 unsigned VecSize = Context.getTypeSize(VT); 933 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 934 return true; 935 } 936 return false; 937 } 938 939 /// Returns true if this aggregate is small enough to be passed in SSE registers 940 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 941 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 942 return NumMembers <= 4; 943 } 944 945 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 946 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 947 auto AI = ABIArgInfo::getDirect(T); 948 AI.setInReg(true); 949 AI.setCanBeFlattened(false); 950 return AI; 951 } 952 953 //===----------------------------------------------------------------------===// 954 // X86-32 ABI Implementation 955 //===----------------------------------------------------------------------===// 956 957 /// Similar to llvm::CCState, but for Clang. 958 struct CCState { 959 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 960 961 unsigned CC; 962 unsigned FreeRegs; 963 unsigned FreeSSERegs; 964 }; 965 966 enum { 967 // Vectorcall only allows the first 6 parameters to be passed in registers. 968 VectorcallMaxParamNumAsReg = 6 969 }; 970 971 /// X86_32ABIInfo - The X86-32 ABI information. 972 class X86_32ABIInfo : public SwiftABIInfo { 973 enum Class { 974 Integer, 975 Float 976 }; 977 978 static const unsigned MinABIStackAlignInBytes = 4; 979 980 bool IsDarwinVectorABI; 981 bool IsRetSmallStructInRegABI; 982 bool IsWin32StructABI; 983 bool IsSoftFloatABI; 984 bool IsMCUABI; 985 unsigned DefaultNumRegisterParameters; 986 987 static bool isRegisterSize(unsigned Size) { 988 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 989 } 990 991 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 992 // FIXME: Assumes vectorcall is in use. 993 return isX86VectorTypeForVectorCall(getContext(), Ty); 994 } 995 996 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 997 uint64_t NumMembers) const override { 998 // FIXME: Assumes vectorcall is in use. 999 return isX86VectorCallAggregateSmallEnough(NumMembers); 1000 } 1001 1002 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1003 1004 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1005 /// such that the argument will be passed in memory. 1006 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1007 1008 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1009 1010 /// Return the alignment to use for the given type on the stack. 1011 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1012 1013 Class classify(QualType Ty) const; 1014 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1015 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1016 1017 /// Updates the number of available free registers, returns 1018 /// true if any registers were allocated. 1019 bool updateFreeRegs(QualType Ty, CCState &State) const; 1020 1021 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1022 bool &NeedsPadding) const; 1023 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1024 1025 bool canExpandIndirectArgument(QualType Ty) const; 1026 1027 /// Rewrite the function info so that all memory arguments use 1028 /// inalloca. 1029 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1030 1031 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1032 CharUnits &StackOffset, ABIArgInfo &Info, 1033 QualType Type) const; 1034 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1035 bool &UsedInAlloca) const; 1036 1037 public: 1038 1039 void computeInfo(CGFunctionInfo &FI) const override; 1040 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1041 QualType Ty) const override; 1042 1043 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1044 bool RetSmallStructInRegABI, bool Win32StructABI, 1045 unsigned NumRegisterParameters, bool SoftFloatABI) 1046 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1047 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1048 IsWin32StructABI(Win32StructABI), 1049 IsSoftFloatABI(SoftFloatABI), 1050 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1051 DefaultNumRegisterParameters(NumRegisterParameters) {} 1052 1053 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1054 bool asReturnValue) const override { 1055 // LLVM's x86-32 lowering currently only assigns up to three 1056 // integer registers and three fp registers. Oddly, it'll use up to 1057 // four vector registers for vectors, but those can overlap with the 1058 // scalar registers. 1059 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1060 } 1061 1062 bool isSwiftErrorInRegister() const override { 1063 // x86-32 lowering does not support passing swifterror in a register. 1064 return false; 1065 } 1066 }; 1067 1068 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1069 public: 1070 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1071 bool RetSmallStructInRegABI, bool Win32StructABI, 1072 unsigned NumRegisterParameters, bool SoftFloatABI) 1073 : TargetCodeGenInfo(new X86_32ABIInfo( 1074 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1075 NumRegisterParameters, SoftFloatABI)) {} 1076 1077 static bool isStructReturnInRegABI( 1078 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1079 1080 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1081 CodeGen::CodeGenModule &CGM) const override; 1082 1083 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1084 // Darwin uses different dwarf register numbers for EH. 1085 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1086 return 4; 1087 } 1088 1089 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1090 llvm::Value *Address) const override; 1091 1092 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1093 StringRef Constraint, 1094 llvm::Type* Ty) const override { 1095 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1096 } 1097 1098 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1099 std::string &Constraints, 1100 std::vector<llvm::Type *> &ResultRegTypes, 1101 std::vector<llvm::Type *> &ResultTruncRegTypes, 1102 std::vector<LValue> &ResultRegDests, 1103 std::string &AsmString, 1104 unsigned NumOutputs) const override; 1105 1106 llvm::Constant * 1107 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1108 unsigned Sig = (0xeb << 0) | // jmp rel8 1109 (0x06 << 8) | // .+0x08 1110 ('v' << 16) | 1111 ('2' << 24); 1112 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1113 } 1114 1115 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1116 return "movl\t%ebp, %ebp" 1117 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1118 } 1119 }; 1120 1121 } 1122 1123 /// Rewrite input constraint references after adding some output constraints. 1124 /// In the case where there is one output and one input and we add one output, 1125 /// we need to replace all operand references greater than or equal to 1: 1126 /// mov $0, $1 1127 /// mov eax, $1 1128 /// The result will be: 1129 /// mov $0, $2 1130 /// mov eax, $2 1131 static void rewriteInputConstraintReferences(unsigned FirstIn, 1132 unsigned NumNewOuts, 1133 std::string &AsmString) { 1134 std::string Buf; 1135 llvm::raw_string_ostream OS(Buf); 1136 size_t Pos = 0; 1137 while (Pos < AsmString.size()) { 1138 size_t DollarStart = AsmString.find('$', Pos); 1139 if (DollarStart == std::string::npos) 1140 DollarStart = AsmString.size(); 1141 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1142 if (DollarEnd == std::string::npos) 1143 DollarEnd = AsmString.size(); 1144 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1145 Pos = DollarEnd; 1146 size_t NumDollars = DollarEnd - DollarStart; 1147 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1148 // We have an operand reference. 1149 size_t DigitStart = Pos; 1150 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1151 if (DigitEnd == std::string::npos) 1152 DigitEnd = AsmString.size(); 1153 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1154 unsigned OperandIndex; 1155 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1156 if (OperandIndex >= FirstIn) 1157 OperandIndex += NumNewOuts; 1158 OS << OperandIndex; 1159 } else { 1160 OS << OperandStr; 1161 } 1162 Pos = DigitEnd; 1163 } 1164 } 1165 AsmString = std::move(OS.str()); 1166 } 1167 1168 /// Add output constraints for EAX:EDX because they are return registers. 1169 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1170 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1171 std::vector<llvm::Type *> &ResultRegTypes, 1172 std::vector<llvm::Type *> &ResultTruncRegTypes, 1173 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1174 unsigned NumOutputs) const { 1175 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1176 1177 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1178 // larger. 1179 if (!Constraints.empty()) 1180 Constraints += ','; 1181 if (RetWidth <= 32) { 1182 Constraints += "={eax}"; 1183 ResultRegTypes.push_back(CGF.Int32Ty); 1184 } else { 1185 // Use the 'A' constraint for EAX:EDX. 1186 Constraints += "=A"; 1187 ResultRegTypes.push_back(CGF.Int64Ty); 1188 } 1189 1190 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1191 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1192 ResultTruncRegTypes.push_back(CoerceTy); 1193 1194 // Coerce the integer by bitcasting the return slot pointer. 1195 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1196 CoerceTy->getPointerTo())); 1197 ResultRegDests.push_back(ReturnSlot); 1198 1199 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1200 } 1201 1202 /// shouldReturnTypeInRegister - Determine if the given type should be 1203 /// returned in a register (for the Darwin and MCU ABI). 1204 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1205 ASTContext &Context) const { 1206 uint64_t Size = Context.getTypeSize(Ty); 1207 1208 // For i386, type must be register sized. 1209 // For the MCU ABI, it only needs to be <= 8-byte 1210 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1211 return false; 1212 1213 if (Ty->isVectorType()) { 1214 // 64- and 128- bit vectors inside structures are not returned in 1215 // registers. 1216 if (Size == 64 || Size == 128) 1217 return false; 1218 1219 return true; 1220 } 1221 1222 // If this is a builtin, pointer, enum, complex type, member pointer, or 1223 // member function pointer it is ok. 1224 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1225 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1226 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1227 return true; 1228 1229 // Arrays are treated like records. 1230 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1231 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1232 1233 // Otherwise, it must be a record type. 1234 const RecordType *RT = Ty->getAs<RecordType>(); 1235 if (!RT) return false; 1236 1237 // FIXME: Traverse bases here too. 1238 1239 // Structure types are passed in register if all fields would be 1240 // passed in a register. 1241 for (const auto *FD : RT->getDecl()->fields()) { 1242 // Empty fields are ignored. 1243 if (isEmptyField(Context, FD, true)) 1244 continue; 1245 1246 // Check fields recursively. 1247 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1248 return false; 1249 } 1250 return true; 1251 } 1252 1253 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1254 // Treat complex types as the element type. 1255 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1256 Ty = CTy->getElementType(); 1257 1258 // Check for a type which we know has a simple scalar argument-passing 1259 // convention without any padding. (We're specifically looking for 32 1260 // and 64-bit integer and integer-equivalents, float, and double.) 1261 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1262 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1263 return false; 1264 1265 uint64_t Size = Context.getTypeSize(Ty); 1266 return Size == 32 || Size == 64; 1267 } 1268 1269 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1270 uint64_t &Size) { 1271 for (const auto *FD : RD->fields()) { 1272 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1273 // argument is smaller than 32-bits, expanding the struct will create 1274 // alignment padding. 1275 if (!is32Or64BitBasicType(FD->getType(), Context)) 1276 return false; 1277 1278 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1279 // how to expand them yet, and the predicate for telling if a bitfield still 1280 // counts as "basic" is more complicated than what we were doing previously. 1281 if (FD->isBitField()) 1282 return false; 1283 1284 Size += Context.getTypeSize(FD->getType()); 1285 } 1286 return true; 1287 } 1288 1289 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1290 uint64_t &Size) { 1291 // Don't do this if there are any non-empty bases. 1292 for (const CXXBaseSpecifier &Base : RD->bases()) { 1293 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1294 Size)) 1295 return false; 1296 } 1297 if (!addFieldSizes(Context, RD, Size)) 1298 return false; 1299 return true; 1300 } 1301 1302 /// Test whether an argument type which is to be passed indirectly (on the 1303 /// stack) would have the equivalent layout if it was expanded into separate 1304 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1305 /// optimizations. 1306 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1307 // We can only expand structure types. 1308 const RecordType *RT = Ty->getAs<RecordType>(); 1309 if (!RT) 1310 return false; 1311 const RecordDecl *RD = RT->getDecl(); 1312 uint64_t Size = 0; 1313 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1314 if (!IsWin32StructABI) { 1315 // On non-Windows, we have to conservatively match our old bitcode 1316 // prototypes in order to be ABI-compatible at the bitcode level. 1317 if (!CXXRD->isCLike()) 1318 return false; 1319 } else { 1320 // Don't do this for dynamic classes. 1321 if (CXXRD->isDynamicClass()) 1322 return false; 1323 } 1324 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1325 return false; 1326 } else { 1327 if (!addFieldSizes(getContext(), RD, Size)) 1328 return false; 1329 } 1330 1331 // We can do this if there was no alignment padding. 1332 return Size == getContext().getTypeSize(Ty); 1333 } 1334 1335 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1336 // If the return value is indirect, then the hidden argument is consuming one 1337 // integer register. 1338 if (State.FreeRegs) { 1339 --State.FreeRegs; 1340 if (!IsMCUABI) 1341 return getNaturalAlignIndirectInReg(RetTy); 1342 } 1343 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1344 } 1345 1346 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1347 CCState &State) const { 1348 if (RetTy->isVoidType()) 1349 return ABIArgInfo::getIgnore(); 1350 1351 const Type *Base = nullptr; 1352 uint64_t NumElts = 0; 1353 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1354 State.CC == llvm::CallingConv::X86_RegCall) && 1355 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1356 // The LLVM struct type for such an aggregate should lower properly. 1357 return ABIArgInfo::getDirect(); 1358 } 1359 1360 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1361 // On Darwin, some vectors are returned in registers. 1362 if (IsDarwinVectorABI) { 1363 uint64_t Size = getContext().getTypeSize(RetTy); 1364 1365 // 128-bit vectors are a special case; they are returned in 1366 // registers and we need to make sure to pick a type the LLVM 1367 // backend will like. 1368 if (Size == 128) 1369 return ABIArgInfo::getDirect(llvm::VectorType::get( 1370 llvm::Type::getInt64Ty(getVMContext()), 2)); 1371 1372 // Always return in register if it fits in a general purpose 1373 // register, or if it is 64 bits and has a single element. 1374 if ((Size == 8 || Size == 16 || Size == 32) || 1375 (Size == 64 && VT->getNumElements() == 1)) 1376 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1377 Size)); 1378 1379 return getIndirectReturnResult(RetTy, State); 1380 } 1381 1382 return ABIArgInfo::getDirect(); 1383 } 1384 1385 if (isAggregateTypeForABI(RetTy)) { 1386 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1387 // Structures with flexible arrays are always indirect. 1388 if (RT->getDecl()->hasFlexibleArrayMember()) 1389 return getIndirectReturnResult(RetTy, State); 1390 } 1391 1392 // If specified, structs and unions are always indirect. 1393 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1394 return getIndirectReturnResult(RetTy, State); 1395 1396 // Ignore empty structs/unions. 1397 if (isEmptyRecord(getContext(), RetTy, true)) 1398 return ABIArgInfo::getIgnore(); 1399 1400 // Small structures which are register sized are generally returned 1401 // in a register. 1402 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1403 uint64_t Size = getContext().getTypeSize(RetTy); 1404 1405 // As a special-case, if the struct is a "single-element" struct, and 1406 // the field is of type "float" or "double", return it in a 1407 // floating-point register. (MSVC does not apply this special case.) 1408 // We apply a similar transformation for pointer types to improve the 1409 // quality of the generated IR. 1410 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1411 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1412 || SeltTy->hasPointerRepresentation()) 1413 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1414 1415 // FIXME: We should be able to narrow this integer in cases with dead 1416 // padding. 1417 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1418 } 1419 1420 return getIndirectReturnResult(RetTy, State); 1421 } 1422 1423 // Treat an enum type as its underlying type. 1424 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1425 RetTy = EnumTy->getDecl()->getIntegerType(); 1426 1427 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1428 : ABIArgInfo::getDirect()); 1429 } 1430 1431 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1432 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1433 } 1434 1435 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1436 const RecordType *RT = Ty->getAs<RecordType>(); 1437 if (!RT) 1438 return 0; 1439 const RecordDecl *RD = RT->getDecl(); 1440 1441 // If this is a C++ record, check the bases first. 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1443 for (const auto &I : CXXRD->bases()) 1444 if (!isRecordWithSSEVectorType(Context, I.getType())) 1445 return false; 1446 1447 for (const auto *i : RD->fields()) { 1448 QualType FT = i->getType(); 1449 1450 if (isSSEVectorType(Context, FT)) 1451 return true; 1452 1453 if (isRecordWithSSEVectorType(Context, FT)) 1454 return true; 1455 } 1456 1457 return false; 1458 } 1459 1460 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1461 unsigned Align) const { 1462 // Otherwise, if the alignment is less than or equal to the minimum ABI 1463 // alignment, just use the default; the backend will handle this. 1464 if (Align <= MinABIStackAlignInBytes) 1465 return 0; // Use default alignment. 1466 1467 // On non-Darwin, the stack type alignment is always 4. 1468 if (!IsDarwinVectorABI) { 1469 // Set explicit alignment, since we may need to realign the top. 1470 return MinABIStackAlignInBytes; 1471 } 1472 1473 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1474 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1475 isRecordWithSSEVectorType(getContext(), Ty))) 1476 return 16; 1477 1478 return MinABIStackAlignInBytes; 1479 } 1480 1481 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1482 CCState &State) const { 1483 if (!ByVal) { 1484 if (State.FreeRegs) { 1485 --State.FreeRegs; // Non-byval indirects just use one pointer. 1486 if (!IsMCUABI) 1487 return getNaturalAlignIndirectInReg(Ty); 1488 } 1489 return getNaturalAlignIndirect(Ty, false); 1490 } 1491 1492 // Compute the byval alignment. 1493 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1494 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1495 if (StackAlign == 0) 1496 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1497 1498 // If the stack alignment is less than the type alignment, realign the 1499 // argument. 1500 bool Realign = TypeAlign > StackAlign; 1501 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1502 /*ByVal=*/true, Realign); 1503 } 1504 1505 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1506 const Type *T = isSingleElementStruct(Ty, getContext()); 1507 if (!T) 1508 T = Ty.getTypePtr(); 1509 1510 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1511 BuiltinType::Kind K = BT->getKind(); 1512 if (K == BuiltinType::Float || K == BuiltinType::Double) 1513 return Float; 1514 } 1515 return Integer; 1516 } 1517 1518 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1519 if (!IsSoftFloatABI) { 1520 Class C = classify(Ty); 1521 if (C == Float) 1522 return false; 1523 } 1524 1525 unsigned Size = getContext().getTypeSize(Ty); 1526 unsigned SizeInRegs = (Size + 31) / 32; 1527 1528 if (SizeInRegs == 0) 1529 return false; 1530 1531 if (!IsMCUABI) { 1532 if (SizeInRegs > State.FreeRegs) { 1533 State.FreeRegs = 0; 1534 return false; 1535 } 1536 } else { 1537 // The MCU psABI allows passing parameters in-reg even if there are 1538 // earlier parameters that are passed on the stack. Also, 1539 // it does not allow passing >8-byte structs in-register, 1540 // even if there are 3 free registers available. 1541 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1542 return false; 1543 } 1544 1545 State.FreeRegs -= SizeInRegs; 1546 return true; 1547 } 1548 1549 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1550 bool &InReg, 1551 bool &NeedsPadding) const { 1552 // On Windows, aggregates other than HFAs are never passed in registers, and 1553 // they do not consume register slots. Homogenous floating-point aggregates 1554 // (HFAs) have already been dealt with at this point. 1555 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1556 return false; 1557 1558 NeedsPadding = false; 1559 InReg = !IsMCUABI; 1560 1561 if (!updateFreeRegs(Ty, State)) 1562 return false; 1563 1564 if (IsMCUABI) 1565 return true; 1566 1567 if (State.CC == llvm::CallingConv::X86_FastCall || 1568 State.CC == llvm::CallingConv::X86_VectorCall || 1569 State.CC == llvm::CallingConv::X86_RegCall) { 1570 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1571 NeedsPadding = true; 1572 1573 return false; 1574 } 1575 1576 return true; 1577 } 1578 1579 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1580 if (!updateFreeRegs(Ty, State)) 1581 return false; 1582 1583 if (IsMCUABI) 1584 return false; 1585 1586 if (State.CC == llvm::CallingConv::X86_FastCall || 1587 State.CC == llvm::CallingConv::X86_VectorCall || 1588 State.CC == llvm::CallingConv::X86_RegCall) { 1589 if (getContext().getTypeSize(Ty) > 32) 1590 return false; 1591 1592 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1593 Ty->isReferenceType()); 1594 } 1595 1596 return true; 1597 } 1598 1599 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1600 CCState &State) const { 1601 // FIXME: Set alignment on indirect arguments. 1602 1603 Ty = useFirstFieldIfTransparentUnion(Ty); 1604 1605 // Check with the C++ ABI first. 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (RT) { 1608 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1609 if (RAA == CGCXXABI::RAA_Indirect) { 1610 return getIndirectResult(Ty, false, State); 1611 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1612 // The field index doesn't matter, we'll fix it up later. 1613 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1614 } 1615 } 1616 1617 // Regcall uses the concept of a homogenous vector aggregate, similar 1618 // to other targets. 1619 const Type *Base = nullptr; 1620 uint64_t NumElts = 0; 1621 if (State.CC == llvm::CallingConv::X86_RegCall && 1622 isHomogeneousAggregate(Ty, Base, NumElts)) { 1623 1624 if (State.FreeSSERegs >= NumElts) { 1625 State.FreeSSERegs -= NumElts; 1626 if (Ty->isBuiltinType() || Ty->isVectorType()) 1627 return ABIArgInfo::getDirect(); 1628 return ABIArgInfo::getExpand(); 1629 } 1630 return getIndirectResult(Ty, /*ByVal=*/false, State); 1631 } 1632 1633 if (isAggregateTypeForABI(Ty)) { 1634 // Structures with flexible arrays are always indirect. 1635 // FIXME: This should not be byval! 1636 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1637 return getIndirectResult(Ty, true, State); 1638 1639 // Ignore empty structs/unions on non-Windows. 1640 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1641 return ABIArgInfo::getIgnore(); 1642 1643 llvm::LLVMContext &LLVMContext = getVMContext(); 1644 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1645 bool NeedsPadding = false; 1646 bool InReg; 1647 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1648 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1649 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1650 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1651 if (InReg) 1652 return ABIArgInfo::getDirectInReg(Result); 1653 else 1654 return ABIArgInfo::getDirect(Result); 1655 } 1656 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1657 1658 // Expand small (<= 128-bit) record types when we know that the stack layout 1659 // of those arguments will match the struct. This is important because the 1660 // LLVM backend isn't smart enough to remove byval, which inhibits many 1661 // optimizations. 1662 // Don't do this for the MCU if there are still free integer registers 1663 // (see X86_64 ABI for full explanation). 1664 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1665 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1666 return ABIArgInfo::getExpandWithPadding( 1667 State.CC == llvm::CallingConv::X86_FastCall || 1668 State.CC == llvm::CallingConv::X86_VectorCall || 1669 State.CC == llvm::CallingConv::X86_RegCall, 1670 PaddingType); 1671 1672 return getIndirectResult(Ty, true, State); 1673 } 1674 1675 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1676 // On Darwin, some vectors are passed in memory, we handle this by passing 1677 // it as an i8/i16/i32/i64. 1678 if (IsDarwinVectorABI) { 1679 uint64_t Size = getContext().getTypeSize(Ty); 1680 if ((Size == 8 || Size == 16 || Size == 32) || 1681 (Size == 64 && VT->getNumElements() == 1)) 1682 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1683 Size)); 1684 } 1685 1686 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1687 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1688 1689 return ABIArgInfo::getDirect(); 1690 } 1691 1692 1693 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1694 Ty = EnumTy->getDecl()->getIntegerType(); 1695 1696 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1697 1698 if (Ty->isPromotableIntegerType()) { 1699 if (InReg) 1700 return ABIArgInfo::getExtendInReg(Ty); 1701 return ABIArgInfo::getExtend(Ty); 1702 } 1703 1704 if (InReg) 1705 return ABIArgInfo::getDirectInReg(); 1706 return ABIArgInfo::getDirect(); 1707 } 1708 1709 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1710 bool &UsedInAlloca) const { 1711 // Vectorcall x86 works subtly different than in x64, so the format is 1712 // a bit different than the x64 version. First, all vector types (not HVAs) 1713 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1714 // This differs from the x64 implementation, where the first 6 by INDEX get 1715 // registers. 1716 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1717 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1718 // first take up the remaining YMM/XMM registers. If insufficient registers 1719 // remain but an integer register (ECX/EDX) is available, it will be passed 1720 // in that, else, on the stack. 1721 for (auto &I : FI.arguments()) { 1722 // First pass do all the vector types. 1723 const Type *Base = nullptr; 1724 uint64_t NumElts = 0; 1725 const QualType& Ty = I.type; 1726 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1727 isHomogeneousAggregate(Ty, Base, NumElts)) { 1728 if (State.FreeSSERegs >= NumElts) { 1729 State.FreeSSERegs -= NumElts; 1730 I.info = ABIArgInfo::getDirect(); 1731 } else { 1732 I.info = classifyArgumentType(Ty, State); 1733 } 1734 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1735 } 1736 } 1737 1738 for (auto &I : FI.arguments()) { 1739 // Second pass, do the rest! 1740 const Type *Base = nullptr; 1741 uint64_t NumElts = 0; 1742 const QualType& Ty = I.type; 1743 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1744 1745 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1746 // Assign true HVAs (non vector/native FP types). 1747 if (State.FreeSSERegs >= NumElts) { 1748 State.FreeSSERegs -= NumElts; 1749 I.info = getDirectX86Hva(); 1750 } else { 1751 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1752 } 1753 } else if (!IsHva) { 1754 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1755 I.info = classifyArgumentType(Ty, State); 1756 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1757 } 1758 } 1759 } 1760 1761 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1762 CCState State(FI.getCallingConvention()); 1763 if (IsMCUABI) 1764 State.FreeRegs = 3; 1765 else if (State.CC == llvm::CallingConv::X86_FastCall) 1766 State.FreeRegs = 2; 1767 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1768 State.FreeRegs = 2; 1769 State.FreeSSERegs = 6; 1770 } else if (FI.getHasRegParm()) 1771 State.FreeRegs = FI.getRegParm(); 1772 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1773 State.FreeRegs = 5; 1774 State.FreeSSERegs = 8; 1775 } else 1776 State.FreeRegs = DefaultNumRegisterParameters; 1777 1778 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1780 } else if (FI.getReturnInfo().isIndirect()) { 1781 // The C++ ABI is not aware of register usage, so we have to check if the 1782 // return value was sret and put it in a register ourselves if appropriate. 1783 if (State.FreeRegs) { 1784 --State.FreeRegs; // The sret parameter consumes a register. 1785 if (!IsMCUABI) 1786 FI.getReturnInfo().setInReg(true); 1787 } 1788 } 1789 1790 // The chain argument effectively gives us another free register. 1791 if (FI.isChainCall()) 1792 ++State.FreeRegs; 1793 1794 bool UsedInAlloca = false; 1795 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1796 computeVectorCallArgs(FI, State, UsedInAlloca); 1797 } else { 1798 // If not vectorcall, revert to normal behavior. 1799 for (auto &I : FI.arguments()) { 1800 I.info = classifyArgumentType(I.type, State); 1801 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1802 } 1803 } 1804 1805 // If we needed to use inalloca for any argument, do a second pass and rewrite 1806 // all the memory arguments to use inalloca. 1807 if (UsedInAlloca) 1808 rewriteWithInAlloca(FI); 1809 } 1810 1811 void 1812 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1813 CharUnits &StackOffset, ABIArgInfo &Info, 1814 QualType Type) const { 1815 // Arguments are always 4-byte-aligned. 1816 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1817 1818 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1819 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1820 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1821 StackOffset += getContext().getTypeSizeInChars(Type); 1822 1823 // Insert padding bytes to respect alignment. 1824 CharUnits FieldEnd = StackOffset; 1825 StackOffset = FieldEnd.alignTo(FieldAlign); 1826 if (StackOffset != FieldEnd) { 1827 CharUnits NumBytes = StackOffset - FieldEnd; 1828 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1829 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1830 FrameFields.push_back(Ty); 1831 } 1832 } 1833 1834 static bool isArgInAlloca(const ABIArgInfo &Info) { 1835 // Leave ignored and inreg arguments alone. 1836 switch (Info.getKind()) { 1837 case ABIArgInfo::InAlloca: 1838 return true; 1839 case ABIArgInfo::Indirect: 1840 assert(Info.getIndirectByVal()); 1841 return true; 1842 case ABIArgInfo::Ignore: 1843 return false; 1844 case ABIArgInfo::Direct: 1845 case ABIArgInfo::Extend: 1846 if (Info.getInReg()) 1847 return false; 1848 return true; 1849 case ABIArgInfo::Expand: 1850 case ABIArgInfo::CoerceAndExpand: 1851 // These are aggregate types which are never passed in registers when 1852 // inalloca is involved. 1853 return true; 1854 } 1855 llvm_unreachable("invalid enum"); 1856 } 1857 1858 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1859 assert(IsWin32StructABI && "inalloca only supported on win32"); 1860 1861 // Build a packed struct type for all of the arguments in memory. 1862 SmallVector<llvm::Type *, 6> FrameFields; 1863 1864 // The stack alignment is always 4. 1865 CharUnits StackAlign = CharUnits::fromQuantity(4); 1866 1867 CharUnits StackOffset; 1868 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1869 1870 // Put 'this' into the struct before 'sret', if necessary. 1871 bool IsThisCall = 1872 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1873 ABIArgInfo &Ret = FI.getReturnInfo(); 1874 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1875 isArgInAlloca(I->info)) { 1876 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1877 ++I; 1878 } 1879 1880 // Put the sret parameter into the inalloca struct if it's in memory. 1881 if (Ret.isIndirect() && !Ret.getInReg()) { 1882 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1883 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1884 // On Windows, the hidden sret parameter is always returned in eax. 1885 Ret.setInAllocaSRet(IsWin32StructABI); 1886 } 1887 1888 // Skip the 'this' parameter in ecx. 1889 if (IsThisCall) 1890 ++I; 1891 1892 // Put arguments passed in memory into the struct. 1893 for (; I != E; ++I) { 1894 if (isArgInAlloca(I->info)) 1895 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1896 } 1897 1898 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1899 /*isPacked=*/true), 1900 StackAlign); 1901 } 1902 1903 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1904 Address VAListAddr, QualType Ty) const { 1905 1906 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1907 1908 // x86-32 changes the alignment of certain arguments on the stack. 1909 // 1910 // Just messing with TypeInfo like this works because we never pass 1911 // anything indirectly. 1912 TypeInfo.second = CharUnits::fromQuantity( 1913 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1914 1915 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1916 TypeInfo, CharUnits::fromQuantity(4), 1917 /*AllowHigherAlign*/ true); 1918 } 1919 1920 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1921 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1922 assert(Triple.getArch() == llvm::Triple::x86); 1923 1924 switch (Opts.getStructReturnConvention()) { 1925 case CodeGenOptions::SRCK_Default: 1926 break; 1927 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1928 return false; 1929 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1930 return true; 1931 } 1932 1933 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1934 return true; 1935 1936 switch (Triple.getOS()) { 1937 case llvm::Triple::DragonFly: 1938 case llvm::Triple::FreeBSD: 1939 case llvm::Triple::OpenBSD: 1940 case llvm::Triple::Win32: 1941 return true; 1942 default: 1943 return false; 1944 } 1945 } 1946 1947 void X86_32TargetCodeGenInfo::setTargetAttributes( 1948 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1949 if (GV->isDeclaration()) 1950 return; 1951 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1952 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1953 llvm::Function *Fn = cast<llvm::Function>(GV); 1954 Fn->addFnAttr("stackrealign"); 1955 } 1956 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1957 llvm::Function *Fn = cast<llvm::Function>(GV); 1958 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1959 } 1960 } 1961 } 1962 1963 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1964 CodeGen::CodeGenFunction &CGF, 1965 llvm::Value *Address) const { 1966 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1967 1968 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1969 1970 // 0-7 are the eight integer registers; the order is different 1971 // on Darwin (for EH), but the range is the same. 1972 // 8 is %eip. 1973 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1974 1975 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1976 // 12-16 are st(0..4). Not sure why we stop at 4. 1977 // These have size 16, which is sizeof(long double) on 1978 // platforms with 8-byte alignment for that type. 1979 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1980 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1981 1982 } else { 1983 // 9 is %eflags, which doesn't get a size on Darwin for some 1984 // reason. 1985 Builder.CreateAlignedStore( 1986 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1987 CharUnits::One()); 1988 1989 // 11-16 are st(0..5). Not sure why we stop at 5. 1990 // These have size 12, which is sizeof(long double) on 1991 // platforms with 4-byte alignment for that type. 1992 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1993 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1994 } 1995 1996 return false; 1997 } 1998 1999 //===----------------------------------------------------------------------===// 2000 // X86-64 ABI Implementation 2001 //===----------------------------------------------------------------------===// 2002 2003 2004 namespace { 2005 /// The AVX ABI level for X86 targets. 