1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
65                              QualType Ty) const {
66   return Address::invalid();
67 }
68 
69 ABIInfo::~ABIInfo() {}
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
72                                               CGCXXABI &CXXABI) {
73   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
74   if (!RD)
75     return CGCXXABI::RAA_Default;
76   return CXXABI.getRecordArgABI(RD);
77 }
78 
79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
80                                               CGCXXABI &CXXABI) {
81   const RecordType *RT = T->getAs<RecordType>();
82   if (!RT)
83     return CGCXXABI::RAA_Default;
84   return getRecordArgABI(RT, CXXABI);
85 }
86 
87 /// Pass transparent unions as if they were the type of the first element. Sema
88 /// should ensure that all elements of the union have the same "machine type".
89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
90   if (const RecordType *UT = Ty->getAsUnionType()) {
91     const RecordDecl *UD = UT->getDecl();
92     if (UD->hasAttr<TransparentUnionAttr>()) {
93       assert(!UD->field_empty() && "sema created an empty transparent union");
94       return UD->field_begin()->getType();
95     }
96   }
97   return Ty;
98 }
99 
100 CGCXXABI &ABIInfo::getCXXABI() const {
101   return CGT.getCXXABI();
102 }
103 
104 ASTContext &ABIInfo::getContext() const {
105   return CGT.getContext();
106 }
107 
108 llvm::LLVMContext &ABIInfo::getVMContext() const {
109   return CGT.getLLVMContext();
110 }
111 
112 const llvm::DataLayout &ABIInfo::getDataLayout() const {
113   return CGT.getDataLayout();
114 }
115 
116 const TargetInfo &ABIInfo::getTarget() const {
117   return CGT.getTarget();
118 }
119 
120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
121   return false;
122 }
123 
124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
125                                                 uint64_t Members) const {
126   return false;
127 }
128 
129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
130   return false;
131 }
132 
133 void ABIArgInfo::dump() const {
134   raw_ostream &OS = llvm::errs();
135   OS << "(ABIArgInfo Kind=";
136   switch (TheKind) {
137   case Direct:
138     OS << "Direct Type=";
139     if (llvm::Type *Ty = getCoerceToType())
140       Ty->print(OS);
141     else
142       OS << "null";
143     break;
144   case Extend:
145     OS << "Extend";
146     break;
147   case Ignore:
148     OS << "Ignore";
149     break;
150   case InAlloca:
151     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
152     break;
153   case Indirect:
154     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
155        << " ByVal=" << getIndirectByVal()
156        << " Realign=" << getIndirectRealign();
157     break;
158   case Expand:
159     OS << "Expand";
160     break;
161   }
162   OS << ")\n";
163 }
164 
165 /// Emit va_arg for a platform using the common void* representation,
166 /// where arguments are simply emitted in an array of slots on the stack.
167 ///
168 /// This version implements the core direct-value passing rules.
169 ///
170 /// \param SlotSize - The size and alignment of a stack slot.
171 ///   Each argument will be allocated to a multiple of this number of
172 ///   slots, and all the slots will be aligned to this value.
173 /// \param AllowHigherAlign - The slot alignment is not a cap;
174 ///   an argument type with an alignment greater than the slot size
175 ///   will be emitted on a higher-alignment address, potentially
176 ///   leaving one or more empty slots behind as padding.  If this
177 ///   is false, the returned address might be less-aligned than
178 ///   DirectAlign.
179 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
180                                       Address VAListAddr,
181                                       llvm::Type *DirectTy,
182                                       CharUnits DirectSize,
183                                       CharUnits DirectAlign,
184                                       CharUnits SlotSize,
185                                       bool AllowHigherAlign) {
186   // Cast the element type to i8* if necessary.  Some platforms define
187   // va_list as a struct containing an i8* instead of just an i8*.
188   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
189     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
190 
191   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
192 
193   // If the CC aligns values higher than the slot size, do so if needed.
194   Address Addr = Address::invalid();
195   if (AllowHigherAlign && DirectAlign > SlotSize) {
196     llvm::Value *PtrAsInt = Ptr;
197     PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
198     PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
199           llvm::ConstantInt::get(CGF.IntPtrTy, DirectAlign.getQuantity() - 1));
200     PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
201              llvm::ConstantInt::get(CGF.IntPtrTy, -DirectAlign.getQuantity()));
202     Addr = Address(CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(),
203                                               "argp.cur.aligned"),
204                    DirectAlign);
205   } else {
206     Addr = Address(Ptr, SlotSize);
207   }
208 
209   // Advance the pointer past the argument, then store that back.
210   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
211   llvm::Value *NextPtr =
212     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
213                                            "argp.next");
214   CGF.Builder.CreateStore(NextPtr, VAListAddr);
215 
216   // If the argument is smaller than a slot, and this is a big-endian
217   // target, the argument will be right-adjusted in its slot.
218   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
219     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
220   }
221 
222   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
223   return Addr;
224 }
225 
226 /// Emit va_arg for a platform using the common void* representation,
227 /// where arguments are simply emitted in an array of slots on the stack.
228 ///
229 /// \param IsIndirect - Values of this type are passed indirectly.
230 /// \param ValueInfo - The size and alignment of this type, generally
231 ///   computed with getContext().getTypeInfoInChars(ValueTy).
232 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
233 ///   Each argument will be allocated to a multiple of this number of
234 ///   slots, and all the slots will be aligned to this value.
235 /// \param AllowHigherAlign - The slot alignment is not a cap;
236 ///   an argument type with an alignment greater than the slot size
237 ///   will be emitted on a higher-alignment address, potentially
238 ///   leaving one or more empty slots behind as padding.
239 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
240                                 QualType ValueTy, bool IsIndirect,
241                                 std::pair<CharUnits, CharUnits> ValueInfo,
242                                 CharUnits SlotSizeAndAlign,
243                                 bool AllowHigherAlign) {
244   // The size and alignment of the value that was passed directly.
245   CharUnits DirectSize, DirectAlign;
246   if (IsIndirect) {
247     DirectSize = CGF.getPointerSize();
248     DirectAlign = CGF.getPointerAlign();
249   } else {
250     DirectSize = ValueInfo.first;
251     DirectAlign = ValueInfo.second;
252   }
253 
254   // Cast the address we've calculated to the right type.
255   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
256   if (IsIndirect)
257     DirectTy = DirectTy->getPointerTo(0);
258 
259   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
260                                         DirectSize, DirectAlign,
261                                         SlotSizeAndAlign,
262                                         AllowHigherAlign);
263 
264   if (IsIndirect) {
265     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
266   }
267 
268   return Addr;
269 
270 }
271 
272 static Address emitMergePHI(CodeGenFunction &CGF,
273                             Address Addr1, llvm::BasicBlock *Block1,
274                             Address Addr2, llvm::BasicBlock *Block2,
275                             const llvm::Twine &Name = "") {
276   assert(Addr1.getType() == Addr2.getType());
277   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
278   PHI->addIncoming(Addr1.getPointer(), Block1);
279   PHI->addIncoming(Addr2.getPointer(), Block2);
280   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
281   return Address(PHI, Align);
282 }
283 
284 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
285 
286 // If someone can figure out a general rule for this, that would be great.
287 // It's probably just doomed to be platform-dependent, though.
288 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
289   // Verified for:
290   //   x86-64     FreeBSD, Linux, Darwin
291   //   x86-32     FreeBSD, Linux, Darwin
292   //   PowerPC    Linux, Darwin
293   //   ARM        Darwin (*not* EABI)
294   //   AArch64    Linux
295   return 32;
296 }
297 
298 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
299                                      const FunctionNoProtoType *fnType) const {
300   // The following conventions are known to require this to be false:
301   //   x86_stdcall
302   //   MIPS
303   // For everything else, we just prefer false unless we opt out.
304   return false;
305 }
306 
307 void
308 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
309                                              llvm::SmallString<24> &Opt) const {
310   // This assumes the user is passing a library name like "rt" instead of a
311   // filename like "librt.a/so", and that they don't care whether it's static or
312   // dynamic.
313   Opt = "-l";
314   Opt += Lib;
315 }
316 
317 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
318 
319 /// isEmptyField - Return true iff a the field is "empty", that is it
320 /// is an unnamed bit-field or an (array of) empty record(s).
321 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
322                          bool AllowArrays) {
323   if (FD->isUnnamedBitfield())
324     return true;
325 
326   QualType FT = FD->getType();
327 
328   // Constant arrays of empty records count as empty, strip them off.
329   // Constant arrays of zero length always count as empty.
330   if (AllowArrays)
331     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
332       if (AT->getSize() == 0)
333         return true;
334       FT = AT->getElementType();
335     }
336 
337   const RecordType *RT = FT->getAs<RecordType>();
338   if (!RT)
339     return false;
340 
341   // C++ record fields are never empty, at least in the Itanium ABI.
342   //
343   // FIXME: We should use a predicate for whether this behavior is true in the
344   // current ABI.
345   if (isa<CXXRecordDecl>(RT->getDecl()))
346     return false;
347 
348   return isEmptyRecord(Context, FT, AllowArrays);
349 }
350 
351 /// isEmptyRecord - Return true iff a structure contains only empty
352 /// fields. Note that a structure with a flexible array member is not
353 /// considered empty.
354 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
355   const RecordType *RT = T->getAs<RecordType>();
356   if (!RT)
357     return 0;
358   const RecordDecl *RD = RT->getDecl();
359   if (RD->hasFlexibleArrayMember())
360     return false;
361 
362   // If this is a C++ record, check the bases first.
363   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
364     for (const auto &I : CXXRD->bases())
365       if (!isEmptyRecord(Context, I.getType(), true))
366         return false;
367 
368   for (const auto *I : RD->fields())
369     if (!isEmptyField(Context, I, AllowArrays))
370       return false;
371   return true;
372 }
373 
374 /// isSingleElementStruct - Determine if a structure is a "single
375 /// element struct", i.e. it has exactly one non-empty field or
376 /// exactly one field which is itself a single element
377 /// struct. Structures with flexible array members are never
378 /// considered single element structs.
379 ///
380 /// \return The field declaration for the single non-empty field, if
381 /// it exists.
382 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
383   const RecordType *RT = T->getAs<RecordType>();
384   if (!RT)
385     return nullptr;
386 
387   const RecordDecl *RD = RT->getDecl();
388   if (RD->hasFlexibleArrayMember())
389     return nullptr;
390 
391   const Type *Found = nullptr;
392 
393   // If this is a C++ record, check the bases first.
394   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
395     for (const auto &I : CXXRD->bases()) {
396       // Ignore empty records.
397       if (isEmptyRecord(Context, I.getType(), true))
398         continue;
399 
400       // If we already found an element then this isn't a single-element struct.
401       if (Found)
402         return nullptr;
403 
404       // If this is non-empty and not a single element struct, the composite
405       // cannot be a single element struct.
406       Found = isSingleElementStruct(I.getType(), Context);
407       if (!Found)
408         return nullptr;
409     }
410   }
411 
412   // Check for single element.
413   for (const auto *FD : RD->fields()) {
414     QualType FT = FD->getType();
415 
416     // Ignore empty fields.
417     if (isEmptyField(Context, FD, true))
418       continue;
419 
420     // If we already found an element then this isn't a single-element
421     // struct.
422     if (Found)
423       return nullptr;
424 
425     // Treat single element arrays as the element.
426     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
427       if (AT->getSize().getZExtValue() != 1)
428         break;
429       FT = AT->getElementType();
430     }
431 
432     if (!isAggregateTypeForABI(FT)) {
433       Found = FT.getTypePtr();
434     } else {
435       Found = isSingleElementStruct(FT, Context);
436       if (!Found)
437         return nullptr;
438     }
439   }
440 
441   // We don't consider a struct a single-element struct if it has
442   // padding beyond the element type.
443   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
444     return nullptr;
445 
446   return Found;
447 }
448 
449 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
450   // Treat complex types as the element type.
451   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
452     Ty = CTy->getElementType();
453 
454   // Check for a type which we know has a simple scalar argument-passing
455   // convention without any padding.  (We're specifically looking for 32
456   // and 64-bit integer and integer-equivalents, float, and double.)
457   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
458       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
459     return false;
460 
461   uint64_t Size = Context.getTypeSize(Ty);
462   return Size == 32 || Size == 64;
463 }
464 
465 /// canExpandIndirectArgument - Test whether an argument type which is to be
466 /// passed indirectly (on the stack) would have the equivalent layout if it was
467 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
468 /// inhibiting optimizations.
469 ///
470 // FIXME: This predicate is missing many cases, currently it just follows
471 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
472 // should probably make this smarter, or better yet make the LLVM backend
473 // capable of handling it.
474 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
475   // We can only expand structure types.
476   const RecordType *RT = Ty->getAs<RecordType>();
477   if (!RT)
478     return false;
479 
480   // We can only expand (C) structures.
481   //
482   // FIXME: This needs to be generalized to handle classes as well.
483   const RecordDecl *RD = RT->getDecl();
484   if (!RD->isStruct())
485     return false;
486 
487   // We try to expand CLike CXXRecordDecl.
488   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
489     if (!CXXRD->isCLike())
490       return false;
491   }
492 
493   uint64_t Size = 0;
494 
495   for (const auto *FD : RD->fields()) {
496     if (!is32Or64BitBasicType(FD->getType(), Context))
497       return false;
498 
499     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
500     // how to expand them yet, and the predicate for telling if a bitfield still
501     // counts as "basic" is more complicated than what we were doing previously.
502     if (FD->isBitField())
503       return false;
504 
505     Size += Context.getTypeSize(FD->getType());
506   }
507 
508   // Make sure there are not any holes in the struct.
509   if (Size != Context.getTypeSize(Ty))
510     return false;
511 
512   return true;
513 }
514 
515 namespace {
516 /// DefaultABIInfo - The default implementation for ABI specific
517 /// details. This implementation provides information which results in
518 /// self-consistent and sensible LLVM IR generation, but does not
519 /// conform to any particular ABI.
520 class DefaultABIInfo : public ABIInfo {
521 public:
522   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
523 
524   ABIArgInfo classifyReturnType(QualType RetTy) const;
525   ABIArgInfo classifyArgumentType(QualType RetTy) const;
526 
527   void computeInfo(CGFunctionInfo &FI) const override {
528     if (!getCXXABI().classifyReturnType(FI))
529       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
530     for (auto &I : FI.arguments())
531       I.info = classifyArgumentType(I.type);
532   }
533 
534   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
535                     QualType Ty) const override;
536 };
537 
538 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
539 public:
540   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
541     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
542 };
543 
544 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
545                                   QualType Ty) const {
546   return Address::invalid();
547 }
548 
549 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
550   Ty = useFirstFieldIfTransparentUnion(Ty);
551 
552   if (isAggregateTypeForABI(Ty)) {
553     // Records with non-trivial destructors/copy-constructors should not be
554     // passed by value.
555     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
556       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
557 
558     return getNaturalAlignIndirect(Ty);
559   }
560 
561   // Treat an enum type as its underlying type.
562   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
563     Ty = EnumTy->getDecl()->getIntegerType();
564 
565   return (Ty->isPromotableIntegerType() ?
566           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
567 }
568 
569 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
570   if (RetTy->isVoidType())
571     return ABIArgInfo::getIgnore();
572 
573   if (isAggregateTypeForABI(RetTy))
574     return getNaturalAlignIndirect(RetTy);
575 
576   // Treat an enum type as its underlying type.
577   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
578     RetTy = EnumTy->getDecl()->getIntegerType();
579 
580   return (RetTy->isPromotableIntegerType() ?
581           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // WebAssembly ABI Implementation
586 //
587 // This is a very simple ABI that relies a lot on DefaultABIInfo.
588 //===----------------------------------------------------------------------===//
589 
590 class WebAssemblyABIInfo final : public DefaultABIInfo {
591 public:
592   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
593       : DefaultABIInfo(CGT) {}
594 
595 private:
596   ABIArgInfo classifyReturnType(QualType RetTy) const;
597   ABIArgInfo classifyArgumentType(QualType Ty) const;
598 
599   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
600   // non-virtual, but computeInfo is virtual, so we overload that.
601   void computeInfo(CGFunctionInfo &FI) const override {
602     if (!getCXXABI().classifyReturnType(FI))
603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
604     for (auto &Arg : FI.arguments())
605       Arg.info = classifyArgumentType(Arg.type);
606   }
607 };
608 
609 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
610 public:
611   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
613 };
614 
615 /// \brief Classify argument of given type \p Ty.
616 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
617   Ty = useFirstFieldIfTransparentUnion(Ty);
618 
619   if (isAggregateTypeForABI(Ty)) {
620     // Records with non-trivial destructors/copy-constructors should not be
621     // passed by value.
622     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
623       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
624     // Ignore empty structs/unions.
625     if (isEmptyRecord(getContext(), Ty, true))
626       return ABIArgInfo::getIgnore();
627     // Lower single-element structs to just pass a regular value. TODO: We
628     // could do reasonable-size multiple-element structs too, using getExpand(),
629     // though watch out for things like bitfields.
630     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
631       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
632   }
633 
634   // Otherwise just do the default thing.
635   return DefaultABIInfo::classifyArgumentType(Ty);
636 }
637 
638 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
639   if (isAggregateTypeForABI(RetTy)) {
640     // Records with non-trivial destructors/copy-constructors should not be
641     // returned by value.
642     if (!getRecordArgABI(RetTy, getCXXABI())) {
643       // Ignore empty structs/unions.
644       if (isEmptyRecord(getContext(), RetTy, true))
645         return ABIArgInfo::getIgnore();
646       // Lower single-element structs to just return a regular value. TODO: We
647       // could do reasonable-size multiple-element structs too, using
648       // ABIArgInfo::getDirect().
649       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
650         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
651     }
652   }
653 
654   // Otherwise just do the default thing.
655   return DefaultABIInfo::classifyReturnType(RetTy);
656 }
657 
658 //===----------------------------------------------------------------------===//
659 // le32/PNaCl bitcode ABI Implementation
660 //
661 // This is a simplified version of the x86_32 ABI.  Arguments and return values
662 // are always passed on the stack.
663 //===----------------------------------------------------------------------===//
664 
665 class PNaClABIInfo : public ABIInfo {
666  public:
667   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
668 
669   ABIArgInfo classifyReturnType(QualType RetTy) const;
670   ABIArgInfo classifyArgumentType(QualType RetTy) const;
671 
672   void computeInfo(CGFunctionInfo &FI) const override;
673   Address EmitVAArg(CodeGenFunction &CGF,
674                     Address VAListAddr, QualType Ty) const override;
675 };
676 
677 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
678  public:
679   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
681 };
682 
683 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
684   if (!getCXXABI().classifyReturnType(FI))
685     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
686 
687   for (auto &I : FI.arguments())
688     I.info = classifyArgumentType(I.type);
689 }
690 
691 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
692                                 QualType Ty) const {
693   return Address::invalid();
694 }
695 
696 /// \brief Classify argument of given type \p Ty.
697 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
698   if (isAggregateTypeForABI(Ty)) {
699     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
700       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
701     return getNaturalAlignIndirect(Ty);
702   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
703     // Treat an enum type as its underlying type.
704     Ty = EnumTy->getDecl()->getIntegerType();
705   } else if (Ty->isFloatingType()) {
706     // Floating-point types don't go inreg.
707     return ABIArgInfo::getDirect();
708   }
709 
710   return (Ty->isPromotableIntegerType() ?
711           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
712 }
713 
714 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
715   if (RetTy->isVoidType())
716     return ABIArgInfo::getIgnore();
717 
718   // In the PNaCl ABI we always return records/structures on the stack.
719   if (isAggregateTypeForABI(RetTy))
720     return getNaturalAlignIndirect(RetTy);
721 
722   // Treat an enum type as its underlying type.
723   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
724     RetTy = EnumTy->getDecl()->getIntegerType();
725 
726   return (RetTy->isPromotableIntegerType() ?
727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
728 }
729 
730 /// IsX86_MMXType - Return true if this is an MMX type.
731 bool IsX86_MMXType(llvm::Type *IRType) {
732   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
733   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
734     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
735     IRType->getScalarSizeInBits() != 64;
736 }
737 
738 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
739                                           StringRef Constraint,
740                                           llvm::Type* Ty) {
741   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
742     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
743       // Invalid MMX constraint
744       return nullptr;
745     }
746 
747     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
748   }
749 
750   // No operation needed
751   return Ty;
752 }
753 
754 /// Returns true if this type can be passed in SSE registers with the
755 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
756 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
757   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
758     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
759       return true;
760   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
761     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
762     // registers specially.
763     unsigned VecSize = Context.getTypeSize(VT);
764     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
765       return true;
766   }
767   return false;
768 }
769 
770 /// Returns true if this aggregate is small enough to be passed in SSE registers
771 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
772 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
773   return NumMembers <= 4;
774 }
775 
776 //===----------------------------------------------------------------------===//
777 // X86-32 ABI Implementation
778 //===----------------------------------------------------------------------===//
779 
780 /// \brief Similar to llvm::CCState, but for Clang.
781 struct CCState {
782   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
783 
784   unsigned CC;
785   unsigned FreeRegs;
786   unsigned FreeSSERegs;
787 };
788 
789 /// X86_32ABIInfo - The X86-32 ABI information.
790 class X86_32ABIInfo : public ABIInfo {
791   enum Class {
792     Integer,
793     Float
794   };
795 
796   static const unsigned MinABIStackAlignInBytes = 4;
797 
798   bool IsDarwinVectorABI;
799   bool IsRetSmallStructInRegABI;
800   bool IsWin32StructABI;
801   bool IsSoftFloatABI;
802   bool IsMCUABI;
803   unsigned DefaultNumRegisterParameters;
804 
805   static bool isRegisterSize(unsigned Size) {
806     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
807   }
808 
809   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
810     // FIXME: Assumes vectorcall is in use.
811     return isX86VectorTypeForVectorCall(getContext(), Ty);
812   }
813 
814   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
815                                          uint64_t NumMembers) const override {
816     // FIXME: Assumes vectorcall is in use.
817     return isX86VectorCallAggregateSmallEnough(NumMembers);
818   }
819 
820   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
821 
822   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
823   /// such that the argument will be passed in memory.
824   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
825 
826   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
827 
828   /// \brief Return the alignment to use for the given type on the stack.
829   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
830 
831   Class classify(QualType Ty) const;
832   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
833   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
834   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
835 
836   /// \brief Rewrite the function info so that all memory arguments use
837   /// inalloca.
838   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
839 
840   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
841                            CharUnits &StackOffset, ABIArgInfo &Info,
842                            QualType Type) const;
843 
844 public:
845 
846   void computeInfo(CGFunctionInfo &FI) const override;
847   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
848                     QualType Ty) const override;
849 
850   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
851                 bool RetSmallStructInRegABI, bool Win32StructABI,
852                 unsigned NumRegisterParameters, bool SoftFloatABI)
853     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
854       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
855       IsWin32StructABI(Win32StructABI),
856       IsSoftFloatABI(SoftFloatABI),
857       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
858       DefaultNumRegisterParameters(NumRegisterParameters) {}
859 };
860 
861 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
862 public:
863   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
864                           bool RetSmallStructInRegABI, bool Win32StructABI,
865                           unsigned NumRegisterParameters, bool SoftFloatABI)
866       : TargetCodeGenInfo(new X86_32ABIInfo(
867             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
868             NumRegisterParameters, SoftFloatABI)) {}
869 
870   static bool isStructReturnInRegABI(
871       const llvm::Triple &Triple, const CodeGenOptions &Opts);
872 
873   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
874                            CodeGen::CodeGenModule &CGM) const override;
875 
876   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
877     // Darwin uses different dwarf register numbers for EH.
