1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) { 144 if (!RT->getDecl()->canPassInRegisters()) 145 return CGCXXABI::RAA_Indirect; 146 return CGCXXABI::RAA_Default; 147 } 148 return CXXABI.getRecordArgABI(RD); 149 } 150 151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 152 CGCXXABI &CXXABI) { 153 const RecordType *RT = T->getAs<RecordType>(); 154 if (!RT) 155 return CGCXXABI::RAA_Default; 156 return getRecordArgABI(RT, CXXABI); 157 } 158 159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 160 const ABIInfo &Info) { 161 QualType Ty = FI.getReturnType(); 162 163 if (const auto *RT = Ty->getAs<RecordType>()) 164 if (!isa<CXXRecordDecl>(RT->getDecl()) && 165 !RT->getDecl()->canPassInRegisters()) { 166 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 167 return true; 168 } 169 170 return CXXABI.classifyReturnType(FI); 171 } 172 173 /// Pass transparent unions as if they were the type of the first element. Sema 174 /// should ensure that all elements of the union have the same "machine type". 175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 176 if (const RecordType *UT = Ty->getAsUnionType()) { 177 const RecordDecl *UD = UT->getDecl(); 178 if (UD->hasAttr<TransparentUnionAttr>()) { 179 assert(!UD->field_empty() && "sema created an empty transparent union"); 180 return UD->field_begin()->getType(); 181 } 182 } 183 return Ty; 184 } 185 186 CGCXXABI &ABIInfo::getCXXABI() const { 187 return CGT.getCXXABI(); 188 } 189 190 ASTContext &ABIInfo::getContext() const { 191 return CGT.getContext(); 192 } 193 194 llvm::LLVMContext &ABIInfo::getVMContext() const { 195 return CGT.getLLVMContext(); 196 } 197 198 const llvm::DataLayout &ABIInfo::getDataLayout() const { 199 return CGT.getDataLayout(); 200 } 201 202 const TargetInfo &ABIInfo::getTarget() const { 203 return CGT.getTarget(); 204 } 205 206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 207 return CGT.getCodeGenOpts(); 208 } 209 210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 211 212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 213 return false; 214 } 215 216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 217 uint64_t Members) const { 218 return false; 219 } 220 221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 222 raw_ostream &OS = llvm::errs(); 223 OS << "(ABIArgInfo Kind="; 224 switch (TheKind) { 225 case Direct: 226 OS << "Direct Type="; 227 if (llvm::Type *Ty = getCoerceToType()) 228 Ty->print(OS); 229 else 230 OS << "null"; 231 break; 232 case Extend: 233 OS << "Extend"; 234 break; 235 case Ignore: 236 OS << "Ignore"; 237 break; 238 case InAlloca: 239 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 240 break; 241 case Indirect: 242 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 243 << " ByVal=" << getIndirectByVal() 244 << " Realign=" << getIndirectRealign(); 245 break; 246 case Expand: 247 OS << "Expand"; 248 break; 249 case CoerceAndExpand: 250 OS << "CoerceAndExpand Type="; 251 getCoerceAndExpandType()->print(OS); 252 break; 253 } 254 OS << ")\n"; 255 } 256 257 // Dynamically round a pointer up to a multiple of the given alignment. 258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 259 llvm::Value *Ptr, 260 CharUnits Align) { 261 llvm::Value *PtrAsInt = Ptr; 262 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 263 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 264 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 265 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 266 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 268 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 269 Ptr->getType(), 270 Ptr->getName() + ".aligned"); 271 return PtrAsInt; 272 } 273 274 /// Emit va_arg for a platform using the common void* representation, 275 /// where arguments are simply emitted in an array of slots on the stack. 276 /// 277 /// This version implements the core direct-value passing rules. 278 /// 279 /// \param SlotSize - The size and alignment of a stack slot. 280 /// Each argument will be allocated to a multiple of this number of 281 /// slots, and all the slots will be aligned to this value. 282 /// \param AllowHigherAlign - The slot alignment is not a cap; 283 /// an argument type with an alignment greater than the slot size 284 /// will be emitted on a higher-alignment address, potentially 285 /// leaving one or more empty slots behind as padding. If this 286 /// is false, the returned address might be less-aligned than 287 /// DirectAlign. 288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 289 Address VAListAddr, 290 llvm::Type *DirectTy, 291 CharUnits DirectSize, 292 CharUnits DirectAlign, 293 CharUnits SlotSize, 294 bool AllowHigherAlign) { 295 // Cast the element type to i8* if necessary. Some platforms define 296 // va_list as a struct containing an i8* instead of just an i8*. 297 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 298 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 299 300 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 301 302 // If the CC aligns values higher than the slot size, do so if needed. 303 Address Addr = Address::invalid(); 304 if (AllowHigherAlign && DirectAlign > SlotSize) { 305 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 306 DirectAlign); 307 } else { 308 Addr = Address(Ptr, SlotSize); 309 } 310 311 // Advance the pointer past the argument, then store that back. 312 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 313 Address NextPtr = 314 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 315 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 316 317 // If the argument is smaller than a slot, and this is a big-endian 318 // target, the argument will be right-adjusted in its slot. 319 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 320 !DirectTy->isStructTy()) { 321 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 322 } 323 324 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 325 return Addr; 326 } 327 328 /// Emit va_arg for a platform using the common void* representation, 329 /// where arguments are simply emitted in an array of slots on the stack. 330 /// 331 /// \param IsIndirect - Values of this type are passed indirectly. 332 /// \param ValueInfo - The size and alignment of this type, generally 333 /// computed with getContext().getTypeInfoInChars(ValueTy). 334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 335 /// Each argument will be allocated to a multiple of this number of 336 /// slots, and all the slots will be aligned to this value. 337 /// \param AllowHigherAlign - The slot alignment is not a cap; 338 /// an argument type with an alignment greater than the slot size 339 /// will be emitted on a higher-alignment address, potentially 340 /// leaving one or more empty slots behind as padding. 341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 342 QualType ValueTy, bool IsIndirect, 343 std::pair<CharUnits, CharUnits> ValueInfo, 344 CharUnits SlotSizeAndAlign, 345 bool AllowHigherAlign) { 346 // The size and alignment of the value that was passed directly. 347 CharUnits DirectSize, DirectAlign; 348 if (IsIndirect) { 349 DirectSize = CGF.getPointerSize(); 350 DirectAlign = CGF.getPointerAlign(); 351 } else { 352 DirectSize = ValueInfo.first; 353 DirectAlign = ValueInfo.second; 354 } 355 356 // Cast the address we've calculated to the right type. 357 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 358 if (IsIndirect) 359 DirectTy = DirectTy->getPointerTo(0); 360 361 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 362 DirectSize, DirectAlign, 363 SlotSizeAndAlign, 364 AllowHigherAlign); 365 366 if (IsIndirect) { 367 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 368 } 369 370 return Addr; 371 372 } 373 374 static Address emitMergePHI(CodeGenFunction &CGF, 375 Address Addr1, llvm::BasicBlock *Block1, 376 Address Addr2, llvm::BasicBlock *Block2, 377 const llvm::Twine &Name = "") { 378 assert(Addr1.getType() == Addr2.getType()); 379 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 380 PHI->addIncoming(Addr1.getPointer(), Block1); 381 PHI->addIncoming(Addr2.getPointer(), Block2); 382 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 383 return Address(PHI, Align); 384 } 385 386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 387 388 // If someone can figure out a general rule for this, that would be great. 389 // It's probably just doomed to be platform-dependent, though. 390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 391 // Verified for: 392 // x86-64 FreeBSD, Linux, Darwin 393 // x86-32 FreeBSD, Linux, Darwin 394 // PowerPC Linux, Darwin 395 // ARM Darwin (*not* EABI) 396 // AArch64 Linux 397 return 32; 398 } 399 400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 401 const FunctionNoProtoType *fnType) const { 402 // The following conventions are known to require this to be false: 403 // x86_stdcall 404 // MIPS 405 // For everything else, we just prefer false unless we opt out. 406 return false; 407 } 408 409 void 410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 411 llvm::SmallString<24> &Opt) const { 412 // This assumes the user is passing a library name like "rt" instead of a 413 // filename like "librt.a/so", and that they don't care whether it's static or 414 // dynamic. 415 Opt = "-l"; 416 Opt += Lib; 417 } 418 419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 420 // OpenCL kernels are called via an explicit runtime API with arguments 421 // set with clSetKernelArg(), not as normal sub-functions. 422 // Return SPIR_KERNEL by default as the kernel calling convention to 423 // ensure the fingerprint is fixed such way that each OpenCL argument 424 // gets one matching argument in the produced kernel function argument 425 // list to enable feasible implementation of clSetKernelArg() with 426 // aggregates etc. In case we would use the default C calling conv here, 427 // clSetKernelArg() might break depending on the target-specific 428 // conventions; different targets might split structs passed as values 429 // to multiple function arguments etc. 430 return llvm::CallingConv::SPIR_KERNEL; 431 } 432 433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 434 llvm::PointerType *T, QualType QT) const { 435 return llvm::ConstantPointerNull::get(T); 436 } 437 438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 439 const VarDecl *D) const { 440 assert(!CGM.getLangOpts().OpenCL && 441 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 442 "Address space agnostic languages only"); 443 return D ? D->getType().getAddressSpace() : LangAS::Default; 444 } 445 446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 447 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 448 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 449 // Since target may map different address spaces in AST to the same address 450 // space, an address space conversion may end up as a bitcast. 451 if (auto *C = dyn_cast<llvm::Constant>(Src)) 452 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 453 // Try to preserve the source's name to make IR more readable. 454 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 455 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 456 } 457 458 llvm::Constant * 459 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 460 LangAS SrcAddr, LangAS DestAddr, 461 llvm::Type *DestTy) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 465 } 466 467 llvm::SyncScope::ID 468 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 469 SyncScope Scope, 470 llvm::AtomicOrdering Ordering, 471 llvm::LLVMContext &Ctx) const { 472 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 473 } 474 475 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 476 477 /// isEmptyField - Return true iff a the field is "empty", that is it 478 /// is an unnamed bit-field or an (array of) empty record(s). 479 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 480 bool AllowArrays) { 481 if (FD->isUnnamedBitfield()) 482 return true; 483 484 QualType FT = FD->getType(); 485 486 // Constant arrays of empty records count as empty, strip them off. 487 // Constant arrays of zero length always count as empty. 488 if (AllowArrays) 489 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 490 if (AT->getSize() == 0) 491 return true; 492 FT = AT->getElementType(); 493 } 494 495 const RecordType *RT = FT->getAs<RecordType>(); 496 if (!RT) 497 return false; 498 499 // C++ record fields are never empty, at least in the Itanium ABI. 500 // 501 // FIXME: We should use a predicate for whether this behavior is true in the 502 // current ABI. 503 if (isa<CXXRecordDecl>(RT->getDecl())) 504 return false; 505 506 return isEmptyRecord(Context, FT, AllowArrays); 507 } 508 509 /// isEmptyRecord - Return true iff a structure contains only empty 510 /// fields. Note that a structure with a flexible array member is not 511 /// considered empty. 512 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 513 const RecordType *RT = T->getAs<RecordType>(); 514 if (!RT) 515 return false; 516 const RecordDecl *RD = RT->getDecl(); 517 if (RD->hasFlexibleArrayMember()) 518 return false; 519 520 // If this is a C++ record, check the bases first. 521 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 522 for (const auto &I : CXXRD->bases()) 523 if (!isEmptyRecord(Context, I.getType(), true)) 524 return false; 525 526 for (const auto *I : RD->fields()) 527 if (!isEmptyField(Context, I, AllowArrays)) 528 return false; 529 return true; 530 } 531 532 /// isSingleElementStruct - Determine if a structure is a "single 533 /// element struct", i.e. it has exactly one non-empty field or 534 /// exactly one field which is itself a single element 535 /// struct. Structures with flexible array members are never 536 /// considered single element structs. 537 /// 538 /// \return The field declaration for the single non-empty field, if 539 /// it exists. 540 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 541 const RecordType *RT = T->getAs<RecordType>(); 542 if (!RT) 543 return nullptr; 544 545 const RecordDecl *RD = RT->getDecl(); 546 if (RD->hasFlexibleArrayMember()) 547 return nullptr; 548 549 const Type *Found = nullptr; 550 551 // If this is a C++ record, check the bases first. 552 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 553 for (const auto &I : CXXRD->bases()) { 554 // Ignore empty records. 555 if (isEmptyRecord(Context, I.getType(), true)) 556 continue; 557 558 // If we already found an element then this isn't a single-element struct. 559 if (Found) 560 return nullptr; 561 562 // If this is non-empty and not a single element struct, the composite 563 // cannot be a single element struct. 564 Found = isSingleElementStruct(I.getType(), Context); 565 if (!Found) 566 return nullptr; 567 } 568 } 569 570 // Check for single element. 571 for (const auto *FD : RD->fields()) { 572 QualType FT = FD->getType(); 573 574 // Ignore empty fields. 575 if (isEmptyField(Context, FD, true)) 576 continue; 577 578 // If we already found an element then this isn't a single-element 579 // struct. 580 if (Found) 581 return nullptr; 582 583 // Treat single element arrays as the element. 584 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 585 if (AT->getSize().getZExtValue() != 1) 586 break; 587 FT = AT->getElementType(); 588 } 589 590 if (!isAggregateTypeForABI(FT)) { 591 Found = FT.getTypePtr(); 592 } else { 593 Found = isSingleElementStruct(FT, Context); 594 if (!Found) 595 return nullptr; 596 } 597 } 598 599 // We don't consider a struct a single-element struct if it has 600 // padding beyond the element type. 601 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 602 return nullptr; 603 604 return Found; 605 } 606 607 namespace { 608 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 609 const ABIArgInfo &AI) { 610 // This default implementation defers to the llvm backend's va_arg 611 // instruction. It can handle only passing arguments directly 612 // (typically only handled in the backend for primitive types), or 613 // aggregates passed indirectly by pointer (NOTE: if the "byval" 614 // flag has ABI impact in the callee, this implementation cannot 615 // work.) 616 617 // Only a few cases are covered here at the moment -- those needed 618 // by the default abi. 619 llvm::Value *Val; 620 621 if (AI.isIndirect()) { 622 assert(!AI.getPaddingType() && 623 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 624 assert( 625 !AI.getIndirectRealign() && 626 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 627 628 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 629 CharUnits TyAlignForABI = TyInfo.second; 630 631 llvm::Type *BaseTy = 632 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 633 llvm::Value *Addr = 634 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 635 return Address(Addr, TyAlignForABI); 636 } else { 637 assert((AI.isDirect() || AI.isExtend()) && 638 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 639 640 assert(!AI.getInReg() && 641 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 642 assert(!AI.getPaddingType() && 643 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 644 assert(!AI.getDirectOffset() && 645 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 646 assert(!AI.getCoerceToType() && 647 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 648 649 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 650 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 651 CGF.Builder.CreateStore(Val, Temp); 652 return Temp; 653 } 654 } 655 656 /// DefaultABIInfo - The default implementation for ABI specific 657 /// details. This implementation provides information which results in 658 /// self-consistent and sensible LLVM IR generation, but does not 659 /// conform to any particular ABI. 660 class DefaultABIInfo : public ABIInfo { 661 public: 662 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 663 664 ABIArgInfo classifyReturnType(QualType RetTy) const; 665 ABIArgInfo classifyArgumentType(QualType RetTy) const; 666 667 void computeInfo(CGFunctionInfo &FI) const override { 668 if (!getCXXABI().classifyReturnType(FI)) 669 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 670 for (auto &I : FI.arguments()) 671 I.info = classifyArgumentType(I.type); 672 } 673 674 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 675 QualType Ty) const override { 676 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 677 } 678 }; 679 680 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 681 public: 682 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 683 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 684 }; 685 686 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 687 Ty = useFirstFieldIfTransparentUnion(Ty); 688 689 if (isAggregateTypeForABI(Ty)) { 690 // Records with non-trivial destructors/copy-constructors should not be 691 // passed by value. 692 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 694 695 return getNaturalAlignIndirect(Ty); 696 } 697 698 // Treat an enum type as its underlying type. 699 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 700 Ty = EnumTy->getDecl()->getIntegerType(); 701 702 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 703 : ABIArgInfo::getDirect()); 704 } 705 706 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 707 if (RetTy->isVoidType()) 708 return ABIArgInfo::getIgnore(); 709 710 if (isAggregateTypeForABI(RetTy)) 711 return getNaturalAlignIndirect(RetTy); 712 713 // Treat an enum type as its underlying type. 714 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 715 RetTy = EnumTy->getDecl()->getIntegerType(); 716 717 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 718 : ABIArgInfo::getDirect()); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // WebAssembly ABI Implementation 723 // 724 // This is a very simple ABI that relies a lot on DefaultABIInfo. 725 //===----------------------------------------------------------------------===// 726 727 class WebAssemblyABIInfo final : public SwiftABIInfo { 728 DefaultABIInfo defaultInfo; 729 730 public: 731 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 732 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 733 734 private: 735 ABIArgInfo classifyReturnType(QualType RetTy) const; 736 ABIArgInfo classifyArgumentType(QualType Ty) const; 737 738 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 739 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 740 // overload them. 741 void computeInfo(CGFunctionInfo &FI) const override { 742 if (!getCXXABI().classifyReturnType(FI)) 743 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 744 for (auto &Arg : FI.arguments()) 745 Arg.info = classifyArgumentType(Arg.type); 746 } 747 748 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 749 QualType Ty) const override; 750 751 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 752 bool asReturnValue) const override { 753 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 754 } 755 756 bool isSwiftErrorInRegister() const override { 757 return false; 758 } 759 }; 760 761 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 762 public: 763 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 764 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 765 766 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 767 CodeGen::CodeGenModule &CGM) const override { 768 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 769 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 770 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 771 llvm::Function *Fn = cast<llvm::Function>(GV); 772 llvm::AttrBuilder B; 773 B.addAttribute("wasm-import-module", Attr->getImportModule()); 774 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 775 } 776 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 777 llvm::Function *Fn = cast<llvm::Function>(GV); 778 llvm::AttrBuilder B; 779 B.addAttribute("wasm-import-name", Attr->getImportName()); 780 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 781 } 782 } 783 784 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 785 llvm::Function *Fn = cast<llvm::Function>(GV); 786 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 787 Fn->addFnAttr("no-prototype"); 788 } 789 } 790 }; 791 792 /// Classify argument of given type \p Ty. 793 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 794 Ty = useFirstFieldIfTransparentUnion(Ty); 795 796 if (isAggregateTypeForABI(Ty)) { 797 // Records with non-trivial destructors/copy-constructors should not be 798 // passed by value. 799 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 800 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 801 // Ignore empty structs/unions. 802 if (isEmptyRecord(getContext(), Ty, true)) 803 return ABIArgInfo::getIgnore(); 804 // Lower single-element structs to just pass a regular value. TODO: We 805 // could do reasonable-size multiple-element structs too, using getExpand(), 806 // though watch out for things like bitfields. 807 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 808 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 809 } 810 811 // Otherwise just do the default thing. 812 return defaultInfo.classifyArgumentType(Ty); 813 } 814 815 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 816 if (isAggregateTypeForABI(RetTy)) { 817 // Records with non-trivial destructors/copy-constructors should not be 818 // returned by value. 819 if (!getRecordArgABI(RetTy, getCXXABI())) { 820 // Ignore empty structs/unions. 821 if (isEmptyRecord(getContext(), RetTy, true)) 822 return ABIArgInfo::getIgnore(); 823 // Lower single-element structs to just return a regular value. TODO: We 824 // could do reasonable-size multiple-element structs too, using 825 // ABIArgInfo::getDirect(). 826 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 827 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 828 } 829 } 830 831 // Otherwise just do the default thing. 832 return defaultInfo.classifyReturnType(RetTy); 833 } 834 835 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 836 QualType Ty) const { 837 bool IsIndirect = isAggregateTypeForABI(Ty) && 838 !isEmptyRecord(getContext(), Ty, true) && 839 !isSingleElementStruct(Ty, getContext()); 840 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 841 getContext().getTypeInfoInChars(Ty), 842 CharUnits::fromQuantity(4), 843 /*AllowHigherAlign=*/true); 844 } 845 846 //===----------------------------------------------------------------------===// 847 // le32/PNaCl bitcode ABI Implementation 848 // 849 // This is a simplified version of the x86_32 ABI. Arguments and return values 850 // are always passed on the stack. 851 //===----------------------------------------------------------------------===// 852 853 class PNaClABIInfo : public ABIInfo { 854 public: 855 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 856 857 ABIArgInfo classifyReturnType(QualType RetTy) const; 858 ABIArgInfo classifyArgumentType(QualType RetTy) const; 859 860 void computeInfo(CGFunctionInfo &FI) const override; 861 Address EmitVAArg(CodeGenFunction &CGF, 862 Address VAListAddr, QualType Ty) const override; 863 }; 864 865 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 866 public: 867 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 868 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 869 }; 870 871 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 872 if (!getCXXABI().classifyReturnType(FI)) 873 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 874 875 for (auto &I : FI.arguments()) 876 I.info = classifyArgumentType(I.type); 877 } 878 879 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 880 QualType Ty) const { 881 // The PNaCL ABI is a bit odd, in that varargs don't use normal 882 // function classification. Structs get passed directly for varargs 883 // functions, through a rewriting transform in 884 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 885 // this target to actually support a va_arg instructions with an 886 // aggregate type, unlike other targets. 887 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 888 } 889 890 /// Classify argument of given type \p Ty. 891 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 892 if (isAggregateTypeForABI(Ty)) { 893 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 894 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 895 return getNaturalAlignIndirect(Ty); 896 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 897 // Treat an enum type as its underlying type. 898 Ty = EnumTy->getDecl()->getIntegerType(); 899 } else if (Ty->isFloatingType()) { 900 // Floating-point types don't go inreg. 901 return ABIArgInfo::getDirect(); 902 } 903 904 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 905 : ABIArgInfo::getDirect()); 906 } 907 908 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 909 if (RetTy->isVoidType()) 910 return ABIArgInfo::getIgnore(); 911 912 // In the PNaCl ABI we always return records/structures on the stack. 913 if (isAggregateTypeForABI(RetTy)) 914 return getNaturalAlignIndirect(RetTy); 915 916 // Treat an enum type as its underlying type. 917 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 918 RetTy = EnumTy->getDecl()->getIntegerType(); 919 920 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 921 : ABIArgInfo::getDirect()); 922 } 923 924 /// IsX86_MMXType - Return true if this is an MMX type. 925 bool IsX86_MMXType(llvm::Type *IRType) { 926 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 927 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 928 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 929 IRType->getScalarSizeInBits() != 64; 930 } 931 932 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 933 StringRef Constraint, 934 llvm::Type* Ty) { 935 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 936 .Cases("y", "&y", "^Ym", true) 937 .Default(false); 938 if (IsMMXCons && Ty->isVectorTy()) { 939 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 940 // Invalid MMX constraint 941 return nullptr; 942 } 943 944 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 945 } 946 947 // No operation needed 948 return Ty; 949 } 950 951 /// Returns true if this type can be passed in SSE registers with the 952 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 953 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 954 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 955 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 956 if (BT->getKind() == BuiltinType::LongDouble) { 957 if (&Context.getTargetInfo().getLongDoubleFormat() == 958 &llvm::APFloat::x87DoubleExtended()) 959 return false; 960 } 961 return true; 962 } 963 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 964 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 965 // registers specially. 966 unsigned VecSize = Context.getTypeSize(VT); 967 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 968 return true; 969 } 970 return false; 971 } 972 973 /// Returns true if this aggregate is small enough to be passed in SSE registers 974 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 975 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 976 return NumMembers <= 4; 977 } 978 979 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 980 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 981 auto AI = ABIArgInfo::getDirect(T); 982 AI.setInReg(true); 983 AI.setCanBeFlattened(false); 984 return AI; 985 } 986 987 //===----------------------------------------------------------------------===// 988 // X86-32 ABI Implementation 989 //===----------------------------------------------------------------------===// 990 991 /// Similar to llvm::CCState, but for Clang. 992 struct CCState { 993 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 994 995 unsigned CC; 996 unsigned FreeRegs; 997 unsigned FreeSSERegs; 998 }; 999 1000 enum { 1001 // Vectorcall only allows the first 6 parameters to be passed in registers. 1002 VectorcallMaxParamNumAsReg = 6 1003 }; 1004 1005 /// X86_32ABIInfo - The X86-32 ABI information. 1006 class X86_32ABIInfo : public SwiftABIInfo { 1007 enum Class { 1008 Integer, 1009 Float 1010 }; 1011 1012 static const unsigned MinABIStackAlignInBytes = 4; 1013 1014 bool IsDarwinVectorABI; 1015 bool IsRetSmallStructInRegABI; 1016 bool IsWin32StructABI; 1017 bool IsSoftFloatABI; 1018 bool IsMCUABI; 1019 unsigned DefaultNumRegisterParameters; 1020 1021 static bool isRegisterSize(unsigned Size) { 1022 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1023 } 1024 1025 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1026 // FIXME: Assumes vectorcall is in use. 1027 return isX86VectorTypeForVectorCall(getContext(), Ty); 1028 } 1029 1030 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1031 uint64_t NumMembers) const override { 1032 // FIXME: Assumes vectorcall is in use. 1033 return isX86VectorCallAggregateSmallEnough(NumMembers); 1034 } 1035 1036 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1037 1038 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1039 /// such that the argument will be passed in memory. 1040 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1041 1042 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1043 1044 /// Return the alignment to use for the given type on the stack. 1045 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1046 1047 Class classify(QualType Ty) const; 1048 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1049 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1050 1051 /// Updates the number of available free registers, returns 1052 /// true if any registers were allocated. 1053 bool updateFreeRegs(QualType Ty, CCState &State) const; 1054 1055 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1056 bool &NeedsPadding) const; 1057 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1058 1059 bool canExpandIndirectArgument(QualType Ty) const; 1060 1061 /// Rewrite the function info so that all memory arguments use 1062 /// inalloca. 1063 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1064 1065 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1066 CharUnits &StackOffset, ABIArgInfo &Info, 1067 QualType Type) const; 1068 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1069 bool &UsedInAlloca) const; 1070 1071 public: 1072 1073 void computeInfo(CGFunctionInfo &FI) const override; 1074 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1075 QualType Ty) const override; 1076 1077 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1078 bool RetSmallStructInRegABI, bool Win32StructABI, 1079 unsigned NumRegisterParameters, bool SoftFloatABI) 1080 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1081 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1082 IsWin32StructABI(Win32StructABI), 1083 IsSoftFloatABI(SoftFloatABI), 1084 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1085 DefaultNumRegisterParameters(NumRegisterParameters) {} 1086 1087 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1088 bool asReturnValue) const override { 1089 // LLVM's x86-32 lowering currently only assigns up to three 1090 // integer registers and three fp registers. Oddly, it'll use up to 1091 // four vector registers for vectors, but those can overlap with the 1092 // scalar registers. 1093 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1094 } 1095 1096 bool isSwiftErrorInRegister() const override { 1097 // x86-32 lowering does not support passing swifterror in a register. 1098 return false; 1099 } 1100 }; 1101 1102 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1103 public: 1104 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1105 bool RetSmallStructInRegABI, bool Win32StructABI, 1106 unsigned NumRegisterParameters, bool SoftFloatABI) 1107 : TargetCodeGenInfo(new X86_32ABIInfo( 1108 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1109 NumRegisterParameters, SoftFloatABI)) {} 1110 1111 static bool isStructReturnInRegABI( 1112 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1113 1114 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1115 CodeGen::CodeGenModule &CGM) const override; 1116 1117 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1118 // Darwin uses different dwarf register numbers for EH. 1119 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1120 return 4; 1121 } 1122 1123 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1124 llvm::Value *Address) const override; 1125 1126 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1127 StringRef Constraint, 1128 llvm::Type* Ty) const override { 1129 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1130 } 1131 1132 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1133 std::string &Constraints, 1134 std::vector<llvm::Type *> &ResultRegTypes, 1135 std::vector<llvm::Type *> &ResultTruncRegTypes, 1136 std::vector<LValue> &ResultRegDests, 1137 std::string &AsmString, 1138 unsigned NumOutputs) const override; 1139 1140 llvm::Constant * 1141 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1142 unsigned Sig = (0xeb << 0) | // jmp rel8 1143 (0x06 << 8) | // .+0x08 1144 ('v' << 16) | 1145 ('2' << 24); 1146 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1147 } 1148 1149 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1150 return "movl\t%ebp, %ebp" 1151 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1152 } 1153 }; 1154 1155 } 1156 1157 /// Rewrite input constraint references after adding some output constraints. 1158 /// In the case where there is one output and one input and we add one output, 1159 /// we need to replace all operand references greater than or equal to 1: 1160 /// mov $0, $1 1161 /// mov eax, $1 1162 /// The result will be: 1163 /// mov $0, $2 1164 /// mov eax, $2 1165 static void rewriteInputConstraintReferences(unsigned FirstIn, 1166 unsigned NumNewOuts, 1167 std::string &AsmString) { 1168 std::string Buf; 1169 llvm::raw_string_ostream OS(Buf); 1170 size_t Pos = 0; 1171 while (Pos < AsmString.size()) { 1172 size_t DollarStart = AsmString.find('$', Pos); 1173 if (DollarStart == std::string::npos) 1174 DollarStart = AsmString.size(); 1175 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1176 if (DollarEnd == std::string::npos) 1177 DollarEnd = AsmString.size(); 1178 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1179 Pos = DollarEnd; 1180 size_t NumDollars = DollarEnd - DollarStart; 1181 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1182 // We have an operand reference. 1183 size_t DigitStart = Pos; 1184 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1185 if (DigitEnd == std::string::npos) 1186 DigitEnd = AsmString.size(); 1187 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1188 unsigned OperandIndex; 1189 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1190 if (OperandIndex >= FirstIn) 1191 OperandIndex += NumNewOuts; 1192 OS << OperandIndex; 1193 } else { 1194 OS << OperandStr; 1195 } 1196 Pos = DigitEnd; 1197 } 1198 } 1199 AsmString = std::move(OS.str()); 1200 } 1201 1202 /// Add output constraints for EAX:EDX because they are return registers. 1203 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1204 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1205 std::vector<llvm::Type *> &ResultRegTypes, 1206 std::vector<llvm::Type *> &ResultTruncRegTypes, 1207 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1208 unsigned NumOutputs) const { 1209 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1210 1211 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1212 // larger. 1213 if (!Constraints.empty()) 1214 Constraints += ','; 1215 if (RetWidth <= 32) { 1216 Constraints += "={eax}"; 1217 ResultRegTypes.push_back(CGF.Int32Ty); 1218 } else { 1219 // Use the 'A' constraint for EAX:EDX. 1220 Constraints += "=A"; 1221 ResultRegTypes.push_back(CGF.Int64Ty); 1222 } 1223 1224 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1225 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1226 ResultTruncRegTypes.push_back(CoerceTy); 1227 1228 // Coerce the integer by bitcasting the return slot pointer. 1229 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1230 CoerceTy->getPointerTo())); 1231 ResultRegDests.push_back(ReturnSlot); 1232 1233 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1234 } 1235 1236 /// shouldReturnTypeInRegister - Determine if the given type should be 1237 /// returned in a register (for the Darwin and MCU ABI). 1238 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1239 ASTContext &Context) const { 1240 uint64_t Size = Context.getTypeSize(Ty); 1241 1242 // For i386, type must be register sized. 1243 // For the MCU ABI, it only needs to be <= 8-byte 1244 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1245 return false; 1246 1247 if (Ty->isVectorType()) { 1248 // 64- and 128- bit vectors inside structures are not returned in 1249 // registers. 1250 if (Size == 64 || Size == 128) 1251 return false; 1252 1253 return true; 1254 } 1255 1256 // If this is a builtin, pointer, enum, complex type, member pointer, or 1257 // member function pointer it is ok. 1258 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1259 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1260 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1261 return true; 1262 1263 // Arrays are treated like records. 1264 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1265 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1266 1267 // Otherwise, it must be a record type. 1268 const RecordType *RT = Ty->getAs<RecordType>(); 1269 if (!RT) return false; 1270 1271 // FIXME: Traverse bases here too. 1272 1273 // Structure types are passed in register if all fields would be 1274 // passed in a register. 1275 for (const auto *FD : RT->getDecl()->fields()) { 1276 // Empty fields are ignored. 1277 if (isEmptyField(Context, FD, true)) 1278 continue; 1279 1280 // Check fields recursively. 1281 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1282 return false; 1283 } 1284 return true; 1285 } 1286 1287 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1288 // Treat complex types as the element type. 1289 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1290 Ty = CTy->getElementType(); 1291 1292 // Check for a type which we know has a simple scalar argument-passing 1293 // convention without any padding. (We're specifically looking for 32 1294 // and 64-bit integer and integer-equivalents, float, and double.) 1295 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1296 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1297 return false; 1298 1299 uint64_t Size = Context.getTypeSize(Ty); 1300 return Size == 32 || Size == 64; 1301 } 1302 1303 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1304 uint64_t &Size) { 1305 for (const auto *FD : RD->fields()) { 1306 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1307 // argument is smaller than 32-bits, expanding the struct will create 1308 // alignment padding. 1309 if (!is32Or64BitBasicType(FD->getType(), Context)) 1310 return false; 1311 1312 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1313 // how to expand them yet, and the predicate for telling if a bitfield still 1314 // counts as "basic" is more complicated than what we were doing previously. 1315 if (FD->isBitField()) 1316 return false; 1317 1318 Size += Context.getTypeSize(FD->getType()); 1319 } 1320 return true; 1321 } 1322 1323 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1324 uint64_t &Size) { 1325 // Don't do this if there are any non-empty bases. 1326 for (const CXXBaseSpecifier &Base : RD->bases()) { 1327 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1328 Size)) 1329 return false; 1330 } 1331 if (!addFieldSizes(Context, RD, Size)) 1332 return false; 1333 return true; 1334 } 1335 1336 /// Test whether an argument type which is to be passed indirectly (on the 1337 /// stack) would have the equivalent layout if it was expanded into separate 1338 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1339 /// optimizations. 1340 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1341 // We can only expand structure types. 1342 const RecordType *RT = Ty->getAs<RecordType>(); 1343 if (!RT) 1344 return false; 1345 const RecordDecl *RD = RT->getDecl(); 1346 uint64_t Size = 0; 1347 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1348 if (!IsWin32StructABI) { 1349 // On non-Windows, we have to conservatively match our old bitcode 1350 // prototypes in order to be ABI-compatible at the bitcode level. 1351 if (!CXXRD->isCLike()) 1352 return false; 1353 } else { 1354 // Don't do this for dynamic classes. 1355 if (CXXRD->isDynamicClass()) 1356 return false; 1357 } 1358 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1359 return false; 1360 } else { 1361 if (!addFieldSizes(getContext(), RD, Size)) 1362 return false; 1363 } 1364 1365 // We can do this if there was no alignment padding. 1366 return Size == getContext().getTypeSize(Ty); 1367 } 1368 1369 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1370 // If the return value is indirect, then the hidden argument is consuming one 1371 // integer register. 1372 if (State.FreeRegs) { 1373 --State.FreeRegs; 1374 if (!IsMCUABI) 1375 return getNaturalAlignIndirectInReg(RetTy); 1376 } 1377 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1378 } 1379 1380 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1381 CCState &State) const { 1382 if (RetTy->isVoidType()) 1383 return ABIArgInfo::getIgnore(); 1384 1385 const Type *Base = nullptr; 1386 uint64_t NumElts = 0; 1387 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1388 State.CC == llvm::CallingConv::X86_RegCall) && 1389 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1390 // The LLVM struct type for such an aggregate should lower properly. 