2006 enum class X86AVXABILevel { 2007 None, 2008 AVX, 2009 AVX512 2010 }; 2011 2012 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2013 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2014 switch (AVXLevel) { 2015 case X86AVXABILevel::AVX512: 2016 return 512; 2017 case X86AVXABILevel::AVX: 2018 return 256; 2019 case X86AVXABILevel::None: 2020 return 128; 2021 } 2022 llvm_unreachable("Unknown AVXLevel"); 2023 } 2024 2025 /// X86_64ABIInfo - The X86_64 ABI information. 2026 class X86_64ABIInfo : public SwiftABIInfo { 2027 enum Class { 2028 Integer = 0, 2029 SSE, 2030 SSEUp, 2031 X87, 2032 X87Up, 2033 ComplexX87, 2034 NoClass, 2035 Memory 2036 }; 2037 2038 /// merge - Implement the X86_64 ABI merging algorithm. 2039 /// 2040 /// Merge an accumulating classification \arg Accum with a field 2041 /// classification \arg Field. 2042 /// 2043 /// \param Accum - The accumulating classification. This should 2044 /// always be either NoClass or the result of a previous merge 2045 /// call. In addition, this should never be Memory (the caller 2046 /// should just return Memory for the aggregate). 2047 static Class merge(Class Accum, Class Field); 2048 2049 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2050 /// 2051 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2052 /// final MEMORY or SSE classes when necessary. 2053 /// 2054 /// \param AggregateSize - The size of the current aggregate in 2055 /// the classification process. 2056 /// 2057 /// \param Lo - The classification for the parts of the type 2058 /// residing in the low word of the containing object. 2059 /// 2060 /// \param Hi - The classification for the parts of the type 2061 /// residing in the higher words of the containing object. 2062 /// 2063 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2064 2065 /// classify - Determine the x86_64 register classes in which the 2066 /// given type T should be passed. 2067 /// 2068 /// \param Lo - The classification for the parts of the type 2069 /// residing in the low word of the containing object. 2070 /// 2071 /// \param Hi - The classification for the parts of the type 2072 /// residing in the high word of the containing object. 2073 /// 2074 /// \param OffsetBase - The bit offset of this type in the 2075 /// containing object. Some parameters are classified different 2076 /// depending on whether they straddle an eightbyte boundary. 2077 /// 2078 /// \param isNamedArg - Whether the argument in question is a "named" 2079 /// argument, as used in AMD64-ABI 3.5.7. 2080 /// 2081 /// If a word is unused its result will be NoClass; if a type should 2082 /// be passed in Memory then at least the classification of \arg Lo 2083 /// will be Memory. 2084 /// 2085 /// The \arg Lo class will be NoClass iff the argument is ignored. 2086 /// 2087 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2088 /// also be ComplexX87. 2089 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2090 bool isNamedArg) const; 2091 2092 llvm::Type *GetByteVectorType(QualType Ty) const; 2093 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2094 unsigned IROffset, QualType SourceTy, 2095 unsigned SourceOffset) const; 2096 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2097 unsigned IROffset, QualType SourceTy, 2098 unsigned SourceOffset) const; 2099 2100 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2101 /// such that the argument will be returned in memory. 2102 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2103 2104 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2105 /// such that the argument will be passed in memory. 2106 /// 2107 /// \param freeIntRegs - The number of free integer registers remaining 2108 /// available. 2109 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2110 2111 ABIArgInfo classifyReturnType(QualType RetTy) const; 2112 2113 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2114 unsigned &neededInt, unsigned &neededSSE, 2115 bool isNamedArg) const; 2116 2117 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2118 unsigned &NeededSSE) const; 2119 2120 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2121 unsigned &NeededSSE) const; 2122 2123 bool IsIllegalVectorType(QualType Ty) const; 2124 2125 /// The 0.98 ABI revision clarified a lot of ambiguities, 2126 /// unfortunately in ways that were not always consistent with 2127 /// certain previous compilers. In particular, platforms which 2128 /// required strict binary compatibility with older versions of GCC 2129 /// may need to exempt themselves. 2130 bool honorsRevision0_98() const { 2131 return !getTarget().getTriple().isOSDarwin(); 2132 } 2133 2134 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2135 /// classify it as INTEGER (for compatibility with older clang compilers). 2136 bool classifyIntegerMMXAsSSE() const { 2137 // Clang <= 3.8 did not do this. 2138 if (getContext().getLangOpts().getClangABICompat() <= 2139 LangOptions::ClangABI::Ver3_8) 2140 return false; 2141 2142 const llvm::Triple &Triple = getTarget().getTriple(); 2143 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2144 return false; 2145 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2146 return false; 2147 return true; 2148 } 2149 2150 X86AVXABILevel AVXLevel; 2151 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2152 // 64-bit hardware. 2153 bool Has64BitPointers; 2154 2155 public: 2156 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2157 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2158 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2159 } 2160 2161 bool isPassedUsingAVXType(QualType type) const { 2162 unsigned neededInt, neededSSE; 2163 // The freeIntRegs argument doesn't matter here. 2164 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2165 /*isNamedArg*/true); 2166 if (info.isDirect()) { 2167 llvm::Type *ty = info.getCoerceToType(); 2168 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2169 return (vectorTy->getBitWidth() > 128); 2170 } 2171 return false; 2172 } 2173 2174 void computeInfo(CGFunctionInfo &FI) const override; 2175 2176 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2177 QualType Ty) const override; 2178 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2179 QualType Ty) const override; 2180 2181 bool has64BitPointers() const { 2182 return Has64BitPointers; 2183 } 2184 2185 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2186 bool asReturnValue) const override { 2187 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2188 } 2189 bool isSwiftErrorInRegister() const override { 2190 return true; 2191 } 2192 }; 2193 2194 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2195 class WinX86_64ABIInfo : public SwiftABIInfo { 2196 public: 2197 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2198 : SwiftABIInfo(CGT), 2199 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2200 2201 void computeInfo(CGFunctionInfo &FI) const override; 2202 2203 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2204 QualType Ty) const override; 2205 2206 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2207 // FIXME: Assumes vectorcall is in use. 2208 return isX86VectorTypeForVectorCall(getContext(), Ty); 2209 } 2210 2211 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2212 uint64_t NumMembers) const override { 2213 // FIXME: Assumes vectorcall is in use. 2214 return isX86VectorCallAggregateSmallEnough(NumMembers); 2215 } 2216 2217 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2218 bool asReturnValue) const override { 2219 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2220 } 2221 2222 bool isSwiftErrorInRegister() const override { 2223 return true; 2224 } 2225 2226 private: 2227 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2228 bool IsVectorCall, bool IsRegCall) const; 2229 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2230 const ABIArgInfo ¤t) const; 2231 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2232 bool IsVectorCall, bool IsRegCall) const; 2233 2234 bool IsMingw64; 2235 }; 2236 2237 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2238 public: 2239 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2240 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2241 2242 const X86_64ABIInfo &getABIInfo() const { 2243 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2244 } 2245 2246 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2247 return 7; 2248 } 2249 2250 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2251 llvm::Value *Address) const override { 2252 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2253 2254 // 0-15 are the 16 integer registers. 2255 // 16 is %rip. 2256 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2257 return false; 2258 } 2259 2260 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2261 StringRef Constraint, 2262 llvm::Type* Ty) const override { 2263 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2264 } 2265 2266 bool isNoProtoCallVariadic(const CallArgList &args, 2267 const FunctionNoProtoType *fnType) const override { 2268 // The default CC on x86-64 sets %al to the number of SSA 2269 // registers used, and GCC sets this when calling an unprototyped 2270 // function, so we override the default behavior. However, don't do 2271 // that when AVX types are involved: the ABI explicitly states it is 2272 // undefined, and it doesn't work in practice because of how the ABI 2273 // defines varargs anyway. 2274 if (fnType->getCallConv() == CC_C) { 2275 bool HasAVXType = false; 2276 for (CallArgList::const_iterator 2277 it = args.begin(), ie = args.end(); it != ie; ++it) { 2278 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2279 HasAVXType = true; 2280 break; 2281 } 2282 } 2283 2284 if (!HasAVXType) 2285 return true; 2286 } 2287 2288 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2289 } 2290 2291 llvm::Constant * 2292 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2293 unsigned Sig = (0xeb << 0) | // jmp rel8 2294 (0x06 << 8) | // .+0x08 2295 ('v' << 16) | 2296 ('2' << 24); 2297 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2298 } 2299 2300 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2301 CodeGen::CodeGenModule &CGM) const override { 2302 if (GV->isDeclaration()) 2303 return; 2304 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2305 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2306 llvm::Function *Fn = cast<llvm::Function>(GV); 2307 Fn->addFnAttr("stackrealign"); 2308 } 2309 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2310 llvm::Function *Fn = cast<llvm::Function>(GV); 2311 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2312 } 2313 } 2314 } 2315 }; 2316 2317 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2318 public: 2319 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2320 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2321 2322 void getDependentLibraryOption(llvm::StringRef Lib, 2323 llvm::SmallString<24> &Opt) const override { 2324 Opt = "\01"; 2325 // If the argument contains a space, enclose it in quotes. 2326 if (Lib.find(" ") != StringRef::npos) 2327 Opt += "\"" + Lib.str() + "\""; 2328 else 2329 Opt += Lib; 2330 } 2331 }; 2332 2333 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2334 // If the argument does not end in .lib, automatically add the suffix. 2335 // If the argument contains a space, enclose it in quotes. 2336 // This matches the behavior of MSVC. 2337 bool Quote = (Lib.find(" ") != StringRef::npos); 2338 std::string ArgStr = Quote ? "\"" : ""; 2339 ArgStr += Lib; 2340 if (!Lib.endswith_lower(".lib")) 2341 ArgStr += ".lib"; 2342 ArgStr += Quote ? "\"" : ""; 2343 return ArgStr; 2344 } 2345 2346 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2347 public: 2348 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2349 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2350 unsigned NumRegisterParameters) 2351 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2352 Win32StructABI, NumRegisterParameters, false) {} 2353 2354 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2355 CodeGen::CodeGenModule &CGM) const override; 2356 2357 void getDependentLibraryOption(llvm::StringRef Lib, 2358 llvm::SmallString<24> &Opt) const override { 2359 Opt = "/DEFAULTLIB:"; 2360 Opt += qualifyWindowsLibrary(Lib); 2361 } 2362 2363 void getDetectMismatchOption(llvm::StringRef Name, 2364 llvm::StringRef Value, 2365 llvm::SmallString<32> &Opt) const override { 2366 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2367 } 2368 }; 2369 2370 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2371 CodeGen::CodeGenModule &CGM) { 2372 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2373 2374 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2375 Fn->addFnAttr("stack-probe-size", 2376 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2377 if (CGM.getCodeGenOpts().NoStackArgProbe) 2378 Fn->addFnAttr("no-stack-arg-probe"); 2379 } 2380 } 2381 2382 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2383 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2384 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2385 if (GV->isDeclaration()) 2386 return; 2387 addStackProbeTargetAttributes(D, GV, CGM); 2388 } 2389 2390 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2391 public: 2392 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2393 X86AVXABILevel AVXLevel) 2394 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2395 2396 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2397 CodeGen::CodeGenModule &CGM) const override; 2398 2399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2400 return 7; 2401 } 2402 2403 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2404 llvm::Value *Address) const override { 2405 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2406 2407 // 0-15 are the 16 integer registers. 2408 // 16 is %rip. 2409 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2410 return false; 2411 } 2412 2413 void getDependentLibraryOption(llvm::StringRef Lib, 2414 llvm::SmallString<24> &Opt) const override { 2415 Opt = "/DEFAULTLIB:"; 2416 Opt += qualifyWindowsLibrary(Lib); 2417 } 2418 2419 void getDetectMismatchOption(llvm::StringRef Name, 2420 llvm::StringRef Value, 2421 llvm::SmallString<32> &Opt) const override { 2422 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2423 } 2424 }; 2425 2426 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2427 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2428 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2429 if (GV->isDeclaration()) 2430 return; 2431 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2432 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2433 llvm::Function *Fn = cast<llvm::Function>(GV); 2434 Fn->addFnAttr("stackrealign"); 2435 } 2436 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2437 llvm::Function *Fn = cast<llvm::Function>(GV); 2438 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2439 } 2440 } 2441 2442 addStackProbeTargetAttributes(D, GV, CGM); 2443 } 2444 } 2445 2446 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2447 Class &Hi) const { 2448 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2449 // 2450 // (a) If one of the classes is Memory, the whole argument is passed in 2451 // memory. 2452 // 2453 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2454 // memory. 2455 // 2456 // (c) If the size of the aggregate exceeds two eightbytes and the first 2457 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2458 // argument is passed in memory. NOTE: This is necessary to keep the 2459 // ABI working for processors that don't support the __m256 type. 2460 // 2461 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2462 // 2463 // Some of these are enforced by the merging logic. Others can arise 2464 // only with unions; for example: 2465 // union { _Complex double; unsigned; } 2466 // 2467 // Note that clauses (b) and (c) were added in 0.98. 2468 // 2469 if (Hi == Memory) 2470 Lo = Memory; 2471 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2472 Lo = Memory; 2473 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2474 Lo = Memory; 2475 if (Hi == SSEUp && Lo != SSE) 2476 Hi = SSE; 2477 } 2478 2479 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2480 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2481 // classified recursively so that always two fields are 2482 // considered. The resulting class is calculated according to 2483 // the classes of the fields in the eightbyte: 2484 // 2485 // (a) If both classes are equal, this is the resulting class. 2486 // 2487 // (b) If one of the classes is NO_CLASS, the resulting class is 2488 // the other class. 2489 // 2490 // (c) If one of the classes is MEMORY, the result is the MEMORY 2491 // class. 2492 // 2493 // (d) If one of the classes is INTEGER, the result is the 2494 // INTEGER. 2495 // 2496 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2497 // MEMORY is used as class. 2498 // 2499 // (f) Otherwise class SSE is used. 2500 2501 // Accum should never be memory (we should have returned) or 2502 // ComplexX87 (because this cannot be passed in a structure). 2503 assert((Accum != Memory && Accum != ComplexX87) && 2504 "Invalid accumulated classification during merge."); 2505 if (Accum == Field || Field == NoClass) 2506 return Accum; 2507 if (Field == Memory) 2508 return Memory; 2509 if (Accum == NoClass) 2510 return Field; 2511 if (Accum == Integer || Field == Integer) 2512 return Integer; 2513 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2514 Accum == X87 || Accum == X87Up) 2515 return Memory; 2516 return SSE; 2517 } 2518 2519 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2520 Class &Lo, Class &Hi, bool isNamedArg) const { 2521 // FIXME: This code can be simplified by introducing a simple value class for 2522 // Class pairs with appropriate constructor methods for the various 2523 // situations. 2524 2525 // FIXME: Some of the split computations are wrong; unaligned vectors 2526 // shouldn't be passed in registers for example, so there is no chance they 2527 // can straddle an eightbyte. Verify & simplify. 2528 2529 Lo = Hi = NoClass; 2530 2531 Class &Current = OffsetBase < 64 ? Lo : Hi; 2532 Current = Memory; 2533 2534 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2535 BuiltinType::Kind k = BT->getKind(); 2536 2537 if (k == BuiltinType::Void) { 2538 Current = NoClass; 2539 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2540 Lo = Integer; 2541 Hi = Integer; 2542 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2543 Current = Integer; 2544 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2545 Current = SSE; 2546 } else if (k == BuiltinType::LongDouble) { 2547 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2548 if (LDF == &llvm::APFloat::IEEEquad()) { 2549 Lo = SSE; 2550 Hi = SSEUp; 2551 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2552 Lo = X87; 2553 Hi = X87Up; 2554 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2555 Current = SSE; 2556 } else 2557 llvm_unreachable("unexpected long double representation!"); 2558 } 2559 // FIXME: _Decimal32 and _Decimal64 are SSE. 2560 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2561 return; 2562 } 2563 2564 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2565 // Classify the underlying integer type. 2566 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2567 return; 2568 } 2569 2570 if (Ty->hasPointerRepresentation()) { 2571 Current = Integer; 2572 return; 2573 } 2574 2575 if (Ty->isMemberPointerType()) { 2576 if (Ty->isMemberFunctionPointerType()) { 2577 if (Has64BitPointers) { 2578 // If Has64BitPointers, this is an {i64, i64}, so classify both 2579 // Lo and Hi now. 2580 Lo = Hi = Integer; 2581 } else { 2582 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2583 // straddles an eightbyte boundary, Hi should be classified as well. 2584 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2585 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2586 if (EB_FuncPtr != EB_ThisAdj) { 2587 Lo = Hi = Integer; 2588 } else { 2589 Current = Integer; 2590 } 2591 } 2592 } else { 2593 Current = Integer; 2594 } 2595 return; 2596 } 2597 2598 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2599 uint64_t Size = getContext().getTypeSize(VT); 2600 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2601 // gcc passes the following as integer: 2602 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2603 // 2 bytes - <2 x char>, <1 x short> 2604 // 1 byte - <1 x char> 2605 Current = Integer; 2606 2607 // If this type crosses an eightbyte boundary, it should be 2608 // split. 2609 uint64_t EB_Lo = (OffsetBase) / 64; 2610 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2611 if (EB_Lo != EB_Hi) 2612 Hi = Lo; 2613 } else if (Size == 64) { 2614 QualType ElementType = VT->getElementType(); 2615 2616 // gcc passes <1 x double> in memory. :( 2617 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2618 return; 2619 2620 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2621 // pass them as integer. For platforms where clang is the de facto 2622 // platform compiler, we must continue to use integer. 2623 if (!classifyIntegerMMXAsSSE() && 2624 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2625 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2626 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2627 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2628 Current = Integer; 2629 else 2630 Current = SSE; 2631 2632 // If this type crosses an eightbyte boundary, it should be 2633 // split. 2634 if (OffsetBase && OffsetBase != 64) 2635 Hi = Lo; 2636 } else if (Size == 128 || 2637 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2638 // Arguments of 256-bits are split into four eightbyte chunks. The 2639 // least significant one belongs to class SSE and all the others to class 2640 // SSEUP. The original Lo and Hi design considers that types can't be 2641 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2642 // This design isn't correct for 256-bits, but since there're no cases 2643 // where the upper parts would need to be inspected, avoid adding 2644 // complexity and just consider Hi to match the 64-256 part. 2645 // 2646 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2647 // registers if they are "named", i.e. not part of the "..." of a 2648 // variadic function. 2649 // 2650 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2651 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2652 Lo = SSE; 2653 Hi = SSEUp; 2654 } 2655 return; 2656 } 2657 2658 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2659 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2660 2661 uint64_t Size = getContext().getTypeSize(Ty); 2662 if (ET->isIntegralOrEnumerationType()) { 2663 if (Size <= 64) 2664 Current = Integer; 2665 else if (Size <= 128) 2666 Lo = Hi = Integer; 2667 } else if (ET == getContext().FloatTy) { 2668 Current = SSE; 2669 } else if (ET == getContext().DoubleTy) { 2670 Lo = Hi = SSE; 2671 } else if (ET == getContext().LongDoubleTy) { 2672 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2673 if (LDF == &llvm::APFloat::IEEEquad()) 2674 Current = Memory; 2675 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2676 Current = ComplexX87; 2677 else if (LDF == &llvm::APFloat::IEEEdouble()) 2678 Lo = Hi = SSE; 2679 else 2680 llvm_unreachable("unexpected long double representation!"); 2681 } 2682 2683 // If this complex type crosses an eightbyte boundary then it 2684 // should be split. 2685 uint64_t EB_Real = (OffsetBase) / 64; 2686 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2687 if (Hi == NoClass && EB_Real != EB_Imag) 2688 Hi = Lo; 2689 2690 return; 2691 } 2692 2693 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2694 // Arrays are treated like structures. 2695 2696 uint64_t Size = getContext().getTypeSize(Ty); 2697 2698 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2699 // than eight eightbytes, ..., it has class MEMORY. 2700 if (Size > 512) 2701 return; 2702 2703 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2704 // fields, it has class MEMORY. 2705 // 2706 // Only need to check alignment of array base. 2707 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2708 return; 2709 2710 // Otherwise implement simplified merge. We could be smarter about 2711 // this, but it isn't worth it and would be harder to verify. 2712 Current = NoClass; 2713 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2714 uint64_t ArraySize = AT->getSize().getZExtValue(); 2715 2716 // The only case a 256-bit wide vector could be used is when the array 2717 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2718 // to work for sizes wider than 128, early check and fallback to memory. 2719 // 2720 if (Size > 128 && 2721 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2722 return; 2723 2724 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2725 Class FieldLo, FieldHi; 2726 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2727 Lo = merge(Lo, FieldLo); 2728 Hi = merge(Hi, FieldHi); 2729 if (Lo == Memory || Hi == Memory) 2730 break; 2731 } 2732 2733 postMerge(Size, Lo, Hi); 2734 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2735 return; 2736 } 2737 2738 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2739 uint64_t Size = getContext().getTypeSize(Ty); 2740 2741 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2742 // than eight eightbytes, ..., it has class MEMORY. 2743 if (Size > 512) 2744 return; 2745 2746 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2747 // copy constructor or a non-trivial destructor, it is passed by invisible 2748 // reference. 2749 if (getRecordArgABI(RT, getCXXABI())) 2750 return; 2751 2752 const RecordDecl *RD = RT->getDecl(); 2753 2754 // Assume variable sized types are passed in memory. 2755 if (RD->hasFlexibleArrayMember()) 2756 return; 2757 2758 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2759 2760 // Reset Lo class, this will be recomputed. 2761 Current = NoClass; 2762 2763 // If this is a C++ record, classify the bases first. 2764 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2765 for (const auto &I : CXXRD->bases()) { 2766 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2767 "Unexpected base class!"); 2768 const CXXRecordDecl *Base = 2769 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2770 2771 // Classify this field. 2772 // 2773 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2774 // single eightbyte, each is classified separately. Each eightbyte gets 2775 // initialized to class NO_CLASS. 2776 Class FieldLo, FieldHi; 2777 uint64_t Offset = 2778 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2779 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2780 Lo = merge(Lo, FieldLo); 2781 Hi = merge(Hi, FieldHi); 2782 if (Lo == Memory || Hi == Memory) { 2783 postMerge(Size, Lo, Hi); 2784 return; 2785 } 2786 } 2787 } 2788 2789 // Classify the fields one at a time, merging the results. 2790 unsigned idx = 0; 2791 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2792 i != e; ++i, ++idx) { 2793 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2794 bool BitField = i->isBitField(); 2795 2796 // Ignore padding bit-fields. 2797 if (BitField && i->isUnnamedBitfield()) 2798 continue; 2799 2800 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2801 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2802 // 2803 // The only case a 256-bit wide vector could be used is when the struct 2804 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2805 // to work for sizes wider than 128, early check and fallback to memory. 2806 // 2807 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2808 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2809 Lo = Memory; 2810 postMerge(Size, Lo, Hi); 2811 return; 2812 } 2813 // Note, skip this test for bit-fields, see below. 2814 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2815 Lo = Memory; 2816 postMerge(Size, Lo, Hi); 2817 return; 2818 } 2819 2820 // Classify this field. 2821 // 2822 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2823 // exceeds a single eightbyte, each is classified 2824 // separately. Each eightbyte gets initialized to class 2825 // NO_CLASS. 2826 Class FieldLo, FieldHi; 2827 2828 // Bit-fields require special handling, they do not force the 2829 // structure to be passed in memory even if unaligned, and 2830 // therefore they can straddle an eightbyte. 2831 if (BitField) { 2832 assert(!i->isUnnamedBitfield()); 2833 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2834 uint64_t Size = i->getBitWidthValue(getContext()); 2835 2836 uint64_t EB_Lo = Offset / 64; 2837 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2838 2839 if (EB_Lo) { 2840 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2841 FieldLo = NoClass; 2842 FieldHi = Integer; 2843 } else { 2844 FieldLo = Integer; 2845 FieldHi = EB_Hi ? Integer : NoClass; 2846 } 2847 } else 2848 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2849 Lo = merge(Lo, FieldLo); 2850 Hi = merge(Hi, FieldHi); 2851 if (Lo == Memory || Hi == Memory) 2852 break; 2853 } 2854 2855 postMerge(Size, Lo, Hi); 2856 } 2857 } 2858 2859 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2860 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2861 // place naturally. 2862 if (!isAggregateTypeForABI(Ty)) { 2863 // Treat an enum type as its underlying type. 2864 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2865 Ty = EnumTy->getDecl()->getIntegerType(); 2866 2867 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2868 : ABIArgInfo::getDirect()); 2869 } 2870 2871 return getNaturalAlignIndirect(Ty); 2872 } 2873 2874 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2875 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2876 uint64_t Size = getContext().getTypeSize(VecTy); 2877 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2878 if (Size <= 64 || Size > LargestVector) 2879 return true; 2880 } 2881 2882 return false; 2883 } 2884 2885 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2886 unsigned freeIntRegs) const { 2887 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2888 // place naturally. 2889 // 2890 // This assumption is optimistic, as there could be free registers available 2891 // when we need to pass this argument in memory, and LLVM could try to pass 2892 // the argument in the free register. This does not seem to happen currently, 2893 // but this code would be much safer if we could mark the argument with 2894 // 'onstack'. See PR12193. 2895 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2896 // Treat an enum type as its underlying type. 2897 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2898 Ty = EnumTy->getDecl()->getIntegerType(); 2899 2900 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2901 : ABIArgInfo::getDirect()); 2902 } 2903 2904 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2905 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2906 2907 // Compute the byval alignment. We specify the alignment of the byval in all 2908 // cases so that the mid-level optimizer knows the alignment of the byval. 2909 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2910 2911 // Attempt to avoid passing indirect results using byval when possible. This 2912 // is important for good codegen. 2913 // 2914 // We do this by coercing the value into a scalar type which the backend can 2915 // handle naturally (i.e., without using byval). 2916 // 2917 // For simplicity, we currently only do this when we have exhausted all of the 2918 // free integer registers. Doing this when there are free integer registers 2919 // would require more care, as we would have to ensure that the coerced value 2920 // did not claim the unused register. That would require either reording the 2921 // arguments to the function (so that any subsequent inreg values came first), 2922 // or only doing this optimization when there were no following arguments that 2923 // might be inreg. 2924 // 2925 // We currently expect it to be rare (particularly in well written code) for 2926 // arguments to be passed on the stack when there are still free integer 2927 // registers available (this would typically imply large structs being passed 2928 // by value), so this seems like a fair tradeoff for now. 2929 // 2930 // We can revisit this if the backend grows support for 'onstack' parameter 2931 // attributes. See PR12193. 2932 if (freeIntRegs == 0) { 2933 uint64_t Size = getContext().getTypeSize(Ty); 2934 2935 // If this type fits in an eightbyte, coerce it into the matching integral 2936 // type, which will end up on the stack (with alignment 8). 2937 if (Align == 8 && Size <= 64) 2938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2939 Size)); 2940 } 2941 2942 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2943 } 2944 2945 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2946 /// register. Pick an LLVM IR type that will be passed as a vector register. 2947 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2948 // Wrapper structs/arrays that only contain vectors are passed just like 2949 // vectors; strip them off if present. 2950 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2951 Ty = QualType(InnerTy, 0); 2952 2953 llvm::Type *IRType = CGT.ConvertType(Ty); 2954 if (isa<llvm::VectorType>(IRType) || 2955 IRType->getTypeID() == llvm::Type::FP128TyID) 2956 return IRType; 2957 2958 // We couldn't find the preferred IR vector type for 'Ty'. 2959 uint64_t Size = getContext().getTypeSize(Ty); 2960 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2961 2962 // Return a LLVM IR vector type based on the size of 'Ty'. 2963 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2964 Size / 64); 2965 } 2966 2967 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2968 /// is known to either be off the end of the specified type or being in 2969 /// alignment padding. The user type specified is known to be at most 128 bits 2970 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2971 /// classification that put one of the two halves in the INTEGER class. 2972 /// 2973 /// It is conservatively correct to return false. 2974 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2975 unsigned EndBit, ASTContext &Context) { 2976 // If the bytes being queried are off the end of the type, there is no user 2977 // data hiding here. This handles analysis of builtins, vectors and other 2978 // types that don't contain interesting padding. 2979 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2980 if (TySize <= StartBit) 2981 return true; 2982 2983 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2984 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2985 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2986 2987 // Check each element to see if the element overlaps with the queried range. 2988 for (unsigned i = 0; i != NumElts; ++i) { 2989 // If the element is after the span we care about, then we're done.. 2990 unsigned EltOffset = i*EltSize; 2991 if (EltOffset >= EndBit) break; 2992 2993 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2994 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2995 EndBit-EltOffset, Context)) 2996 return false; 2997 } 2998 // If it overlaps no elements, then it is safe to process as padding. 2999 return true; 3000 } 3001 3002 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3003 const RecordDecl *RD = RT->getDecl(); 3004 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3005 3006 // If this is a C++ record, check the bases first. 3007 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3008 for (const auto &I : CXXRD->bases()) { 3009 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3010 "Unexpected base class!"); 3011 const CXXRecordDecl *Base = 3012 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3013 3014 // If the base is after the span we care about, ignore it. 3015 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3016 if (BaseOffset >= EndBit) continue; 3017 3018 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3019 if (!BitsContainNoUserData(I.getType(), BaseStart, 3020 EndBit-BaseOffset, Context)) 3021 return false; 3022 } 3023 } 3024 3025 // Verify that no field has data that overlaps the region of interest. Yes 3026 // this could be sped up a lot by being smarter about queried fields, 3027 // however we're only looking at structs up to 16 bytes, so we don't care 3028 // much. 3029 unsigned idx = 0; 3030 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3031 i != e; ++i, ++idx) { 3032 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3033 3034 // If we found a field after the region we care about, then we're done. 3035 if (FieldOffset >= EndBit) break; 3036 3037 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3038 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3039 Context)) 3040 return false; 3041 } 3042 3043 // If nothing in this record overlapped the area of interest, then we're 3044 // clean. 