878     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
879     return 4;
880   }
881 
882   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
883                                llvm::Value *Address) const override;
884 
885   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
886                                   StringRef Constraint,
887                                   llvm::Type* Ty) const override {
888     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
889   }
890 
891   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
892                                 std::string &Constraints,
893                                 std::vector<llvm::Type *> &ResultRegTypes,
894                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
895                                 std::vector<LValue> &ResultRegDests,
896                                 std::string &AsmString,
897                                 unsigned NumOutputs) const override;
898 
899   llvm::Constant *
900   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
901     unsigned Sig = (0xeb << 0) |  // jmp rel8
902                    (0x06 << 8) |  //           .+0x08
903                    ('F' << 16) |
904                    ('T' << 24);
905     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
906   }
907 };
908 
909 }
910 
911 /// Rewrite input constraint references after adding some output constraints.
912 /// In the case where there is one output and one input and we add one output,
913 /// we need to replace all operand references greater than or equal to 1:
914 ///     mov $0, $1
915 ///     mov eax, $1
916 /// The result will be:
917 ///     mov $0, $2
918 ///     mov eax, $2
919 static void rewriteInputConstraintReferences(unsigned FirstIn,
920                                              unsigned NumNewOuts,
921                                              std::string &AsmString) {
922   std::string Buf;
923   llvm::raw_string_ostream OS(Buf);
924   size_t Pos = 0;
925   while (Pos < AsmString.size()) {
926     size_t DollarStart = AsmString.find('$', Pos);
927     if (DollarStart == std::string::npos)
928       DollarStart = AsmString.size();
929     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
930     if (DollarEnd == std::string::npos)
931       DollarEnd = AsmString.size();
932     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
933     Pos = DollarEnd;
934     size_t NumDollars = DollarEnd - DollarStart;
935     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
936       // We have an operand reference.
937       size_t DigitStart = Pos;
938       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
939       if (DigitEnd == std::string::npos)
940         DigitEnd = AsmString.size();
941       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
942       unsigned OperandIndex;
943       if (!OperandStr.getAsInteger(10, OperandIndex)) {
944         if (OperandIndex >= FirstIn)
945           OperandIndex += NumNewOuts;
946         OS << OperandIndex;
947       } else {
948         OS << OperandStr;
949       }
950       Pos = DigitEnd;
951     }
952   }
953   AsmString = std::move(OS.str());
954 }
955 
956 /// Add output constraints for EAX:EDX because they are return registers.
957 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
958     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
959     std::vector<llvm::Type *> &ResultRegTypes,
960     std::vector<llvm::Type *> &ResultTruncRegTypes,
961     std::vector<LValue> &ResultRegDests, std::string &AsmString,
962     unsigned NumOutputs) const {
963   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
964 
965   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
966   // larger.
967   if (!Constraints.empty())
968     Constraints += ',';
969   if (RetWidth <= 32) {
970     Constraints += "={eax}";
971     ResultRegTypes.push_back(CGF.Int32Ty);
972   } else {
973     // Use the 'A' constraint for EAX:EDX.
974     Constraints += "=A";
975     ResultRegTypes.push_back(CGF.Int64Ty);
976   }
977 
978   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
979   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
980   ResultTruncRegTypes.push_back(CoerceTy);
981 
982   // Coerce the integer by bitcasting the return slot pointer.
983   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
984                                                   CoerceTy->getPointerTo()));
985   ResultRegDests.push_back(ReturnSlot);
986 
987   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
988 }
989 
990 /// shouldReturnTypeInRegister - Determine if the given type should be
991 /// returned in a register (for the Darwin and MCU ABI).
992 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
993                                                ASTContext &Context) const {
994   uint64_t Size = Context.getTypeSize(Ty);
995 
996   // Type must be register sized.
997   if (!isRegisterSize(Size))
998     return false;
999 
1000   if (Ty->isVectorType()) {
1001     // 64- and 128- bit vectors inside structures are not returned in
1002     // registers.
1003     if (Size == 64 || Size == 128)
1004       return false;
1005 
1006     return true;
1007   }
1008 
1009   // If this is a builtin, pointer, enum, complex type, member pointer, or
1010   // member function pointer it is ok.
1011   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1012       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1013       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1014     return true;
1015 
1016   // Arrays are treated like records.
1017   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1018     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1019 
1020   // Otherwise, it must be a record type.
1021   const RecordType *RT = Ty->getAs<RecordType>();
1022   if (!RT) return false;
1023 
1024   // FIXME: Traverse bases here too.
1025 
1026   // Structure types are passed in register if all fields would be
1027   // passed in a register.
1028   for (const auto *FD : RT->getDecl()->fields()) {
1029     // Empty fields are ignored.
1030     if (isEmptyField(Context, FD, true))
1031       continue;
1032 
1033     // Check fields recursively.
1034     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1035       return false;
1036   }
1037   return true;
1038 }
1039 
1040 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1041   // If the return value is indirect, then the hidden argument is consuming one
1042   // integer register.
1043   if (State.FreeRegs) {
1044     --State.FreeRegs;
1045     return getNaturalAlignIndirectInReg(RetTy);
1046   }
1047   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1048 }
1049 
1050 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1051                                              CCState &State) const {
1052   if (RetTy->isVoidType())
1053     return ABIArgInfo::getIgnore();
1054 
1055   const Type *Base = nullptr;
1056   uint64_t NumElts = 0;
1057   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1058       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1059     // The LLVM struct type for such an aggregate should lower properly.
1060     return ABIArgInfo::getDirect();
1061   }
1062 
1063   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1064     // On Darwin, some vectors are returned in registers.
1065     if (IsDarwinVectorABI) {
1066       uint64_t Size = getContext().getTypeSize(RetTy);
1067 
1068       // 128-bit vectors are a special case; they are returned in
1069       // registers and we need to make sure to pick a type the LLVM
1070       // backend will like.
1071       if (Size == 128)
1072         return ABIArgInfo::getDirect(llvm::VectorType::get(
1073                   llvm::Type::getInt64Ty(getVMContext()), 2));
1074 
1075       // Always return in register if it fits in a general purpose
1076       // register, or if it is 64 bits and has a single element.
1077       if ((Size == 8 || Size == 16 || Size == 32) ||
1078           (Size == 64 && VT->getNumElements() == 1))
1079         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1080                                                             Size));
1081 
1082       return getIndirectReturnResult(RetTy, State);
1083     }
1084 
1085     return ABIArgInfo::getDirect();
1086   }
1087 
1088   if (isAggregateTypeForABI(RetTy)) {
1089     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1090       // Structures with flexible arrays are always indirect.
1091       if (RT->getDecl()->hasFlexibleArrayMember())
1092         return getIndirectReturnResult(RetTy, State);
1093     }
1094 
1095     // If specified, structs and unions are always indirect.
1096     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1097       return getIndirectReturnResult(RetTy, State);
1098 
1099     // Small structures which are register sized are generally returned
1100     // in a register.
1101     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1102       uint64_t Size = getContext().getTypeSize(RetTy);
1103 
1104       // As a special-case, if the struct is a "single-element" struct, and
1105       // the field is of type "float" or "double", return it in a
1106       // floating-point register. (MSVC does not apply this special case.)
1107       // We apply a similar transformation for pointer types to improve the
1108       // quality of the generated IR.
1109       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1110         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1111             || SeltTy->hasPointerRepresentation())
1112           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1113 
1114       // FIXME: We should be able to narrow this integer in cases with dead
1115       // padding.
1116       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1117     }
1118 
1119     return getIndirectReturnResult(RetTy, State);
1120   }
1121 
1122   // Treat an enum type as its underlying type.
1123   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1124     RetTy = EnumTy->getDecl()->getIntegerType();
1125 
1126   return (RetTy->isPromotableIntegerType() ?
1127           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1128 }
1129 
1130 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1131   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1132 }
1133 
1134 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1135   const RecordType *RT = Ty->getAs<RecordType>();
1136   if (!RT)
1137     return 0;
1138   const RecordDecl *RD = RT->getDecl();
1139 
1140   // If this is a C++ record, check the bases first.
1141   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1142     for (const auto &I : CXXRD->bases())
1143       if (!isRecordWithSSEVectorType(Context, I.getType()))
1144         return false;
1145 
1146   for (const auto *i : RD->fields()) {
1147     QualType FT = i->getType();
1148 
1149     if (isSSEVectorType(Context, FT))
1150       return true;
1151 
1152     if (isRecordWithSSEVectorType(Context, FT))
1153       return true;
1154   }
1155 
1156   return false;
1157 }
1158 
1159 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1160                                                  unsigned Align) const {
1161   // Otherwise, if the alignment is less than or equal to the minimum ABI
1162   // alignment, just use the default; the backend will handle this.
1163   if (Align <= MinABIStackAlignInBytes)
1164     return 0; // Use default alignment.
1165 
1166   // On non-Darwin, the stack type alignment is always 4.
1167   if (!IsDarwinVectorABI) {
1168     // Set explicit alignment, since we may need to realign the top.
1169     return MinABIStackAlignInBytes;
1170   }
1171 
1172   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1173   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1174                       isRecordWithSSEVectorType(getContext(), Ty)))
1175     return 16;
1176 
1177   return MinABIStackAlignInBytes;
1178 }
1179 
1180 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1181                                             CCState &State) const {
1182   if (!ByVal) {
1183     if (State.FreeRegs) {
1184       --State.FreeRegs; // Non-byval indirects just use one pointer.
1185       return getNaturalAlignIndirectInReg(Ty);
1186     }
1187     return getNaturalAlignIndirect(Ty, false);
1188   }
1189 
1190   // Compute the byval alignment.
1191   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1192   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1193   if (StackAlign == 0)
1194     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1195 
1196   // If the stack alignment is less than the type alignment, realign the
1197   // argument.
1198   bool Realign = TypeAlign > StackAlign;
1199   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1200                                  /*ByVal=*/true, Realign);
1201 }
1202 
1203 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1204   const Type *T = isSingleElementStruct(Ty, getContext());
1205   if (!T)
1206     T = Ty.getTypePtr();
1207 
1208   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1209     BuiltinType::Kind K = BT->getKind();
1210     if (K == BuiltinType::Float || K == BuiltinType::Double)
1211       return Float;
1212   }
1213   return Integer;
1214 }
1215 
1216 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1217                                    bool &NeedsPadding) const {
1218   NeedsPadding = false;
1219   if (!IsSoftFloatABI) {
1220     Class C = classify(Ty);
1221     if (C == Float)
1222       return false;
1223   }
1224 
1225   unsigned Size = getContext().getTypeSize(Ty);
1226   unsigned SizeInRegs = (Size + 31) / 32;
1227 
1228   if (SizeInRegs == 0)
1229     return false;
1230 
1231   if (!IsMCUABI) {
1232     if (SizeInRegs > State.FreeRegs) {
1233       State.FreeRegs = 0;
1234       return false;
1235     }
1236   } else {
1237     // The MCU psABI allows passing parameters in-reg even if there are
1238     // earlier parameters that are passed on the stack. Also,
1239     // it does not allow passing >8-byte structs in-register,
1240     // even if there are 3 free registers available.
1241     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1242       return false;
1243   }
1244 
1245   State.FreeRegs -= SizeInRegs;
1246 
1247   if (State.CC == llvm::CallingConv::X86_FastCall ||
1248       State.CC == llvm::CallingConv::X86_VectorCall) {
1249     if (Size > 32)
1250       return false;
1251 
1252     if (Ty->isIntegralOrEnumerationType())
1253       return true;
1254 
1255     if (Ty->isPointerType())
1256       return true;
1257 
1258     if (Ty->isReferenceType())
1259       return true;
1260 
1261     if (State.FreeRegs)
1262       NeedsPadding = true;
1263 
1264     return false;
1265   }
1266 
1267   return true;
1268 }
1269 
1270 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1271                                                CCState &State) const {
1272   // FIXME: Set alignment on indirect arguments.
1273 
1274   Ty = useFirstFieldIfTransparentUnion(Ty);
1275 
1276   // Check with the C++ ABI first.
1277   const RecordType *RT = Ty->getAs<RecordType>();
1278   if (RT) {
1279     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1280     if (RAA == CGCXXABI::RAA_Indirect) {
1281       return getIndirectResult(Ty, false, State);
1282     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1283       // The field index doesn't matter, we'll fix it up later.
1284       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1285     }
1286   }
1287 
1288   // vectorcall adds the concept of a homogenous vector aggregate, similar
1289   // to other targets.
1290   const Type *Base = nullptr;
1291   uint64_t NumElts = 0;
1292   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1293       isHomogeneousAggregate(Ty, Base, NumElts)) {
1294     if (State.FreeSSERegs >= NumElts) {
1295       State.FreeSSERegs -= NumElts;
1296       if (Ty->isBuiltinType() || Ty->isVectorType())
1297         return ABIArgInfo::getDirect();
1298       return ABIArgInfo::getExpand();
1299     }
1300     return getIndirectResult(Ty, /*ByVal=*/false, State);
1301   }
1302 
1303   if (isAggregateTypeForABI(Ty)) {
1304     if (RT) {
1305       // Structs are always byval on win32, regardless of what they contain.
1306       if (IsWin32StructABI)
1307         return getIndirectResult(Ty, true, State);
1308 
1309       // Structures with flexible arrays are always indirect.
1310       if (RT->getDecl()->hasFlexibleArrayMember())
1311         return getIndirectResult(Ty, true, State);
1312     }
1313 
1314     // Ignore empty structs/unions.
1315     if (isEmptyRecord(getContext(), Ty, true))
1316       return ABIArgInfo::getIgnore();
1317 
1318     llvm::LLVMContext &LLVMContext = getVMContext();
1319     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1320     bool NeedsPadding;
1321     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1322       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1323       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1324       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1325       return ABIArgInfo::getDirectInReg(Result);
1326     }
1327     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1328 
1329     // Expand small (<= 128-bit) record types when we know that the stack layout
1330     // of those arguments will match the struct. This is important because the
1331     // LLVM backend isn't smart enough to remove byval, which inhibits many
1332     // optimizations.
1333     if (getContext().getTypeSize(Ty) <= 4*32 &&
1334         canExpandIndirectArgument(Ty, getContext()))
1335       return ABIArgInfo::getExpandWithPadding(
1336           State.CC == llvm::CallingConv::X86_FastCall ||
1337               State.CC == llvm::CallingConv::X86_VectorCall,
1338           PaddingType);
1339 
1340     return getIndirectResult(Ty, true, State);
1341   }
1342 
1343   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1344     // On Darwin, some vectors are passed in memory, we handle this by passing
1345     // it as an i8/i16/i32/i64.
1346     if (IsDarwinVectorABI) {
1347       uint64_t Size = getContext().getTypeSize(Ty);
1348       if ((Size == 8 || Size == 16 || Size == 32) ||
1349           (Size == 64 && VT->getNumElements() == 1))
1350         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1351                                                             Size));
1352     }
1353 
1354     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1355       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1356 
1357     return ABIArgInfo::getDirect();
1358   }
1359 
1360 
1361   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1362     Ty = EnumTy->getDecl()->getIntegerType();
1363 
1364   bool NeedsPadding;
1365   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1366 
1367   if (Ty->isPromotableIntegerType()) {
1368     if (InReg)
1369       return ABIArgInfo::getExtendInReg();
1370     return ABIArgInfo::getExtend();
1371   }
1372   if (InReg)
1373     return ABIArgInfo::getDirectInReg();
1374   return ABIArgInfo::getDirect();
1375 }
1376 
1377 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1378   CCState State(FI.getCallingConvention());
1379   if (State.CC == llvm::CallingConv::X86_FastCall)
1380     State.FreeRegs = 2;
1381   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1382     State.FreeRegs = 2;
1383     State.FreeSSERegs = 6;
1384   } else if (FI.getHasRegParm())
1385     State.FreeRegs = FI.getRegParm();
1386   else if (IsMCUABI)
1387     State.FreeRegs = 3;
1388   else
1389     State.FreeRegs = DefaultNumRegisterParameters;
1390 
1391   if (!getCXXABI().classifyReturnType(FI)) {
1392     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1393   } else if (FI.getReturnInfo().isIndirect()) {
1394     // The C++ ABI is not aware of register usage, so we have to check if the
1395     // return value was sret and put it in a register ourselves if appropriate.
1396     if (State.FreeRegs) {
1397       --State.FreeRegs;  // The sret parameter consumes a register.
1398       FI.getReturnInfo().setInReg(true);
1399     }
1400   }
1401 
1402   // The chain argument effectively gives us another free register.
1403   if (FI.isChainCall())
1404     ++State.FreeRegs;
1405 
1406   bool UsedInAlloca = false;
1407   for (auto &I : FI.arguments()) {
1408     I.info = classifyArgumentType(I.type, State);
1409     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1410   }
1411 
1412   // If we needed to use inalloca for any argument, do a second pass and rewrite
1413   // all the memory arguments to use inalloca.
1414   if (UsedInAlloca)
1415     rewriteWithInAlloca(FI);
1416 }
1417 
1418 void
1419 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1420                                    CharUnits &StackOffset, ABIArgInfo &Info,
1421                                    QualType Type) const {
1422   // Arguments are always 4-byte-aligned.
1423   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1424 
1425   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1426   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1427   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1428   StackOffset += getContext().getTypeSizeInChars(Type);
1429 
1430   // Insert padding bytes to respect alignment.
1431   CharUnits FieldEnd = StackOffset;
1432   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1433   if (StackOffset != FieldEnd) {
1434     CharUnits NumBytes = StackOffset - FieldEnd;
1435     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1436     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1437     FrameFields.push_back(Ty);
1438   }
1439 }
1440 
1441 static bool isArgInAlloca(const ABIArgInfo &Info) {
1442   // Leave ignored and inreg arguments alone.
1443   switch (Info.getKind()) {
1444   case ABIArgInfo::InAlloca:
1445     return true;
1446   case ABIArgInfo::Indirect:
1447     assert(Info.getIndirectByVal());
1448     return true;
1449   case ABIArgInfo::Ignore:
1450     return false;
1451   case ABIArgInfo::Direct:
1452   case ABIArgInfo::Extend:
1453   case ABIArgInfo::Expand:
1454     if (Info.getInReg())
1455       return false;
1456     return true;
1457   }
1458   llvm_unreachable("invalid enum");
1459 }
1460 
1461 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1462   assert(IsWin32StructABI && "inalloca only supported on win32");
1463 
1464   // Build a packed struct type for all of the arguments in memory.
1465   SmallVector<llvm::Type *, 6> FrameFields;
1466 
1467   // The stack alignment is always 4.
1468   CharUnits StackAlign = CharUnits::fromQuantity(4);
1469 
1470   CharUnits StackOffset;
1471   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1472 
1473   // Put 'this' into the struct before 'sret', if necessary.
1474   bool IsThisCall =
1475       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1476   ABIArgInfo &Ret = FI.getReturnInfo();
1477   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1478       isArgInAlloca(I->info)) {
1479     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1480     ++I;
1481   }
1482 
1483   // Put the sret parameter into the inalloca struct if it's in memory.
1484   if (Ret.isIndirect() && !Ret.getInReg()) {
1485     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1486     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1487     // On Windows, the hidden sret parameter is always returned in eax.
1488     Ret.setInAllocaSRet(IsWin32StructABI);
1489   }
1490 
1491   // Skip the 'this' parameter in ecx.
1492   if (IsThisCall)
1493     ++I;
1494 
1495   // Put arguments passed in memory into the struct.
1496   for (; I != E; ++I) {
1497     if (isArgInAlloca(I->info))
1498       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1499   }
1500 
1501   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1502                                         /*isPacked=*/true),
1503                   StackAlign);
1504 }
1505 
1506 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1507                                  Address VAListAddr, QualType Ty) const {
1508 
1509   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1510 
1511   // x86-32 changes the alignment of certain arguments on the stack.
1512   //
1513   // Just messing with TypeInfo like this works because we never pass
1514   // anything indirectly.
1515   TypeInfo.second = CharUnits::fromQuantity(
1516                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1517 
1518   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1519                           TypeInfo, CharUnits::fromQuantity(4),
1520                           /*AllowHigherAlign*/ true);
1521 }
1522 
1523 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1524     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1525   assert(Triple.getArch() == llvm::Triple::x86);
1526 
1527   switch (Opts.getStructReturnConvention()) {
1528   case CodeGenOptions::SRCK_Default:
1529     break;
1530   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1531     return false;
1532   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1533     return true;
1534   }
1535 
1536   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1537     return true;
1538 
1539   switch (Triple.getOS()) {
1540   case llvm::Triple::DragonFly:
1541   case llvm::Triple::FreeBSD:
1542   case llvm::Triple::OpenBSD:
1543   case llvm::Triple::Bitrig:
1544   case llvm::Triple::Win32:
1545     return true;
1546   default:
1547     return false;
1548   }
1549 }
1550 
1551 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1552                                                   llvm::GlobalValue *GV,
1553                                             CodeGen::CodeGenModule &CGM) const {
1554   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1555     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1556       // Get the LLVM function.
1557       llvm::Function *Fn = cast<llvm::Function>(GV);
1558 
1559       // Now add the 'alignstack' attribute with a value of 16.
1560       llvm::AttrBuilder B;
1561       B.addStackAlignmentAttr(16);
1562       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1563                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1564                                               llvm::AttributeSet::FunctionIndex,
1565                                               B));
1566     }
1567   }
1568 }
1569 
1570 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1571                                                CodeGen::CodeGenFunction &CGF,
1572                                                llvm::Value *Address) const {
1573   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1574 
1575   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1576 
1577   // 0-7 are the eight integer registers;  the order is different
1578   //   on Darwin (for EH), but the range is the same.
1579   // 8 is %eip.
1580   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1581 
1582   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1583     // 12-16 are st(0..4).  Not sure why we stop at 4.
1584     // These have size 16, which is sizeof(long double) on
1585     // platforms with 8-byte alignment for that type.
1586     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1587     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1588 
1589   } else {
1590     // 9 is %eflags, which doesn't get a size on Darwin for some
1591     // reason.
1592     Builder.CreateAlignedStore(
1593         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1594                                CharUnits::One());
1595 
1596     // 11-16 are st(0..5).  Not sure why we stop at 5.
1597     // These have size 12, which is sizeof(long double) on
1598     // platforms with 4-byte alignment for that type.
1599     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1600     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1601   }
1602 
1603   return false;
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 // X86-64 ABI Implementation
1608 //===----------------------------------------------------------------------===//
1609 
1610 
1611 namespace {
1612 /// The AVX ABI level for X86 targets.
1613 enum class X86AVXABILevel {
1614   None,
1615   AVX,
1616   AVX512
1617 };
1618 
1619 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1620 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1621   switch (AVXLevel) {
1622   case X86AVXABILevel::AVX512:
1623     return 512;
1624   case X86AVXABILevel::AVX:
1625     return 256;
1626   case X86AVXABILevel::None:
1627     return 128;
1628   }
1629   llvm_unreachable("Unknown AVXLevel");
1630 }
1631 
1632 /// X86_64ABIInfo - The X86_64 ABI information.
1633 class X86_64ABIInfo : public ABIInfo {
1634   enum Class {
1635     Integer = 0,
1636     SSE,
1637     SSEUp,
1638     X87,
1639     X87Up,
1640     ComplexX87,
1641     NoClass,
1642     Memory
1643   };
1644 
1645   /// merge - Implement the X86_64 ABI merging algorithm.
1646   ///
1647   /// Merge an accumulating classification \arg Accum with a field
1648   /// classification \arg Field.
1649   ///
1650   /// \param Accum - The accumulating classification. This should
1651   /// always be either NoClass or the result of a previous merge
1652   /// call. In addition, this should never be Memory (the caller
1653   /// should just return Memory for the aggregate).
1654   static Class merge(Class Accum, Class Field);
1655 
1656   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1657   ///
1658   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1659   /// final MEMORY or SSE classes when necessary.
1660   ///
1661   /// \param AggregateSize - The size of the current aggregate in
1662   /// the classification process.
1663   ///
1664   /// \param Lo - The classification for the parts of the type
1665   /// residing in the low word of the containing object.
1666   ///
1667   /// \param Hi - The classification for the parts of the type
1668   /// residing in the higher words of the containing object.