1391 return ABIArgInfo::getDirect(); 1392 } 1393 1394 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1395 // On Darwin, some vectors are returned in registers. 1396 if (IsDarwinVectorABI) { 1397 uint64_t Size = getContext().getTypeSize(RetTy); 1398 1399 // 128-bit vectors are a special case; they are returned in 1400 // registers and we need to make sure to pick a type the LLVM 1401 // backend will like. 1402 if (Size == 128) 1403 return ABIArgInfo::getDirect(llvm::VectorType::get( 1404 llvm::Type::getInt64Ty(getVMContext()), 2)); 1405 1406 // Always return in register if it fits in a general purpose 1407 // register, or if it is 64 bits and has a single element. 1408 if ((Size == 8 || Size == 16 || Size == 32) || 1409 (Size == 64 && VT->getNumElements() == 1)) 1410 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1411 Size)); 1412 1413 return getIndirectReturnResult(RetTy, State); 1414 } 1415 1416 return ABIArgInfo::getDirect(); 1417 } 1418 1419 if (isAggregateTypeForABI(RetTy)) { 1420 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1421 // Structures with flexible arrays are always indirect. 1422 if (RT->getDecl()->hasFlexibleArrayMember()) 1423 return getIndirectReturnResult(RetTy, State); 1424 } 1425 1426 // If specified, structs and unions are always indirect. 1427 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1428 return getIndirectReturnResult(RetTy, State); 1429 1430 // Ignore empty structs/unions. 1431 if (isEmptyRecord(getContext(), RetTy, true)) 1432 return ABIArgInfo::getIgnore(); 1433 1434 // Small structures which are register sized are generally returned 1435 // in a register. 1436 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1437 uint64_t Size = getContext().getTypeSize(RetTy); 1438 1439 // As a special-case, if the struct is a "single-element" struct, and 1440 // the field is of type "float" or "double", return it in a 1441 // floating-point register. (MSVC does not apply this special case.) 1442 // We apply a similar transformation for pointer types to improve the 1443 // quality of the generated IR. 1444 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1445 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1446 || SeltTy->hasPointerRepresentation()) 1447 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1448 1449 // FIXME: We should be able to narrow this integer in cases with dead 1450 // padding. 1451 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1452 } 1453 1454 return getIndirectReturnResult(RetTy, State); 1455 } 1456 1457 // Treat an enum type as its underlying type. 1458 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1459 RetTy = EnumTy->getDecl()->getIntegerType(); 1460 1461 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1462 : ABIArgInfo::getDirect()); 1463 } 1464 1465 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1466 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1467 } 1468 1469 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1470 const RecordType *RT = Ty->getAs<RecordType>(); 1471 if (!RT) 1472 return 0; 1473 const RecordDecl *RD = RT->getDecl(); 1474 1475 // If this is a C++ record, check the bases first. 1476 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1477 for (const auto &I : CXXRD->bases()) 1478 if (!isRecordWithSSEVectorType(Context, I.getType())) 1479 return false; 1480 1481 for (const auto *i : RD->fields()) { 1482 QualType FT = i->getType(); 1483 1484 if (isSSEVectorType(Context, FT)) 1485 return true; 1486 1487 if (isRecordWithSSEVectorType(Context, FT)) 1488 return true; 1489 } 1490 1491 return false; 1492 } 1493 1494 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1495 unsigned Align) const { 1496 // Otherwise, if the alignment is less than or equal to the minimum ABI 1497 // alignment, just use the default; the backend will handle this. 1498 if (Align <= MinABIStackAlignInBytes) 1499 return 0; // Use default alignment. 1500 1501 // On non-Darwin, the stack type alignment is always 4. 1502 if (!IsDarwinVectorABI) { 1503 // Set explicit alignment, since we may need to realign the top. 1504 return MinABIStackAlignInBytes; 1505 } 1506 1507 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1508 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1509 isRecordWithSSEVectorType(getContext(), Ty))) 1510 return 16; 1511 1512 return MinABIStackAlignInBytes; 1513 } 1514 1515 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1516 CCState &State) const { 1517 if (!ByVal) { 1518 if (State.FreeRegs) { 1519 --State.FreeRegs; // Non-byval indirects just use one pointer. 1520 if (!IsMCUABI) 1521 return getNaturalAlignIndirectInReg(Ty); 1522 } 1523 return getNaturalAlignIndirect(Ty, false); 1524 } 1525 1526 // Compute the byval alignment. 1527 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1528 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1529 if (StackAlign == 0) 1530 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1531 1532 // If the stack alignment is less than the type alignment, realign the 1533 // argument. 1534 bool Realign = TypeAlign > StackAlign; 1535 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1536 /*ByVal=*/true, Realign); 1537 } 1538 1539 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1540 const Type *T = isSingleElementStruct(Ty, getContext()); 1541 if (!T) 1542 T = Ty.getTypePtr(); 1543 1544 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1545 BuiltinType::Kind K = BT->getKind(); 1546 if (K == BuiltinType::Float || K == BuiltinType::Double) 1547 return Float; 1548 } 1549 return Integer; 1550 } 1551 1552 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1553 if (!IsSoftFloatABI) { 1554 Class C = classify(Ty); 1555 if (C == Float) 1556 return false; 1557 } 1558 1559 unsigned Size = getContext().getTypeSize(Ty); 1560 unsigned SizeInRegs = (Size + 31) / 32; 1561 1562 if (SizeInRegs == 0) 1563 return false; 1564 1565 if (!IsMCUABI) { 1566 if (SizeInRegs > State.FreeRegs) { 1567 State.FreeRegs = 0; 1568 return false; 1569 } 1570 } else { 1571 // The MCU psABI allows passing parameters in-reg even if there are 1572 // earlier parameters that are passed on the stack. Also, 1573 // it does not allow passing >8-byte structs in-register, 1574 // even if there are 3 free registers available. 1575 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1576 return false; 1577 } 1578 1579 State.FreeRegs -= SizeInRegs; 1580 return true; 1581 } 1582 1583 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1584 bool &InReg, 1585 bool &NeedsPadding) const { 1586 // On Windows, aggregates other than HFAs are never passed in registers, and 1587 // they do not consume register slots. Homogenous floating-point aggregates 1588 // (HFAs) have already been dealt with at this point. 1589 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1590 return false; 1591 1592 NeedsPadding = false; 1593 InReg = !IsMCUABI; 1594 1595 if (!updateFreeRegs(Ty, State)) 1596 return false; 1597 1598 if (IsMCUABI) 1599 return true; 1600 1601 if (State.CC == llvm::CallingConv::X86_FastCall || 1602 State.CC == llvm::CallingConv::X86_VectorCall || 1603 State.CC == llvm::CallingConv::X86_RegCall) { 1604 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1605 NeedsPadding = true; 1606 1607 return false; 1608 } 1609 1610 return true; 1611 } 1612 1613 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1614 if (!updateFreeRegs(Ty, State)) 1615 return false; 1616 1617 if (IsMCUABI) 1618 return false; 1619 1620 if (State.CC == llvm::CallingConv::X86_FastCall || 1621 State.CC == llvm::CallingConv::X86_VectorCall || 1622 State.CC == llvm::CallingConv::X86_RegCall) { 1623 if (getContext().getTypeSize(Ty) > 32) 1624 return false; 1625 1626 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1627 Ty->isReferenceType()); 1628 } 1629 1630 return true; 1631 } 1632 1633 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1634 CCState &State) const { 1635 // FIXME: Set alignment on indirect arguments. 1636 1637 Ty = useFirstFieldIfTransparentUnion(Ty); 1638 1639 // Check with the C++ ABI first. 1640 const RecordType *RT = Ty->getAs<RecordType>(); 1641 if (RT) { 1642 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1643 if (RAA == CGCXXABI::RAA_Indirect) { 1644 return getIndirectResult(Ty, false, State); 1645 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1646 // The field index doesn't matter, we'll fix it up later. 1647 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1648 } 1649 } 1650 1651 // Regcall uses the concept of a homogenous vector aggregate, similar 1652 // to other targets. 1653 const Type *Base = nullptr; 1654 uint64_t NumElts = 0; 1655 if (State.CC == llvm::CallingConv::X86_RegCall && 1656 isHomogeneousAggregate(Ty, Base, NumElts)) { 1657 1658 if (State.FreeSSERegs >= NumElts) { 1659 State.FreeSSERegs -= NumElts; 1660 if (Ty->isBuiltinType() || Ty->isVectorType()) 1661 return ABIArgInfo::getDirect(); 1662 return ABIArgInfo::getExpand(); 1663 } 1664 return getIndirectResult(Ty, /*ByVal=*/false, State); 1665 } 1666 1667 if (isAggregateTypeForABI(Ty)) { 1668 // Structures with flexible arrays are always indirect. 1669 // FIXME: This should not be byval! 1670 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1671 return getIndirectResult(Ty, true, State); 1672 1673 // Ignore empty structs/unions on non-Windows. 1674 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1675 return ABIArgInfo::getIgnore(); 1676 1677 llvm::LLVMContext &LLVMContext = getVMContext(); 1678 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1679 bool NeedsPadding = false; 1680 bool InReg; 1681 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1682 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1683 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1684 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1685 if (InReg) 1686 return ABIArgInfo::getDirectInReg(Result); 1687 else 1688 return ABIArgInfo::getDirect(Result); 1689 } 1690 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1691 1692 // Expand small (<= 128-bit) record types when we know that the stack layout 1693 // of those arguments will match the struct. This is important because the 1694 // LLVM backend isn't smart enough to remove byval, which inhibits many 1695 // optimizations. 1696 // Don't do this for the MCU if there are still free integer registers 1697 // (see X86_64 ABI for full explanation). 1698 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1699 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1700 return ABIArgInfo::getExpandWithPadding( 1701 State.CC == llvm::CallingConv::X86_FastCall || 1702 State.CC == llvm::CallingConv::X86_VectorCall || 1703 State.CC == llvm::CallingConv::X86_RegCall, 1704 PaddingType); 1705 1706 return getIndirectResult(Ty, true, State); 1707 } 1708 1709 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1710 // On Darwin, some vectors are passed in memory, we handle this by passing 1711 // it as an i8/i16/i32/i64. 1712 if (IsDarwinVectorABI) { 1713 uint64_t Size = getContext().getTypeSize(Ty); 1714 if ((Size == 8 || Size == 16 || Size == 32) || 1715 (Size == 64 && VT->getNumElements() == 1)) 1716 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1717 Size)); 1718 } 1719 1720 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1721 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1722 1723 return ABIArgInfo::getDirect(); 1724 } 1725 1726 1727 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1728 Ty = EnumTy->getDecl()->getIntegerType(); 1729 1730 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1731 1732 if (Ty->isPromotableIntegerType()) { 1733 if (InReg) 1734 return ABIArgInfo::getExtendInReg(Ty); 1735 return ABIArgInfo::getExtend(Ty); 1736 } 1737 1738 if (InReg) 1739 return ABIArgInfo::getDirectInReg(); 1740 return ABIArgInfo::getDirect(); 1741 } 1742 1743 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1744 bool &UsedInAlloca) const { 1745 // Vectorcall x86 works subtly different than in x64, so the format is 1746 // a bit different than the x64 version. First, all vector types (not HVAs) 1747 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1748 // This differs from the x64 implementation, where the first 6 by INDEX get 1749 // registers. 1750 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1751 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1752 // first take up the remaining YMM/XMM registers. If insufficient registers 1753 // remain but an integer register (ECX/EDX) is available, it will be passed 1754 // in that, else, on the stack. 1755 for (auto &I : FI.arguments()) { 1756 // First pass do all the vector types. 1757 const Type *Base = nullptr; 1758 uint64_t NumElts = 0; 1759 const QualType& Ty = I.type; 1760 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1761 isHomogeneousAggregate(Ty, Base, NumElts)) { 1762 if (State.FreeSSERegs >= NumElts) { 1763 State.FreeSSERegs -= NumElts; 1764 I.info = ABIArgInfo::getDirect(); 1765 } else { 1766 I.info = classifyArgumentType(Ty, State); 1767 } 1768 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1769 } 1770 } 1771 1772 for (auto &I : FI.arguments()) { 1773 // Second pass, do the rest! 1774 const Type *Base = nullptr; 1775 uint64_t NumElts = 0; 1776 const QualType& Ty = I.type; 1777 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1778 1779 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1780 // Assign true HVAs (non vector/native FP types). 1781 if (State.FreeSSERegs >= NumElts) { 1782 State.FreeSSERegs -= NumElts; 1783 I.info = getDirectX86Hva(); 1784 } else { 1785 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1786 } 1787 } else if (!IsHva) { 1788 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1789 I.info = classifyArgumentType(Ty, State); 1790 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1791 } 1792 } 1793 } 1794 1795 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1796 CCState State(FI.getCallingConvention()); 1797 if (IsMCUABI) 1798 State.FreeRegs = 3; 1799 else if (State.CC == llvm::CallingConv::X86_FastCall) 1800 State.FreeRegs = 2; 1801 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1802 State.FreeRegs = 2; 1803 State.FreeSSERegs = 6; 1804 } else if (FI.getHasRegParm()) 1805 State.FreeRegs = FI.getRegParm(); 1806 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1807 State.FreeRegs = 5; 1808 State.FreeSSERegs = 8; 1809 } else 1810 State.FreeRegs = DefaultNumRegisterParameters; 1811 1812 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1814 } else if (FI.getReturnInfo().isIndirect()) { 1815 // The C++ ABI is not aware of register usage, so we have to check if the 1816 // return value was sret and put it in a register ourselves if appropriate. 1817 if (State.FreeRegs) { 1818 --State.FreeRegs; // The sret parameter consumes a register. 1819 if (!IsMCUABI) 1820 FI.getReturnInfo().setInReg(true); 1821 } 1822 } 1823 1824 // The chain argument effectively gives us another free register. 1825 if (FI.isChainCall()) 1826 ++State.FreeRegs; 1827 1828 bool UsedInAlloca = false; 1829 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1830 computeVectorCallArgs(FI, State, UsedInAlloca); 1831 } else { 1832 // If not vectorcall, revert to normal behavior. 1833 for (auto &I : FI.arguments()) { 1834 I.info = classifyArgumentType(I.type, State); 1835 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1836 } 1837 } 1838 1839 // If we needed to use inalloca for any argument, do a second pass and rewrite 1840 // all the memory arguments to use inalloca. 1841 if (UsedInAlloca) 1842 rewriteWithInAlloca(FI); 1843 } 1844 1845 void 1846 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1847 CharUnits &StackOffset, ABIArgInfo &Info, 1848 QualType Type) const { 1849 // Arguments are always 4-byte-aligned. 1850 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1851 1852 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1853 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1854 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1855 StackOffset += getContext().getTypeSizeInChars(Type); 1856 1857 // Insert padding bytes to respect alignment. 1858 CharUnits FieldEnd = StackOffset; 1859 StackOffset = FieldEnd.alignTo(FieldAlign); 1860 if (StackOffset != FieldEnd) { 1861 CharUnits NumBytes = StackOffset - FieldEnd; 1862 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1863 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1864 FrameFields.push_back(Ty); 1865 } 1866 } 1867 1868 static bool isArgInAlloca(const ABIArgInfo &Info) { 1869 // Leave ignored and inreg arguments alone. 1870 switch (Info.getKind()) { 1871 case ABIArgInfo::InAlloca: 1872 return true; 1873 case ABIArgInfo::Indirect: 1874 assert(Info.getIndirectByVal()); 1875 return true; 1876 case ABIArgInfo::Ignore: 1877 return false; 1878 case ABIArgInfo::Direct: 1879 case ABIArgInfo::Extend: 1880 if (Info.getInReg()) 1881 return false; 1882 return true; 1883 case ABIArgInfo::Expand: 1884 case ABIArgInfo::CoerceAndExpand: 1885 // These are aggregate types which are never passed in registers when 1886 // inalloca is involved. 1887 return true; 1888 } 1889 llvm_unreachable("invalid enum"); 1890 } 1891 1892 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1893 assert(IsWin32StructABI && "inalloca only supported on win32"); 1894 1895 // Build a packed struct type for all of the arguments in memory. 1896 SmallVector<llvm::Type *, 6> FrameFields; 1897 1898 // The stack alignment is always 4. 1899 CharUnits StackAlign = CharUnits::fromQuantity(4); 1900 1901 CharUnits StackOffset; 1902 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1903 1904 // Put 'this' into the struct before 'sret', if necessary. 1905 bool IsThisCall = 1906 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1907 ABIArgInfo &Ret = FI.getReturnInfo(); 1908 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1909 isArgInAlloca(I->info)) { 1910 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1911 ++I; 1912 } 1913 1914 // Put the sret parameter into the inalloca struct if it's in memory. 1915 if (Ret.isIndirect() && !Ret.getInReg()) { 1916 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1917 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1918 // On Windows, the hidden sret parameter is always returned in eax. 1919 Ret.setInAllocaSRet(IsWin32StructABI); 1920 } 1921 1922 // Skip the 'this' parameter in ecx. 1923 if (IsThisCall) 1924 ++I; 1925 1926 // Put arguments passed in memory into the struct. 1927 for (; I != E; ++I) { 1928 if (isArgInAlloca(I->info)) 1929 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1930 } 1931 1932 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1933 /*isPacked=*/true), 1934 StackAlign); 1935 } 1936 1937 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1938 Address VAListAddr, QualType Ty) const { 1939 1940 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1941 1942 // x86-32 changes the alignment of certain arguments on the stack. 1943 // 1944 // Just messing with TypeInfo like this works because we never pass 1945 // anything indirectly. 1946 TypeInfo.second = CharUnits::fromQuantity( 1947 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1948 1949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1950 TypeInfo, CharUnits::fromQuantity(4), 1951 /*AllowHigherAlign*/ true); 1952 } 1953 1954 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1955 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1956 assert(Triple.getArch() == llvm::Triple::x86); 1957 1958 switch (Opts.getStructReturnConvention()) { 1959 case CodeGenOptions::SRCK_Default: 1960 break; 1961 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1962 return false; 1963 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1964 return true; 1965 } 1966 1967 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1968 return true; 1969 1970 switch (Triple.getOS()) { 1971 case llvm::Triple::DragonFly: 1972 case llvm::Triple::FreeBSD: 1973 case llvm::Triple::OpenBSD: 1974 case llvm::Triple::Win32: 1975 return true; 1976 default: 1977 return false; 1978 } 1979 } 1980 1981 void X86_32TargetCodeGenInfo::setTargetAttributes( 1982 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1983 if (GV->isDeclaration()) 1984 return; 1985 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1986 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1987 llvm::Function *Fn = cast<llvm::Function>(GV); 1988 Fn->addFnAttr("stackrealign"); 1989 } 1990 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1991 llvm::Function *Fn = cast<llvm::Function>(GV); 1992 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1993 } 1994 } 1995 } 1996 1997 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1998 CodeGen::CodeGenFunction &CGF, 1999 llvm::Value *Address) const { 2000 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2001 2002 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2003 2004 // 0-7 are the eight integer registers; the order is different 2005 // on Darwin (for EH), but the range is the same. 2006 // 8 is %eip. 2007 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2008 2009 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2010 // 12-16 are st(0..4). Not sure why we stop at 4. 2011 // These have size 16, which is sizeof(long double) on 2012 // platforms with 8-byte alignment for that type. 2013 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2014 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2015 2016 } else { 2017 // 9 is %eflags, which doesn't get a size on Darwin for some 2018 // reason. 2019 Builder.CreateAlignedStore( 2020 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2021 CharUnits::One()); 2022 2023 // 11-16 are st(0..5). Not sure why we stop at 5. 2024 // These have size 12, which is sizeof(long double) on 2025 // platforms with 4-byte alignment for that type. 2026 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2027 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2028 } 2029 2030 return false; 2031 } 2032 2033 //===----------------------------------------------------------------------===// 2034 // X86-64 ABI Implementation 2035 //===----------------------------------------------------------------------===// 2036 2037 2038 namespace { 2039 /// The AVX ABI level for X86 targets. 2040 enum class X86AVXABILevel { 2041 None, 2042 AVX, 2043 AVX512 2044 }; 2045 2046 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2047 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2048 switch (AVXLevel) { 2049 case X86AVXABILevel::AVX512: 2050 return 512; 2051 case X86AVXABILevel::AVX: 2052 return 256; 2053 case X86AVXABILevel::None: 2054 return 128; 2055 } 2056 llvm_unreachable("Unknown AVXLevel"); 2057 } 2058 2059 /// X86_64ABIInfo - The X86_64 ABI information. 2060 class X86_64ABIInfo : public SwiftABIInfo { 2061 enum Class { 2062 Integer = 0, 2063 SSE, 2064 SSEUp, 2065 X87, 2066 X87Up, 2067 ComplexX87, 2068 NoClass, 2069 Memory 2070 }; 2071 2072 /// merge - Implement the X86_64 ABI merging algorithm. 2073 /// 2074 /// Merge an accumulating classification \arg Accum with a field 2075 /// classification \arg Field. 2076 /// 2077 /// \param Accum - The accumulating classification. This should 2078 /// always be either NoClass or the result of a previous merge 2079 /// call. In addition, this should never be Memory (the caller 2080 /// should just return Memory for the aggregate). 2081 static Class merge(Class Accum, Class Field); 2082 2083 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2084 /// 2085 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2086 /// final MEMORY or SSE classes when necessary. 2087 /// 2088 /// \param AggregateSize - The size of the current aggregate in 2089 /// the classification process. 2090 /// 2091 /// \param Lo - The classification for the parts of the type 2092 /// residing in the low word of the containing object. 2093 /// 2094 /// \param Hi - The classification for the parts of the type 2095 /// residing in the higher words of the containing object. 2096 /// 2097 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2098 2099 /// classify - Determine the x86_64 register classes in which the 2100 /// given type T should be passed. 2101 /// 2102 /// \param Lo - The classification for the parts of the type 2103 /// residing in the low word of the containing object. 2104 /// 2105 /// \param Hi - The classification for the parts of the type 2106 /// residing in the high word of the containing object. 2107 /// 2108 /// \param OffsetBase - The bit offset of this type in the 2109 /// containing object. Some parameters are classified different 2110 /// depending on whether they straddle an eightbyte boundary. 2111 /// 2112 /// \param isNamedArg - Whether the argument in question is a "named" 2113 /// argument, as used in AMD64-ABI 3.5.7. 2114 /// 2115 /// If a word is unused its result will be NoClass; if a type should 2116 /// be passed in Memory then at least the classification of \arg Lo 2117 /// will be Memory. 2118 /// 2119 /// The \arg Lo class will be NoClass iff the argument is ignored. 2120 /// 2121 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2122 /// also be ComplexX87. 2123 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2124 bool isNamedArg) const; 2125 2126 llvm::Type *GetByteVectorType(QualType Ty) const; 2127 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2128 unsigned IROffset, QualType SourceTy, 2129 unsigned SourceOffset) const; 2130 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2131 unsigned IROffset, QualType SourceTy, 2132 unsigned SourceOffset) const; 2133 2134 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2135 /// such that the argument will be returned in memory. 2136 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2137 2138 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2139 /// such that the argument will be passed in memory. 2140 /// 2141 /// \param freeIntRegs - The number of free integer registers remaining 2142 /// available. 2143 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2144 2145 ABIArgInfo classifyReturnType(QualType RetTy) const; 2146 2147 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2148 unsigned &neededInt, unsigned &neededSSE, 2149 bool isNamedArg) const; 2150 2151 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2152 unsigned &NeededSSE) const; 2153 2154 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2155 unsigned &NeededSSE) const; 2156 2157 bool IsIllegalVectorType(QualType Ty) const; 2158 2159 /// The 0.98 ABI revision clarified a lot of ambiguities, 2160 /// unfortunately in ways that were not always consistent with 2161 /// certain previous compilers. In particular, platforms which 2162 /// required strict binary compatibility with older versions of GCC 2163 /// may need to exempt themselves. 2164 bool honorsRevision0_98() const { 2165 return !getTarget().getTriple().isOSDarwin(); 2166 } 2167 2168 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2169 /// classify it as INTEGER (for compatibility with older clang compilers). 2170 bool classifyIntegerMMXAsSSE() const { 2171 // Clang <= 3.8 did not do this. 2172 if (getContext().getLangOpts().getClangABICompat() <= 2173 LangOptions::ClangABI::Ver3_8) 2174 return false; 2175 2176 const llvm::Triple &Triple = getTarget().getTriple(); 2177 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2178 return false; 2179 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2180 return false; 2181 return true; 2182 } 2183 2184 // GCC classifies vectors of __int128 as memory. 2185 bool passInt128VectorsInMem() const { 2186 // Clang <= 9.0 did not do this. 2187 if (getContext().getLangOpts().getClangABICompat() <= 2188 LangOptions::ClangABI::Ver9) 2189 return false; 2190 2191 const llvm::Triple &T = getTarget().getTriple(); 2192 return T.isOSLinux() || T.isOSNetBSD(); 2193 } 2194 2195 X86AVXABILevel AVXLevel; 2196 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2197 // 64-bit hardware. 2198 bool Has64BitPointers; 2199 2200 public: 2201 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2202 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2203 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2204 } 2205 2206 bool isPassedUsingAVXType(QualType type) const { 2207 unsigned neededInt, neededSSE; 2208 // The freeIntRegs argument doesn't matter here. 2209 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2210 /*isNamedArg*/true); 2211 if (info.isDirect()) { 2212 llvm::Type *ty = info.getCoerceToType(); 2213 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2214 return (vectorTy->getBitWidth() > 128); 2215 } 2216 return false; 2217 } 2218 2219 void computeInfo(CGFunctionInfo &FI) const override; 2220 2221 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2222 QualType Ty) const override; 2223 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2224 QualType Ty) const override; 2225 2226 bool has64BitPointers() const { 2227 return Has64BitPointers; 2228 } 2229 2230 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2231 bool asReturnValue) const override { 2232 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2233 } 2234 bool isSwiftErrorInRegister() const override { 2235 return true; 2236 } 2237 }; 2238 2239 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2240 class WinX86_64ABIInfo : public SwiftABIInfo { 2241 public: 2242 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2243 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2244 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2245 2246 void computeInfo(CGFunctionInfo &FI) const override; 2247 2248 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2249 QualType Ty) const override; 2250 2251 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2252 // FIXME: Assumes vectorcall is in use. 2253 return isX86VectorTypeForVectorCall(getContext(), Ty); 2254 } 2255 2256 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2257 uint64_t NumMembers) const override { 2258 // FIXME: Assumes vectorcall is in use. 2259 return isX86VectorCallAggregateSmallEnough(NumMembers); 2260 } 2261 2262 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2263 bool asReturnValue) const override { 2264 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2265 } 2266 2267 bool isSwiftErrorInRegister() const override { 2268 return true; 2269 } 2270 2271 private: 2272 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2273 bool IsVectorCall, bool IsRegCall) const; 2274 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2275 const ABIArgInfo ¤t) const; 2276 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2277 bool IsVectorCall, bool IsRegCall) const; 2278 2279 X86AVXABILevel AVXLevel; 2280 2281 bool IsMingw64; 2282 }; 2283 2284 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2285 public: 2286 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2287 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2288 2289 const X86_64ABIInfo &getABIInfo() const { 2290 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2291 } 2292 2293 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2294 /// the autoreleaseRV/retainRV optimization. 2295 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2296 return true; 2297 } 2298 2299 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2300 return 7; 2301 } 2302 2303 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2304 llvm::Value *Address) const override { 2305 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2306 2307 // 0-15 are the 16 integer registers. 2308 // 16 is %rip. 2309 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2310 return false; 2311 } 2312 2313 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2314 StringRef Constraint, 2315 llvm::Type* Ty) const override { 2316 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2317 } 2318 2319 bool isNoProtoCallVariadic(const CallArgList &args, 2320 const FunctionNoProtoType *fnType) const override { 2321 // The default CC on x86-64 sets %al to the number of SSA 2322 // registers used, and GCC sets this when calling an unprototyped 2323 // function, so we override the default behavior. However, don't do 2324 // that when AVX types are involved: the ABI explicitly states it is 2325 // undefined, and it doesn't work in practice because of how the ABI 2326 // defines varargs anyway. 2327 if (fnType->getCallConv() == CC_C) { 2328 bool HasAVXType = false; 2329 for (CallArgList::const_iterator 2330 it = args.begin(), ie = args.end(); it != ie; ++it) { 2331 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2332 HasAVXType = true; 2333 break; 2334 } 2335 } 2336 2337 if (!HasAVXType) 2338 return true; 2339 } 2340 2341 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2342 } 2343 2344 llvm::Constant * 2345 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2346 unsigned Sig = (0xeb << 0) | // jmp rel8 2347 (0x06 << 8) | // .+0x08 2348 ('v' << 16) | 2349 ('2' << 24); 2350 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2351 } 2352 2353 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2354 CodeGen::CodeGenModule &CGM) const override { 2355 if (GV->isDeclaration()) 2356 return; 2357 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2358 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2359 llvm::Function *Fn = cast<llvm::Function>(GV); 2360 Fn->addFnAttr("stackrealign"); 2361 } 2362 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2363 llvm::Function *Fn = cast<llvm::Function>(GV); 2364 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2365 } 2366 } 2367 } 2368 }; 2369 2370 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2371 // If the argument does not end in .lib, automatically add the suffix. 2372 // If the argument contains a space, enclose it in quotes. 2373 // This matches the behavior of MSVC. 2374 bool Quote = (Lib.find(" ") != StringRef::npos); 2375 std::string ArgStr = Quote ? "\"" : ""; 2376 ArgStr += Lib; 2377 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2378 ArgStr += ".lib"; 2379 ArgStr += Quote ? "\"" : ""; 2380 return ArgStr; 2381 } 2382 2383 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2384 public: 2385 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2386 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2387 unsigned NumRegisterParameters) 2388 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2389 Win32StructABI, NumRegisterParameters, false) {} 2390 2391 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2392 CodeGen::CodeGenModule &CGM) const override; 2393 2394 void getDependentLibraryOption(llvm::StringRef Lib, 2395 llvm::SmallString<24> &Opt) const override { 2396 Opt = "/DEFAULTLIB:"; 2397 Opt += qualifyWindowsLibrary(Lib); 2398 } 2399 2400 void getDetectMismatchOption(llvm::StringRef Name, 2401 llvm::StringRef Value, 2402 llvm::SmallString<32> &Opt) const override { 2403 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2404 } 2405 }; 2406 2407 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2408 CodeGen::CodeGenModule &CGM) { 2409 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2410 2411 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2412 Fn->addFnAttr("stack-probe-size", 2413 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2414 if (CGM.getCodeGenOpts().NoStackArgProbe) 2415 Fn->addFnAttr("no-stack-arg-probe"); 2416 } 2417 } 2418 2419 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2420 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2421 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2422 if (GV->isDeclaration()) 2423 return; 2424 addStackProbeTargetAttributes(D, GV, CGM); 2425 } 2426 2427 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2428 public: 2429 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2430 X86AVXABILevel AVXLevel) 2431 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2432 2433 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2434 CodeGen::CodeGenModule &CGM) const override; 2435 2436 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2437 return 7; 2438 } 2439 2440 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2441 llvm::Value *Address) const override { 2442 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2443 2444 // 0-15 are the 16 integer registers. 2445 // 16 is %rip. 2446 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2447 return false; 2448 } 2449 2450 void getDependentLibraryOption(llvm::StringRef Lib, 2451 llvm::SmallString<24> &Opt) const override { 2452 Opt = "/DEFAULTLIB:"; 2453 Opt += qualifyWindowsLibrary(Lib); 2454 } 2455 2456 void getDetectMismatchOption(llvm::StringRef Name, 2457 llvm::StringRef Value, 2458 llvm::SmallString<32> &Opt) const override { 2459 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2460 } 2461 }; 2462 2463 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2464 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2465 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2466 if (GV->isDeclaration()) 2467 return; 2468 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2469 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2470 llvm::Function *Fn = cast<llvm::Function>(GV); 2471 Fn->addFnAttr("stackrealign"); 2472 } 2473 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2474 llvm::Function *Fn = cast<llvm::Function>(GV); 2475 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2476 } 2477 } 2478 2479 addStackProbeTargetAttributes(D, GV, CGM); 2480 } 2481 } 2482 2483 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2484 Class &Hi) const { 2485 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2486 // 2487 // (a) If one of the classes is Memory, the whole argument is passed in 2488 // memory. 2489 // 2490 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2491 // memory. 2492 // 2493 // (c) If the size of the aggregate exceeds two eightbytes and the first 2494 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2495 // argument is passed in memory. NOTE: This is necessary to keep the 2496 // ABI working for processors that don't support the __m256 type. 2497 // 2498 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2499 // 2500 // Some of these are enforced by the merging logic. Others can arise 2501 // only with unions; for example: 2502 // union { _Complex double; unsigned; } 2503 // 2504 // Note that clauses (b) and (c) were added in 0.98. 2505 // 2506 if (Hi == Memory) 2507 Lo = Memory; 2508 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2509 Lo = Memory; 2510 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2511 Lo = Memory; 2512 if (Hi == SSEUp && Lo != SSE) 2513 Hi = SSE; 2514 } 2515 2516 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2517 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2518 // classified recursively so that always two fields are 2519 // considered. The resulting class is calculated according to 2520 // the classes of the fields in the eightbyte: 2521 // 2522 // (a) If both classes are equal, this is the resulting class. 2523 // 2524 // (b) If one of the classes is NO_CLASS, the resulting class is 2525 // the other class. 2526 // 2527 // (c) If one of the classes is MEMORY, the result is the MEMORY 2528 // class. 2529 // 2530 // (d) If one of the classes is INTEGER, the result is the 2531 // INTEGER. 2532 // 2533 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2534 // MEMORY is used as class. 2535 // 2536 // (f) Otherwise class SSE is used. 2537 2538 // Accum should never be memory (we should have returned) or 2539 // ComplexX87 (because this cannot be passed in a structure). 2540 assert((Accum != Memory && Accum != ComplexX87) && 2541 "Invalid accumulated classification during merge."); 2542 if (Accum == Field || Field == NoClass) 2543 return Accum; 2544 if (Field == Memory) 2545 return Memory; 2546 if (Accum == NoClass) 2547 return Field; 2548 if (Accum == Integer || Field == Integer) 2549 return Integer; 2550 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2551 Accum == X87 || Accum == X87Up) 2552 return Memory; 2553 return SSE; 2554 } 2555 2556 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2557 Class &Lo, Class &Hi, bool isNamedArg) const { 2558 // FIXME: This code can be simplified by introducing a simple value class for 2559 // Class pairs with appropriate constructor methods for the various 2560 // situations. 2561 2562 // FIXME: Some of the split computations are wrong; unaligned vectors 2563 // shouldn't be passed in registers for example, so there is no chance they 2564 // can straddle an eightbyte. Verify & simplify. 2565 2566 Lo = Hi = NoClass; 2567 2568 Class &Current = OffsetBase < 64 ? Lo : Hi; 2569 Current = Memory; 2570 2571 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2572 BuiltinType::Kind k = BT->getKind(); 2573 2574 if (k == BuiltinType::Void) { 2575 Current = NoClass; 2576 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2577 Lo = Integer; 2578 Hi = Integer; 2579 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2580 Current = Integer; 2581 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2582 Current = SSE; 2583 } else if (k == BuiltinType::LongDouble) { 2584 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2585 if (LDF == &llvm::APFloat::IEEEquad()) { 2586 Lo = SSE; 2587 Hi = SSEUp; 2588 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2589 Lo = X87; 2590 Hi = X87Up; 2591 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2592 Current = SSE; 2593 } else 2594 llvm_unreachable("unexpected long double representation!"); 2595 } 2596 // FIXME: _Decimal32 and _Decimal64 are SSE. 2597 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2598 return; 2599 } 2600 2601 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2602 // Classify the underlying integer type. 2603 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2604 return; 2605 } 2606 2607 if (Ty->hasPointerRepresentation()) { 2608 Current = Integer; 2609 return; 2610 } 2611 2612 if (Ty->isMemberPointerType()) { 2613 if (Ty->isMemberFunctionPointerType()) { 2614 if (Has64BitPointers) { 2615 // If Has64BitPointers, this is an {i64, i64}, so classify both 2616 // Lo and Hi now. 2617 Lo = Hi = Integer; 2618 } else { 2619 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2620 // straddles an eightbyte boundary, Hi should be classified as well. 2621 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2622 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2623 if (EB_FuncPtr != EB_ThisAdj) { 2624 Lo = Hi = Integer; 2625 } else { 2626 Current = Integer; 2627 } 2628 } 2629 } else { 2630 Current = Integer; 2631 } 2632 return; 2633 } 2634 2635 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2636 uint64_t Size = getContext().getTypeSize(VT); 2637 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2638 // gcc passes the following as integer: 2639 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2640 // 2 bytes - <2 x char>, <1 x short> 2641 // 1 byte - <1 x char> 2642 Current = Integer; 2643 2644 // If this type crosses an eightbyte boundary, it should be 2645 // split. 2646 uint64_t EB_Lo = (OffsetBase) / 64; 2647 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2648 if (EB_Lo != EB_Hi) 2649 Hi = Lo; 2650 } else if (Size == 64) { 2651 QualType ElementType = VT->getElementType(); 2652 2653 // gcc passes <1 x double> in memory. :( 2654 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2655 return; 2656 2657 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2658 // pass them as integer. For platforms where clang is the de facto 2659 // platform compiler, we must continue to use integer. 