3045 return true; 3046 } 3047 3048 return false; 3049 } 3050 3051 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3052 /// float member at the specified offset. For example, {int,{float}} has a 3053 /// float at offset 4. It is conservatively correct for this routine to return 3054 /// false. 3055 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3056 const llvm::DataLayout &TD) { 3057 // Base case if we find a float. 3058 if (IROffset == 0 && IRType->isFloatTy()) 3059 return true; 3060 3061 // If this is a struct, recurse into the field at the specified offset. 3062 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3063 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3064 unsigned Elt = SL->getElementContainingOffset(IROffset); 3065 IROffset -= SL->getElementOffset(Elt); 3066 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3067 } 3068 3069 // If this is an array, recurse into the field at the specified offset. 3070 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3071 llvm::Type *EltTy = ATy->getElementType(); 3072 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3073 IROffset -= IROffset/EltSize*EltSize; 3074 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3075 } 3076 3077 return false; 3078 } 3079 3080 3081 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3082 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3083 llvm::Type *X86_64ABIInfo:: 3084 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3085 QualType SourceTy, unsigned SourceOffset) const { 3086 // The only three choices we have are either double, <2 x float>, or float. We 3087 // pass as float if the last 4 bytes is just padding. This happens for 3088 // structs that contain 3 floats. 3089 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3090 SourceOffset*8+64, getContext())) 3091 return llvm::Type::getFloatTy(getVMContext()); 3092 3093 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3094 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3095 // case. 3096 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3097 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3098 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3099 3100 return llvm::Type::getDoubleTy(getVMContext()); 3101 } 3102 3103 3104 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3105 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3106 /// about the high or low part of an up-to-16-byte struct. This routine picks 3107 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3108 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3109 /// etc). 3110 /// 3111 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3112 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3113 /// the 8-byte value references. PrefType may be null. 3114 /// 3115 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3116 /// an offset into this that we're processing (which is always either 0 or 8). 3117 /// 3118 llvm::Type *X86_64ABIInfo:: 3119 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3120 QualType SourceTy, unsigned SourceOffset) const { 3121 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3122 // returning an 8-byte unit starting with it. See if we can safely use it. 3123 if (IROffset == 0) { 3124 // Pointers and int64's always fill the 8-byte unit. 3125 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3126 IRType->isIntegerTy(64)) 3127 return IRType; 3128 3129 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3130 // goodness in the source type is just tail padding. This is allowed to 3131 // kick in for struct {double,int} on the int, but not on 3132 // struct{double,int,int} because we wouldn't return the second int. We 3133 // have to do this analysis on the source type because we can't depend on 3134 // unions being lowered a specific way etc. 3135 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3136 IRType->isIntegerTy(32) || 3137 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3138 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3139 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3140 3141 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3142 SourceOffset*8+64, getContext())) 3143 return IRType; 3144 } 3145 } 3146 3147 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3148 // If this is a struct, recurse into the field at the specified offset. 3149 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3150 if (IROffset < SL->getSizeInBytes()) { 3151 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3152 IROffset -= SL->getElementOffset(FieldIdx); 3153 3154 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3155 SourceTy, SourceOffset); 3156 } 3157 } 3158 3159 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3160 llvm::Type *EltTy = ATy->getElementType(); 3161 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3162 unsigned EltOffset = IROffset/EltSize*EltSize; 3163 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3164 SourceOffset); 3165 } 3166 3167 // Okay, we don't have any better idea of what to pass, so we pass this in an 3168 // integer register that isn't too big to fit the rest of the struct. 3169 unsigned TySizeInBytes = 3170 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3171 3172 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3173 3174 // It is always safe to classify this as an integer type up to i64 that 3175 // isn't larger than the structure. 3176 return llvm::IntegerType::get(getVMContext(), 3177 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3178 } 3179 3180 3181 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3182 /// be used as elements of a two register pair to pass or return, return a 3183 /// first class aggregate to represent them. For example, if the low part of 3184 /// a by-value argument should be passed as i32* and the high part as float, 3185 /// return {i32*, float}. 3186 static llvm::Type * 3187 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3188 const llvm::DataLayout &TD) { 3189 // In order to correctly satisfy the ABI, we need to the high part to start 3190 // at offset 8. If the high and low parts we inferred are both 4-byte types 3191 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3192 // the second element at offset 8. Check for this: 3193 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3194 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3195 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3196 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3197 3198 // To handle this, we have to increase the size of the low part so that the 3199 // second element will start at an 8 byte offset. We can't increase the size 3200 // of the second element because it might make us access off the end of the 3201 // struct. 3202 if (HiStart != 8) { 3203 // There are usually two sorts of types the ABI generation code can produce 3204 // for the low part of a pair that aren't 8 bytes in size: float or 3205 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3206 // NaCl). 3207 // Promote these to a larger type. 3208 if (Lo->isFloatTy()) 3209 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3210 else { 3211 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3212 && "Invalid/unknown lo type"); 3213 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3214 } 3215 } 3216 3217 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3218 3219 // Verify that the second element is at an 8-byte offset. 3220 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3221 "Invalid x86-64 argument pair!"); 3222 return Result; 3223 } 3224 3225 ABIArgInfo X86_64ABIInfo:: 3226 classifyReturnType(QualType RetTy) const { 3227 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3228 // classification algorithm. 3229 X86_64ABIInfo::Class Lo, Hi; 3230 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3231 3232 // Check some invariants. 3233 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3234 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3235 3236 llvm::Type *ResType = nullptr; 3237 switch (Lo) { 3238 case NoClass: 3239 if (Hi == NoClass) 3240 return ABIArgInfo::getIgnore(); 3241 // If the low part is just padding, it takes no register, leave ResType 3242 // null. 3243 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3244 "Unknown missing lo part"); 3245 break; 3246 3247 case SSEUp: 3248 case X87Up: 3249 llvm_unreachable("Invalid classification for lo word."); 3250 3251 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3252 // hidden argument. 3253 case Memory: 3254 return getIndirectReturnResult(RetTy); 3255 3256 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3257 // available register of the sequence %rax, %rdx is used. 3258 case Integer: 3259 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3260 3261 // If we have a sign or zero extended integer, make sure to return Extend 3262 // so that the parameter gets the right LLVM IR attributes. 3263 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3264 // Treat an enum type as its underlying type. 3265 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3266 RetTy = EnumTy->getDecl()->getIntegerType(); 3267 3268 if (RetTy->isIntegralOrEnumerationType() && 3269 RetTy->isPromotableIntegerType()) 3270 return ABIArgInfo::getExtend(RetTy); 3271 } 3272 break; 3273 3274 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3275 // available SSE register of the sequence %xmm0, %xmm1 is used. 3276 case SSE: 3277 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3278 break; 3279 3280 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3281 // returned on the X87 stack in %st0 as 80-bit x87 number. 3282 case X87: 3283 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3284 break; 3285 3286 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3287 // part of the value is returned in %st0 and the imaginary part in 3288 // %st1. 3289 case ComplexX87: 3290 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3291 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3292 llvm::Type::getX86_FP80Ty(getVMContext())); 3293 break; 3294 } 3295 3296 llvm::Type *HighPart = nullptr; 3297 switch (Hi) { 3298 // Memory was handled previously and X87 should 3299 // never occur as a hi class. 3300 case Memory: 3301 case X87: 3302 llvm_unreachable("Invalid classification for hi word."); 3303 3304 case ComplexX87: // Previously handled. 3305 case NoClass: 3306 break; 3307 3308 case Integer: 3309 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3310 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3311 return ABIArgInfo::getDirect(HighPart, 8); 3312 break; 3313 case SSE: 3314 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3315 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3316 return ABIArgInfo::getDirect(HighPart, 8); 3317 break; 3318 3319 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3320 // is passed in the next available eightbyte chunk if the last used 3321 // vector register. 3322 // 3323 // SSEUP should always be preceded by SSE, just widen. 3324 case SSEUp: 3325 assert(Lo == SSE && "Unexpected SSEUp classification."); 3326 ResType = GetByteVectorType(RetTy); 3327 break; 3328 3329 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3330 // returned together with the previous X87 value in %st0. 3331 case X87Up: 3332 // If X87Up is preceded by X87, we don't need to do 3333 // anything. However, in some cases with unions it may not be 3334 // preceded by X87. In such situations we follow gcc and pass the 3335 // extra bits in an SSE reg. 3336 if (Lo != X87) { 3337 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3338 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3339 return ABIArgInfo::getDirect(HighPart, 8); 3340 } 3341 break; 3342 } 3343 3344 // If a high part was specified, merge it together with the low part. It is 3345 // known to pass in the high eightbyte of the result. We do this by forming a 3346 // first class struct aggregate with the high and low part: {low, high} 3347 if (HighPart) 3348 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3349 3350 return ABIArgInfo::getDirect(ResType); 3351 } 3352 3353 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3354 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3355 bool isNamedArg) 3356 const 3357 { 3358 Ty = useFirstFieldIfTransparentUnion(Ty); 3359 3360 X86_64ABIInfo::Class Lo, Hi; 3361 classify(Ty, 0, Lo, Hi, isNamedArg); 3362 3363 // Check some invariants. 3364 // FIXME: Enforce these by construction. 3365 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3366 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3367 3368 neededInt = 0; 3369 neededSSE = 0; 3370 llvm::Type *ResType = nullptr; 3371 switch (Lo) { 3372 case NoClass: 3373 if (Hi == NoClass) 3374 return ABIArgInfo::getIgnore(); 3375 // If the low part is just padding, it takes no register, leave ResType 3376 // null. 3377 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3378 "Unknown missing lo part"); 3379 break; 3380 3381 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3382 // on the stack. 3383 case Memory: 3384 3385 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3386 // COMPLEX_X87, it is passed in memory. 3387 case X87: 3388 case ComplexX87: 3389 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3390 ++neededInt; 3391 return getIndirectResult(Ty, freeIntRegs); 3392 3393 case SSEUp: 3394 case X87Up: 3395 llvm_unreachable("Invalid classification for lo word."); 3396 3397 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3398 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3399 // and %r9 is used. 3400 case Integer: 3401 ++neededInt; 3402 3403 // Pick an 8-byte type based on the preferred type. 3404 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3405 3406 // If we have a sign or zero extended integer, make sure to return Extend 3407 // so that the parameter gets the right LLVM IR attributes. 3408 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3409 // Treat an enum type as its underlying type. 3410 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3411 Ty = EnumTy->getDecl()->getIntegerType(); 3412 3413 if (Ty->isIntegralOrEnumerationType() && 3414 Ty->isPromotableIntegerType()) 3415 return ABIArgInfo::getExtend(Ty); 3416 } 3417 3418 break; 3419 3420 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3421 // available SSE register is used, the registers are taken in the 3422 // order from %xmm0 to %xmm7. 3423 case SSE: { 3424 llvm::Type *IRType = CGT.ConvertType(Ty); 3425 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3426 ++neededSSE; 3427 break; 3428 } 3429 } 3430 3431 llvm::Type *HighPart = nullptr; 3432 switch (Hi) { 3433 // Memory was handled previously, ComplexX87 and X87 should 3434 // never occur as hi classes, and X87Up must be preceded by X87, 3435 // which is passed in memory. 3436 case Memory: 3437 case X87: 3438 case ComplexX87: 3439 llvm_unreachable("Invalid classification for hi word."); 3440 3441 case NoClass: break; 3442 3443 case Integer: 3444 ++neededInt; 3445 // Pick an 8-byte type based on the preferred type. 3446 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3447 3448 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3449 return ABIArgInfo::getDirect(HighPart, 8); 3450 break; 3451 3452 // X87Up generally doesn't occur here (long double is passed in 3453 // memory), except in situations involving unions. 3454 case X87Up: 3455 case SSE: 3456 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3457 3458 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3459 return ABIArgInfo::getDirect(HighPart, 8); 3460 3461 ++neededSSE; 3462 break; 3463 3464 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3465 // eightbyte is passed in the upper half of the last used SSE 3466 // register. This only happens when 128-bit vectors are passed. 3467 case SSEUp: 3468 assert(Lo == SSE && "Unexpected SSEUp classification"); 3469 ResType = GetByteVectorType(Ty); 3470 break; 3471 } 3472 3473 // If a high part was specified, merge it together with the low part. It is 3474 // known to pass in the high eightbyte of the result. We do this by forming a 3475 // first class struct aggregate with the high and low part: {low, high} 3476 if (HighPart) 3477 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3478 3479 return ABIArgInfo::getDirect(ResType); 3480 } 3481 3482 ABIArgInfo 3483 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3484 unsigned &NeededSSE) const { 3485 auto RT = Ty->getAs<RecordType>(); 3486 assert(RT && "classifyRegCallStructType only valid with struct types"); 3487 3488 if (RT->getDecl()->hasFlexibleArrayMember()) 3489 return getIndirectReturnResult(Ty); 3490 3491 // Sum up bases 3492 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3493 if (CXXRD->isDynamicClass()) { 3494 NeededInt = NeededSSE = 0; 3495 return getIndirectReturnResult(Ty); 3496 } 3497 3498 for (const auto &I : CXXRD->bases()) 3499 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3500 .isIndirect()) { 3501 NeededInt = NeededSSE = 0; 3502 return getIndirectReturnResult(Ty); 3503 } 3504 } 3505 3506 // Sum up members 3507 for (const auto *FD : RT->getDecl()->fields()) { 3508 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3509 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3510 .isIndirect()) { 3511 NeededInt = NeededSSE = 0; 3512 return getIndirectReturnResult(Ty); 3513 } 3514 } else { 3515 unsigned LocalNeededInt, LocalNeededSSE; 3516 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3517 LocalNeededSSE, true) 3518 .isIndirect()) { 3519 NeededInt = NeededSSE = 0; 3520 return getIndirectReturnResult(Ty); 3521 } 3522 NeededInt += LocalNeededInt; 3523 NeededSSE += LocalNeededSSE; 3524 } 3525 } 3526 3527 return ABIArgInfo::getDirect(); 3528 } 3529 3530 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3531 unsigned &NeededInt, 3532 unsigned &NeededSSE) const { 3533 3534 NeededInt = 0; 3535 NeededSSE = 0; 3536 3537 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3538 } 3539 3540 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3541 3542 const unsigned CallingConv = FI.getCallingConvention(); 3543 // It is possible to force Win64 calling convention on any x86_64 target by 3544 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3545 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3546 if (CallingConv == llvm::CallingConv::Win64) { 3547 WinX86_64ABIInfo Win64ABIInfo(CGT); 3548 Win64ABIInfo.computeInfo(FI); 3549 return; 3550 } 3551 3552 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3553 3554 // Keep track of the number of assigned registers. 3555 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3556 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3557 unsigned NeededInt, NeededSSE; 3558 3559 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3560 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3561 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3562 FI.getReturnInfo() = 3563 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3564 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3565 FreeIntRegs -= NeededInt; 3566 FreeSSERegs -= NeededSSE; 3567 } else { 3568 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3569 } 3570 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3571 // Complex Long Double Type is passed in Memory when Regcall 3572 // calling convention is used. 3573 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3574 if (getContext().getCanonicalType(CT->getElementType()) == 3575 getContext().LongDoubleTy) 3576 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3577 } else 3578 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3579 } 3580 3581 // If the return value is indirect, then the hidden argument is consuming one 3582 // integer register. 3583 if (FI.getReturnInfo().isIndirect()) 3584 --FreeIntRegs; 3585 3586 // The chain argument effectively gives us another free register. 3587 if (FI.isChainCall()) 3588 ++FreeIntRegs; 3589 3590 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3591 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3592 // get assigned (in left-to-right order) for passing as follows... 3593 unsigned ArgNo = 0; 3594 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3595 it != ie; ++it, ++ArgNo) { 3596 bool IsNamedArg = ArgNo < NumRequiredArgs; 3597 3598 if (IsRegCall && it->type->isStructureOrClassType()) 3599 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3600 else 3601 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3602 NeededSSE, IsNamedArg); 3603 3604 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3605 // eightbyte of an argument, the whole argument is passed on the 3606 // stack. If registers have already been assigned for some 3607 // eightbytes of such an argument, the assignments get reverted. 3608 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3609 FreeIntRegs -= NeededInt; 3610 FreeSSERegs -= NeededSSE; 3611 } else { 3612 it->info = getIndirectResult(it->type, FreeIntRegs); 3613 } 3614 } 3615 } 3616 3617 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3618 Address VAListAddr, QualType Ty) { 3619 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3620 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3621 llvm::Value *overflow_arg_area = 3622 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3623 3624 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3625 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3626 // It isn't stated explicitly in the standard, but in practice we use 3627 // alignment greater than 16 where necessary. 3628 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3629 if (Align > CharUnits::fromQuantity(8)) { 3630 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3631 Align); 3632 } 3633 3634 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3635 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3636 llvm::Value *Res = 3637 CGF.Builder.CreateBitCast(overflow_arg_area, 3638 llvm::PointerType::getUnqual(LTy)); 3639 3640 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3641 // l->overflow_arg_area + sizeof(type). 3642 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3643 // an 8 byte boundary. 3644 3645 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3646 llvm::Value *Offset = 3647 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3648 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3649 "overflow_arg_area.next"); 3650 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3651 3652 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3653 return Address(Res, Align); 3654 } 3655 3656 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3657 QualType Ty) const { 3658 // Assume that va_list type is correct; should be pointer to LLVM type: 3659 // struct { 3660 // i32 gp_offset; 3661 // i32 fp_offset; 3662 // i8* overflow_arg_area; 3663 // i8* reg_save_area; 3664 // }; 3665 unsigned neededInt, neededSSE; 3666 3667 Ty = getContext().getCanonicalType(Ty); 3668 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3669 /*isNamedArg*/false); 3670 3671 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3672 // in the registers. If not go to step 7. 3673 if (!neededInt && !neededSSE) 3674 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3675 3676 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3677 // general purpose registers needed to pass type and num_fp to hold 3678 // the number of floating point registers needed. 3679 3680 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3681 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3682 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3683 // 3684 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3685 // register save space). 3686 3687 llvm::Value *InRegs = nullptr; 3688 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3689 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3690 if (neededInt) { 3691 gp_offset_p = 3692 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3693 "gp_offset_p"); 3694 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3695 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3696 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3697 } 3698 3699 if (neededSSE) { 3700 fp_offset_p = 3701 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3702 "fp_offset_p"); 3703 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3704 llvm::Value *FitsInFP = 3705 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3706 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3707 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3708 } 3709 3710 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3711 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3712 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3713 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3714 3715 // Emit code to load the value if it was passed in registers. 3716 3717 CGF.EmitBlock(InRegBlock); 3718 3719 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3720 // an offset of l->gp_offset and/or l->fp_offset. This may require 3721 // copying to a temporary location in case the parameter is passed 3722 // in different register classes or requires an alignment greater 3723 // than 8 for general purpose registers and 16 for XMM registers. 3724 // 3725 // FIXME: This really results in shameful code when we end up needing to 3726 // collect arguments from different places; often what should result in a 3727 // simple assembling of a structure from scattered addresses has many more 3728 // loads than necessary. Can we clean this up? 3729 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3730 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3731 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3732 "reg_save_area"); 3733 3734 Address RegAddr = Address::invalid(); 3735 if (neededInt && neededSSE) { 3736 // FIXME: Cleanup. 3737 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3738 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3739 Address Tmp = CGF.CreateMemTemp(Ty); 3740 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3741 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3742 llvm::Type *TyLo = ST->getElementType(0); 3743 llvm::Type *TyHi = ST->getElementType(1); 3744 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3745 "Unexpected ABI info for mixed regs"); 3746 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3747 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3748 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3749 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3750 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3751 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3752 3753 // Copy the first element. 3754 // FIXME: Our choice of alignment here and below is probably pessimistic. 3755 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3756 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3757 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3758 CGF.Builder.CreateStore(V, 3759 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3760 3761 // Copy the second element. 3762 V = CGF.Builder.CreateAlignedLoad( 3763 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3764 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3765 CharUnits Offset = CharUnits::fromQuantity( 3766 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3767 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3768 3769 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3770 } else if (neededInt) { 3771 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3772 CharUnits::fromQuantity(8)); 3773 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3774 3775 // Copy to a temporary if necessary to ensure the appropriate alignment. 3776 std::pair<CharUnits, CharUnits> SizeAlign = 3777 getContext().getTypeInfoInChars(Ty); 3778 uint64_t TySize = SizeAlign.first.getQuantity(); 3779 CharUnits TyAlign = SizeAlign.second; 3780 3781 // Copy into a temporary if the type is more aligned than the 3782 // register save area. 3783 if (TyAlign.getQuantity() > 8) { 3784 Address Tmp = CGF.CreateMemTemp(Ty); 3785 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3786 RegAddr = Tmp; 3787 } 3788 3789 } else if (neededSSE == 1) { 3790 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3791 CharUnits::fromQuantity(16)); 3792 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3793 } else { 3794 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3795 // SSE registers are spaced 16 bytes apart in the register save 3796 // area, we need to collect the two eightbytes together. 3797 // The ABI isn't explicit about this, but it seems reasonable 3798 // to assume that the slots are 16-byte aligned, since the stack is 3799 // naturally 16-byte aligned and the prologue is expected to store 3800 // all the SSE registers to the RSA. 3801 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3802 CharUnits::fromQuantity(16)); 3803 Address RegAddrHi = 3804 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3805 CharUnits::fromQuantity(16)); 3806 llvm::Type *ST = AI.canHaveCoerceToType() 3807 ? AI.getCoerceToType() 3808 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3809 llvm::Value *V; 3810 Address Tmp = CGF.CreateMemTemp(Ty); 3811 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3812 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3813 RegAddrLo, ST->getStructElementType(0))); 3814 CGF.Builder.CreateStore(V, 3815 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3816 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3817 RegAddrHi, ST->getStructElementType(1))); 3818 CGF.Builder.CreateStore(V, 3819 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3820 3821 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3822 } 3823 3824 // AMD64-ABI 3.5.7p5: Step 5. Set: 3825 // l->gp_offset = l->gp_offset + num_gp * 8 3826 // l->fp_offset = l->fp_offset + num_fp * 16. 3827 if (neededInt) { 3828 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3829 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3830 gp_offset_p); 3831 } 3832 if (neededSSE) { 3833 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3834 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3835 fp_offset_p); 3836 } 3837 CGF.EmitBranch(ContBlock); 3838 3839 // Emit code to load the value if it was passed in memory. 3840 3841 CGF.EmitBlock(InMemBlock); 3842 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3843 3844 // Return the appropriate result. 3845 3846 CGF.EmitBlock(ContBlock); 3847 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3848 "vaarg.addr"); 3849 return ResAddr; 3850 } 3851 3852 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3853 QualType Ty) const { 3854 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3855 CGF.getContext().getTypeInfoInChars(Ty), 3856 CharUnits::fromQuantity(8), 3857 /*allowHigherAlign*/ false); 3858 } 3859 3860 ABIArgInfo 3861 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3862 const ABIArgInfo ¤t) const { 3863 // Assumes vectorCall calling convention. 3864 const Type *Base = nullptr; 3865 uint64_t NumElts = 0; 3866 3867 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3868 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3869 FreeSSERegs -= NumElts; 3870 return getDirectX86Hva(); 3871 } 3872 return current; 3873 } 3874 3875 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3876 bool IsReturnType, bool IsVectorCall, 3877 bool IsRegCall) const { 3878 3879 if (Ty->isVoidType()) 3880 return ABIArgInfo::getIgnore(); 3881 3882 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3883 Ty = EnumTy->getDecl()->getIntegerType(); 3884 3885 TypeInfo Info = getContext().getTypeInfo(Ty); 3886 uint64_t Width = Info.Width; 3887 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3888 3889 const RecordType *RT = Ty->getAs<RecordType>(); 3890 if (RT) { 3891 if (!IsReturnType) { 3892 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3893 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3894 } 3895 3896 if (RT->getDecl()->hasFlexibleArrayMember()) 3897 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3898 3899 } 3900 3901 const Type *Base = nullptr; 3902 uint64_t NumElts = 0; 3903 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3904 // other targets. 3905 if ((IsVectorCall || IsRegCall) && 3906 isHomogeneousAggregate(Ty, Base, NumElts)) { 3907 if (IsRegCall) { 3908 if (FreeSSERegs >= NumElts) { 3909 FreeSSERegs -= NumElts; 3910 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3911 return ABIArgInfo::getDirect(); 3912 return ABIArgInfo::getExpand(); 3913 } 3914 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3915 } else if (IsVectorCall) { 3916 if (FreeSSERegs >= NumElts && 3917 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3918 FreeSSERegs -= NumElts; 3919 return ABIArgInfo::getDirect(); 3920 } else if (IsReturnType) { 3921 return ABIArgInfo::getExpand(); 3922 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3923 // HVAs are delayed and reclassified in the 2nd step. 3924 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3925 } 3926 } 3927 } 3928 3929 if (Ty->isMemberPointerType()) { 3930 // If the member pointer is represented by an LLVM int or ptr, pass it 3931 // directly. 3932 llvm::Type *LLTy = CGT.ConvertType(Ty); 3933 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3934 return ABIArgInfo::getDirect(); 3935 } 3936 3937 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3938 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3939 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3940 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3941 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3942 3943 // Otherwise, coerce it to a small integer. 3944 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3945 } 3946 3947 // Bool type is always extended to the ABI, other builtin types are not 3948 // extended. 3949 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3950 if (BT && BT->getKind() == BuiltinType::Bool) 3951 return ABIArgInfo::getExtend(Ty); 3952 3953 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3954 // passes them indirectly through memory. 3955 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3956 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3957 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3958 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3959 } 3960 3961 return ABIArgInfo::getDirect(); 3962 } 3963 3964 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3965 unsigned FreeSSERegs, 3966 bool IsVectorCall, 3967 bool IsRegCall) const { 3968 unsigned Count = 0; 3969 for (auto &I : FI.arguments()) { 3970 // Vectorcall in x64 only permits the first 6 arguments to be passed 3971 // as XMM/YMM registers. 3972 if (Count < VectorcallMaxParamNumAsReg) 3973 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3974 else { 3975 // Since these cannot be passed in registers, pretend no registers 3976 // are left. 3977 unsigned ZeroSSERegsAvail = 0; 3978 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3979 IsVectorCall, IsRegCall); 3980 } 3981 ++Count; 3982 } 3983 3984 for (auto &I : FI.arguments()) { 3985 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3986 } 3987 } 3988 3989 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3990 bool IsVectorCall = 3991 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3992 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3993 3994 unsigned FreeSSERegs = 0; 3995 if (IsVectorCall) { 3996 // We can use up to 4 SSE return registers with vectorcall. 3997 FreeSSERegs = 4; 3998 } else if (IsRegCall) { 3999 // RegCall gives us 16 SSE registers. 4000 FreeSSERegs = 16; 4001 } 4002 4003 if (!getCXXABI().classifyReturnType(FI)) 4004 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4005 IsVectorCall, IsRegCall); 4006 4007 if (IsVectorCall) { 4008 // We can use up to 6 SSE register parameters with vectorcall. 4009 FreeSSERegs = 6; 4010 } else if (IsRegCall) { 4011 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4012 FreeSSERegs = 16; 4013 } 4014 4015 if (IsVectorCall) { 4016 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4017 } else { 4018 for (auto &I : FI.arguments()) 4019 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4020 } 4021 4022 } 4023 4024 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4025 QualType Ty) const { 4026 4027 bool IsIndirect = false; 4028 4029 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4030 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4031 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4032 uint64_t Width = getContext().getTypeSize(Ty); 4033 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4034 } 4035 4036 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4037 CGF.getContext().getTypeInfoInChars(Ty), 4038 CharUnits::fromQuantity(8), 4039 /*allowHigherAlign*/ false); 4040 } 4041 4042 // PowerPC-32 4043 namespace { 4044 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4045 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4046 bool IsSoftFloatABI; 4047 4048 CharUnits getParamTypeAlignment(QualType Ty) const; 4049 4050 public: 4051 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4052 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4053 4054 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4055 QualType Ty) const override; 4056 }; 4057 4058 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4059 public: 4060 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4061 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4062 4063 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4064 // This is recovered from gcc output. 