1669   ///
1670   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1671 
1672   /// classify - Determine the x86_64 register classes in which the
1673   /// given type T should be passed.
1674   ///
1675   /// \param Lo - The classification for the parts of the type
1676   /// residing in the low word of the containing object.
1677   ///
1678   /// \param Hi - The classification for the parts of the type
1679   /// residing in the high word of the containing object.
1680   ///
1681   /// \param OffsetBase - The bit offset of this type in the
1682   /// containing object.  Some parameters are classified different
1683   /// depending on whether they straddle an eightbyte boundary.
1684   ///
1685   /// \param isNamedArg - Whether the argument in question is a "named"
1686   /// argument, as used in AMD64-ABI 3.5.7.
1687   ///
1688   /// If a word is unused its result will be NoClass; if a type should
1689   /// be passed in Memory then at least the classification of \arg Lo
1690   /// will be Memory.
1691   ///
1692   /// The \arg Lo class will be NoClass iff the argument is ignored.
1693   ///
1694   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1695   /// also be ComplexX87.
1696   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1697                 bool isNamedArg) const;
1698 
1699   llvm::Type *GetByteVectorType(QualType Ty) const;
1700   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1701                                  unsigned IROffset, QualType SourceTy,
1702                                  unsigned SourceOffset) const;
1703   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1704                                      unsigned IROffset, QualType SourceTy,
1705                                      unsigned SourceOffset) const;
1706 
1707   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1708   /// such that the argument will be returned in memory.
1709   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1710 
1711   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1712   /// such that the argument will be passed in memory.
1713   ///
1714   /// \param freeIntRegs - The number of free integer registers remaining
1715   /// available.
1716   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1717 
1718   ABIArgInfo classifyReturnType(QualType RetTy) const;
1719 
1720   ABIArgInfo classifyArgumentType(QualType Ty,
1721                                   unsigned freeIntRegs,
1722                                   unsigned &neededInt,
1723                                   unsigned &neededSSE,
1724                                   bool isNamedArg) const;
1725 
1726   bool IsIllegalVectorType(QualType Ty) const;
1727 
1728   /// The 0.98 ABI revision clarified a lot of ambiguities,
1729   /// unfortunately in ways that were not always consistent with
1730   /// certain previous compilers.  In particular, platforms which
1731   /// required strict binary compatibility with older versions of GCC
1732   /// may need to exempt themselves.
1733   bool honorsRevision0_98() const {
1734     return !getTarget().getTriple().isOSDarwin();
1735   }
1736 
1737   X86AVXABILevel AVXLevel;
1738   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1739   // 64-bit hardware.
1740   bool Has64BitPointers;
1741 
1742 public:
1743   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1744       ABIInfo(CGT), AVXLevel(AVXLevel),
1745       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1746   }
1747 
1748   bool isPassedUsingAVXType(QualType type) const {
1749     unsigned neededInt, neededSSE;
1750     // The freeIntRegs argument doesn't matter here.
1751     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1752                                            /*isNamedArg*/true);
1753     if (info.isDirect()) {
1754       llvm::Type *ty = info.getCoerceToType();
1755       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1756         return (vectorTy->getBitWidth() > 128);
1757     }
1758     return false;
1759   }
1760 
1761   void computeInfo(CGFunctionInfo &FI) const override;
1762 
1763   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1764                     QualType Ty) const override;
1765   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1766                       QualType Ty) const override;
1767 
1768   bool has64BitPointers() const {
1769     return Has64BitPointers;
1770   }
1771 };
1772 
1773 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1774 class WinX86_64ABIInfo : public ABIInfo {
1775 public:
1776   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1777       : ABIInfo(CGT),
1778         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1779 
1780   void computeInfo(CGFunctionInfo &FI) const override;
1781 
1782   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1783                     QualType Ty) const override;
1784 
1785   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1786     // FIXME: Assumes vectorcall is in use.
1787     return isX86VectorTypeForVectorCall(getContext(), Ty);
1788   }
1789 
1790   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1791                                          uint64_t NumMembers) const override {
1792     // FIXME: Assumes vectorcall is in use.
1793     return isX86VectorCallAggregateSmallEnough(NumMembers);
1794   }
1795 
1796 private:
1797   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1798                       bool IsReturnType) const;
1799 
1800   bool IsMingw64;
1801 };
1802 
1803 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1804 public:
1805   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1806       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1807 
1808   const X86_64ABIInfo &getABIInfo() const {
1809     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1810   }
1811 
1812   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1813     return 7;
1814   }
1815 
1816   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1817                                llvm::Value *Address) const override {
1818     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1819 
1820     // 0-15 are the 16 integer registers.
1821     // 16 is %rip.
1822     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1823     return false;
1824   }
1825 
1826   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1827                                   StringRef Constraint,
1828                                   llvm::Type* Ty) const override {
1829     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1830   }
1831 
1832   bool isNoProtoCallVariadic(const CallArgList &args,
1833                              const FunctionNoProtoType *fnType) const override {
1834     // The default CC on x86-64 sets %al to the number of SSA
1835     // registers used, and GCC sets this when calling an unprototyped
1836     // function, so we override the default behavior.  However, don't do
1837     // that when AVX types are involved: the ABI explicitly states it is
1838     // undefined, and it doesn't work in practice because of how the ABI
1839     // defines varargs anyway.
1840     if (fnType->getCallConv() == CC_C) {
1841       bool HasAVXType = false;
1842       for (CallArgList::const_iterator
1843              it = args.begin(), ie = args.end(); it != ie; ++it) {
1844         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1845           HasAVXType = true;
1846           break;
1847         }
1848       }
1849 
1850       if (!HasAVXType)
1851         return true;
1852     }
1853 
1854     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1855   }
1856 
1857   llvm::Constant *
1858   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1859     unsigned Sig;
1860     if (getABIInfo().has64BitPointers())
1861       Sig = (0xeb << 0) |  // jmp rel8
1862             (0x0a << 8) |  //           .+0x0c
1863             ('F' << 16) |
1864             ('T' << 24);
1865     else
1866       Sig = (0xeb << 0) |  // jmp rel8
1867             (0x06 << 8) |  //           .+0x08
1868             ('F' << 16) |
1869             ('T' << 24);
1870     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1871   }
1872 };
1873 
1874 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1875 public:
1876   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1877     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1878 
1879   void getDependentLibraryOption(llvm::StringRef Lib,
1880                                  llvm::SmallString<24> &Opt) const override {
1881     Opt = "\01";
1882     // If the argument contains a space, enclose it in quotes.
1883     if (Lib.find(" ") != StringRef::npos)
1884       Opt += "\"" + Lib.str() + "\"";
1885     else
1886       Opt += Lib;
1887   }
1888 };
1889 
1890 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1891   // If the argument does not end in .lib, automatically add the suffix.
1892   // If the argument contains a space, enclose it in quotes.
1893   // This matches the behavior of MSVC.
1894   bool Quote = (Lib.find(" ") != StringRef::npos);
1895   std::string ArgStr = Quote ? "\"" : "";
1896   ArgStr += Lib;
1897   if (!Lib.endswith_lower(".lib"))
1898     ArgStr += ".lib";
1899   ArgStr += Quote ? "\"" : "";
1900   return ArgStr;
1901 }
1902 
1903 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1904 public:
1905   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1906         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1907         unsigned NumRegisterParameters)
1908     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1909         Win32StructABI, NumRegisterParameters, false) {}
1910 
1911   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1912                            CodeGen::CodeGenModule &CGM) const override;
1913 
1914   void getDependentLibraryOption(llvm::StringRef Lib,
1915                                  llvm::SmallString<24> &Opt) const override {
1916     Opt = "/DEFAULTLIB:";
1917     Opt += qualifyWindowsLibrary(Lib);
1918   }
1919 
1920   void getDetectMismatchOption(llvm::StringRef Name,
1921                                llvm::StringRef Value,
1922                                llvm::SmallString<32> &Opt) const override {
1923     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1924   }
1925 };
1926 
1927 static void addStackProbeSizeTargetAttribute(const Decl *D,
1928                                              llvm::GlobalValue *GV,
1929                                              CodeGen::CodeGenModule &CGM) {
1930   if (D && isa<FunctionDecl>(D)) {
1931     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1932       llvm::Function *Fn = cast<llvm::Function>(GV);
1933 
1934       Fn->addFnAttr("stack-probe-size",
1935                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1936     }
1937   }
1938 }
1939 
1940 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1941                                                      llvm::GlobalValue *GV,
1942                                             CodeGen::CodeGenModule &CGM) const {
1943   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1944 
1945   addStackProbeSizeTargetAttribute(D, GV, CGM);
1946 }
1947 
1948 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1949 public:
1950   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1951                              X86AVXABILevel AVXLevel)
1952       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1953 
1954   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1955                            CodeGen::CodeGenModule &CGM) const override;
1956 
1957   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1958     return 7;
1959   }
1960 
1961   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1962                                llvm::Value *Address) const override {
1963     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1964 
1965     // 0-15 are the 16 integer registers.
1966     // 16 is %rip.
1967     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1968     return false;
1969   }
1970 
1971   void getDependentLibraryOption(llvm::StringRef Lib,
1972                                  llvm::SmallString<24> &Opt) const override {
1973     Opt = "/DEFAULTLIB:";
1974     Opt += qualifyWindowsLibrary(Lib);
1975   }
1976 
1977   void getDetectMismatchOption(llvm::StringRef Name,
1978                                llvm::StringRef Value,
1979                                llvm::SmallString<32> &Opt) const override {
1980     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1981   }
1982 };
1983 
1984 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1985                                                      llvm::GlobalValue *GV,
1986                                             CodeGen::CodeGenModule &CGM) const {
1987   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1988 
1989   addStackProbeSizeTargetAttribute(D, GV, CGM);
1990 }
1991 }
1992 
1993 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1994                               Class &Hi) const {
1995   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1996   //
1997   // (a) If one of the classes is Memory, the whole argument is passed in
1998   //     memory.
1999   //
2000   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2001   //     memory.
2002   //
2003   // (c) If the size of the aggregate exceeds two eightbytes and the first
2004   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2005   //     argument is passed in memory. NOTE: This is necessary to keep the
2006   //     ABI working for processors that don't support the __m256 type.
2007   //
2008   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2009   //
2010   // Some of these are enforced by the merging logic.  Others can arise
2011   // only with unions; for example:
2012   //   union { _Complex double; unsigned; }
2013   //
2014   // Note that clauses (b) and (c) were added in 0.98.
2015   //
2016   if (Hi == Memory)
2017     Lo = Memory;
2018   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2019     Lo = Memory;
2020   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2021     Lo = Memory;
2022   if (Hi == SSEUp && Lo != SSE)
2023     Hi = SSE;
2024 }
2025 
2026 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2027   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2028   // classified recursively so that always two fields are
2029   // considered. The resulting class is calculated according to
2030   // the classes of the fields in the eightbyte:
2031   //
2032   // (a) If both classes are equal, this is the resulting class.
2033   //
2034   // (b) If one of the classes is NO_CLASS, the resulting class is
2035   // the other class.
2036   //
2037   // (c) If one of the classes is MEMORY, the result is the MEMORY
2038   // class.
2039   //
2040   // (d) If one of the classes is INTEGER, the result is the
2041   // INTEGER.
2042   //
2043   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2044   // MEMORY is used as class.
2045   //
2046   // (f) Otherwise class SSE is used.
2047 
2048   // Accum should never be memory (we should have returned) or
2049   // ComplexX87 (because this cannot be passed in a structure).
2050   assert((Accum != Memory && Accum != ComplexX87) &&
2051          "Invalid accumulated classification during merge.");
2052   if (Accum == Field || Field == NoClass)
2053     return Accum;
2054   if (Field == Memory)
2055     return Memory;
2056   if (Accum == NoClass)
2057     return Field;
2058   if (Accum == Integer || Field == Integer)
2059     return Integer;
2060   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2061       Accum == X87 || Accum == X87Up)
2062     return Memory;
2063   return SSE;
2064 }
2065 
2066 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2067                              Class &Lo, Class &Hi, bool isNamedArg) const {
2068   // FIXME: This code can be simplified by introducing a simple value class for
2069   // Class pairs with appropriate constructor methods for the various
2070   // situations.
2071 
2072   // FIXME: Some of the split computations are wrong; unaligned vectors
2073   // shouldn't be passed in registers for example, so there is no chance they
2074   // can straddle an eightbyte. Verify & simplify.
2075 
2076   Lo = Hi = NoClass;
2077 
2078   Class &Current = OffsetBase < 64 ? Lo : Hi;
2079   Current = Memory;
2080 
2081   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2082     BuiltinType::Kind k = BT->getKind();
2083 
2084     if (k == BuiltinType::Void) {
2085       Current = NoClass;
2086     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2087       Lo = Integer;
2088       Hi = Integer;
2089     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2090       Current = Integer;
2091     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2092       Current = SSE;
2093     } else if (k == BuiltinType::LongDouble) {
2094       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2095       if (LDF == &llvm::APFloat::IEEEquad) {
2096         Lo = SSE;
2097         Hi = SSEUp;
2098       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2099         Lo = X87;
2100         Hi = X87Up;
2101       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2102         Current = SSE;
2103       } else
2104         llvm_unreachable("unexpected long double representation!");
2105     }
2106     // FIXME: _Decimal32 and _Decimal64 are SSE.
2107     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2108     return;
2109   }
2110 
2111   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2112     // Classify the underlying integer type.
2113     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2114     return;
2115   }
2116 
2117   if (Ty->hasPointerRepresentation()) {
2118     Current = Integer;
2119     return;
2120   }
2121 
2122   if (Ty->isMemberPointerType()) {
2123     if (Ty->isMemberFunctionPointerType()) {
2124       if (Has64BitPointers) {
2125         // If Has64BitPointers, this is an {i64, i64}, so classify both
2126         // Lo and Hi now.
2127         Lo = Hi = Integer;
2128       } else {
2129         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2130         // straddles an eightbyte boundary, Hi should be classified as well.
2131         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2132         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2133         if (EB_FuncPtr != EB_ThisAdj) {
2134           Lo = Hi = Integer;
2135         } else {
2136           Current = Integer;
2137         }
2138       }
2139     } else {
2140       Current = Integer;
2141     }
2142     return;
2143   }
2144 
2145   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2146     uint64_t Size = getContext().getTypeSize(VT);
2147     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2148       // gcc passes the following as integer:
2149       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2150       // 2 bytes - <2 x char>, <1 x short>
2151       // 1 byte  - <1 x char>
2152       Current = Integer;
2153 
2154       // If this type crosses an eightbyte boundary, it should be
2155       // split.
2156       uint64_t EB_Lo = (OffsetBase) / 64;
2157       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2158       if (EB_Lo != EB_Hi)
2159         Hi = Lo;
2160     } else if (Size == 64) {
2161       // gcc passes <1 x double> in memory. :(
2162       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2163         return;
2164 
2165       // gcc passes <1 x long long> as INTEGER.
2166       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2167           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2168           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2169           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2170         Current = Integer;
2171       else
2172         Current = SSE;
2173 
2174       // If this type crosses an eightbyte boundary, it should be
2175       // split.
2176       if (OffsetBase && OffsetBase != 64)
2177         Hi = Lo;
2178     } else if (Size == 128 ||
2179                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2180       // Arguments of 256-bits are split into four eightbyte chunks. The
2181       // least significant one belongs to class SSE and all the others to class
2182       // SSEUP. The original Lo and Hi design considers that types can't be
2183       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2184       // This design isn't correct for 256-bits, but since there're no cases
2185       // where the upper parts would need to be inspected, avoid adding
2186       // complexity and just consider Hi to match the 64-256 part.
2187       //
2188       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2189       // registers if they are "named", i.e. not part of the "..." of a
2190       // variadic function.
2191       //
2192       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2193       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2194       Lo = SSE;
2195       Hi = SSEUp;
2196     }
2197     return;
2198   }
2199 
2200   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2201     QualType ET = getContext().getCanonicalType(CT->getElementType());
2202 
2203     uint64_t Size = getContext().getTypeSize(Ty);
2204     if (ET->isIntegralOrEnumerationType()) {
2205       if (Size <= 64)
2206         Current = Integer;
2207       else if (Size <= 128)
2208         Lo = Hi = Integer;
2209     } else if (ET == getContext().FloatTy) {
2210       Current = SSE;
2211     } else if (ET == getContext().DoubleTy) {
2212       Lo = Hi = SSE;
2213     } else if (ET == getContext().LongDoubleTy) {
2214       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2215       if (LDF == &llvm::APFloat::IEEEquad)
2216         Current = Memory;
2217       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2218         Current = ComplexX87;
2219       else if (LDF == &llvm::APFloat::IEEEdouble)
2220         Lo = Hi = SSE;
2221       else
2222         llvm_unreachable("unexpected long double representation!");
2223     }
2224 
2225     // If this complex type crosses an eightbyte boundary then it
2226     // should be split.
2227     uint64_t EB_Real = (OffsetBase) / 64;
2228     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2229     if (Hi == NoClass && EB_Real != EB_Imag)
2230       Hi = Lo;
2231 
2232     return;
2233   }
2234 
2235   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2236     // Arrays are treated like structures.
2237 
2238     uint64_t Size = getContext().getTypeSize(Ty);
2239 
2240     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2241     // than four eightbytes, ..., it has class MEMORY.
2242     if (Size > 256)
2243       return;
2244 
2245     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2246     // fields, it has class MEMORY.
2247     //
2248     // Only need to check alignment of array base.
2249     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2250       return;
2251 
2252     // Otherwise implement simplified merge. We could be smarter about
2253     // this, but it isn't worth it and would be harder to verify.
2254     Current = NoClass;
2255     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2256     uint64_t ArraySize = AT->getSize().getZExtValue();
2257 
2258     // The only case a 256-bit wide vector could be used is when the array
2259     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2260     // to work for sizes wider than 128, early check and fallback to memory.
2261     if (Size > 128 && EltSize != 256)
2262       return;
2263 
2264     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2265       Class FieldLo, FieldHi;
2266       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2267       Lo = merge(Lo, FieldLo);
2268       Hi = merge(Hi, FieldHi);
2269       if (Lo == Memory || Hi == Memory)
2270         break;
2271     }
2272 
2273     postMerge(Size, Lo, Hi);
2274     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2275     return;
2276   }
2277 
2278   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2279     uint64_t Size = getContext().getTypeSize(Ty);
2280 
2281     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2282     // than four eightbytes, ..., it has class MEMORY.
2283     if (Size > 256)
2284       return;
2285 
2286     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2287     // copy constructor or a non-trivial destructor, it is passed by invisible
2288     // reference.
2289     if (getRecordArgABI(RT, getCXXABI()))
2290       return;
2291 
2292     const RecordDecl *RD = RT->getDecl();
2293 
2294     // Assume variable sized types are passed in memory.
2295     if (RD->hasFlexibleArrayMember())
2296       return;
2297 
2298     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2299 
2300     // Reset Lo class, this will be recomputed.
2301     Current = NoClass;
2302 
2303     // If this is a C++ record, classify the bases first.
2304     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2305       for (const auto &I : CXXRD->bases()) {
2306         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2307                "Unexpected base class!");
2308         const CXXRecordDecl *Base =
2309           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2310 
2311         // Classify this field.
2312         //
2313         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2314         // single eightbyte, each is classified separately. Each eightbyte gets
2315         // initialized to class NO_CLASS.
2316         Class FieldLo, FieldHi;
2317         uint64_t Offset =
2318           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2319         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2320         Lo = merge(Lo, FieldLo);
2321         Hi = merge(Hi, FieldHi);
2322         if (Lo == Memory || Hi == Memory) {
2323           postMerge(Size, Lo, Hi);
2324           return;
2325         }
2326       }
2327     }
2328 
2329     // Classify the fields one at a time, merging the results.
2330     unsigned idx = 0;
2331     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2332            i != e; ++i, ++idx) {
2333       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2334       bool BitField = i->isBitField();
2335 
2336       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2337       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2338       //
2339       // The only case a 256-bit wide vector could be used is when the struct
2340       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2341       // to work for sizes wider than 128, early check and fallback to memory.
2342       //
2343       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2344         Lo = Memory;
2345         postMerge(Size, Lo, Hi);
2346         return;
2347       }
2348       // Note, skip this test for bit-fields, see below.
2349       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2350         Lo = Memory;
2351         postMerge(Size, Lo, Hi);
2352         return;
2353       }
2354 
2355       // Classify this field.
2356       //
2357       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2358       // exceeds a single eightbyte, each is classified
2359       // separately. Each eightbyte gets initialized to class
2360       // NO_CLASS.
2361       Class FieldLo, FieldHi;
2362 
2363       // Bit-fields require special handling, they do not force the
2364       // structure to be passed in memory even if unaligned, and
2365       // therefore they can straddle an eightbyte.
2366       if (BitField) {
2367         // Ignore padding bit-fields.
2368         if (i->isUnnamedBitfield())
2369           continue;
2370 
2371         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2372         uint64_t Size = i->getBitWidthValue(getContext());
2373 
2374         uint64_t EB_Lo = Offset / 64;
2375         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2376 
2377         if (EB_Lo) {
2378           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2379           FieldLo = NoClass;
2380           FieldHi = Integer;
2381         } else {
2382           FieldLo = Integer;
2383           FieldHi = EB_Hi ? Integer : NoClass;
2384         }
2385       } else
2386         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2387       Lo = merge(Lo, FieldLo);
2388       Hi = merge(Hi, FieldHi);
2389       if (Lo == Memory || Hi == Memory)
2390         break;
2391     }
2392 
2393     postMerge(Size, Lo, Hi);
2394   }
2395 }
2396 
2397 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2398   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2399   // place naturally.
2400   if (!isAggregateTypeForABI(Ty)) {
2401     // Treat an enum type as its underlying type.
2402     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2403       Ty = EnumTy->getDecl()->getIntegerType();
2404 
2405     return (Ty->isPromotableIntegerType() ?
2406             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2407   }
2408 
2409   return getNaturalAlignIndirect(Ty);
2410 }
2411 
2412 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2413   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2414     uint64_t Size = getContext().getTypeSize(VecTy);
2415     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2416     if (Size <= 64 || Size > LargestVector)
2417       return true;
2418   }
2419 
2420   return false;
2421 }
2422 
2423 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2424                                             unsigned freeIntRegs) const {
2425   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2426   // place naturally.
2427   //
2428   // This assumption is optimistic, as there could be free registers available
2429   // when we need to pass this argument in memory, and LLVM could try to pass
2430   // the argument in the free register. This does not seem to happen currently,
2431   // but this code would be much safer if we could mark the argument with
2432   // 'onstack'. See PR12193.
2433   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2434     // Treat an enum type as its underlying type.
2435     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2436       Ty = EnumTy->getDecl()->getIntegerType();
2437 
2438     return (Ty->isPromotableIntegerType() ?
2439             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2440   }
2441 
2442   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2443     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2444 
2445   // Compute the byval alignment. We specify the alignment of the byval in all
2446   // cases so that the mid-level optimizer knows the alignment of the byval.
2447   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2448 
2449   // Attempt to avoid passing indirect results using byval when possible. This
2450   // is important for good codegen.
2451   //
2452   // We do this by coercing the value into a scalar type which the backend can
2453   // handle naturally (i.e., without using byval).
2454   //
2455   // For simplicity, we currently only do this when we have exhausted all of the
2456   // free integer registers. Doing this when there are free integer registers
2457   // would require more care, as we would have to ensure that the coerced value
2458   // did not claim the unused register. That would require either reording the
2459   // arguments to the function (so that any subsequent inreg values came first),
2460   // or only doing this optimization when there were no following arguments that
2461   // might be inreg.
2462   //
2463   // We currently expect it to be rare (particularly in well written code) for
2464   // arguments to be passed on the stack when there are still free integer
2465   // registers available (this would typically imply large structs being passed
2466   // by value), so this seems like a fair tradeoff for now.