2660 if (!classifyIntegerMMXAsSSE() && 2661 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2662 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2663 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2664 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2665 Current = Integer; 2666 else 2667 Current = SSE; 2668 2669 // If this type crosses an eightbyte boundary, it should be 2670 // split. 2671 if (OffsetBase && OffsetBase != 64) 2672 Hi = Lo; 2673 } else if (Size == 128 || 2674 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2675 QualType ElementType = VT->getElementType(); 2676 2677 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2678 if (passInt128VectorsInMem() && Size != 128 && 2679 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2680 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2681 return; 2682 2683 // Arguments of 256-bits are split into four eightbyte chunks. The 2684 // least significant one belongs to class SSE and all the others to class 2685 // SSEUP. The original Lo and Hi design considers that types can't be 2686 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2687 // This design isn't correct for 256-bits, but since there're no cases 2688 // where the upper parts would need to be inspected, avoid adding 2689 // complexity and just consider Hi to match the 64-256 part. 2690 // 2691 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2692 // registers if they are "named", i.e. not part of the "..." of a 2693 // variadic function. 2694 // 2695 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2696 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2697 Lo = SSE; 2698 Hi = SSEUp; 2699 } 2700 return; 2701 } 2702 2703 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2704 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2705 2706 uint64_t Size = getContext().getTypeSize(Ty); 2707 if (ET->isIntegralOrEnumerationType()) { 2708 if (Size <= 64) 2709 Current = Integer; 2710 else if (Size <= 128) 2711 Lo = Hi = Integer; 2712 } else if (ET == getContext().FloatTy) { 2713 Current = SSE; 2714 } else if (ET == getContext().DoubleTy) { 2715 Lo = Hi = SSE; 2716 } else if (ET == getContext().LongDoubleTy) { 2717 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2718 if (LDF == &llvm::APFloat::IEEEquad()) 2719 Current = Memory; 2720 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2721 Current = ComplexX87; 2722 else if (LDF == &llvm::APFloat::IEEEdouble()) 2723 Lo = Hi = SSE; 2724 else 2725 llvm_unreachable("unexpected long double representation!"); 2726 } 2727 2728 // If this complex type crosses an eightbyte boundary then it 2729 // should be split. 2730 uint64_t EB_Real = (OffsetBase) / 64; 2731 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2732 if (Hi == NoClass && EB_Real != EB_Imag) 2733 Hi = Lo; 2734 2735 return; 2736 } 2737 2738 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2739 // Arrays are treated like structures. 2740 2741 uint64_t Size = getContext().getTypeSize(Ty); 2742 2743 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2744 // than eight eightbytes, ..., it has class MEMORY. 2745 if (Size > 512) 2746 return; 2747 2748 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2749 // fields, it has class MEMORY. 2750 // 2751 // Only need to check alignment of array base. 2752 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2753 return; 2754 2755 // Otherwise implement simplified merge. We could be smarter about 2756 // this, but it isn't worth it and would be harder to verify. 2757 Current = NoClass; 2758 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2759 uint64_t ArraySize = AT->getSize().getZExtValue(); 2760 2761 // The only case a 256-bit wide vector could be used is when the array 2762 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2763 // to work for sizes wider than 128, early check and fallback to memory. 2764 // 2765 if (Size > 128 && 2766 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2767 return; 2768 2769 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2770 Class FieldLo, FieldHi; 2771 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2772 Lo = merge(Lo, FieldLo); 2773 Hi = merge(Hi, FieldHi); 2774 if (Lo == Memory || Hi == Memory) 2775 break; 2776 } 2777 2778 postMerge(Size, Lo, Hi); 2779 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2780 return; 2781 } 2782 2783 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2784 uint64_t Size = getContext().getTypeSize(Ty); 2785 2786 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2787 // than eight eightbytes, ..., it has class MEMORY. 2788 if (Size > 512) 2789 return; 2790 2791 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2792 // copy constructor or a non-trivial destructor, it is passed by invisible 2793 // reference. 2794 if (getRecordArgABI(RT, getCXXABI())) 2795 return; 2796 2797 const RecordDecl *RD = RT->getDecl(); 2798 2799 // Assume variable sized types are passed in memory. 2800 if (RD->hasFlexibleArrayMember()) 2801 return; 2802 2803 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2804 2805 // Reset Lo class, this will be recomputed. 2806 Current = NoClass; 2807 2808 // If this is a C++ record, classify the bases first. 2809 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2810 for (const auto &I : CXXRD->bases()) { 2811 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2812 "Unexpected base class!"); 2813 const auto *Base = 2814 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2815 2816 // Classify this field. 2817 // 2818 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2819 // single eightbyte, each is classified separately. Each eightbyte gets 2820 // initialized to class NO_CLASS. 2821 Class FieldLo, FieldHi; 2822 uint64_t Offset = 2823 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2824 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2825 Lo = merge(Lo, FieldLo); 2826 Hi = merge(Hi, FieldHi); 2827 if (Lo == Memory || Hi == Memory) { 2828 postMerge(Size, Lo, Hi); 2829 return; 2830 } 2831 } 2832 } 2833 2834 // Classify the fields one at a time, merging the results. 2835 unsigned idx = 0; 2836 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2837 i != e; ++i, ++idx) { 2838 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2839 bool BitField = i->isBitField(); 2840 2841 // Ignore padding bit-fields. 2842 if (BitField && i->isUnnamedBitfield()) 2843 continue; 2844 2845 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2846 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2847 // 2848 // The only case a 256-bit wide vector could be used is when the struct 2849 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2850 // to work for sizes wider than 128, early check and fallback to memory. 2851 // 2852 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2853 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2854 Lo = Memory; 2855 postMerge(Size, Lo, Hi); 2856 return; 2857 } 2858 // Note, skip this test for bit-fields, see below. 2859 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2860 Lo = Memory; 2861 postMerge(Size, Lo, Hi); 2862 return; 2863 } 2864 2865 // Classify this field. 2866 // 2867 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2868 // exceeds a single eightbyte, each is classified 2869 // separately. Each eightbyte gets initialized to class 2870 // NO_CLASS. 2871 Class FieldLo, FieldHi; 2872 2873 // Bit-fields require special handling, they do not force the 2874 // structure to be passed in memory even if unaligned, and 2875 // therefore they can straddle an eightbyte. 2876 if (BitField) { 2877 assert(!i->isUnnamedBitfield()); 2878 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2879 uint64_t Size = i->getBitWidthValue(getContext()); 2880 2881 uint64_t EB_Lo = Offset / 64; 2882 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2883 2884 if (EB_Lo) { 2885 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2886 FieldLo = NoClass; 2887 FieldHi = Integer; 2888 } else { 2889 FieldLo = Integer; 2890 FieldHi = EB_Hi ? Integer : NoClass; 2891 } 2892 } else 2893 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2894 Lo = merge(Lo, FieldLo); 2895 Hi = merge(Hi, FieldHi); 2896 if (Lo == Memory || Hi == Memory) 2897 break; 2898 } 2899 2900 postMerge(Size, Lo, Hi); 2901 } 2902 } 2903 2904 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2905 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2906 // place naturally. 2907 if (!isAggregateTypeForABI(Ty)) { 2908 // Treat an enum type as its underlying type. 2909 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2910 Ty = EnumTy->getDecl()->getIntegerType(); 2911 2912 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2913 : ABIArgInfo::getDirect()); 2914 } 2915 2916 return getNaturalAlignIndirect(Ty); 2917 } 2918 2919 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2920 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2921 uint64_t Size = getContext().getTypeSize(VecTy); 2922 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2923 if (Size <= 64 || Size > LargestVector) 2924 return true; 2925 QualType EltTy = VecTy->getElementType(); 2926 if (passInt128VectorsInMem() && 2927 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2928 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2929 return true; 2930 } 2931 2932 return false; 2933 } 2934 2935 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2936 unsigned freeIntRegs) const { 2937 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2938 // place naturally. 2939 // 2940 // This assumption is optimistic, as there could be free registers available 2941 // when we need to pass this argument in memory, and LLVM could try to pass 2942 // the argument in the free register. This does not seem to happen currently, 2943 // but this code would be much safer if we could mark the argument with 2944 // 'onstack'. See PR12193. 2945 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2946 // Treat an enum type as its underlying type. 2947 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2948 Ty = EnumTy->getDecl()->getIntegerType(); 2949 2950 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2951 : ABIArgInfo::getDirect()); 2952 } 2953 2954 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2955 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2956 2957 // Compute the byval alignment. We specify the alignment of the byval in all 2958 // cases so that the mid-level optimizer knows the alignment of the byval. 2959 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2960 2961 // Attempt to avoid passing indirect results using byval when possible. This 2962 // is important for good codegen. 2963 // 2964 // We do this by coercing the value into a scalar type which the backend can 2965 // handle naturally (i.e., without using byval). 2966 // 2967 // For simplicity, we currently only do this when we have exhausted all of the 2968 // free integer registers. Doing this when there are free integer registers 2969 // would require more care, as we would have to ensure that the coerced value 2970 // did not claim the unused register. That would require either reording the 2971 // arguments to the function (so that any subsequent inreg values came first), 2972 // or only doing this optimization when there were no following arguments that 2973 // might be inreg. 2974 // 2975 // We currently expect it to be rare (particularly in well written code) for 2976 // arguments to be passed on the stack when there are still free integer 2977 // registers available (this would typically imply large structs being passed 2978 // by value), so this seems like a fair tradeoff for now. 2979 // 2980 // We can revisit this if the backend grows support for 'onstack' parameter 2981 // attributes. See PR12193. 2982 if (freeIntRegs == 0) { 2983 uint64_t Size = getContext().getTypeSize(Ty); 2984 2985 // If this type fits in an eightbyte, coerce it into the matching integral 2986 // type, which will end up on the stack (with alignment 8). 2987 if (Align == 8 && Size <= 64) 2988 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2989 Size)); 2990 } 2991 2992 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2993 } 2994 2995 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2996 /// register. Pick an LLVM IR type that will be passed as a vector register. 2997 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2998 // Wrapper structs/arrays that only contain vectors are passed just like 2999 // vectors; strip them off if present. 3000 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3001 Ty = QualType(InnerTy, 0); 3002 3003 llvm::Type *IRType = CGT.ConvertType(Ty); 3004 if (isa<llvm::VectorType>(IRType)) { 3005 // Don't pass vXi128 vectors in their native type, the backend can't 3006 // legalize them. 3007 if (passInt128VectorsInMem() && 3008 IRType->getVectorElementType()->isIntegerTy(128)) { 3009 // Use a vXi64 vector. 3010 uint64_t Size = getContext().getTypeSize(Ty); 3011 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3012 Size / 64); 3013 } 3014 3015 return IRType; 3016 } 3017 3018 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3019 return IRType; 3020 3021 // We couldn't find the preferred IR vector type for 'Ty'. 3022 uint64_t Size = getContext().getTypeSize(Ty); 3023 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3024 3025 3026 // Return a LLVM IR vector type based on the size of 'Ty'. 3027 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3028 Size / 64); 3029 } 3030 3031 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3032 /// is known to either be off the end of the specified type or being in 3033 /// alignment padding. The user type specified is known to be at most 128 bits 3034 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3035 /// classification that put one of the two halves in the INTEGER class. 3036 /// 3037 /// It is conservatively correct to return false. 3038 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3039 unsigned EndBit, ASTContext &Context) { 3040 // If the bytes being queried are off the end of the type, there is no user 3041 // data hiding here. This handles analysis of builtins, vectors and other 3042 // types that don't contain interesting padding. 3043 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3044 if (TySize <= StartBit) 3045 return true; 3046 3047 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3048 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3049 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3050 3051 // Check each element to see if the element overlaps with the queried range. 3052 for (unsigned i = 0; i != NumElts; ++i) { 3053 // If the element is after the span we care about, then we're done.. 3054 unsigned EltOffset = i*EltSize; 3055 if (EltOffset >= EndBit) break; 3056 3057 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3058 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3059 EndBit-EltOffset, Context)) 3060 return false; 3061 } 3062 // If it overlaps no elements, then it is safe to process as padding. 3063 return true; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 const RecordDecl *RD = RT->getDecl(); 3068 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3069 3070 // If this is a C++ record, check the bases first. 3071 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3072 for (const auto &I : CXXRD->bases()) { 3073 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3074 "Unexpected base class!"); 3075 const auto *Base = 3076 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3077 3078 // If the base is after the span we care about, ignore it. 3079 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3080 if (BaseOffset >= EndBit) continue; 3081 3082 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3083 if (!BitsContainNoUserData(I.getType(), BaseStart, 3084 EndBit-BaseOffset, Context)) 3085 return false; 3086 } 3087 } 3088 3089 // Verify that no field has data that overlaps the region of interest. Yes 3090 // this could be sped up a lot by being smarter about queried fields, 3091 // however we're only looking at structs up to 16 bytes, so we don't care 3092 // much. 3093 unsigned idx = 0; 3094 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3095 i != e; ++i, ++idx) { 3096 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3097 3098 // If we found a field after the region we care about, then we're done. 3099 if (FieldOffset >= EndBit) break; 3100 3101 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3102 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3103 Context)) 3104 return false; 3105 } 3106 3107 // If nothing in this record overlapped the area of interest, then we're 3108 // clean. 3109 return true; 3110 } 3111 3112 return false; 3113 } 3114 3115 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3116 /// float member at the specified offset. For example, {int,{float}} has a 3117 /// float at offset 4. It is conservatively correct for this routine to return 3118 /// false. 3119 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3120 const llvm::DataLayout &TD) { 3121 // Base case if we find a float. 3122 if (IROffset == 0 && IRType->isFloatTy()) 3123 return true; 3124 3125 // If this is a struct, recurse into the field at the specified offset. 3126 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3127 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3128 unsigned Elt = SL->getElementContainingOffset(IROffset); 3129 IROffset -= SL->getElementOffset(Elt); 3130 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3131 } 3132 3133 // If this is an array, recurse into the field at the specified offset. 3134 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3135 llvm::Type *EltTy = ATy->getElementType(); 3136 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3137 IROffset -= IROffset/EltSize*EltSize; 3138 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3139 } 3140 3141 return false; 3142 } 3143 3144 3145 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3146 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3147 llvm::Type *X86_64ABIInfo:: 3148 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3149 QualType SourceTy, unsigned SourceOffset) const { 3150 // The only three choices we have are either double, <2 x float>, or float. We 3151 // pass as float if the last 4 bytes is just padding. This happens for 3152 // structs that contain 3 floats. 3153 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3154 SourceOffset*8+64, getContext())) 3155 return llvm::Type::getFloatTy(getVMContext()); 3156 3157 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3158 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3159 // case. 3160 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3161 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3162 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3163 3164 return llvm::Type::getDoubleTy(getVMContext()); 3165 } 3166 3167 3168 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3169 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3170 /// about the high or low part of an up-to-16-byte struct. This routine picks 3171 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3172 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3173 /// etc). 3174 /// 3175 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3176 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3177 /// the 8-byte value references. PrefType may be null. 3178 /// 3179 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3180 /// an offset into this that we're processing (which is always either 0 or 8). 3181 /// 3182 llvm::Type *X86_64ABIInfo:: 3183 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3184 QualType SourceTy, unsigned SourceOffset) const { 3185 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3186 // returning an 8-byte unit starting with it. See if we can safely use it. 3187 if (IROffset == 0) { 3188 // Pointers and int64's always fill the 8-byte unit. 3189 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3190 IRType->isIntegerTy(64)) 3191 return IRType; 3192 3193 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3194 // goodness in the source type is just tail padding. This is allowed to 3195 // kick in for struct {double,int} on the int, but not on 3196 // struct{double,int,int} because we wouldn't return the second int. We 3197 // have to do this analysis on the source type because we can't depend on 3198 // unions being lowered a specific way etc. 3199 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3200 IRType->isIntegerTy(32) || 3201 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3202 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3203 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3204 3205 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3206 SourceOffset*8+64, getContext())) 3207 return IRType; 3208 } 3209 } 3210 3211 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3212 // If this is a struct, recurse into the field at the specified offset. 3213 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3214 if (IROffset < SL->getSizeInBytes()) { 3215 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3216 IROffset -= SL->getElementOffset(FieldIdx); 3217 3218 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3219 SourceTy, SourceOffset); 3220 } 3221 } 3222 3223 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3224 llvm::Type *EltTy = ATy->getElementType(); 3225 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3226 unsigned EltOffset = IROffset/EltSize*EltSize; 3227 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3228 SourceOffset); 3229 } 3230 3231 // Okay, we don't have any better idea of what to pass, so we pass this in an 3232 // integer register that isn't too big to fit the rest of the struct. 3233 unsigned TySizeInBytes = 3234 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3235 3236 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3237 3238 // It is always safe to classify this as an integer type up to i64 that 3239 // isn't larger than the structure. 3240 return llvm::IntegerType::get(getVMContext(), 3241 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3242 } 3243 3244 3245 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3246 /// be used as elements of a two register pair to pass or return, return a 3247 /// first class aggregate to represent them. For example, if the low part of 3248 /// a by-value argument should be passed as i32* and the high part as float, 3249 /// return {i32*, float}. 3250 static llvm::Type * 3251 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3252 const llvm::DataLayout &TD) { 3253 // In order to correctly satisfy the ABI, we need to the high part to start 3254 // at offset 8. If the high and low parts we inferred are both 4-byte types 3255 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3256 // the second element at offset 8. Check for this: 3257 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3258 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3259 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3260 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3261 3262 // To handle this, we have to increase the size of the low part so that the 3263 // second element will start at an 8 byte offset. We can't increase the size 3264 // of the second element because it might make us access off the end of the 3265 // struct. 3266 if (HiStart != 8) { 3267 // There are usually two sorts of types the ABI generation code can produce 3268 // for the low part of a pair that aren't 8 bytes in size: float or 3269 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3270 // NaCl). 3271 // Promote these to a larger type. 3272 if (Lo->isFloatTy()) 3273 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3274 else { 3275 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3276 && "Invalid/unknown lo type"); 3277 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3278 } 3279 } 3280 3281 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3282 3283 // Verify that the second element is at an 8-byte offset. 3284 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3285 "Invalid x86-64 argument pair!"); 3286 return Result; 3287 } 3288 3289 ABIArgInfo X86_64ABIInfo:: 3290 classifyReturnType(QualType RetTy) const { 3291 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3292 // classification algorithm. 3293 X86_64ABIInfo::Class Lo, Hi; 3294 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3295 3296 // Check some invariants. 3297 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3298 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3299 3300 llvm::Type *ResType = nullptr; 3301 switch (Lo) { 3302 case NoClass: 3303 if (Hi == NoClass) 3304 return ABIArgInfo::getIgnore(); 3305 // If the low part is just padding, it takes no register, leave ResType 3306 // null. 3307 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3308 "Unknown missing lo part"); 3309 break; 3310 3311 case SSEUp: 3312 case X87Up: 3313 llvm_unreachable("Invalid classification for lo word."); 3314 3315 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3316 // hidden argument. 3317 case Memory: 3318 return getIndirectReturnResult(RetTy); 3319 3320 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3321 // available register of the sequence %rax, %rdx is used. 3322 case Integer: 3323 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3324 3325 // If we have a sign or zero extended integer, make sure to return Extend 3326 // so that the parameter gets the right LLVM IR attributes. 3327 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3328 // Treat an enum type as its underlying type. 3329 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3330 RetTy = EnumTy->getDecl()->getIntegerType(); 3331 3332 if (RetTy->isIntegralOrEnumerationType() && 3333 RetTy->isPromotableIntegerType()) 3334 return ABIArgInfo::getExtend(RetTy); 3335 } 3336 break; 3337 3338 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3339 // available SSE register of the sequence %xmm0, %xmm1 is used. 3340 case SSE: 3341 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3342 break; 3343 3344 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3345 // returned on the X87 stack in %st0 as 80-bit x87 number. 3346 case X87: 3347 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3348 break; 3349 3350 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3351 // part of the value is returned in %st0 and the imaginary part in 3352 // %st1. 3353 case ComplexX87: 3354 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3355 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3356 llvm::Type::getX86_FP80Ty(getVMContext())); 3357 break; 3358 } 3359 3360 llvm::Type *HighPart = nullptr; 3361 switch (Hi) { 3362 // Memory was handled previously and X87 should 3363 // never occur as a hi class. 3364 case Memory: 3365 case X87: 3366 llvm_unreachable("Invalid classification for hi word."); 3367 3368 case ComplexX87: // Previously handled. 3369 case NoClass: 3370 break; 3371 3372 case Integer: 3373 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3374 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3375 return ABIArgInfo::getDirect(HighPart, 8); 3376 break; 3377 case SSE: 3378 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3379 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3380 return ABIArgInfo::getDirect(HighPart, 8); 3381 break; 3382 3383 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3384 // is passed in the next available eightbyte chunk if the last used 3385 // vector register. 3386 // 3387 // SSEUP should always be preceded by SSE, just widen. 3388 case SSEUp: 3389 assert(Lo == SSE && "Unexpected SSEUp classification."); 3390 ResType = GetByteVectorType(RetTy); 3391 break; 3392 3393 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3394 // returned together with the previous X87 value in %st0. 3395 case X87Up: 3396 // If X87Up is preceded by X87, we don't need to do 3397 // anything. However, in some cases with unions it may not be 3398 // preceded by X87. In such situations we follow gcc and pass the 3399 // extra bits in an SSE reg. 3400 if (Lo != X87) { 3401 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3402 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3403 return ABIArgInfo::getDirect(HighPart, 8); 3404 } 3405 break; 3406 } 3407 3408 // If a high part was specified, merge it together with the low part. It is 3409 // known to pass in the high eightbyte of the result. We do this by forming a 3410 // first class struct aggregate with the high and low part: {low, high} 3411 if (HighPart) 3412 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3413 3414 return ABIArgInfo::getDirect(ResType); 3415 } 3416 3417 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3418 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3419 bool isNamedArg) 3420 const 3421 { 3422 Ty = useFirstFieldIfTransparentUnion(Ty); 3423 3424 X86_64ABIInfo::Class Lo, Hi; 3425 classify(Ty, 0, Lo, Hi, isNamedArg); 3426 3427 // Check some invariants. 3428 // FIXME: Enforce these by construction. 3429 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3430 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3431 3432 neededInt = 0; 3433 neededSSE = 0; 3434 llvm::Type *ResType = nullptr; 3435 switch (Lo) { 3436 case NoClass: 3437 if (Hi == NoClass) 3438 return ABIArgInfo::getIgnore(); 3439 // If the low part is just padding, it takes no register, leave ResType 3440 // null. 3441 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3442 "Unknown missing lo part"); 3443 break; 3444 3445 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3446 // on the stack. 3447 case Memory: 3448 3449 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3450 // COMPLEX_X87, it is passed in memory. 3451 case X87: 3452 case ComplexX87: 3453 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3454 ++neededInt; 3455 return getIndirectResult(Ty, freeIntRegs); 3456 3457 case SSEUp: 3458 case X87Up: 3459 llvm_unreachable("Invalid classification for lo word."); 3460 3461 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3462 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3463 // and %r9 is used. 3464 case Integer: 3465 ++neededInt; 3466 3467 // Pick an 8-byte type based on the preferred type. 3468 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3469 3470 // If we have a sign or zero extended integer, make sure to return Extend 3471 // so that the parameter gets the right LLVM IR attributes. 3472 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3473 // Treat an enum type as its underlying type. 3474 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3475 Ty = EnumTy->getDecl()->getIntegerType(); 3476 3477 if (Ty->isIntegralOrEnumerationType() && 3478 Ty->isPromotableIntegerType()) 3479 return ABIArgInfo::getExtend(Ty); 3480 } 3481 3482 break; 3483 3484 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3485 // available SSE register is used, the registers are taken in the 3486 // order from %xmm0 to %xmm7. 3487 case SSE: { 3488 llvm::Type *IRType = CGT.ConvertType(Ty); 3489 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3490 ++neededSSE; 3491 break; 3492 } 3493 } 3494 3495 llvm::Type *HighPart = nullptr; 3496 switch (Hi) { 3497 // Memory was handled previously, ComplexX87 and X87 should 3498 // never occur as hi classes, and X87Up must be preceded by X87, 3499 // which is passed in memory. 3500 case Memory: 3501 case X87: 3502 case ComplexX87: 3503 llvm_unreachable("Invalid classification for hi word."); 3504 3505 case NoClass: break; 3506 3507 case Integer: 3508 ++neededInt; 3509 // Pick an 8-byte type based on the preferred type. 3510 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3511 3512 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3513 return ABIArgInfo::getDirect(HighPart, 8); 3514 break; 3515 3516 // X87Up generally doesn't occur here (long double is passed in 3517 // memory), except in situations involving unions. 3518 case X87Up: 3519 case SSE: 3520 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3521 3522 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3523 return ABIArgInfo::getDirect(HighPart, 8); 3524 3525 ++neededSSE; 3526 break; 3527 3528 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3529 // eightbyte is passed in the upper half of the last used SSE 3530 // register. This only happens when 128-bit vectors are passed. 3531 case SSEUp: 3532 assert(Lo == SSE && "Unexpected SSEUp classification"); 3533 ResType = GetByteVectorType(Ty); 3534 break; 3535 } 3536 3537 // If a high part was specified, merge it together with the low part. It is 3538 // known to pass in the high eightbyte of the result. We do this by forming a 3539 // first class struct aggregate with the high and low part: {low, high} 3540 if (HighPart) 3541 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3542 3543 return ABIArgInfo::getDirect(ResType); 3544 } 3545 3546 ABIArgInfo 3547 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3548 unsigned &NeededSSE) const { 3549 auto RT = Ty->getAs<RecordType>(); 3550 assert(RT && "classifyRegCallStructType only valid with struct types"); 3551 3552 if (RT->getDecl()->hasFlexibleArrayMember()) 3553 return getIndirectReturnResult(Ty); 3554 3555 // Sum up bases 3556 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3557 if (CXXRD->isDynamicClass()) { 3558 NeededInt = NeededSSE = 0; 3559 return getIndirectReturnResult(Ty); 3560 } 3561 3562 for (const auto &I : CXXRD->bases()) 3563 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3564 .isIndirect()) { 3565 NeededInt = NeededSSE = 0; 3566 return getIndirectReturnResult(Ty); 3567 } 3568 } 3569 3570 // Sum up members 3571 for (const auto *FD : RT->getDecl()->fields()) { 3572 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3573 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3574 .isIndirect()) { 3575 NeededInt = NeededSSE = 0; 3576 return getIndirectReturnResult(Ty); 3577 } 3578 } else { 3579 unsigned LocalNeededInt, LocalNeededSSE; 3580 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3581 LocalNeededSSE, true) 3582 .isIndirect()) { 3583 NeededInt = NeededSSE = 0; 3584 return getIndirectReturnResult(Ty); 3585 } 3586 NeededInt += LocalNeededInt; 3587 NeededSSE += LocalNeededSSE; 3588 } 3589 } 3590 3591 return ABIArgInfo::getDirect(); 3592 } 3593 3594 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3595 unsigned &NeededInt, 3596 unsigned &NeededSSE) const { 3597 3598 NeededInt = 0; 3599 NeededSSE = 0; 3600 3601 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3602 } 3603 3604 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3605 3606 const unsigned CallingConv = FI.getCallingConvention(); 3607 // It is possible to force Win64 calling convention on any x86_64 target by 3608 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3609 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3610 if (CallingConv == llvm::CallingConv::Win64) { 3611 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3612 Win64ABIInfo.computeInfo(FI); 3613 return; 3614 } 3615 3616 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3617 3618 // Keep track of the number of assigned registers. 3619 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3620 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3621 unsigned NeededInt, NeededSSE; 3622 3623 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3624 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3625 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3626 FI.getReturnInfo() = 3627 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3628 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3629 FreeIntRegs -= NeededInt; 3630 FreeSSERegs -= NeededSSE; 3631 } else { 3632 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3633 } 3634 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3635 // Complex Long Double Type is passed in Memory when Regcall 3636 // calling convention is used. 3637 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3638 if (getContext().getCanonicalType(CT->getElementType()) == 3639 getContext().LongDoubleTy) 3640 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3641 } else 3642 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3643 } 3644 3645 // If the return value is indirect, then the hidden argument is consuming one 3646 // integer register. 3647 if (FI.getReturnInfo().isIndirect()) 3648 --FreeIntRegs; 3649 3650 // The chain argument effectively gives us another free register. 3651 if (FI.isChainCall()) 3652 ++FreeIntRegs; 3653 3654 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3655 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3656 // get assigned (in left-to-right order) for passing as follows... 3657 unsigned ArgNo = 0; 3658 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3659 it != ie; ++it, ++ArgNo) { 3660 bool IsNamedArg = ArgNo < NumRequiredArgs; 3661 3662 if (IsRegCall && it->type->isStructureOrClassType()) 3663 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3664 else 3665 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3666 NeededSSE, IsNamedArg); 3667 3668 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3669 // eightbyte of an argument, the whole argument is passed on the 3670 // stack. If registers have already been assigned for some 3671 // eightbytes of such an argument, the assignments get reverted. 3672 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3673 FreeIntRegs -= NeededInt; 3674 FreeSSERegs -= NeededSSE; 3675 } else { 3676 it->info = getIndirectResult(it->type, FreeIntRegs); 3677 } 3678 } 3679 } 3680 3681 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3682 Address VAListAddr, QualType Ty) { 3683 Address overflow_arg_area_p = 3684 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3685 llvm::Value *overflow_arg_area = 3686 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3687 3688 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3689 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3690 // It isn't stated explicitly in the standard, but in practice we use 3691 // alignment greater than 16 where necessary. 3692 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3693 if (Align > CharUnits::fromQuantity(8)) { 3694 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3695 Align); 3696 } 3697 3698 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3699 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3700 llvm::Value *Res = 3701 CGF.Builder.CreateBitCast(overflow_arg_area, 3702 llvm::PointerType::getUnqual(LTy)); 3703 3704 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3705 // l->overflow_arg_area + sizeof(type). 3706 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3707 // an 8 byte boundary. 3708 3709 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3710 llvm::Value *Offset = 3711 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3712 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3713 "overflow_arg_area.next"); 3714 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3715 3716 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3717 return Address(Res, Align); 3718 } 3719 3720 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3721 QualType Ty) const { 3722 // Assume that va_list type is correct; should be pointer to LLVM type: 3723 // struct { 3724 // i32 gp_offset; 3725 // i32 fp_offset; 3726 // i8* overflow_arg_area; 3727 // i8* reg_save_area; 3728 // }; 3729 unsigned neededInt, neededSSE; 3730 3731 Ty = getContext().getCanonicalType(Ty); 3732 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3733 /*isNamedArg*/false); 3734 3735 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3736 // in the registers. If not go to step 7. 3737 if (!neededInt && !neededSSE) 3738 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3739 3740 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3741 // general purpose registers needed to pass type and num_fp to hold 3742 // the number of floating point registers needed. 3743 3744 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3745 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3746 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3747 // 3748 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3749 // register save space). 3750 3751 llvm::Value *InRegs = nullptr; 3752 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3753 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3754 if (neededInt) { 3755 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3756 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3757 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3758 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3759 } 3760 3761 if (neededSSE) { 3762 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3763 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3764 llvm::Value *FitsInFP = 3765 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3766 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3767 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3768 } 3769 3770 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3771 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3772 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3773 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3774 3775 // Emit code to load the value if it was passed in registers. 3776 3777 CGF.EmitBlock(InRegBlock); 3778 3779 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3780 // an offset of l->gp_offset and/or l->fp_offset. This may require 3781 // copying to a temporary location in case the parameter is passed 3782 // in different register classes or requires an alignment greater 3783 // than 8 for general purpose registers and 16 for XMM registers. 3784 // 3785 // FIXME: This really results in shameful code when we end up needing to 3786 // collect arguments from different places; often what should result in a 3787 // simple assembling of a structure from scattered addresses has many more 3788 // loads than necessary. Can we clean this up? 3789 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3790 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3791 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3792 3793 Address RegAddr = Address::invalid(); 3794 if (neededInt && neededSSE) { 3795 // FIXME: Cleanup. 3796 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3797 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3798 Address Tmp = CGF.CreateMemTemp(Ty); 3799 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3800 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3801 llvm::Type *TyLo = ST->getElementType(0); 3802 llvm::Type *TyHi = ST->getElementType(1); 3803 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3804 "Unexpected ABI info for mixed regs"); 3805 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3806 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3807 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3808 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3809 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3810 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3811 3812 // Copy the first element. 3813 // FIXME: Our choice of alignment here and below is probably pessimistic. 3814 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3815 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3816 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3817 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3818 3819 // Copy the second element. 