4065 return 1; // r1 is the dedicated stack pointer 4066 } 4067 4068 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4069 llvm::Value *Address) const override; 4070 }; 4071 } 4072 4073 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4074 // Complex types are passed just like their elements 4075 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4076 Ty = CTy->getElementType(); 4077 4078 if (Ty->isVectorType()) 4079 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4080 : 4); 4081 4082 // For single-element float/vector structs, we consider the whole type 4083 // to have the same alignment requirements as its single element. 4084 const Type *AlignTy = nullptr; 4085 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4086 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4087 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4088 (BT && BT->isFloatingPoint())) 4089 AlignTy = EltType; 4090 } 4091 4092 if (AlignTy) 4093 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4094 return CharUnits::fromQuantity(4); 4095 } 4096 4097 // TODO: this implementation is now likely redundant with 4098 // DefaultABIInfo::EmitVAArg. 4099 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4100 QualType Ty) const { 4101 if (getTarget().getTriple().isOSDarwin()) { 4102 auto TI = getContext().getTypeInfoInChars(Ty); 4103 TI.second = getParamTypeAlignment(Ty); 4104 4105 CharUnits SlotSize = CharUnits::fromQuantity(4); 4106 return emitVoidPtrVAArg(CGF, VAList, Ty, 4107 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4108 /*AllowHigherAlign=*/true); 4109 } 4110 4111 const unsigned OverflowLimit = 8; 4112 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4113 // TODO: Implement this. For now ignore. 4114 (void)CTy; 4115 return Address::invalid(); // FIXME? 4116 } 4117 4118 // struct __va_list_tag { 4119 // unsigned char gpr; 4120 // unsigned char fpr; 4121 // unsigned short reserved; 4122 // void *overflow_arg_area; 4123 // void *reg_save_area; 4124 // }; 4125 4126 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4127 bool isInt = 4128 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4129 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4130 4131 // All aggregates are passed indirectly? That doesn't seem consistent 4132 // with the argument-lowering code. 4133 bool isIndirect = Ty->isAggregateType(); 4134 4135 CGBuilderTy &Builder = CGF.Builder; 4136 4137 // The calling convention either uses 1-2 GPRs or 1 FPR. 4138 Address NumRegsAddr = Address::invalid(); 4139 if (isInt || IsSoftFloatABI) { 4140 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4141 } else { 4142 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4143 } 4144 4145 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4146 4147 // "Align" the register count when TY is i64. 4148 if (isI64 || (isF64 && IsSoftFloatABI)) { 4149 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4150 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4151 } 4152 4153 llvm::Value *CC = 4154 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4155 4156 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4157 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4158 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4159 4160 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4161 4162 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4163 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4164 4165 // Case 1: consume registers. 4166 Address RegAddr = Address::invalid(); 4167 { 4168 CGF.EmitBlock(UsingRegs); 4169 4170 Address RegSaveAreaPtr = 4171 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4172 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4173 CharUnits::fromQuantity(8)); 4174 assert(RegAddr.getElementType() == CGF.Int8Ty); 4175 4176 // Floating-point registers start after the general-purpose registers. 4177 if (!(isInt || IsSoftFloatABI)) { 4178 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4179 CharUnits::fromQuantity(32)); 4180 } 4181 4182 // Get the address of the saved value by scaling the number of 4183 // registers we've used by the number of 4184 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4185 llvm::Value *RegOffset = 4186 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4187 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4188 RegAddr.getPointer(), RegOffset), 4189 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4190 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4191 4192 // Increase the used-register count. 4193 NumRegs = 4194 Builder.CreateAdd(NumRegs, 4195 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4196 Builder.CreateStore(NumRegs, NumRegsAddr); 4197 4198 CGF.EmitBranch(Cont); 4199 } 4200 4201 // Case 2: consume space in the overflow area. 4202 Address MemAddr = Address::invalid(); 4203 { 4204 CGF.EmitBlock(UsingOverflow); 4205 4206 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4207 4208 // Everything in the overflow area is rounded up to a size of at least 4. 4209 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4210 4211 CharUnits Size; 4212 if (!isIndirect) { 4213 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4214 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4215 } else { 4216 Size = CGF.getPointerSize(); 4217 } 4218 4219 Address OverflowAreaAddr = 4220 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4221 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4222 OverflowAreaAlign); 4223 // Round up address of argument to alignment 4224 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4225 if (Align > OverflowAreaAlign) { 4226 llvm::Value *Ptr = OverflowArea.getPointer(); 4227 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4228 Align); 4229 } 4230 4231 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4232 4233 // Increase the overflow area. 4234 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4235 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4236 CGF.EmitBranch(Cont); 4237 } 4238 4239 CGF.EmitBlock(Cont); 4240 4241 // Merge the cases with a phi. 4242 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4243 "vaarg.addr"); 4244 4245 // Load the pointer if the argument was passed indirectly. 4246 if (isIndirect) { 4247 Result = Address(Builder.CreateLoad(Result, "aggr"), 4248 getContext().getTypeAlignInChars(Ty)); 4249 } 4250 4251 return Result; 4252 } 4253 4254 bool 4255 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4256 llvm::Value *Address) const { 4257 // This is calculated from the LLVM and GCC tables and verified 4258 // against gcc output. AFAIK all ABIs use the same encoding. 4259 4260 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4261 4262 llvm::IntegerType *i8 = CGF.Int8Ty; 4263 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4264 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4265 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4266 4267 // 0-31: r0-31, the 4-byte general-purpose registers 4268 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4269 4270 // 32-63: fp0-31, the 8-byte floating-point registers 4271 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4272 4273 // 64-76 are various 4-byte special-purpose registers: 4274 // 64: mq 4275 // 65: lr 4276 // 66: ctr 4277 // 67: ap 4278 // 68-75 cr0-7 4279 // 76: xer 4280 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4281 4282 // 77-108: v0-31, the 16-byte vector registers 4283 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4284 4285 // 109: vrsave 4286 // 110: vscr 4287 // 111: spe_acc 4288 // 112: spefscr 4289 // 113: sfp 4290 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4291 4292 return false; 4293 } 4294 4295 // PowerPC-64 4296 4297 namespace { 4298 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4299 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4300 public: 4301 enum ABIKind { 4302 ELFv1 = 0, 4303 ELFv2 4304 }; 4305 4306 private: 4307 static const unsigned GPRBits = 64; 4308 ABIKind Kind; 4309 bool HasQPX; 4310 bool IsSoftFloatABI; 4311 4312 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4313 // will be passed in a QPX register. 4314 bool IsQPXVectorTy(const Type *Ty) const { 4315 if (!HasQPX) 4316 return false; 4317 4318 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4319 unsigned NumElements = VT->getNumElements(); 4320 if (NumElements == 1) 4321 return false; 4322 4323 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4324 if (getContext().getTypeSize(Ty) <= 256) 4325 return true; 4326 } else if (VT->getElementType()-> 4327 isSpecificBuiltinType(BuiltinType::Float)) { 4328 if (getContext().getTypeSize(Ty) <= 128) 4329 return true; 4330 } 4331 } 4332 4333 return false; 4334 } 4335 4336 bool IsQPXVectorTy(QualType Ty) const { 4337 return IsQPXVectorTy(Ty.getTypePtr()); 4338 } 4339 4340 public: 4341 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4342 bool SoftFloatABI) 4343 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4344 IsSoftFloatABI(SoftFloatABI) {} 4345 4346 bool isPromotableTypeForABI(QualType Ty) const; 4347 CharUnits getParamTypeAlignment(QualType Ty) const; 4348 4349 ABIArgInfo classifyReturnType(QualType RetTy) const; 4350 ABIArgInfo classifyArgumentType(QualType Ty) const; 4351 4352 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4353 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4354 uint64_t Members) const override; 4355 4356 // TODO: We can add more logic to computeInfo to improve performance. 4357 // Example: For aggregate arguments that fit in a register, we could 4358 // use getDirectInReg (as is done below for structs containing a single 4359 // floating-point value) to avoid pushing them to memory on function 4360 // entry. This would require changing the logic in PPCISelLowering 4361 // when lowering the parameters in the caller and args in the callee. 4362 void computeInfo(CGFunctionInfo &FI) const override { 4363 if (!getCXXABI().classifyReturnType(FI)) 4364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4365 for (auto &I : FI.arguments()) { 4366 // We rely on the default argument classification for the most part. 4367 // One exception: An aggregate containing a single floating-point 4368 // or vector item must be passed in a register if one is available. 4369 const Type *T = isSingleElementStruct(I.type, getContext()); 4370 if (T) { 4371 const BuiltinType *BT = T->getAs<BuiltinType>(); 4372 if (IsQPXVectorTy(T) || 4373 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4374 (BT && BT->isFloatingPoint())) { 4375 QualType QT(T, 0); 4376 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4377 continue; 4378 } 4379 } 4380 I.info = classifyArgumentType(I.type); 4381 } 4382 } 4383 4384 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4385 QualType Ty) const override; 4386 4387 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4388 bool asReturnValue) const override { 4389 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4390 } 4391 4392 bool isSwiftErrorInRegister() const override { 4393 return false; 4394 } 4395 }; 4396 4397 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4398 4399 public: 4400 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4401 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4402 bool SoftFloatABI) 4403 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4404 SoftFloatABI)) {} 4405 4406 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4407 // This is recovered from gcc output. 4408 return 1; // r1 is the dedicated stack pointer 4409 } 4410 4411 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4412 llvm::Value *Address) const override; 4413 }; 4414 4415 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4416 public: 4417 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4418 4419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4420 // This is recovered from gcc output. 4421 return 1; // r1 is the dedicated stack pointer 4422 } 4423 4424 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4425 llvm::Value *Address) const override; 4426 }; 4427 4428 } 4429 4430 // Return true if the ABI requires Ty to be passed sign- or zero- 4431 // extended to 64 bits. 4432 bool 4433 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4434 // Treat an enum type as its underlying type. 4435 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4436 Ty = EnumTy->getDecl()->getIntegerType(); 4437 4438 // Promotable integer types are required to be promoted by the ABI. 4439 if (Ty->isPromotableIntegerType()) 4440 return true; 4441 4442 // In addition to the usual promotable integer types, we also need to 4443 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4444 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4445 switch (BT->getKind()) { 4446 case BuiltinType::Int: 4447 case BuiltinType::UInt: 4448 return true; 4449 default: 4450 break; 4451 } 4452 4453 return false; 4454 } 4455 4456 /// isAlignedParamType - Determine whether a type requires 16-byte or 4457 /// higher alignment in the parameter area. Always returns at least 8. 4458 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4459 // Complex types are passed just like their elements. 4460 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4461 Ty = CTy->getElementType(); 4462 4463 // Only vector types of size 16 bytes need alignment (larger types are 4464 // passed via reference, smaller types are not aligned). 4465 if (IsQPXVectorTy(Ty)) { 4466 if (getContext().getTypeSize(Ty) > 128) 4467 return CharUnits::fromQuantity(32); 4468 4469 return CharUnits::fromQuantity(16); 4470 } else if (Ty->isVectorType()) { 4471 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4472 } 4473 4474 // For single-element float/vector structs, we consider the whole type 4475 // to have the same alignment requirements as its single element. 4476 const Type *AlignAsType = nullptr; 4477 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4478 if (EltType) { 4479 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4480 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4481 getContext().getTypeSize(EltType) == 128) || 4482 (BT && BT->isFloatingPoint())) 4483 AlignAsType = EltType; 4484 } 4485 4486 // Likewise for ELFv2 homogeneous aggregates. 4487 const Type *Base = nullptr; 4488 uint64_t Members = 0; 4489 if (!AlignAsType && Kind == ELFv2 && 4490 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4491 AlignAsType = Base; 4492 4493 // With special case aggregates, only vector base types need alignment. 4494 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4495 if (getContext().getTypeSize(AlignAsType) > 128) 4496 return CharUnits::fromQuantity(32); 4497 4498 return CharUnits::fromQuantity(16); 4499 } else if (AlignAsType) { 4500 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4501 } 4502 4503 // Otherwise, we only need alignment for any aggregate type that 4504 // has an alignment requirement of >= 16 bytes. 4505 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4506 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4507 return CharUnits::fromQuantity(32); 4508 return CharUnits::fromQuantity(16); 4509 } 4510 4511 return CharUnits::fromQuantity(8); 4512 } 4513 4514 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4515 /// aggregate. Base is set to the base element type, and Members is set 4516 /// to the number of base elements. 4517 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4518 uint64_t &Members) const { 4519 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4520 uint64_t NElements = AT->getSize().getZExtValue(); 4521 if (NElements == 0) 4522 return false; 4523 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4524 return false; 4525 Members *= NElements; 4526 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4527 const RecordDecl *RD = RT->getDecl(); 4528 if (RD->hasFlexibleArrayMember()) 4529 return false; 4530 4531 Members = 0; 4532 4533 // If this is a C++ record, check the bases first. 4534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4535 for (const auto &I : CXXRD->bases()) { 4536 // Ignore empty records. 4537 if (isEmptyRecord(getContext(), I.getType(), true)) 4538 continue; 4539 4540 uint64_t FldMembers; 4541 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4542 return false; 4543 4544 Members += FldMembers; 4545 } 4546 } 4547 4548 for (const auto *FD : RD->fields()) { 4549 // Ignore (non-zero arrays of) empty records. 4550 QualType FT = FD->getType(); 4551 while (const ConstantArrayType *AT = 4552 getContext().getAsConstantArrayType(FT)) { 4553 if (AT->getSize().getZExtValue() == 0) 4554 return false; 4555 FT = AT->getElementType(); 4556 } 4557 if (isEmptyRecord(getContext(), FT, true)) 4558 continue; 4559 4560 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4561 if (getContext().getLangOpts().CPlusPlus && 4562 FD->isZeroLengthBitField(getContext())) 4563 continue; 4564 4565 uint64_t FldMembers; 4566 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4567 return false; 4568 4569 Members = (RD->isUnion() ? 4570 std::max(Members, FldMembers) : Members + FldMembers); 4571 } 4572 4573 if (!Base) 4574 return false; 4575 4576 // Ensure there is no padding. 4577 if (getContext().getTypeSize(Base) * Members != 4578 getContext().getTypeSize(Ty)) 4579 return false; 4580 } else { 4581 Members = 1; 4582 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4583 Members = 2; 4584 Ty = CT->getElementType(); 4585 } 4586 4587 // Most ABIs only support float, double, and some vector type widths. 4588 if (!isHomogeneousAggregateBaseType(Ty)) 4589 return false; 4590 4591 // The base type must be the same for all members. Types that 4592 // agree in both total size and mode (float vs. vector) are 4593 // treated as being equivalent here. 4594 const Type *TyPtr = Ty.getTypePtr(); 4595 if (!Base) { 4596 Base = TyPtr; 4597 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4598 // so make sure to widen it explicitly. 4599 if (const VectorType *VT = Base->getAs<VectorType>()) { 4600 QualType EltTy = VT->getElementType(); 4601 unsigned NumElements = 4602 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4603 Base = getContext() 4604 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4605 .getTypePtr(); 4606 } 4607 } 4608 4609 if (Base->isVectorType() != TyPtr->isVectorType() || 4610 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4611 return false; 4612 } 4613 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4614 } 4615 4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4617 // Homogeneous aggregates for ELFv2 must have base types of float, 4618 // double, long double, or 128-bit vectors. 4619 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4620 if (BT->getKind() == BuiltinType::Float || 4621 BT->getKind() == BuiltinType::Double || 4622 BT->getKind() == BuiltinType::LongDouble || 4623 (getContext().getTargetInfo().hasFloat128Type() && 4624 (BT->getKind() == BuiltinType::Float128))) { 4625 if (IsSoftFloatABI) 4626 return false; 4627 return true; 4628 } 4629 } 4630 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4631 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4632 return true; 4633 } 4634 return false; 4635 } 4636 4637 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4638 const Type *Base, uint64_t Members) const { 4639 // Vector and fp128 types require one register, other floating point types 4640 // require one or two registers depending on their size. 4641 uint32_t NumRegs = 4642 ((getContext().getTargetInfo().hasFloat128Type() && 4643 Base->isFloat128Type()) || 4644 Base->isVectorType()) ? 1 4645 : (getContext().getTypeSize(Base) + 63) / 64; 4646 4647 // Homogeneous Aggregates may occupy at most 8 registers. 4648 return Members * NumRegs <= 8; 4649 } 4650 4651 ABIArgInfo 4652 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4653 Ty = useFirstFieldIfTransparentUnion(Ty); 4654 4655 if (Ty->isAnyComplexType()) 4656 return ABIArgInfo::getDirect(); 4657 4658 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4659 // or via reference (larger than 16 bytes). 4660 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4661 uint64_t Size = getContext().getTypeSize(Ty); 4662 if (Size > 128) 4663 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4664 else if (Size < 128) { 4665 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4666 return ABIArgInfo::getDirect(CoerceTy); 4667 } 4668 } 4669 4670 if (isAggregateTypeForABI(Ty)) { 4671 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4673 4674 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4675 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4676 4677 // ELFv2 homogeneous aggregates are passed as array types. 4678 const Type *Base = nullptr; 4679 uint64_t Members = 0; 4680 if (Kind == ELFv2 && 4681 isHomogeneousAggregate(Ty, Base, Members)) { 4682 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4683 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4684 return ABIArgInfo::getDirect(CoerceTy); 4685 } 4686 4687 // If an aggregate may end up fully in registers, we do not 4688 // use the ByVal method, but pass the aggregate as array. 4689 // This is usually beneficial since we avoid forcing the 4690 // back-end to store the argument to memory. 4691 uint64_t Bits = getContext().getTypeSize(Ty); 4692 if (Bits > 0 && Bits <= 8 * GPRBits) { 4693 llvm::Type *CoerceTy; 4694 4695 // Types up to 8 bytes are passed as integer type (which will be 4696 // properly aligned in the argument save area doubleword). 4697 if (Bits <= GPRBits) 4698 CoerceTy = 4699 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4700 // Larger types are passed as arrays, with the base type selected 4701 // according to the required alignment in the save area. 4702 else { 4703 uint64_t RegBits = ABIAlign * 8; 4704 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4705 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4706 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4707 } 4708 4709 return ABIArgInfo::getDirect(CoerceTy); 4710 } 4711 4712 // All other aggregates are passed ByVal. 4713 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4714 /*ByVal=*/true, 4715 /*Realign=*/TyAlign > ABIAlign); 4716 } 4717 4718 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4719 : ABIArgInfo::getDirect()); 4720 } 4721 4722 ABIArgInfo 4723 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4724 if (RetTy->isVoidType()) 4725 return ABIArgInfo::getIgnore(); 4726 4727 if (RetTy->isAnyComplexType()) 4728 return ABIArgInfo::getDirect(); 4729 4730 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4731 // or via reference (larger than 16 bytes). 4732 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4733 uint64_t Size = getContext().getTypeSize(RetTy); 4734 if (Size > 128) 4735 return getNaturalAlignIndirect(RetTy); 4736 else if (Size < 128) { 4737 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4738 return ABIArgInfo::getDirect(CoerceTy); 4739 } 4740 } 4741 4742 if (isAggregateTypeForABI(RetTy)) { 4743 // ELFv2 homogeneous aggregates are returned as array types. 4744 const Type *Base = nullptr; 4745 uint64_t Members = 0; 4746 if (Kind == ELFv2 && 4747 isHomogeneousAggregate(RetTy, Base, Members)) { 4748 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4749 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4750 return ABIArgInfo::getDirect(CoerceTy); 4751 } 4752 4753 // ELFv2 small aggregates are returned in up to two registers. 4754 uint64_t Bits = getContext().getTypeSize(RetTy); 4755 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4756 if (Bits == 0) 4757 return ABIArgInfo::getIgnore(); 4758 4759 llvm::Type *CoerceTy; 4760 if (Bits > GPRBits) { 4761 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4762 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4763 } else 4764 CoerceTy = 4765 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4766 return ABIArgInfo::getDirect(CoerceTy); 4767 } 4768 4769 // All other aggregates are returned indirectly. 4770 return getNaturalAlignIndirect(RetTy); 4771 } 4772 4773 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4774 : ABIArgInfo::getDirect()); 4775 } 4776 4777 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4778 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4779 QualType Ty) const { 4780 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4781 TypeInfo.second = getParamTypeAlignment(Ty); 4782 4783 CharUnits SlotSize = CharUnits::fromQuantity(8); 4784 4785 // If we have a complex type and the base type is smaller than 8 bytes, 4786 // the ABI calls for the real and imaginary parts to be right-adjusted 4787 // in separate doublewords. However, Clang expects us to produce a 4788 // pointer to a structure with the two parts packed tightly. So generate 4789 // loads of the real and imaginary parts relative to the va_list pointer, 4790 // and store them to a temporary structure. 4791 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4792 CharUnits EltSize = TypeInfo.first / 2; 4793 if (EltSize < SlotSize) { 4794 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4795 SlotSize * 2, SlotSize, 4796 SlotSize, /*AllowHigher*/ true); 4797 4798 Address RealAddr = Addr; 4799 Address ImagAddr = RealAddr; 4800 if (CGF.CGM.getDataLayout().isBigEndian()) { 4801 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4802 SlotSize - EltSize); 4803 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4804 2 * SlotSize - EltSize); 4805 } else { 4806 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4807 } 4808 4809 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4810 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4811 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4812 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4813 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4814 4815 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4816 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4817 /*init*/ true); 4818 return Temp; 4819 } 4820 } 4821 4822 // Otherwise, just use the general rule. 4823 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4824 TypeInfo, SlotSize, /*AllowHigher*/ true); 4825 } 4826 4827 static bool 4828 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4829 llvm::Value *Address) { 4830 // This is calculated from the LLVM and GCC tables and verified 4831 // against gcc output. AFAIK all ABIs use the same encoding. 4832 4833 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4834 4835 llvm::IntegerType *i8 = CGF.Int8Ty; 4836 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4837 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4838 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4839 4840 // 0-31: r0-31, the 8-byte general-purpose registers 4841 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4842 4843 // 32-63: fp0-31, the 8-byte floating-point registers 4844 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4845 4846 // 64-67 are various 8-byte special-purpose registers: 4847 // 64: mq 4848 // 65: lr 4849 // 66: ctr 4850 // 67: ap 4851 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4852 4853 // 68-76 are various 4-byte special-purpose registers: 4854 // 68-75 cr0-7 4855 // 76: xer 4856 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4857 4858 // 77-108: v0-31, the 16-byte vector registers 4859 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4860 4861 // 109: vrsave 4862 // 110: vscr 4863 // 111: spe_acc 4864 // 112: spefscr 4865 // 113: sfp 4866 // 114: tfhar 4867 // 115: tfiar 4868 // 116: texasr 4869 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4870 4871 return false; 4872 } 4873 4874 bool 4875 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4876 CodeGen::CodeGenFunction &CGF, 4877 llvm::Value *Address) const { 4878 4879 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4880 } 4881 4882 bool 4883 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4884 llvm::Value *Address) const { 4885 4886 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4887 } 4888 4889 //===----------------------------------------------------------------------===// 4890 // AArch64 ABI Implementation 4891 //===----------------------------------------------------------------------===// 4892 4893 namespace { 4894 4895 class AArch64ABIInfo : public SwiftABIInfo { 4896 public: 4897 enum ABIKind { 4898 AAPCS = 0, 4899 DarwinPCS, 4900 Win64 4901 }; 4902 4903 private: 4904 ABIKind Kind; 4905 4906 public: 4907 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4908 : SwiftABIInfo(CGT), Kind(Kind) {} 4909 4910 private: 4911 ABIKind getABIKind() const { return Kind; } 4912 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4913 4914 ABIArgInfo classifyReturnType(QualType RetTy) const; 4915 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4916 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4917 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4918 uint64_t Members) const override; 4919 4920 bool isIllegalVectorType(QualType Ty) const; 4921 4922 void computeInfo(CGFunctionInfo &FI) const override { 4923 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4924 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4925 4926 for (auto &it : FI.arguments()) 4927 it.info = classifyArgumentType(it.type); 4928 } 4929 4930 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4931 CodeGenFunction &CGF) const; 4932 4933 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4934 CodeGenFunction &CGF) const; 4935 4936 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4937 QualType Ty) const override { 4938 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4939 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4940 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4941 } 4942 4943 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4944 QualType Ty) const override; 4945 4946 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4947 bool asReturnValue) const override { 4948 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4949 } 4950 bool isSwiftErrorInRegister() const override { 4951 return true; 4952 } 4953 4954 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4955 unsigned elts) const override; 4956 }; 4957 4958 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4959 public: 4960 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4961 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4962 4963 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4964 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4965 } 4966 4967 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4968 return 31; 4969 } 4970 4971 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4972 4973 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4974 CodeGen::CodeGenModule &CGM) const override { 4975 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 4976 if (!FD) 4977 return; 4978 llvm::Function *Fn = cast<llvm::Function>(GV); 4979 4980 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 4981 if (Kind == CodeGenOptions::SignReturnAddressScope::None) 4982 return; 4983 4984 Fn->addFnAttr("sign-return-address", 4985 Kind == CodeGenOptions::SignReturnAddressScope::All 4986 ? "all" 4987 : "non-leaf"); 4988 } 4989 }; 4990 4991 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4992 public: 4993 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4994 : AArch64TargetCodeGenInfo(CGT, K) {} 4995 4996 void getDependentLibraryOption(llvm::StringRef Lib, 4997 llvm::SmallString<24> &Opt) const override { 4998 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4999 } 5000 5001 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5002 llvm::SmallString<32> &Opt) const override { 5003 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5004 } 5005 }; 5006 } 5007 5008 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5009 Ty = useFirstFieldIfTransparentUnion(Ty); 5010 5011 // Handle illegal vector types here. 5012 if (isIllegalVectorType(Ty)) { 5013 uint64_t Size = getContext().getTypeSize(Ty); 5014 // Android promotes <2 x i8> to i16, not i32 5015 if (isAndroid() && (Size <= 16)) { 5016 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5017 return ABIArgInfo::getDirect(ResType); 5018 } 5019 if (Size <= 32) { 5020 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5021 return ABIArgInfo::getDirect(ResType); 5022 } 5023 if (Size == 64) { 5024 llvm::Type *ResType = 5025 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5026 return ABIArgInfo::getDirect(ResType); 5027 } 5028 if (Size == 128) { 5029 llvm::Type *ResType = 5030 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5031 return ABIArgInfo::getDirect(ResType); 5032 } 5033 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5034 } 5035 5036 if (!isAggregateTypeForABI(Ty)) { 5037 // Treat an enum type as its underlying type. 5038 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5039 Ty = EnumTy->getDecl()->getIntegerType(); 5040 5041 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5042 ? ABIArgInfo::getExtend(Ty) 5043 : ABIArgInfo::getDirect()); 5044 } 5045 5046 // Structures with either a non-trivial destructor or a non-trivial 5047 // copy constructor are always indirect. 5048 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5049 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5050 CGCXXABI::RAA_DirectInMemory); 5051 } 5052 5053 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5054 // elsewhere for GNU compatibility. 5055 uint64_t Size = getContext().getTypeSize(Ty); 5056 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5057 if (IsEmpty || Size == 0) { 5058 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5059 return ABIArgInfo::getIgnore(); 5060 5061 // GNU C mode. The only argument that gets ignored is an empty one with size 5062 // 0. 5063 if (IsEmpty && Size == 0) 5064 return ABIArgInfo::getIgnore(); 5065 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5066 } 5067 5068 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5069 const Type *Base = nullptr; 5070 uint64_t Members = 0; 5071 if (isHomogeneousAggregate(Ty, Base, Members)) { 5072 return ABIArgInfo::getDirect( 5073 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5074 } 5075 5076 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5077 if (Size <= 128) { 5078 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5079 // same size and alignment. 5080 if (getTarget().isRenderScriptTarget()) { 5081 return coerceToIntArray(Ty, getContext(), getVMContext()); 5082 } 5083 unsigned Alignment; 5084 if (Kind == AArch64ABIInfo::AAPCS) { 5085 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5086 Alignment = Alignment < 128 ? 64 : 128; 5087 } else { 5088 Alignment = getContext().getTypeAlign(Ty); 5089 } 5090 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5091 5092 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5093 // For aggregates with 16-byte alignment, we use i128. 5094 if (Alignment < 128 && Size == 128) { 5095 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5096 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5097 } 5098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5099 } 5100 5101 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5102 } 5103 5104 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5105 if (RetTy->isVoidType()) 5106 return ABIArgInfo::getIgnore(); 5107 5108 // Large vector types should be returned via memory. 5109 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5110 return getNaturalAlignIndirect(RetTy); 5111 5112 if (!isAggregateTypeForABI(RetTy)) { 5113 // Treat an enum type as its underlying type. 5114 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5115 RetTy = EnumTy->getDecl()->getIntegerType(); 5116 5117 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5118 ? ABIArgInfo::getExtend(RetTy) 5119 : ABIArgInfo::getDirect()); 5120 } 5121 5122 uint64_t Size = getContext().getTypeSize(RetTy); 5123 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5124 return ABIArgInfo::getIgnore(); 5125 5126 const Type *Base = nullptr; 5127 uint64_t Members = 0; 5128 if (isHomogeneousAggregate(RetTy, Base, Members)) 5129 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5130 return ABIArgInfo::getDirect(); 5131 5132 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5133 if (Size <= 128) { 5134 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5135 // same size and alignment. 5136 if (getTarget().isRenderScriptTarget()) { 5137 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5138 } 5139 unsigned Alignment = getContext().getTypeAlign(RetTy); 5140 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5141 5142 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5143 // For aggregates with 16-byte alignment, we use i128. 