2467   //
2468   // We can revisit this if the backend grows support for 'onstack' parameter
2469   // attributes. See PR12193.
2470   if (freeIntRegs == 0) {
2471     uint64_t Size = getContext().getTypeSize(Ty);
2472 
2473     // If this type fits in an eightbyte, coerce it into the matching integral
2474     // type, which will end up on the stack (with alignment 8).
2475     if (Align == 8 && Size <= 64)
2476       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2477                                                           Size));
2478   }
2479 
2480   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2481 }
2482 
2483 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2484 /// register. Pick an LLVM IR type that will be passed as a vector register.
2485 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2486   // Wrapper structs/arrays that only contain vectors are passed just like
2487   // vectors; strip them off if present.
2488   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2489     Ty = QualType(InnerTy, 0);
2490 
2491   llvm::Type *IRType = CGT.ConvertType(Ty);
2492   if (isa<llvm::VectorType>(IRType) ||
2493       IRType->getTypeID() == llvm::Type::FP128TyID)
2494     return IRType;
2495 
2496   // We couldn't find the preferred IR vector type for 'Ty'.
2497   uint64_t Size = getContext().getTypeSize(Ty);
2498   assert((Size == 128 || Size == 256) && "Invalid type found!");
2499 
2500   // Return a LLVM IR vector type based on the size of 'Ty'.
2501   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2502                                Size / 64);
2503 }
2504 
2505 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2506 /// is known to either be off the end of the specified type or being in
2507 /// alignment padding.  The user type specified is known to be at most 128 bits
2508 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2509 /// classification that put one of the two halves in the INTEGER class.
2510 ///
2511 /// It is conservatively correct to return false.
2512 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2513                                   unsigned EndBit, ASTContext &Context) {
2514   // If the bytes being queried are off the end of the type, there is no user
2515   // data hiding here.  This handles analysis of builtins, vectors and other
2516   // types that don't contain interesting padding.
2517   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2518   if (TySize <= StartBit)
2519     return true;
2520 
2521   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2522     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2523     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2524 
2525     // Check each element to see if the element overlaps with the queried range.
2526     for (unsigned i = 0; i != NumElts; ++i) {
2527       // If the element is after the span we care about, then we're done..
2528       unsigned EltOffset = i*EltSize;
2529       if (EltOffset >= EndBit) break;
2530 
2531       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2532       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2533                                  EndBit-EltOffset, Context))
2534         return false;
2535     }
2536     // If it overlaps no elements, then it is safe to process as padding.
2537     return true;
2538   }
2539 
2540   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2541     const RecordDecl *RD = RT->getDecl();
2542     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2543 
2544     // If this is a C++ record, check the bases first.
2545     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2546       for (const auto &I : CXXRD->bases()) {
2547         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2548                "Unexpected base class!");
2549         const CXXRecordDecl *Base =
2550           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2551 
2552         // If the base is after the span we care about, ignore it.
2553         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2554         if (BaseOffset >= EndBit) continue;
2555 
2556         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2557         if (!BitsContainNoUserData(I.getType(), BaseStart,
2558                                    EndBit-BaseOffset, Context))
2559           return false;
2560       }
2561     }
2562 
2563     // Verify that no field has data that overlaps the region of interest.  Yes
2564     // this could be sped up a lot by being smarter about queried fields,
2565     // however we're only looking at structs up to 16 bytes, so we don't care
2566     // much.
2567     unsigned idx = 0;
2568     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2569          i != e; ++i, ++idx) {
2570       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2571 
2572       // If we found a field after the region we care about, then we're done.
2573       if (FieldOffset >= EndBit) break;
2574 
2575       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2576       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2577                                  Context))
2578         return false;
2579     }
2580 
2581     // If nothing in this record overlapped the area of interest, then we're
2582     // clean.
2583     return true;
2584   }
2585 
2586   return false;
2587 }
2588 
2589 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2590 /// float member at the specified offset.  For example, {int,{float}} has a
2591 /// float at offset 4.  It is conservatively correct for this routine to return
2592 /// false.
2593 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2594                                   const llvm::DataLayout &TD) {
2595   // Base case if we find a float.
2596   if (IROffset == 0 && IRType->isFloatTy())
2597     return true;
2598 
2599   // If this is a struct, recurse into the field at the specified offset.
2600   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2601     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2602     unsigned Elt = SL->getElementContainingOffset(IROffset);
2603     IROffset -= SL->getElementOffset(Elt);
2604     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2605   }
2606 
2607   // If this is an array, recurse into the field at the specified offset.
2608   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2609     llvm::Type *EltTy = ATy->getElementType();
2610     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2611     IROffset -= IROffset/EltSize*EltSize;
2612     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2613   }
2614 
2615   return false;
2616 }
2617 
2618 
2619 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2620 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2621 llvm::Type *X86_64ABIInfo::
2622 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2623                    QualType SourceTy, unsigned SourceOffset) const {
2624   // The only three choices we have are either double, <2 x float>, or float. We
2625   // pass as float if the last 4 bytes is just padding.  This happens for
2626   // structs that contain 3 floats.
2627   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2628                             SourceOffset*8+64, getContext()))
2629     return llvm::Type::getFloatTy(getVMContext());
2630 
2631   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2632   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2633   // case.
2634   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2635       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2636     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2637 
2638   return llvm::Type::getDoubleTy(getVMContext());
2639 }
2640 
2641 
2642 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2643 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2644 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2645 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2646 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2647 /// etc).
2648 ///
2649 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2650 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2651 /// the 8-byte value references.  PrefType may be null.
2652 ///
2653 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2654 /// an offset into this that we're processing (which is always either 0 or 8).
2655 ///
2656 llvm::Type *X86_64ABIInfo::
2657 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2658                        QualType SourceTy, unsigned SourceOffset) const {
2659   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2660   // returning an 8-byte unit starting with it.  See if we can safely use it.
2661   if (IROffset == 0) {
2662     // Pointers and int64's always fill the 8-byte unit.
2663     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2664         IRType->isIntegerTy(64))
2665       return IRType;
2666 
2667     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2668     // goodness in the source type is just tail padding.  This is allowed to
2669     // kick in for struct {double,int} on the int, but not on
2670     // struct{double,int,int} because we wouldn't return the second int.  We
2671     // have to do this analysis on the source type because we can't depend on
2672     // unions being lowered a specific way etc.
2673     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2674         IRType->isIntegerTy(32) ||
2675         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2676       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2677           cast<llvm::IntegerType>(IRType)->getBitWidth();
2678 
2679       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2680                                 SourceOffset*8+64, getContext()))
2681         return IRType;
2682     }
2683   }
2684 
2685   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2686     // If this is a struct, recurse into the field at the specified offset.
2687     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2688     if (IROffset < SL->getSizeInBytes()) {
2689       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2690       IROffset -= SL->getElementOffset(FieldIdx);
2691 
2692       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2693                                     SourceTy, SourceOffset);
2694     }
2695   }
2696 
2697   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2698     llvm::Type *EltTy = ATy->getElementType();
2699     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2700     unsigned EltOffset = IROffset/EltSize*EltSize;
2701     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2702                                   SourceOffset);
2703   }
2704 
2705   // Okay, we don't have any better idea of what to pass, so we pass this in an
2706   // integer register that isn't too big to fit the rest of the struct.
2707   unsigned TySizeInBytes =
2708     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2709 
2710   assert(TySizeInBytes != SourceOffset && "Empty field?");
2711 
2712   // It is always safe to classify this as an integer type up to i64 that
2713   // isn't larger than the structure.
2714   return llvm::IntegerType::get(getVMContext(),
2715                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2716 }
2717 
2718 
2719 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2720 /// be used as elements of a two register pair to pass or return, return a
2721 /// first class aggregate to represent them.  For example, if the low part of
2722 /// a by-value argument should be passed as i32* and the high part as float,
2723 /// return {i32*, float}.
2724 static llvm::Type *
2725 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2726                            const llvm::DataLayout &TD) {
2727   // In order to correctly satisfy the ABI, we need to the high part to start
2728   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2729   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2730   // the second element at offset 8.  Check for this:
2731   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2732   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2733   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2734   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2735 
2736   // To handle this, we have to increase the size of the low part so that the
2737   // second element will start at an 8 byte offset.  We can't increase the size
2738   // of the second element because it might make us access off the end of the
2739   // struct.
2740   if (HiStart != 8) {
2741     // There are usually two sorts of types the ABI generation code can produce
2742     // for the low part of a pair that aren't 8 bytes in size: float or
2743     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2744     // NaCl).
2745     // Promote these to a larger type.
2746     if (Lo->isFloatTy())
2747       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2748     else {
2749       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2750              && "Invalid/unknown lo type");
2751       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2752     }
2753   }
2754 
2755   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2756 
2757 
2758   // Verify that the second element is at an 8-byte offset.
2759   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2760          "Invalid x86-64 argument pair!");
2761   return Result;
2762 }
2763 
2764 ABIArgInfo X86_64ABIInfo::
2765 classifyReturnType(QualType RetTy) const {
2766   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2767   // classification algorithm.
2768   X86_64ABIInfo::Class Lo, Hi;
2769   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2770 
2771   // Check some invariants.
2772   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2773   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2774 
2775   llvm::Type *ResType = nullptr;
2776   switch (Lo) {
2777   case NoClass:
2778     if (Hi == NoClass)
2779       return ABIArgInfo::getIgnore();
2780     // If the low part is just padding, it takes no register, leave ResType
2781     // null.
2782     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2783            "Unknown missing lo part");
2784     break;
2785 
2786   case SSEUp:
2787   case X87Up:
2788     llvm_unreachable("Invalid classification for lo word.");
2789 
2790     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2791     // hidden argument.
2792   case Memory:
2793     return getIndirectReturnResult(RetTy);
2794 
2795     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2796     // available register of the sequence %rax, %rdx is used.
2797   case Integer:
2798     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2799 
2800     // If we have a sign or zero extended integer, make sure to return Extend
2801     // so that the parameter gets the right LLVM IR attributes.
2802     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2803       // Treat an enum type as its underlying type.
2804       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2805         RetTy = EnumTy->getDecl()->getIntegerType();
2806 
2807       if (RetTy->isIntegralOrEnumerationType() &&
2808           RetTy->isPromotableIntegerType())
2809         return ABIArgInfo::getExtend();
2810     }
2811     break;
2812 
2813     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2814     // available SSE register of the sequence %xmm0, %xmm1 is used.
2815   case SSE:
2816     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2817     break;
2818 
2819     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2820     // returned on the X87 stack in %st0 as 80-bit x87 number.
2821   case X87:
2822     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2823     break;
2824 
2825     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2826     // part of the value is returned in %st0 and the imaginary part in
2827     // %st1.
2828   case ComplexX87:
2829     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2830     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2831                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2832                                     nullptr);
2833     break;
2834   }
2835 
2836   llvm::Type *HighPart = nullptr;
2837   switch (Hi) {
2838     // Memory was handled previously and X87 should
2839     // never occur as a hi class.
2840   case Memory:
2841   case X87:
2842     llvm_unreachable("Invalid classification for hi word.");
2843 
2844   case ComplexX87: // Previously handled.
2845   case NoClass:
2846     break;
2847 
2848   case Integer:
2849     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2850     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2851       return ABIArgInfo::getDirect(HighPart, 8);
2852     break;
2853   case SSE:
2854     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2855     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2856       return ABIArgInfo::getDirect(HighPart, 8);
2857     break;
2858 
2859     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2860     // is passed in the next available eightbyte chunk if the last used
2861     // vector register.
2862     //
2863     // SSEUP should always be preceded by SSE, just widen.
2864   case SSEUp:
2865     assert(Lo == SSE && "Unexpected SSEUp classification.");
2866     ResType = GetByteVectorType(RetTy);
2867     break;
2868 
2869     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2870     // returned together with the previous X87 value in %st0.
2871   case X87Up:
2872     // If X87Up is preceded by X87, we don't need to do
2873     // anything. However, in some cases with unions it may not be
2874     // preceded by X87. In such situations we follow gcc and pass the
2875     // extra bits in an SSE reg.
2876     if (Lo != X87) {
2877       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2878       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2879         return ABIArgInfo::getDirect(HighPart, 8);
2880     }
2881     break;
2882   }
2883 
2884   // If a high part was specified, merge it together with the low part.  It is
2885   // known to pass in the high eightbyte of the result.  We do this by forming a
2886   // first class struct aggregate with the high and low part: {low, high}
2887   if (HighPart)
2888     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2889 
2890   return ABIArgInfo::getDirect(ResType);
2891 }
2892 
2893 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2894   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2895   bool isNamedArg)
2896   const
2897 {
2898   Ty = useFirstFieldIfTransparentUnion(Ty);
2899 
2900   X86_64ABIInfo::Class Lo, Hi;
2901   classify(Ty, 0, Lo, Hi, isNamedArg);
2902 
2903   // Check some invariants.
2904   // FIXME: Enforce these by construction.
2905   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2906   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2907 
2908   neededInt = 0;
2909   neededSSE = 0;
2910   llvm::Type *ResType = nullptr;
2911   switch (Lo) {
2912   case NoClass:
2913     if (Hi == NoClass)
2914       return ABIArgInfo::getIgnore();
2915     // If the low part is just padding, it takes no register, leave ResType
2916     // null.
2917     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2918            "Unknown missing lo part");
2919     break;
2920 
2921     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2922     // on the stack.
2923   case Memory:
2924 
2925     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2926     // COMPLEX_X87, it is passed in memory.
2927   case X87:
2928   case ComplexX87:
2929     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2930       ++neededInt;
2931     return getIndirectResult(Ty, freeIntRegs);
2932 
2933   case SSEUp:
2934   case X87Up:
2935     llvm_unreachable("Invalid classification for lo word.");
2936 
2937     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2938     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2939     // and %r9 is used.
2940   case Integer:
2941     ++neededInt;
2942 
2943     // Pick an 8-byte type based on the preferred type.
2944     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2945 
2946     // If we have a sign or zero extended integer, make sure to return Extend
2947     // so that the parameter gets the right LLVM IR attributes.
2948     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2949       // Treat an enum type as its underlying type.
2950       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2951         Ty = EnumTy->getDecl()->getIntegerType();
2952 
2953       if (Ty->isIntegralOrEnumerationType() &&
2954           Ty->isPromotableIntegerType())
2955         return ABIArgInfo::getExtend();
2956     }
2957 
2958     break;
2959 
2960     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2961     // available SSE register is used, the registers are taken in the
2962     // order from %xmm0 to %xmm7.
2963   case SSE: {
2964     llvm::Type *IRType = CGT.ConvertType(Ty);
2965     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2966     ++neededSSE;
2967     break;
2968   }
2969   }
2970 
2971   llvm::Type *HighPart = nullptr;
2972   switch (Hi) {
2973     // Memory was handled previously, ComplexX87 and X87 should
2974     // never occur as hi classes, and X87Up must be preceded by X87,
2975     // which is passed in memory.
2976   case Memory:
2977   case X87:
2978   case ComplexX87:
2979     llvm_unreachable("Invalid classification for hi word.");
2980 
2981   case NoClass: break;
2982 
2983   case Integer:
2984     ++neededInt;
2985     // Pick an 8-byte type based on the preferred type.
2986     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2987 
2988     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2989       return ABIArgInfo::getDirect(HighPart, 8);
2990     break;
2991 
2992     // X87Up generally doesn't occur here (long double is passed in
2993     // memory), except in situations involving unions.
2994   case X87Up:
2995   case SSE:
2996     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2997 
2998     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2999       return ABIArgInfo::getDirect(HighPart, 8);
3000 
3001     ++neededSSE;
3002     break;
3003 
3004     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3005     // eightbyte is passed in the upper half of the last used SSE
3006     // register.  This only happens when 128-bit vectors are passed.
3007   case SSEUp:
3008     assert(Lo == SSE && "Unexpected SSEUp classification");
3009     ResType = GetByteVectorType(Ty);
3010     break;
3011   }
3012 
3013   // If a high part was specified, merge it together with the low part.  It is
3014   // known to pass in the high eightbyte of the result.  We do this by forming a
3015   // first class struct aggregate with the high and low part: {low, high}
3016   if (HighPart)
3017     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3018 
3019   return ABIArgInfo::getDirect(ResType);
3020 }
3021 
3022 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3023 
3024   if (!getCXXABI().classifyReturnType(FI))
3025     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3026 
3027   // Keep track of the number of assigned registers.
3028   unsigned freeIntRegs = 6, freeSSERegs = 8;
3029 
3030   // If the return value is indirect, then the hidden argument is consuming one
3031   // integer register.
3032   if (FI.getReturnInfo().isIndirect())
3033     --freeIntRegs;
3034 
3035   // The chain argument effectively gives us another free register.
3036   if (FI.isChainCall())
3037     ++freeIntRegs;
3038 
3039   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3040   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3041   // get assigned (in left-to-right order) for passing as follows...
3042   unsigned ArgNo = 0;
3043   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3044        it != ie; ++it, ++ArgNo) {
3045     bool IsNamedArg = ArgNo < NumRequiredArgs;
3046 
3047     unsigned neededInt, neededSSE;
3048     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3049                                     neededSSE, IsNamedArg);
3050 
3051     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3052     // eightbyte of an argument, the whole argument is passed on the
3053     // stack. If registers have already been assigned for some
3054     // eightbytes of such an argument, the assignments get reverted.
3055     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3056       freeIntRegs -= neededInt;
3057       freeSSERegs -= neededSSE;
3058     } else {
3059       it->info = getIndirectResult(it->type, freeIntRegs);
3060     }
3061   }
3062 }
3063 
3064 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3065                                          Address VAListAddr, QualType Ty) {
3066   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3067       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3068   llvm::Value *overflow_arg_area =
3069     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3070 
3071   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3072   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3073   // It isn't stated explicitly in the standard, but in practice we use
3074   // alignment greater than 16 where necessary.
3075   uint64_t Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
3076   if (Align > 8) {
3077     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
3078     llvm::Value *Offset =
3079       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
3080     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
3081     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
3082                                                     CGF.Int64Ty);
3083     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
3084     overflow_arg_area =
3085       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
3086                                  overflow_arg_area->getType(),
3087                                  "overflow_arg_area.align");
3088   }
3089 
3090   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3091   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3092   llvm::Value *Res =
3093     CGF.Builder.CreateBitCast(overflow_arg_area,
3094                               llvm::PointerType::getUnqual(LTy));
3095 
3096   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3097   // l->overflow_arg_area + sizeof(type).
3098   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3099   // an 8 byte boundary.
3100 
3101   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3102   llvm::Value *Offset =
3103       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3104   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3105                                             "overflow_arg_area.next");
3106   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3107 
3108   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3109   return Address(Res, CharUnits::fromQuantity(Align));
3110 }
3111 
3112 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3113                                  QualType Ty) const {
3114   // Assume that va_list type is correct; should be pointer to LLVM type:
3115   // struct {
3116   //   i32 gp_offset;
3117   //   i32 fp_offset;
3118   //   i8* overflow_arg_area;
3119   //   i8* reg_save_area;
3120   // };
3121   unsigned neededInt, neededSSE;
3122 
3123   Ty = getContext().getCanonicalType(Ty);
3124   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3125                                        /*isNamedArg*/false);
3126 
3127   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3128   // in the registers. If not go to step 7.
3129   if (!neededInt && !neededSSE)
3130     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3131 
3132   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3133   // general purpose registers needed to pass type and num_fp to hold
3134   // the number of floating point registers needed.
3135 
3136   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3137   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3138   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3139   //
3140   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3141   // register save space).
3142 
3143   llvm::Value *InRegs = nullptr;
3144   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3145   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3146   if (neededInt) {
3147     gp_offset_p =
3148         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3149                                     "gp_offset_p");
3150     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3151     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3152     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3153   }
3154 
3155   if (neededSSE) {
3156     fp_offset_p =
3157         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3158                                     "fp_offset_p");
3159     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3160     llvm::Value *FitsInFP =
3161       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3162     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3163     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3164   }
3165 
3166   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3167   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3168   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3169   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3170 
3171   // Emit code to load the value if it was passed in registers.
3172 
3173   CGF.EmitBlock(InRegBlock);
3174 
3175   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3176   // an offset of l->gp_offset and/or l->fp_offset. This may require
3177   // copying to a temporary location in case the parameter is passed
3178   // in different register classes or requires an alignment greater
3179   // than 8 for general purpose registers and 16 for XMM registers.
3180   //
3181   // FIXME: This really results in shameful code when we end up needing to
3182   // collect arguments from different places; often what should result in a
3183   // simple assembling of a structure from scattered addresses has many more
3184   // loads than necessary. Can we clean this up?
3185   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3186   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3187       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3188                                   "reg_save_area");
3189 
3190   Address RegAddr = Address::invalid();
3191   if (neededInt && neededSSE) {
3192     // FIXME: Cleanup.
3193     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3194     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3195     Address Tmp = CGF.CreateMemTemp(Ty);
3196     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3197     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3198     llvm::Type *TyLo = ST->getElementType(0);
3199     llvm::Type *TyHi = ST->getElementType(1);
3200     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3201            "Unexpected ABI info for mixed regs");
3202     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3203     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3204     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3205     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3206     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3207     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3208 
3209     // Copy the first element.
3210     llvm::Value *V =
3211       CGF.Builder.CreateDefaultAlignedLoad(
3212                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3213     CGF.Builder.CreateStore(V,
3214                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3215 
3216     // Copy the second element.
3217     V = CGF.Builder.CreateDefaultAlignedLoad(
3218                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3219     CharUnits Offset = CharUnits::fromQuantity(
3220                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3221     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3222 
3223     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3224   } else if (neededInt) {
3225     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3226                       CharUnits::fromQuantity(8));
3227     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3228 
3229     // Copy to a temporary if necessary to ensure the appropriate alignment.
3230     std::pair<CharUnits, CharUnits> SizeAlign =
3231         getContext().getTypeInfoInChars(Ty);
3232     uint64_t TySize = SizeAlign.first.getQuantity();
3233     CharUnits TyAlign = SizeAlign.second;
3234 
3235     // Copy into a temporary if the type is more aligned than the
3236     // register save area.
3237     if (TyAlign.getQuantity() > 8) {
3238       Address Tmp = CGF.CreateMemTemp(Ty);
3239       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3240       RegAddr = Tmp;
3241     }
3242 
3243   } else if (neededSSE == 1) {
3244     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3245                       CharUnits::fromQuantity(16));
3246     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3247   } else {
3248     assert(neededSSE == 2 && "Invalid number of needed registers!");
3249     // SSE registers are spaced 16 bytes apart in the register save
3250     // area, we need to collect the two eightbytes together.
3251     // The ABI isn't explicit about this, but it seems reasonable
3252     // to assume that the slots are 16-byte aligned, since the stack is
3253     // naturally 16-byte aligned and the prologue is expected to store
3254     // all the SSE registers to the RSA.
3255     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3256                                 CharUnits::fromQuantity(16));
3257     Address RegAddrHi =
3258       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3259                                              CharUnits::fromQuantity(16));
3260     llvm::Type *DoubleTy = CGF.DoubleTy;
3261     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3262     llvm::Value *V;
3263     Address Tmp = CGF.CreateMemTemp(Ty);
3264     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3265     V = CGF.Builder.CreateLoad(
3266                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3267     CGF.Builder.CreateStore(V,
3268                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3269     V = CGF.Builder.CreateLoad(
3270                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3271     CGF.Builder.CreateStore(V,
3272           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3273 
3274     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3275   }
3276 
3277   // AMD64-ABI 3.5.7p5: Step 5. Set:
3278   // l->gp_offset = l->gp_offset + num_gp * 8
3279   // l->fp_offset = l->fp_offset + num_fp * 16.
3280   if (neededInt) {
3281     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3282     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3283                             gp_offset_p);
3284   }
3285   if (neededSSE) {
3286     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3287     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3288                             fp_offset_p);
3289   }
3290   CGF.EmitBranch(ContBlock);
3291 
3292   // Emit code to load the value if it was passed in memory.