3820 V = CGF.Builder.CreateAlignedLoad( 3821 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3822 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3823 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3824 3825 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3826 } else if (neededInt) { 3827 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3828 CharUnits::fromQuantity(8)); 3829 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3830 3831 // Copy to a temporary if necessary to ensure the appropriate alignment. 3832 std::pair<CharUnits, CharUnits> SizeAlign = 3833 getContext().getTypeInfoInChars(Ty); 3834 uint64_t TySize = SizeAlign.first.getQuantity(); 3835 CharUnits TyAlign = SizeAlign.second; 3836 3837 // Copy into a temporary if the type is more aligned than the 3838 // register save area. 3839 if (TyAlign.getQuantity() > 8) { 3840 Address Tmp = CGF.CreateMemTemp(Ty); 3841 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3842 RegAddr = Tmp; 3843 } 3844 3845 } else if (neededSSE == 1) { 3846 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3847 CharUnits::fromQuantity(16)); 3848 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3849 } else { 3850 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3851 // SSE registers are spaced 16 bytes apart in the register save 3852 // area, we need to collect the two eightbytes together. 3853 // The ABI isn't explicit about this, but it seems reasonable 3854 // to assume that the slots are 16-byte aligned, since the stack is 3855 // naturally 16-byte aligned and the prologue is expected to store 3856 // all the SSE registers to the RSA. 3857 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3858 CharUnits::fromQuantity(16)); 3859 Address RegAddrHi = 3860 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3861 CharUnits::fromQuantity(16)); 3862 llvm::Type *ST = AI.canHaveCoerceToType() 3863 ? AI.getCoerceToType() 3864 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3865 llvm::Value *V; 3866 Address Tmp = CGF.CreateMemTemp(Ty); 3867 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3868 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3869 RegAddrLo, ST->getStructElementType(0))); 3870 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3871 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3872 RegAddrHi, ST->getStructElementType(1))); 3873 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3874 3875 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3876 } 3877 3878 // AMD64-ABI 3.5.7p5: Step 5. Set: 3879 // l->gp_offset = l->gp_offset + num_gp * 8 3880 // l->fp_offset = l->fp_offset + num_fp * 16. 3881 if (neededInt) { 3882 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3883 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3884 gp_offset_p); 3885 } 3886 if (neededSSE) { 3887 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3888 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3889 fp_offset_p); 3890 } 3891 CGF.EmitBranch(ContBlock); 3892 3893 // Emit code to load the value if it was passed in memory. 3894 3895 CGF.EmitBlock(InMemBlock); 3896 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3897 3898 // Return the appropriate result. 3899 3900 CGF.EmitBlock(ContBlock); 3901 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3902 "vaarg.addr"); 3903 return ResAddr; 3904 } 3905 3906 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3907 QualType Ty) const { 3908 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3909 CGF.getContext().getTypeInfoInChars(Ty), 3910 CharUnits::fromQuantity(8), 3911 /*allowHigherAlign*/ false); 3912 } 3913 3914 ABIArgInfo 3915 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3916 const ABIArgInfo ¤t) const { 3917 // Assumes vectorCall calling convention. 3918 const Type *Base = nullptr; 3919 uint64_t NumElts = 0; 3920 3921 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3922 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3923 FreeSSERegs -= NumElts; 3924 return getDirectX86Hva(); 3925 } 3926 return current; 3927 } 3928 3929 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3930 bool IsReturnType, bool IsVectorCall, 3931 bool IsRegCall) const { 3932 3933 if (Ty->isVoidType()) 3934 return ABIArgInfo::getIgnore(); 3935 3936 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3937 Ty = EnumTy->getDecl()->getIntegerType(); 3938 3939 TypeInfo Info = getContext().getTypeInfo(Ty); 3940 uint64_t Width = Info.Width; 3941 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3942 3943 const RecordType *RT = Ty->getAs<RecordType>(); 3944 if (RT) { 3945 if (!IsReturnType) { 3946 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3947 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3948 } 3949 3950 if (RT->getDecl()->hasFlexibleArrayMember()) 3951 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3952 3953 } 3954 3955 const Type *Base = nullptr; 3956 uint64_t NumElts = 0; 3957 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3958 // other targets. 3959 if ((IsVectorCall || IsRegCall) && 3960 isHomogeneousAggregate(Ty, Base, NumElts)) { 3961 if (IsRegCall) { 3962 if (FreeSSERegs >= NumElts) { 3963 FreeSSERegs -= NumElts; 3964 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3965 return ABIArgInfo::getDirect(); 3966 return ABIArgInfo::getExpand(); 3967 } 3968 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3969 } else if (IsVectorCall) { 3970 if (FreeSSERegs >= NumElts && 3971 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3972 FreeSSERegs -= NumElts; 3973 return ABIArgInfo::getDirect(); 3974 } else if (IsReturnType) { 3975 return ABIArgInfo::getExpand(); 3976 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3977 // HVAs are delayed and reclassified in the 2nd step. 3978 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3979 } 3980 } 3981 } 3982 3983 if (Ty->isMemberPointerType()) { 3984 // If the member pointer is represented by an LLVM int or ptr, pass it 3985 // directly. 3986 llvm::Type *LLTy = CGT.ConvertType(Ty); 3987 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3988 return ABIArgInfo::getDirect(); 3989 } 3990 3991 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3992 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3993 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3994 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3995 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3996 3997 // Otherwise, coerce it to a small integer. 3998 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3999 } 4000 4001 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4002 switch (BT->getKind()) { 4003 case BuiltinType::Bool: 4004 // Bool type is always extended to the ABI, other builtin types are not 4005 // extended. 4006 return ABIArgInfo::getExtend(Ty); 4007 4008 case BuiltinType::LongDouble: 4009 // Mingw64 GCC uses the old 80 bit extended precision floating point 4010 // unit. It passes them indirectly through memory. 4011 if (IsMingw64) { 4012 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4013 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4014 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4015 } 4016 break; 4017 4018 case BuiltinType::Int128: 4019 case BuiltinType::UInt128: 4020 // If it's a parameter type, the normal ABI rule is that arguments larger 4021 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4022 // even though it isn't particularly efficient. 4023 if (!IsReturnType) 4024 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4025 4026 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4027 // Clang matches them for compatibility. 4028 return ABIArgInfo::getDirect( 4029 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4030 4031 default: 4032 break; 4033 } 4034 } 4035 4036 return ABIArgInfo::getDirect(); 4037 } 4038 4039 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4040 unsigned FreeSSERegs, 4041 bool IsVectorCall, 4042 bool IsRegCall) const { 4043 unsigned Count = 0; 4044 for (auto &I : FI.arguments()) { 4045 // Vectorcall in x64 only permits the first 6 arguments to be passed 4046 // as XMM/YMM registers. 4047 if (Count < VectorcallMaxParamNumAsReg) 4048 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4049 else { 4050 // Since these cannot be passed in registers, pretend no registers 4051 // are left. 4052 unsigned ZeroSSERegsAvail = 0; 4053 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4054 IsVectorCall, IsRegCall); 4055 } 4056 ++Count; 4057 } 4058 4059 for (auto &I : FI.arguments()) { 4060 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4061 } 4062 } 4063 4064 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4065 const unsigned CC = FI.getCallingConvention(); 4066 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4067 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4068 4069 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4070 // classification rules. 4071 if (CC == llvm::CallingConv::X86_64_SysV) { 4072 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4073 SysVABIInfo.computeInfo(FI); 4074 return; 4075 } 4076 4077 unsigned FreeSSERegs = 0; 4078 if (IsVectorCall) { 4079 // We can use up to 4 SSE return registers with vectorcall. 4080 FreeSSERegs = 4; 4081 } else if (IsRegCall) { 4082 // RegCall gives us 16 SSE registers. 4083 FreeSSERegs = 16; 4084 } 4085 4086 if (!getCXXABI().classifyReturnType(FI)) 4087 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4088 IsVectorCall, IsRegCall); 4089 4090 if (IsVectorCall) { 4091 // We can use up to 6 SSE register parameters with vectorcall. 4092 FreeSSERegs = 6; 4093 } else if (IsRegCall) { 4094 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4095 FreeSSERegs = 16; 4096 } 4097 4098 if (IsVectorCall) { 4099 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4100 } else { 4101 for (auto &I : FI.arguments()) 4102 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4103 } 4104 4105 } 4106 4107 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4108 QualType Ty) const { 4109 4110 bool IsIndirect = false; 4111 4112 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4113 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4114 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4115 uint64_t Width = getContext().getTypeSize(Ty); 4116 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4117 } 4118 4119 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4120 CGF.getContext().getTypeInfoInChars(Ty), 4121 CharUnits::fromQuantity(8), 4122 /*allowHigherAlign*/ false); 4123 } 4124 4125 // PowerPC-32 4126 namespace { 4127 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4128 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4129 bool IsSoftFloatABI; 4130 4131 CharUnits getParamTypeAlignment(QualType Ty) const; 4132 4133 public: 4134 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4135 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4136 4137 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4138 QualType Ty) const override; 4139 }; 4140 4141 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4142 public: 4143 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4144 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4145 4146 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4147 // This is recovered from gcc output. 4148 return 1; // r1 is the dedicated stack pointer 4149 } 4150 4151 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4152 llvm::Value *Address) const override; 4153 }; 4154 } 4155 4156 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4157 // Complex types are passed just like their elements 4158 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4159 Ty = CTy->getElementType(); 4160 4161 if (Ty->isVectorType()) 4162 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4163 : 4); 4164 4165 // For single-element float/vector structs, we consider the whole type 4166 // to have the same alignment requirements as its single element. 4167 const Type *AlignTy = nullptr; 4168 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4169 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4170 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4171 (BT && BT->isFloatingPoint())) 4172 AlignTy = EltType; 4173 } 4174 4175 if (AlignTy) 4176 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4177 return CharUnits::fromQuantity(4); 4178 } 4179 4180 // TODO: this implementation is now likely redundant with 4181 // DefaultABIInfo::EmitVAArg. 4182 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4183 QualType Ty) const { 4184 if (getTarget().getTriple().isOSDarwin()) { 4185 auto TI = getContext().getTypeInfoInChars(Ty); 4186 TI.second = getParamTypeAlignment(Ty); 4187 4188 CharUnits SlotSize = CharUnits::fromQuantity(4); 4189 return emitVoidPtrVAArg(CGF, VAList, Ty, 4190 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4191 /*AllowHigherAlign=*/true); 4192 } 4193 4194 const unsigned OverflowLimit = 8; 4195 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4196 // TODO: Implement this. For now ignore. 4197 (void)CTy; 4198 return Address::invalid(); // FIXME? 4199 } 4200 4201 // struct __va_list_tag { 4202 // unsigned char gpr; 4203 // unsigned char fpr; 4204 // unsigned short reserved; 4205 // void *overflow_arg_area; 4206 // void *reg_save_area; 4207 // }; 4208 4209 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4210 bool isInt = 4211 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4212 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4213 4214 // All aggregates are passed indirectly? That doesn't seem consistent 4215 // with the argument-lowering code. 4216 bool isIndirect = Ty->isAggregateType(); 4217 4218 CGBuilderTy &Builder = CGF.Builder; 4219 4220 // The calling convention either uses 1-2 GPRs or 1 FPR. 4221 Address NumRegsAddr = Address::invalid(); 4222 if (isInt || IsSoftFloatABI) { 4223 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4224 } else { 4225 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4226 } 4227 4228 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4229 4230 // "Align" the register count when TY is i64. 4231 if (isI64 || (isF64 && IsSoftFloatABI)) { 4232 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4233 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4234 } 4235 4236 llvm::Value *CC = 4237 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4238 4239 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4240 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4241 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4242 4243 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4244 4245 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4246 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4247 4248 // Case 1: consume registers. 4249 Address RegAddr = Address::invalid(); 4250 { 4251 CGF.EmitBlock(UsingRegs); 4252 4253 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4254 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4255 CharUnits::fromQuantity(8)); 4256 assert(RegAddr.getElementType() == CGF.Int8Ty); 4257 4258 // Floating-point registers start after the general-purpose registers. 4259 if (!(isInt || IsSoftFloatABI)) { 4260 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4261 CharUnits::fromQuantity(32)); 4262 } 4263 4264 // Get the address of the saved value by scaling the number of 4265 // registers we've used by the number of 4266 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4267 llvm::Value *RegOffset = 4268 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4269 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4270 RegAddr.getPointer(), RegOffset), 4271 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4272 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4273 4274 // Increase the used-register count. 4275 NumRegs = 4276 Builder.CreateAdd(NumRegs, 4277 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4278 Builder.CreateStore(NumRegs, NumRegsAddr); 4279 4280 CGF.EmitBranch(Cont); 4281 } 4282 4283 // Case 2: consume space in the overflow area. 4284 Address MemAddr = Address::invalid(); 4285 { 4286 CGF.EmitBlock(UsingOverflow); 4287 4288 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4289 4290 // Everything in the overflow area is rounded up to a size of at least 4. 4291 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4292 4293 CharUnits Size; 4294 if (!isIndirect) { 4295 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4296 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4297 } else { 4298 Size = CGF.getPointerSize(); 4299 } 4300 4301 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4302 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4303 OverflowAreaAlign); 4304 // Round up address of argument to alignment 4305 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4306 if (Align > OverflowAreaAlign) { 4307 llvm::Value *Ptr = OverflowArea.getPointer(); 4308 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4309 Align); 4310 } 4311 4312 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4313 4314 // Increase the overflow area. 4315 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4316 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4317 CGF.EmitBranch(Cont); 4318 } 4319 4320 CGF.EmitBlock(Cont); 4321 4322 // Merge the cases with a phi. 4323 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4324 "vaarg.addr"); 4325 4326 // Load the pointer if the argument was passed indirectly. 4327 if (isIndirect) { 4328 Result = Address(Builder.CreateLoad(Result, "aggr"), 4329 getContext().getTypeAlignInChars(Ty)); 4330 } 4331 4332 return Result; 4333 } 4334 4335 bool 4336 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4337 llvm::Value *Address) const { 4338 // This is calculated from the LLVM and GCC tables and verified 4339 // against gcc output. AFAIK all ABIs use the same encoding. 4340 4341 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4342 4343 llvm::IntegerType *i8 = CGF.Int8Ty; 4344 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4345 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4346 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4347 4348 // 0-31: r0-31, the 4-byte general-purpose registers 4349 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4350 4351 // 32-63: fp0-31, the 8-byte floating-point registers 4352 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4353 4354 // 64-76 are various 4-byte special-purpose registers: 4355 // 64: mq 4356 // 65: lr 4357 // 66: ctr 4358 // 67: ap 4359 // 68-75 cr0-7 4360 // 76: xer 4361 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4362 4363 // 77-108: v0-31, the 16-byte vector registers 4364 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4365 4366 // 109: vrsave 4367 // 110: vscr 4368 // 111: spe_acc 4369 // 112: spefscr 4370 // 113: sfp 4371 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4372 4373 return false; 4374 } 4375 4376 // PowerPC-64 4377 4378 namespace { 4379 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4380 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4381 public: 4382 enum ABIKind { 4383 ELFv1 = 0, 4384 ELFv2 4385 }; 4386 4387 private: 4388 static const unsigned GPRBits = 64; 4389 ABIKind Kind; 4390 bool HasQPX; 4391 bool IsSoftFloatABI; 4392 4393 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4394 // will be passed in a QPX register. 4395 bool IsQPXVectorTy(const Type *Ty) const { 4396 if (!HasQPX) 4397 return false; 4398 4399 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4400 unsigned NumElements = VT->getNumElements(); 4401 if (NumElements == 1) 4402 return false; 4403 4404 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4405 if (getContext().getTypeSize(Ty) <= 256) 4406 return true; 4407 } else if (VT->getElementType()-> 4408 isSpecificBuiltinType(BuiltinType::Float)) { 4409 if (getContext().getTypeSize(Ty) <= 128) 4410 return true; 4411 } 4412 } 4413 4414 return false; 4415 } 4416 4417 bool IsQPXVectorTy(QualType Ty) const { 4418 return IsQPXVectorTy(Ty.getTypePtr()); 4419 } 4420 4421 public: 4422 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4423 bool SoftFloatABI) 4424 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4425 IsSoftFloatABI(SoftFloatABI) {} 4426 4427 bool isPromotableTypeForABI(QualType Ty) const; 4428 CharUnits getParamTypeAlignment(QualType Ty) const; 4429 4430 ABIArgInfo classifyReturnType(QualType RetTy) const; 4431 ABIArgInfo classifyArgumentType(QualType Ty) const; 4432 4433 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4434 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4435 uint64_t Members) const override; 4436 4437 // TODO: We can add more logic to computeInfo to improve performance. 4438 // Example: For aggregate arguments that fit in a register, we could 4439 // use getDirectInReg (as is done below for structs containing a single 4440 // floating-point value) to avoid pushing them to memory on function 4441 // entry. This would require changing the logic in PPCISelLowering 4442 // when lowering the parameters in the caller and args in the callee. 4443 void computeInfo(CGFunctionInfo &FI) const override { 4444 if (!getCXXABI().classifyReturnType(FI)) 4445 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4446 for (auto &I : FI.arguments()) { 4447 // We rely on the default argument classification for the most part. 4448 // One exception: An aggregate containing a single floating-point 4449 // or vector item must be passed in a register if one is available. 4450 const Type *T = isSingleElementStruct(I.type, getContext()); 4451 if (T) { 4452 const BuiltinType *BT = T->getAs<BuiltinType>(); 4453 if (IsQPXVectorTy(T) || 4454 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4455 (BT && BT->isFloatingPoint())) { 4456 QualType QT(T, 0); 4457 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4458 continue; 4459 } 4460 } 4461 I.info = classifyArgumentType(I.type); 4462 } 4463 } 4464 4465 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4466 QualType Ty) const override; 4467 4468 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4469 bool asReturnValue) const override { 4470 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4471 } 4472 4473 bool isSwiftErrorInRegister() const override { 4474 return false; 4475 } 4476 }; 4477 4478 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4479 4480 public: 4481 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4482 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4483 bool SoftFloatABI) 4484 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4485 SoftFloatABI)) {} 4486 4487 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4488 // This is recovered from gcc output. 4489 return 1; // r1 is the dedicated stack pointer 4490 } 4491 4492 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4493 llvm::Value *Address) const override; 4494 }; 4495 4496 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4497 public: 4498 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4499 4500 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4501 // This is recovered from gcc output. 4502 return 1; // r1 is the dedicated stack pointer 4503 } 4504 4505 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4506 llvm::Value *Address) const override; 4507 }; 4508 4509 } 4510 4511 // Return true if the ABI requires Ty to be passed sign- or zero- 4512 // extended to 64 bits. 4513 bool 4514 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4515 // Treat an enum type as its underlying type. 4516 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4517 Ty = EnumTy->getDecl()->getIntegerType(); 4518 4519 // Promotable integer types are required to be promoted by the ABI. 4520 if (Ty->isPromotableIntegerType()) 4521 return true; 4522 4523 // In addition to the usual promotable integer types, we also need to 4524 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4525 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4526 switch (BT->getKind()) { 4527 case BuiltinType::Int: 4528 case BuiltinType::UInt: 4529 return true; 4530 default: 4531 break; 4532 } 4533 4534 return false; 4535 } 4536 4537 /// isAlignedParamType - Determine whether a type requires 16-byte or 4538 /// higher alignment in the parameter area. Always returns at least 8. 4539 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4540 // Complex types are passed just like their elements. 4541 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4542 Ty = CTy->getElementType(); 4543 4544 // Only vector types of size 16 bytes need alignment (larger types are 4545 // passed via reference, smaller types are not aligned). 4546 if (IsQPXVectorTy(Ty)) { 4547 if (getContext().getTypeSize(Ty) > 128) 4548 return CharUnits::fromQuantity(32); 4549 4550 return CharUnits::fromQuantity(16); 4551 } else if (Ty->isVectorType()) { 4552 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4553 } 4554 4555 // For single-element float/vector structs, we consider the whole type 4556 // to have the same alignment requirements as its single element. 4557 const Type *AlignAsType = nullptr; 4558 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4559 if (EltType) { 4560 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4561 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4562 getContext().getTypeSize(EltType) == 128) || 4563 (BT && BT->isFloatingPoint())) 4564 AlignAsType = EltType; 4565 } 4566 4567 // Likewise for ELFv2 homogeneous aggregates. 4568 const Type *Base = nullptr; 4569 uint64_t Members = 0; 4570 if (!AlignAsType && Kind == ELFv2 && 4571 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4572 AlignAsType = Base; 4573 4574 // With special case aggregates, only vector base types need alignment. 4575 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4576 if (getContext().getTypeSize(AlignAsType) > 128) 4577 return CharUnits::fromQuantity(32); 4578 4579 return CharUnits::fromQuantity(16); 4580 } else if (AlignAsType) { 4581 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4582 } 4583 4584 // Otherwise, we only need alignment for any aggregate type that 4585 // has an alignment requirement of >= 16 bytes. 4586 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4587 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4588 return CharUnits::fromQuantity(32); 4589 return CharUnits::fromQuantity(16); 4590 } 4591 4592 return CharUnits::fromQuantity(8); 4593 } 4594 4595 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4596 /// aggregate. Base is set to the base element type, and Members is set 4597 /// to the number of base elements. 4598 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4599 uint64_t &Members) const { 4600 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4601 uint64_t NElements = AT->getSize().getZExtValue(); 4602 if (NElements == 0) 4603 return false; 4604 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4605 return false; 4606 Members *= NElements; 4607 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4608 const RecordDecl *RD = RT->getDecl(); 4609 if (RD->hasFlexibleArrayMember()) 4610 return false; 4611 4612 Members = 0; 4613 4614 // If this is a C++ record, check the bases first. 4615 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4616 for (const auto &I : CXXRD->bases()) { 4617 // Ignore empty records. 4618 if (isEmptyRecord(getContext(), I.getType(), true)) 4619 continue; 4620 4621 uint64_t FldMembers; 4622 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4623 return false; 4624 4625 Members += FldMembers; 4626 } 4627 } 4628 4629 for (const auto *FD : RD->fields()) { 4630 // Ignore (non-zero arrays of) empty records. 4631 QualType FT = FD->getType(); 4632 while (const ConstantArrayType *AT = 4633 getContext().getAsConstantArrayType(FT)) { 4634 if (AT->getSize().getZExtValue() == 0) 4635 return false; 4636 FT = AT->getElementType(); 4637 } 4638 if (isEmptyRecord(getContext(), FT, true)) 4639 continue; 4640 4641 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4642 if (getContext().getLangOpts().CPlusPlus && 4643 FD->isZeroLengthBitField(getContext())) 4644 continue; 4645 4646 uint64_t FldMembers; 4647 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4648 return false; 4649 4650 Members = (RD->isUnion() ? 4651 std::max(Members, FldMembers) : Members + FldMembers); 4652 } 4653 4654 if (!Base) 4655 return false; 4656 4657 // Ensure there is no padding. 4658 if (getContext().getTypeSize(Base) * Members != 4659 getContext().getTypeSize(Ty)) 4660 return false; 4661 } else { 4662 Members = 1; 4663 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4664 Members = 2; 4665 Ty = CT->getElementType(); 4666 } 4667 4668 // Most ABIs only support float, double, and some vector type widths. 4669 if (!isHomogeneousAggregateBaseType(Ty)) 4670 return false; 4671 4672 // The base type must be the same for all members. Types that 4673 // agree in both total size and mode (float vs. vector) are 4674 // treated as being equivalent here. 4675 const Type *TyPtr = Ty.getTypePtr(); 4676 if (!Base) { 4677 Base = TyPtr; 4678 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4679 // so make sure to widen it explicitly. 4680 if (const VectorType *VT = Base->getAs<VectorType>()) { 4681 QualType EltTy = VT->getElementType(); 4682 unsigned NumElements = 4683 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4684 Base = getContext() 4685 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4686 .getTypePtr(); 4687 } 4688 } 4689 4690 if (Base->isVectorType() != TyPtr->isVectorType() || 4691 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4692 return false; 4693 } 4694 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4695 } 4696 4697 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4698 // Homogeneous aggregates for ELFv2 must have base types of float, 4699 // double, long double, or 128-bit vectors. 4700 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4701 if (BT->getKind() == BuiltinType::Float || 4702 BT->getKind() == BuiltinType::Double || 4703 BT->getKind() == BuiltinType::LongDouble || 4704 (getContext().getTargetInfo().hasFloat128Type() && 4705 (BT->getKind() == BuiltinType::Float128))) { 4706 if (IsSoftFloatABI) 4707 return false; 4708 return true; 4709 } 4710 } 4711 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4712 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4713 return true; 4714 } 4715 return false; 4716 } 4717 4718 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4719 const Type *Base, uint64_t Members) const { 4720 // Vector and fp128 types require one register, other floating point types 4721 // require one or two registers depending on their size. 4722 uint32_t NumRegs = 4723 ((getContext().getTargetInfo().hasFloat128Type() && 4724 Base->isFloat128Type()) || 4725 Base->isVectorType()) ? 1 4726 : (getContext().getTypeSize(Base) + 63) / 64; 4727 4728 // Homogeneous Aggregates may occupy at most 8 registers. 4729 return Members * NumRegs <= 8; 4730 } 4731 4732 ABIArgInfo 4733 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4734 Ty = useFirstFieldIfTransparentUnion(Ty); 4735 4736 if (Ty->isAnyComplexType()) 4737 return ABIArgInfo::getDirect(); 4738 4739 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4740 // or via reference (larger than 16 bytes). 4741 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4742 uint64_t Size = getContext().getTypeSize(Ty); 4743 if (Size > 128) 4744 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4745 else if (Size < 128) { 4746 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4747 return ABIArgInfo::getDirect(CoerceTy); 4748 } 4749 } 4750 4751 if (isAggregateTypeForABI(Ty)) { 4752 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4753 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4754 4755 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4756 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4757 4758 // ELFv2 homogeneous aggregates are passed as array types. 4759 const Type *Base = nullptr; 4760 uint64_t Members = 0; 4761 if (Kind == ELFv2 && 4762 isHomogeneousAggregate(Ty, Base, Members)) { 4763 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4764 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4765 return ABIArgInfo::getDirect(CoerceTy); 4766 } 4767 4768 // If an aggregate may end up fully in registers, we do not 4769 // use the ByVal method, but pass the aggregate as array. 4770 // This is usually beneficial since we avoid forcing the 4771 // back-end to store the argument to memory. 4772 uint64_t Bits = getContext().getTypeSize(Ty); 4773 if (Bits > 0 && Bits <= 8 * GPRBits) { 4774 llvm::Type *CoerceTy; 4775 4776 // Types up to 8 bytes are passed as integer type (which will be 4777 // properly aligned in the argument save area doubleword). 4778 if (Bits <= GPRBits) 4779 CoerceTy = 4780 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4781 // Larger types are passed as arrays, with the base type selected 4782 // according to the required alignment in the save area. 4783 else { 4784 uint64_t RegBits = ABIAlign * 8; 4785 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4786 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4787 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4788 } 4789 4790 return ABIArgInfo::getDirect(CoerceTy); 4791 } 4792 4793 // All other aggregates are passed ByVal. 4794 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4795 /*ByVal=*/true, 4796 /*Realign=*/TyAlign > ABIAlign); 4797 } 4798 4799 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4800 : ABIArgInfo::getDirect()); 4801 } 4802 4803 ABIArgInfo 4804 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4805 if (RetTy->isVoidType()) 4806 return ABIArgInfo::getIgnore(); 4807 4808 if (RetTy->isAnyComplexType()) 4809 return ABIArgInfo::getDirect(); 4810 4811 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4812 // or via reference (larger than 16 bytes). 4813 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4814 uint64_t Size = getContext().getTypeSize(RetTy); 4815 if (Size > 128) 4816 return getNaturalAlignIndirect(RetTy); 4817 else if (Size < 128) { 4818 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4819 return ABIArgInfo::getDirect(CoerceTy); 4820 } 4821 } 4822 4823 if (isAggregateTypeForABI(RetTy)) { 4824 // ELFv2 homogeneous aggregates are returned as array types. 4825 const Type *Base = nullptr; 4826 uint64_t Members = 0; 4827 if (Kind == ELFv2 && 4828 isHomogeneousAggregate(RetTy, Base, Members)) { 4829 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4830 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4831 return ABIArgInfo::getDirect(CoerceTy); 4832 } 4833 4834 // ELFv2 small aggregates are returned in up to two registers. 4835 uint64_t Bits = getContext().getTypeSize(RetTy); 4836 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4837 if (Bits == 0) 4838 return ABIArgInfo::getIgnore(); 4839 4840 llvm::Type *CoerceTy; 4841 if (Bits > GPRBits) { 4842 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4843 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4844 } else 4845 CoerceTy = 4846 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4847 return ABIArgInfo::getDirect(CoerceTy); 4848 } 4849 4850 // All other aggregates are returned indirectly. 4851 return getNaturalAlignIndirect(RetTy); 4852 } 4853 4854 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4855 : ABIArgInfo::getDirect()); 4856 } 4857 4858 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4859 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4860 QualType Ty) const { 4861 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4862 TypeInfo.second = getParamTypeAlignment(Ty); 4863 4864 CharUnits SlotSize = CharUnits::fromQuantity(8); 4865 4866 // If we have a complex type and the base type is smaller than 8 bytes, 4867 // the ABI calls for the real and imaginary parts to be right-adjusted 4868 // in separate doublewords. However, Clang expects us to produce a 4869 // pointer to a structure with the two parts packed tightly. So generate 4870 // loads of the real and imaginary parts relative to the va_list pointer, 4871 // and store them to a temporary structure. 4872 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4873 CharUnits EltSize = TypeInfo.first / 2; 4874 if (EltSize < SlotSize) { 4875 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4876 SlotSize * 2, SlotSize, 4877 SlotSize, /*AllowHigher*/ true); 4878 4879 Address RealAddr = Addr; 4880 Address ImagAddr = RealAddr; 4881 if (CGF.CGM.getDataLayout().isBigEndian()) { 4882 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4883 SlotSize - EltSize); 4884 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4885 2 * SlotSize - EltSize); 4886 } else { 4887 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4888 } 4889 4890 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4891 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4892 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4893 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4894 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4895 4896 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4897 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4898 /*init*/ true); 4899 return Temp; 4900 } 4901 } 4902 4903 // Otherwise, just use the general rule. 4904 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4905 TypeInfo, SlotSize, /*AllowHigher*/ true); 4906 } 4907 4908 static bool 4909 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4910 llvm::Value *Address) { 4911 // This is calculated from the LLVM and GCC tables and verified 4912 // against gcc output. AFAIK all ABIs use the same encoding. 4913 4914 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4915 4916 llvm::IntegerType *i8 = CGF.Int8Ty; 4917 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4918 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4919 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4920 4921 // 0-31: r0-31, the 8-byte general-purpose registers 4922 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4923 4924 // 32-63: fp0-31, the 8-byte floating-point registers 4925 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4926 4927 // 64-67 are various 8-byte special-purpose registers: 4928 // 64: mq 4929 // 65: lr 4930 // 66: ctr 4931 // 67: ap 4932 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4933 4934 // 68-76 are various 4-byte special-purpose registers: 4935 // 68-75 cr0-7 4936 // 76: xer 4937 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4938 4939 // 77-108: v0-31, the 16-byte vector registers 4940 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4941 4942 // 109: vrsave 4943 // 110: vscr 4944 // 111: spe_acc 4945 // 112: spefscr 4946 // 113: sfp 4947 // 114: tfhar 4948 // 115: tfiar 4949 // 116: texasr 4950 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4951 4952 return false; 4953 } 4954 4955 bool 4956 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4957 CodeGen::CodeGenFunction &CGF, 4958 llvm::Value *Address) const { 4959 4960 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4961 } 4962 4963 bool 4964 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4965 llvm::Value *Address) const { 4966 4967 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4968 } 4969 4970 //===----------------------------------------------------------------------===// 4971 // AArch64 ABI Implementation 4972 //===----------------------------------------------------------------------===// 4973 4974 namespace { 4975 4976 class AArch64ABIInfo : public SwiftABIInfo { 4977 public: 4978 enum ABIKind { 4979 AAPCS = 0, 4980 DarwinPCS, 4981 Win64 4982 }; 4983 4984 private: 4985 ABIKind Kind; 4986 4987 public: 4988 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4989 : SwiftABIInfo(CGT), Kind(Kind) {} 4990 4991 private: 4992 ABIKind getABIKind() const { return Kind; } 4993 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4994 4995 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 4996 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4997 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4998 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4999 uint64_t Members) const override; 5000 5001 bool isIllegalVectorType(QualType Ty) const; 5002 5003 void computeInfo(CGFunctionInfo &FI) const override { 5004 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5005 FI.getReturnInfo() = 5006 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5007 5008 for (auto &it : FI.arguments()) 5009 it.info = classifyArgumentType(it.type); 5010 } 5011 5012 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5013 CodeGenFunction &CGF) const; 5014 5015 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5016 CodeGenFunction &CGF) const; 5017 5018 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5019 QualType Ty) const override { 5020 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5021 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5022 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5023 } 5024 5025 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5026 QualType Ty) const override; 5027 5028 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5029 bool asReturnValue) const override { 5030 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5031 } 5032 bool isSwiftErrorInRegister() const override { 5033 return true; 5034 } 5035 5036 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5037 unsigned elts) const override; 5038 }; 5039 5040 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5041 public: 5042 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5043 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5044 5045 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5046 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5047 } 5048 5049 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5050 return 31; 5051 } 5052 5053 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5054 5055 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5056 CodeGen::CodeGenModule &CGM) const override { 5057 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5058 if (!FD) 5059 return; 5060 5061 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5062 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5063 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5064 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5065 ParsedTargetAttr Attr = TA->parse(); 5066 if (!Attr.BranchProtection.empty()) { 5067 TargetInfo::BranchProtectionInfo BPI; 5068 StringRef Error; 5069 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5070 BPI, Error); 5071 assert(Error.empty()); 5072 Scope = BPI.SignReturnAddr; 5073 Key = BPI.SignKey; 5074 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5075 } 5076 } 5077 5078 auto *Fn = cast<llvm::Function>(GV); 5079 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5080 Fn->addFnAttr("sign-return-address", 5081 Scope == CodeGenOptions::SignReturnAddressScope::All 5082 ? "all" 5083 : "non-leaf"); 5084 5085 Fn->addFnAttr("sign-return-address-key", 5086 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5087 ? "a_key" 5088 : "b_key"); 5089 } 5090 5091 if (BranchTargetEnforcement) 5092 Fn->addFnAttr("branch-target-enforcement"); 5093 } 5094 }; 5095 5096 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5097 public: 5098 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5099 : AArch64TargetCodeGenInfo(CGT, K) {} 5100 5101 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5102 CodeGen::CodeGenModule &CGM) const override; 5103 5104 void getDependentLibraryOption(llvm::StringRef Lib, 5105 llvm::SmallString<24> &Opt) const override { 5106 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5107 } 5108 5109 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5110 llvm::SmallString<32> &Opt) const override { 5111 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5112 } 5113 }; 5114 5115 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5116 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5117 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5118 if (GV->isDeclaration()) 5119 return; 5120 addStackProbeTargetAttributes(D, GV, CGM); 5121 } 5122 } 5123 5124 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5125 Ty = useFirstFieldIfTransparentUnion(Ty); 5126 5127 // Handle illegal vector types here. 5128 if (isIllegalVectorType(Ty)) { 5129 uint64_t Size = getContext().getTypeSize(Ty); 5130 // Android promotes <2 x i8> to i16, not i32 5131 if (isAndroid() && (Size <= 16)) { 5132 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5133 return ABIArgInfo::getDirect(ResType); 5134 } 5135 if (Size <= 32) { 5136 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5137 return ABIArgInfo::getDirect(ResType); 5138 } 5139 if (Size == 64) { 5140 llvm::Type *ResType = 5141 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5142 return ABIArgInfo::getDirect(ResType); 5143 } 5144 if (Size == 128) { 5145 llvm::Type *ResType = 5146 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5147 return ABIArgInfo::getDirect(ResType); 5148 } 5149 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5150 } 5151 5152 if (!isAggregateTypeForABI(Ty)) { 5153 // Treat an enum type as its underlying type. 5154 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5155 Ty = EnumTy->getDecl()->getIntegerType(); 5156 5157 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5158 ? ABIArgInfo::getExtend(Ty) 5159 : ABIArgInfo::getDirect()); 5160 } 5161 5162 // Structures with either a non-trivial destructor or a non-trivial 5163 // copy constructor are always indirect. 