5144 if (Alignment < 128 && Size == 128) { 5145 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5146 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5147 } 5148 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5149 } 5150 5151 return getNaturalAlignIndirect(RetTy); 5152 } 5153 5154 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5155 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5156 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5157 // Check whether VT is legal. 5158 unsigned NumElements = VT->getNumElements(); 5159 uint64_t Size = getContext().getTypeSize(VT); 5160 // NumElements should be power of 2. 5161 if (!llvm::isPowerOf2_32(NumElements)) 5162 return true; 5163 return Size != 64 && (Size != 128 || NumElements == 1); 5164 } 5165 return false; 5166 } 5167 5168 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5169 llvm::Type *eltTy, 5170 unsigned elts) const { 5171 if (!llvm::isPowerOf2_32(elts)) 5172 return false; 5173 if (totalSize.getQuantity() != 8 && 5174 (totalSize.getQuantity() != 16 || elts == 1)) 5175 return false; 5176 return true; 5177 } 5178 5179 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5180 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5181 // point type or a short-vector type. This is the same as the 32-bit ABI, 5182 // but with the difference that any floating-point type is allowed, 5183 // including __fp16. 5184 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5185 if (BT->isFloatingPoint()) 5186 return true; 5187 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5188 unsigned VecSize = getContext().getTypeSize(VT); 5189 if (VecSize == 64 || VecSize == 128) 5190 return true; 5191 } 5192 return false; 5193 } 5194 5195 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5196 uint64_t Members) const { 5197 return Members <= 4; 5198 } 5199 5200 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5201 QualType Ty, 5202 CodeGenFunction &CGF) const { 5203 ABIArgInfo AI = classifyArgumentType(Ty); 5204 bool IsIndirect = AI.isIndirect(); 5205 5206 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5207 if (IsIndirect) 5208 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5209 else if (AI.getCoerceToType()) 5210 BaseTy = AI.getCoerceToType(); 5211 5212 unsigned NumRegs = 1; 5213 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5214 BaseTy = ArrTy->getElementType(); 5215 NumRegs = ArrTy->getNumElements(); 5216 } 5217 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5218 5219 // The AArch64 va_list type and handling is specified in the Procedure Call 5220 // Standard, section B.4: 5221 // 5222 // struct { 5223 // void *__stack; 5224 // void *__gr_top; 5225 // void *__vr_top; 5226 // int __gr_offs; 5227 // int __vr_offs; 5228 // }; 5229 5230 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5231 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5232 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5233 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5234 5235 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5236 CharUnits TyAlign = TyInfo.second; 5237 5238 Address reg_offs_p = Address::invalid(); 5239 llvm::Value *reg_offs = nullptr; 5240 int reg_top_index; 5241 CharUnits reg_top_offset; 5242 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5243 if (!IsFPR) { 5244 // 3 is the field number of __gr_offs 5245 reg_offs_p = 5246 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5247 "gr_offs_p"); 5248 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5249 reg_top_index = 1; // field number for __gr_top 5250 reg_top_offset = CharUnits::fromQuantity(8); 5251 RegSize = llvm::alignTo(RegSize, 8); 5252 } else { 5253 // 4 is the field number of __vr_offs. 5254 reg_offs_p = 5255 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5256 "vr_offs_p"); 5257 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5258 reg_top_index = 2; // field number for __vr_top 5259 reg_top_offset = CharUnits::fromQuantity(16); 5260 RegSize = 16 * NumRegs; 5261 } 5262 5263 //======================================= 5264 // Find out where argument was passed 5265 //======================================= 5266 5267 // If reg_offs >= 0 we're already using the stack for this type of 5268 // argument. We don't want to keep updating reg_offs (in case it overflows, 5269 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5270 // whatever they get). 5271 llvm::Value *UsingStack = nullptr; 5272 UsingStack = CGF.Builder.CreateICmpSGE( 5273 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5274 5275 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5276 5277 // Otherwise, at least some kind of argument could go in these registers, the 5278 // question is whether this particular type is too big. 5279 CGF.EmitBlock(MaybeRegBlock); 5280 5281 // Integer arguments may need to correct register alignment (for example a 5282 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5283 // align __gr_offs to calculate the potential address. 5284 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5285 int Align = TyAlign.getQuantity(); 5286 5287 reg_offs = CGF.Builder.CreateAdd( 5288 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5289 "align_regoffs"); 5290 reg_offs = CGF.Builder.CreateAnd( 5291 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5292 "aligned_regoffs"); 5293 } 5294 5295 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5296 // The fact that this is done unconditionally reflects the fact that 5297 // allocating an argument to the stack also uses up all the remaining 5298 // registers of the appropriate kind. 5299 llvm::Value *NewOffset = nullptr; 5300 NewOffset = CGF.Builder.CreateAdd( 5301 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5302 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5303 5304 // Now we're in a position to decide whether this argument really was in 5305 // registers or not. 5306 llvm::Value *InRegs = nullptr; 5307 InRegs = CGF.Builder.CreateICmpSLE( 5308 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5309 5310 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5311 5312 //======================================= 5313 // Argument was in registers 5314 //======================================= 5315 5316 // Now we emit the code for if the argument was originally passed in 5317 // registers. First start the appropriate block: 5318 CGF.EmitBlock(InRegBlock); 5319 5320 llvm::Value *reg_top = nullptr; 5321 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5322 reg_top_offset, "reg_top_p"); 5323 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5324 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5325 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5326 Address RegAddr = Address::invalid(); 5327 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5328 5329 if (IsIndirect) { 5330 // If it's been passed indirectly (actually a struct), whatever we find from 5331 // stored registers or on the stack will actually be a struct **. 5332 MemTy = llvm::PointerType::getUnqual(MemTy); 5333 } 5334 5335 const Type *Base = nullptr; 5336 uint64_t NumMembers = 0; 5337 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5338 if (IsHFA && NumMembers > 1) { 5339 // Homogeneous aggregates passed in registers will have their elements split 5340 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5341 // qN+1, ...). We reload and store into a temporary local variable 5342 // contiguously. 5343 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5344 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5345 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5346 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5347 Address Tmp = CGF.CreateTempAlloca(HFATy, 5348 std::max(TyAlign, BaseTyInfo.second)); 5349 5350 // On big-endian platforms, the value will be right-aligned in its slot. 5351 int Offset = 0; 5352 if (CGF.CGM.getDataLayout().isBigEndian() && 5353 BaseTyInfo.first.getQuantity() < 16) 5354 Offset = 16 - BaseTyInfo.first.getQuantity(); 5355 5356 for (unsigned i = 0; i < NumMembers; ++i) { 5357 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5358 Address LoadAddr = 5359 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5360 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5361 5362 Address StoreAddr = 5363 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5364 5365 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5366 CGF.Builder.CreateStore(Elem, StoreAddr); 5367 } 5368 5369 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5370 } else { 5371 // Otherwise the object is contiguous in memory. 5372 5373 // It might be right-aligned in its slot. 5374 CharUnits SlotSize = BaseAddr.getAlignment(); 5375 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5376 (IsHFA || !isAggregateTypeForABI(Ty)) && 5377 TyInfo.first < SlotSize) { 5378 CharUnits Offset = SlotSize - TyInfo.first; 5379 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5380 } 5381 5382 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5383 } 5384 5385 CGF.EmitBranch(ContBlock); 5386 5387 //======================================= 5388 // Argument was on the stack 5389 //======================================= 5390 CGF.EmitBlock(OnStackBlock); 5391 5392 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5393 CharUnits::Zero(), "stack_p"); 5394 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5395 5396 // Again, stack arguments may need realignment. In this case both integer and 5397 // floating-point ones might be affected. 5398 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5399 int Align = TyAlign.getQuantity(); 5400 5401 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5402 5403 OnStackPtr = CGF.Builder.CreateAdd( 5404 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5405 "align_stack"); 5406 OnStackPtr = CGF.Builder.CreateAnd( 5407 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5408 "align_stack"); 5409 5410 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5411 } 5412 Address OnStackAddr(OnStackPtr, 5413 std::max(CharUnits::fromQuantity(8), TyAlign)); 5414 5415 // All stack slots are multiples of 8 bytes. 5416 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5417 CharUnits StackSize; 5418 if (IsIndirect) 5419 StackSize = StackSlotSize; 5420 else 5421 StackSize = TyInfo.first.alignTo(StackSlotSize); 5422 5423 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5424 llvm::Value *NewStack = 5425 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5426 5427 // Write the new value of __stack for the next call to va_arg 5428 CGF.Builder.CreateStore(NewStack, stack_p); 5429 5430 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5431 TyInfo.first < StackSlotSize) { 5432 CharUnits Offset = StackSlotSize - TyInfo.first; 5433 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5434 } 5435 5436 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5437 5438 CGF.EmitBranch(ContBlock); 5439 5440 //======================================= 5441 // Tidy up 5442 //======================================= 5443 CGF.EmitBlock(ContBlock); 5444 5445 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5446 OnStackAddr, OnStackBlock, "vaargs.addr"); 5447 5448 if (IsIndirect) 5449 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5450 TyInfo.second); 5451 5452 return ResAddr; 5453 } 5454 5455 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5456 CodeGenFunction &CGF) const { 5457 // The backend's lowering doesn't support va_arg for aggregates or 5458 // illegal vector types. Lower VAArg here for these cases and use 5459 // the LLVM va_arg instruction for everything else. 5460 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5461 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5462 5463 CharUnits SlotSize = CharUnits::fromQuantity(8); 5464 5465 // Empty records are ignored for parameter passing purposes. 5466 if (isEmptyRecord(getContext(), Ty, true)) { 5467 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5468 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5469 return Addr; 5470 } 5471 5472 // The size of the actual thing passed, which might end up just 5473 // being a pointer for indirect types. 5474 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5475 5476 // Arguments bigger than 16 bytes which aren't homogeneous 5477 // aggregates should be passed indirectly. 5478 bool IsIndirect = false; 5479 if (TyInfo.first.getQuantity() > 16) { 5480 const Type *Base = nullptr; 5481 uint64_t Members = 0; 5482 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5483 } 5484 5485 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5486 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5487 } 5488 5489 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5490 QualType Ty) const { 5491 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5492 CGF.getContext().getTypeInfoInChars(Ty), 5493 CharUnits::fromQuantity(8), 5494 /*allowHigherAlign*/ false); 5495 } 5496 5497 //===----------------------------------------------------------------------===// 5498 // ARM ABI Implementation 5499 //===----------------------------------------------------------------------===// 5500 5501 namespace { 5502 5503 class ARMABIInfo : public SwiftABIInfo { 5504 public: 5505 enum ABIKind { 5506 APCS = 0, 5507 AAPCS = 1, 5508 AAPCS_VFP = 2, 5509 AAPCS16_VFP = 3, 5510 }; 5511 5512 private: 5513 ABIKind Kind; 5514 5515 public: 5516 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5517 : SwiftABIInfo(CGT), Kind(_Kind) { 5518 setCCs(); 5519 } 5520 5521 bool isEABI() const { 5522 switch (getTarget().getTriple().getEnvironment()) { 5523 case llvm::Triple::Android: 5524 case llvm::Triple::EABI: 5525 case llvm::Triple::EABIHF: 5526 case llvm::Triple::GNUEABI: 5527 case llvm::Triple::GNUEABIHF: 5528 case llvm::Triple::MuslEABI: 5529 case llvm::Triple::MuslEABIHF: 5530 return true; 5531 default: 5532 return false; 5533 } 5534 } 5535 5536 bool isEABIHF() const { 5537 switch (getTarget().getTriple().getEnvironment()) { 5538 case llvm::Triple::EABIHF: 5539 case llvm::Triple::GNUEABIHF: 5540 case llvm::Triple::MuslEABIHF: 5541 return true; 5542 default: 5543 return false; 5544 } 5545 } 5546 5547 ABIKind getABIKind() const { return Kind; } 5548 5549 private: 5550 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5551 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5552 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5553 uint64_t Members) const; 5554 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5555 bool isIllegalVectorType(QualType Ty) const; 5556 5557 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5558 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5559 uint64_t Members) const override; 5560 5561 void computeInfo(CGFunctionInfo &FI) const override; 5562 5563 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5564 QualType Ty) const override; 5565 5566 llvm::CallingConv::ID getLLVMDefaultCC() const; 5567 llvm::CallingConv::ID getABIDefaultCC() const; 5568 void setCCs(); 5569 5570 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5571 bool asReturnValue) const override { 5572 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5573 } 5574 bool isSwiftErrorInRegister() const override { 5575 return true; 5576 } 5577 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5578 unsigned elts) const override; 5579 }; 5580 5581 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5582 public: 5583 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5584 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5585 5586 const ARMABIInfo &getABIInfo() const { 5587 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5588 } 5589 5590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5591 return 13; 5592 } 5593 5594 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5595 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5596 } 5597 5598 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5599 llvm::Value *Address) const override { 5600 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5601 5602 // 0-15 are the 16 integer registers. 5603 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5604 return false; 5605 } 5606 5607 unsigned getSizeOfUnwindException() const override { 5608 if (getABIInfo().isEABI()) return 88; 5609 return TargetCodeGenInfo::getSizeOfUnwindException(); 5610 } 5611 5612 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5613 CodeGen::CodeGenModule &CGM) const override { 5614 if (GV->isDeclaration()) 5615 return; 5616 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5617 if (!FD) 5618 return; 5619 5620 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5621 if (!Attr) 5622 return; 5623 5624 const char *Kind; 5625 switch (Attr->getInterrupt()) { 5626 case ARMInterruptAttr::Generic: Kind = ""; break; 5627 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5628 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5629 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5630 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5631 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5632 } 5633 5634 llvm::Function *Fn = cast<llvm::Function>(GV); 5635 5636 Fn->addFnAttr("interrupt", Kind); 5637 5638 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5639 if (ABI == ARMABIInfo::APCS) 5640 return; 5641 5642 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5643 // however this is not necessarily true on taking any interrupt. Instruct 5644 // the backend to perform a realignment as part of the function prologue. 5645 llvm::AttrBuilder B; 5646 B.addStackAlignmentAttr(8); 5647 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5648 } 5649 }; 5650 5651 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5652 public: 5653 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5654 : ARMTargetCodeGenInfo(CGT, K) {} 5655 5656 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5657 CodeGen::CodeGenModule &CGM) const override; 5658 5659 void getDependentLibraryOption(llvm::StringRef Lib, 5660 llvm::SmallString<24> &Opt) const override { 5661 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5662 } 5663 5664 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5665 llvm::SmallString<32> &Opt) const override { 5666 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5667 } 5668 }; 5669 5670 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5671 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5672 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5673 if (GV->isDeclaration()) 5674 return; 5675 addStackProbeTargetAttributes(D, GV, CGM); 5676 } 5677 } 5678 5679 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5680 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5681 FI.getReturnInfo() = 5682 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5683 5684 for (auto &I : FI.arguments()) 5685 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5686 5687 // Always honor user-specified calling convention. 5688 if (FI.getCallingConvention() != llvm::CallingConv::C) 5689 return; 5690 5691 llvm::CallingConv::ID cc = getRuntimeCC(); 5692 if (cc != llvm::CallingConv::C) 5693 FI.setEffectiveCallingConvention(cc); 5694 } 5695 5696 /// Return the default calling convention that LLVM will use. 5697 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5698 // The default calling convention that LLVM will infer. 5699 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5700 return llvm::CallingConv::ARM_AAPCS_VFP; 5701 else if (isEABI()) 5702 return llvm::CallingConv::ARM_AAPCS; 5703 else 5704 return llvm::CallingConv::ARM_APCS; 5705 } 5706 5707 /// Return the calling convention that our ABI would like us to use 5708 /// as the C calling convention. 5709 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5710 switch (getABIKind()) { 5711 case APCS: return llvm::CallingConv::ARM_APCS; 5712 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5713 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5714 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5715 } 5716 llvm_unreachable("bad ABI kind"); 5717 } 5718 5719 void ARMABIInfo::setCCs() { 5720 assert(getRuntimeCC() == llvm::CallingConv::C); 5721 5722 // Don't muddy up the IR with a ton of explicit annotations if 5723 // they'd just match what LLVM will infer from the triple. 5724 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5725 if (abiCC != getLLVMDefaultCC()) 5726 RuntimeCC = abiCC; 5727 } 5728 5729 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5730 uint64_t Size = getContext().getTypeSize(Ty); 5731 if (Size <= 32) { 5732 llvm::Type *ResType = 5733 llvm::Type::getInt32Ty(getVMContext()); 5734 return ABIArgInfo::getDirect(ResType); 5735 } 5736 if (Size == 64 || Size == 128) { 5737 llvm::Type *ResType = llvm::VectorType::get( 5738 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5739 return ABIArgInfo::getDirect(ResType); 5740 } 5741 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5742 } 5743 5744 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5745 const Type *Base, 5746 uint64_t Members) const { 5747 assert(Base && "Base class should be set for homogeneous aggregate"); 5748 // Base can be a floating-point or a vector. 5749 if (const VectorType *VT = Base->getAs<VectorType>()) { 5750 // FP16 vectors should be converted to integer vectors 5751 if (!getTarget().hasLegalHalfType() && 5752 (VT->getElementType()->isFloat16Type() || 5753 VT->getElementType()->isHalfType())) { 5754 uint64_t Size = getContext().getTypeSize(VT); 5755 llvm::Type *NewVecTy = llvm::VectorType::get( 5756 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5757 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5758 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5759 } 5760 } 5761 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5762 } 5763 5764 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5765 bool isVariadic) const { 5766 // 6.1.2.1 The following argument types are VFP CPRCs: 5767 // A single-precision floating-point type (including promoted 5768 // half-precision types); A double-precision floating-point type; 5769 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5770 // with a Base Type of a single- or double-precision floating-point type, 5771 // 64-bit containerized vectors or 128-bit containerized vectors with one 5772 // to four Elements. 5773 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5774 5775 Ty = useFirstFieldIfTransparentUnion(Ty); 5776 5777 // Handle illegal vector types here. 5778 if (isIllegalVectorType(Ty)) 5779 return coerceIllegalVector(Ty); 5780 5781 // _Float16 and __fp16 get passed as if it were an int or float, but with 5782 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5783 // half type natively, and does not need to interwork with AAPCS code. 5784 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5785 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5786 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5787 llvm::Type::getFloatTy(getVMContext()) : 5788 llvm::Type::getInt32Ty(getVMContext()); 5789 return ABIArgInfo::getDirect(ResType); 5790 } 5791 5792 if (!isAggregateTypeForABI(Ty)) { 5793 // Treat an enum type as its underlying type. 5794 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5795 Ty = EnumTy->getDecl()->getIntegerType(); 5796 } 5797 5798 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5799 : ABIArgInfo::getDirect()); 5800 } 5801 5802 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5803 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5804 } 5805 5806 // Ignore empty records. 5807 if (isEmptyRecord(getContext(), Ty, true)) 5808 return ABIArgInfo::getIgnore(); 5809 5810 if (IsEffectivelyAAPCS_VFP) { 5811 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5812 // into VFP registers. 5813 const Type *Base = nullptr; 5814 uint64_t Members = 0; 5815 if (isHomogeneousAggregate(Ty, Base, Members)) 5816 return classifyHomogeneousAggregate(Ty, Base, Members); 5817 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5818 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5819 // this convention even for a variadic function: the backend will use GPRs 5820 // if needed. 5821 const Type *Base = nullptr; 5822 uint64_t Members = 0; 5823 if (isHomogeneousAggregate(Ty, Base, Members)) { 5824 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5825 llvm::Type *Ty = 5826 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5827 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5828 } 5829 } 5830 5831 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5832 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5833 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5834 // bigger than 128-bits, they get placed in space allocated by the caller, 5835 // and a pointer is passed. 5836 return ABIArgInfo::getIndirect( 5837 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5838 } 5839 5840 // Support byval for ARM. 5841 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5842 // most 8-byte. We realign the indirect argument if type alignment is bigger 5843 // than ABI alignment. 5844 uint64_t ABIAlign = 4; 5845 uint64_t TyAlign; 5846 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5847 getABIKind() == ARMABIInfo::AAPCS) { 5848 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5849 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5850 } else { 5851 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5852 } 5853 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5854 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5855 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5856 /*ByVal=*/true, 5857 /*Realign=*/TyAlign > ABIAlign); 5858 } 5859 5860 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5861 // same size and alignment. 5862 if (getTarget().isRenderScriptTarget()) { 5863 return coerceToIntArray(Ty, getContext(), getVMContext()); 5864 } 5865 5866 // Otherwise, pass by coercing to a structure of the appropriate size. 5867 llvm::Type* ElemTy; 5868 unsigned SizeRegs; 5869 // FIXME: Try to match the types of the arguments more accurately where 5870 // we can. 5871 if (TyAlign <= 4) { 5872 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5873 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5874 } else { 5875 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5876 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5877 } 5878 5879 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5880 } 5881 5882 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5883 llvm::LLVMContext &VMContext) { 5884 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5885 // is called integer-like if its size is less than or equal to one word, and 5886 // the offset of each of its addressable sub-fields is zero. 5887 5888 uint64_t Size = Context.getTypeSize(Ty); 5889 5890 // Check that the type fits in a word. 5891 if (Size > 32) 5892 return false; 5893 5894 // FIXME: Handle vector types! 5895 if (Ty->isVectorType()) 5896 return false; 5897 5898 // Float types are never treated as "integer like". 5899 if (Ty->isRealFloatingType()) 5900 return false; 5901 5902 // If this is a builtin or pointer type then it is ok. 5903 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5904 return true; 5905 5906 // Small complex integer types are "integer like". 5907 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5908 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5909 5910 // Single element and zero sized arrays should be allowed, by the definition 5911 // above, but they are not. 5912 5913 // Otherwise, it must be a record type. 5914 const RecordType *RT = Ty->getAs<RecordType>(); 5915 if (!RT) return false; 5916 5917 // Ignore records with flexible arrays. 5918 const RecordDecl *RD = RT->getDecl(); 5919 if (RD->hasFlexibleArrayMember()) 5920 return false; 5921 5922 // Check that all sub-fields are at offset 0, and are themselves "integer 5923 // like". 5924 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5925 5926 bool HadField = false; 5927 unsigned idx = 0; 5928 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5929 i != e; ++i, ++idx) { 5930 const FieldDecl *FD = *i; 5931 5932 // Bit-fields are not addressable, we only need to verify they are "integer 5933 // like". We still have to disallow a subsequent non-bitfield, for example: 5934 // struct { int : 0; int x } 5935 // is non-integer like according to gcc. 5936 if (FD->isBitField()) { 5937 if (!RD->isUnion()) 5938 HadField = true; 5939 5940 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5941 return false; 5942 5943 continue; 5944 } 5945 5946 // Check if this field is at offset 0. 5947 if (Layout.getFieldOffset(idx) != 0) 5948 return false; 5949 5950 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5951 return false; 5952 5953 // Only allow at most one field in a structure. This doesn't match the 5954 // wording above, but follows gcc in situations with a field following an 5955 // empty structure. 5956 if (!RD->isUnion()) { 5957 if (HadField) 5958 return false; 5959 5960 HadField = true; 5961 } 5962 } 5963 5964 return true; 5965 } 5966 5967 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5968 bool isVariadic) const { 5969 bool IsEffectivelyAAPCS_VFP = 5970 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5971 5972 if (RetTy->isVoidType()) 5973 return ABIArgInfo::getIgnore(); 5974 5975 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 5976 // Large vector types should be returned via memory. 5977 if (getContext().getTypeSize(RetTy) > 128) 5978 return getNaturalAlignIndirect(RetTy); 5979 // FP16 vectors should be converted to integer vectors 5980 if (!getTarget().hasLegalHalfType() && 5981 (VT->getElementType()->isFloat16Type() || 5982 VT->getElementType()->isHalfType())) 5983 return coerceIllegalVector(RetTy); 5984 } 5985 5986 // _Float16 and __fp16 get returned as if it were an int or float, but with 5987 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5988 // half type natively, and does not need to interwork with AAPCS code. 5989 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5990 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5991 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5992 llvm::Type::getFloatTy(getVMContext()) : 5993 llvm::Type::getInt32Ty(getVMContext()); 5994 return ABIArgInfo::getDirect(ResType); 5995 } 5996 5997 if (!isAggregateTypeForABI(RetTy)) { 5998 // Treat an enum type as its underlying type. 5999 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6000 RetTy = EnumTy->getDecl()->getIntegerType(); 6001 6002 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6003 : ABIArgInfo::getDirect(); 6004 } 6005 6006 // Are we following APCS? 6007 if (getABIKind() == APCS) { 6008 if (isEmptyRecord(getContext(), RetTy, false)) 6009 return ABIArgInfo::getIgnore(); 6010 6011 // Complex types are all returned as packed integers. 6012 // 6013 // FIXME: Consider using 2 x vector types if the back end handles them 6014 // correctly. 6015 if (RetTy->isAnyComplexType()) 6016 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6017 getVMContext(), getContext().getTypeSize(RetTy))); 6018 6019 // Integer like structures are returned in r0. 6020 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6021 // Return in the smallest viable integer type. 6022 uint64_t Size = getContext().getTypeSize(RetTy); 6023 if (Size <= 8) 6024 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6025 if (Size <= 16) 6026 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6027 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6028 } 6029 6030 // Otherwise return in memory. 6031 return getNaturalAlignIndirect(RetTy); 6032 } 6033 6034 // Otherwise this is an AAPCS variant. 6035 6036 if (isEmptyRecord(getContext(), RetTy, true)) 6037 return ABIArgInfo::getIgnore(); 6038 6039 // Check for homogeneous aggregates with AAPCS-VFP. 6040 if (IsEffectivelyAAPCS_VFP) { 6041 const Type *Base = nullptr; 6042 uint64_t Members = 0; 6043 if (isHomogeneousAggregate(RetTy, Base, Members)) 6044 return classifyHomogeneousAggregate(RetTy, Base, Members); 6045 } 6046 6047 // Aggregates <= 4 bytes are returned in r0; other aggregates 6048 // are returned indirectly. 6049 uint64_t Size = getContext().getTypeSize(RetTy); 6050 if (Size <= 32) { 6051 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6052 // same size and alignment. 6053 if (getTarget().isRenderScriptTarget()) { 6054 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6055 } 6056 if (getDataLayout().isBigEndian()) 6057 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6058 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6059 6060 // Return in the smallest viable integer type. 6061 if (Size <= 8) 6062 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6063 if (Size <= 16) 6064 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6065 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6066 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6067 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6068 llvm::Type *CoerceTy = 6069 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6070 return ABIArgInfo::getDirect(CoerceTy); 6071 } 6072 6073 return getNaturalAlignIndirect(RetTy); 6074 } 6075 6076 /// isIllegalVector - check whether Ty is an illegal vector type. 6077 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6078 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6079 // On targets that don't support FP16, FP16 is expanded into float, and we 6080 // don't want the ABI to depend on whether or not FP16 is supported in 6081 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6082 if (!getTarget().hasLegalHalfType() && 6083 (VT->getElementType()->isFloat16Type() || 6084 VT->getElementType()->isHalfType())) 6085 return true; 6086 if (isAndroid()) { 6087 // Android shipped using Clang 3.1, which supported a slightly different 6088 // vector ABI. The primary differences were that 3-element vector types 6089 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6090 // accepts that legacy behavior for Android only. 6091 // Check whether VT is legal. 6092 unsigned NumElements = VT->getNumElements(); 6093 // NumElements should be power of 2 or equal to 3. 6094 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6095 return true; 6096 } else { 6097 // Check whether VT is legal. 6098 unsigned NumElements = VT->getNumElements(); 6099 uint64_t Size = getContext().getTypeSize(VT); 6100 // NumElements should be power of 2. 6101 if (!llvm::isPowerOf2_32(NumElements)) 6102 return true; 6103 // Size should be greater than 32 bits. 6104 return Size <= 32; 6105 } 6106 } 6107 return false; 6108 } 6109 6110 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6111 llvm::Type *eltTy, 6112 unsigned numElts) const { 6113 if (!llvm::isPowerOf2_32(numElts)) 6114 return false; 6115 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6116 if (size > 64) 6117 return false; 6118 if (vectorSize.getQuantity() != 8 && 6119 (vectorSize.getQuantity() != 16 || numElts == 1)) 6120 return false; 6121 return true; 6122 } 6123 6124 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6125 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6126 // double, or 64-bit or 128-bit vectors. 6127 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6128 if (BT->getKind() == BuiltinType::Float || 6129 BT->getKind() == BuiltinType::Double || 6130 BT->getKind() == BuiltinType::LongDouble) 6131 return true; 6132 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6133 unsigned VecSize = getContext().getTypeSize(VT); 6134 if (VecSize == 64 || VecSize == 128) 6135 return true; 6136 } 6137 return false; 6138 } 6139 6140 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6141 uint64_t Members) const { 6142 return Members <= 4; 6143 } 6144 6145 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6146 QualType Ty) const { 6147 CharUnits SlotSize = CharUnits::fromQuantity(4); 6148 6149 // Empty records are ignored for parameter passing purposes. 6150 if (isEmptyRecord(getContext(), Ty, true)) { 6151 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6152 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6153 return Addr; 6154 } 6155 6156 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6157 CharUnits TyAlignForABI = TyInfo.second; 6158 6159 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6160 bool IsIndirect = false; 6161 const Type *Base = nullptr; 6162 uint64_t Members = 0; 6163 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6164 IsIndirect = true; 6165 6166 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6167 // allocated by the caller. 6168 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6169 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6170 !isHomogeneousAggregate(Ty, Base, Members)) { 6171 IsIndirect = true; 6172 6173 // Otherwise, bound the type's ABI alignment. 6174 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6175 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6176 // Our callers should be prepared to handle an under-aligned address. 