3293 
3294   CGF.EmitBlock(InMemBlock);
3295   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3296 
3297   // Return the appropriate result.
3298 
3299   CGF.EmitBlock(ContBlock);
3300   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3301                                  "vaarg.addr");
3302   return ResAddr;
3303 }
3304 
3305 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3306                                    QualType Ty) const {
3307   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3308                           CGF.getContext().getTypeInfoInChars(Ty),
3309                           CharUnits::fromQuantity(8),
3310                           /*allowHigherAlign*/ false);
3311 }
3312 
3313 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3314                                       bool IsReturnType) const {
3315 
3316   if (Ty->isVoidType())
3317     return ABIArgInfo::getIgnore();
3318 
3319   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3320     Ty = EnumTy->getDecl()->getIntegerType();
3321 
3322   TypeInfo Info = getContext().getTypeInfo(Ty);
3323   uint64_t Width = Info.Width;
3324   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3325 
3326   const RecordType *RT = Ty->getAs<RecordType>();
3327   if (RT) {
3328     if (!IsReturnType) {
3329       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3330         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3331     }
3332 
3333     if (RT->getDecl()->hasFlexibleArrayMember())
3334       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3335 
3336   }
3337 
3338   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3339   // other targets.
3340   const Type *Base = nullptr;
3341   uint64_t NumElts = 0;
3342   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3343     if (FreeSSERegs >= NumElts) {
3344       FreeSSERegs -= NumElts;
3345       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3346         return ABIArgInfo::getDirect();
3347       return ABIArgInfo::getExpand();
3348     }
3349     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3350   }
3351 
3352 
3353   if (Ty->isMemberPointerType()) {
3354     // If the member pointer is represented by an LLVM int or ptr, pass it
3355     // directly.
3356     llvm::Type *LLTy = CGT.ConvertType(Ty);
3357     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3358       return ABIArgInfo::getDirect();
3359   }
3360 
3361   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3362     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3363     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3364     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3365       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3366 
3367     // Otherwise, coerce it to a small integer.
3368     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3369   }
3370 
3371   // Bool type is always extended to the ABI, other builtin types are not
3372   // extended.
3373   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3374   if (BT && BT->getKind() == BuiltinType::Bool)
3375     return ABIArgInfo::getExtend();
3376 
3377   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3378   // passes them indirectly through memory.
3379   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3380     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3381     if (LDF == &llvm::APFloat::x87DoubleExtended)
3382       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3383   }
3384 
3385   return ABIArgInfo::getDirect();
3386 }
3387 
3388 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3389   bool IsVectorCall =
3390       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3391 
3392   // We can use up to 4 SSE return registers with vectorcall.
3393   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3394   if (!getCXXABI().classifyReturnType(FI))
3395     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3396 
3397   // We can use up to 6 SSE register parameters with vectorcall.
3398   FreeSSERegs = IsVectorCall ? 6 : 0;
3399   for (auto &I : FI.arguments())
3400     I.info = classify(I.type, FreeSSERegs, false);
3401 }
3402 
3403 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3404                                     QualType Ty) const {
3405   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3406                           CGF.getContext().getTypeInfoInChars(Ty),
3407                           CharUnits::fromQuantity(8),
3408                           /*allowHigherAlign*/ false);
3409 }
3410 
3411 // PowerPC-32
3412 namespace {
3413 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3414 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3415 public:
3416   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3417 
3418   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3419                     QualType Ty) const override;
3420 };
3421 
3422 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3423 public:
3424   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3425       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3426 
3427   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3428     // This is recovered from gcc output.
3429     return 1; // r1 is the dedicated stack pointer
3430   }
3431 
3432   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3433                                llvm::Value *Address) const override;
3434 };
3435 
3436 }
3437 
3438 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3439                                       QualType Ty) const {
3440   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3441     // TODO: Implement this. For now ignore.
3442     (void)CTy;
3443     return Address::invalid();
3444   }
3445 
3446   // struct __va_list_tag {
3447   //   unsigned char gpr;
3448   //   unsigned char fpr;
3449   //   unsigned short reserved;
3450   //   void *overflow_arg_area;
3451   //   void *reg_save_area;
3452   // };
3453 
3454   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3455   bool isInt =
3456       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3457 
3458   // All aggregates are passed indirectly?  That doesn't seem consistent
3459   // with the argument-lowering code.
3460   bool isIndirect = Ty->isAggregateType();
3461 
3462   CGBuilderTy &Builder = CGF.Builder;
3463 
3464   // The calling convention either uses 1-2 GPRs or 1 FPR.
3465   Address NumRegsAddr = Address::invalid();
3466   if (isInt) {
3467     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3468   } else {
3469     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3470   }
3471 
3472   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3473 
3474   // "Align" the register count when TY is i64.
3475   if (isI64) {
3476     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3477     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3478   }
3479 
3480   llvm::Value *CC =
3481       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3482 
3483   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3484   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3485   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3486 
3487   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3488 
3489   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3490   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3491 
3492   // Case 1: consume registers.
3493   Address RegAddr = Address::invalid();
3494   {
3495     CGF.EmitBlock(UsingRegs);
3496 
3497     Address RegSaveAreaPtr =
3498       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3499     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3500                       CharUnits::fromQuantity(8));
3501     assert(RegAddr.getElementType() == CGF.Int8Ty);
3502 
3503     // Floating-point registers start after the general-purpose registers.
3504     if (!isInt) {
3505       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3506                                                    CharUnits::fromQuantity(32));
3507     }
3508 
3509     // Get the address of the saved value by scaling the number of
3510     // registers we've used by the number of
3511     CharUnits RegSize = CharUnits::fromQuantity(isInt ? 4 : 8);
3512     llvm::Value *RegOffset =
3513       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3514     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3515                                             RegAddr.getPointer(), RegOffset),
3516                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3517     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3518 
3519     // Increase the used-register count.
3520     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(isI64 ? 2 : 1));
3521     Builder.CreateStore(NumRegs, NumRegsAddr);
3522 
3523     CGF.EmitBranch(Cont);
3524   }
3525 
3526   // Case 2: consume space in the overflow area.
3527   Address MemAddr = Address::invalid();
3528   {
3529     CGF.EmitBlock(UsingOverflow);
3530 
3531     // Everything in the overflow area is rounded up to a size of at least 4.
3532     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3533 
3534     CharUnits Size;
3535     if (!isIndirect) {
3536       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3537       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3538     } else {
3539       Size = CGF.getPointerSize();
3540     }
3541 
3542     Address OverflowAreaAddr =
3543       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3544     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr),
3545                          OverflowAreaAlign);
3546 
3547     // The current address is the address of the varargs element.
3548     // FIXME: do we not need to round up to alignment?
3549     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3550 
3551     // Increase the overflow area.
3552     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3553     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3554     CGF.EmitBranch(Cont);
3555   }
3556 
3557   CGF.EmitBlock(Cont);
3558 
3559   // Merge the cases with a phi.
3560   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3561                                 "vaarg.addr");
3562 
3563   // Load the pointer if the argument was passed indirectly.
3564   if (isIndirect) {
3565     Result = Address(Builder.CreateLoad(Result, "aggr"),
3566                      getContext().getTypeAlignInChars(Ty));
3567   }
3568 
3569   return Result;
3570 }
3571 
3572 bool
3573 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3574                                                 llvm::Value *Address) const {
3575   // This is calculated from the LLVM and GCC tables and verified
3576   // against gcc output.  AFAIK all ABIs use the same encoding.
3577 
3578   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3579 
3580   llvm::IntegerType *i8 = CGF.Int8Ty;
3581   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3582   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3583   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3584 
3585   // 0-31: r0-31, the 4-byte general-purpose registers
3586   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3587 
3588   // 32-63: fp0-31, the 8-byte floating-point registers
3589   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3590 
3591   // 64-76 are various 4-byte special-purpose registers:
3592   // 64: mq
3593   // 65: lr
3594   // 66: ctr
3595   // 67: ap
3596   // 68-75 cr0-7
3597   // 76: xer
3598   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3599 
3600   // 77-108: v0-31, the 16-byte vector registers
3601   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3602 
3603   // 109: vrsave
3604   // 110: vscr
3605   // 111: spe_acc
3606   // 112: spefscr
3607   // 113: sfp
3608   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3609 
3610   return false;
3611 }
3612 
3613 // PowerPC-64
3614 
3615 namespace {
3616 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3617 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3618 public:
3619   enum ABIKind {
3620     ELFv1 = 0,
3621     ELFv2
3622   };
3623 
3624 private:
3625   static const unsigned GPRBits = 64;
3626   ABIKind Kind;
3627   bool HasQPX;
3628 
3629   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3630   // will be passed in a QPX register.
3631   bool IsQPXVectorTy(const Type *Ty) const {
3632     if (!HasQPX)
3633       return false;
3634 
3635     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3636       unsigned NumElements = VT->getNumElements();
3637       if (NumElements == 1)
3638         return false;
3639 
3640       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3641         if (getContext().getTypeSize(Ty) <= 256)
3642           return true;
3643       } else if (VT->getElementType()->
3644                    isSpecificBuiltinType(BuiltinType::Float)) {
3645         if (getContext().getTypeSize(Ty) <= 128)
3646           return true;
3647       }
3648     }
3649 
3650     return false;
3651   }
3652 
3653   bool IsQPXVectorTy(QualType Ty) const {
3654     return IsQPXVectorTy(Ty.getTypePtr());
3655   }
3656 
3657 public:
3658   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3659     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3660 
3661   bool isPromotableTypeForABI(QualType Ty) const;
3662   CharUnits getParamTypeAlignment(QualType Ty) const;
3663 
3664   ABIArgInfo classifyReturnType(QualType RetTy) const;
3665   ABIArgInfo classifyArgumentType(QualType Ty) const;
3666 
3667   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3668   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3669                                          uint64_t Members) const override;
3670 
3671   // TODO: We can add more logic to computeInfo to improve performance.
3672   // Example: For aggregate arguments that fit in a register, we could
3673   // use getDirectInReg (as is done below for structs containing a single
3674   // floating-point value) to avoid pushing them to memory on function
3675   // entry.  This would require changing the logic in PPCISelLowering
3676   // when lowering the parameters in the caller and args in the callee.
3677   void computeInfo(CGFunctionInfo &FI) const override {
3678     if (!getCXXABI().classifyReturnType(FI))
3679       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3680     for (auto &I : FI.arguments()) {
3681       // We rely on the default argument classification for the most part.
3682       // One exception:  An aggregate containing a single floating-point
3683       // or vector item must be passed in a register if one is available.
3684       const Type *T = isSingleElementStruct(I.type, getContext());
3685       if (T) {
3686         const BuiltinType *BT = T->getAs<BuiltinType>();
3687         if (IsQPXVectorTy(T) ||
3688             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3689             (BT && BT->isFloatingPoint())) {
3690           QualType QT(T, 0);
3691           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3692           continue;
3693         }
3694       }
3695       I.info = classifyArgumentType(I.type);
3696     }
3697   }
3698 
3699   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3700                     QualType Ty) const override;
3701 };
3702 
3703 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3704 
3705 public:
3706   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3707                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3708       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3709 
3710   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3711     // This is recovered from gcc output.
3712     return 1; // r1 is the dedicated stack pointer
3713   }
3714 
3715   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3716                                llvm::Value *Address) const override;
3717 };
3718 
3719 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3720 public:
3721   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3722 
3723   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3724     // This is recovered from gcc output.
3725     return 1; // r1 is the dedicated stack pointer
3726   }
3727 
3728   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3729                                llvm::Value *Address) const override;
3730 };
3731 
3732 }
3733 
3734 // Return true if the ABI requires Ty to be passed sign- or zero-
3735 // extended to 64 bits.
3736 bool
3737 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3738   // Treat an enum type as its underlying type.
3739   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3740     Ty = EnumTy->getDecl()->getIntegerType();
3741 
3742   // Promotable integer types are required to be promoted by the ABI.
3743   if (Ty->isPromotableIntegerType())
3744     return true;
3745 
3746   // In addition to the usual promotable integer types, we also need to
3747   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3748   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3749     switch (BT->getKind()) {
3750     case BuiltinType::Int:
3751     case BuiltinType::UInt:
3752       return true;
3753     default:
3754       break;
3755     }
3756 
3757   return false;
3758 }
3759 
3760 /// isAlignedParamType - Determine whether a type requires 16-byte or
3761 /// higher alignment in the parameter area.  Always returns at least 8.
3762 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3763   // Complex types are passed just like their elements.
3764   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3765     Ty = CTy->getElementType();
3766 
3767   // Only vector types of size 16 bytes need alignment (larger types are
3768   // passed via reference, smaller types are not aligned).
3769   if (IsQPXVectorTy(Ty)) {
3770     if (getContext().getTypeSize(Ty) > 128)
3771       return CharUnits::fromQuantity(32);
3772 
3773     return CharUnits::fromQuantity(16);
3774   } else if (Ty->isVectorType()) {
3775     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3776   }
3777 
3778   // For single-element float/vector structs, we consider the whole type
3779   // to have the same alignment requirements as its single element.
3780   const Type *AlignAsType = nullptr;
3781   const Type *EltType = isSingleElementStruct(Ty, getContext());
3782   if (EltType) {
3783     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3784     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3785          getContext().getTypeSize(EltType) == 128) ||
3786         (BT && BT->isFloatingPoint()))
3787       AlignAsType = EltType;
3788   }
3789 
3790   // Likewise for ELFv2 homogeneous aggregates.
3791   const Type *Base = nullptr;
3792   uint64_t Members = 0;
3793   if (!AlignAsType && Kind == ELFv2 &&
3794       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3795     AlignAsType = Base;
3796 
3797   // With special case aggregates, only vector base types need alignment.
3798   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3799     if (getContext().getTypeSize(AlignAsType) > 128)
3800       return CharUnits::fromQuantity(32);
3801 
3802     return CharUnits::fromQuantity(16);
3803   } else if (AlignAsType) {
3804     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3805   }
3806 
3807   // Otherwise, we only need alignment for any aggregate type that
3808   // has an alignment requirement of >= 16 bytes.
3809   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3810     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3811       return CharUnits::fromQuantity(32);
3812     return CharUnits::fromQuantity(16);
3813   }
3814 
3815   return CharUnits::fromQuantity(8);
3816 }
3817 
3818 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3819 /// aggregate.  Base is set to the base element type, and Members is set
3820 /// to the number of base elements.
3821 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3822                                      uint64_t &Members) const {
3823   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3824     uint64_t NElements = AT->getSize().getZExtValue();
3825     if (NElements == 0)
3826       return false;
3827     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3828       return false;
3829     Members *= NElements;
3830   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3831     const RecordDecl *RD = RT->getDecl();
3832     if (RD->hasFlexibleArrayMember())
3833       return false;
3834 
3835     Members = 0;
3836 
3837     // If this is a C++ record, check the bases first.
3838     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3839       for (const auto &I : CXXRD->bases()) {
3840         // Ignore empty records.
3841         if (isEmptyRecord(getContext(), I.getType(), true))
3842           continue;
3843 
3844         uint64_t FldMembers;
3845         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3846           return false;
3847 
3848         Members += FldMembers;
3849       }
3850     }
3851 
3852     for (const auto *FD : RD->fields()) {
3853       // Ignore (non-zero arrays of) empty records.
3854       QualType FT = FD->getType();
3855       while (const ConstantArrayType *AT =
3856              getContext().getAsConstantArrayType(FT)) {
3857         if (AT->getSize().getZExtValue() == 0)
3858           return false;
3859         FT = AT->getElementType();
3860       }
3861       if (isEmptyRecord(getContext(), FT, true))
3862         continue;
3863 
3864       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3865       if (getContext().getLangOpts().CPlusPlus &&
3866           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3867         continue;
3868 
3869       uint64_t FldMembers;
3870       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3871         return false;
3872 
3873       Members = (RD->isUnion() ?
3874                  std::max(Members, FldMembers) : Members + FldMembers);
3875     }
3876 
3877     if (!Base)
3878       return false;
3879 
3880     // Ensure there is no padding.
3881     if (getContext().getTypeSize(Base) * Members !=
3882         getContext().getTypeSize(Ty))
3883       return false;
3884   } else {
3885     Members = 1;
3886     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3887       Members = 2;
3888       Ty = CT->getElementType();
3889     }
3890 
3891     // Most ABIs only support float, double, and some vector type widths.
3892     if (!isHomogeneousAggregateBaseType(Ty))
3893       return false;
3894 
3895     // The base type must be the same for all members.  Types that
3896     // agree in both total size and mode (float vs. vector) are
3897     // treated as being equivalent here.
3898     const Type *TyPtr = Ty.getTypePtr();
3899     if (!Base)
3900       Base = TyPtr;
3901 
3902     if (Base->isVectorType() != TyPtr->isVectorType() ||
3903         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3904       return false;
3905   }
3906   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3907 }
3908 
3909 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3910   // Homogeneous aggregates for ELFv2 must have base types of float,
3911   // double, long double, or 128-bit vectors.
3912   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3913     if (BT->getKind() == BuiltinType::Float ||
3914         BT->getKind() == BuiltinType::Double ||
3915         BT->getKind() == BuiltinType::LongDouble)
3916       return true;
3917   }
3918   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3919     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3920       return true;
3921   }
3922   return false;
3923 }
3924 
3925 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3926     const Type *Base, uint64_t Members) const {
3927   // Vector types require one register, floating point types require one
3928   // or two registers depending on their size.
3929   uint32_t NumRegs =
3930       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3931 
3932   // Homogeneous Aggregates may occupy at most 8 registers.
3933   return Members * NumRegs <= 8;
3934 }
3935 
3936 ABIArgInfo
3937 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3938   Ty = useFirstFieldIfTransparentUnion(Ty);
3939 
3940   if (Ty->isAnyComplexType())
3941     return ABIArgInfo::getDirect();
3942 
3943   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3944   // or via reference (larger than 16 bytes).
3945   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3946     uint64_t Size = getContext().getTypeSize(Ty);
3947     if (Size > 128)
3948       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3949     else if (Size < 128) {
3950       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3951       return ABIArgInfo::getDirect(CoerceTy);
3952     }
3953   }
3954 
3955   if (isAggregateTypeForABI(Ty)) {
3956     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3957       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3958 
3959     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3960     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3961 
3962     // ELFv2 homogeneous aggregates are passed as array types.
3963     const Type *Base = nullptr;
3964     uint64_t Members = 0;
3965     if (Kind == ELFv2 &&
3966         isHomogeneousAggregate(Ty, Base, Members)) {
3967       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3968       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3969       return ABIArgInfo::getDirect(CoerceTy);
3970     }
3971 
3972     // If an aggregate may end up fully in registers, we do not
3973     // use the ByVal method, but pass the aggregate as array.
3974     // This is usually beneficial since we avoid forcing the
3975     // back-end to store the argument to memory.
3976     uint64_t Bits = getContext().getTypeSize(Ty);
3977     if (Bits > 0 && Bits <= 8 * GPRBits) {
3978       llvm::Type *CoerceTy;
3979 
3980       // Types up to 8 bytes are passed as integer type (which will be
3981       // properly aligned in the argument save area doubleword).
3982       if (Bits <= GPRBits)
3983         CoerceTy = llvm::IntegerType::get(getVMContext(),
3984                                           llvm::RoundUpToAlignment(Bits, 8));
3985       // Larger types are passed as arrays, with the base type selected
3986       // according to the required alignment in the save area.
3987       else {
3988         uint64_t RegBits = ABIAlign * 8;
3989         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3990         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3991         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3992       }
3993 
3994       return ABIArgInfo::getDirect(CoerceTy);
3995     }
3996 
3997     // All other aggregates are passed ByVal.
3998     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
3999                                    /*ByVal=*/true,
4000                                    /*Realign=*/TyAlign > ABIAlign);
4001   }
4002 
4003   return (isPromotableTypeForABI(Ty) ?
4004           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4005 }
4006 
4007 ABIArgInfo
4008 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4009   if (RetTy->isVoidType())
4010     return ABIArgInfo::getIgnore();
4011 
4012   if (RetTy->isAnyComplexType())
4013     return ABIArgInfo::getDirect();
4014 
4015   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4016   // or via reference (larger than 16 bytes).
4017   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4018     uint64_t Size = getContext().getTypeSize(RetTy);
4019     if (Size > 128)
4020       return getNaturalAlignIndirect(RetTy);
4021     else if (Size < 128) {
4022       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4023       return ABIArgInfo::getDirect(CoerceTy);
4024     }
4025   }
4026 
4027   if (isAggregateTypeForABI(RetTy)) {
4028     // ELFv2 homogeneous aggregates are returned as array types.
4029     const Type *Base = nullptr;
4030     uint64_t Members = 0;
4031     if (Kind == ELFv2 &&
4032         isHomogeneousAggregate(RetTy, Base, Members)) {
4033       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4034       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4035       return ABIArgInfo::getDirect(CoerceTy);
4036     }
4037 
4038     // ELFv2 small aggregates are returned in up to two registers.
4039     uint64_t Bits = getContext().getTypeSize(RetTy);
4040     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4041       if (Bits == 0)
4042         return ABIArgInfo::getIgnore();
4043 
4044       llvm::Type *CoerceTy;
4045       if (Bits > GPRBits) {
4046         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4047         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4048       } else
4049         CoerceTy = llvm::IntegerType::get(getVMContext(),
4050                                           llvm::RoundUpToAlignment(Bits, 8));
4051       return ABIArgInfo::getDirect(CoerceTy);
4052     }
4053 
4054     // All other aggregates are returned indirectly.
4055     return getNaturalAlignIndirect(RetTy);
4056   }
4057 
4058   return (isPromotableTypeForABI(RetTy) ?
4059           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4060 }
4061 
4062 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4063 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4064                                       QualType Ty) const {
4065   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4066   TypeInfo.second = getParamTypeAlignment(Ty);
4067 
4068   CharUnits SlotSize = CharUnits::fromQuantity(8);
4069 
4070   // If we have a complex type and the base type is smaller than 8 bytes,
4071   // the ABI calls for the real and imaginary parts to be right-adjusted
4072   // in separate doublewords.  However, Clang expects us to produce a
4073   // pointer to a structure with the two parts packed tightly.  So generate
4074   // loads of the real and imaginary parts relative to the va_list pointer,
4075   // and store them to a temporary structure.
4076   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4077     CharUnits EltSize = TypeInfo.first / 2;
4078     if (EltSize < SlotSize) {
4079       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4080                                             SlotSize * 2, SlotSize,
4081                                             SlotSize, /*AllowHigher*/ true);
4082 
4083       Address RealAddr = Addr;
4084       Address ImagAddr = RealAddr;
4085       if (CGF.CGM.getDataLayout().isBigEndian()) {
4086         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4087                                                           SlotSize - EltSize);
4088         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4089                                                       2 * SlotSize - EltSize);
4090       } else {
4091         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4092       }
4093 
4094       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4095       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4096       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4097       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4098       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4099 
4100       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4101       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4102                              /*init*/ true);
4103       return Temp;
4104     }
4105   }
4106 
4107   // Otherwise, just use the general rule.
4108   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4109                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4110 }
4111 
4112 static bool
4113 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4114                               llvm::Value *Address) {
4115   // This is calculated from the LLVM and GCC tables and verified
4116   // against gcc output.  AFAIK all ABIs use the same encoding.