5164 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5165 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5166 CGCXXABI::RAA_DirectInMemory); 5167 } 5168 5169 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5170 // elsewhere for GNU compatibility. 5171 uint64_t Size = getContext().getTypeSize(Ty); 5172 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5173 if (IsEmpty || Size == 0) { 5174 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5175 return ABIArgInfo::getIgnore(); 5176 5177 // GNU C mode. The only argument that gets ignored is an empty one with size 5178 // 0. 5179 if (IsEmpty && Size == 0) 5180 return ABIArgInfo::getIgnore(); 5181 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5182 } 5183 5184 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5185 const Type *Base = nullptr; 5186 uint64_t Members = 0; 5187 if (isHomogeneousAggregate(Ty, Base, Members)) { 5188 return ABIArgInfo::getDirect( 5189 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5190 } 5191 5192 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5193 if (Size <= 128) { 5194 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5195 // same size and alignment. 5196 if (getTarget().isRenderScriptTarget()) { 5197 return coerceToIntArray(Ty, getContext(), getVMContext()); 5198 } 5199 unsigned Alignment; 5200 if (Kind == AArch64ABIInfo::AAPCS) { 5201 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5202 Alignment = Alignment < 128 ? 64 : 128; 5203 } else { 5204 Alignment = std::max(getContext().getTypeAlign(Ty), 5205 (unsigned)getTarget().getPointerWidth(0)); 5206 } 5207 Size = llvm::alignTo(Size, Alignment); 5208 5209 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5210 // For aggregates with 16-byte alignment, we use i128. 5211 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5212 return ABIArgInfo::getDirect( 5213 Size == Alignment ? BaseTy 5214 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5215 } 5216 5217 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5218 } 5219 5220 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5221 bool IsVariadic) const { 5222 if (RetTy->isVoidType()) 5223 return ABIArgInfo::getIgnore(); 5224 5225 // Large vector types should be returned via memory. 5226 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5227 return getNaturalAlignIndirect(RetTy); 5228 5229 if (!isAggregateTypeForABI(RetTy)) { 5230 // Treat an enum type as its underlying type. 5231 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5232 RetTy = EnumTy->getDecl()->getIntegerType(); 5233 5234 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5235 ? ABIArgInfo::getExtend(RetTy) 5236 : ABIArgInfo::getDirect()); 5237 } 5238 5239 uint64_t Size = getContext().getTypeSize(RetTy); 5240 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5241 return ABIArgInfo::getIgnore(); 5242 5243 const Type *Base = nullptr; 5244 uint64_t Members = 0; 5245 if (isHomogeneousAggregate(RetTy, Base, Members) && 5246 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5247 IsVariadic)) 5248 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5249 return ABIArgInfo::getDirect(); 5250 5251 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5252 if (Size <= 128) { 5253 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5254 // same size and alignment. 5255 if (getTarget().isRenderScriptTarget()) { 5256 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5257 } 5258 unsigned Alignment = getContext().getTypeAlign(RetTy); 5259 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5260 5261 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5262 // For aggregates with 16-byte alignment, we use i128. 5263 if (Alignment < 128 && Size == 128) { 5264 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5265 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5266 } 5267 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5268 } 5269 5270 return getNaturalAlignIndirect(RetTy); 5271 } 5272 5273 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5274 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5275 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5276 // Check whether VT is legal. 5277 unsigned NumElements = VT->getNumElements(); 5278 uint64_t Size = getContext().getTypeSize(VT); 5279 // NumElements should be power of 2. 5280 if (!llvm::isPowerOf2_32(NumElements)) 5281 return true; 5282 5283 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5284 // vectors for some reason. 5285 llvm::Triple Triple = getTarget().getTriple(); 5286 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5287 Triple.isOSBinFormatMachO()) 5288 return Size <= 32; 5289 5290 return Size != 64 && (Size != 128 || NumElements == 1); 5291 } 5292 return false; 5293 } 5294 5295 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5296 llvm::Type *eltTy, 5297 unsigned elts) const { 5298 if (!llvm::isPowerOf2_32(elts)) 5299 return false; 5300 if (totalSize.getQuantity() != 8 && 5301 (totalSize.getQuantity() != 16 || elts == 1)) 5302 return false; 5303 return true; 5304 } 5305 5306 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5307 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5308 // point type or a short-vector type. This is the same as the 32-bit ABI, 5309 // but with the difference that any floating-point type is allowed, 5310 // including __fp16. 5311 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5312 if (BT->isFloatingPoint()) 5313 return true; 5314 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5315 unsigned VecSize = getContext().getTypeSize(VT); 5316 if (VecSize == 64 || VecSize == 128) 5317 return true; 5318 } 5319 return false; 5320 } 5321 5322 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5323 uint64_t Members) const { 5324 return Members <= 4; 5325 } 5326 5327 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5328 QualType Ty, 5329 CodeGenFunction &CGF) const { 5330 ABIArgInfo AI = classifyArgumentType(Ty); 5331 bool IsIndirect = AI.isIndirect(); 5332 5333 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5334 if (IsIndirect) 5335 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5336 else if (AI.getCoerceToType()) 5337 BaseTy = AI.getCoerceToType(); 5338 5339 unsigned NumRegs = 1; 5340 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5341 BaseTy = ArrTy->getElementType(); 5342 NumRegs = ArrTy->getNumElements(); 5343 } 5344 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5345 5346 // The AArch64 va_list type and handling is specified in the Procedure Call 5347 // Standard, section B.4: 5348 // 5349 // struct { 5350 // void *__stack; 5351 // void *__gr_top; 5352 // void *__vr_top; 5353 // int __gr_offs; 5354 // int __vr_offs; 5355 // }; 5356 5357 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5358 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5359 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5360 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5361 5362 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5363 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5364 5365 Address reg_offs_p = Address::invalid(); 5366 llvm::Value *reg_offs = nullptr; 5367 int reg_top_index; 5368 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5369 if (!IsFPR) { 5370 // 3 is the field number of __gr_offs 5371 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5372 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5373 reg_top_index = 1; // field number for __gr_top 5374 RegSize = llvm::alignTo(RegSize, 8); 5375 } else { 5376 // 4 is the field number of __vr_offs. 5377 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5378 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5379 reg_top_index = 2; // field number for __vr_top 5380 RegSize = 16 * NumRegs; 5381 } 5382 5383 //======================================= 5384 // Find out where argument was passed 5385 //======================================= 5386 5387 // If reg_offs >= 0 we're already using the stack for this type of 5388 // argument. We don't want to keep updating reg_offs (in case it overflows, 5389 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5390 // whatever they get). 5391 llvm::Value *UsingStack = nullptr; 5392 UsingStack = CGF.Builder.CreateICmpSGE( 5393 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5394 5395 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5396 5397 // Otherwise, at least some kind of argument could go in these registers, the 5398 // question is whether this particular type is too big. 5399 CGF.EmitBlock(MaybeRegBlock); 5400 5401 // Integer arguments may need to correct register alignment (for example a 5402 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5403 // align __gr_offs to calculate the potential address. 5404 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5405 int Align = TyAlign.getQuantity(); 5406 5407 reg_offs = CGF.Builder.CreateAdd( 5408 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5409 "align_regoffs"); 5410 reg_offs = CGF.Builder.CreateAnd( 5411 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5412 "aligned_regoffs"); 5413 } 5414 5415 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5416 // The fact that this is done unconditionally reflects the fact that 5417 // allocating an argument to the stack also uses up all the remaining 5418 // registers of the appropriate kind. 5419 llvm::Value *NewOffset = nullptr; 5420 NewOffset = CGF.Builder.CreateAdd( 5421 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5422 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5423 5424 // Now we're in a position to decide whether this argument really was in 5425 // registers or not. 5426 llvm::Value *InRegs = nullptr; 5427 InRegs = CGF.Builder.CreateICmpSLE( 5428 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5429 5430 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5431 5432 //======================================= 5433 // Argument was in registers 5434 //======================================= 5435 5436 // Now we emit the code for if the argument was originally passed in 5437 // registers. First start the appropriate block: 5438 CGF.EmitBlock(InRegBlock); 5439 5440 llvm::Value *reg_top = nullptr; 5441 Address reg_top_p = 5442 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5443 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5444 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5445 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5446 Address RegAddr = Address::invalid(); 5447 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5448 5449 if (IsIndirect) { 5450 // If it's been passed indirectly (actually a struct), whatever we find from 5451 // stored registers or on the stack will actually be a struct **. 5452 MemTy = llvm::PointerType::getUnqual(MemTy); 5453 } 5454 5455 const Type *Base = nullptr; 5456 uint64_t NumMembers = 0; 5457 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5458 if (IsHFA && NumMembers > 1) { 5459 // Homogeneous aggregates passed in registers will have their elements split 5460 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5461 // qN+1, ...). We reload and store into a temporary local variable 5462 // contiguously. 5463 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5464 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5465 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5466 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5467 Address Tmp = CGF.CreateTempAlloca(HFATy, 5468 std::max(TyAlign, BaseTyInfo.second)); 5469 5470 // On big-endian platforms, the value will be right-aligned in its slot. 5471 int Offset = 0; 5472 if (CGF.CGM.getDataLayout().isBigEndian() && 5473 BaseTyInfo.first.getQuantity() < 16) 5474 Offset = 16 - BaseTyInfo.first.getQuantity(); 5475 5476 for (unsigned i = 0; i < NumMembers; ++i) { 5477 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5478 Address LoadAddr = 5479 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5480 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5481 5482 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5483 5484 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5485 CGF.Builder.CreateStore(Elem, StoreAddr); 5486 } 5487 5488 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5489 } else { 5490 // Otherwise the object is contiguous in memory. 5491 5492 // It might be right-aligned in its slot. 5493 CharUnits SlotSize = BaseAddr.getAlignment(); 5494 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5495 (IsHFA || !isAggregateTypeForABI(Ty)) && 5496 TySize < SlotSize) { 5497 CharUnits Offset = SlotSize - TySize; 5498 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5499 } 5500 5501 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5502 } 5503 5504 CGF.EmitBranch(ContBlock); 5505 5506 //======================================= 5507 // Argument was on the stack 5508 //======================================= 5509 CGF.EmitBlock(OnStackBlock); 5510 5511 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5512 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5513 5514 // Again, stack arguments may need realignment. In this case both integer and 5515 // floating-point ones might be affected. 5516 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5517 int Align = TyAlign.getQuantity(); 5518 5519 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5520 5521 OnStackPtr = CGF.Builder.CreateAdd( 5522 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5523 "align_stack"); 5524 OnStackPtr = CGF.Builder.CreateAnd( 5525 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5526 "align_stack"); 5527 5528 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5529 } 5530 Address OnStackAddr(OnStackPtr, 5531 std::max(CharUnits::fromQuantity(8), TyAlign)); 5532 5533 // All stack slots are multiples of 8 bytes. 5534 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5535 CharUnits StackSize; 5536 if (IsIndirect) 5537 StackSize = StackSlotSize; 5538 else 5539 StackSize = TySize.alignTo(StackSlotSize); 5540 5541 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5542 llvm::Value *NewStack = 5543 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5544 5545 // Write the new value of __stack for the next call to va_arg 5546 CGF.Builder.CreateStore(NewStack, stack_p); 5547 5548 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5549 TySize < StackSlotSize) { 5550 CharUnits Offset = StackSlotSize - TySize; 5551 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5552 } 5553 5554 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5555 5556 CGF.EmitBranch(ContBlock); 5557 5558 //======================================= 5559 // Tidy up 5560 //======================================= 5561 CGF.EmitBlock(ContBlock); 5562 5563 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5564 OnStackAddr, OnStackBlock, "vaargs.addr"); 5565 5566 if (IsIndirect) 5567 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5568 TyAlign); 5569 5570 return ResAddr; 5571 } 5572 5573 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5574 CodeGenFunction &CGF) const { 5575 // The backend's lowering doesn't support va_arg for aggregates or 5576 // illegal vector types. Lower VAArg here for these cases and use 5577 // the LLVM va_arg instruction for everything else. 5578 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5579 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5580 5581 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5582 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5583 5584 // Empty records are ignored for parameter passing purposes. 5585 if (isEmptyRecord(getContext(), Ty, true)) { 5586 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5587 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5588 return Addr; 5589 } 5590 5591 // The size of the actual thing passed, which might end up just 5592 // being a pointer for indirect types. 5593 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5594 5595 // Arguments bigger than 16 bytes which aren't homogeneous 5596 // aggregates should be passed indirectly. 5597 bool IsIndirect = false; 5598 if (TyInfo.first.getQuantity() > 16) { 5599 const Type *Base = nullptr; 5600 uint64_t Members = 0; 5601 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5602 } 5603 5604 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5605 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5606 } 5607 5608 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5609 QualType Ty) const { 5610 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5611 CGF.getContext().getTypeInfoInChars(Ty), 5612 CharUnits::fromQuantity(8), 5613 /*allowHigherAlign*/ false); 5614 } 5615 5616 //===----------------------------------------------------------------------===// 5617 // ARM ABI Implementation 5618 //===----------------------------------------------------------------------===// 5619 5620 namespace { 5621 5622 class ARMABIInfo : public SwiftABIInfo { 5623 public: 5624 enum ABIKind { 5625 APCS = 0, 5626 AAPCS = 1, 5627 AAPCS_VFP = 2, 5628 AAPCS16_VFP = 3, 5629 }; 5630 5631 private: 5632 ABIKind Kind; 5633 5634 public: 5635 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5636 : SwiftABIInfo(CGT), Kind(_Kind) { 5637 setCCs(); 5638 } 5639 5640 bool isEABI() const { 5641 switch (getTarget().getTriple().getEnvironment()) { 5642 case llvm::Triple::Android: 5643 case llvm::Triple::EABI: 5644 case llvm::Triple::EABIHF: 5645 case llvm::Triple::GNUEABI: 5646 case llvm::Triple::GNUEABIHF: 5647 case llvm::Triple::MuslEABI: 5648 case llvm::Triple::MuslEABIHF: 5649 return true; 5650 default: 5651 return false; 5652 } 5653 } 5654 5655 bool isEABIHF() const { 5656 switch (getTarget().getTriple().getEnvironment()) { 5657 case llvm::Triple::EABIHF: 5658 case llvm::Triple::GNUEABIHF: 5659 case llvm::Triple::MuslEABIHF: 5660 return true; 5661 default: 5662 return false; 5663 } 5664 } 5665 5666 ABIKind getABIKind() const { return Kind; } 5667 5668 private: 5669 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5670 unsigned functionCallConv) const; 5671 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5672 unsigned functionCallConv) const; 5673 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5674 uint64_t Members) const; 5675 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5676 bool isIllegalVectorType(QualType Ty) const; 5677 bool containsAnyFP16Vectors(QualType Ty) const; 5678 5679 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5680 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5681 uint64_t Members) const override; 5682 5683 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5684 5685 void computeInfo(CGFunctionInfo &FI) const override; 5686 5687 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5688 QualType Ty) const override; 5689 5690 llvm::CallingConv::ID getLLVMDefaultCC() const; 5691 llvm::CallingConv::ID getABIDefaultCC() const; 5692 void setCCs(); 5693 5694 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5695 bool asReturnValue) const override { 5696 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5697 } 5698 bool isSwiftErrorInRegister() const override { 5699 return true; 5700 } 5701 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5702 unsigned elts) const override; 5703 }; 5704 5705 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5706 public: 5707 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5708 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5709 5710 const ARMABIInfo &getABIInfo() const { 5711 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5712 } 5713 5714 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5715 return 13; 5716 } 5717 5718 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5719 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5720 } 5721 5722 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5723 llvm::Value *Address) const override { 5724 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5725 5726 // 0-15 are the 16 integer registers. 5727 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5728 return false; 5729 } 5730 5731 unsigned getSizeOfUnwindException() const override { 5732 if (getABIInfo().isEABI()) return 88; 5733 return TargetCodeGenInfo::getSizeOfUnwindException(); 5734 } 5735 5736 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5737 CodeGen::CodeGenModule &CGM) const override { 5738 if (GV->isDeclaration()) 5739 return; 5740 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5741 if (!FD) 5742 return; 5743 5744 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5745 if (!Attr) 5746 return; 5747 5748 const char *Kind; 5749 switch (Attr->getInterrupt()) { 5750 case ARMInterruptAttr::Generic: Kind = ""; break; 5751 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5752 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5753 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5754 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5755 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5756 } 5757 5758 llvm::Function *Fn = cast<llvm::Function>(GV); 5759 5760 Fn->addFnAttr("interrupt", Kind); 5761 5762 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5763 if (ABI == ARMABIInfo::APCS) 5764 return; 5765 5766 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5767 // however this is not necessarily true on taking any interrupt. Instruct 5768 // the backend to perform a realignment as part of the function prologue. 5769 llvm::AttrBuilder B; 5770 B.addStackAlignmentAttr(8); 5771 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5772 } 5773 }; 5774 5775 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5776 public: 5777 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5778 : ARMTargetCodeGenInfo(CGT, K) {} 5779 5780 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5781 CodeGen::CodeGenModule &CGM) const override; 5782 5783 void getDependentLibraryOption(llvm::StringRef Lib, 5784 llvm::SmallString<24> &Opt) const override { 5785 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5786 } 5787 5788 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5789 llvm::SmallString<32> &Opt) const override { 5790 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5791 } 5792 }; 5793 5794 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5795 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5796 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5797 if (GV->isDeclaration()) 5798 return; 5799 addStackProbeTargetAttributes(D, GV, CGM); 5800 } 5801 } 5802 5803 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5804 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5805 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5806 FI.getCallingConvention()); 5807 5808 for (auto &I : FI.arguments()) 5809 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5810 FI.getCallingConvention()); 5811 5812 5813 // Always honor user-specified calling convention. 5814 if (FI.getCallingConvention() != llvm::CallingConv::C) 5815 return; 5816 5817 llvm::CallingConv::ID cc = getRuntimeCC(); 5818 if (cc != llvm::CallingConv::C) 5819 FI.setEffectiveCallingConvention(cc); 5820 } 5821 5822 /// Return the default calling convention that LLVM will use. 5823 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5824 // The default calling convention that LLVM will infer. 5825 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5826 return llvm::CallingConv::ARM_AAPCS_VFP; 5827 else if (isEABI()) 5828 return llvm::CallingConv::ARM_AAPCS; 5829 else 5830 return llvm::CallingConv::ARM_APCS; 5831 } 5832 5833 /// Return the calling convention that our ABI would like us to use 5834 /// as the C calling convention. 5835 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5836 switch (getABIKind()) { 5837 case APCS: return llvm::CallingConv::ARM_APCS; 5838 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5839 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5840 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5841 } 5842 llvm_unreachable("bad ABI kind"); 5843 } 5844 5845 void ARMABIInfo::setCCs() { 5846 assert(getRuntimeCC() == llvm::CallingConv::C); 5847 5848 // Don't muddy up the IR with a ton of explicit annotations if 5849 // they'd just match what LLVM will infer from the triple. 5850 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5851 if (abiCC != getLLVMDefaultCC()) 5852 RuntimeCC = abiCC; 5853 } 5854 5855 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5856 uint64_t Size = getContext().getTypeSize(Ty); 5857 if (Size <= 32) { 5858 llvm::Type *ResType = 5859 llvm::Type::getInt32Ty(getVMContext()); 5860 return ABIArgInfo::getDirect(ResType); 5861 } 5862 if (Size == 64 || Size == 128) { 5863 llvm::Type *ResType = llvm::VectorType::get( 5864 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5865 return ABIArgInfo::getDirect(ResType); 5866 } 5867 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5868 } 5869 5870 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5871 const Type *Base, 5872 uint64_t Members) const { 5873 assert(Base && "Base class should be set for homogeneous aggregate"); 5874 // Base can be a floating-point or a vector. 5875 if (const VectorType *VT = Base->getAs<VectorType>()) { 5876 // FP16 vectors should be converted to integer vectors 5877 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5878 uint64_t Size = getContext().getTypeSize(VT); 5879 llvm::Type *NewVecTy = llvm::VectorType::get( 5880 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5881 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5882 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5883 } 5884 } 5885 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5886 } 5887 5888 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5889 unsigned functionCallConv) const { 5890 // 6.1.2.1 The following argument types are VFP CPRCs: 5891 // A single-precision floating-point type (including promoted 5892 // half-precision types); A double-precision floating-point type; 5893 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5894 // with a Base Type of a single- or double-precision floating-point type, 5895 // 64-bit containerized vectors or 128-bit containerized vectors with one 5896 // to four Elements. 5897 // Variadic functions should always marshal to the base standard. 5898 bool IsAAPCS_VFP = 5899 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5900 5901 Ty = useFirstFieldIfTransparentUnion(Ty); 5902 5903 // Handle illegal vector types here. 5904 if (isIllegalVectorType(Ty)) 5905 return coerceIllegalVector(Ty); 5906 5907 // _Float16 and __fp16 get passed as if it were an int or float, but with 5908 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5909 // half type natively, and does not need to interwork with AAPCS code. 5910 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5911 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5912 llvm::Type *ResType = IsAAPCS_VFP ? 5913 llvm::Type::getFloatTy(getVMContext()) : 5914 llvm::Type::getInt32Ty(getVMContext()); 5915 return ABIArgInfo::getDirect(ResType); 5916 } 5917 5918 if (!isAggregateTypeForABI(Ty)) { 5919 // Treat an enum type as its underlying type. 5920 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5921 Ty = EnumTy->getDecl()->getIntegerType(); 5922 } 5923 5924 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5925 : ABIArgInfo::getDirect()); 5926 } 5927 5928 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5929 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5930 } 5931 5932 // Ignore empty records. 5933 if (isEmptyRecord(getContext(), Ty, true)) 5934 return ABIArgInfo::getIgnore(); 5935 5936 if (IsAAPCS_VFP) { 5937 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5938 // into VFP registers. 5939 const Type *Base = nullptr; 5940 uint64_t Members = 0; 5941 if (isHomogeneousAggregate(Ty, Base, Members)) 5942 return classifyHomogeneousAggregate(Ty, Base, Members); 5943 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5944 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5945 // this convention even for a variadic function: the backend will use GPRs 5946 // if needed. 5947 const Type *Base = nullptr; 5948 uint64_t Members = 0; 5949 if (isHomogeneousAggregate(Ty, Base, Members)) { 5950 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5951 llvm::Type *Ty = 5952 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5953 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5954 } 5955 } 5956 5957 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5958 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5959 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5960 // bigger than 128-bits, they get placed in space allocated by the caller, 5961 // and a pointer is passed. 5962 return ABIArgInfo::getIndirect( 5963 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5964 } 5965 5966 // Support byval for ARM. 5967 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5968 // most 8-byte. We realign the indirect argument if type alignment is bigger 5969 // than ABI alignment. 5970 uint64_t ABIAlign = 4; 5971 uint64_t TyAlign; 5972 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5973 getABIKind() == ARMABIInfo::AAPCS) { 5974 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5975 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5976 } else { 5977 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5978 } 5979 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5980 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5981 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5982 /*ByVal=*/true, 5983 /*Realign=*/TyAlign > ABIAlign); 5984 } 5985 5986 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5987 // same size and alignment. 5988 if (getTarget().isRenderScriptTarget()) { 5989 return coerceToIntArray(Ty, getContext(), getVMContext()); 5990 } 5991 5992 // Otherwise, pass by coercing to a structure of the appropriate size. 5993 llvm::Type* ElemTy; 5994 unsigned SizeRegs; 5995 // FIXME: Try to match the types of the arguments more accurately where 5996 // we can. 5997 if (TyAlign <= 4) { 5998 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5999 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6000 } else { 6001 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6002 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6003 } 6004 6005 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6006 } 6007 6008 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6009 llvm::LLVMContext &VMContext) { 6010 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6011 // is called integer-like if its size is less than or equal to one word, and 6012 // the offset of each of its addressable sub-fields is zero. 6013 6014 uint64_t Size = Context.getTypeSize(Ty); 6015 6016 // Check that the type fits in a word. 6017 if (Size > 32) 6018 return false; 6019 6020 // FIXME: Handle vector types! 6021 if (Ty->isVectorType()) 6022 return false; 6023 6024 // Float types are never treated as "integer like". 6025 if (Ty->isRealFloatingType()) 6026 return false; 6027 6028 // If this is a builtin or pointer type then it is ok. 6029 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6030 return true; 6031 6032 // Small complex integer types are "integer like". 6033 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6034 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6035 6036 // Single element and zero sized arrays should be allowed, by the definition 6037 // above, but they are not. 6038 6039 // Otherwise, it must be a record type. 6040 const RecordType *RT = Ty->getAs<RecordType>(); 6041 if (!RT) return false; 6042 6043 // Ignore records with flexible arrays. 6044 const RecordDecl *RD = RT->getDecl(); 6045 if (RD->hasFlexibleArrayMember()) 6046 return false; 6047 6048 // Check that all sub-fields are at offset 0, and are themselves "integer 6049 // like". 6050 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6051 6052 bool HadField = false; 6053 unsigned idx = 0; 6054 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6055 i != e; ++i, ++idx) { 6056 const FieldDecl *FD = *i; 6057 6058 // Bit-fields are not addressable, we only need to verify they are "integer 6059 // like". We still have to disallow a subsequent non-bitfield, for example: 6060 // struct { int : 0; int x } 6061 // is non-integer like according to gcc. 6062 if (FD->isBitField()) { 6063 if (!RD->isUnion()) 6064 HadField = true; 6065 6066 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6067 return false; 6068 6069 continue; 6070 } 6071 6072 // Check if this field is at offset 0. 6073 if (Layout.getFieldOffset(idx) != 0) 6074 return false; 6075 6076 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6077 return false; 6078 6079 // Only allow at most one field in a structure. This doesn't match the 6080 // wording above, but follows gcc in situations with a field following an 6081 // empty structure. 6082 if (!RD->isUnion()) { 6083 if (HadField) 6084 return false; 6085 6086 HadField = true; 6087 } 6088 } 6089 6090 return true; 6091 } 6092 6093 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6094 unsigned functionCallConv) const { 6095 6096 // Variadic functions should always marshal to the base standard. 6097 bool IsAAPCS_VFP = 6098 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6099 6100 if (RetTy->isVoidType()) 6101 return ABIArgInfo::getIgnore(); 6102 6103 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6104 // Large vector types should be returned via memory. 6105 if (getContext().getTypeSize(RetTy) > 128) 6106 return getNaturalAlignIndirect(RetTy); 6107 // FP16 vectors should be converted to integer vectors 6108 if (!getTarget().hasLegalHalfType() && 6109 (VT->getElementType()->isFloat16Type() || 6110 VT->getElementType()->isHalfType())) 6111 return coerceIllegalVector(RetTy); 6112 } 6113 6114 // _Float16 and __fp16 get returned as if it were an int or float, but with 6115 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6116 // half type natively, and does not need to interwork with AAPCS code. 6117 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6118 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6119 llvm::Type *ResType = IsAAPCS_VFP ? 6120 llvm::Type::getFloatTy(getVMContext()) : 6121 llvm::Type::getInt32Ty(getVMContext()); 6122 return ABIArgInfo::getDirect(ResType); 6123 } 6124 6125 if (!isAggregateTypeForABI(RetTy)) { 6126 // Treat an enum type as its underlying type. 6127 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6128 RetTy = EnumTy->getDecl()->getIntegerType(); 6129 6130 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6131 : ABIArgInfo::getDirect(); 6132 } 6133 6134 // Are we following APCS? 6135 if (getABIKind() == APCS) { 6136 if (isEmptyRecord(getContext(), RetTy, false)) 6137 return ABIArgInfo::getIgnore(); 6138 6139 // Complex types are all returned as packed integers. 6140 // 6141 // FIXME: Consider using 2 x vector types if the back end handles them 6142 // correctly. 6143 if (RetTy->isAnyComplexType()) 6144 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6145 getVMContext(), getContext().getTypeSize(RetTy))); 6146 6147 // Integer like structures are returned in r0. 6148 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6149 // Return in the smallest viable integer type. 6150 uint64_t Size = getContext().getTypeSize(RetTy); 6151 if (Size <= 8) 6152 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6153 if (Size <= 16) 6154 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6155 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6156 } 6157 6158 // Otherwise return in memory. 6159 return getNaturalAlignIndirect(RetTy); 6160 } 6161 6162 // Otherwise this is an AAPCS variant. 6163 6164 if (isEmptyRecord(getContext(), RetTy, true)) 6165 return ABIArgInfo::getIgnore(); 6166 6167 // Check for homogeneous aggregates with AAPCS-VFP. 6168 if (IsAAPCS_VFP) { 6169 const Type *Base = nullptr; 6170 uint64_t Members = 0; 6171 if (isHomogeneousAggregate(RetTy, Base, Members)) 6172 return classifyHomogeneousAggregate(RetTy, Base, Members); 6173 } 6174 6175 // Aggregates <= 4 bytes are returned in r0; other aggregates 6176 // are returned indirectly. 6177 uint64_t Size = getContext().getTypeSize(RetTy); 6178 if (Size <= 32) { 6179 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6180 // same size and alignment. 6181 if (getTarget().isRenderScriptTarget()) { 6182 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6183 } 6184 if (getDataLayout().isBigEndian()) 6185 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6186 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6187 6188 // Return in the smallest viable integer type. 6189 if (Size <= 8) 6190 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6191 if (Size <= 16) 6192 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6193 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6194 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6195 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6196 llvm::Type *CoerceTy = 6197 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6198 return ABIArgInfo::getDirect(CoerceTy); 6199 } 6200 6201 return getNaturalAlignIndirect(RetTy); 6202 } 6203 6204 /// isIllegalVector - check whether Ty is an illegal vector type. 6205 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6206 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6207 // On targets that don't support FP16, FP16 is expanded into float, and we 6208 // don't want the ABI to depend on whether or not FP16 is supported in 6209 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6210 if (!getTarget().hasLegalHalfType() && 6211 (VT->getElementType()->isFloat16Type() || 6212 VT->getElementType()->isHalfType())) 6213 return true; 6214 if (isAndroid()) { 6215 // Android shipped using Clang 3.1, which supported a slightly different 6216 // vector ABI. The primary differences were that 3-element vector types 6217 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6218 // accepts that legacy behavior for Android only. 6219 // Check whether VT is legal. 6220 unsigned NumElements = VT->getNumElements(); 6221 // NumElements should be power of 2 or equal to 3. 6222 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6223 return true; 6224 } else { 6225 // Check whether VT is legal. 6226 unsigned NumElements = VT->getNumElements(); 6227 uint64_t Size = getContext().getTypeSize(VT); 6228 // NumElements should be power of 2. 6229 if (!llvm::isPowerOf2_32(NumElements)) 6230 return true; 6231 // Size should be greater than 32 bits. 6232 return Size <= 32; 6233 } 6234 } 6235 return false; 6236 } 6237 6238 /// Return true if a type contains any 16-bit floating point vectors 6239 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6240 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6241 uint64_t NElements = AT->getSize().getZExtValue(); 6242 if (NElements == 0) 6243 return false; 6244 return containsAnyFP16Vectors(AT->getElementType()); 6245 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6246 const RecordDecl *RD = RT->getDecl(); 6247 6248 // If this is a C++ record, check the bases first. 6249 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6250 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6251 return containsAnyFP16Vectors(B.getType()); 6252 })) 6253 return true; 6254 6255 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6256 return FD && containsAnyFP16Vectors(FD->getType()); 6257 })) 6258 return true; 6259 6260 return false; 6261 } else { 6262 if (const VectorType *VT = Ty->getAs<VectorType>()) 6263 return (VT->getElementType()->isFloat16Type() || 6264 VT->getElementType()->isHalfType()); 6265 return false; 6266 } 6267 } 6268 6269 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6270 llvm::Type *eltTy, 6271 unsigned numElts) const { 6272 if (!llvm::isPowerOf2_32(numElts)) 6273 return false; 6274 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6275 if (size > 64) 6276 return false; 6277 if (vectorSize.getQuantity() != 8 && 6278 (vectorSize.getQuantity() != 16 || numElts == 1)) 6279 return false; 6280 return true; 6281 } 6282 6283 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6284 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6285 // double, or 64-bit or 128-bit vectors. 6286 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6287 if (BT->getKind() == BuiltinType::Float || 6288 BT->getKind() == BuiltinType::Double || 6289 BT->getKind() == BuiltinType::LongDouble) 6290 return true; 6291 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6292 unsigned VecSize = getContext().getTypeSize(VT); 6293 if (VecSize == 64 || VecSize == 128) 6294 return true; 6295 } 6296 return false; 6297 } 6298 6299 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6300 uint64_t Members) const { 6301 return Members <= 4; 6302 } 6303 6304 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6305 bool acceptHalf) const { 6306 // Give precedence to user-specified calling conventions. 6307 if (callConvention != llvm::CallingConv::C) 6308 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6309 else 6310 return (getABIKind() == AAPCS_VFP) || 6311 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6312 } 6313 6314 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6315 QualType Ty) const { 6316 CharUnits SlotSize = CharUnits::fromQuantity(4); 6317 6318 // Empty records are ignored for parameter passing purposes. 6319 if (isEmptyRecord(getContext(), Ty, true)) { 6320 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6321 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6322 return Addr; 6323 } 6324 6325 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6326 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6327 6328 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6329 bool IsIndirect = false; 6330 const Type *Base = nullptr; 6331 uint64_t Members = 0; 6332 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6333 IsIndirect = true; 6334 6335 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6336 // allocated by the caller. 