6177 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6178 getABIKind() == ARMABIInfo::AAPCS) { 6179 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6180 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6181 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6182 // ARMv7k allows type alignment up to 16 bytes. 6183 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6184 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6185 } else { 6186 TyAlignForABI = CharUnits::fromQuantity(4); 6187 } 6188 TyInfo.second = TyAlignForABI; 6189 6190 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6191 SlotSize, /*AllowHigherAlign*/ true); 6192 } 6193 6194 //===----------------------------------------------------------------------===// 6195 // NVPTX ABI Implementation 6196 //===----------------------------------------------------------------------===// 6197 6198 namespace { 6199 6200 class NVPTXABIInfo : public ABIInfo { 6201 public: 6202 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6203 6204 ABIArgInfo classifyReturnType(QualType RetTy) const; 6205 ABIArgInfo classifyArgumentType(QualType Ty) const; 6206 6207 void computeInfo(CGFunctionInfo &FI) const override; 6208 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6209 QualType Ty) const override; 6210 }; 6211 6212 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6213 public: 6214 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6215 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6216 6217 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6218 CodeGen::CodeGenModule &M) const override; 6219 bool shouldEmitStaticExternCAliases() const override; 6220 6221 private: 6222 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6223 // resulting MDNode to the nvvm.annotations MDNode. 6224 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6225 }; 6226 6227 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6228 if (RetTy->isVoidType()) 6229 return ABIArgInfo::getIgnore(); 6230 6231 // note: this is different from default ABI 6232 if (!RetTy->isScalarType()) 6233 return ABIArgInfo::getDirect(); 6234 6235 // Treat an enum type as its underlying type. 6236 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6237 RetTy = EnumTy->getDecl()->getIntegerType(); 6238 6239 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6240 : ABIArgInfo::getDirect()); 6241 } 6242 6243 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6244 // Treat an enum type as its underlying type. 6245 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6246 Ty = EnumTy->getDecl()->getIntegerType(); 6247 6248 // Return aggregates type as indirect by value 6249 if (isAggregateTypeForABI(Ty)) 6250 return getNaturalAlignIndirect(Ty, /* byval */ true); 6251 6252 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6253 : ABIArgInfo::getDirect()); 6254 } 6255 6256 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6257 if (!getCXXABI().classifyReturnType(FI)) 6258 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6259 for (auto &I : FI.arguments()) 6260 I.info = classifyArgumentType(I.type); 6261 6262 // Always honor user-specified calling convention. 6263 if (FI.getCallingConvention() != llvm::CallingConv::C) 6264 return; 6265 6266 FI.setEffectiveCallingConvention(getRuntimeCC()); 6267 } 6268 6269 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6270 QualType Ty) const { 6271 llvm_unreachable("NVPTX does not support varargs"); 6272 } 6273 6274 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6275 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6276 if (GV->isDeclaration()) 6277 return; 6278 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6279 if (!FD) return; 6280 6281 llvm::Function *F = cast<llvm::Function>(GV); 6282 6283 // Perform special handling in OpenCL mode 6284 if (M.getLangOpts().OpenCL) { 6285 // Use OpenCL function attributes to check for kernel functions 6286 // By default, all functions are device functions 6287 if (FD->hasAttr<OpenCLKernelAttr>()) { 6288 // OpenCL __kernel functions get kernel metadata 6289 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6290 addNVVMMetadata(F, "kernel", 1); 6291 // And kernel functions are not subject to inlining 6292 F->addFnAttr(llvm::Attribute::NoInline); 6293 } 6294 } 6295 6296 // Perform special handling in CUDA mode. 6297 if (M.getLangOpts().CUDA) { 6298 // CUDA __global__ functions get a kernel metadata entry. Since 6299 // __global__ functions cannot be called from the device, we do not 6300 // need to set the noinline attribute. 6301 if (FD->hasAttr<CUDAGlobalAttr>()) { 6302 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6303 addNVVMMetadata(F, "kernel", 1); 6304 } 6305 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6306 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6307 llvm::APSInt MaxThreads(32); 6308 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6309 if (MaxThreads > 0) 6310 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6311 6312 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6313 // not specified in __launch_bounds__ or if the user specified a 0 value, 6314 // we don't have to add a PTX directive. 6315 if (Attr->getMinBlocks()) { 6316 llvm::APSInt MinBlocks(32); 6317 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6318 if (MinBlocks > 0) 6319 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6320 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6321 } 6322 } 6323 } 6324 } 6325 6326 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6327 int Operand) { 6328 llvm::Module *M = F->getParent(); 6329 llvm::LLVMContext &Ctx = M->getContext(); 6330 6331 // Get "nvvm.annotations" metadata node 6332 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6333 6334 llvm::Metadata *MDVals[] = { 6335 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6336 llvm::ConstantAsMetadata::get( 6337 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6338 // Append metadata to nvvm.annotations 6339 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6340 } 6341 6342 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6343 return false; 6344 } 6345 } 6346 6347 //===----------------------------------------------------------------------===// 6348 // SystemZ ABI Implementation 6349 //===----------------------------------------------------------------------===// 6350 6351 namespace { 6352 6353 class SystemZABIInfo : public SwiftABIInfo { 6354 bool HasVector; 6355 6356 public: 6357 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6358 : SwiftABIInfo(CGT), HasVector(HV) {} 6359 6360 bool isPromotableIntegerType(QualType Ty) const; 6361 bool isCompoundType(QualType Ty) const; 6362 bool isVectorArgumentType(QualType Ty) const; 6363 bool isFPArgumentType(QualType Ty) const; 6364 QualType GetSingleElementType(QualType Ty) const; 6365 6366 ABIArgInfo classifyReturnType(QualType RetTy) const; 6367 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6368 6369 void computeInfo(CGFunctionInfo &FI) const override { 6370 if (!getCXXABI().classifyReturnType(FI)) 6371 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6372 for (auto &I : FI.arguments()) 6373 I.info = classifyArgumentType(I.type); 6374 } 6375 6376 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6377 QualType Ty) const override; 6378 6379 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6380 bool asReturnValue) const override { 6381 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6382 } 6383 bool isSwiftErrorInRegister() const override { 6384 return false; 6385 } 6386 }; 6387 6388 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6389 public: 6390 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6391 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6392 }; 6393 6394 } 6395 6396 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6397 // Treat an enum type as its underlying type. 6398 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6399 Ty = EnumTy->getDecl()->getIntegerType(); 6400 6401 // Promotable integer types are required to be promoted by the ABI. 6402 if (Ty->isPromotableIntegerType()) 6403 return true; 6404 6405 // 32-bit values must also be promoted. 6406 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6407 switch (BT->getKind()) { 6408 case BuiltinType::Int: 6409 case BuiltinType::UInt: 6410 return true; 6411 default: 6412 return false; 6413 } 6414 return false; 6415 } 6416 6417 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6418 return (Ty->isAnyComplexType() || 6419 Ty->isVectorType() || 6420 isAggregateTypeForABI(Ty)); 6421 } 6422 6423 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6424 return (HasVector && 6425 Ty->isVectorType() && 6426 getContext().getTypeSize(Ty) <= 128); 6427 } 6428 6429 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6430 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6431 switch (BT->getKind()) { 6432 case BuiltinType::Float: 6433 case BuiltinType::Double: 6434 return true; 6435 default: 6436 return false; 6437 } 6438 6439 return false; 6440 } 6441 6442 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6443 if (const RecordType *RT = Ty->getAsStructureType()) { 6444 const RecordDecl *RD = RT->getDecl(); 6445 QualType Found; 6446 6447 // If this is a C++ record, check the bases first. 6448 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6449 for (const auto &I : CXXRD->bases()) { 6450 QualType Base = I.getType(); 6451 6452 // Empty bases don't affect things either way. 6453 if (isEmptyRecord(getContext(), Base, true)) 6454 continue; 6455 6456 if (!Found.isNull()) 6457 return Ty; 6458 Found = GetSingleElementType(Base); 6459 } 6460 6461 // Check the fields. 6462 for (const auto *FD : RD->fields()) { 6463 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6464 // Unlike isSingleElementStruct(), empty structure and array fields 6465 // do count. So do anonymous bitfields that aren't zero-sized. 6466 if (getContext().getLangOpts().CPlusPlus && 6467 FD->isZeroLengthBitField(getContext())) 6468 continue; 6469 6470 // Unlike isSingleElementStruct(), arrays do not count. 6471 // Nested structures still do though. 6472 if (!Found.isNull()) 6473 return Ty; 6474 Found = GetSingleElementType(FD->getType()); 6475 } 6476 6477 // Unlike isSingleElementStruct(), trailing padding is allowed. 6478 // An 8-byte aligned struct s { float f; } is passed as a double. 6479 if (!Found.isNull()) 6480 return Found; 6481 } 6482 6483 return Ty; 6484 } 6485 6486 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6487 QualType Ty) const { 6488 // Assume that va_list type is correct; should be pointer to LLVM type: 6489 // struct { 6490 // i64 __gpr; 6491 // i64 __fpr; 6492 // i8 *__overflow_arg_area; 6493 // i8 *__reg_save_area; 6494 // }; 6495 6496 // Every non-vector argument occupies 8 bytes and is passed by preference 6497 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6498 // always passed on the stack. 6499 Ty = getContext().getCanonicalType(Ty); 6500 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6501 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6502 llvm::Type *DirectTy = ArgTy; 6503 ABIArgInfo AI = classifyArgumentType(Ty); 6504 bool IsIndirect = AI.isIndirect(); 6505 bool InFPRs = false; 6506 bool IsVector = false; 6507 CharUnits UnpaddedSize; 6508 CharUnits DirectAlign; 6509 if (IsIndirect) { 6510 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6511 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6512 } else { 6513 if (AI.getCoerceToType()) 6514 ArgTy = AI.getCoerceToType(); 6515 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6516 IsVector = ArgTy->isVectorTy(); 6517 UnpaddedSize = TyInfo.first; 6518 DirectAlign = TyInfo.second; 6519 } 6520 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6521 if (IsVector && UnpaddedSize > PaddedSize) 6522 PaddedSize = CharUnits::fromQuantity(16); 6523 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6524 6525 CharUnits Padding = (PaddedSize - UnpaddedSize); 6526 6527 llvm::Type *IndexTy = CGF.Int64Ty; 6528 llvm::Value *PaddedSizeV = 6529 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6530 6531 if (IsVector) { 6532 // Work out the address of a vector argument on the stack. 6533 // Vector arguments are always passed in the high bits of a 6534 // single (8 byte) or double (16 byte) stack slot. 6535 Address OverflowArgAreaPtr = 6536 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6537 "overflow_arg_area_ptr"); 6538 Address OverflowArgArea = 6539 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6540 TyInfo.second); 6541 Address MemAddr = 6542 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6543 6544 // Update overflow_arg_area_ptr pointer 6545 llvm::Value *NewOverflowArgArea = 6546 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6547 "overflow_arg_area"); 6548 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6549 6550 return MemAddr; 6551 } 6552 6553 assert(PaddedSize.getQuantity() == 8); 6554 6555 unsigned MaxRegs, RegCountField, RegSaveIndex; 6556 CharUnits RegPadding; 6557 if (InFPRs) { 6558 MaxRegs = 4; // Maximum of 4 FPR arguments 6559 RegCountField = 1; // __fpr 6560 RegSaveIndex = 16; // save offset for f0 6561 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6562 } else { 6563 MaxRegs = 5; // Maximum of 5 GPR arguments 6564 RegCountField = 0; // __gpr 6565 RegSaveIndex = 2; // save offset for r2 6566 RegPadding = Padding; // values are passed in the low bits of a GPR 6567 } 6568 6569 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6570 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6571 "reg_count_ptr"); 6572 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6573 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6574 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6575 "fits_in_regs"); 6576 6577 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6578 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6579 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6580 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6581 6582 // Emit code to load the value if it was passed in registers. 6583 CGF.EmitBlock(InRegBlock); 6584 6585 // Work out the address of an argument register. 6586 llvm::Value *ScaledRegCount = 6587 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6588 llvm::Value *RegBase = 6589 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6590 + RegPadding.getQuantity()); 6591 llvm::Value *RegOffset = 6592 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6593 Address RegSaveAreaPtr = 6594 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6595 "reg_save_area_ptr"); 6596 llvm::Value *RegSaveArea = 6597 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6598 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6599 "raw_reg_addr"), 6600 PaddedSize); 6601 Address RegAddr = 6602 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6603 6604 // Update the register count 6605 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6606 llvm::Value *NewRegCount = 6607 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6608 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6609 CGF.EmitBranch(ContBlock); 6610 6611 // Emit code to load the value if it was passed in memory. 6612 CGF.EmitBlock(InMemBlock); 6613 6614 // Work out the address of a stack argument. 6615 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6616 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6617 Address OverflowArgArea = 6618 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6619 PaddedSize); 6620 Address RawMemAddr = 6621 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6622 Address MemAddr = 6623 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6624 6625 // Update overflow_arg_area_ptr pointer 6626 llvm::Value *NewOverflowArgArea = 6627 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6628 "overflow_arg_area"); 6629 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6630 CGF.EmitBranch(ContBlock); 6631 6632 // Return the appropriate result. 6633 CGF.EmitBlock(ContBlock); 6634 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6635 MemAddr, InMemBlock, "va_arg.addr"); 6636 6637 if (IsIndirect) 6638 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6639 TyInfo.second); 6640 6641 return ResAddr; 6642 } 6643 6644 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6645 if (RetTy->isVoidType()) 6646 return ABIArgInfo::getIgnore(); 6647 if (isVectorArgumentType(RetTy)) 6648 return ABIArgInfo::getDirect(); 6649 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6650 return getNaturalAlignIndirect(RetTy); 6651 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6652 : ABIArgInfo::getDirect()); 6653 } 6654 6655 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6656 // Handle the generic C++ ABI. 6657 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6658 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6659 6660 // Integers and enums are extended to full register width. 6661 if (isPromotableIntegerType(Ty)) 6662 return ABIArgInfo::getExtend(Ty); 6663 6664 // Handle vector types and vector-like structure types. Note that 6665 // as opposed to float-like structure types, we do not allow any 6666 // padding for vector-like structures, so verify the sizes match. 6667 uint64_t Size = getContext().getTypeSize(Ty); 6668 QualType SingleElementTy = GetSingleElementType(Ty); 6669 if (isVectorArgumentType(SingleElementTy) && 6670 getContext().getTypeSize(SingleElementTy) == Size) 6671 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6672 6673 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6674 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6675 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6676 6677 // Handle small structures. 6678 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6679 // Structures with flexible arrays have variable length, so really 6680 // fail the size test above. 6681 const RecordDecl *RD = RT->getDecl(); 6682 if (RD->hasFlexibleArrayMember()) 6683 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6684 6685 // The structure is passed as an unextended integer, a float, or a double. 6686 llvm::Type *PassTy; 6687 if (isFPArgumentType(SingleElementTy)) { 6688 assert(Size == 32 || Size == 64); 6689 if (Size == 32) 6690 PassTy = llvm::Type::getFloatTy(getVMContext()); 6691 else 6692 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6693 } else 6694 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6695 return ABIArgInfo::getDirect(PassTy); 6696 } 6697 6698 // Non-structure compounds are passed indirectly. 6699 if (isCompoundType(Ty)) 6700 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6701 6702 return ABIArgInfo::getDirect(nullptr); 6703 } 6704 6705 //===----------------------------------------------------------------------===// 6706 // MSP430 ABI Implementation 6707 //===----------------------------------------------------------------------===// 6708 6709 namespace { 6710 6711 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6712 public: 6713 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6714 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6715 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6716 CodeGen::CodeGenModule &M) const override; 6717 }; 6718 6719 } 6720 6721 void MSP430TargetCodeGenInfo::setTargetAttributes( 6722 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6723 if (GV->isDeclaration()) 6724 return; 6725 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6726 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6727 // Handle 'interrupt' attribute: 6728 llvm::Function *F = cast<llvm::Function>(GV); 6729 6730 // Step 1: Set ISR calling convention. 6731 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6732 6733 // Step 2: Add attributes goodness. 6734 F->addFnAttr(llvm::Attribute::NoInline); 6735 6736 // Step 3: Emit ISR vector alias. 6737 unsigned Num = attr->getNumber() / 2; 6738 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6739 "__isr_" + Twine(Num), F); 6740 } 6741 } 6742 } 6743 6744 //===----------------------------------------------------------------------===// 6745 // MIPS ABI Implementation. This works for both little-endian and 6746 // big-endian variants. 6747 //===----------------------------------------------------------------------===// 6748 6749 namespace { 6750 class MipsABIInfo : public ABIInfo { 6751 bool IsO32; 6752 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6753 void CoerceToIntArgs(uint64_t TySize, 6754 SmallVectorImpl<llvm::Type *> &ArgList) const; 6755 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6756 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6757 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6758 public: 6759 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6760 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6761 StackAlignInBytes(IsO32 ? 8 : 16) {} 6762 6763 ABIArgInfo classifyReturnType(QualType RetTy) const; 6764 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6765 void computeInfo(CGFunctionInfo &FI) const override; 6766 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6767 QualType Ty) const override; 6768 ABIArgInfo extendType(QualType Ty) const; 6769 }; 6770 6771 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6772 unsigned SizeOfUnwindException; 6773 public: 6774 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6775 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6776 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6777 6778 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6779 return 29; 6780 } 6781 6782 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6783 CodeGen::CodeGenModule &CGM) const override { 6784 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6785 if (!FD) return; 6786 llvm::Function *Fn = cast<llvm::Function>(GV); 6787 6788 if (FD->hasAttr<MipsLongCallAttr>()) 6789 Fn->addFnAttr("long-call"); 6790 else if (FD->hasAttr<MipsShortCallAttr>()) 6791 Fn->addFnAttr("short-call"); 6792 6793 // Other attributes do not have a meaning for declarations. 6794 if (GV->isDeclaration()) 6795 return; 6796 6797 if (FD->hasAttr<Mips16Attr>()) { 6798 Fn->addFnAttr("mips16"); 6799 } 6800 else if (FD->hasAttr<NoMips16Attr>()) { 6801 Fn->addFnAttr("nomips16"); 6802 } 6803 6804 if (FD->hasAttr<MicroMipsAttr>()) 6805 Fn->addFnAttr("micromips"); 6806 else if (FD->hasAttr<NoMicroMipsAttr>()) 6807 Fn->addFnAttr("nomicromips"); 6808 6809 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6810 if (!Attr) 6811 return; 6812 6813 const char *Kind; 6814 switch (Attr->getInterrupt()) { 6815 case MipsInterruptAttr::eic: Kind = "eic"; break; 6816 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6817 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6818 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6819 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6820 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6821 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6822 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6823 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6824 } 6825 6826 Fn->addFnAttr("interrupt", Kind); 6827 6828 } 6829 6830 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6831 llvm::Value *Address) const override; 6832 6833 unsigned getSizeOfUnwindException() const override { 6834 return SizeOfUnwindException; 6835 } 6836 }; 6837 } 6838 6839 void MipsABIInfo::CoerceToIntArgs( 6840 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6841 llvm::IntegerType *IntTy = 6842 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6843 6844 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6845 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6846 ArgList.push_back(IntTy); 6847 6848 // If necessary, add one more integer type to ArgList. 6849 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6850 6851 if (R) 6852 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6853 } 6854 6855 // In N32/64, an aligned double precision floating point field is passed in 6856 // a register. 6857 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6858 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6859 6860 if (IsO32) { 6861 CoerceToIntArgs(TySize, ArgList); 6862 return llvm::StructType::get(getVMContext(), ArgList); 6863 } 6864 6865 if (Ty->isComplexType()) 6866 return CGT.ConvertType(Ty); 6867 6868 const RecordType *RT = Ty->getAs<RecordType>(); 6869 6870 // Unions/vectors are passed in integer registers. 6871 if (!RT || !RT->isStructureOrClassType()) { 6872 CoerceToIntArgs(TySize, ArgList); 6873 return llvm::StructType::get(getVMContext(), ArgList); 6874 } 6875 6876 const RecordDecl *RD = RT->getDecl(); 6877 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6878 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6879 6880 uint64_t LastOffset = 0; 6881 unsigned idx = 0; 6882 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6883 6884 // Iterate over fields in the struct/class and check if there are any aligned 6885 // double fields. 6886 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6887 i != e; ++i, ++idx) { 6888 const QualType Ty = i->getType(); 6889 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6890 6891 if (!BT || BT->getKind() != BuiltinType::Double) 6892 continue; 6893 6894 uint64_t Offset = Layout.getFieldOffset(idx); 6895 if (Offset % 64) // Ignore doubles that are not aligned. 6896 continue; 6897 6898 // Add ((Offset - LastOffset) / 64) args of type i64. 6899 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6900 ArgList.push_back(I64); 6901 6902 // Add double type. 6903 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6904 LastOffset = Offset + 64; 6905 } 6906 6907 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6908 ArgList.append(IntArgList.begin(), IntArgList.end()); 6909 6910 return llvm::StructType::get(getVMContext(), ArgList); 6911 } 6912 6913 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6914 uint64_t Offset) const { 6915 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6916 return nullptr; 6917 6918 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6919 } 6920 6921 ABIArgInfo 6922 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6923 Ty = useFirstFieldIfTransparentUnion(Ty); 6924 6925 uint64_t OrigOffset = Offset; 6926 uint64_t TySize = getContext().getTypeSize(Ty); 6927 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6928 6929 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6930 (uint64_t)StackAlignInBytes); 6931 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6932 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6933 6934 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6935 // Ignore empty aggregates. 6936 if (TySize == 0) 6937 return ABIArgInfo::getIgnore(); 6938 6939 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6940 Offset = OrigOffset + MinABIStackAlignInBytes; 6941 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6942 } 6943 6944 // If we have reached here, aggregates are passed directly by coercing to 6945 // another structure type. Padding is inserted if the offset of the 6946 // aggregate is unaligned. 6947 ABIArgInfo ArgInfo = 6948 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6949 getPaddingType(OrigOffset, CurrOffset)); 6950 ArgInfo.setInReg(true); 6951 return ArgInfo; 6952 } 6953 6954 // Treat an enum type as its underlying type. 6955 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6956 Ty = EnumTy->getDecl()->getIntegerType(); 6957 6958 // All integral types are promoted to the GPR width. 6959 if (Ty->isIntegralOrEnumerationType()) 6960 return extendType(Ty); 6961 6962 return ABIArgInfo::getDirect( 6963 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6964 } 6965 6966 llvm::Type* 6967 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6968 const RecordType *RT = RetTy->getAs<RecordType>(); 6969 SmallVector<llvm::Type*, 8> RTList; 6970 6971 if (RT && RT->isStructureOrClassType()) { 6972 const RecordDecl *RD = RT->getDecl(); 6973 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6974 unsigned FieldCnt = Layout.getFieldCount(); 6975 6976 // N32/64 returns struct/classes in floating point registers if the 6977 // following conditions are met: 6978 // 1. The size of the struct/class is no larger than 128-bit. 6979 // 2. The struct/class has one or two fields all of which are floating 6980 // point types. 6981 // 3. The offset of the first field is zero (this follows what gcc does). 6982 // 6983 // Any other composite results are returned in integer registers. 6984 // 6985 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6986 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6987 for (; b != e; ++b) { 6988 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6989 6990 if (!BT || !BT->isFloatingPoint()) 6991 break; 6992 6993 RTList.push_back(CGT.ConvertType(b->getType())); 6994 } 6995 6996 if (b == e) 6997 return llvm::StructType::get(getVMContext(), RTList, 6998 RD->hasAttr<PackedAttr>()); 6999 7000 RTList.clear(); 7001 } 7002 } 7003 7004 CoerceToIntArgs(Size, RTList); 7005 return llvm::StructType::get(getVMContext(), RTList); 7006 } 7007 7008 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7009 uint64_t Size = getContext().getTypeSize(RetTy); 7010 7011 if (RetTy->isVoidType()) 7012 return ABIArgInfo::getIgnore(); 7013 7014 // O32 doesn't treat zero-sized structs differently from other structs. 7015 // However, N32/N64 ignores zero sized return values. 7016 if (!IsO32 && Size == 0) 7017 return ABIArgInfo::getIgnore(); 7018 7019 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7020 if (Size <= 128) { 7021 if (RetTy->isAnyComplexType()) 7022 return ABIArgInfo::getDirect(); 7023 7024 // O32 returns integer vectors in registers and N32/N64 returns all small 7025 // aggregates in registers. 7026 if (!IsO32 || 7027 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7028 ABIArgInfo ArgInfo = 7029 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7030 ArgInfo.setInReg(true); 7031 return ArgInfo; 7032 } 7033 } 7034 7035 return getNaturalAlignIndirect(RetTy); 7036 } 7037 7038 // Treat an enum type as its underlying type. 7039 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7040 RetTy = EnumTy->getDecl()->getIntegerType(); 7041 7042 if (RetTy->isPromotableIntegerType()) 7043 return ABIArgInfo::getExtend(RetTy); 7044 7045 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7046 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7047 return ABIArgInfo::getSignExtend(RetTy); 7048 7049 return ABIArgInfo::getDirect(); 7050 } 7051 7052 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7053 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7054 if (!getCXXABI().classifyReturnType(FI)) 7055 RetInfo = classifyReturnType(FI.getReturnType()); 7056 7057 // Check if a pointer to an aggregate is passed as a hidden argument. 7058 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7059 7060 for (auto &I : FI.arguments()) 7061 I.info = classifyArgumentType(I.type, Offset); 7062 } 7063 7064 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7065 QualType OrigTy) const { 7066 QualType Ty = OrigTy; 7067 7068 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7069 // Pointers are also promoted in the same way but this only matters for N32. 7070 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7071 unsigned PtrWidth = getTarget().getPointerWidth(0); 7072 bool DidPromote = false; 7073 if ((Ty->isIntegerType() && 7074 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7075 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7076 DidPromote = true; 7077 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7078 Ty->isSignedIntegerType()); 7079 } 7080 7081 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7082 7083 // The alignment of things in the argument area is never larger than 7084 // StackAlignInBytes. 7085 TyInfo.second = 7086 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7087 7088 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7089 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7090 7091 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7092 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7093 7094 7095 // If there was a promotion, "unpromote" into a temporary. 7096 // TODO: can we just use a pointer into a subset of the original slot? 7097 if (DidPromote) { 7098 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7099 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7100 7101 // Truncate down to the right width. 7102 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7103 : CGF.IntPtrTy); 7104 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7105 if (OrigTy->isPointerType()) 7106 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7107 7108 CGF.Builder.CreateStore(V, Temp); 7109 Addr = Temp; 7110 } 7111 7112 return Addr; 7113 } 7114 7115 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7116 int TySize = getContext().getTypeSize(Ty); 7117 7118 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7119 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7120 return ABIArgInfo::getSignExtend(Ty); 7121 7122 return ABIArgInfo::getExtend(Ty); 7123 } 7124 7125 bool 7126 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7127 llvm::Value *Address) const { 7128 // This information comes from gcc's implementation, which seems to 7129 // as canonical as it gets. 7130 7131 // Everything on MIPS is 4 bytes. Double-precision FP registers 7132 // are aliased to pairs of single-precision FP registers. 7133 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7134 7135 // 0-31 are the general purpose registers, $0 - $31. 7136 // 32-63 are the floating-point registers, $f0 - $f31. 7137 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7138 // 66 is the (notional, I think) register for signal-handler return. 7139 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7140 7141 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7142 // They are one bit wide and ignored here. 7143 7144 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7145 // (coprocessor 1 is the FP unit) 7146 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7147 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7148 // 176-181 are the DSP accumulator registers. 7149 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7150 return false; 7151 } 7152 7153 //===----------------------------------------------------------------------===// 7154 // AVR ABI Implementation. 7155 //===----------------------------------------------------------------------===// 7156 7157 namespace { 7158 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7159 public: 7160 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7161 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7162 7163 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7164 CodeGen::CodeGenModule &CGM) const override { 7165 if (GV->isDeclaration()) 7166 return; 7167 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7168 if (!FD) return; 7169 auto *Fn = cast<llvm::Function>(GV); 7170 7171 if (FD->getAttr<AVRInterruptAttr>()) 7172 Fn->addFnAttr("interrupt"); 7173 7174 if (FD->getAttr<AVRSignalAttr>()) 7175 Fn->addFnAttr("signal"); 7176 } 7177 }; 7178 } 7179 7180 //===----------------------------------------------------------------------===// 7181 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7182 // Currently subclassed only to implement custom OpenCL C function attribute 7183 // handling. 7184 //===----------------------------------------------------------------------===// 7185 7186 namespace { 7187 7188 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7189 public: 7190 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7191 : DefaultTargetCodeGenInfo(CGT) {} 7192 7193 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7194 CodeGen::CodeGenModule &M) const override; 7195 }; 7196 7197 void TCETargetCodeGenInfo::setTargetAttributes( 7198 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7199 if (GV->isDeclaration()) 7200 return; 7201 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7202 if (!FD) return; 7203 7204 llvm::Function *F = cast<llvm::Function>(GV); 7205 7206 if (M.getLangOpts().OpenCL) { 7207 if (FD->hasAttr<OpenCLKernelAttr>()) { 7208 // OpenCL C Kernel functions are not subject to inlining 7209 F->addFnAttr(llvm::Attribute::NoInline); 7210 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7211 if (Attr) { 7212 // Convert the reqd_work_group_size() attributes to metadata. 7213 llvm::LLVMContext &Context = F->getContext(); 7214 llvm::NamedMDNode *OpenCLMetadata = 7215 M.getModule().getOrInsertNamedMetadata( 7216 "opencl.kernel_wg_size_info"); 7217 7218 SmallVector<llvm::Metadata *, 5> Operands; 7219 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7220 7221 Operands.push_back( 7222 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7223 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7224 Operands.push_back( 7225 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7226 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7227 Operands.push_back( 7228 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7229 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7230 7231 // Add a boolean constant operand for "required" (true) or "hint" 7232 // (false) for implementing the work_group_size_hint attr later. 