4117 
4118   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4119 
4120   llvm::IntegerType *i8 = CGF.Int8Ty;
4121   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4122   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4123   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4124 
4125   // 0-31: r0-31, the 8-byte general-purpose registers
4126   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4127 
4128   // 32-63: fp0-31, the 8-byte floating-point registers
4129   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4130 
4131   // 64-76 are various 4-byte special-purpose registers:
4132   // 64: mq
4133   // 65: lr
4134   // 66: ctr
4135   // 67: ap
4136   // 68-75 cr0-7
4137   // 76: xer
4138   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4139 
4140   // 77-108: v0-31, the 16-byte vector registers
4141   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4142 
4143   // 109: vrsave
4144   // 110: vscr
4145   // 111: spe_acc
4146   // 112: spefscr
4147   // 113: sfp
4148   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4149 
4150   return false;
4151 }
4152 
4153 bool
4154 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4155   CodeGen::CodeGenFunction &CGF,
4156   llvm::Value *Address) const {
4157 
4158   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4159 }
4160 
4161 bool
4162 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4163                                                 llvm::Value *Address) const {
4164 
4165   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4166 }
4167 
4168 //===----------------------------------------------------------------------===//
4169 // AArch64 ABI Implementation
4170 //===----------------------------------------------------------------------===//
4171 
4172 namespace {
4173 
4174 class AArch64ABIInfo : public ABIInfo {
4175 public:
4176   enum ABIKind {
4177     AAPCS = 0,
4178     DarwinPCS
4179   };
4180 
4181 private:
4182   ABIKind Kind;
4183 
4184 public:
4185   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4186 
4187 private:
4188   ABIKind getABIKind() const { return Kind; }
4189   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4190 
4191   ABIArgInfo classifyReturnType(QualType RetTy) const;
4192   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4193   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4194   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4195                                          uint64_t Members) const override;
4196 
4197   bool isIllegalVectorType(QualType Ty) const;
4198 
4199   void computeInfo(CGFunctionInfo &FI) const override {
4200     if (!getCXXABI().classifyReturnType(FI))
4201       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4202 
4203     for (auto &it : FI.arguments())
4204       it.info = classifyArgumentType(it.type);
4205   }
4206 
4207   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4208                           CodeGenFunction &CGF) const;
4209 
4210   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4211                          CodeGenFunction &CGF) const;
4212 
4213   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4214                     QualType Ty) const override {
4215     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4216                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4217   }
4218 };
4219 
4220 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4221 public:
4222   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4223       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4224 
4225   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4226     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4227   }
4228 
4229   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4230     return 31;
4231   }
4232 
4233   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4234 };
4235 }
4236 
4237 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4238   Ty = useFirstFieldIfTransparentUnion(Ty);
4239 
4240   // Handle illegal vector types here.
4241   if (isIllegalVectorType(Ty)) {
4242     uint64_t Size = getContext().getTypeSize(Ty);
4243     if (Size <= 32) {
4244       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4245       return ABIArgInfo::getDirect(ResType);
4246     }
4247     if (Size == 64) {
4248       llvm::Type *ResType =
4249           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4250       return ABIArgInfo::getDirect(ResType);
4251     }
4252     if (Size == 128) {
4253       llvm::Type *ResType =
4254           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4255       return ABIArgInfo::getDirect(ResType);
4256     }
4257     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4258   }
4259 
4260   if (!isAggregateTypeForABI(Ty)) {
4261     // Treat an enum type as its underlying type.
4262     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4263       Ty = EnumTy->getDecl()->getIntegerType();
4264 
4265     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4266                 ? ABIArgInfo::getExtend()
4267                 : ABIArgInfo::getDirect());
4268   }
4269 
4270   // Structures with either a non-trivial destructor or a non-trivial
4271   // copy constructor are always indirect.
4272   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4273     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4274                                      CGCXXABI::RAA_DirectInMemory);
4275   }
4276 
4277   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4278   // elsewhere for GNU compatibility.
4279   if (isEmptyRecord(getContext(), Ty, true)) {
4280     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4281       return ABIArgInfo::getIgnore();
4282 
4283     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4284   }
4285 
4286   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4287   const Type *Base = nullptr;
4288   uint64_t Members = 0;
4289   if (isHomogeneousAggregate(Ty, Base, Members)) {
4290     return ABIArgInfo::getDirect(
4291         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4292   }
4293 
4294   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4295   uint64_t Size = getContext().getTypeSize(Ty);
4296   if (Size <= 128) {
4297     unsigned Alignment = getContext().getTypeAlign(Ty);
4298     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4299 
4300     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4301     // For aggregates with 16-byte alignment, we use i128.
4302     if (Alignment < 128 && Size == 128) {
4303       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4304       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4305     }
4306     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4307   }
4308 
4309   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4310 }
4311 
4312 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4313   if (RetTy->isVoidType())
4314     return ABIArgInfo::getIgnore();
4315 
4316   // Large vector types should be returned via memory.
4317   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4318     return getNaturalAlignIndirect(RetTy);
4319 
4320   if (!isAggregateTypeForABI(RetTy)) {
4321     // Treat an enum type as its underlying type.
4322     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4323       RetTy = EnumTy->getDecl()->getIntegerType();
4324 
4325     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4326                 ? ABIArgInfo::getExtend()
4327                 : ABIArgInfo::getDirect());
4328   }
4329 
4330   if (isEmptyRecord(getContext(), RetTy, true))
4331     return ABIArgInfo::getIgnore();
4332 
4333   const Type *Base = nullptr;
4334   uint64_t Members = 0;
4335   if (isHomogeneousAggregate(RetTy, Base, Members))
4336     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4337     return ABIArgInfo::getDirect();
4338 
4339   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4340   uint64_t Size = getContext().getTypeSize(RetTy);
4341   if (Size <= 128) {
4342     unsigned Alignment = getContext().getTypeAlign(RetTy);
4343     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4344 
4345     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4346     // For aggregates with 16-byte alignment, we use i128.
4347     if (Alignment < 128 && Size == 128) {
4348       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4349       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4350     }
4351     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4352   }
4353 
4354   return getNaturalAlignIndirect(RetTy);
4355 }
4356 
4357 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4358 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4359   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4360     // Check whether VT is legal.
4361     unsigned NumElements = VT->getNumElements();
4362     uint64_t Size = getContext().getTypeSize(VT);
4363     // NumElements should be power of 2 between 1 and 16.
4364     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4365       return true;
4366     return Size != 64 && (Size != 128 || NumElements == 1);
4367   }
4368   return false;
4369 }
4370 
4371 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4372   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4373   // point type or a short-vector type. This is the same as the 32-bit ABI,
4374   // but with the difference that any floating-point type is allowed,
4375   // including __fp16.
4376   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4377     if (BT->isFloatingPoint())
4378       return true;
4379   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4380     unsigned VecSize = getContext().getTypeSize(VT);
4381     if (VecSize == 64 || VecSize == 128)
4382       return true;
4383   }
4384   return false;
4385 }
4386 
4387 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4388                                                        uint64_t Members) const {
4389   return Members <= 4;
4390 }
4391 
4392 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4393                                             QualType Ty,
4394                                             CodeGenFunction &CGF) const {
4395   ABIArgInfo AI = classifyArgumentType(Ty);
4396   bool IsIndirect = AI.isIndirect();
4397 
4398   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4399   if (IsIndirect)
4400     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4401   else if (AI.getCoerceToType())
4402     BaseTy = AI.getCoerceToType();
4403 
4404   unsigned NumRegs = 1;
4405   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4406     BaseTy = ArrTy->getElementType();
4407     NumRegs = ArrTy->getNumElements();
4408   }
4409   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4410 
4411   // The AArch64 va_list type and handling is specified in the Procedure Call
4412   // Standard, section B.4:
4413   //
4414   // struct {
4415   //   void *__stack;
4416   //   void *__gr_top;
4417   //   void *__vr_top;
4418   //   int __gr_offs;
4419   //   int __vr_offs;
4420   // };
4421 
4422   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4423   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4424   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4425   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4426 
4427   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4428   CharUnits TyAlign = TyInfo.second;
4429 
4430   Address reg_offs_p = Address::invalid();
4431   llvm::Value *reg_offs = nullptr;
4432   int reg_top_index;
4433   CharUnits reg_top_offset;
4434   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4435   if (!IsFPR) {
4436     // 3 is the field number of __gr_offs
4437     reg_offs_p =
4438         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4439                                     "gr_offs_p");
4440     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4441     reg_top_index = 1; // field number for __gr_top
4442     reg_top_offset = CharUnits::fromQuantity(8);
4443     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4444   } else {
4445     // 4 is the field number of __vr_offs.
4446     reg_offs_p =
4447         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4448                                     "vr_offs_p");
4449     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4450     reg_top_index = 2; // field number for __vr_top
4451     reg_top_offset = CharUnits::fromQuantity(16);
4452     RegSize = 16 * NumRegs;
4453   }
4454 
4455   //=======================================
4456   // Find out where argument was passed
4457   //=======================================
4458 
4459   // If reg_offs >= 0 we're already using the stack for this type of
4460   // argument. We don't want to keep updating reg_offs (in case it overflows,
4461   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4462   // whatever they get).
4463   llvm::Value *UsingStack = nullptr;
4464   UsingStack = CGF.Builder.CreateICmpSGE(
4465       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4466 
4467   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4468 
4469   // Otherwise, at least some kind of argument could go in these registers, the
4470   // question is whether this particular type is too big.
4471   CGF.EmitBlock(MaybeRegBlock);
4472 
4473   // Integer arguments may need to correct register alignment (for example a
4474   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4475   // align __gr_offs to calculate the potential address.
4476   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4477     int Align = TyAlign.getQuantity();
4478 
4479     reg_offs = CGF.Builder.CreateAdd(
4480         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4481         "align_regoffs");
4482     reg_offs = CGF.Builder.CreateAnd(
4483         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4484         "aligned_regoffs");
4485   }
4486 
4487   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4488   // The fact that this is done unconditionally reflects the fact that
4489   // allocating an argument to the stack also uses up all the remaining
4490   // registers of the appropriate kind.
4491   llvm::Value *NewOffset = nullptr;
4492   NewOffset = CGF.Builder.CreateAdd(
4493       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4494   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4495 
4496   // Now we're in a position to decide whether this argument really was in
4497   // registers or not.
4498   llvm::Value *InRegs = nullptr;
4499   InRegs = CGF.Builder.CreateICmpSLE(
4500       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4501 
4502   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4503 
4504   //=======================================
4505   // Argument was in registers
4506   //=======================================
4507 
4508   // Now we emit the code for if the argument was originally passed in
4509   // registers. First start the appropriate block:
4510   CGF.EmitBlock(InRegBlock);
4511 
4512   llvm::Value *reg_top = nullptr;
4513   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4514                                                   reg_top_offset, "reg_top_p");
4515   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4516   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4517                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4518   Address RegAddr = Address::invalid();
4519   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4520 
4521   if (IsIndirect) {
4522     // If it's been passed indirectly (actually a struct), whatever we find from
4523     // stored registers or on the stack will actually be a struct **.
4524     MemTy = llvm::PointerType::getUnqual(MemTy);
4525   }
4526 
4527   const Type *Base = nullptr;
4528   uint64_t NumMembers = 0;
4529   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4530   if (IsHFA && NumMembers > 1) {
4531     // Homogeneous aggregates passed in registers will have their elements split
4532     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4533     // qN+1, ...). We reload and store into a temporary local variable
4534     // contiguously.
4535     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4536     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4537     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4538     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4539     Address Tmp = CGF.CreateTempAlloca(HFATy,
4540                                        std::max(TyAlign, BaseTyInfo.second));
4541 
4542     // On big-endian platforms, the value will be right-aligned in its slot.
4543     int Offset = 0;
4544     if (CGF.CGM.getDataLayout().isBigEndian() &&
4545         BaseTyInfo.first.getQuantity() < 16)
4546       Offset = 16 - BaseTyInfo.first.getQuantity();
4547 
4548     for (unsigned i = 0; i < NumMembers; ++i) {
4549       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4550       Address LoadAddr =
4551         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4552       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4553 
4554       Address StoreAddr =
4555         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4556 
4557       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4558       CGF.Builder.CreateStore(Elem, StoreAddr);
4559     }
4560 
4561     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4562   } else {
4563     // Otherwise the object is contiguous in memory.
4564 
4565     // It might be right-aligned in its slot.
4566     CharUnits SlotSize = BaseAddr.getAlignment();
4567     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4568         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4569         TyInfo.first < SlotSize) {
4570       CharUnits Offset = SlotSize - TyInfo.first;
4571       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4572     }
4573 
4574     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4575   }
4576 
4577   CGF.EmitBranch(ContBlock);
4578 
4579   //=======================================
4580   // Argument was on the stack
4581   //=======================================
4582   CGF.EmitBlock(OnStackBlock);
4583 
4584   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4585                                                 CharUnits::Zero(), "stack_p");
4586   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4587 
4588   // Again, stack arguments may need realignment. In this case both integer and
4589   // floating-point ones might be affected.
4590   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4591     int Align = TyAlign.getQuantity();
4592 
4593     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4594 
4595     OnStackPtr = CGF.Builder.CreateAdd(
4596         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4597         "align_stack");
4598     OnStackPtr = CGF.Builder.CreateAnd(
4599         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4600         "align_stack");
4601 
4602     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4603   }
4604   Address OnStackAddr(OnStackPtr,
4605                       std::max(CharUnits::fromQuantity(8), TyAlign));
4606 
4607   // All stack slots are multiples of 8 bytes.
4608   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4609   CharUnits StackSize;
4610   if (IsIndirect)
4611     StackSize = StackSlotSize;
4612   else
4613     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4614 
4615   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4616   llvm::Value *NewStack =
4617       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4618 
4619   // Write the new value of __stack for the next call to va_arg
4620   CGF.Builder.CreateStore(NewStack, stack_p);
4621 
4622   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4623       TyInfo.first < StackSlotSize) {
4624     CharUnits Offset = StackSlotSize - TyInfo.first;
4625     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4626   }
4627 
4628   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4629 
4630   CGF.EmitBranch(ContBlock);
4631 
4632   //=======================================
4633   // Tidy up
4634   //=======================================
4635   CGF.EmitBlock(ContBlock);
4636 
4637   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4638                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4639 
4640   if (IsIndirect)
4641     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4642                    TyInfo.second);
4643 
4644   return ResAddr;
4645 }
4646 
4647 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4648                                         CodeGenFunction &CGF) const {
4649   // The backend's lowering doesn't support va_arg for aggregates or
4650   // illegal vector types.  Lower VAArg here for these cases and use
4651   // the LLVM va_arg instruction for everything else.
4652   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4653     return Address::invalid();
4654 
4655   CharUnits SlotSize = CharUnits::fromQuantity(8);
4656 
4657   // Empty records are ignored for parameter passing purposes.
4658   if (isEmptyRecord(getContext(), Ty, true)) {
4659     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4660     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4661     return Addr;
4662   }
4663 
4664   // The size of the actual thing passed, which might end up just
4665   // being a pointer for indirect types.
4666   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4667 
4668   // Arguments bigger than 16 bytes which aren't homogeneous
4669   // aggregates should be passed indirectly.
4670   bool IsIndirect = false;
4671   if (TyInfo.first.getQuantity() > 16) {
4672     const Type *Base = nullptr;
4673     uint64_t Members = 0;
4674     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4675   }
4676 
4677   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4678                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4679 }
4680 
4681 //===----------------------------------------------------------------------===//
4682 // ARM ABI Implementation
4683 //===----------------------------------------------------------------------===//
4684 
4685 namespace {
4686 
4687 class ARMABIInfo : public ABIInfo {
4688 public:
4689   enum ABIKind {
4690     APCS = 0,
4691     AAPCS = 1,
4692     AAPCS_VFP = 2,
4693     AAPCS16_VFP = 3,
4694   };
4695 
4696 private:
4697   ABIKind Kind;
4698 
4699 public:
4700   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4701     setCCs();
4702   }
4703 
4704   bool isEABI() const {
4705     switch (getTarget().getTriple().getEnvironment()) {
4706     case llvm::Triple::Android:
4707     case llvm::Triple::EABI:
4708     case llvm::Triple::EABIHF:
4709     case llvm::Triple::GNUEABI:
4710     case llvm::Triple::GNUEABIHF:
4711       return true;
4712     default:
4713       return false;
4714     }
4715   }
4716 
4717   bool isEABIHF() const {
4718     switch (getTarget().getTriple().getEnvironment()) {
4719     case llvm::Triple::EABIHF:
4720     case llvm::Triple::GNUEABIHF:
4721       return true;
4722     default:
4723       return false;
4724     }
4725   }
4726 
4727   ABIKind getABIKind() const { return Kind; }
4728 
4729 private:
4730   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4731   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4732   bool isIllegalVectorType(QualType Ty) const;
4733 
4734   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4735   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4736                                          uint64_t Members) const override;
4737 
4738   void computeInfo(CGFunctionInfo &FI) const override;
4739 
4740   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4741                     QualType Ty) const override;
4742 
4743   llvm::CallingConv::ID getLLVMDefaultCC() const;
4744   llvm::CallingConv::ID getABIDefaultCC() const;
4745   void setCCs();
4746 };
4747 
4748 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4749 public:
4750   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4751     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4752 
4753   const ARMABIInfo &getABIInfo() const {
4754     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4755   }
4756 
4757   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4758     return 13;
4759   }
4760 
4761   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4762     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4763   }
4764 
4765   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4766                                llvm::Value *Address) const override {
4767     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4768 
4769     // 0-15 are the 16 integer registers.
4770     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4771     return false;
4772   }
4773 
4774   unsigned getSizeOfUnwindException() const override {
4775     if (getABIInfo().isEABI()) return 88;
4776     return TargetCodeGenInfo::getSizeOfUnwindException();
4777   }
4778 
4779   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4780                            CodeGen::CodeGenModule &CGM) const override {
4781     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4782     if (!FD)
4783       return;
4784 
4785     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4786     if (!Attr)
4787       return;
4788 
4789     const char *Kind;
4790     switch (Attr->getInterrupt()) {
4791     case ARMInterruptAttr::Generic: Kind = ""; break;
4792     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4793     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4794     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4795     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4796     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4797     }
4798 
4799     llvm::Function *Fn = cast<llvm::Function>(GV);
4800 
4801     Fn->addFnAttr("interrupt", Kind);
4802 
4803     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
4804     if (ABI == ARMABIInfo::APCS)
4805       return;
4806 
4807     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4808     // however this is not necessarily true on taking any interrupt. Instruct
4809     // the backend to perform a realignment as part of the function prologue.
4810     llvm::AttrBuilder B;
4811     B.addStackAlignmentAttr(8);
4812     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4813                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4814                                               llvm::AttributeSet::FunctionIndex,
4815                                               B));
4816   }
4817 };
4818 
4819 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4820   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4821                                         CodeGen::CodeGenModule &CGM) const;
4822 
4823 public:
4824   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4825       : ARMTargetCodeGenInfo(CGT, K) {}
4826 
4827   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4828                            CodeGen::CodeGenModule &CGM) const override;
4829 };
4830 
4831 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4832     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4833   if (!isa<FunctionDecl>(D))
4834     return;
4835   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4836     return;
4837 
4838   llvm::Function *F = cast<llvm::Function>(GV);
4839   F->addFnAttr("stack-probe-size",
4840                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4841 }
4842 
4843 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4844     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4845   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4846   addStackProbeSizeTargetAttribute(D, GV, CGM);
4847 }
4848 }
4849 
4850 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4851   if (!getCXXABI().classifyReturnType(FI))
4852     FI.getReturnInfo() =
4853         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4854 
4855   for (auto &I : FI.arguments())
4856     I.info = classifyArgumentType(I.type, FI.isVariadic());
4857 
4858   // Always honor user-specified calling convention.
4859   if (FI.getCallingConvention() != llvm::CallingConv::C)
4860     return;
4861 
4862   llvm::CallingConv::ID cc = getRuntimeCC();
4863   if (cc != llvm::CallingConv::C)
4864     FI.setEffectiveCallingConvention(cc);
4865 }
4866 
4867 /// Return the default calling convention that LLVM will use.
4868 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4869   // The default calling convention that LLVM will infer.
4870   if (isEABIHF() || getTarget().getTriple().isWatchOS())
4871     return llvm::CallingConv::ARM_AAPCS_VFP;
4872   else if (isEABI())
4873     return llvm::CallingConv::ARM_AAPCS;
4874   else
4875     return llvm::CallingConv::ARM_APCS;
4876 }
4877 
4878 /// Return the calling convention that our ABI would like us to use
4879 /// as the C calling convention.
4880 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4881   switch (getABIKind()) {
4882   case APCS: return llvm::CallingConv::ARM_APCS;
4883   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4884   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4885   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4886   }
4887   llvm_unreachable("bad ABI kind");
4888 }
4889 
4890 void ARMABIInfo::setCCs() {
4891   assert(getRuntimeCC() == llvm::CallingConv::C);
4892 
4893   // Don't muddy up the IR with a ton of explicit annotations if
4894   // they'd just match what LLVM will infer from the triple.
4895   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4896   if (abiCC != getLLVMDefaultCC())
4897     RuntimeCC = abiCC;
4898 
4899   // AAPCS apparently requires runtime support functions to be soft-float, but
4900   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
4901   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
4902   switch (getABIKind()) {
4903   case APCS:
4904   case AAPCS16_VFP:
4905     if (abiCC != getLLVMDefaultCC())
4906       BuiltinCC = abiCC;
4907     break;
4908   case AAPCS:
4909   case AAPCS_VFP:
4910     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
4911     break;
4912   }
4913 }
4914 
4915 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4916                                             bool isVariadic) const {
4917   // 6.1.2.1 The following argument types are VFP CPRCs:
4918   //   A single-precision floating-point type (including promoted
4919   //   half-precision types); A double-precision floating-point type;
4920   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4921   //   with a Base Type of a single- or double-precision floating-point type,
4922   //   64-bit containerized vectors or 128-bit containerized vectors with one
4923   //   to four Elements.
4924   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4925 
4926   Ty = useFirstFieldIfTransparentUnion(Ty);
4927 
4928   // Handle illegal vector types here.
4929   if (isIllegalVectorType(Ty)) {
4930     uint64_t Size = getContext().getTypeSize(Ty);
4931     if (Size <= 32) {
4932       llvm::Type *ResType =
4933           llvm::Type::getInt32Ty(getVMContext());
4934       return ABIArgInfo::getDirect(ResType);
4935     }
4936     if (Size == 64) {
4937       llvm::Type *ResType = llvm::VectorType::get(
4938           llvm::Type::getInt32Ty(getVMContext()), 2);
4939       return ABIArgInfo::getDirect(ResType);
4940     }
4941     if (Size == 128) {
4942       llvm::Type *ResType = llvm::VectorType::get(
4943           llvm::Type::getInt32Ty(getVMContext()), 4);
4944       return ABIArgInfo::getDirect(ResType);
4945     }
4946     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4947   }
4948 
4949   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
4950   // unspecified. This is not done for OpenCL as it handles the half type
4951   // natively, and does not need to interwork with AAPCS code.
4952   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
4953     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
4954       llvm::Type::getFloatTy(getVMContext()) :
4955       llvm::Type::getInt32Ty(getVMContext());
4956     return ABIArgInfo::getDirect(ResType);
4957   }
4958 
4959   if (!isAggregateTypeForABI(Ty)) {
4960     // Treat an enum type as its underlying type.
4961     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4962       Ty = EnumTy->getDecl()->getIntegerType();
4963     }
4964 
4965     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4966                                           : ABIArgInfo::getDirect());
4967   }
4968 
4969   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4970     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4971   }
4972 
4973   // Ignore empty records.
4974   if (isEmptyRecord(getContext(), Ty, true))
4975     return ABIArgInfo::getIgnore();
4976 
4977   if (IsEffectivelyAAPCS_VFP) {
4978     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4979     // into VFP registers.
4980     const Type *Base = nullptr;
4981     uint64_t Members = 0;
4982     if (isHomogeneousAggregate(Ty, Base, Members)) {
4983       assert(Base && "Base class should be set for homogeneous aggregate");
4984       // Base can be a floating-point or a vector.
4985       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4986     }
4987   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
4988     // WatchOS does have homogeneous aggregates. Note that we intentionally use
4989     // this convention even for a variadic function: the backend will use GPRs
4990     // if needed.