6337 } else if (TySize > CharUnits::fromQuantity(16) && 6338 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6339 !isHomogeneousAggregate(Ty, Base, Members)) { 6340 IsIndirect = true; 6341 6342 // Otherwise, bound the type's ABI alignment. 6343 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6344 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6345 // Our callers should be prepared to handle an under-aligned address. 6346 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6347 getABIKind() == ARMABIInfo::AAPCS) { 6348 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6349 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6350 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6351 // ARMv7k allows type alignment up to 16 bytes. 6352 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6353 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6354 } else { 6355 TyAlignForABI = CharUnits::fromQuantity(4); 6356 } 6357 6358 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6359 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6360 SlotSize, /*AllowHigherAlign*/ true); 6361 } 6362 6363 //===----------------------------------------------------------------------===// 6364 // NVPTX ABI Implementation 6365 //===----------------------------------------------------------------------===// 6366 6367 namespace { 6368 6369 class NVPTXABIInfo : public ABIInfo { 6370 public: 6371 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6372 6373 ABIArgInfo classifyReturnType(QualType RetTy) const; 6374 ABIArgInfo classifyArgumentType(QualType Ty) const; 6375 6376 void computeInfo(CGFunctionInfo &FI) const override; 6377 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6378 QualType Ty) const override; 6379 }; 6380 6381 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6382 public: 6383 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6384 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6385 6386 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6387 CodeGen::CodeGenModule &M) const override; 6388 bool shouldEmitStaticExternCAliases() const override; 6389 6390 private: 6391 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6392 // resulting MDNode to the nvvm.annotations MDNode. 6393 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6394 }; 6395 6396 /// Checks if the type is unsupported directly by the current target. 6397 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6398 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6399 return true; 6400 if (!Context.getTargetInfo().hasFloat128Type() && 6401 (T->isFloat128Type() || 6402 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6403 return true; 6404 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6405 Context.getTypeSize(T) > 64) 6406 return true; 6407 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6408 return isUnsupportedType(Context, AT->getElementType()); 6409 const auto *RT = T->getAs<RecordType>(); 6410 if (!RT) 6411 return false; 6412 const RecordDecl *RD = RT->getDecl(); 6413 6414 // If this is a C++ record, check the bases first. 6415 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6416 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6417 if (isUnsupportedType(Context, I.getType())) 6418 return true; 6419 6420 for (const FieldDecl *I : RD->fields()) 6421 if (isUnsupportedType(Context, I->getType())) 6422 return true; 6423 return false; 6424 } 6425 6426 /// Coerce the given type into an array with maximum allowed size of elements. 6427 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6428 llvm::LLVMContext &LLVMContext, 6429 unsigned MaxSize) { 6430 // Alignment and Size are measured in bits. 6431 const uint64_t Size = Context.getTypeSize(Ty); 6432 const uint64_t Alignment = Context.getTypeAlign(Ty); 6433 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6434 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6435 const uint64_t NumElements = (Size + Div - 1) / Div; 6436 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6437 } 6438 6439 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6440 if (RetTy->isVoidType()) 6441 return ABIArgInfo::getIgnore(); 6442 6443 if (getContext().getLangOpts().OpenMP && 6444 getContext().getLangOpts().OpenMPIsDevice && 6445 isUnsupportedType(getContext(), RetTy)) 6446 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6447 6448 // note: this is different from default ABI 6449 if (!RetTy->isScalarType()) 6450 return ABIArgInfo::getDirect(); 6451 6452 // Treat an enum type as its underlying type. 6453 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6454 RetTy = EnumTy->getDecl()->getIntegerType(); 6455 6456 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6457 : ABIArgInfo::getDirect()); 6458 } 6459 6460 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6461 // Treat an enum type as its underlying type. 6462 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6463 Ty = EnumTy->getDecl()->getIntegerType(); 6464 6465 // Return aggregates type as indirect by value 6466 if (isAggregateTypeForABI(Ty)) 6467 return getNaturalAlignIndirect(Ty, /* byval */ true); 6468 6469 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6470 : ABIArgInfo::getDirect()); 6471 } 6472 6473 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6474 if (!getCXXABI().classifyReturnType(FI)) 6475 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6476 for (auto &I : FI.arguments()) 6477 I.info = classifyArgumentType(I.type); 6478 6479 // Always honor user-specified calling convention. 6480 if (FI.getCallingConvention() != llvm::CallingConv::C) 6481 return; 6482 6483 FI.setEffectiveCallingConvention(getRuntimeCC()); 6484 } 6485 6486 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6487 QualType Ty) const { 6488 llvm_unreachable("NVPTX does not support varargs"); 6489 } 6490 6491 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6492 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6493 if (GV->isDeclaration()) 6494 return; 6495 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6496 if (!FD) return; 6497 6498 llvm::Function *F = cast<llvm::Function>(GV); 6499 6500 // Perform special handling in OpenCL mode 6501 if (M.getLangOpts().OpenCL) { 6502 // Use OpenCL function attributes to check for kernel functions 6503 // By default, all functions are device functions 6504 if (FD->hasAttr<OpenCLKernelAttr>()) { 6505 // OpenCL __kernel functions get kernel metadata 6506 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6507 addNVVMMetadata(F, "kernel", 1); 6508 // And kernel functions are not subject to inlining 6509 F->addFnAttr(llvm::Attribute::NoInline); 6510 } 6511 } 6512 6513 // Perform special handling in CUDA mode. 6514 if (M.getLangOpts().CUDA) { 6515 // CUDA __global__ functions get a kernel metadata entry. Since 6516 // __global__ functions cannot be called from the device, we do not 6517 // need to set the noinline attribute. 6518 if (FD->hasAttr<CUDAGlobalAttr>()) { 6519 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6520 addNVVMMetadata(F, "kernel", 1); 6521 } 6522 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6523 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6524 llvm::APSInt MaxThreads(32); 6525 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6526 if (MaxThreads > 0) 6527 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6528 6529 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6530 // not specified in __launch_bounds__ or if the user specified a 0 value, 6531 // we don't have to add a PTX directive. 6532 if (Attr->getMinBlocks()) { 6533 llvm::APSInt MinBlocks(32); 6534 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6535 if (MinBlocks > 0) 6536 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6537 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6538 } 6539 } 6540 } 6541 } 6542 6543 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6544 int Operand) { 6545 llvm::Module *M = F->getParent(); 6546 llvm::LLVMContext &Ctx = M->getContext(); 6547 6548 // Get "nvvm.annotations" metadata node 6549 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6550 6551 llvm::Metadata *MDVals[] = { 6552 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6553 llvm::ConstantAsMetadata::get( 6554 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6555 // Append metadata to nvvm.annotations 6556 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6557 } 6558 6559 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6560 return false; 6561 } 6562 } 6563 6564 //===----------------------------------------------------------------------===// 6565 // SystemZ ABI Implementation 6566 //===----------------------------------------------------------------------===// 6567 6568 namespace { 6569 6570 class SystemZABIInfo : public SwiftABIInfo { 6571 bool HasVector; 6572 6573 public: 6574 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6575 : SwiftABIInfo(CGT), HasVector(HV) {} 6576 6577 bool isPromotableIntegerType(QualType Ty) const; 6578 bool isCompoundType(QualType Ty) const; 6579 bool isVectorArgumentType(QualType Ty) const; 6580 bool isFPArgumentType(QualType Ty) const; 6581 QualType GetSingleElementType(QualType Ty) const; 6582 6583 ABIArgInfo classifyReturnType(QualType RetTy) const; 6584 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6585 6586 void computeInfo(CGFunctionInfo &FI) const override { 6587 if (!getCXXABI().classifyReturnType(FI)) 6588 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6589 for (auto &I : FI.arguments()) 6590 I.info = classifyArgumentType(I.type); 6591 } 6592 6593 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6594 QualType Ty) const override; 6595 6596 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6597 bool asReturnValue) const override { 6598 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6599 } 6600 bool isSwiftErrorInRegister() const override { 6601 return false; 6602 } 6603 }; 6604 6605 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6606 public: 6607 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6608 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6609 }; 6610 6611 } 6612 6613 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6614 // Treat an enum type as its underlying type. 6615 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6616 Ty = EnumTy->getDecl()->getIntegerType(); 6617 6618 // Promotable integer types are required to be promoted by the ABI. 6619 if (Ty->isPromotableIntegerType()) 6620 return true; 6621 6622 // 32-bit values must also be promoted. 6623 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6624 switch (BT->getKind()) { 6625 case BuiltinType::Int: 6626 case BuiltinType::UInt: 6627 return true; 6628 default: 6629 return false; 6630 } 6631 return false; 6632 } 6633 6634 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6635 return (Ty->isAnyComplexType() || 6636 Ty->isVectorType() || 6637 isAggregateTypeForABI(Ty)); 6638 } 6639 6640 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6641 return (HasVector && 6642 Ty->isVectorType() && 6643 getContext().getTypeSize(Ty) <= 128); 6644 } 6645 6646 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6647 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6648 switch (BT->getKind()) { 6649 case BuiltinType::Float: 6650 case BuiltinType::Double: 6651 return true; 6652 default: 6653 return false; 6654 } 6655 6656 return false; 6657 } 6658 6659 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6660 if (const RecordType *RT = Ty->getAsStructureType()) { 6661 const RecordDecl *RD = RT->getDecl(); 6662 QualType Found; 6663 6664 // If this is a C++ record, check the bases first. 6665 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6666 for (const auto &I : CXXRD->bases()) { 6667 QualType Base = I.getType(); 6668 6669 // Empty bases don't affect things either way. 6670 if (isEmptyRecord(getContext(), Base, true)) 6671 continue; 6672 6673 if (!Found.isNull()) 6674 return Ty; 6675 Found = GetSingleElementType(Base); 6676 } 6677 6678 // Check the fields. 6679 for (const auto *FD : RD->fields()) { 6680 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6681 // Unlike isSingleElementStruct(), empty structure and array fields 6682 // do count. So do anonymous bitfields that aren't zero-sized. 6683 if (getContext().getLangOpts().CPlusPlus && 6684 FD->isZeroLengthBitField(getContext())) 6685 continue; 6686 6687 // Unlike isSingleElementStruct(), arrays do not count. 6688 // Nested structures still do though. 6689 if (!Found.isNull()) 6690 return Ty; 6691 Found = GetSingleElementType(FD->getType()); 6692 } 6693 6694 // Unlike isSingleElementStruct(), trailing padding is allowed. 6695 // An 8-byte aligned struct s { float f; } is passed as a double. 6696 if (!Found.isNull()) 6697 return Found; 6698 } 6699 6700 return Ty; 6701 } 6702 6703 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6704 QualType Ty) const { 6705 // Assume that va_list type is correct; should be pointer to LLVM type: 6706 // struct { 6707 // i64 __gpr; 6708 // i64 __fpr; 6709 // i8 *__overflow_arg_area; 6710 // i8 *__reg_save_area; 6711 // }; 6712 6713 // Every non-vector argument occupies 8 bytes and is passed by preference 6714 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6715 // always passed on the stack. 6716 Ty = getContext().getCanonicalType(Ty); 6717 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6718 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6719 llvm::Type *DirectTy = ArgTy; 6720 ABIArgInfo AI = classifyArgumentType(Ty); 6721 bool IsIndirect = AI.isIndirect(); 6722 bool InFPRs = false; 6723 bool IsVector = false; 6724 CharUnits UnpaddedSize; 6725 CharUnits DirectAlign; 6726 if (IsIndirect) { 6727 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6728 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6729 } else { 6730 if (AI.getCoerceToType()) 6731 ArgTy = AI.getCoerceToType(); 6732 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6733 IsVector = ArgTy->isVectorTy(); 6734 UnpaddedSize = TyInfo.first; 6735 DirectAlign = TyInfo.second; 6736 } 6737 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6738 if (IsVector && UnpaddedSize > PaddedSize) 6739 PaddedSize = CharUnits::fromQuantity(16); 6740 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6741 6742 CharUnits Padding = (PaddedSize - UnpaddedSize); 6743 6744 llvm::Type *IndexTy = CGF.Int64Ty; 6745 llvm::Value *PaddedSizeV = 6746 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6747 6748 if (IsVector) { 6749 // Work out the address of a vector argument on the stack. 6750 // Vector arguments are always passed in the high bits of a 6751 // single (8 byte) or double (16 byte) stack slot. 6752 Address OverflowArgAreaPtr = 6753 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6754 Address OverflowArgArea = 6755 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6756 TyInfo.second); 6757 Address MemAddr = 6758 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6759 6760 // Update overflow_arg_area_ptr pointer 6761 llvm::Value *NewOverflowArgArea = 6762 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6763 "overflow_arg_area"); 6764 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6765 6766 return MemAddr; 6767 } 6768 6769 assert(PaddedSize.getQuantity() == 8); 6770 6771 unsigned MaxRegs, RegCountField, RegSaveIndex; 6772 CharUnits RegPadding; 6773 if (InFPRs) { 6774 MaxRegs = 4; // Maximum of 4 FPR arguments 6775 RegCountField = 1; // __fpr 6776 RegSaveIndex = 16; // save offset for f0 6777 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6778 } else { 6779 MaxRegs = 5; // Maximum of 5 GPR arguments 6780 RegCountField = 0; // __gpr 6781 RegSaveIndex = 2; // save offset for r2 6782 RegPadding = Padding; // values are passed in the low bits of a GPR 6783 } 6784 6785 Address RegCountPtr = 6786 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6787 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6788 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6789 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6790 "fits_in_regs"); 6791 6792 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6793 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6794 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6795 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6796 6797 // Emit code to load the value if it was passed in registers. 6798 CGF.EmitBlock(InRegBlock); 6799 6800 // Work out the address of an argument register. 6801 llvm::Value *ScaledRegCount = 6802 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6803 llvm::Value *RegBase = 6804 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6805 + RegPadding.getQuantity()); 6806 llvm::Value *RegOffset = 6807 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6808 Address RegSaveAreaPtr = 6809 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6810 llvm::Value *RegSaveArea = 6811 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6812 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6813 "raw_reg_addr"), 6814 PaddedSize); 6815 Address RegAddr = 6816 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6817 6818 // Update the register count 6819 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6820 llvm::Value *NewRegCount = 6821 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6822 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6823 CGF.EmitBranch(ContBlock); 6824 6825 // Emit code to load the value if it was passed in memory. 6826 CGF.EmitBlock(InMemBlock); 6827 6828 // Work out the address of a stack argument. 6829 Address OverflowArgAreaPtr = 6830 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6831 Address OverflowArgArea = 6832 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6833 PaddedSize); 6834 Address RawMemAddr = 6835 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6836 Address MemAddr = 6837 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6838 6839 // Update overflow_arg_area_ptr pointer 6840 llvm::Value *NewOverflowArgArea = 6841 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6842 "overflow_arg_area"); 6843 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6844 CGF.EmitBranch(ContBlock); 6845 6846 // Return the appropriate result. 6847 CGF.EmitBlock(ContBlock); 6848 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6849 MemAddr, InMemBlock, "va_arg.addr"); 6850 6851 if (IsIndirect) 6852 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6853 TyInfo.second); 6854 6855 return ResAddr; 6856 } 6857 6858 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6859 if (RetTy->isVoidType()) 6860 return ABIArgInfo::getIgnore(); 6861 if (isVectorArgumentType(RetTy)) 6862 return ABIArgInfo::getDirect(); 6863 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6864 return getNaturalAlignIndirect(RetTy); 6865 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6866 : ABIArgInfo::getDirect()); 6867 } 6868 6869 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6870 // Handle the generic C++ ABI. 6871 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6872 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6873 6874 // Integers and enums are extended to full register width. 6875 if (isPromotableIntegerType(Ty)) 6876 return ABIArgInfo::getExtend(Ty); 6877 6878 // Handle vector types and vector-like structure types. Note that 6879 // as opposed to float-like structure types, we do not allow any 6880 // padding for vector-like structures, so verify the sizes match. 6881 uint64_t Size = getContext().getTypeSize(Ty); 6882 QualType SingleElementTy = GetSingleElementType(Ty); 6883 if (isVectorArgumentType(SingleElementTy) && 6884 getContext().getTypeSize(SingleElementTy) == Size) 6885 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6886 6887 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6888 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6889 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6890 6891 // Handle small structures. 6892 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6893 // Structures with flexible arrays have variable length, so really 6894 // fail the size test above. 6895 const RecordDecl *RD = RT->getDecl(); 6896 if (RD->hasFlexibleArrayMember()) 6897 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6898 6899 // The structure is passed as an unextended integer, a float, or a double. 6900 llvm::Type *PassTy; 6901 if (isFPArgumentType(SingleElementTy)) { 6902 assert(Size == 32 || Size == 64); 6903 if (Size == 32) 6904 PassTy = llvm::Type::getFloatTy(getVMContext()); 6905 else 6906 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6907 } else 6908 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6909 return ABIArgInfo::getDirect(PassTy); 6910 } 6911 6912 // Non-structure compounds are passed indirectly. 6913 if (isCompoundType(Ty)) 6914 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6915 6916 return ABIArgInfo::getDirect(nullptr); 6917 } 6918 6919 //===----------------------------------------------------------------------===// 6920 // MSP430 ABI Implementation 6921 //===----------------------------------------------------------------------===// 6922 6923 namespace { 6924 6925 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6926 public: 6927 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6928 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6929 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6930 CodeGen::CodeGenModule &M) const override; 6931 }; 6932 6933 } 6934 6935 void MSP430TargetCodeGenInfo::setTargetAttributes( 6936 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6937 if (GV->isDeclaration()) 6938 return; 6939 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6940 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6941 if (!InterruptAttr) 6942 return; 6943 6944 // Handle 'interrupt' attribute: 6945 llvm::Function *F = cast<llvm::Function>(GV); 6946 6947 // Step 1: Set ISR calling convention. 6948 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6949 6950 // Step 2: Add attributes goodness. 6951 F->addFnAttr(llvm::Attribute::NoInline); 6952 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6953 } 6954 } 6955 6956 //===----------------------------------------------------------------------===// 6957 // MIPS ABI Implementation. This works for both little-endian and 6958 // big-endian variants. 6959 //===----------------------------------------------------------------------===// 6960 6961 namespace { 6962 class MipsABIInfo : public ABIInfo { 6963 bool IsO32; 6964 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6965 void CoerceToIntArgs(uint64_t TySize, 6966 SmallVectorImpl<llvm::Type *> &ArgList) const; 6967 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6968 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6969 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6970 public: 6971 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6972 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6973 StackAlignInBytes(IsO32 ? 8 : 16) {} 6974 6975 ABIArgInfo classifyReturnType(QualType RetTy) const; 6976 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6977 void computeInfo(CGFunctionInfo &FI) const override; 6978 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6979 QualType Ty) const override; 6980 ABIArgInfo extendType(QualType Ty) const; 6981 }; 6982 6983 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6984 unsigned SizeOfUnwindException; 6985 public: 6986 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6987 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6988 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6989 6990 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6991 return 29; 6992 } 6993 6994 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6995 CodeGen::CodeGenModule &CGM) const override { 6996 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6997 if (!FD) return; 6998 llvm::Function *Fn = cast<llvm::Function>(GV); 6999 7000 if (FD->hasAttr<MipsLongCallAttr>()) 7001 Fn->addFnAttr("long-call"); 7002 else if (FD->hasAttr<MipsShortCallAttr>()) 7003 Fn->addFnAttr("short-call"); 7004 7005 // Other attributes do not have a meaning for declarations. 7006 if (GV->isDeclaration()) 7007 return; 7008 7009 if (FD->hasAttr<Mips16Attr>()) { 7010 Fn->addFnAttr("mips16"); 7011 } 7012 else if (FD->hasAttr<NoMips16Attr>()) { 7013 Fn->addFnAttr("nomips16"); 7014 } 7015 7016 if (FD->hasAttr<MicroMipsAttr>()) 7017 Fn->addFnAttr("micromips"); 7018 else if (FD->hasAttr<NoMicroMipsAttr>()) 7019 Fn->addFnAttr("nomicromips"); 7020 7021 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7022 if (!Attr) 7023 return; 7024 7025 const char *Kind; 7026 switch (Attr->getInterrupt()) { 7027 case MipsInterruptAttr::eic: Kind = "eic"; break; 7028 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7029 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7030 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7031 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7032 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7033 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7034 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7035 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7036 } 7037 7038 Fn->addFnAttr("interrupt", Kind); 7039 7040 } 7041 7042 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7043 llvm::Value *Address) const override; 7044 7045 unsigned getSizeOfUnwindException() const override { 7046 return SizeOfUnwindException; 7047 } 7048 }; 7049 } 7050 7051 void MipsABIInfo::CoerceToIntArgs( 7052 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7053 llvm::IntegerType *IntTy = 7054 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7055 7056 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7057 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7058 ArgList.push_back(IntTy); 7059 7060 // If necessary, add one more integer type to ArgList. 7061 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7062 7063 if (R) 7064 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7065 } 7066 7067 // In N32/64, an aligned double precision floating point field is passed in 7068 // a register. 7069 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7070 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7071 7072 if (IsO32) { 7073 CoerceToIntArgs(TySize, ArgList); 7074 return llvm::StructType::get(getVMContext(), ArgList); 7075 } 7076 7077 if (Ty->isComplexType()) 7078 return CGT.ConvertType(Ty); 7079 7080 const RecordType *RT = Ty->getAs<RecordType>(); 7081 7082 // Unions/vectors are passed in integer registers. 7083 if (!RT || !RT->isStructureOrClassType()) { 7084 CoerceToIntArgs(TySize, ArgList); 7085 return llvm::StructType::get(getVMContext(), ArgList); 7086 } 7087 7088 const RecordDecl *RD = RT->getDecl(); 7089 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7090 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7091 7092 uint64_t LastOffset = 0; 7093 unsigned idx = 0; 7094 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7095 7096 // Iterate over fields in the struct/class and check if there are any aligned 7097 // double fields. 7098 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7099 i != e; ++i, ++idx) { 7100 const QualType Ty = i->getType(); 7101 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7102 7103 if (!BT || BT->getKind() != BuiltinType::Double) 7104 continue; 7105 7106 uint64_t Offset = Layout.getFieldOffset(idx); 7107 if (Offset % 64) // Ignore doubles that are not aligned. 7108 continue; 7109 7110 // Add ((Offset - LastOffset) / 64) args of type i64. 7111 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7112 ArgList.push_back(I64); 7113 7114 // Add double type. 7115 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7116 LastOffset = Offset + 64; 7117 } 7118 7119 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7120 ArgList.append(IntArgList.begin(), IntArgList.end()); 7121 7122 return llvm::StructType::get(getVMContext(), ArgList); 7123 } 7124 7125 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7126 uint64_t Offset) const { 7127 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7128 return nullptr; 7129 7130 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7131 } 7132 7133 ABIArgInfo 7134 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7135 Ty = useFirstFieldIfTransparentUnion(Ty); 7136 7137 uint64_t OrigOffset = Offset; 7138 uint64_t TySize = getContext().getTypeSize(Ty); 7139 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7140 7141 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7142 (uint64_t)StackAlignInBytes); 7143 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7144 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7145 7146 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7147 // Ignore empty aggregates. 7148 if (TySize == 0) 7149 return ABIArgInfo::getIgnore(); 7150 7151 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7152 Offset = OrigOffset + MinABIStackAlignInBytes; 7153 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7154 } 7155 7156 // If we have reached here, aggregates are passed directly by coercing to 7157 // another structure type. Padding is inserted if the offset of the 7158 // aggregate is unaligned. 7159 ABIArgInfo ArgInfo = 7160 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7161 getPaddingType(OrigOffset, CurrOffset)); 7162 ArgInfo.setInReg(true); 7163 return ArgInfo; 7164 } 7165 7166 // Treat an enum type as its underlying type. 7167 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7168 Ty = EnumTy->getDecl()->getIntegerType(); 7169 7170 // All integral types are promoted to the GPR width. 7171 if (Ty->isIntegralOrEnumerationType()) 7172 return extendType(Ty); 7173 7174 return ABIArgInfo::getDirect( 7175 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7176 } 7177 7178 llvm::Type* 7179 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7180 const RecordType *RT = RetTy->getAs<RecordType>(); 7181 SmallVector<llvm::Type*, 8> RTList; 7182 7183 if (RT && RT->isStructureOrClassType()) { 7184 const RecordDecl *RD = RT->getDecl(); 7185 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7186 unsigned FieldCnt = Layout.getFieldCount(); 7187 7188 // N32/64 returns struct/classes in floating point registers if the 7189 // following conditions are met: 7190 // 1. The size of the struct/class is no larger than 128-bit. 7191 // 2. The struct/class has one or two fields all of which are floating 7192 // point types. 7193 // 3. The offset of the first field is zero (this follows what gcc does). 7194 // 7195 // Any other composite results are returned in integer registers. 7196 // 7197 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7198 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7199 for (; b != e; ++b) { 7200 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7201 7202 if (!BT || !BT->isFloatingPoint()) 7203 break; 7204 7205 RTList.push_back(CGT.ConvertType(b->getType())); 7206 } 7207 7208 if (b == e) 7209 return llvm::StructType::get(getVMContext(), RTList, 7210 RD->hasAttr<PackedAttr>()); 7211 7212 RTList.clear(); 7213 } 7214 } 7215 7216 CoerceToIntArgs(Size, RTList); 7217 return llvm::StructType::get(getVMContext(), RTList); 7218 } 7219 7220 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7221 uint64_t Size = getContext().getTypeSize(RetTy); 7222 7223 if (RetTy->isVoidType()) 7224 return ABIArgInfo::getIgnore(); 7225 7226 // O32 doesn't treat zero-sized structs differently from other structs. 7227 // However, N32/N64 ignores zero sized return values. 7228 if (!IsO32 && Size == 0) 7229 return ABIArgInfo::getIgnore(); 7230 7231 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7232 if (Size <= 128) { 7233 if (RetTy->isAnyComplexType()) 7234 return ABIArgInfo::getDirect(); 7235 7236 // O32 returns integer vectors in registers and N32/N64 returns all small 7237 // aggregates in registers. 7238 if (!IsO32 || 7239 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7240 ABIArgInfo ArgInfo = 7241 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7242 ArgInfo.setInReg(true); 7243 return ArgInfo; 7244 } 7245 } 7246 7247 return getNaturalAlignIndirect(RetTy); 7248 } 7249 7250 // Treat an enum type as its underlying type. 7251 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7252 RetTy = EnumTy->getDecl()->getIntegerType(); 7253 7254 if (RetTy->isPromotableIntegerType()) 7255 return ABIArgInfo::getExtend(RetTy); 7256 7257 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7258 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7259 return ABIArgInfo::getSignExtend(RetTy); 7260 7261 return ABIArgInfo::getDirect(); 7262 } 7263 7264 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7265 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7266 if (!getCXXABI().classifyReturnType(FI)) 7267 RetInfo = classifyReturnType(FI.getReturnType()); 7268 7269 // Check if a pointer to an aggregate is passed as a hidden argument. 7270 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7271 7272 for (auto &I : FI.arguments()) 7273 I.info = classifyArgumentType(I.type, Offset); 7274 } 7275 7276 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7277 QualType OrigTy) const { 7278 QualType Ty = OrigTy; 7279 7280 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7281 // Pointers are also promoted in the same way but this only matters for N32. 7282 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7283 unsigned PtrWidth = getTarget().getPointerWidth(0); 7284 bool DidPromote = false; 7285 if ((Ty->isIntegerType() && 7286 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7287 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7288 DidPromote = true; 7289 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7290 Ty->isSignedIntegerType()); 7291 } 7292 7293 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7294 7295 // The alignment of things in the argument area is never larger than 7296 // StackAlignInBytes. 7297 TyInfo.second = 7298 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7299 7300 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7301 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7302 7303 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7304 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7305 7306 7307 // If there was a promotion, "unpromote" into a temporary. 7308 // TODO: can we just use a pointer into a subset of the original slot? 7309 if (DidPromote) { 7310 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7311 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7312 7313 // Truncate down to the right width. 7314 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7315 : CGF.IntPtrTy); 7316 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7317 if (OrigTy->isPointerType()) 7318 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7319 7320 CGF.Builder.CreateStore(V, Temp); 7321 Addr = Temp; 7322 } 7323 7324 return Addr; 7325 } 7326 7327 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7328 int TySize = getContext().getTypeSize(Ty); 7329 7330 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7331 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7332 return ABIArgInfo::getSignExtend(Ty); 7333 7334 return ABIArgInfo::getExtend(Ty); 7335 } 7336 7337 bool 7338 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7339 llvm::Value *Address) const { 7340 // This information comes from gcc's implementation, which seems to 7341 // as canonical as it gets. 7342 7343 // Everything on MIPS is 4 bytes. Double-precision FP registers 7344 // are aliased to pairs of single-precision FP registers. 7345 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7346 7347 // 0-31 are the general purpose registers, $0 - $31. 7348 // 32-63 are the floating-point registers, $f0 - $f31. 7349 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7350 // 66 is the (notional, I think) register for signal-handler return. 7351 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7352 7353 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7354 // They are one bit wide and ignored here. 7355 7356 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7357 // (coprocessor 1 is the FP unit) 7358 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7359 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7360 // 176-181 are the DSP accumulator registers. 7361 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7362 return false; 7363 } 7364 7365 //===----------------------------------------------------------------------===// 7366 // AVR ABI Implementation. 7367 //===----------------------------------------------------------------------===// 7368 7369 namespace { 7370 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7371 public: 7372 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7373 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7374 7375 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7376 CodeGen::CodeGenModule &CGM) const override { 7377 if (GV->isDeclaration()) 7378 return; 7379 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7380 if (!FD) return; 7381 auto *Fn = cast<llvm::Function>(GV); 7382 7383 if (FD->getAttr<AVRInterruptAttr>()) 7384 Fn->addFnAttr("interrupt"); 7385 7386 if (FD->getAttr<AVRSignalAttr>()) 7387 Fn->addFnAttr("signal"); 7388 } 7389 }; 7390 } 7391 7392 //===----------------------------------------------------------------------===// 7393 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7394 // Currently subclassed only to implement custom OpenCL C function attribute 7395 // handling. 7396 //===----------------------------------------------------------------------===// 7397 7398 namespace { 7399 7400 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7401 public: 7402 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7403 : DefaultTargetCodeGenInfo(CGT) {} 7404 7405 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7406 CodeGen::CodeGenModule &M) const override; 7407 }; 7408 7409 void TCETargetCodeGenInfo::setTargetAttributes( 7410 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7411 if (GV->isDeclaration()) 7412 return; 7413 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7414 if (!FD) return; 7415 7416 llvm::Function *F = cast<llvm::Function>(GV); 7417 7418 if (M.getLangOpts().OpenCL) { 7419 if (FD->hasAttr<OpenCLKernelAttr>()) { 7420 // OpenCL C Kernel functions are not subject to inlining 7421 F->addFnAttr(llvm::Attribute::NoInline); 7422 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7423 if (Attr) { 7424 // Convert the reqd_work_group_size() attributes to metadata. 7425 llvm::LLVMContext &Context = F->getContext(); 7426 llvm::NamedMDNode *OpenCLMetadata = 7427 M.getModule().getOrInsertNamedMetadata( 7428 "opencl.kernel_wg_size_info"); 7429 7430 SmallVector<llvm::Metadata *, 5> Operands; 7431 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7432 7433 Operands.push_back( 7434 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7435 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7436 Operands.push_back( 7437 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7438 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7439 Operands.push_back( 7440 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7441 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7442 7443 // Add a boolean constant operand for "required" (true) or "hint" 7444 // (false) for implementing the work_group_size_hint attr later. 7445 // Currently always true as the hint is not yet implemented. 7446 Operands.push_back( 7447 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7448 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7449 } 7450 } 7451 } 7452 } 7453 7454 } 7455 7456 //===----------------------------------------------------------------------===// 7457 // Hexagon ABI Implementation 7458 //===----------------------------------------------------------------------===// 7459 7460 namespace { 7461 7462 class HexagonABIInfo : public ABIInfo { 7463 7464 7465 public: 7466 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7467 7468 private: 7469 7470 ABIArgInfo classifyReturnType(QualType RetTy) const; 7471 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7472 7473 void computeInfo(CGFunctionInfo &FI) const override; 7474 7475 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7476 QualType Ty) const override; 7477 }; 7478 7479 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7480 public: 7481 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7482 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7483 7484 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7485 return 29; 7486 } 7487 }; 7488 7489 } 7490 7491 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7492 if (!getCXXABI().classifyReturnType(FI)) 7493 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7494 for (auto &I : FI.arguments()) 7495 I.info = classifyArgumentType(I.type); 7496 } 7497 7498 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7499 if (!isAggregateTypeForABI(Ty)) { 7500 // Treat an enum type as its underlying type. 7501 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7502 Ty = EnumTy->getDecl()->getIntegerType(); 7503 7504 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7505 : ABIArgInfo::getDirect()); 7506 } 7507 7508 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7509 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7510 7511 // Ignore empty records. 7512 if (isEmptyRecord(getContext(), Ty, true)) 7513 return ABIArgInfo::getIgnore(); 7514 7515 uint64_t Size = getContext().getTypeSize(Ty); 7516 if (Size > 64) 7517 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7518 // Pass in the smallest viable integer type. 7519 else if (Size > 32) 7520 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7521 else if (Size > 16) 7522 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7523 else if (Size > 8) 7524 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7525 else 7526 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7527 } 7528 7529 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7530 if (RetTy->isVoidType()) 7531 return ABIArgInfo::getIgnore(); 7532 7533 // Large vector types should be returned via memory. 7534 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7535 return getNaturalAlignIndirect(RetTy); 7536 7537 if (!isAggregateTypeForABI(RetTy)) { 7538 // Treat an enum type as its underlying type. 7539 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7540 RetTy = EnumTy->getDecl()->getIntegerType(); 7541 7542 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7543 : ABIArgInfo::getDirect()); 7544 } 7545 7546 if (isEmptyRecord(getContext(), RetTy, true)) 7547 return ABIArgInfo::getIgnore(); 7548 7549 // Aggregates <= 8 bytes are returned in r0; other aggregates 7550 // are returned indirectly. 7551 uint64_t Size = getContext().getTypeSize(RetTy); 7552 if (Size <= 64) { 7553 // Return in the smallest viable integer type. 7554 if (Size <= 8) 7555 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7556 if (Size <= 16) 7557 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7558 if (Size <= 32) 7559 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7560 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7561 } 7562 7563 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7564 } 7565 7566 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7567 QualType Ty) const { 7568 // FIXME: Someone needs to audit that this handle alignment correctly. 