7233 // Currently always true as the hint is not yet implemented. 7234 Operands.push_back( 7235 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7236 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7237 } 7238 } 7239 } 7240 } 7241 7242 } 7243 7244 //===----------------------------------------------------------------------===// 7245 // Hexagon ABI Implementation 7246 //===----------------------------------------------------------------------===// 7247 7248 namespace { 7249 7250 class HexagonABIInfo : public ABIInfo { 7251 7252 7253 public: 7254 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7255 7256 private: 7257 7258 ABIArgInfo classifyReturnType(QualType RetTy) const; 7259 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7260 7261 void computeInfo(CGFunctionInfo &FI) const override; 7262 7263 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7264 QualType Ty) const override; 7265 }; 7266 7267 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7268 public: 7269 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7270 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7271 7272 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7273 return 29; 7274 } 7275 }; 7276 7277 } 7278 7279 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7280 if (!getCXXABI().classifyReturnType(FI)) 7281 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7282 for (auto &I : FI.arguments()) 7283 I.info = classifyArgumentType(I.type); 7284 } 7285 7286 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7287 if (!isAggregateTypeForABI(Ty)) { 7288 // Treat an enum type as its underlying type. 7289 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7290 Ty = EnumTy->getDecl()->getIntegerType(); 7291 7292 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7293 : ABIArgInfo::getDirect()); 7294 } 7295 7296 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7297 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7298 7299 // Ignore empty records. 7300 if (isEmptyRecord(getContext(), Ty, true)) 7301 return ABIArgInfo::getIgnore(); 7302 7303 uint64_t Size = getContext().getTypeSize(Ty); 7304 if (Size > 64) 7305 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7306 // Pass in the smallest viable integer type. 7307 else if (Size > 32) 7308 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7309 else if (Size > 16) 7310 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7311 else if (Size > 8) 7312 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7313 else 7314 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7315 } 7316 7317 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7318 if (RetTy->isVoidType()) 7319 return ABIArgInfo::getIgnore(); 7320 7321 // Large vector types should be returned via memory. 7322 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7323 return getNaturalAlignIndirect(RetTy); 7324 7325 if (!isAggregateTypeForABI(RetTy)) { 7326 // Treat an enum type as its underlying type. 7327 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7328 RetTy = EnumTy->getDecl()->getIntegerType(); 7329 7330 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7331 : ABIArgInfo::getDirect()); 7332 } 7333 7334 if (isEmptyRecord(getContext(), RetTy, true)) 7335 return ABIArgInfo::getIgnore(); 7336 7337 // Aggregates <= 8 bytes are returned in r0; other aggregates 7338 // are returned indirectly. 7339 uint64_t Size = getContext().getTypeSize(RetTy); 7340 if (Size <= 64) { 7341 // Return in the smallest viable integer type. 7342 if (Size <= 8) 7343 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7344 if (Size <= 16) 7345 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7346 if (Size <= 32) 7347 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7348 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7349 } 7350 7351 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7352 } 7353 7354 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7355 QualType Ty) const { 7356 // FIXME: Someone needs to audit that this handle alignment correctly. 7357 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7358 getContext().getTypeInfoInChars(Ty), 7359 CharUnits::fromQuantity(4), 7360 /*AllowHigherAlign*/ true); 7361 } 7362 7363 //===----------------------------------------------------------------------===// 7364 // Lanai ABI Implementation 7365 //===----------------------------------------------------------------------===// 7366 7367 namespace { 7368 class LanaiABIInfo : public DefaultABIInfo { 7369 public: 7370 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7371 7372 bool shouldUseInReg(QualType Ty, CCState &State) const; 7373 7374 void computeInfo(CGFunctionInfo &FI) const override { 7375 CCState State(FI.getCallingConvention()); 7376 // Lanai uses 4 registers to pass arguments unless the function has the 7377 // regparm attribute set. 7378 if (FI.getHasRegParm()) { 7379 State.FreeRegs = FI.getRegParm(); 7380 } else { 7381 State.FreeRegs = 4; 7382 } 7383 7384 if (!getCXXABI().classifyReturnType(FI)) 7385 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7386 for (auto &I : FI.arguments()) 7387 I.info = classifyArgumentType(I.type, State); 7388 } 7389 7390 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7391 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7392 }; 7393 } // end anonymous namespace 7394 7395 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7396 unsigned Size = getContext().getTypeSize(Ty); 7397 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7398 7399 if (SizeInRegs == 0) 7400 return false; 7401 7402 if (SizeInRegs > State.FreeRegs) { 7403 State.FreeRegs = 0; 7404 return false; 7405 } 7406 7407 State.FreeRegs -= SizeInRegs; 7408 7409 return true; 7410 } 7411 7412 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7413 CCState &State) const { 7414 if (!ByVal) { 7415 if (State.FreeRegs) { 7416 --State.FreeRegs; // Non-byval indirects just use one pointer. 7417 return getNaturalAlignIndirectInReg(Ty); 7418 } 7419 return getNaturalAlignIndirect(Ty, false); 7420 } 7421 7422 // Compute the byval alignment. 7423 const unsigned MinABIStackAlignInBytes = 4; 7424 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7425 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7426 /*Realign=*/TypeAlign > 7427 MinABIStackAlignInBytes); 7428 } 7429 7430 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7431 CCState &State) const { 7432 // Check with the C++ ABI first. 7433 const RecordType *RT = Ty->getAs<RecordType>(); 7434 if (RT) { 7435 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7436 if (RAA == CGCXXABI::RAA_Indirect) { 7437 return getIndirectResult(Ty, /*ByVal=*/false, State); 7438 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7439 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7440 } 7441 } 7442 7443 if (isAggregateTypeForABI(Ty)) { 7444 // Structures with flexible arrays are always indirect. 7445 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7446 return getIndirectResult(Ty, /*ByVal=*/true, State); 7447 7448 // Ignore empty structs/unions. 7449 if (isEmptyRecord(getContext(), Ty, true)) 7450 return ABIArgInfo::getIgnore(); 7451 7452 llvm::LLVMContext &LLVMContext = getVMContext(); 7453 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7454 if (SizeInRegs <= State.FreeRegs) { 7455 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7456 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7457 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7458 State.FreeRegs -= SizeInRegs; 7459 return ABIArgInfo::getDirectInReg(Result); 7460 } else { 7461 State.FreeRegs = 0; 7462 } 7463 return getIndirectResult(Ty, true, State); 7464 } 7465 7466 // Treat an enum type as its underlying type. 7467 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7468 Ty = EnumTy->getDecl()->getIntegerType(); 7469 7470 bool InReg = shouldUseInReg(Ty, State); 7471 if (Ty->isPromotableIntegerType()) { 7472 if (InReg) 7473 return ABIArgInfo::getDirectInReg(); 7474 return ABIArgInfo::getExtend(Ty); 7475 } 7476 if (InReg) 7477 return ABIArgInfo::getDirectInReg(); 7478 return ABIArgInfo::getDirect(); 7479 } 7480 7481 namespace { 7482 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7483 public: 7484 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7485 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7486 }; 7487 } 7488 7489 //===----------------------------------------------------------------------===// 7490 // AMDGPU ABI Implementation 7491 //===----------------------------------------------------------------------===// 7492 7493 namespace { 7494 7495 class AMDGPUABIInfo final : public DefaultABIInfo { 7496 private: 7497 static const unsigned MaxNumRegsForArgsRet = 16; 7498 7499 unsigned numRegsForType(QualType Ty) const; 7500 7501 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7502 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7503 uint64_t Members) const override; 7504 7505 public: 7506 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7507 DefaultABIInfo(CGT) {} 7508 7509 ABIArgInfo classifyReturnType(QualType RetTy) const; 7510 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7511 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7512 7513 void computeInfo(CGFunctionInfo &FI) const override; 7514 }; 7515 7516 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7517 return true; 7518 } 7519 7520 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7521 const Type *Base, uint64_t Members) const { 7522 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7523 7524 // Homogeneous Aggregates may occupy at most 16 registers. 7525 return Members * NumRegs <= MaxNumRegsForArgsRet; 7526 } 7527 7528 /// Estimate number of registers the type will use when passed in registers. 7529 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7530 unsigned NumRegs = 0; 7531 7532 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7533 // Compute from the number of elements. The reported size is based on the 7534 // in-memory size, which includes the padding 4th element for 3-vectors. 7535 QualType EltTy = VT->getElementType(); 7536 unsigned EltSize = getContext().getTypeSize(EltTy); 7537 7538 // 16-bit element vectors should be passed as packed. 7539 if (EltSize == 16) 7540 return (VT->getNumElements() + 1) / 2; 7541 7542 unsigned EltNumRegs = (EltSize + 31) / 32; 7543 return EltNumRegs * VT->getNumElements(); 7544 } 7545 7546 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7547 const RecordDecl *RD = RT->getDecl(); 7548 assert(!RD->hasFlexibleArrayMember()); 7549 7550 for (const FieldDecl *Field : RD->fields()) { 7551 QualType FieldTy = Field->getType(); 7552 NumRegs += numRegsForType(FieldTy); 7553 } 7554 7555 return NumRegs; 7556 } 7557 7558 return (getContext().getTypeSize(Ty) + 31) / 32; 7559 } 7560 7561 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7562 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7563 7564 if (!getCXXABI().classifyReturnType(FI)) 7565 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7566 7567 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7568 for (auto &Arg : FI.arguments()) { 7569 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7570 Arg.info = classifyKernelArgumentType(Arg.type); 7571 } else { 7572 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7573 } 7574 } 7575 } 7576 7577 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7578 if (isAggregateTypeForABI(RetTy)) { 7579 // Records with non-trivial destructors/copy-constructors should not be 7580 // returned by value. 7581 if (!getRecordArgABI(RetTy, getCXXABI())) { 7582 // Ignore empty structs/unions. 7583 if (isEmptyRecord(getContext(), RetTy, true)) 7584 return ABIArgInfo::getIgnore(); 7585 7586 // Lower single-element structs to just return a regular value. 7587 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7588 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7589 7590 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7591 const RecordDecl *RD = RT->getDecl(); 7592 if (RD->hasFlexibleArrayMember()) 7593 return DefaultABIInfo::classifyReturnType(RetTy); 7594 } 7595 7596 // Pack aggregates <= 4 bytes into single VGPR or pair. 7597 uint64_t Size = getContext().getTypeSize(RetTy); 7598 if (Size <= 16) 7599 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7600 7601 if (Size <= 32) 7602 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7603 7604 if (Size <= 64) { 7605 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7606 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7607 } 7608 7609 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7610 return ABIArgInfo::getDirect(); 7611 } 7612 } 7613 7614 // Otherwise just do the default thing. 7615 return DefaultABIInfo::classifyReturnType(RetTy); 7616 } 7617 7618 /// For kernels all parameters are really passed in a special buffer. It doesn't 7619 /// make sense to pass anything byval, so everything must be direct. 7620 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7621 Ty = useFirstFieldIfTransparentUnion(Ty); 7622 7623 // TODO: Can we omit empty structs? 7624 7625 // Coerce single element structs to its element. 7626 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7627 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7628 7629 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7630 // individual elements, which confuses the Clover OpenCL backend; therefore we 7631 // have to set it to false here. Other args of getDirect() are just defaults. 7632 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7633 } 7634 7635 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7636 unsigned &NumRegsLeft) const { 7637 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7638 7639 Ty = useFirstFieldIfTransparentUnion(Ty); 7640 7641 if (isAggregateTypeForABI(Ty)) { 7642 // Records with non-trivial destructors/copy-constructors should not be 7643 // passed by value. 7644 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7645 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7646 7647 // Ignore empty structs/unions. 7648 if (isEmptyRecord(getContext(), Ty, true)) 7649 return ABIArgInfo::getIgnore(); 7650 7651 // Lower single-element structs to just pass a regular value. TODO: We 7652 // could do reasonable-size multiple-element structs too, using getExpand(), 7653 // though watch out for things like bitfields. 7654 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7655 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7656 7657 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7658 const RecordDecl *RD = RT->getDecl(); 7659 if (RD->hasFlexibleArrayMember()) 7660 return DefaultABIInfo::classifyArgumentType(Ty); 7661 } 7662 7663 // Pack aggregates <= 8 bytes into single VGPR or pair. 7664 uint64_t Size = getContext().getTypeSize(Ty); 7665 if (Size <= 64) { 7666 unsigned NumRegs = (Size + 31) / 32; 7667 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7668 7669 if (Size <= 16) 7670 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7671 7672 if (Size <= 32) 7673 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7674 7675 // XXX: Should this be i64 instead, and should the limit increase? 7676 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7677 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7678 } 7679 7680 if (NumRegsLeft > 0) { 7681 unsigned NumRegs = numRegsForType(Ty); 7682 if (NumRegsLeft >= NumRegs) { 7683 NumRegsLeft -= NumRegs; 7684 return ABIArgInfo::getDirect(); 7685 } 7686 } 7687 } 7688 7689 // Otherwise just do the default thing. 7690 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7691 if (!ArgInfo.isIndirect()) { 7692 unsigned NumRegs = numRegsForType(Ty); 7693 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7694 } 7695 7696 return ArgInfo; 7697 } 7698 7699 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7700 public: 7701 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7702 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7703 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7704 CodeGen::CodeGenModule &M) const override; 7705 unsigned getOpenCLKernelCallingConv() const override; 7706 7707 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7708 llvm::PointerType *T, QualType QT) const override; 7709 7710 LangAS getASTAllocaAddressSpace() const override { 7711 return getLangASFromTargetAS( 7712 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7713 } 7714 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7715 const VarDecl *D) const override; 7716 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7717 llvm::LLVMContext &C) const override; 7718 llvm::Function * 7719 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7720 llvm::Function *BlockInvokeFunc, 7721 llvm::Value *BlockLiteral) const override; 7722 bool shouldEmitStaticExternCAliases() const override; 7723 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7724 }; 7725 } 7726 7727 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7728 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7729 if (GV->isDeclaration()) 7730 return; 7731 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7732 if (!FD) 7733 return; 7734 7735 llvm::Function *F = cast<llvm::Function>(GV); 7736 7737 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7738 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7739 7740 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7741 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7742 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7743 7744 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7745 if (ReqdWGS || FlatWGS) { 7746 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7747 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7748 if (ReqdWGS && Min == 0 && Max == 0) 7749 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7750 7751 if (Min != 0) { 7752 assert(Min <= Max && "Min must be less than or equal Max"); 7753 7754 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7755 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7756 } else 7757 assert(Max == 0 && "Max must be zero"); 7758 } 7759 7760 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7761 unsigned Min = Attr->getMin(); 7762 unsigned Max = Attr->getMax(); 7763 7764 if (Min != 0) { 7765 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7766 7767 std::string AttrVal = llvm::utostr(Min); 7768 if (Max != 0) 7769 AttrVal = AttrVal + "," + llvm::utostr(Max); 7770 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7771 } else 7772 assert(Max == 0 && "Max must be zero"); 7773 } 7774 7775 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7776 unsigned NumSGPR = Attr->getNumSGPR(); 7777 7778 if (NumSGPR != 0) 7779 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7780 } 7781 7782 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7783 uint32_t NumVGPR = Attr->getNumVGPR(); 7784 7785 if (NumVGPR != 0) 7786 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7787 } 7788 } 7789 7790 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7791 return llvm::CallingConv::AMDGPU_KERNEL; 7792 } 7793 7794 // Currently LLVM assumes null pointers always have value 0, 7795 // which results in incorrectly transformed IR. Therefore, instead of 7796 // emitting null pointers in private and local address spaces, a null 7797 // pointer in generic address space is emitted which is casted to a 7798 // pointer in local or private address space. 7799 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7800 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7801 QualType QT) const { 7802 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7803 return llvm::ConstantPointerNull::get(PT); 7804 7805 auto &Ctx = CGM.getContext(); 7806 auto NPT = llvm::PointerType::get(PT->getElementType(), 7807 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7808 return llvm::ConstantExpr::getAddrSpaceCast( 7809 llvm::ConstantPointerNull::get(NPT), PT); 7810 } 7811 7812 LangAS 7813 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7814 const VarDecl *D) const { 7815 assert(!CGM.getLangOpts().OpenCL && 7816 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7817 "Address space agnostic languages only"); 7818 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7819 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7820 if (!D) 7821 return DefaultGlobalAS; 7822 7823 LangAS AddrSpace = D->getType().getAddressSpace(); 7824 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7825 if (AddrSpace != LangAS::Default) 7826 return AddrSpace; 7827 7828 if (CGM.isTypeConstant(D->getType(), false)) { 7829 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7830 return ConstAS.getValue(); 7831 } 7832 return DefaultGlobalAS; 7833 } 7834 7835 llvm::SyncScope::ID 7836 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7837 llvm::LLVMContext &C) const { 7838 StringRef Name; 7839 switch (S) { 7840 case SyncScope::OpenCLWorkGroup: 7841 Name = "workgroup"; 7842 break; 7843 case SyncScope::OpenCLDevice: 7844 Name = "agent"; 7845 break; 7846 case SyncScope::OpenCLAllSVMDevices: 7847 Name = ""; 7848 break; 7849 case SyncScope::OpenCLSubGroup: 7850 Name = "subgroup"; 7851 } 7852 return C.getOrInsertSyncScopeID(Name); 7853 } 7854 7855 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7856 return false; 7857 } 7858 7859 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7860 const FunctionType *&FT) const { 7861 FT = getABIInfo().getContext().adjustFunctionType( 7862 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7863 } 7864 7865 //===----------------------------------------------------------------------===// 7866 // SPARC v8 ABI Implementation. 7867 // Based on the SPARC Compliance Definition version 2.4.1. 7868 // 7869 // Ensures that complex values are passed in registers. 7870 // 7871 namespace { 7872 class SparcV8ABIInfo : public DefaultABIInfo { 7873 public: 7874 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7875 7876 private: 7877 ABIArgInfo classifyReturnType(QualType RetTy) const; 7878 void computeInfo(CGFunctionInfo &FI) const override; 7879 }; 7880 } // end anonymous namespace 7881 7882 7883 ABIArgInfo 7884 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7885 if (Ty->isAnyComplexType()) { 7886 return ABIArgInfo::getDirect(); 7887 } 7888 else { 7889 return DefaultABIInfo::classifyReturnType(Ty); 7890 } 7891 } 7892 7893 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7894 7895 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7896 for (auto &Arg : FI.arguments()) 7897 Arg.info = classifyArgumentType(Arg.type); 7898 } 7899 7900 namespace { 7901 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7902 public: 7903 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7904 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7905 }; 7906 } // end anonymous namespace 7907 7908 //===----------------------------------------------------------------------===// 7909 // SPARC v9 ABI Implementation. 7910 // Based on the SPARC Compliance Definition version 2.4.1. 7911 // 7912 // Function arguments a mapped to a nominal "parameter array" and promoted to 7913 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7914 // the array, structs larger than 16 bytes are passed indirectly. 7915 // 7916 // One case requires special care: 7917 // 7918 // struct mixed { 7919 // int i; 7920 // float f; 7921 // }; 7922 // 7923 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7924 // parameter array, but the int is passed in an integer register, and the float 7925 // is passed in a floating point register. This is represented as two arguments 7926 // with the LLVM IR inreg attribute: 7927 // 7928 // declare void f(i32 inreg %i, float inreg %f) 7929 // 7930 // The code generator will only allocate 4 bytes from the parameter array for 7931 // the inreg arguments. All other arguments are allocated a multiple of 8 7932 // bytes. 7933 // 7934 namespace { 7935 class SparcV9ABIInfo : public ABIInfo { 7936 public: 7937 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7938 7939 private: 7940 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7941 void computeInfo(CGFunctionInfo &FI) const override; 7942 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7943 QualType Ty) const override; 7944 7945 // Coercion type builder for structs passed in registers. The coercion type 7946 // serves two purposes: 7947 // 7948 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7949 // in registers. 7950 // 2. Expose aligned floating point elements as first-level elements, so the 7951 // code generator knows to pass them in floating point registers. 7952 // 7953 // We also compute the InReg flag which indicates that the struct contains 7954 // aligned 32-bit floats. 7955 // 7956 struct CoerceBuilder { 7957 llvm::LLVMContext &Context; 7958 const llvm::DataLayout &DL; 7959 SmallVector<llvm::Type*, 8> Elems; 7960 uint64_t Size; 7961 bool InReg; 7962 7963 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7964 : Context(c), DL(dl), Size(0), InReg(false) {} 7965 7966 // Pad Elems with integers until Size is ToSize. 7967 void pad(uint64_t ToSize) { 7968 assert(ToSize >= Size && "Cannot remove elements"); 7969 if (ToSize == Size) 7970 return; 7971 7972 // Finish the current 64-bit word. 7973 uint64_t Aligned = llvm::alignTo(Size, 64); 7974 if (Aligned > Size && Aligned <= ToSize) { 7975 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7976 Size = Aligned; 7977 } 7978 7979 // Add whole 64-bit words. 7980 while (Size + 64 <= ToSize) { 7981 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7982 Size += 64; 7983 } 7984 7985 // Final in-word padding. 7986 if (Size < ToSize) { 7987 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7988 Size = ToSize; 7989 } 7990 } 7991 7992 // Add a floating point element at Offset. 7993 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7994 // Unaligned floats are treated as integers. 7995 if (Offset % Bits) 7996 return; 7997 // The InReg flag is only required if there are any floats < 64 bits. 7998 if (Bits < 64) 7999 InReg = true; 8000 pad(Offset); 8001 Elems.push_back(Ty); 8002 Size = Offset + Bits; 8003 } 8004 8005 // Add a struct type to the coercion type, starting at Offset (in bits). 8006 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8007 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8008 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8009 llvm::Type *ElemTy = StrTy->getElementType(i); 8010 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8011 switch (ElemTy->getTypeID()) { 8012 case llvm::Type::StructTyID: 8013 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8014 break; 8015 case llvm::Type::FloatTyID: 8016 addFloat(ElemOffset, ElemTy, 32); 8017 break; 8018 case llvm::Type::DoubleTyID: 8019 addFloat(ElemOffset, ElemTy, 64); 8020 break; 8021 case llvm::Type::FP128TyID: 8022 addFloat(ElemOffset, ElemTy, 128); 8023 break; 8024 case llvm::Type::PointerTyID: 8025 if (ElemOffset % 64 == 0) { 8026 pad(ElemOffset); 8027 Elems.push_back(ElemTy); 8028 Size += 64; 8029 } 8030 break; 8031 default: 8032 break; 8033 } 8034 } 8035 } 8036 8037 // Check if Ty is a usable substitute for the coercion type. 8038 bool isUsableType(llvm::StructType *Ty) const { 8039 return llvm::makeArrayRef(Elems) == Ty->elements(); 8040 } 8041 8042 // Get the coercion type as a literal struct type. 8043 llvm::Type *getType() const { 8044 if (Elems.size() == 1) 8045 return Elems.front(); 8046 else 8047 return llvm::StructType::get(Context, Elems); 8048 } 8049 }; 8050 }; 8051 } // end anonymous namespace 8052 8053 ABIArgInfo 8054 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8055 if (Ty->isVoidType()) 8056 return ABIArgInfo::getIgnore(); 8057 8058 uint64_t Size = getContext().getTypeSize(Ty); 8059 8060 // Anything too big to fit in registers is passed with an explicit indirect 8061 // pointer / sret pointer. 8062 if (Size > SizeLimit) 8063 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8064 8065 // Treat an enum type as its underlying type. 8066 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8067 Ty = EnumTy->getDecl()->getIntegerType(); 8068 8069 // Integer types smaller than a register are extended. 8070 if (Size < 64 && Ty->isIntegerType()) 8071 return ABIArgInfo::getExtend(Ty); 8072 8073 // Other non-aggregates go in registers. 8074 if (!isAggregateTypeForABI(Ty)) 8075 return ABIArgInfo::getDirect(); 8076 8077 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8078 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8079 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8080 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8081 8082 // This is a small aggregate type that should be passed in registers. 8083 // Build a coercion type from the LLVM struct type. 8084 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8085 if (!StrTy) 8086 return ABIArgInfo::getDirect(); 8087 8088 CoerceBuilder CB(getVMContext(), getDataLayout()); 8089 CB.addStruct(0, StrTy); 8090 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8091 8092 // Try to use the original type for coercion. 8093 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8094 8095 if (CB.InReg) 8096 return ABIArgInfo::getDirectInReg(CoerceTy); 8097 else 8098 return ABIArgInfo::getDirect(CoerceTy); 8099 } 8100 8101 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8102 QualType Ty) const { 8103 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8104 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8105 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8106 AI.setCoerceToType(ArgTy); 8107 8108 CharUnits SlotSize = CharUnits::fromQuantity(8); 8109 8110 CGBuilderTy &Builder = CGF.Builder; 8111 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8112 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8113 8114 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8115 8116 Address ArgAddr = Address::invalid(); 8117 CharUnits Stride; 8118 switch (AI.getKind()) { 8119 case ABIArgInfo::Expand: 8120 case ABIArgInfo::CoerceAndExpand: 8121 case ABIArgInfo::InAlloca: 8122 llvm_unreachable("Unsupported ABI kind for va_arg"); 8123 8124 case ABIArgInfo::Extend: { 8125 Stride = SlotSize; 8126 CharUnits Offset = SlotSize - TypeInfo.first; 8127 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8128 break; 8129 } 8130 8131 case ABIArgInfo::Direct: { 8132 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8133 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8134 ArgAddr = Addr; 8135 break; 8136 } 8137 8138 case ABIArgInfo::Indirect: 8139 Stride = SlotSize; 8140 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8141 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8142 TypeInfo.second); 8143 break; 8144 8145 case ABIArgInfo::Ignore: 8146 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8147 } 8148 8149 // Update VAList. 8150 llvm::Value *NextPtr = 8151 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8152 Builder.CreateStore(NextPtr, VAListAddr); 8153 8154 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8155 } 8156 8157 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8158 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8159 for (auto &I : FI.arguments()) 8160 I.info = classifyType(I.type, 16 * 8); 8161 } 8162 8163 namespace { 8164 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8165 public: 8166 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8167 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8168 8169 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8170 return 14; 8171 } 8172 8173 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8174 llvm::Value *Address) const override; 8175 }; 8176 } // end anonymous namespace 8177 8178 bool 8179 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8180 llvm::Value *Address) const { 8181 // This is calculated from the LLVM and GCC tables and verified 8182 // against gcc output. AFAIK all ABIs use the same encoding. 8183 8184 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8185 8186 llvm::IntegerType *i8 = CGF.Int8Ty; 8187 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8188 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8189 8190 // 0-31: the 8-byte general-purpose registers 8191 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8192 8193 // 32-63: f0-31, the 4-byte floating-point registers 8194 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8195 8196 // Y = 64 8197 // PSR = 65 8198 // WIM = 66 8199 // TBR = 67 8200 // PC = 68 8201 // NPC = 69 8202 // FSR = 70 8203 // CSR = 71 8204 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8205 8206 // 72-87: d0-15, the 8-byte floating-point registers 8207 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8208 8209 return false; 8210 } 8211 8212 8213 //===----------------------------------------------------------------------===// 8214 // XCore ABI Implementation 8215 //===----------------------------------------------------------------------===// 8216 8217 namespace { 8218 8219 /// A SmallStringEnc instance is used to build up the TypeString by passing 8220 /// it by reference between functions that append to it. 8221 typedef llvm::SmallString<128> SmallStringEnc; 8222 8223 /// TypeStringCache caches the meta encodings of Types. 8224 /// 8225 /// The reason for caching TypeStrings is two fold: 8226 /// 1. To cache a type's encoding for later uses; 8227 /// 2. As a means to break recursive member type inclusion. 8228 /// 8229 /// A cache Entry can have a Status of: 8230 /// NonRecursive: The type encoding is not recursive; 8231 /// Recursive: The type encoding is recursive; 8232 /// Incomplete: An incomplete TypeString; 8233 /// IncompleteUsed: An incomplete TypeString that has been used in a 8234 /// Recursive type encoding. 8235 /// 8236 /// A NonRecursive entry will have all of its sub-members expanded as fully 8237 /// as possible. Whilst it may contain types which are recursive, the type 8238 /// itself is not recursive and thus its encoding may be safely used whenever 8239 /// the type is encountered. 8240 /// 8241 /// A Recursive entry will have all of its sub-members expanded as fully as 8242 /// possible. The type itself is recursive and it may contain other types which 8243 /// are recursive. The Recursive encoding must not be used during the expansion 8244 /// of a recursive type's recursive branch. For simplicity the code uses 8245 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8246 /// 8247 /// An Incomplete entry is always a RecordType and only encodes its 8248 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8249 /// are placed into the cache during type expansion as a means to identify and 8250 /// handle recursive inclusion of types as sub-members. If there is recursion 8251 /// the entry becomes IncompleteUsed. 8252 /// 8253 /// During the expansion of a RecordType's members: 8254 /// 8255 /// If the cache contains a NonRecursive encoding for the member type, the 8256 /// cached encoding is used; 8257 /// 8258 /// If the cache contains a Recursive encoding for the member type, the 8259 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8260 /// 8261 /// If the member is a RecordType, an Incomplete encoding is placed into the 8262 /// cache to break potential recursive inclusion of itself as a sub-member; 8263 /// 8264 /// Once a member RecordType has been expanded, its temporary incomplete 8265 /// entry is removed from the cache. If a Recursive encoding was swapped out 8266 /// it is swapped back in; 8267 /// 8268 /// If an incomplete entry is used to expand a sub-member, the incomplete 8269 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8270 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8271 /// 8272 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8273 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8274 /// Else the member is part of a recursive type and thus the recursion has 8275 /// been exited too soon for the encoding to be correct for the member. 8276 /// 8277 class TypeStringCache { 8278 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8279 struct Entry { 8280 std::string Str; // The encoded TypeString for the type. 8281 enum Status State; // Information about the encoding in 'Str'. 8282 std::string Swapped; // A temporary place holder for a Recursive encoding 8283 // during the expansion of RecordType's members. 8284 }; 8285 std::map<const IdentifierInfo *, struct Entry> Map; 8286 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8287 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8288 public: 8289 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8290 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8291 bool removeIncomplete(const IdentifierInfo *ID); 8292 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8293 bool IsRecursive); 8294 StringRef lookupStr(const IdentifierInfo *ID); 8295 }; 8296 8297 /// TypeString encodings for enum & union fields must be order. 