4991     const Type *Base = nullptr;
4992     uint64_t Members = 0;
4993     if (isHomogeneousAggregate(Ty, Base, Members)) {
4994       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
4995       llvm::Type *Ty =
4996         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
4997       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
4998     }
4999   }
5000 
5001   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5002       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5003     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5004     // bigger than 128-bits, they get placed in space allocated by the caller,
5005     // and a pointer is passed.
5006     return ABIArgInfo::getIndirect(
5007         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5008   }
5009 
5010   // Support byval for ARM.
5011   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5012   // most 8-byte. We realign the indirect argument if type alignment is bigger
5013   // than ABI alignment.
5014   uint64_t ABIAlign = 4;
5015   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5016   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5017        getABIKind() == ARMABIInfo::AAPCS)
5018     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5019 
5020   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5021     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5022     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5023                                    /*ByVal=*/true,
5024                                    /*Realign=*/TyAlign > ABIAlign);
5025   }
5026 
5027   // Otherwise, pass by coercing to a structure of the appropriate size.
5028   llvm::Type* ElemTy;
5029   unsigned SizeRegs;
5030   // FIXME: Try to match the types of the arguments more accurately where
5031   // we can.
5032   if (getContext().getTypeAlign(Ty) <= 32) {
5033     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5034     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5035   } else {
5036     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5037     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5038   }
5039 
5040   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5041 }
5042 
5043 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5044                               llvm::LLVMContext &VMContext) {
5045   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5046   // is called integer-like if its size is less than or equal to one word, and
5047   // the offset of each of its addressable sub-fields is zero.
5048 
5049   uint64_t Size = Context.getTypeSize(Ty);
5050 
5051   // Check that the type fits in a word.
5052   if (Size > 32)
5053     return false;
5054 
5055   // FIXME: Handle vector types!
5056   if (Ty->isVectorType())
5057     return false;
5058 
5059   // Float types are never treated as "integer like".
5060   if (Ty->isRealFloatingType())
5061     return false;
5062 
5063   // If this is a builtin or pointer type then it is ok.
5064   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5065     return true;
5066 
5067   // Small complex integer types are "integer like".
5068   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5069     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5070 
5071   // Single element and zero sized arrays should be allowed, by the definition
5072   // above, but they are not.
5073 
5074   // Otherwise, it must be a record type.
5075   const RecordType *RT = Ty->getAs<RecordType>();
5076   if (!RT) return false;
5077 
5078   // Ignore records with flexible arrays.
5079   const RecordDecl *RD = RT->getDecl();
5080   if (RD->hasFlexibleArrayMember())
5081     return false;
5082 
5083   // Check that all sub-fields are at offset 0, and are themselves "integer
5084   // like".
5085   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5086 
5087   bool HadField = false;
5088   unsigned idx = 0;
5089   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5090        i != e; ++i, ++idx) {
5091     const FieldDecl *FD = *i;
5092 
5093     // Bit-fields are not addressable, we only need to verify they are "integer
5094     // like". We still have to disallow a subsequent non-bitfield, for example:
5095     //   struct { int : 0; int x }
5096     // is non-integer like according to gcc.
5097     if (FD->isBitField()) {
5098       if (!RD->isUnion())
5099         HadField = true;
5100 
5101       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5102         return false;
5103 
5104       continue;
5105     }
5106 
5107     // Check if this field is at offset 0.
5108     if (Layout.getFieldOffset(idx) != 0)
5109       return false;
5110 
5111     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5112       return false;
5113 
5114     // Only allow at most one field in a structure. This doesn't match the
5115     // wording above, but follows gcc in situations with a field following an
5116     // empty structure.
5117     if (!RD->isUnion()) {
5118       if (HadField)
5119         return false;
5120 
5121       HadField = true;
5122     }
5123   }
5124 
5125   return true;
5126 }
5127 
5128 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5129                                           bool isVariadic) const {
5130   bool IsEffectivelyAAPCS_VFP =
5131       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5132 
5133   if (RetTy->isVoidType())
5134     return ABIArgInfo::getIgnore();
5135 
5136   // Large vector types should be returned via memory.
5137   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5138     return getNaturalAlignIndirect(RetTy);
5139   }
5140 
5141   // __fp16 gets returned as if it were an int or float, but with the top 16
5142   // bits unspecified. This is not done for OpenCL as it handles the half type
5143   // natively, and does not need to interwork with AAPCS code.
5144   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5145     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5146       llvm::Type::getFloatTy(getVMContext()) :
5147       llvm::Type::getInt32Ty(getVMContext());
5148     return ABIArgInfo::getDirect(ResType);
5149   }
5150 
5151   if (!isAggregateTypeForABI(RetTy)) {
5152     // Treat an enum type as its underlying type.
5153     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5154       RetTy = EnumTy->getDecl()->getIntegerType();
5155 
5156     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5157                                             : ABIArgInfo::getDirect();
5158   }
5159 
5160   // Are we following APCS?
5161   if (getABIKind() == APCS) {
5162     if (isEmptyRecord(getContext(), RetTy, false))
5163       return ABIArgInfo::getIgnore();
5164 
5165     // Complex types are all returned as packed integers.
5166     //
5167     // FIXME: Consider using 2 x vector types if the back end handles them
5168     // correctly.
5169     if (RetTy->isAnyComplexType())
5170       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5171           getVMContext(), getContext().getTypeSize(RetTy)));
5172 
5173     // Integer like structures are returned in r0.
5174     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5175       // Return in the smallest viable integer type.
5176       uint64_t Size = getContext().getTypeSize(RetTy);
5177       if (Size <= 8)
5178         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5179       if (Size <= 16)
5180         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5181       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5182     }
5183 
5184     // Otherwise return in memory.
5185     return getNaturalAlignIndirect(RetTy);
5186   }
5187 
5188   // Otherwise this is an AAPCS variant.
5189 
5190   if (isEmptyRecord(getContext(), RetTy, true))
5191     return ABIArgInfo::getIgnore();
5192 
5193   // Check for homogeneous aggregates with AAPCS-VFP.
5194   if (IsEffectivelyAAPCS_VFP) {
5195     const Type *Base = nullptr;
5196     uint64_t Members = 0;
5197     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5198       assert(Base && "Base class should be set for homogeneous aggregate");
5199       // Homogeneous Aggregates are returned directly.
5200       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5201     }
5202   }
5203 
5204   // Aggregates <= 4 bytes are returned in r0; other aggregates
5205   // are returned indirectly.
5206   uint64_t Size = getContext().getTypeSize(RetTy);
5207   if (Size <= 32) {
5208     if (getDataLayout().isBigEndian())
5209       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5210       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5211 
5212     // Return in the smallest viable integer type.
5213     if (Size <= 8)
5214       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5215     if (Size <= 16)
5216       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5217     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5218   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5219     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5220     llvm::Type *CoerceTy =
5221         llvm::ArrayType::get(Int32Ty, llvm::RoundUpToAlignment(Size, 32) / 32);
5222     return ABIArgInfo::getDirect(CoerceTy);
5223   }
5224 
5225   return getNaturalAlignIndirect(RetTy);
5226 }
5227 
5228 /// isIllegalVector - check whether Ty is an illegal vector type.
5229 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5230   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5231     // Check whether VT is legal.
5232     unsigned NumElements = VT->getNumElements();
5233     uint64_t Size = getContext().getTypeSize(VT);
5234     // NumElements should be power of 2.
5235     if ((NumElements & (NumElements - 1)) != 0)
5236       return true;
5237     // Size should be greater than 32 bits.
5238     return Size <= 32;
5239   }
5240   return false;
5241 }
5242 
5243 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5244   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5245   // double, or 64-bit or 128-bit vectors.
5246   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5247     if (BT->getKind() == BuiltinType::Float ||
5248         BT->getKind() == BuiltinType::Double ||
5249         BT->getKind() == BuiltinType::LongDouble)
5250       return true;
5251   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5252     unsigned VecSize = getContext().getTypeSize(VT);
5253     if (VecSize == 64 || VecSize == 128)
5254       return true;
5255   }
5256   return false;
5257 }
5258 
5259 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5260                                                    uint64_t Members) const {
5261   return Members <= 4;
5262 }
5263 
5264 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5265                               QualType Ty) const {
5266   CharUnits SlotSize = CharUnits::fromQuantity(4);
5267 
5268   // Empty records are ignored for parameter passing purposes.
5269   if (isEmptyRecord(getContext(), Ty, true)) {
5270     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5271     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5272     return Addr;
5273   }
5274 
5275   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5276   CharUnits TyAlignForABI = TyInfo.second;
5277 
5278   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5279   bool IsIndirect = false;
5280   const Type *Base = nullptr;
5281   uint64_t Members = 0;
5282   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5283     IsIndirect = true;
5284 
5285   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5286   // allocated by the caller.
5287   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5288              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5289              !isHomogeneousAggregate(Ty, Base, Members)) {
5290     IsIndirect = true;
5291 
5292   // Otherwise, bound the type's ABI alignment.
5293   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5294   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5295   // Our callers should be prepared to handle an under-aligned address.
5296   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5297              getABIKind() == ARMABIInfo::AAPCS) {
5298     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5299     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5300   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5301     // ARMv7k allows type alignment up to 16 bytes.
5302     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5303     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5304   } else {
5305     TyAlignForABI = CharUnits::fromQuantity(4);
5306   }
5307   TyInfo.second = TyAlignForABI;
5308 
5309   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5310                           SlotSize, /*AllowHigherAlign*/ true);
5311 }
5312 
5313 //===----------------------------------------------------------------------===//
5314 // NVPTX ABI Implementation
5315 //===----------------------------------------------------------------------===//
5316 
5317 namespace {
5318 
5319 class NVPTXABIInfo : public ABIInfo {
5320 public:
5321   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5322 
5323   ABIArgInfo classifyReturnType(QualType RetTy) const;
5324   ABIArgInfo classifyArgumentType(QualType Ty) const;
5325 
5326   void computeInfo(CGFunctionInfo &FI) const override;
5327   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5328                     QualType Ty) const override;
5329 };
5330 
5331 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5332 public:
5333   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5334     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5335 
5336   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5337                            CodeGen::CodeGenModule &M) const override;
5338 private:
5339   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5340   // resulting MDNode to the nvvm.annotations MDNode.
5341   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5342 };
5343 
5344 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5345   if (RetTy->isVoidType())
5346     return ABIArgInfo::getIgnore();
5347 
5348   // note: this is different from default ABI
5349   if (!RetTy->isScalarType())
5350     return ABIArgInfo::getDirect();
5351 
5352   // Treat an enum type as its underlying type.
5353   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5354     RetTy = EnumTy->getDecl()->getIntegerType();
5355 
5356   return (RetTy->isPromotableIntegerType() ?
5357           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5358 }
5359 
5360 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5361   // Treat an enum type as its underlying type.
5362   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5363     Ty = EnumTy->getDecl()->getIntegerType();
5364 
5365   // Return aggregates type as indirect by value
5366   if (isAggregateTypeForABI(Ty))
5367     return getNaturalAlignIndirect(Ty, /* byval */ true);
5368 
5369   return (Ty->isPromotableIntegerType() ?
5370           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5371 }
5372 
5373 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5374   if (!getCXXABI().classifyReturnType(FI))
5375     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5376   for (auto &I : FI.arguments())
5377     I.info = classifyArgumentType(I.type);
5378 
5379   // Always honor user-specified calling convention.
5380   if (FI.getCallingConvention() != llvm::CallingConv::C)
5381     return;
5382 
5383   FI.setEffectiveCallingConvention(getRuntimeCC());
5384 }
5385 
5386 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5387                                 QualType Ty) const {
5388   llvm_unreachable("NVPTX does not support varargs");
5389 }
5390 
5391 void NVPTXTargetCodeGenInfo::
5392 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5393                     CodeGen::CodeGenModule &M) const{
5394   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5395   if (!FD) return;
5396 
5397   llvm::Function *F = cast<llvm::Function>(GV);
5398 
5399   // Perform special handling in OpenCL mode
5400   if (M.getLangOpts().OpenCL) {
5401     // Use OpenCL function attributes to check for kernel functions
5402     // By default, all functions are device functions
5403     if (FD->hasAttr<OpenCLKernelAttr>()) {
5404       // OpenCL __kernel functions get kernel metadata
5405       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5406       addNVVMMetadata(F, "kernel", 1);
5407       // And kernel functions are not subject to inlining
5408       F->addFnAttr(llvm::Attribute::NoInline);
5409     }
5410   }
5411 
5412   // Perform special handling in CUDA mode.
5413   if (M.getLangOpts().CUDA) {
5414     // CUDA __global__ functions get a kernel metadata entry.  Since
5415     // __global__ functions cannot be called from the device, we do not
5416     // need to set the noinline attribute.
5417     if (FD->hasAttr<CUDAGlobalAttr>()) {
5418       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5419       addNVVMMetadata(F, "kernel", 1);
5420     }
5421     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5422       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5423       llvm::APSInt MaxThreads(32);
5424       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5425       if (MaxThreads > 0)
5426         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5427 
5428       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5429       // not specified in __launch_bounds__ or if the user specified a 0 value,
5430       // we don't have to add a PTX directive.
5431       if (Attr->getMinBlocks()) {
5432         llvm::APSInt MinBlocks(32);
5433         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5434         if (MinBlocks > 0)
5435           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5436           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5437       }
5438     }
5439   }
5440 }
5441 
5442 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5443                                              int Operand) {
5444   llvm::Module *M = F->getParent();
5445   llvm::LLVMContext &Ctx = M->getContext();
5446 
5447   // Get "nvvm.annotations" metadata node
5448   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5449 
5450   llvm::Metadata *MDVals[] = {
5451       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5452       llvm::ConstantAsMetadata::get(
5453           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5454   // Append metadata to nvvm.annotations
5455   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5456 }
5457 }
5458 
5459 //===----------------------------------------------------------------------===//
5460 // SystemZ ABI Implementation
5461 //===----------------------------------------------------------------------===//
5462 
5463 namespace {
5464 
5465 class SystemZABIInfo : public ABIInfo {
5466   bool HasVector;
5467 
5468 public:
5469   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5470     : ABIInfo(CGT), HasVector(HV) {}
5471 
5472   bool isPromotableIntegerType(QualType Ty) const;
5473   bool isCompoundType(QualType Ty) const;
5474   bool isVectorArgumentType(QualType Ty) const;
5475   bool isFPArgumentType(QualType Ty) const;
5476   QualType GetSingleElementType(QualType Ty) const;
5477 
5478   ABIArgInfo classifyReturnType(QualType RetTy) const;
5479   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5480 
5481   void computeInfo(CGFunctionInfo &FI) const override {
5482     if (!getCXXABI().classifyReturnType(FI))
5483       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5484     for (auto &I : FI.arguments())
5485       I.info = classifyArgumentType(I.type);
5486   }
5487 
5488   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5489                     QualType Ty) const override;
5490 };
5491 
5492 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5493 public:
5494   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5495     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5496 };
5497 
5498 }
5499 
5500 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5501   // Treat an enum type as its underlying type.
5502   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5503     Ty = EnumTy->getDecl()->getIntegerType();
5504 
5505   // Promotable integer types are required to be promoted by the ABI.
5506   if (Ty->isPromotableIntegerType())
5507     return true;
5508 
5509   // 32-bit values must also be promoted.
5510   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5511     switch (BT->getKind()) {
5512     case BuiltinType::Int:
5513     case BuiltinType::UInt:
5514       return true;
5515     default:
5516       return false;
5517     }
5518   return false;
5519 }
5520 
5521 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5522   return (Ty->isAnyComplexType() ||
5523           Ty->isVectorType() ||
5524           isAggregateTypeForABI(Ty));
5525 }
5526 
5527 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5528   return (HasVector &&
5529           Ty->isVectorType() &&
5530           getContext().getTypeSize(Ty) <= 128);
5531 }
5532 
5533 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5534   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5535     switch (BT->getKind()) {
5536     case BuiltinType::Float:
5537     case BuiltinType::Double:
5538       return true;
5539     default:
5540       return false;
5541     }
5542 
5543   return false;
5544 }
5545 
5546 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5547   if (const RecordType *RT = Ty->getAsStructureType()) {
5548     const RecordDecl *RD = RT->getDecl();
5549     QualType Found;
5550 
5551     // If this is a C++ record, check the bases first.
5552     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5553       for (const auto &I : CXXRD->bases()) {
5554         QualType Base = I.getType();
5555 
5556         // Empty bases don't affect things either way.
5557         if (isEmptyRecord(getContext(), Base, true))
5558           continue;
5559 
5560         if (!Found.isNull())
5561           return Ty;
5562         Found = GetSingleElementType(Base);
5563       }
5564 
5565     // Check the fields.
5566     for (const auto *FD : RD->fields()) {
5567       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5568       // Unlike isSingleElementStruct(), empty structure and array fields
5569       // do count.  So do anonymous bitfields that aren't zero-sized.
5570       if (getContext().getLangOpts().CPlusPlus &&
5571           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5572         continue;
5573 
5574       // Unlike isSingleElementStruct(), arrays do not count.
5575       // Nested structures still do though.
5576       if (!Found.isNull())
5577         return Ty;
5578       Found = GetSingleElementType(FD->getType());
5579     }
5580 
5581     // Unlike isSingleElementStruct(), trailing padding is allowed.
5582     // An 8-byte aligned struct s { float f; } is passed as a double.
5583     if (!Found.isNull())
5584       return Found;
5585   }
5586 
5587   return Ty;
5588 }
5589 
5590 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5591                                   QualType Ty) const {
5592   // Assume that va_list type is correct; should be pointer to LLVM type:
5593   // struct {
5594   //   i64 __gpr;
5595   //   i64 __fpr;
5596   //   i8 *__overflow_arg_area;
5597   //   i8 *__reg_save_area;
5598   // };
5599 
5600   // Every non-vector argument occupies 8 bytes and is passed by preference
5601   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5602   // always passed on the stack.
5603   Ty = getContext().getCanonicalType(Ty);
5604   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5605   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5606   llvm::Type *DirectTy = ArgTy;
5607   ABIArgInfo AI = classifyArgumentType(Ty);
5608   bool IsIndirect = AI.isIndirect();
5609   bool InFPRs = false;
5610   bool IsVector = false;
5611   CharUnits UnpaddedSize;
5612   CharUnits DirectAlign;
5613   if (IsIndirect) {
5614     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5615     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5616   } else {
5617     if (AI.getCoerceToType())
5618       ArgTy = AI.getCoerceToType();
5619     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5620     IsVector = ArgTy->isVectorTy();
5621     UnpaddedSize = TyInfo.first;
5622     DirectAlign = TyInfo.second;
5623   }
5624   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5625   if (IsVector && UnpaddedSize > PaddedSize)
5626     PaddedSize = CharUnits::fromQuantity(16);
5627   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5628 
5629   CharUnits Padding = (PaddedSize - UnpaddedSize);
5630 
5631   llvm::Type *IndexTy = CGF.Int64Ty;
5632   llvm::Value *PaddedSizeV =
5633     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5634 
5635   if (IsVector) {
5636     // Work out the address of a vector argument on the stack.
5637     // Vector arguments are always passed in the high bits of a
5638     // single (8 byte) or double (16 byte) stack slot.
5639     Address OverflowArgAreaPtr =
5640       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5641                                   "overflow_arg_area_ptr");
5642     Address OverflowArgArea =
5643       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5644               TyInfo.second);
5645     Address MemAddr =
5646       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5647 
5648     // Update overflow_arg_area_ptr pointer
5649     llvm::Value *NewOverflowArgArea =
5650       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5651                             "overflow_arg_area");
5652     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5653 
5654     return MemAddr;
5655   }
5656 
5657   assert(PaddedSize.getQuantity() == 8);
5658 
5659   unsigned MaxRegs, RegCountField, RegSaveIndex;
5660   CharUnits RegPadding;
5661   if (InFPRs) {
5662     MaxRegs = 4; // Maximum of 4 FPR arguments
5663     RegCountField = 1; // __fpr
5664     RegSaveIndex = 16; // save offset for f0
5665     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5666   } else {
5667     MaxRegs = 5; // Maximum of 5 GPR arguments
5668     RegCountField = 0; // __gpr
5669     RegSaveIndex = 2; // save offset for r2
5670     RegPadding = Padding; // values are passed in the low bits of a GPR
5671   }
5672 
5673   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5674       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5675       "reg_count_ptr");
5676   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5677   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5678   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5679                                                  "fits_in_regs");
5680 
5681   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5682   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5683   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5684   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5685 
5686   // Emit code to load the value if it was passed in registers.
5687   CGF.EmitBlock(InRegBlock);
5688 
5689   // Work out the address of an argument register.
5690   llvm::Value *ScaledRegCount =
5691     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5692   llvm::Value *RegBase =
5693     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5694                                       + RegPadding.getQuantity());
5695   llvm::Value *RegOffset =
5696     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5697   Address RegSaveAreaPtr =
5698       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5699                                   "reg_save_area_ptr");
5700   llvm::Value *RegSaveArea =
5701     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5702   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5703                                            "raw_reg_addr"),
5704                      PaddedSize);
5705   Address RegAddr =
5706     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5707 
5708   // Update the register count
5709   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5710   llvm::Value *NewRegCount =
5711     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5712   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5713   CGF.EmitBranch(ContBlock);
5714 
5715   // Emit code to load the value if it was passed in memory.
5716   CGF.EmitBlock(InMemBlock);
5717 
5718   // Work out the address of a stack argument.
5719   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5720       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5721   Address OverflowArgArea =
5722     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5723             PaddedSize);
5724   Address RawMemAddr =
5725     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5726   Address MemAddr =
5727     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5728 
5729   // Update overflow_arg_area_ptr pointer
5730   llvm::Value *NewOverflowArgArea =
5731     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5732                           "overflow_arg_area");
5733   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5734   CGF.EmitBranch(ContBlock);
5735 
5736   // Return the appropriate result.
5737   CGF.EmitBlock(ContBlock);
5738   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5739                                  MemAddr, InMemBlock, "va_arg.addr");
5740 
5741   if (IsIndirect)
5742     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5743                       TyInfo.second);
5744 
5745   return ResAddr;
5746 }
5747 
5748 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5749   if (RetTy->isVoidType())
5750     return ABIArgInfo::getIgnore();
5751   if (isVectorArgumentType(RetTy))
5752     return ABIArgInfo::getDirect();
5753   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5754     return getNaturalAlignIndirect(RetTy);
5755   return (isPromotableIntegerType(RetTy) ?
5756           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5757 }
5758 
5759 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5760   // Handle the generic C++ ABI.
5761   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5762     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5763 
5764   // Integers and enums are extended to full register width.
5765   if (isPromotableIntegerType(Ty))
5766     return ABIArgInfo::getExtend();
5767 
5768   // Handle vector types and vector-like structure types.  Note that
5769   // as opposed to float-like structure types, we do not allow any
5770   // padding for vector-like structures, so verify the sizes match.
5771   uint64_t Size = getContext().getTypeSize(Ty);
5772   QualType SingleElementTy = GetSingleElementType(Ty);
5773   if (isVectorArgumentType(SingleElementTy) &&
5774       getContext().getTypeSize(SingleElementTy) == Size)
5775     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5776 
5777   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5778   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5779     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5780 
5781   // Handle small structures.
5782   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5783     // Structures with flexible arrays have variable length, so really
5784     // fail the size test above.
5785     const RecordDecl *RD = RT->getDecl();
5786     if (RD->hasFlexibleArrayMember())
5787       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5788 
5789     // The structure is passed as an unextended integer, a float, or a double.
5790     llvm::Type *PassTy;
5791     if (isFPArgumentType(SingleElementTy)) {
5792       assert(Size == 32 || Size == 64);
5793       if (Size == 32)
5794         PassTy = llvm::Type::getFloatTy(getVMContext());
5795       else
5796         PassTy = llvm::Type::getDoubleTy(getVMContext());
5797     } else
5798       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5799     return ABIArgInfo::getDirect(PassTy);
5800   }
5801 
5802   // Non-structure compounds are passed indirectly.