7569 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7570 getContext().getTypeInfoInChars(Ty), 7571 CharUnits::fromQuantity(4), 7572 /*AllowHigherAlign*/ true); 7573 } 7574 7575 //===----------------------------------------------------------------------===// 7576 // Lanai ABI Implementation 7577 //===----------------------------------------------------------------------===// 7578 7579 namespace { 7580 class LanaiABIInfo : public DefaultABIInfo { 7581 public: 7582 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7583 7584 bool shouldUseInReg(QualType Ty, CCState &State) const; 7585 7586 void computeInfo(CGFunctionInfo &FI) const override { 7587 CCState State(FI.getCallingConvention()); 7588 // Lanai uses 4 registers to pass arguments unless the function has the 7589 // regparm attribute set. 7590 if (FI.getHasRegParm()) { 7591 State.FreeRegs = FI.getRegParm(); 7592 } else { 7593 State.FreeRegs = 4; 7594 } 7595 7596 if (!getCXXABI().classifyReturnType(FI)) 7597 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7598 for (auto &I : FI.arguments()) 7599 I.info = classifyArgumentType(I.type, State); 7600 } 7601 7602 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7603 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7604 }; 7605 } // end anonymous namespace 7606 7607 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7608 unsigned Size = getContext().getTypeSize(Ty); 7609 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7610 7611 if (SizeInRegs == 0) 7612 return false; 7613 7614 if (SizeInRegs > State.FreeRegs) { 7615 State.FreeRegs = 0; 7616 return false; 7617 } 7618 7619 State.FreeRegs -= SizeInRegs; 7620 7621 return true; 7622 } 7623 7624 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7625 CCState &State) const { 7626 if (!ByVal) { 7627 if (State.FreeRegs) { 7628 --State.FreeRegs; // Non-byval indirects just use one pointer. 7629 return getNaturalAlignIndirectInReg(Ty); 7630 } 7631 return getNaturalAlignIndirect(Ty, false); 7632 } 7633 7634 // Compute the byval alignment. 7635 const unsigned MinABIStackAlignInBytes = 4; 7636 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7637 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7638 /*Realign=*/TypeAlign > 7639 MinABIStackAlignInBytes); 7640 } 7641 7642 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7643 CCState &State) const { 7644 // Check with the C++ ABI first. 7645 const RecordType *RT = Ty->getAs<RecordType>(); 7646 if (RT) { 7647 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7648 if (RAA == CGCXXABI::RAA_Indirect) { 7649 return getIndirectResult(Ty, /*ByVal=*/false, State); 7650 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7651 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7652 } 7653 } 7654 7655 if (isAggregateTypeForABI(Ty)) { 7656 // Structures with flexible arrays are always indirect. 7657 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7658 return getIndirectResult(Ty, /*ByVal=*/true, State); 7659 7660 // Ignore empty structs/unions. 7661 if (isEmptyRecord(getContext(), Ty, true)) 7662 return ABIArgInfo::getIgnore(); 7663 7664 llvm::LLVMContext &LLVMContext = getVMContext(); 7665 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7666 if (SizeInRegs <= State.FreeRegs) { 7667 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7668 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7669 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7670 State.FreeRegs -= SizeInRegs; 7671 return ABIArgInfo::getDirectInReg(Result); 7672 } else { 7673 State.FreeRegs = 0; 7674 } 7675 return getIndirectResult(Ty, true, State); 7676 } 7677 7678 // Treat an enum type as its underlying type. 7679 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7680 Ty = EnumTy->getDecl()->getIntegerType(); 7681 7682 bool InReg = shouldUseInReg(Ty, State); 7683 if (Ty->isPromotableIntegerType()) { 7684 if (InReg) 7685 return ABIArgInfo::getDirectInReg(); 7686 return ABIArgInfo::getExtend(Ty); 7687 } 7688 if (InReg) 7689 return ABIArgInfo::getDirectInReg(); 7690 return ABIArgInfo::getDirect(); 7691 } 7692 7693 namespace { 7694 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7695 public: 7696 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7697 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7698 }; 7699 } 7700 7701 //===----------------------------------------------------------------------===// 7702 // AMDGPU ABI Implementation 7703 //===----------------------------------------------------------------------===// 7704 7705 namespace { 7706 7707 class AMDGPUABIInfo final : public DefaultABIInfo { 7708 private: 7709 static const unsigned MaxNumRegsForArgsRet = 16; 7710 7711 unsigned numRegsForType(QualType Ty) const; 7712 7713 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7714 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7715 uint64_t Members) const override; 7716 7717 // Coerce HIP pointer arguments from generic pointers to global ones. 7718 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 7719 unsigned ToAS) const { 7720 // Structure types. 7721 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 7722 SmallVector<llvm::Type *, 8> EltTys; 7723 bool Changed = false; 7724 for (auto T : STy->elements()) { 7725 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7726 EltTys.push_back(NT); 7727 Changed |= (NT != T); 7728 } 7729 // Skip if there is no change in element types. 7730 if (!Changed) 7731 return STy; 7732 if (STy->hasName()) 7733 return llvm::StructType::create( 7734 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 7735 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 7736 } 7737 // Arrary types. 7738 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 7739 auto T = ATy->getElementType(); 7740 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7741 // Skip if there is no change in that element type. 7742 if (NT == T) 7743 return ATy; 7744 return llvm::ArrayType::get(NT, ATy->getNumElements()); 7745 } 7746 // Single value types. 7747 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 7748 return llvm::PointerType::get( 7749 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 7750 return Ty; 7751 } 7752 7753 public: 7754 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7755 DefaultABIInfo(CGT) {} 7756 7757 ABIArgInfo classifyReturnType(QualType RetTy) const; 7758 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7759 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7760 7761 void computeInfo(CGFunctionInfo &FI) const override; 7762 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7763 QualType Ty) const override; 7764 }; 7765 7766 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7767 return true; 7768 } 7769 7770 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7771 const Type *Base, uint64_t Members) const { 7772 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7773 7774 // Homogeneous Aggregates may occupy at most 16 registers. 7775 return Members * NumRegs <= MaxNumRegsForArgsRet; 7776 } 7777 7778 /// Estimate number of registers the type will use when passed in registers. 7779 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7780 unsigned NumRegs = 0; 7781 7782 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7783 // Compute from the number of elements. The reported size is based on the 7784 // in-memory size, which includes the padding 4th element for 3-vectors. 7785 QualType EltTy = VT->getElementType(); 7786 unsigned EltSize = getContext().getTypeSize(EltTy); 7787 7788 // 16-bit element vectors should be passed as packed. 7789 if (EltSize == 16) 7790 return (VT->getNumElements() + 1) / 2; 7791 7792 unsigned EltNumRegs = (EltSize + 31) / 32; 7793 return EltNumRegs * VT->getNumElements(); 7794 } 7795 7796 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7797 const RecordDecl *RD = RT->getDecl(); 7798 assert(!RD->hasFlexibleArrayMember()); 7799 7800 for (const FieldDecl *Field : RD->fields()) { 7801 QualType FieldTy = Field->getType(); 7802 NumRegs += numRegsForType(FieldTy); 7803 } 7804 7805 return NumRegs; 7806 } 7807 7808 return (getContext().getTypeSize(Ty) + 31) / 32; 7809 } 7810 7811 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7812 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7813 7814 if (!getCXXABI().classifyReturnType(FI)) 7815 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7816 7817 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7818 for (auto &Arg : FI.arguments()) { 7819 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7820 Arg.info = classifyKernelArgumentType(Arg.type); 7821 } else { 7822 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7823 } 7824 } 7825 } 7826 7827 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7828 QualType Ty) const { 7829 llvm_unreachable("AMDGPU does not support varargs"); 7830 } 7831 7832 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7833 if (isAggregateTypeForABI(RetTy)) { 7834 // Records with non-trivial destructors/copy-constructors should not be 7835 // returned by value. 7836 if (!getRecordArgABI(RetTy, getCXXABI())) { 7837 // Ignore empty structs/unions. 7838 if (isEmptyRecord(getContext(), RetTy, true)) 7839 return ABIArgInfo::getIgnore(); 7840 7841 // Lower single-element structs to just return a regular value. 7842 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7843 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7844 7845 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7846 const RecordDecl *RD = RT->getDecl(); 7847 if (RD->hasFlexibleArrayMember()) 7848 return DefaultABIInfo::classifyReturnType(RetTy); 7849 } 7850 7851 // Pack aggregates <= 4 bytes into single VGPR or pair. 7852 uint64_t Size = getContext().getTypeSize(RetTy); 7853 if (Size <= 16) 7854 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7855 7856 if (Size <= 32) 7857 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7858 7859 if (Size <= 64) { 7860 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7861 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7862 } 7863 7864 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7865 return ABIArgInfo::getDirect(); 7866 } 7867 } 7868 7869 // Otherwise just do the default thing. 7870 return DefaultABIInfo::classifyReturnType(RetTy); 7871 } 7872 7873 /// For kernels all parameters are really passed in a special buffer. It doesn't 7874 /// make sense to pass anything byval, so everything must be direct. 7875 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7876 Ty = useFirstFieldIfTransparentUnion(Ty); 7877 7878 // TODO: Can we omit empty structs? 7879 7880 llvm::Type *LTy = nullptr; 7881 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7882 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 7883 7884 if (getContext().getLangOpts().HIP) { 7885 if (!LTy) 7886 LTy = CGT.ConvertType(Ty); 7887 LTy = coerceKernelArgumentType( 7888 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 7889 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 7890 } 7891 7892 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7893 // individual elements, which confuses the Clover OpenCL backend; therefore we 7894 // have to set it to false here. Other args of getDirect() are just defaults. 7895 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 7896 } 7897 7898 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7899 unsigned &NumRegsLeft) const { 7900 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7901 7902 Ty = useFirstFieldIfTransparentUnion(Ty); 7903 7904 if (isAggregateTypeForABI(Ty)) { 7905 // Records with non-trivial destructors/copy-constructors should not be 7906 // passed by value. 7907 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7908 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7909 7910 // Ignore empty structs/unions. 7911 if (isEmptyRecord(getContext(), Ty, true)) 7912 return ABIArgInfo::getIgnore(); 7913 7914 // Lower single-element structs to just pass a regular value. TODO: We 7915 // could do reasonable-size multiple-element structs too, using getExpand(), 7916 // though watch out for things like bitfields. 7917 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7918 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7919 7920 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7921 const RecordDecl *RD = RT->getDecl(); 7922 if (RD->hasFlexibleArrayMember()) 7923 return DefaultABIInfo::classifyArgumentType(Ty); 7924 } 7925 7926 // Pack aggregates <= 8 bytes into single VGPR or pair. 7927 uint64_t Size = getContext().getTypeSize(Ty); 7928 if (Size <= 64) { 7929 unsigned NumRegs = (Size + 31) / 32; 7930 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7931 7932 if (Size <= 16) 7933 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7934 7935 if (Size <= 32) 7936 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7937 7938 // XXX: Should this be i64 instead, and should the limit increase? 7939 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7940 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7941 } 7942 7943 if (NumRegsLeft > 0) { 7944 unsigned NumRegs = numRegsForType(Ty); 7945 if (NumRegsLeft >= NumRegs) { 7946 NumRegsLeft -= NumRegs; 7947 return ABIArgInfo::getDirect(); 7948 } 7949 } 7950 } 7951 7952 // Otherwise just do the default thing. 7953 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7954 if (!ArgInfo.isIndirect()) { 7955 unsigned NumRegs = numRegsForType(Ty); 7956 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7957 } 7958 7959 return ArgInfo; 7960 } 7961 7962 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7963 public: 7964 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7965 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7966 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7967 CodeGen::CodeGenModule &M) const override; 7968 unsigned getOpenCLKernelCallingConv() const override; 7969 7970 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7971 llvm::PointerType *T, QualType QT) const override; 7972 7973 LangAS getASTAllocaAddressSpace() const override { 7974 return getLangASFromTargetAS( 7975 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7976 } 7977 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7978 const VarDecl *D) const override; 7979 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7980 SyncScope Scope, 7981 llvm::AtomicOrdering Ordering, 7982 llvm::LLVMContext &Ctx) const override; 7983 llvm::Function * 7984 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7985 llvm::Function *BlockInvokeFunc, 7986 llvm::Value *BlockLiteral) const override; 7987 bool shouldEmitStaticExternCAliases() const override; 7988 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7989 }; 7990 } 7991 7992 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7993 llvm::GlobalValue *GV) { 7994 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7995 return false; 7996 7997 return D->hasAttr<OpenCLKernelAttr>() || 7998 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7999 (isa<VarDecl>(D) && 8000 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8001 D->hasAttr<HIPPinnedShadowAttr>())); 8002 } 8003 8004 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8005 llvm::GlobalValue *GV) { 8006 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8007 return false; 8008 8009 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8010 } 8011 8012 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8013 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8014 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8015 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8016 GV->setDSOLocal(false); 8017 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8018 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8019 GV->setDSOLocal(true); 8020 } 8021 8022 if (GV->isDeclaration()) 8023 return; 8024 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8025 if (!FD) 8026 return; 8027 8028 llvm::Function *F = cast<llvm::Function>(GV); 8029 8030 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8031 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8032 8033 8034 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8035 FD->hasAttr<OpenCLKernelAttr>(); 8036 const bool IsHIPKernel = M.getLangOpts().HIP && 8037 FD->hasAttr<CUDAGlobalAttr>(); 8038 if ((IsOpenCLKernel || IsHIPKernel) && 8039 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8040 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8041 8042 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8043 if (ReqdWGS || FlatWGS) { 8044 unsigned Min = 0; 8045 unsigned Max = 0; 8046 if (FlatWGS) { 8047 Min = FlatWGS->getMin() 8048 ->EvaluateKnownConstInt(M.getContext()) 8049 .getExtValue(); 8050 Max = FlatWGS->getMax() 8051 ->EvaluateKnownConstInt(M.getContext()) 8052 .getExtValue(); 8053 } 8054 if (ReqdWGS && Min == 0 && Max == 0) 8055 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8056 8057 if (Min != 0) { 8058 assert(Min <= Max && "Min must be less than or equal Max"); 8059 8060 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8061 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8062 } else 8063 assert(Max == 0 && "Max must be zero"); 8064 } else if (IsOpenCLKernel || IsHIPKernel) { 8065 // By default, restrict the maximum size to 256. 8066 F->addFnAttr("amdgpu-flat-work-group-size", "1,256"); 8067 } 8068 8069 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8070 unsigned Min = 8071 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8072 unsigned Max = Attr->getMax() ? Attr->getMax() 8073 ->EvaluateKnownConstInt(M.getContext()) 8074 .getExtValue() 8075 : 0; 8076 8077 if (Min != 0) { 8078 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8079 8080 std::string AttrVal = llvm::utostr(Min); 8081 if (Max != 0) 8082 AttrVal = AttrVal + "," + llvm::utostr(Max); 8083 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8084 } else 8085 assert(Max == 0 && "Max must be zero"); 8086 } 8087 8088 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8089 unsigned NumSGPR = Attr->getNumSGPR(); 8090 8091 if (NumSGPR != 0) 8092 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8093 } 8094 8095 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8096 uint32_t NumVGPR = Attr->getNumVGPR(); 8097 8098 if (NumVGPR != 0) 8099 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8100 } 8101 } 8102 8103 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8104 return llvm::CallingConv::AMDGPU_KERNEL; 8105 } 8106 8107 // Currently LLVM assumes null pointers always have value 0, 8108 // which results in incorrectly transformed IR. Therefore, instead of 8109 // emitting null pointers in private and local address spaces, a null 8110 // pointer in generic address space is emitted which is casted to a 8111 // pointer in local or private address space. 8112 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8113 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8114 QualType QT) const { 8115 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8116 return llvm::ConstantPointerNull::get(PT); 8117 8118 auto &Ctx = CGM.getContext(); 8119 auto NPT = llvm::PointerType::get(PT->getElementType(), 8120 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8121 return llvm::ConstantExpr::getAddrSpaceCast( 8122 llvm::ConstantPointerNull::get(NPT), PT); 8123 } 8124 8125 LangAS 8126 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8127 const VarDecl *D) const { 8128 assert(!CGM.getLangOpts().OpenCL && 8129 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8130 "Address space agnostic languages only"); 8131 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8132 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8133 if (!D) 8134 return DefaultGlobalAS; 8135 8136 LangAS AddrSpace = D->getType().getAddressSpace(); 8137 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8138 if (AddrSpace != LangAS::Default) 8139 return AddrSpace; 8140 8141 if (CGM.isTypeConstant(D->getType(), false)) { 8142 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8143 return ConstAS.getValue(); 8144 } 8145 return DefaultGlobalAS; 8146 } 8147 8148 llvm::SyncScope::ID 8149 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8150 SyncScope Scope, 8151 llvm::AtomicOrdering Ordering, 8152 llvm::LLVMContext &Ctx) const { 8153 std::string Name; 8154 switch (Scope) { 8155 case SyncScope::OpenCLWorkGroup: 8156 Name = "workgroup"; 8157 break; 8158 case SyncScope::OpenCLDevice: 8159 Name = "agent"; 8160 break; 8161 case SyncScope::OpenCLAllSVMDevices: 8162 Name = ""; 8163 break; 8164 case SyncScope::OpenCLSubGroup: 8165 Name = "wavefront"; 8166 } 8167 8168 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8169 if (!Name.empty()) 8170 Name = Twine(Twine(Name) + Twine("-")).str(); 8171 8172 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8173 } 8174 8175 return Ctx.getOrInsertSyncScopeID(Name); 8176 } 8177 8178 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8179 return false; 8180 } 8181 8182 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8183 const FunctionType *&FT) const { 8184 FT = getABIInfo().getContext().adjustFunctionType( 8185 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8186 } 8187 8188 //===----------------------------------------------------------------------===// 8189 // SPARC v8 ABI Implementation. 8190 // Based on the SPARC Compliance Definition version 2.4.1. 8191 // 8192 // Ensures that complex values are passed in registers. 8193 // 8194 namespace { 8195 class SparcV8ABIInfo : public DefaultABIInfo { 8196 public: 8197 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8198 8199 private: 8200 ABIArgInfo classifyReturnType(QualType RetTy) const; 8201 void computeInfo(CGFunctionInfo &FI) const override; 8202 }; 8203 } // end anonymous namespace 8204 8205 8206 ABIArgInfo 8207 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8208 if (Ty->isAnyComplexType()) { 8209 return ABIArgInfo::getDirect(); 8210 } 8211 else { 8212 return DefaultABIInfo::classifyReturnType(Ty); 8213 } 8214 } 8215 8216 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8217 8218 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8219 for (auto &Arg : FI.arguments()) 8220 Arg.info = classifyArgumentType(Arg.type); 8221 } 8222 8223 namespace { 8224 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8225 public: 8226 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8227 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8228 }; 8229 } // end anonymous namespace 8230 8231 //===----------------------------------------------------------------------===// 8232 // SPARC v9 ABI Implementation. 8233 // Based on the SPARC Compliance Definition version 2.4.1. 8234 // 8235 // Function arguments a mapped to a nominal "parameter array" and promoted to 8236 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8237 // the array, structs larger than 16 bytes are passed indirectly. 8238 // 8239 // One case requires special care: 8240 // 8241 // struct mixed { 8242 // int i; 8243 // float f; 8244 // }; 8245 // 8246 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8247 // parameter array, but the int is passed in an integer register, and the float 8248 // is passed in a floating point register. This is represented as two arguments 8249 // with the LLVM IR inreg attribute: 8250 // 8251 // declare void f(i32 inreg %i, float inreg %f) 8252 // 8253 // The code generator will only allocate 4 bytes from the parameter array for 8254 // the inreg arguments. All other arguments are allocated a multiple of 8 8255 // bytes. 8256 // 8257 namespace { 8258 class SparcV9ABIInfo : public ABIInfo { 8259 public: 8260 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8261 8262 private: 8263 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8264 void computeInfo(CGFunctionInfo &FI) const override; 8265 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8266 QualType Ty) const override; 8267 8268 // Coercion type builder for structs passed in registers. The coercion type 8269 // serves two purposes: 8270 // 8271 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8272 // in registers. 8273 // 2. Expose aligned floating point elements as first-level elements, so the 8274 // code generator knows to pass them in floating point registers. 8275 // 8276 // We also compute the InReg flag which indicates that the struct contains 8277 // aligned 32-bit floats. 8278 // 8279 struct CoerceBuilder { 8280 llvm::LLVMContext &Context; 8281 const llvm::DataLayout &DL; 8282 SmallVector<llvm::Type*, 8> Elems; 8283 uint64_t Size; 8284 bool InReg; 8285 8286 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8287 : Context(c), DL(dl), Size(0), InReg(false) {} 8288 8289 // Pad Elems with integers until Size is ToSize. 8290 void pad(uint64_t ToSize) { 8291 assert(ToSize >= Size && "Cannot remove elements"); 8292 if (ToSize == Size) 8293 return; 8294 8295 // Finish the current 64-bit word. 8296 uint64_t Aligned = llvm::alignTo(Size, 64); 8297 if (Aligned > Size && Aligned <= ToSize) { 8298 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8299 Size = Aligned; 8300 } 8301 8302 // Add whole 64-bit words. 8303 while (Size + 64 <= ToSize) { 8304 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8305 Size += 64; 8306 } 8307 8308 // Final in-word padding. 8309 if (Size < ToSize) { 8310 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8311 Size = ToSize; 8312 } 8313 } 8314 8315 // Add a floating point element at Offset. 8316 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8317 // Unaligned floats are treated as integers. 8318 if (Offset % Bits) 8319 return; 8320 // The InReg flag is only required if there are any floats < 64 bits. 8321 if (Bits < 64) 8322 InReg = true; 8323 pad(Offset); 8324 Elems.push_back(Ty); 8325 Size = Offset + Bits; 8326 } 8327 8328 // Add a struct type to the coercion type, starting at Offset (in bits). 8329 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8330 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8331 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8332 llvm::Type *ElemTy = StrTy->getElementType(i); 8333 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8334 switch (ElemTy->getTypeID()) { 8335 case llvm::Type::StructTyID: 8336 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8337 break; 8338 case llvm::Type::FloatTyID: 8339 addFloat(ElemOffset, ElemTy, 32); 8340 break; 8341 case llvm::Type::DoubleTyID: 8342 addFloat(ElemOffset, ElemTy, 64); 8343 break; 8344 case llvm::Type::FP128TyID: 8345 addFloat(ElemOffset, ElemTy, 128); 8346 break; 8347 case llvm::Type::PointerTyID: 8348 if (ElemOffset % 64 == 0) { 8349 pad(ElemOffset); 8350 Elems.push_back(ElemTy); 8351 Size += 64; 8352 } 8353 break; 8354 default: 8355 break; 8356 } 8357 } 8358 } 8359 8360 // Check if Ty is a usable substitute for the coercion type. 8361 bool isUsableType(llvm::StructType *Ty) const { 8362 return llvm::makeArrayRef(Elems) == Ty->elements(); 8363 } 8364 8365 // Get the coercion type as a literal struct type. 8366 llvm::Type *getType() const { 8367 if (Elems.size() == 1) 8368 return Elems.front(); 8369 else 8370 return llvm::StructType::get(Context, Elems); 8371 } 8372 }; 8373 }; 8374 } // end anonymous namespace 8375 8376 ABIArgInfo 8377 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8378 if (Ty->isVoidType()) 8379 return ABIArgInfo::getIgnore(); 8380 8381 uint64_t Size = getContext().getTypeSize(Ty); 8382 8383 // Anything too big to fit in registers is passed with an explicit indirect 8384 // pointer / sret pointer. 8385 if (Size > SizeLimit) 8386 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8387 8388 // Treat an enum type as its underlying type. 8389 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8390 Ty = EnumTy->getDecl()->getIntegerType(); 8391 8392 // Integer types smaller than a register are extended. 8393 if (Size < 64 && Ty->isIntegerType()) 8394 return ABIArgInfo::getExtend(Ty); 8395 8396 // Other non-aggregates go in registers. 8397 if (!isAggregateTypeForABI(Ty)) 8398 return ABIArgInfo::getDirect(); 8399 8400 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8401 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8402 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8403 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8404 8405 // This is a small aggregate type that should be passed in registers. 8406 // Build a coercion type from the LLVM struct type. 8407 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8408 if (!StrTy) 8409 return ABIArgInfo::getDirect(); 8410 8411 CoerceBuilder CB(getVMContext(), getDataLayout()); 8412 CB.addStruct(0, StrTy); 8413 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8414 8415 // Try to use the original type for coercion. 8416 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8417 8418 if (CB.InReg) 8419 return ABIArgInfo::getDirectInReg(CoerceTy); 8420 else 8421 return ABIArgInfo::getDirect(CoerceTy); 8422 } 8423 8424 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8425 QualType Ty) const { 8426 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8427 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8428 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8429 AI.setCoerceToType(ArgTy); 8430 8431 CharUnits SlotSize = CharUnits::fromQuantity(8); 8432 8433 CGBuilderTy &Builder = CGF.Builder; 8434 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8435 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8436 8437 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8438 8439 Address ArgAddr = Address::invalid(); 8440 CharUnits Stride; 8441 switch (AI.getKind()) { 8442 case ABIArgInfo::Expand: 8443 case ABIArgInfo::CoerceAndExpand: 8444 case ABIArgInfo::InAlloca: 8445 llvm_unreachable("Unsupported ABI kind for va_arg"); 8446 8447 case ABIArgInfo::Extend: { 8448 Stride = SlotSize; 8449 CharUnits Offset = SlotSize - TypeInfo.first; 8450 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8451 break; 8452 } 8453 8454 case ABIArgInfo::Direct: { 8455 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8456 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8457 ArgAddr = Addr; 8458 break; 8459 } 8460 8461 case ABIArgInfo::Indirect: 8462 Stride = SlotSize; 8463 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8464 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8465 TypeInfo.second); 8466 break; 8467 8468 case ABIArgInfo::Ignore: 8469 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8470 } 8471 8472 // Update VAList. 8473 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8474 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8475 8476 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8477 } 8478 8479 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8480 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8481 for (auto &I : FI.arguments()) 8482 I.info = classifyType(I.type, 16 * 8); 8483 } 8484 8485 namespace { 8486 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8487 public: 8488 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8489 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8490 8491 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8492 return 14; 8493 } 8494 8495 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8496 llvm::Value *Address) const override; 8497 }; 8498 } // end anonymous namespace 8499 8500 bool 8501 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8502 llvm::Value *Address) const { 8503 // This is calculated from the LLVM and GCC tables and verified 8504 // against gcc output. AFAIK all ABIs use the same encoding. 8505 8506 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8507 8508 llvm::IntegerType *i8 = CGF.Int8Ty; 8509 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8510 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8511 8512 // 0-31: the 8-byte general-purpose registers 8513 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8514 8515 // 32-63: f0-31, the 4-byte floating-point registers 8516 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8517 8518 // Y = 64 8519 // PSR = 65 8520 // WIM = 66 8521 // TBR = 67 8522 // PC = 68 8523 // NPC = 69 8524 // FSR = 70 8525 // CSR = 71 8526 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8527 8528 // 72-87: d0-15, the 8-byte floating-point registers 8529 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8530 8531 return false; 8532 } 8533 8534 // ARC ABI implementation. 8535 namespace { 8536 8537 class ARCABIInfo : public DefaultABIInfo { 8538 public: 8539 using DefaultABIInfo::DefaultABIInfo; 8540 8541 private: 8542 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8543 QualType Ty) const override; 8544 8545 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8546 if (!State.FreeRegs) 8547 return; 8548 if (Info.isIndirect() && Info.getInReg()) 8549 State.FreeRegs--; 8550 else if (Info.isDirect() && Info.getInReg()) { 8551 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8552 if (sz < State.FreeRegs) 8553 State.FreeRegs -= sz; 8554 else 8555 State.FreeRegs = 0; 8556 } 8557 } 8558 8559 void computeInfo(CGFunctionInfo &FI) const override { 8560 CCState State(FI.getCallingConvention()); 8561 // ARC uses 8 registers to pass arguments. 8562 State.FreeRegs = 8; 8563 8564 if (!getCXXABI().classifyReturnType(FI)) 8565 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8566 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8567 for (auto &I : FI.arguments()) { 8568 I.info = classifyArgumentType(I.type, State.FreeRegs); 8569 updateState(I.info, I.type, State); 8570 } 8571 } 8572 8573 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8574 ABIArgInfo getIndirectByValue(QualType Ty) const; 8575 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8576 ABIArgInfo classifyReturnType(QualType RetTy) const; 8577 }; 8578 8579 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8580 public: 8581 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8582 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8583 }; 8584 8585 8586 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8587 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8588 getNaturalAlignIndirect(Ty, false); 8589 } 8590 8591 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8592 // Compute the byval alignment. 8593 const unsigned MinABIStackAlignInBytes = 4; 8594 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8595 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8596 TypeAlign > MinABIStackAlignInBytes); 8597 } 8598 8599 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8600 QualType Ty) const { 8601 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8602 getContext().getTypeInfoInChars(Ty), 8603 CharUnits::fromQuantity(4), true); 8604 } 8605 8606 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8607 uint8_t FreeRegs) const { 8608 // Handle the generic C++ ABI. 8609 const RecordType *RT = Ty->getAs<RecordType>(); 8610 if (RT) { 8611 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8612 if (RAA == CGCXXABI::RAA_Indirect) 8613 return getIndirectByRef(Ty, FreeRegs > 0); 8614 8615 if (RAA == CGCXXABI::RAA_DirectInMemory) 8616 return getIndirectByValue(Ty); 8617 } 8618 8619 // Treat an enum type as its underlying type. 8620 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8621 Ty = EnumTy->getDecl()->getIntegerType(); 8622 8623 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8624 8625 if (isAggregateTypeForABI(Ty)) { 8626 // Structures with flexible arrays are always indirect. 8627 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8628 return getIndirectByValue(Ty); 8629 8630 // Ignore empty structs/unions. 8631 if (isEmptyRecord(getContext(), Ty, true)) 8632 return ABIArgInfo::getIgnore(); 8633 8634 llvm::LLVMContext &LLVMContext = getVMContext(); 8635 8636 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8637 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8638 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8639 8640 return FreeRegs >= SizeInRegs ? 8641 ABIArgInfo::getDirectInReg(Result) : 8642 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8643 } 8644 8645 return Ty->isPromotableIntegerType() ? 8646 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8647 ABIArgInfo::getExtend(Ty)) : 8648 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8649 ABIArgInfo::getDirect()); 8650 } 8651 8652 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8653 if (RetTy->isAnyComplexType()) 8654 return ABIArgInfo::getDirectInReg(); 8655 8656 // Arguments of size > 4 registers are indirect. 8657 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8658 if (RetSize > 4) 8659 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8660 8661 return DefaultABIInfo::classifyReturnType(RetTy); 8662 } 8663 8664 } // End anonymous namespace. 8665 8666 //===----------------------------------------------------------------------===// 8667 // XCore ABI Implementation 8668 //===----------------------------------------------------------------------===// 8669 8670 namespace { 8671 8672 /// A SmallStringEnc instance is used to build up the TypeString by passing 8673 /// it by reference between functions that append to it. 8674 typedef llvm::SmallString<128> SmallStringEnc; 8675 8676 /// TypeStringCache caches the meta encodings of Types. 8677 /// 8678 /// The reason for caching TypeStrings is two fold: 8679 /// 1. To cache a type's encoding for later uses; 8680 /// 2. As a means to break recursive member type inclusion. 8681 /// 8682 /// A cache Entry can have a Status of: 8683 /// NonRecursive: The type encoding is not recursive; 8684 /// Recursive: The type encoding is recursive; 8685 /// Incomplete: An incomplete TypeString; 8686 /// IncompleteUsed: An incomplete TypeString that has been used in a 8687 /// Recursive type encoding. 8688 /// 8689 /// A NonRecursive entry will have all of its sub-members expanded as fully 8690 /// as possible. Whilst it may contain types which are recursive, the type 8691 /// itself is not recursive and thus its encoding may be safely used whenever 8692 /// the type is encountered. 8693 /// 8694 /// A Recursive entry will have all of its sub-members expanded as fully as 8695 /// possible. The type itself is recursive and it may contain other types which 8696 /// are recursive. The Recursive encoding must not be used during the expansion 8697 /// of a recursive type's recursive branch. For simplicity the code uses 8698 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8699 /// 8700 /// An Incomplete entry is always a RecordType and only encodes its 8701 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8702 /// are placed into the cache during type expansion as a means to identify and 8703 /// handle recursive inclusion of types as sub-members. If there is recursion 8704 /// the entry becomes IncompleteUsed. 8705 /// 8706 /// During the expansion of a RecordType's members: 8707 /// 8708 /// If the cache contains a NonRecursive encoding for the member type, the 8709 /// cached encoding is used; 8710 /// 8711 /// If the cache contains a Recursive encoding for the member type, the 8712 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8713 /// 8714 /// If the member is a RecordType, an Incomplete encoding is placed into the 8715 /// cache to break potential recursive inclusion of itself as a sub-member; 8716 /// 8717 /// Once a member RecordType has been expanded, its temporary incomplete 8718 /// entry is removed from the cache. If a Recursive encoding was swapped out 8719 /// it is swapped back in; 8720 /// 8721 /// If an incomplete entry is used to expand a sub-member, the incomplete 8722 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8723 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8724 /// 8725 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8726 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8727 /// Else the member is part of a recursive type and thus the recursion has 8728 /// been exited too soon for the encoding to be correct for the member. 8729 /// 8730 class TypeStringCache { 8731 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8732 struct Entry { 8733 std::string Str; // The encoded TypeString for the type. 8734 enum Status State; // Information about the encoding in 'Str'. 8735 std::string Swapped; // A temporary place holder for a Recursive encoding 8736 // during the expansion of RecordType's members. 8737 }; 8738 std::map<const IdentifierInfo *, struct Entry> Map; 8739 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8740 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8741 public: 8742 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8743 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8744 bool removeIncomplete(const IdentifierInfo *ID); 8745 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8746 bool IsRecursive); 8747 StringRef lookupStr(const IdentifierInfo *ID); 8748 }; 8749 8750 /// TypeString encodings for enum & union fields must be order. 8751 /// FieldEncoding is a helper for this ordering process. 8752 class FieldEncoding { 8753 bool HasName; 8754 std::string Enc; 8755 public: 8756 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8757 StringRef str() { return Enc; } 8758 bool operator<(const FieldEncoding &rhs) const { 8759 if (HasName != rhs.HasName) return HasName; 8760 return Enc < rhs.Enc; 8761 } 8762 }; 8763 8764 class XCoreABIInfo : public DefaultABIInfo { 8765 public: 8766 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8767 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8768 QualType Ty) const override; 8769 }; 8770 8771 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8772 mutable TypeStringCache TSC; 8773 public: 8774 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8775 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8776 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8777 CodeGen::CodeGenModule &M) const override; 8778 }; 8779 8780 } // End anonymous namespace. 8781 8782 // TODO: this implementation is likely now redundant with the default 8783 // EmitVAArg. 8784 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8785 QualType Ty) const { 8786 CGBuilderTy &Builder = CGF.Builder; 8787 8788 // Get the VAList. 8789 CharUnits SlotSize = CharUnits::fromQuantity(4); 8790 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8791 8792 // Handle the argument. 8793 ABIArgInfo AI = classifyArgumentType(Ty); 8794 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8795 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8796 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8797 AI.setCoerceToType(ArgTy); 8798 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8799 8800 Address Val = Address::invalid(); 8801 CharUnits ArgSize = CharUnits::Zero(); 8802 switch (AI.getKind()) { 8803 case ABIArgInfo::Expand: 8804 case ABIArgInfo::CoerceAndExpand: 8805 case ABIArgInfo::InAlloca: 8806 llvm_unreachable("Unsupported ABI kind for va_arg"); 8807 case ABIArgInfo::Ignore: 8808 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8809 ArgSize = CharUnits::Zero(); 8810 break; 8811 case ABIArgInfo::Extend: 8812 case ABIArgInfo::Direct: 8813 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8814 ArgSize = CharUnits::fromQuantity( 8815 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8816 ArgSize = ArgSize.alignTo(SlotSize); 8817 break; 8818 case ABIArgInfo::Indirect: 8819 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8820 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8821 ArgSize = SlotSize; 8822 break; 8823 } 8824 8825 // Increment the VAList. 