8298 /// FieldEncoding is a helper for this ordering process. 8299 class FieldEncoding { 8300 bool HasName; 8301 std::string Enc; 8302 public: 8303 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8304 StringRef str() { return Enc; } 8305 bool operator<(const FieldEncoding &rhs) const { 8306 if (HasName != rhs.HasName) return HasName; 8307 return Enc < rhs.Enc; 8308 } 8309 }; 8310 8311 class XCoreABIInfo : public DefaultABIInfo { 8312 public: 8313 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8314 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8315 QualType Ty) const override; 8316 }; 8317 8318 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8319 mutable TypeStringCache TSC; 8320 public: 8321 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8322 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8323 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8324 CodeGen::CodeGenModule &M) const override; 8325 }; 8326 8327 } // End anonymous namespace. 8328 8329 // TODO: this implementation is likely now redundant with the default 8330 // EmitVAArg. 8331 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8332 QualType Ty) const { 8333 CGBuilderTy &Builder = CGF.Builder; 8334 8335 // Get the VAList. 8336 CharUnits SlotSize = CharUnits::fromQuantity(4); 8337 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8338 8339 // Handle the argument. 8340 ABIArgInfo AI = classifyArgumentType(Ty); 8341 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8342 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8343 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8344 AI.setCoerceToType(ArgTy); 8345 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8346 8347 Address Val = Address::invalid(); 8348 CharUnits ArgSize = CharUnits::Zero(); 8349 switch (AI.getKind()) { 8350 case ABIArgInfo::Expand: 8351 case ABIArgInfo::CoerceAndExpand: 8352 case ABIArgInfo::InAlloca: 8353 llvm_unreachable("Unsupported ABI kind for va_arg"); 8354 case ABIArgInfo::Ignore: 8355 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8356 ArgSize = CharUnits::Zero(); 8357 break; 8358 case ABIArgInfo::Extend: 8359 case ABIArgInfo::Direct: 8360 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8361 ArgSize = CharUnits::fromQuantity( 8362 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8363 ArgSize = ArgSize.alignTo(SlotSize); 8364 break; 8365 case ABIArgInfo::Indirect: 8366 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8367 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8368 ArgSize = SlotSize; 8369 break; 8370 } 8371 8372 // Increment the VAList. 8373 if (!ArgSize.isZero()) { 8374 llvm::Value *APN = 8375 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8376 Builder.CreateStore(APN, VAListAddr); 8377 } 8378 8379 return Val; 8380 } 8381 8382 /// During the expansion of a RecordType, an incomplete TypeString is placed 8383 /// into the cache as a means to identify and break recursion. 8384 /// If there is a Recursive encoding in the cache, it is swapped out and will 8385 /// be reinserted by removeIncomplete(). 8386 /// All other types of encoding should have been used rather than arriving here. 8387 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8388 std::string StubEnc) { 8389 if (!ID) 8390 return; 8391 Entry &E = Map[ID]; 8392 assert( (E.Str.empty() || E.State == Recursive) && 8393 "Incorrectly use of addIncomplete"); 8394 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8395 E.Swapped.swap(E.Str); // swap out the Recursive 8396 E.Str.swap(StubEnc); 8397 E.State = Incomplete; 8398 ++IncompleteCount; 8399 } 8400 8401 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8402 /// must be removed from the cache. 8403 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8404 /// Returns true if the RecordType was defined recursively. 8405 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8406 if (!ID) 8407 return false; 8408 auto I = Map.find(ID); 8409 assert(I != Map.end() && "Entry not present"); 8410 Entry &E = I->second; 8411 assert( (E.State == Incomplete || 8412 E.State == IncompleteUsed) && 8413 "Entry must be an incomplete type"); 8414 bool IsRecursive = false; 8415 if (E.State == IncompleteUsed) { 8416 // We made use of our Incomplete encoding, thus we are recursive. 8417 IsRecursive = true; 8418 --IncompleteUsedCount; 8419 } 8420 if (E.Swapped.empty()) 8421 Map.erase(I); 8422 else { 8423 // Swap the Recursive back. 8424 E.Swapped.swap(E.Str); 8425 E.Swapped.clear(); 8426 E.State = Recursive; 8427 } 8428 --IncompleteCount; 8429 return IsRecursive; 8430 } 8431 8432 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8433 /// Recursive (viz: all sub-members were expanded as fully as possible). 8434 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8435 bool IsRecursive) { 8436 if (!ID || IncompleteUsedCount) 8437 return; // No key or it is is an incomplete sub-type so don't add. 8438 Entry &E = Map[ID]; 8439 if (IsRecursive && !E.Str.empty()) { 8440 assert(E.State==Recursive && E.Str.size() == Str.size() && 8441 "This is not the same Recursive entry"); 8442 // The parent container was not recursive after all, so we could have used 8443 // this Recursive sub-member entry after all, but we assumed the worse when 8444 // we started viz: IncompleteCount!=0. 8445 return; 8446 } 8447 assert(E.Str.empty() && "Entry already present"); 8448 E.Str = Str.str(); 8449 E.State = IsRecursive? Recursive : NonRecursive; 8450 } 8451 8452 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8453 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8454 /// encoding is Recursive, return an empty StringRef. 8455 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8456 if (!ID) 8457 return StringRef(); // We have no key. 8458 auto I = Map.find(ID); 8459 if (I == Map.end()) 8460 return StringRef(); // We have no encoding. 8461 Entry &E = I->second; 8462 if (E.State == Recursive && IncompleteCount) 8463 return StringRef(); // We don't use Recursive encodings for member types. 8464 8465 if (E.State == Incomplete) { 8466 // The incomplete type is being used to break out of recursion. 8467 E.State = IncompleteUsed; 8468 ++IncompleteUsedCount; 8469 } 8470 return E.Str; 8471 } 8472 8473 /// The XCore ABI includes a type information section that communicates symbol 8474 /// type information to the linker. The linker uses this information to verify 8475 /// safety/correctness of things such as array bound and pointers et al. 8476 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8477 /// This type information (TypeString) is emitted into meta data for all global 8478 /// symbols: definitions, declarations, functions & variables. 8479 /// 8480 /// The TypeString carries type, qualifier, name, size & value details. 8481 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8482 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8483 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8484 /// 8485 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8486 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8487 8488 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8489 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8490 CodeGen::CodeGenModule &CGM) const { 8491 SmallStringEnc Enc; 8492 if (getTypeString(Enc, D, CGM, TSC)) { 8493 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8494 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8495 llvm::MDString::get(Ctx, Enc.str())}; 8496 llvm::NamedMDNode *MD = 8497 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8498 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8499 } 8500 } 8501 8502 //===----------------------------------------------------------------------===// 8503 // SPIR ABI Implementation 8504 //===----------------------------------------------------------------------===// 8505 8506 namespace { 8507 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8508 public: 8509 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8510 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8511 unsigned getOpenCLKernelCallingConv() const override; 8512 }; 8513 8514 } // End anonymous namespace. 8515 8516 namespace clang { 8517 namespace CodeGen { 8518 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8519 DefaultABIInfo SPIRABI(CGM.getTypes()); 8520 SPIRABI.computeInfo(FI); 8521 } 8522 } 8523 } 8524 8525 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8526 return llvm::CallingConv::SPIR_KERNEL; 8527 } 8528 8529 static bool appendType(SmallStringEnc &Enc, QualType QType, 8530 const CodeGen::CodeGenModule &CGM, 8531 TypeStringCache &TSC); 8532 8533 /// Helper function for appendRecordType(). 8534 /// Builds a SmallVector containing the encoded field types in declaration 8535 /// order. 8536 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8537 const RecordDecl *RD, 8538 const CodeGen::CodeGenModule &CGM, 8539 TypeStringCache &TSC) { 8540 for (const auto *Field : RD->fields()) { 8541 SmallStringEnc Enc; 8542 Enc += "m("; 8543 Enc += Field->getName(); 8544 Enc += "){"; 8545 if (Field->isBitField()) { 8546 Enc += "b("; 8547 llvm::raw_svector_ostream OS(Enc); 8548 OS << Field->getBitWidthValue(CGM.getContext()); 8549 Enc += ':'; 8550 } 8551 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8552 return false; 8553 if (Field->isBitField()) 8554 Enc += ')'; 8555 Enc += '}'; 8556 FE.emplace_back(!Field->getName().empty(), Enc); 8557 } 8558 return true; 8559 } 8560 8561 /// Appends structure and union types to Enc and adds encoding to cache. 8562 /// Recursively calls appendType (via extractFieldType) for each field. 8563 /// Union types have their fields ordered according to the ABI. 8564 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8565 const CodeGen::CodeGenModule &CGM, 8566 TypeStringCache &TSC, const IdentifierInfo *ID) { 8567 // Append the cached TypeString if we have one. 8568 StringRef TypeString = TSC.lookupStr(ID); 8569 if (!TypeString.empty()) { 8570 Enc += TypeString; 8571 return true; 8572 } 8573 8574 // Start to emit an incomplete TypeString. 8575 size_t Start = Enc.size(); 8576 Enc += (RT->isUnionType()? 'u' : 's'); 8577 Enc += '('; 8578 if (ID) 8579 Enc += ID->getName(); 8580 Enc += "){"; 8581 8582 // We collect all encoded fields and order as necessary. 8583 bool IsRecursive = false; 8584 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8585 if (RD && !RD->field_empty()) { 8586 // An incomplete TypeString stub is placed in the cache for this RecordType 8587 // so that recursive calls to this RecordType will use it whilst building a 8588 // complete TypeString for this RecordType. 8589 SmallVector<FieldEncoding, 16> FE; 8590 std::string StubEnc(Enc.substr(Start).str()); 8591 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8592 TSC.addIncomplete(ID, std::move(StubEnc)); 8593 if (!extractFieldType(FE, RD, CGM, TSC)) { 8594 (void) TSC.removeIncomplete(ID); 8595 return false; 8596 } 8597 IsRecursive = TSC.removeIncomplete(ID); 8598 // The ABI requires unions to be sorted but not structures. 8599 // See FieldEncoding::operator< for sort algorithm. 8600 if (RT->isUnionType()) 8601 llvm::sort(FE.begin(), FE.end()); 8602 // We can now complete the TypeString. 8603 unsigned E = FE.size(); 8604 for (unsigned I = 0; I != E; ++I) { 8605 if (I) 8606 Enc += ','; 8607 Enc += FE[I].str(); 8608 } 8609 } 8610 Enc += '}'; 8611 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8612 return true; 8613 } 8614 8615 /// Appends enum types to Enc and adds the encoding to the cache. 8616 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8617 TypeStringCache &TSC, 8618 const IdentifierInfo *ID) { 8619 // Append the cached TypeString if we have one. 8620 StringRef TypeString = TSC.lookupStr(ID); 8621 if (!TypeString.empty()) { 8622 Enc += TypeString; 8623 return true; 8624 } 8625 8626 size_t Start = Enc.size(); 8627 Enc += "e("; 8628 if (ID) 8629 Enc += ID->getName(); 8630 Enc += "){"; 8631 8632 // We collect all encoded enumerations and order them alphanumerically. 8633 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8634 SmallVector<FieldEncoding, 16> FE; 8635 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8636 ++I) { 8637 SmallStringEnc EnumEnc; 8638 EnumEnc += "m("; 8639 EnumEnc += I->getName(); 8640 EnumEnc += "){"; 8641 I->getInitVal().toString(EnumEnc); 8642 EnumEnc += '}'; 8643 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8644 } 8645 llvm::sort(FE.begin(), FE.end()); 8646 unsigned E = FE.size(); 8647 for (unsigned I = 0; I != E; ++I) { 8648 if (I) 8649 Enc += ','; 8650 Enc += FE[I].str(); 8651 } 8652 } 8653 Enc += '}'; 8654 TSC.addIfComplete(ID, Enc.substr(Start), false); 8655 return true; 8656 } 8657 8658 /// Appends type's qualifier to Enc. 8659 /// This is done prior to appending the type's encoding. 8660 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8661 // Qualifiers are emitted in alphabetical order. 8662 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8663 int Lookup = 0; 8664 if (QT.isConstQualified()) 8665 Lookup += 1<<0; 8666 if (QT.isRestrictQualified()) 8667 Lookup += 1<<1; 8668 if (QT.isVolatileQualified()) 8669 Lookup += 1<<2; 8670 Enc += Table[Lookup]; 8671 } 8672 8673 /// Appends built-in types to Enc. 8674 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8675 const char *EncType; 8676 switch (BT->getKind()) { 8677 case BuiltinType::Void: 8678 EncType = "0"; 8679 break; 8680 case BuiltinType::Bool: 8681 EncType = "b"; 8682 break; 8683 case BuiltinType::Char_U: 8684 EncType = "uc"; 8685 break; 8686 case BuiltinType::UChar: 8687 EncType = "uc"; 8688 break; 8689 case BuiltinType::SChar: 8690 EncType = "sc"; 8691 break; 8692 case BuiltinType::UShort: 8693 EncType = "us"; 8694 break; 8695 case BuiltinType::Short: 8696 EncType = "ss"; 8697 break; 8698 case BuiltinType::UInt: 8699 EncType = "ui"; 8700 break; 8701 case BuiltinType::Int: 8702 EncType = "si"; 8703 break; 8704 case BuiltinType::ULong: 8705 EncType = "ul"; 8706 break; 8707 case BuiltinType::Long: 8708 EncType = "sl"; 8709 break; 8710 case BuiltinType::ULongLong: 8711 EncType = "ull"; 8712 break; 8713 case BuiltinType::LongLong: 8714 EncType = "sll"; 8715 break; 8716 case BuiltinType::Float: 8717 EncType = "ft"; 8718 break; 8719 case BuiltinType::Double: 8720 EncType = "d"; 8721 break; 8722 case BuiltinType::LongDouble: 8723 EncType = "ld"; 8724 break; 8725 default: 8726 return false; 8727 } 8728 Enc += EncType; 8729 return true; 8730 } 8731 8732 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8733 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8734 const CodeGen::CodeGenModule &CGM, 8735 TypeStringCache &TSC) { 8736 Enc += "p("; 8737 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8738 return false; 8739 Enc += ')'; 8740 return true; 8741 } 8742 8743 /// Appends array encoding to Enc before calling appendType for the element. 8744 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8745 const ArrayType *AT, 8746 const CodeGen::CodeGenModule &CGM, 8747 TypeStringCache &TSC, StringRef NoSizeEnc) { 8748 if (AT->getSizeModifier() != ArrayType::Normal) 8749 return false; 8750 Enc += "a("; 8751 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8752 CAT->getSize().toStringUnsigned(Enc); 8753 else 8754 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8755 Enc += ':'; 8756 // The Qualifiers should be attached to the type rather than the array. 8757 appendQualifier(Enc, QT); 8758 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8759 return false; 8760 Enc += ')'; 8761 return true; 8762 } 8763 8764 /// Appends a function encoding to Enc, calling appendType for the return type 8765 /// and the arguments. 8766 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8767 const CodeGen::CodeGenModule &CGM, 8768 TypeStringCache &TSC) { 8769 Enc += "f{"; 8770 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8771 return false; 8772 Enc += "}("; 8773 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8774 // N.B. we are only interested in the adjusted param types. 8775 auto I = FPT->param_type_begin(); 8776 auto E = FPT->param_type_end(); 8777 if (I != E) { 8778 do { 8779 if (!appendType(Enc, *I, CGM, TSC)) 8780 return false; 8781 ++I; 8782 if (I != E) 8783 Enc += ','; 8784 } while (I != E); 8785 if (FPT->isVariadic()) 8786 Enc += ",va"; 8787 } else { 8788 if (FPT->isVariadic()) 8789 Enc += "va"; 8790 else 8791 Enc += '0'; 8792 } 8793 } 8794 Enc += ')'; 8795 return true; 8796 } 8797 8798 /// Handles the type's qualifier before dispatching a call to handle specific 8799 /// type encodings. 8800 static bool appendType(SmallStringEnc &Enc, QualType QType, 8801 const CodeGen::CodeGenModule &CGM, 8802 TypeStringCache &TSC) { 8803 8804 QualType QT = QType.getCanonicalType(); 8805 8806 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8807 // The Qualifiers should be attached to the type rather than the array. 8808 // Thus we don't call appendQualifier() here. 8809 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8810 8811 appendQualifier(Enc, QT); 8812 8813 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8814 return appendBuiltinType(Enc, BT); 8815 8816 if (const PointerType *PT = QT->getAs<PointerType>()) 8817 return appendPointerType(Enc, PT, CGM, TSC); 8818 8819 if (const EnumType *ET = QT->getAs<EnumType>()) 8820 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8821 8822 if (const RecordType *RT = QT->getAsStructureType()) 8823 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8824 8825 if (const RecordType *RT = QT->getAsUnionType()) 8826 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8827 8828 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8829 return appendFunctionType(Enc, FT, CGM, TSC); 8830 8831 return false; 8832 } 8833 8834 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8835 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8836 if (!D) 8837 return false; 8838 8839 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8840 if (FD->getLanguageLinkage() != CLanguageLinkage) 8841 return false; 8842 return appendType(Enc, FD->getType(), CGM, TSC); 8843 } 8844 8845 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8846 if (VD->getLanguageLinkage() != CLanguageLinkage) 8847 return false; 8848 QualType QT = VD->getType().getCanonicalType(); 8849 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8850 // Global ArrayTypes are given a size of '*' if the size is unknown. 8851 // The Qualifiers should be attached to the type rather than the array. 8852 // Thus we don't call appendQualifier() here. 8853 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8854 } 8855 return appendType(Enc, QT, CGM, TSC); 8856 } 8857 return false; 8858 } 8859 8860 //===----------------------------------------------------------------------===// 8861 // RISCV ABI Implementation 8862 //===----------------------------------------------------------------------===// 8863 8864 namespace { 8865 class RISCVABIInfo : public DefaultABIInfo { 8866 private: 8867 unsigned XLen; // Size of the integer ('x') registers in bits. 8868 static const int NumArgGPRs = 8; 8869 8870 public: 8871 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8872 : DefaultABIInfo(CGT), XLen(XLen) {} 8873 8874 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8875 // non-virtual, but computeInfo is virtual, so we overload it. 8876 void computeInfo(CGFunctionInfo &FI) const override; 8877 8878 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8879 int &ArgGPRsLeft) const; 8880 ABIArgInfo classifyReturnType(QualType RetTy) const; 8881 8882 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8883 QualType Ty) const override; 8884 8885 ABIArgInfo extendType(QualType Ty) const; 8886 }; 8887 } // end anonymous namespace 8888 8889 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8890 QualType RetTy = FI.getReturnType(); 8891 if (!getCXXABI().classifyReturnType(FI)) 8892 FI.getReturnInfo() = classifyReturnType(RetTy); 8893 8894 // IsRetIndirect is true if classifyArgumentType indicated the value should 8895 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8896 // is passed direct in LLVM IR, relying on the backend lowering code to 8897 // rewrite the argument list and pass indirectly on RV32. 8898 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8899 getContext().getTypeSize(RetTy) > (2 * XLen); 8900 8901 // We must track the number of GPRs used in order to conform to the RISC-V 8902 // ABI, as integer scalars passed in registers should have signext/zeroext 8903 // when promoted, but are anyext if passed on the stack. As GPR usage is 8904 // different for variadic arguments, we must also track whether we are 8905 // examining a vararg or not. 8906 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8907 int NumFixedArgs = FI.getNumRequiredArgs(); 8908 8909 int ArgNum = 0; 8910 for (auto &ArgInfo : FI.arguments()) { 8911 bool IsFixed = ArgNum < NumFixedArgs; 8912 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8913 ArgNum++; 8914 } 8915 } 8916 8917 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8918 int &ArgGPRsLeft) const { 8919 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8920 Ty = useFirstFieldIfTransparentUnion(Ty); 8921 8922 // Structures with either a non-trivial destructor or a non-trivial 8923 // copy constructor are always passed indirectly. 8924 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8925 if (ArgGPRsLeft) 8926 ArgGPRsLeft -= 1; 8927 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8928 CGCXXABI::RAA_DirectInMemory); 8929 } 8930 8931 // Ignore empty structs/unions. 8932 if (isEmptyRecord(getContext(), Ty, true)) 8933 return ABIArgInfo::getIgnore(); 8934 8935 uint64_t Size = getContext().getTypeSize(Ty); 8936 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8937 bool MustUseStack = false; 8938 // Determine the number of GPRs needed to pass the current argument 8939 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8940 // register pairs, so may consume 3 registers. 8941 int NeededArgGPRs = 1; 8942 if (!IsFixed && NeededAlign == 2 * XLen) 8943 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8944 else if (Size > XLen && Size <= 2 * XLen) 8945 NeededArgGPRs = 2; 8946 8947 if (NeededArgGPRs > ArgGPRsLeft) { 8948 MustUseStack = true; 8949 NeededArgGPRs = ArgGPRsLeft; 8950 } 8951 8952 ArgGPRsLeft -= NeededArgGPRs; 8953 8954 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8955 // Treat an enum type as its underlying type. 8956 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8957 Ty = EnumTy->getDecl()->getIntegerType(); 8958 8959 // All integral types are promoted to XLen width, unless passed on the 8960 // stack. 8961 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8962 return extendType(Ty); 8963 } 8964 8965 return ABIArgInfo::getDirect(); 8966 } 8967 8968 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8969 // so coerce to integers. 8970 if (Size <= 2 * XLen) { 8971 unsigned Alignment = getContext().getTypeAlign(Ty); 8972 8973 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8974 // required, and a 2-element XLen array if only XLen alignment is required. 8975 if (Size <= XLen) { 8976 return ABIArgInfo::getDirect( 8977 llvm::IntegerType::get(getVMContext(), XLen)); 8978 } else if (Alignment == 2 * XLen) { 8979 return ABIArgInfo::getDirect( 8980 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8981 } else { 8982 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8983 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8984 } 8985 } 8986 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8987 } 8988 8989 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8990 if (RetTy->isVoidType()) 8991 return ABIArgInfo::getIgnore(); 8992 8993 int ArgGPRsLeft = 2; 8994 8995 // The rules for return and argument types are the same, so defer to 8996 // classifyArgumentType. 8997 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8998 } 8999 9000 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9001 QualType Ty) const { 9002 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9003 9004 // Empty records are ignored for parameter passing purposes. 9005 if (isEmptyRecord(getContext(), Ty, true)) { 9006 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9007 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9008 return Addr; 9009 } 9010 9011 std::pair<CharUnits, CharUnits> SizeAndAlign = 9012 getContext().getTypeInfoInChars(Ty); 9013 9014 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9015 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9016 9017 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9018 SlotSize, /*AllowHigherAlign=*/true); 9019 } 9020 9021 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9022 int TySize = getContext().getTypeSize(Ty); 9023 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9024 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9025 return ABIArgInfo::getSignExtend(Ty); 9026 return ABIArgInfo::getExtend(Ty); 9027 } 9028 9029 namespace { 9030 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9031 public: 9032 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9033 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9034 9035 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9036 CodeGen::CodeGenModule &CGM) const override { 9037 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9038 if (!FD) return; 9039 9040 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9041 if (!Attr) 9042 return; 9043 9044 const char *Kind; 9045 switch (Attr->getInterrupt()) { 9046 case RISCVInterruptAttr::user: Kind = "user"; break; 9047 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9048 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9049 } 9050 9051 auto *Fn = cast<llvm::Function>(GV); 9052 9053 Fn->addFnAttr("interrupt", Kind); 9054 } 9055 }; 9056 } // namespace 9057 9058 //===----------------------------------------------------------------------===// 9059 // Driver code 9060 //===----------------------------------------------------------------------===// 9061 9062 bool CodeGenModule::supportsCOMDAT() const { 9063 return getTriple().supportsCOMDAT(); 9064 } 9065 9066 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9067 if (TheTargetCodeGenInfo) 9068 return *TheTargetCodeGenInfo; 9069 9070 // Helper to set the unique_ptr while still keeping the return value. 9071 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9072 this->TheTargetCodeGenInfo.reset(P); 9073 return *P; 9074 }; 9075 9076 const llvm::Triple &Triple = getTarget().getTriple(); 9077 switch (Triple.getArch()) { 9078 default: 9079 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9080 9081 case llvm::Triple::le32: 9082 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9083 case llvm::Triple::mips: 9084 case llvm::Triple::mipsel: 9085 if (Triple.getOS() == llvm::Triple::NaCl) 9086 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9087 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9088 9089 case llvm::Triple::mips64: 9090 case llvm::Triple::mips64el: 9091 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9092 9093 case llvm::Triple::avr: 9094 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9095 9096 case llvm::Triple::aarch64: 9097 case llvm::Triple::aarch64_be: { 9098 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9099 if (getTarget().getABI() == "darwinpcs") 9100 Kind = AArch64ABIInfo::DarwinPCS; 9101 else if (Triple.isOSWindows()) 9102 return SetCGInfo( 9103 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9104 9105 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9106 } 9107 9108 case llvm::Triple::wasm32: 9109 case llvm::Triple::wasm64: 9110 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9111 9112 case llvm::Triple::arm: 9113 case llvm::Triple::armeb: 9114 case llvm::Triple::thumb: 9115 case llvm::Triple::thumbeb: { 9116 if (Triple.getOS() == llvm::Triple::Win32) { 9117 return SetCGInfo( 9118 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9119 } 9120 9121 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9122 StringRef ABIStr = getTarget().getABI(); 9123 if (ABIStr == "apcs-gnu") 9124 Kind = ARMABIInfo::APCS; 9125 else if (ABIStr == "aapcs16") 9126 Kind = ARMABIInfo::AAPCS16_VFP; 9127 else if (CodeGenOpts.FloatABI == "hard" || 9128 (CodeGenOpts.FloatABI != "soft" && 9129 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9130 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9131 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9132 Kind = ARMABIInfo::AAPCS_VFP; 9133 9134 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9135 } 9136 9137 case llvm::Triple::ppc: 9138 return SetCGInfo( 9139 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9140 case llvm::Triple::ppc64: 9141 if (Triple.isOSBinFormatELF()) { 9142 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9143 if (getTarget().getABI() == "elfv2") 9144 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9145 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9146 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9147 9148 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9149 IsSoftFloat)); 9150 } else 9151 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9152 case llvm::Triple::ppc64le: { 9153 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9154 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9155 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9156 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9157 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9158 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9159 9160 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9161 IsSoftFloat)); 9162 } 9163 9164 case llvm::Triple::nvptx: 9165 case llvm::Triple::nvptx64: 9166 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9167 9168 case llvm::Triple::msp430: 9169 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9170 9171 case llvm::Triple::riscv32: 9172 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9173 case llvm::Triple::riscv64: 9174 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9175 9176 case llvm::Triple::systemz: { 9177 bool HasVector = getTarget().getABI() == "vector"; 9178 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9179 } 9180 9181 case llvm::Triple::tce: 9182 case llvm::Triple::tcele: 9183 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9184 9185 case llvm::Triple::x86: { 9186 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9187 bool RetSmallStructInRegABI = 9188 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9189 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9190 9191 if (Triple.getOS() == llvm::Triple::Win32) { 9192 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9193 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9194 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9195 } else { 9196 return SetCGInfo(new X86_32TargetCodeGenInfo( 9197 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9198 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9199 CodeGenOpts.FloatABI == "soft")); 9200 } 9201 } 9202 9203 case llvm::Triple::x86_64: { 9204 StringRef ABI = getTarget().getABI(); 9205 X86AVXABILevel AVXLevel = 9206 (ABI == "avx512" 9207 ? X86AVXABILevel::AVX512 9208 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9209 9210 switch (Triple.getOS()) { 9211 case llvm::Triple::Win32: 9212 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9213 case llvm::Triple::PS4: 9214 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9215 default: 9216 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9217 } 9218 } 9219 case llvm::Triple::hexagon: 9220 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9221 case llvm::Triple::lanai: 9222 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9223 case llvm::Triple::r600: 9224 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9225 case llvm::Triple::amdgcn: 9226 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9227 case llvm::Triple::sparc: 9228 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9229 case llvm::Triple::sparcv9: 9230 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9231 case llvm::Triple::xcore: 9232 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9233 case llvm::Triple::spir: 9234 case llvm::Triple::spir64: 9235 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9236 } 9237 } 9238 9239 /// Create an OpenCL kernel for an enqueued block. 9240 /// 9241 /// The kernel has the same function type as the block invoke function. Its 9242 /// name is the name of the block invoke function postfixed with "_kernel". 9243 /// It simply calls the block invoke function then returns. 9244 llvm::Function * 9245 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9246 llvm::Function *Invoke, 9247 llvm::Value *BlockLiteral) const { 9248 auto *InvokeFT = Invoke->getFunctionType(); 9249 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9250 for (auto &P : InvokeFT->params()) 9251 ArgTys.push_back(P); 9252 auto &C = CGF.getLLVMContext(); 9253 std::string Name = Invoke->getName().str() + "_kernel"; 9254 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9255 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9256 &CGF.CGM.getModule()); 9257 auto IP = CGF.Builder.saveIP(); 9258 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9259 auto &Builder = CGF.Builder; 9260 Builder.SetInsertPoint(BB); 9261 llvm::SmallVector<llvm::Value *, 2> Args; 9262 for (auto &A : F->args()) 9263 Args.push_back(&A); 9264 Builder.CreateCall(Invoke, Args); 9265 Builder.CreateRetVoid(); 9266 Builder.restoreIP(IP); 9267 return F; 9268 } 9269 9270 /// Create an OpenCL kernel for an enqueued block. 9271 /// 9272 /// The type of the first argument (the block literal) is the struct type 9273 /// of the block literal instead of a pointer type. The first argument 9274 /// (block literal) is passed directly by value to the kernel. The kernel 9275 /// allocates the same type of struct on stack and stores the block literal 9276 /// to it and passes its pointer to the block invoke function. The kernel 9277 /// has "enqueued-block" function attribute and kernel argument metadata. 9278 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9279 CodeGenFunction &CGF, llvm::Function *Invoke, 9280 llvm::Value *BlockLiteral) const { 9281 auto &Builder = CGF.Builder; 9282 auto &C = CGF.getLLVMContext(); 9283 9284 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9285 auto *InvokeFT = Invoke->getFunctionType(); 9286 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9287 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9288 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9289 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9290 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9291 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9292 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9293 9294 ArgTys.push_back(BlockTy); 9295 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9296 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9297 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9298 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9299 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9300 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9301 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9302 ArgTys.push_back(InvokeFT->getParamType(I)); 9303 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9304 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9305 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9306 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9307 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9308 ArgNames.push_back( 9309 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9310 } 9311 std::string Name = Invoke->getName().str() + "_kernel"; 9312 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9313 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9314 &CGF.CGM.getModule()); 9315 F->addFnAttr("enqueued-block"); 9316 auto IP = CGF.Builder.saveIP(); 9317 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9318 Builder.SetInsertPoint(BB); 9319 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9320 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9321 BlockPtr->setAlignment(BlockAlign); 9322 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9323 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9324 llvm::SmallVector<llvm::Value *, 2> Args; 9325 Args.push_back(Cast); 9326 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9327 Args.push_back(I); 9328 Builder.CreateCall(Invoke, Args); 9329 Builder.CreateRetVoid(); 9330 Builder.restoreIP(IP); 9331 9332 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9333 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9334 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9335 F->setMetadata("kernel_arg_base_type", 9336 llvm::MDNode::get(C, ArgBaseTypeNames)); 9337 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9338 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9339 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9340 9341 return F; 9342 } 9343