8826 if (!ArgSize.isZero()) { 8827 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8828 Builder.CreateStore(APN.getPointer(), VAListAddr); 8829 } 8830 8831 return Val; 8832 } 8833 8834 /// During the expansion of a RecordType, an incomplete TypeString is placed 8835 /// into the cache as a means to identify and break recursion. 8836 /// If there is a Recursive encoding in the cache, it is swapped out and will 8837 /// be reinserted by removeIncomplete(). 8838 /// All other types of encoding should have been used rather than arriving here. 8839 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8840 std::string StubEnc) { 8841 if (!ID) 8842 return; 8843 Entry &E = Map[ID]; 8844 assert( (E.Str.empty() || E.State == Recursive) && 8845 "Incorrectly use of addIncomplete"); 8846 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8847 E.Swapped.swap(E.Str); // swap out the Recursive 8848 E.Str.swap(StubEnc); 8849 E.State = Incomplete; 8850 ++IncompleteCount; 8851 } 8852 8853 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8854 /// must be removed from the cache. 8855 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8856 /// Returns true if the RecordType was defined recursively. 8857 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8858 if (!ID) 8859 return false; 8860 auto I = Map.find(ID); 8861 assert(I != Map.end() && "Entry not present"); 8862 Entry &E = I->second; 8863 assert( (E.State == Incomplete || 8864 E.State == IncompleteUsed) && 8865 "Entry must be an incomplete type"); 8866 bool IsRecursive = false; 8867 if (E.State == IncompleteUsed) { 8868 // We made use of our Incomplete encoding, thus we are recursive. 8869 IsRecursive = true; 8870 --IncompleteUsedCount; 8871 } 8872 if (E.Swapped.empty()) 8873 Map.erase(I); 8874 else { 8875 // Swap the Recursive back. 8876 E.Swapped.swap(E.Str); 8877 E.Swapped.clear(); 8878 E.State = Recursive; 8879 } 8880 --IncompleteCount; 8881 return IsRecursive; 8882 } 8883 8884 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8885 /// Recursive (viz: all sub-members were expanded as fully as possible). 8886 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8887 bool IsRecursive) { 8888 if (!ID || IncompleteUsedCount) 8889 return; // No key or it is is an incomplete sub-type so don't add. 8890 Entry &E = Map[ID]; 8891 if (IsRecursive && !E.Str.empty()) { 8892 assert(E.State==Recursive && E.Str.size() == Str.size() && 8893 "This is not the same Recursive entry"); 8894 // The parent container was not recursive after all, so we could have used 8895 // this Recursive sub-member entry after all, but we assumed the worse when 8896 // we started viz: IncompleteCount!=0. 8897 return; 8898 } 8899 assert(E.Str.empty() && "Entry already present"); 8900 E.Str = Str.str(); 8901 E.State = IsRecursive? Recursive : NonRecursive; 8902 } 8903 8904 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8905 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8906 /// encoding is Recursive, return an empty StringRef. 8907 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8908 if (!ID) 8909 return StringRef(); // We have no key. 8910 auto I = Map.find(ID); 8911 if (I == Map.end()) 8912 return StringRef(); // We have no encoding. 8913 Entry &E = I->second; 8914 if (E.State == Recursive && IncompleteCount) 8915 return StringRef(); // We don't use Recursive encodings for member types. 8916 8917 if (E.State == Incomplete) { 8918 // The incomplete type is being used to break out of recursion. 8919 E.State = IncompleteUsed; 8920 ++IncompleteUsedCount; 8921 } 8922 return E.Str; 8923 } 8924 8925 /// The XCore ABI includes a type information section that communicates symbol 8926 /// type information to the linker. The linker uses this information to verify 8927 /// safety/correctness of things such as array bound and pointers et al. 8928 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8929 /// This type information (TypeString) is emitted into meta data for all global 8930 /// symbols: definitions, declarations, functions & variables. 8931 /// 8932 /// The TypeString carries type, qualifier, name, size & value details. 8933 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8934 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8935 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8936 /// 8937 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8938 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8939 8940 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8941 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8942 CodeGen::CodeGenModule &CGM) const { 8943 SmallStringEnc Enc; 8944 if (getTypeString(Enc, D, CGM, TSC)) { 8945 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8946 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8947 llvm::MDString::get(Ctx, Enc.str())}; 8948 llvm::NamedMDNode *MD = 8949 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8950 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8951 } 8952 } 8953 8954 //===----------------------------------------------------------------------===// 8955 // SPIR ABI Implementation 8956 //===----------------------------------------------------------------------===// 8957 8958 namespace { 8959 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8960 public: 8961 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8962 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8963 unsigned getOpenCLKernelCallingConv() const override; 8964 }; 8965 8966 } // End anonymous namespace. 8967 8968 namespace clang { 8969 namespace CodeGen { 8970 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8971 DefaultABIInfo SPIRABI(CGM.getTypes()); 8972 SPIRABI.computeInfo(FI); 8973 } 8974 } 8975 } 8976 8977 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8978 return llvm::CallingConv::SPIR_KERNEL; 8979 } 8980 8981 static bool appendType(SmallStringEnc &Enc, QualType QType, 8982 const CodeGen::CodeGenModule &CGM, 8983 TypeStringCache &TSC); 8984 8985 /// Helper function for appendRecordType(). 8986 /// Builds a SmallVector containing the encoded field types in declaration 8987 /// order. 8988 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8989 const RecordDecl *RD, 8990 const CodeGen::CodeGenModule &CGM, 8991 TypeStringCache &TSC) { 8992 for (const auto *Field : RD->fields()) { 8993 SmallStringEnc Enc; 8994 Enc += "m("; 8995 Enc += Field->getName(); 8996 Enc += "){"; 8997 if (Field->isBitField()) { 8998 Enc += "b("; 8999 llvm::raw_svector_ostream OS(Enc); 9000 OS << Field->getBitWidthValue(CGM.getContext()); 9001 Enc += ':'; 9002 } 9003 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9004 return false; 9005 if (Field->isBitField()) 9006 Enc += ')'; 9007 Enc += '}'; 9008 FE.emplace_back(!Field->getName().empty(), Enc); 9009 } 9010 return true; 9011 } 9012 9013 /// Appends structure and union types to Enc and adds encoding to cache. 9014 /// Recursively calls appendType (via extractFieldType) for each field. 9015 /// Union types have their fields ordered according to the ABI. 9016 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9017 const CodeGen::CodeGenModule &CGM, 9018 TypeStringCache &TSC, const IdentifierInfo *ID) { 9019 // Append the cached TypeString if we have one. 9020 StringRef TypeString = TSC.lookupStr(ID); 9021 if (!TypeString.empty()) { 9022 Enc += TypeString; 9023 return true; 9024 } 9025 9026 // Start to emit an incomplete TypeString. 9027 size_t Start = Enc.size(); 9028 Enc += (RT->isUnionType()? 'u' : 's'); 9029 Enc += '('; 9030 if (ID) 9031 Enc += ID->getName(); 9032 Enc += "){"; 9033 9034 // We collect all encoded fields and order as necessary. 9035 bool IsRecursive = false; 9036 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9037 if (RD && !RD->field_empty()) { 9038 // An incomplete TypeString stub is placed in the cache for this RecordType 9039 // so that recursive calls to this RecordType will use it whilst building a 9040 // complete TypeString for this RecordType. 9041 SmallVector<FieldEncoding, 16> FE; 9042 std::string StubEnc(Enc.substr(Start).str()); 9043 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9044 TSC.addIncomplete(ID, std::move(StubEnc)); 9045 if (!extractFieldType(FE, RD, CGM, TSC)) { 9046 (void) TSC.removeIncomplete(ID); 9047 return false; 9048 } 9049 IsRecursive = TSC.removeIncomplete(ID); 9050 // The ABI requires unions to be sorted but not structures. 9051 // See FieldEncoding::operator< for sort algorithm. 9052 if (RT->isUnionType()) 9053 llvm::sort(FE); 9054 // We can now complete the TypeString. 9055 unsigned E = FE.size(); 9056 for (unsigned I = 0; I != E; ++I) { 9057 if (I) 9058 Enc += ','; 9059 Enc += FE[I].str(); 9060 } 9061 } 9062 Enc += '}'; 9063 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9064 return true; 9065 } 9066 9067 /// Appends enum types to Enc and adds the encoding to the cache. 9068 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9069 TypeStringCache &TSC, 9070 const IdentifierInfo *ID) { 9071 // Append the cached TypeString if we have one. 9072 StringRef TypeString = TSC.lookupStr(ID); 9073 if (!TypeString.empty()) { 9074 Enc += TypeString; 9075 return true; 9076 } 9077 9078 size_t Start = Enc.size(); 9079 Enc += "e("; 9080 if (ID) 9081 Enc += ID->getName(); 9082 Enc += "){"; 9083 9084 // We collect all encoded enumerations and order them alphanumerically. 9085 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9086 SmallVector<FieldEncoding, 16> FE; 9087 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9088 ++I) { 9089 SmallStringEnc EnumEnc; 9090 EnumEnc += "m("; 9091 EnumEnc += I->getName(); 9092 EnumEnc += "){"; 9093 I->getInitVal().toString(EnumEnc); 9094 EnumEnc += '}'; 9095 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9096 } 9097 llvm::sort(FE); 9098 unsigned E = FE.size(); 9099 for (unsigned I = 0; I != E; ++I) { 9100 if (I) 9101 Enc += ','; 9102 Enc += FE[I].str(); 9103 } 9104 } 9105 Enc += '}'; 9106 TSC.addIfComplete(ID, Enc.substr(Start), false); 9107 return true; 9108 } 9109 9110 /// Appends type's qualifier to Enc. 9111 /// This is done prior to appending the type's encoding. 9112 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9113 // Qualifiers are emitted in alphabetical order. 9114 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9115 int Lookup = 0; 9116 if (QT.isConstQualified()) 9117 Lookup += 1<<0; 9118 if (QT.isRestrictQualified()) 9119 Lookup += 1<<1; 9120 if (QT.isVolatileQualified()) 9121 Lookup += 1<<2; 9122 Enc += Table[Lookup]; 9123 } 9124 9125 /// Appends built-in types to Enc. 9126 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9127 const char *EncType; 9128 switch (BT->getKind()) { 9129 case BuiltinType::Void: 9130 EncType = "0"; 9131 break; 9132 case BuiltinType::Bool: 9133 EncType = "b"; 9134 break; 9135 case BuiltinType::Char_U: 9136 EncType = "uc"; 9137 break; 9138 case BuiltinType::UChar: 9139 EncType = "uc"; 9140 break; 9141 case BuiltinType::SChar: 9142 EncType = "sc"; 9143 break; 9144 case BuiltinType::UShort: 9145 EncType = "us"; 9146 break; 9147 case BuiltinType::Short: 9148 EncType = "ss"; 9149 break; 9150 case BuiltinType::UInt: 9151 EncType = "ui"; 9152 break; 9153 case BuiltinType::Int: 9154 EncType = "si"; 9155 break; 9156 case BuiltinType::ULong: 9157 EncType = "ul"; 9158 break; 9159 case BuiltinType::Long: 9160 EncType = "sl"; 9161 break; 9162 case BuiltinType::ULongLong: 9163 EncType = "ull"; 9164 break; 9165 case BuiltinType::LongLong: 9166 EncType = "sll"; 9167 break; 9168 case BuiltinType::Float: 9169 EncType = "ft"; 9170 break; 9171 case BuiltinType::Double: 9172 EncType = "d"; 9173 break; 9174 case BuiltinType::LongDouble: 9175 EncType = "ld"; 9176 break; 9177 default: 9178 return false; 9179 } 9180 Enc += EncType; 9181 return true; 9182 } 9183 9184 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9185 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9186 const CodeGen::CodeGenModule &CGM, 9187 TypeStringCache &TSC) { 9188 Enc += "p("; 9189 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9190 return false; 9191 Enc += ')'; 9192 return true; 9193 } 9194 9195 /// Appends array encoding to Enc before calling appendType for the element. 9196 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9197 const ArrayType *AT, 9198 const CodeGen::CodeGenModule &CGM, 9199 TypeStringCache &TSC, StringRef NoSizeEnc) { 9200 if (AT->getSizeModifier() != ArrayType::Normal) 9201 return false; 9202 Enc += "a("; 9203 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9204 CAT->getSize().toStringUnsigned(Enc); 9205 else 9206 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9207 Enc += ':'; 9208 // The Qualifiers should be attached to the type rather than the array. 9209 appendQualifier(Enc, QT); 9210 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9211 return false; 9212 Enc += ')'; 9213 return true; 9214 } 9215 9216 /// Appends a function encoding to Enc, calling appendType for the return type 9217 /// and the arguments. 9218 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9219 const CodeGen::CodeGenModule &CGM, 9220 TypeStringCache &TSC) { 9221 Enc += "f{"; 9222 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9223 return false; 9224 Enc += "}("; 9225 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9226 // N.B. we are only interested in the adjusted param types. 9227 auto I = FPT->param_type_begin(); 9228 auto E = FPT->param_type_end(); 9229 if (I != E) { 9230 do { 9231 if (!appendType(Enc, *I, CGM, TSC)) 9232 return false; 9233 ++I; 9234 if (I != E) 9235 Enc += ','; 9236 } while (I != E); 9237 if (FPT->isVariadic()) 9238 Enc += ",va"; 9239 } else { 9240 if (FPT->isVariadic()) 9241 Enc += "va"; 9242 else 9243 Enc += '0'; 9244 } 9245 } 9246 Enc += ')'; 9247 return true; 9248 } 9249 9250 /// Handles the type's qualifier before dispatching a call to handle specific 9251 /// type encodings. 9252 static bool appendType(SmallStringEnc &Enc, QualType QType, 9253 const CodeGen::CodeGenModule &CGM, 9254 TypeStringCache &TSC) { 9255 9256 QualType QT = QType.getCanonicalType(); 9257 9258 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9259 // The Qualifiers should be attached to the type rather than the array. 9260 // Thus we don't call appendQualifier() here. 9261 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9262 9263 appendQualifier(Enc, QT); 9264 9265 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9266 return appendBuiltinType(Enc, BT); 9267 9268 if (const PointerType *PT = QT->getAs<PointerType>()) 9269 return appendPointerType(Enc, PT, CGM, TSC); 9270 9271 if (const EnumType *ET = QT->getAs<EnumType>()) 9272 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9273 9274 if (const RecordType *RT = QT->getAsStructureType()) 9275 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9276 9277 if (const RecordType *RT = QT->getAsUnionType()) 9278 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9279 9280 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9281 return appendFunctionType(Enc, FT, CGM, TSC); 9282 9283 return false; 9284 } 9285 9286 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9287 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9288 if (!D) 9289 return false; 9290 9291 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9292 if (FD->getLanguageLinkage() != CLanguageLinkage) 9293 return false; 9294 return appendType(Enc, FD->getType(), CGM, TSC); 9295 } 9296 9297 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9298 if (VD->getLanguageLinkage() != CLanguageLinkage) 9299 return false; 9300 QualType QT = VD->getType().getCanonicalType(); 9301 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9302 // Global ArrayTypes are given a size of '*' if the size is unknown. 9303 // The Qualifiers should be attached to the type rather than the array. 9304 // Thus we don't call appendQualifier() here. 9305 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9306 } 9307 return appendType(Enc, QT, CGM, TSC); 9308 } 9309 return false; 9310 } 9311 9312 //===----------------------------------------------------------------------===// 9313 // RISCV ABI Implementation 9314 //===----------------------------------------------------------------------===// 9315 9316 namespace { 9317 class RISCVABIInfo : public DefaultABIInfo { 9318 private: 9319 // Size of the integer ('x') registers in bits. 9320 unsigned XLen; 9321 // Size of the floating point ('f') registers in bits. Note that the target 9322 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9323 // with soft float ABI has FLen==0). 9324 unsigned FLen; 9325 static const int NumArgGPRs = 8; 9326 static const int NumArgFPRs = 8; 9327 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9328 llvm::Type *&Field1Ty, 9329 CharUnits &Field1Off, 9330 llvm::Type *&Field2Ty, 9331 CharUnits &Field2Off) const; 9332 9333 public: 9334 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9335 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9336 9337 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9338 // non-virtual, but computeInfo is virtual, so we overload it. 9339 void computeInfo(CGFunctionInfo &FI) const override; 9340 9341 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9342 int &ArgFPRsLeft) const; 9343 ABIArgInfo classifyReturnType(QualType RetTy) const; 9344 9345 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9346 QualType Ty) const override; 9347 9348 ABIArgInfo extendType(QualType Ty) const; 9349 9350 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9351 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9352 CharUnits &Field2Off, int &NeededArgGPRs, 9353 int &NeededArgFPRs) const; 9354 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9355 CharUnits Field1Off, 9356 llvm::Type *Field2Ty, 9357 CharUnits Field2Off) const; 9358 }; 9359 } // end anonymous namespace 9360 9361 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9362 QualType RetTy = FI.getReturnType(); 9363 if (!getCXXABI().classifyReturnType(FI)) 9364 FI.getReturnInfo() = classifyReturnType(RetTy); 9365 9366 // IsRetIndirect is true if classifyArgumentType indicated the value should 9367 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9368 // is passed direct in LLVM IR, relying on the backend lowering code to 9369 // rewrite the argument list and pass indirectly on RV32. 9370 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9371 getContext().getTypeSize(RetTy) > (2 * XLen); 9372 9373 // We must track the number of GPRs used in order to conform to the RISC-V 9374 // ABI, as integer scalars passed in registers should have signext/zeroext 9375 // when promoted, but are anyext if passed on the stack. As GPR usage is 9376 // different for variadic arguments, we must also track whether we are 9377 // examining a vararg or not. 9378 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9379 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9380 int NumFixedArgs = FI.getNumRequiredArgs(); 9381 9382 int ArgNum = 0; 9383 for (auto &ArgInfo : FI.arguments()) { 9384 bool IsFixed = ArgNum < NumFixedArgs; 9385 ArgInfo.info = 9386 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9387 ArgNum++; 9388 } 9389 } 9390 9391 // Returns true if the struct is a potential candidate for the floating point 9392 // calling convention. If this function returns true, the caller is 9393 // responsible for checking that if there is only a single field then that 9394 // field is a float. 9395 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9396 llvm::Type *&Field1Ty, 9397 CharUnits &Field1Off, 9398 llvm::Type *&Field2Ty, 9399 CharUnits &Field2Off) const { 9400 bool IsInt = Ty->isIntegralOrEnumerationType(); 9401 bool IsFloat = Ty->isRealFloatingType(); 9402 9403 if (IsInt || IsFloat) { 9404 uint64_t Size = getContext().getTypeSize(Ty); 9405 if (IsInt && Size > XLen) 9406 return false; 9407 // Can't be eligible if larger than the FP registers. Half precision isn't 9408 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9409 // default to the integer ABI in that case. 9410 if (IsFloat && (Size > FLen || Size < 32)) 9411 return false; 9412 // Can't be eligible if an integer type was already found (int+int pairs 9413 // are not eligible). 9414 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9415 return false; 9416 if (!Field1Ty) { 9417 Field1Ty = CGT.ConvertType(Ty); 9418 Field1Off = CurOff; 9419 return true; 9420 } 9421 if (!Field2Ty) { 9422 Field2Ty = CGT.ConvertType(Ty); 9423 Field2Off = CurOff; 9424 return true; 9425 } 9426 return false; 9427 } 9428 9429 if (auto CTy = Ty->getAs<ComplexType>()) { 9430 if (Field1Ty) 9431 return false; 9432 QualType EltTy = CTy->getElementType(); 9433 if (getContext().getTypeSize(EltTy) > FLen) 9434 return false; 9435 Field1Ty = CGT.ConvertType(EltTy); 9436 Field1Off = CurOff; 9437 assert(CurOff.isZero() && "Unexpected offset for first field"); 9438 Field2Ty = Field1Ty; 9439 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9440 return true; 9441 } 9442 9443 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9444 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9445 QualType EltTy = ATy->getElementType(); 9446 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9447 for (uint64_t i = 0; i < ArraySize; ++i) { 9448 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9449 Field1Off, Field2Ty, Field2Off); 9450 if (!Ret) 9451 return false; 9452 CurOff += EltSize; 9453 } 9454 return true; 9455 } 9456 9457 if (const auto *RTy = Ty->getAs<RecordType>()) { 9458 // Structures with either a non-trivial destructor or a non-trivial 9459 // copy constructor are not eligible for the FP calling convention. 9460 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9461 return false; 9462 if (isEmptyRecord(getContext(), Ty, true)) 9463 return true; 9464 const RecordDecl *RD = RTy->getDecl(); 9465 // Unions aren't eligible unless they're empty (which is caught above). 9466 if (RD->isUnion()) 9467 return false; 9468 int ZeroWidthBitFieldCount = 0; 9469 for (const FieldDecl *FD : RD->fields()) { 9470 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9471 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9472 QualType QTy = FD->getType(); 9473 if (FD->isBitField()) { 9474 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9475 // Allow a bitfield with a type greater than XLen as long as the 9476 // bitwidth is XLen or less. 9477 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9478 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9479 if (BitWidth == 0) { 9480 ZeroWidthBitFieldCount++; 9481 continue; 9482 } 9483 } 9484 9485 bool Ret = detectFPCCEligibleStructHelper( 9486 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9487 Field1Ty, Field1Off, Field2Ty, Field2Off); 9488 if (!Ret) 9489 return false; 9490 9491 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9492 // or int+fp structs, but are ignored for a struct with an fp field and 9493 // any number of zero-width bitfields. 9494 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9495 return false; 9496 } 9497 return Field1Ty != nullptr; 9498 } 9499 9500 return false; 9501 } 9502 9503 // Determine if a struct is eligible for passing according to the floating 9504 // point calling convention (i.e., when flattened it contains a single fp 9505 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9506 // NeededArgGPRs are incremented appropriately. 9507 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9508 CharUnits &Field1Off, 9509 llvm::Type *&Field2Ty, 9510 CharUnits &Field2Off, 9511 int &NeededArgGPRs, 9512 int &NeededArgFPRs) const { 9513 Field1Ty = nullptr; 9514 Field2Ty = nullptr; 9515 NeededArgGPRs = 0; 9516 NeededArgFPRs = 0; 9517 bool IsCandidate = detectFPCCEligibleStructHelper( 9518 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9519 // Not really a candidate if we have a single int but no float. 9520 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9521 return false; 9522 if (!IsCandidate) 9523 return false; 9524 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9525 NeededArgFPRs++; 9526 else if (Field1Ty) 9527 NeededArgGPRs++; 9528 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9529 NeededArgFPRs++; 9530 else if (Field2Ty) 9531 NeededArgGPRs++; 9532 return IsCandidate; 9533 } 9534 9535 // Call getCoerceAndExpand for the two-element flattened struct described by 9536 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9537 // appropriate coerceToType and unpaddedCoerceToType. 9538 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9539 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9540 CharUnits Field2Off) const { 9541 SmallVector<llvm::Type *, 3> CoerceElts; 9542 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9543 if (!Field1Off.isZero()) 9544 CoerceElts.push_back(llvm::ArrayType::get( 9545 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9546 9547 CoerceElts.push_back(Field1Ty); 9548 UnpaddedCoerceElts.push_back(Field1Ty); 9549 9550 if (!Field2Ty) { 9551 return ABIArgInfo::getCoerceAndExpand( 9552 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9553 UnpaddedCoerceElts[0]); 9554 } 9555 9556 CharUnits Field2Align = 9557 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9558 CharUnits Field1Size = 9559 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9560 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9561 9562 CharUnits Padding = CharUnits::Zero(); 9563 if (Field2Off > Field2OffNoPadNoPack) 9564 Padding = Field2Off - Field2OffNoPadNoPack; 9565 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9566 Padding = Field2Off - Field1Size; 9567 9568 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9569 9570 if (!Padding.isZero()) 9571 CoerceElts.push_back(llvm::ArrayType::get( 9572 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9573 9574 CoerceElts.push_back(Field2Ty); 9575 UnpaddedCoerceElts.push_back(Field2Ty); 9576 9577 auto CoerceToType = 9578 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 9579 auto UnpaddedCoerceToType = 9580 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 9581 9582 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 9583 } 9584 9585 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9586 int &ArgGPRsLeft, 9587 int &ArgFPRsLeft) const { 9588 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9589 Ty = useFirstFieldIfTransparentUnion(Ty); 9590 9591 // Structures with either a non-trivial destructor or a non-trivial 9592 // copy constructor are always passed indirectly. 9593 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9594 if (ArgGPRsLeft) 9595 ArgGPRsLeft -= 1; 9596 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9597 CGCXXABI::RAA_DirectInMemory); 9598 } 9599 9600 // Ignore empty structs/unions. 9601 if (isEmptyRecord(getContext(), Ty, true)) 9602 return ABIArgInfo::getIgnore(); 9603 9604 uint64_t Size = getContext().getTypeSize(Ty); 9605 9606 // Pass floating point values via FPRs if possible. 9607 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 9608 ArgFPRsLeft--; 9609 return ABIArgInfo::getDirect(); 9610 } 9611 9612 // Complex types for the hard float ABI must be passed direct rather than 9613 // using CoerceAndExpand. 9614 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 9615 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 9616 if (getContext().getTypeSize(EltTy) <= FLen) { 9617 ArgFPRsLeft -= 2; 9618 return ABIArgInfo::getDirect(); 9619 } 9620 } 9621 9622 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 9623 llvm::Type *Field1Ty = nullptr; 9624 llvm::Type *Field2Ty = nullptr; 9625 CharUnits Field1Off = CharUnits::Zero(); 9626 CharUnits Field2Off = CharUnits::Zero(); 9627 int NeededArgGPRs; 9628 int NeededArgFPRs; 9629 bool IsCandidate = 9630 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 9631 NeededArgGPRs, NeededArgFPRs); 9632 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 9633 NeededArgFPRs <= ArgFPRsLeft) { 9634 ArgGPRsLeft -= NeededArgGPRs; 9635 ArgFPRsLeft -= NeededArgFPRs; 9636 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 9637 Field2Off); 9638 } 9639 } 9640 9641 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9642 bool MustUseStack = false; 9643 // Determine the number of GPRs needed to pass the current argument 9644 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9645 // register pairs, so may consume 3 registers. 9646 int NeededArgGPRs = 1; 9647 if (!IsFixed && NeededAlign == 2 * XLen) 9648 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9649 else if (Size > XLen && Size <= 2 * XLen) 9650 NeededArgGPRs = 2; 9651 9652 if (NeededArgGPRs > ArgGPRsLeft) { 9653 MustUseStack = true; 9654 NeededArgGPRs = ArgGPRsLeft; 9655 } 9656 9657 ArgGPRsLeft -= NeededArgGPRs; 9658 9659 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9660 // Treat an enum type as its underlying type. 9661 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9662 Ty = EnumTy->getDecl()->getIntegerType(); 9663 9664 // All integral types are promoted to XLen width, unless passed on the 9665 // stack. 9666 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9667 return extendType(Ty); 9668 } 9669 9670 return ABIArgInfo::getDirect(); 9671 } 9672 9673 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9674 // so coerce to integers. 9675 if (Size <= 2 * XLen) { 9676 unsigned Alignment = getContext().getTypeAlign(Ty); 9677 9678 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9679 // required, and a 2-element XLen array if only XLen alignment is required. 9680 if (Size <= XLen) { 9681 return ABIArgInfo::getDirect( 9682 llvm::IntegerType::get(getVMContext(), XLen)); 9683 } else if (Alignment == 2 * XLen) { 9684 return ABIArgInfo::getDirect( 9685 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9686 } else { 9687 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9688 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9689 } 9690 } 9691 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9692 } 9693 9694 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9695 if (RetTy->isVoidType()) 9696 return ABIArgInfo::getIgnore(); 9697 9698 int ArgGPRsLeft = 2; 9699 int ArgFPRsLeft = FLen ? 2 : 0; 9700 9701 // The rules for return and argument types are the same, so defer to 9702 // classifyArgumentType. 9703 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 9704 ArgFPRsLeft); 9705 } 9706 9707 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9708 QualType Ty) const { 9709 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9710 9711 // Empty records are ignored for parameter passing purposes. 9712 if (isEmptyRecord(getContext(), Ty, true)) { 9713 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9714 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9715 return Addr; 9716 } 9717 9718 std::pair<CharUnits, CharUnits> SizeAndAlign = 9719 getContext().getTypeInfoInChars(Ty); 9720 9721 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9722 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9723 9724 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9725 SlotSize, /*AllowHigherAlign=*/true); 9726 } 9727 9728 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9729 int TySize = getContext().getTypeSize(Ty); 9730 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9731 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9732 return ABIArgInfo::getSignExtend(Ty); 9733 return ABIArgInfo::getExtend(Ty); 9734 } 9735 9736 namespace { 9737 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9738 public: 9739 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 9740 unsigned FLen) 9741 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 9742 9743 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9744 CodeGen::CodeGenModule &CGM) const override { 9745 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9746 if (!FD) return; 9747 9748 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9749 if (!Attr) 9750 return; 9751 9752 const char *Kind; 9753 switch (Attr->getInterrupt()) { 9754 case RISCVInterruptAttr::user: Kind = "user"; break; 9755 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9756 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9757 } 9758 9759 auto *Fn = cast<llvm::Function>(GV); 9760 9761 Fn->addFnAttr("interrupt", Kind); 9762 } 9763 }; 9764 } // namespace 9765 9766 //===----------------------------------------------------------------------===// 9767 // Driver code 9768 //===----------------------------------------------------------------------===// 9769 9770 bool CodeGenModule::supportsCOMDAT() const { 9771 return getTriple().supportsCOMDAT(); 9772 } 9773 9774 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9775 if (TheTargetCodeGenInfo) 9776 return *TheTargetCodeGenInfo; 9777 9778 // Helper to set the unique_ptr while still keeping the return value. 9779 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9780 this->TheTargetCodeGenInfo.reset(P); 9781 return *P; 9782 }; 9783 9784 const llvm::Triple &Triple = getTarget().getTriple(); 9785 switch (Triple.getArch()) { 9786 default: 9787 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9788 9789 case llvm::Triple::le32: 9790 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9791 case llvm::Triple::mips: 9792 case llvm::Triple::mipsel: 9793 if (Triple.getOS() == llvm::Triple::NaCl) 9794 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9795 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9796 9797 case llvm::Triple::mips64: 9798 case llvm::Triple::mips64el: 9799 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9800 9801 case llvm::Triple::avr: 9802 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9803 9804 case llvm::Triple::aarch64: 9805 case llvm::Triple::aarch64_32: 9806 case llvm::Triple::aarch64_be: { 9807 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9808 if (getTarget().getABI() == "darwinpcs") 9809 Kind = AArch64ABIInfo::DarwinPCS; 9810 else if (Triple.isOSWindows()) 9811 return SetCGInfo( 9812 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9813 9814 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9815 } 9816 9817 case llvm::Triple::wasm32: 9818 case llvm::Triple::wasm64: 9819 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9820 9821 case llvm::Triple::arm: 9822 case llvm::Triple::armeb: 9823 case llvm::Triple::thumb: 9824 case llvm::Triple::thumbeb: { 9825 if (Triple.getOS() == llvm::Triple::Win32) { 9826 return SetCGInfo( 9827 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9828 } 9829 9830 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9831 StringRef ABIStr = getTarget().getABI(); 9832 if (ABIStr == "apcs-gnu") 9833 Kind = ARMABIInfo::APCS; 9834 else if (ABIStr == "aapcs16") 9835 Kind = ARMABIInfo::AAPCS16_VFP; 9836 else if (CodeGenOpts.FloatABI == "hard" || 9837 (CodeGenOpts.FloatABI != "soft" && 9838 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9839 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9840 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9841 Kind = ARMABIInfo::AAPCS_VFP; 9842 9843 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9844 } 9845 9846 case llvm::Triple::ppc: 9847 return SetCGInfo( 9848 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || 9849 getTarget().hasFeature("spe"))); 9850 case llvm::Triple::ppc64: 9851 if (Triple.isOSBinFormatELF()) { 9852 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9853 if (getTarget().getABI() == "elfv2") 9854 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9855 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9856 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9857 9858 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9859 IsSoftFloat)); 9860 } else 9861 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9862 case llvm::Triple::ppc64le: { 9863 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9864 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9865 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9866 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9867 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9868 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9869 9870 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9871 IsSoftFloat)); 9872 } 9873 9874 case llvm::Triple::nvptx: 9875 case llvm::Triple::nvptx64: 9876 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9877 9878 case llvm::Triple::msp430: 9879 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9880 9881 case llvm::Triple::riscv32: 9882 case llvm::Triple::riscv64: { 9883 StringRef ABIStr = getTarget().getABI(); 9884 unsigned XLen = getTarget().getPointerWidth(0); 9885 unsigned ABIFLen = 0; 9886 if (ABIStr.endswith("f")) 9887 ABIFLen = 32; 9888 else if (ABIStr.endswith("d")) 9889 ABIFLen = 64; 9890 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 9891 } 9892 9893 case llvm::Triple::systemz: { 9894 bool HasVector = getTarget().getABI() == "vector"; 9895 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9896 } 9897 9898 case llvm::Triple::tce: 9899 case llvm::Triple::tcele: 9900 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9901 9902 case llvm::Triple::x86: { 9903 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9904 bool RetSmallStructInRegABI = 9905 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9906 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9907 9908 if (Triple.getOS() == llvm::Triple::Win32) { 9909 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9910 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9911 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9912 } else { 9913 return SetCGInfo(new X86_32TargetCodeGenInfo( 9914 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9915 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9916 CodeGenOpts.FloatABI == "soft")); 9917 } 9918 } 9919 9920 case llvm::Triple::x86_64: { 9921 StringRef ABI = getTarget().getABI(); 9922 X86AVXABILevel AVXLevel = 9923 (ABI == "avx512" 9924 ? X86AVXABILevel::AVX512 9925 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9926 9927 switch (Triple.getOS()) { 9928 case llvm::Triple::Win32: 9929 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9930 default: 9931 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9932 } 9933 } 9934 case llvm::Triple::hexagon: 9935 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9936 case llvm::Triple::lanai: 9937 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9938 case llvm::Triple::r600: 9939 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9940 case llvm::Triple::amdgcn: 9941 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9942 case llvm::Triple::sparc: 9943 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9944 case llvm::Triple::sparcv9: 9945 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9946 case llvm::Triple::xcore: 9947 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9948 case llvm::Triple::arc: 9949 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9950 case llvm::Triple::spir: 9951 case llvm::Triple::spir64: 9952 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9953 } 9954 } 9955 9956 /// Create an OpenCL kernel for an enqueued block. 9957 /// 9958 /// The kernel has the same function type as the block invoke function. Its 9959 /// name is the name of the block invoke function postfixed with "_kernel". 9960 /// It simply calls the block invoke function then returns. 9961 llvm::Function * 9962 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9963 llvm::Function *Invoke, 9964 llvm::Value *BlockLiteral) const { 9965 auto *InvokeFT = Invoke->getFunctionType(); 9966 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9967 for (auto &P : InvokeFT->params()) 9968 ArgTys.push_back(P); 9969 auto &C = CGF.getLLVMContext(); 9970 std::string Name = Invoke->getName().str() + "_kernel"; 9971 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9972 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9973 &CGF.CGM.getModule()); 9974 auto IP = CGF.Builder.saveIP(); 9975 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9976 auto &Builder = CGF.Builder; 9977 Builder.SetInsertPoint(BB); 9978 llvm::SmallVector<llvm::Value *, 2> Args; 9979 for (auto &A : F->args()) 9980 Args.push_back(&A); 9981 Builder.CreateCall(Invoke, Args); 9982 Builder.CreateRetVoid(); 9983 Builder.restoreIP(IP); 9984 return F; 9985 } 9986 9987 /// Create an OpenCL kernel for an enqueued block. 9988 /// 9989 /// The type of the first argument (the block literal) is the struct type 9990 /// of the block literal instead of a pointer type. The first argument 9991 /// (block literal) is passed directly by value to the kernel. The kernel 9992 /// allocates the same type of struct on stack and stores the block literal 9993 /// to it and passes its pointer to the block invoke function. The kernel 9994 /// has "enqueued-block" function attribute and kernel argument metadata. 9995 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9996 CodeGenFunction &CGF, llvm::Function *Invoke, 9997 llvm::Value *BlockLiteral) const { 9998 auto &Builder = CGF.Builder; 9999 auto &C = CGF.getLLVMContext(); 10000 10001 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10002 auto *InvokeFT = Invoke->getFunctionType(); 10003 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10004 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10005 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10006 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10007 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10008 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10009 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10010 10011 ArgTys.push_back(BlockTy); 10012 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10013 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10014 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10015 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10016 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10017 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10018 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10019 ArgTys.push_back(InvokeFT->getParamType(I)); 10020 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10021 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10022 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10023 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10024 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10025 ArgNames.push_back( 10026 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10027 } 10028 std::string Name = Invoke->getName().str() + "_kernel"; 10029 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10030 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10031 &CGF.CGM.getModule()); 10032 F->addFnAttr("enqueued-block"); 10033 auto IP = CGF.Builder.saveIP(); 10034 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10035 Builder.SetInsertPoint(BB); 10036 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 10037 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10038 BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); 10039 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10040 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10041 llvm::SmallVector<llvm::Value *, 2> Args; 10042 Args.push_back(Cast); 10043 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10044 Args.push_back(I); 10045 Builder.CreateCall(Invoke, Args); 10046 Builder.CreateRetVoid(); 10047 Builder.restoreIP(IP); 10048 10049 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10050 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10051 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10052 F->setMetadata("kernel_arg_base_type", 10053 llvm::MDNode::get(C, ArgBaseTypeNames)); 10054 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10055 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10056 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10057 10058 return F; 10059 } 10060