5803   if (isCompoundType(Ty))
5804     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5805 
5806   return ABIArgInfo::getDirect(nullptr);
5807 }
5808 
5809 //===----------------------------------------------------------------------===//
5810 // MSP430 ABI Implementation
5811 //===----------------------------------------------------------------------===//
5812 
5813 namespace {
5814 
5815 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5816 public:
5817   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5818     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5819   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5820                            CodeGen::CodeGenModule &M) const override;
5821 };
5822 
5823 }
5824 
5825 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5826                                                   llvm::GlobalValue *GV,
5827                                              CodeGen::CodeGenModule &M) const {
5828   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5829     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5830       // Handle 'interrupt' attribute:
5831       llvm::Function *F = cast<llvm::Function>(GV);
5832 
5833       // Step 1: Set ISR calling convention.
5834       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5835 
5836       // Step 2: Add attributes goodness.
5837       F->addFnAttr(llvm::Attribute::NoInline);
5838 
5839       // Step 3: Emit ISR vector alias.
5840       unsigned Num = attr->getNumber() / 2;
5841       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5842                                 "__isr_" + Twine(Num), F);
5843     }
5844   }
5845 }
5846 
5847 //===----------------------------------------------------------------------===//
5848 // MIPS ABI Implementation.  This works for both little-endian and
5849 // big-endian variants.
5850 //===----------------------------------------------------------------------===//
5851 
5852 namespace {
5853 class MipsABIInfo : public ABIInfo {
5854   bool IsO32;
5855   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5856   void CoerceToIntArgs(uint64_t TySize,
5857                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5858   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5859   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5860   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5861 public:
5862   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5863     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5864     StackAlignInBytes(IsO32 ? 8 : 16) {}
5865 
5866   ABIArgInfo classifyReturnType(QualType RetTy) const;
5867   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5868   void computeInfo(CGFunctionInfo &FI) const override;
5869   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5870                     QualType Ty) const override;
5871   bool shouldSignExtUnsignedType(QualType Ty) const override;
5872 };
5873 
5874 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5875   unsigned SizeOfUnwindException;
5876 public:
5877   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5878     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5879       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5880 
5881   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5882     return 29;
5883   }
5884 
5885   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5886                            CodeGen::CodeGenModule &CGM) const override {
5887     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5888     if (!FD) return;
5889     llvm::Function *Fn = cast<llvm::Function>(GV);
5890     if (FD->hasAttr<Mips16Attr>()) {
5891       Fn->addFnAttr("mips16");
5892     }
5893     else if (FD->hasAttr<NoMips16Attr>()) {
5894       Fn->addFnAttr("nomips16");
5895     }
5896   }
5897 
5898   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5899                                llvm::Value *Address) const override;
5900 
5901   unsigned getSizeOfUnwindException() const override {
5902     return SizeOfUnwindException;
5903   }
5904 };
5905 }
5906 
5907 void MipsABIInfo::CoerceToIntArgs(
5908     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5909   llvm::IntegerType *IntTy =
5910     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5911 
5912   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5913   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5914     ArgList.push_back(IntTy);
5915 
5916   // If necessary, add one more integer type to ArgList.
5917   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5918 
5919   if (R)
5920     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5921 }
5922 
5923 // In N32/64, an aligned double precision floating point field is passed in
5924 // a register.
5925 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5926   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5927 
5928   if (IsO32) {
5929     CoerceToIntArgs(TySize, ArgList);
5930     return llvm::StructType::get(getVMContext(), ArgList);
5931   }
5932 
5933   if (Ty->isComplexType())
5934     return CGT.ConvertType(Ty);
5935 
5936   const RecordType *RT = Ty->getAs<RecordType>();
5937 
5938   // Unions/vectors are passed in integer registers.
5939   if (!RT || !RT->isStructureOrClassType()) {
5940     CoerceToIntArgs(TySize, ArgList);
5941     return llvm::StructType::get(getVMContext(), ArgList);
5942   }
5943 
5944   const RecordDecl *RD = RT->getDecl();
5945   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5946   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5947 
5948   uint64_t LastOffset = 0;
5949   unsigned idx = 0;
5950   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5951 
5952   // Iterate over fields in the struct/class and check if there are any aligned
5953   // double fields.
5954   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5955        i != e; ++i, ++idx) {
5956     const QualType Ty = i->getType();
5957     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5958 
5959     if (!BT || BT->getKind() != BuiltinType::Double)
5960       continue;
5961 
5962     uint64_t Offset = Layout.getFieldOffset(idx);
5963     if (Offset % 64) // Ignore doubles that are not aligned.
5964       continue;
5965 
5966     // Add ((Offset - LastOffset) / 64) args of type i64.
5967     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5968       ArgList.push_back(I64);
5969 
5970     // Add double type.
5971     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5972     LastOffset = Offset + 64;
5973   }
5974 
5975   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5976   ArgList.append(IntArgList.begin(), IntArgList.end());
5977 
5978   return llvm::StructType::get(getVMContext(), ArgList);
5979 }
5980 
5981 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5982                                         uint64_t Offset) const {
5983   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5984     return nullptr;
5985 
5986   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5987 }
5988 
5989 ABIArgInfo
5990 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5991   Ty = useFirstFieldIfTransparentUnion(Ty);
5992 
5993   uint64_t OrigOffset = Offset;
5994   uint64_t TySize = getContext().getTypeSize(Ty);
5995   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5996 
5997   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5998                    (uint64_t)StackAlignInBytes);
5999   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
6000   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
6001 
6002   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6003     // Ignore empty aggregates.
6004     if (TySize == 0)
6005       return ABIArgInfo::getIgnore();
6006 
6007     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6008       Offset = OrigOffset + MinABIStackAlignInBytes;
6009       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6010     }
6011 
6012     // If we have reached here, aggregates are passed directly by coercing to
6013     // another structure type. Padding is inserted if the offset of the
6014     // aggregate is unaligned.
6015     ABIArgInfo ArgInfo =
6016         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6017                               getPaddingType(OrigOffset, CurrOffset));
6018     ArgInfo.setInReg(true);
6019     return ArgInfo;
6020   }
6021 
6022   // Treat an enum type as its underlying type.
6023   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6024     Ty = EnumTy->getDecl()->getIntegerType();
6025 
6026   // All integral types are promoted to the GPR width.
6027   if (Ty->isIntegralOrEnumerationType())
6028     return ABIArgInfo::getExtend();
6029 
6030   return ABIArgInfo::getDirect(
6031       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6032 }
6033 
6034 llvm::Type*
6035 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6036   const RecordType *RT = RetTy->getAs<RecordType>();
6037   SmallVector<llvm::Type*, 8> RTList;
6038 
6039   if (RT && RT->isStructureOrClassType()) {
6040     const RecordDecl *RD = RT->getDecl();
6041     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6042     unsigned FieldCnt = Layout.getFieldCount();
6043 
6044     // N32/64 returns struct/classes in floating point registers if the
6045     // following conditions are met:
6046     // 1. The size of the struct/class is no larger than 128-bit.
6047     // 2. The struct/class has one or two fields all of which are floating
6048     //    point types.
6049     // 3. The offset of the first field is zero (this follows what gcc does).
6050     //
6051     // Any other composite results are returned in integer registers.
6052     //
6053     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6054       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6055       for (; b != e; ++b) {
6056         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6057 
6058         if (!BT || !BT->isFloatingPoint())
6059           break;
6060 
6061         RTList.push_back(CGT.ConvertType(b->getType()));
6062       }
6063 
6064       if (b == e)
6065         return llvm::StructType::get(getVMContext(), RTList,
6066                                      RD->hasAttr<PackedAttr>());
6067 
6068       RTList.clear();
6069     }
6070   }
6071 
6072   CoerceToIntArgs(Size, RTList);
6073   return llvm::StructType::get(getVMContext(), RTList);
6074 }
6075 
6076 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6077   uint64_t Size = getContext().getTypeSize(RetTy);
6078 
6079   if (RetTy->isVoidType())
6080     return ABIArgInfo::getIgnore();
6081 
6082   // O32 doesn't treat zero-sized structs differently from other structs.
6083   // However, N32/N64 ignores zero sized return values.
6084   if (!IsO32 && Size == 0)
6085     return ABIArgInfo::getIgnore();
6086 
6087   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6088     if (Size <= 128) {
6089       if (RetTy->isAnyComplexType())
6090         return ABIArgInfo::getDirect();
6091 
6092       // O32 returns integer vectors in registers and N32/N64 returns all small
6093       // aggregates in registers.
6094       if (!IsO32 ||
6095           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6096         ABIArgInfo ArgInfo =
6097             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6098         ArgInfo.setInReg(true);
6099         return ArgInfo;
6100       }
6101     }
6102 
6103     return getNaturalAlignIndirect(RetTy);
6104   }
6105 
6106   // Treat an enum type as its underlying type.
6107   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6108     RetTy = EnumTy->getDecl()->getIntegerType();
6109 
6110   return (RetTy->isPromotableIntegerType() ?
6111           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6112 }
6113 
6114 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6115   ABIArgInfo &RetInfo = FI.getReturnInfo();
6116   if (!getCXXABI().classifyReturnType(FI))
6117     RetInfo = classifyReturnType(FI.getReturnType());
6118 
6119   // Check if a pointer to an aggregate is passed as a hidden argument.
6120   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6121 
6122   for (auto &I : FI.arguments())
6123     I.info = classifyArgumentType(I.type, Offset);
6124 }
6125 
6126 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6127                                QualType OrigTy) const {
6128   QualType Ty = OrigTy;
6129 
6130   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6131   // Pointers are also promoted in the same way but this only matters for N32.
6132   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6133   unsigned PtrWidth = getTarget().getPointerWidth(0);
6134   bool DidPromote = false;
6135   if ((Ty->isIntegerType() &&
6136           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6137       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6138     DidPromote = true;
6139     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6140                                             Ty->isSignedIntegerType());
6141   }
6142 
6143   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6144 
6145   // The alignment of things in the argument area is never larger than
6146   // StackAlignInBytes.
6147   TyInfo.second =
6148     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6149 
6150   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6151   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6152 
6153   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6154                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6155 
6156 
6157   // If there was a promotion, "unpromote" into a temporary.
6158   // TODO: can we just use a pointer into a subset of the original slot?
6159   if (DidPromote) {
6160     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6161     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6162 
6163     // Truncate down to the right width.
6164     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6165                                                  : CGF.IntPtrTy);
6166     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6167     if (OrigTy->isPointerType())
6168       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6169 
6170     CGF.Builder.CreateStore(V, Temp);
6171     Addr = Temp;
6172   }
6173 
6174   return Addr;
6175 }
6176 
6177 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6178   int TySize = getContext().getTypeSize(Ty);
6179 
6180   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6181   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6182     return true;
6183 
6184   return false;
6185 }
6186 
6187 bool
6188 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6189                                                llvm::Value *Address) const {
6190   // This information comes from gcc's implementation, which seems to
6191   // as canonical as it gets.
6192 
6193   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6194   // are aliased to pairs of single-precision FP registers.
6195   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6196 
6197   // 0-31 are the general purpose registers, $0 - $31.
6198   // 32-63 are the floating-point registers, $f0 - $f31.
6199   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6200   // 66 is the (notional, I think) register for signal-handler return.
6201   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6202 
6203   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6204   // They are one bit wide and ignored here.
6205 
6206   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6207   // (coprocessor 1 is the FP unit)
6208   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6209   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6210   // 176-181 are the DSP accumulator registers.
6211   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6212   return false;
6213 }
6214 
6215 //===----------------------------------------------------------------------===//
6216 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6217 // Currently subclassed only to implement custom OpenCL C function attribute
6218 // handling.
6219 //===----------------------------------------------------------------------===//
6220 
6221 namespace {
6222 
6223 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6224 public:
6225   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6226     : DefaultTargetCodeGenInfo(CGT) {}
6227 
6228   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6229                            CodeGen::CodeGenModule &M) const override;
6230 };
6231 
6232 void TCETargetCodeGenInfo::setTargetAttributes(
6233     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6234   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6235   if (!FD) return;
6236 
6237   llvm::Function *F = cast<llvm::Function>(GV);
6238 
6239   if (M.getLangOpts().OpenCL) {
6240     if (FD->hasAttr<OpenCLKernelAttr>()) {
6241       // OpenCL C Kernel functions are not subject to inlining
6242       F->addFnAttr(llvm::Attribute::NoInline);
6243       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6244       if (Attr) {
6245         // Convert the reqd_work_group_size() attributes to metadata.
6246         llvm::LLVMContext &Context = F->getContext();
6247         llvm::NamedMDNode *OpenCLMetadata =
6248             M.getModule().getOrInsertNamedMetadata(
6249                 "opencl.kernel_wg_size_info");
6250 
6251         SmallVector<llvm::Metadata *, 5> Operands;
6252         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6253 
6254         Operands.push_back(
6255             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6256                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6257         Operands.push_back(
6258             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6259                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6260         Operands.push_back(
6261             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6262                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6263 
6264         // Add a boolean constant operand for "required" (true) or "hint"
6265         // (false) for implementing the work_group_size_hint attr later.
6266         // Currently always true as the hint is not yet implemented.
6267         Operands.push_back(
6268             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6269         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6270       }
6271     }
6272   }
6273 }
6274 
6275 }
6276 
6277 //===----------------------------------------------------------------------===//
6278 // Hexagon ABI Implementation
6279 //===----------------------------------------------------------------------===//
6280 
6281 namespace {
6282 
6283 class HexagonABIInfo : public ABIInfo {
6284 
6285 
6286 public:
6287   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6288 
6289 private:
6290 
6291   ABIArgInfo classifyReturnType(QualType RetTy) const;
6292   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6293 
6294   void computeInfo(CGFunctionInfo &FI) const override;
6295 
6296   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6297                     QualType Ty) const override;
6298 };
6299 
6300 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6301 public:
6302   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6303     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6304 
6305   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6306     return 29;
6307   }
6308 };
6309 
6310 }
6311 
6312 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6313   if (!getCXXABI().classifyReturnType(FI))
6314     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6315   for (auto &I : FI.arguments())
6316     I.info = classifyArgumentType(I.type);
6317 }
6318 
6319 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6320   if (!isAggregateTypeForABI(Ty)) {
6321     // Treat an enum type as its underlying type.
6322     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6323       Ty = EnumTy->getDecl()->getIntegerType();
6324 
6325     return (Ty->isPromotableIntegerType() ?
6326             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6327   }
6328 
6329   // Ignore empty records.
6330   if (isEmptyRecord(getContext(), Ty, true))
6331     return ABIArgInfo::getIgnore();
6332 
6333   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6334     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6335 
6336   uint64_t Size = getContext().getTypeSize(Ty);
6337   if (Size > 64)
6338     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6339     // Pass in the smallest viable integer type.
6340   else if (Size > 32)
6341       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6342   else if (Size > 16)
6343       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6344   else if (Size > 8)
6345       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6346   else
6347       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6348 }
6349 
6350 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6351   if (RetTy->isVoidType())
6352     return ABIArgInfo::getIgnore();
6353 
6354   // Large vector types should be returned via memory.
6355   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6356     return getNaturalAlignIndirect(RetTy);
6357 
6358   if (!isAggregateTypeForABI(RetTy)) {
6359     // Treat an enum type as its underlying type.
6360     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6361       RetTy = EnumTy->getDecl()->getIntegerType();
6362 
6363     return (RetTy->isPromotableIntegerType() ?
6364             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6365   }
6366 
6367   if (isEmptyRecord(getContext(), RetTy, true))
6368     return ABIArgInfo::getIgnore();
6369 
6370   // Aggregates <= 8 bytes are returned in r0; other aggregates
6371   // are returned indirectly.
6372   uint64_t Size = getContext().getTypeSize(RetTy);
6373   if (Size <= 64) {
6374     // Return in the smallest viable integer type.
6375     if (Size <= 8)
6376       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6377     if (Size <= 16)
6378       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6379     if (Size <= 32)
6380       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6381     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6382   }
6383 
6384   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6385 }
6386 
6387 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6388                                   QualType Ty) const {
6389   // FIXME: Someone needs to audit that this handle alignment correctly.
6390   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6391                           getContext().getTypeInfoInChars(Ty),
6392                           CharUnits::fromQuantity(4),
6393                           /*AllowHigherAlign*/ true);
6394 }
6395 
6396 //===----------------------------------------------------------------------===//
6397 // AMDGPU ABI Implementation
6398 //===----------------------------------------------------------------------===//
6399 
6400 namespace {
6401 
6402 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6403 public:
6404   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6405     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6406   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6407                            CodeGen::CodeGenModule &M) const override;
6408 };
6409 
6410 }
6411 
6412 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6413   const Decl *D,
6414   llvm::GlobalValue *GV,
6415   CodeGen::CodeGenModule &M) const {
6416   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6417   if (!FD)
6418     return;
6419 
6420   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6421     llvm::Function *F = cast<llvm::Function>(GV);
6422     uint32_t NumVGPR = Attr->getNumVGPR();
6423     if (NumVGPR != 0)
6424       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6425   }
6426 
6427   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6428     llvm::Function *F = cast<llvm::Function>(GV);
6429     unsigned NumSGPR = Attr->getNumSGPR();
6430     if (NumSGPR != 0)
6431       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6432   }
6433 }
6434 
6435 
6436 //===----------------------------------------------------------------------===//
6437 // SPARC v9 ABI Implementation.
6438 // Based on the SPARC Compliance Definition version 2.4.1.
6439 //
6440 // Function arguments a mapped to a nominal "parameter array" and promoted to
6441 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6442 // the array, structs larger than 16 bytes are passed indirectly.
6443 //
6444 // One case requires special care:
6445 //
6446 //   struct mixed {
6447 //     int i;
6448 //     float f;
6449 //   };
6450 //
6451 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6452 // parameter array, but the int is passed in an integer register, and the float
6453 // is passed in a floating point register. This is represented as two arguments
6454 // with the LLVM IR inreg attribute:
6455 //
6456 //   declare void f(i32 inreg %i, float inreg %f)
6457 //
6458 // The code generator will only allocate 4 bytes from the parameter array for
6459 // the inreg arguments. All other arguments are allocated a multiple of 8
6460 // bytes.
6461 //
6462 namespace {
6463 class SparcV9ABIInfo : public ABIInfo {
6464 public:
6465   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6466 
6467 private:
6468   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6469   void computeInfo(CGFunctionInfo &FI) const override;
6470   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6471                     QualType Ty) const override;
6472 
6473   // Coercion type builder for structs passed in registers. The coercion type
6474   // serves two purposes:
6475   //
6476   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6477   //    in registers.
6478   // 2. Expose aligned floating point elements as first-level elements, so the
6479   //    code generator knows to pass them in floating point registers.
6480   //
6481   // We also compute the InReg flag which indicates that the struct contains
6482   // aligned 32-bit floats.
6483   //
6484   struct CoerceBuilder {
6485     llvm::LLVMContext &Context;
6486     const llvm::DataLayout &DL;
6487     SmallVector<llvm::Type*, 8> Elems;
6488     uint64_t Size;
6489     bool InReg;
6490 
6491     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6492       : Context(c), DL(dl), Size(0), InReg(false) {}
6493 
6494     // Pad Elems with integers until Size is ToSize.
6495     void pad(uint64_t ToSize) {
6496       assert(ToSize >= Size && "Cannot remove elements");
6497       if (ToSize == Size)
6498         return;
6499 
6500       // Finish the current 64-bit word.
6501       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6502       if (Aligned > Size && Aligned <= ToSize) {
6503         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6504         Size = Aligned;
6505       }
6506 
6507       // Add whole 64-bit words.
6508       while (Size + 64 <= ToSize) {
6509         Elems.push_back(llvm::Type::getInt64Ty(Context));
6510         Size += 64;
6511       }
6512 
6513       // Final in-word padding.
6514       if (Size < ToSize) {
6515         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6516         Size = ToSize;
6517       }
6518     }
6519 
6520     // Add a floating point element at Offset.
6521     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6522       // Unaligned floats are treated as integers.
6523       if (Offset % Bits)
6524         return;
6525       // The InReg flag is only required if there are any floats < 64 bits.
6526       if (Bits < 64)
6527         InReg = true;
6528       pad(Offset);
6529       Elems.push_back(Ty);
6530       Size = Offset + Bits;
6531     }
6532 
6533     // Add a struct type to the coercion type, starting at Offset (in bits).
6534     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6535       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6536       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6537         llvm::Type *ElemTy = StrTy->getElementType(i);
6538         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6539         switch (ElemTy->getTypeID()) {
6540         case llvm::Type::StructTyID:
6541           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6542           break;
6543         case llvm::Type::FloatTyID:
6544           addFloat(ElemOffset, ElemTy, 32);
6545           break;
6546         case llvm::Type::DoubleTyID:
6547           addFloat(ElemOffset, ElemTy, 64);
6548           break;
6549         case llvm::Type::FP128TyID:
6550           addFloat(ElemOffset, ElemTy, 128);
6551           break;
6552         case llvm::Type::PointerTyID:
6553           if (ElemOffset % 64 == 0) {
6554             pad(ElemOffset);
6555             Elems.push_back(ElemTy);
6556             Size += 64;
6557           }
6558           break;
6559         default:
6560           break;
6561         }
6562       }
6563     }
6564 
6565     // Check if Ty is a usable substitute for the coercion type.
6566     bool isUsableType(llvm::StructType *Ty) const {
6567       return llvm::makeArrayRef(Elems) == Ty->elements();
6568     }
6569 
6570     // Get the coercion type as a literal struct type.
6571     llvm::Type *getType() const {
6572       if (Elems.size() == 1)
6573         return Elems.front();
6574       else
6575         return llvm::StructType::get(Context, Elems);
6576     }
6577   };
6578 };
6579 } // end anonymous namespace
6580 
6581 ABIArgInfo
6582 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6583   if (Ty->isVoidType())
6584     return ABIArgInfo::getIgnore();
6585 
6586   uint64_t Size = getContext().getTypeSize(Ty);
6587 
6588   // Anything too big to fit in registers is passed with an explicit indirect
6589   // pointer / sret pointer.
6590   if (Size > SizeLimit)
6591     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6592 
6593   // Treat an enum type as its underlying type.
6594   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6595     Ty = EnumTy->getDecl()->getIntegerType();
6596 
6597   // Integer types smaller than a register are extended.
6598   if (Size < 64 && Ty->isIntegerType())
6599     return ABIArgInfo::getExtend();
6600 
6601   // Other non-aggregates go in registers.
6602   if (!isAggregateTypeForABI(Ty))
6603     return ABIArgInfo::getDirect();
6604 
6605   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6606   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6607   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6608     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6609 
6610   // This is a small aggregate type that should be passed in registers.
6611   // Build a coercion type from the LLVM struct type.
6612   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6613   if (!StrTy)
6614     return ABIArgInfo::getDirect();
6615 
6616   CoerceBuilder CB(getVMContext(), getDataLayout());
6617   CB.addStruct(0, StrTy);
6618   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6619 
6620   // Try to use the original type for coercion.
6621   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6622 
6623   if (CB.InReg)
6624     return ABIArgInfo::getDirectInReg(CoerceTy);
6625   else
6626     return ABIArgInfo::getDirect(CoerceTy);
6627 }
6628 
6629 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6630                                   QualType Ty) const {
6631   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6632   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6633   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6634     AI.setCoerceToType(ArgTy);
6635 
6636   CharUnits SlotSize = CharUnits::fromQuantity(8);
6637 
6638   CGBuilderTy &Builder = CGF.Builder;
6639   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6640   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6641 
6642   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6643 
6644   Address ArgAddr = Address::invalid();
6645   CharUnits Stride;
6646   switch (AI.getKind()) {
6647   case ABIArgInfo::Expand:
6648   case ABIArgInfo::InAlloca:
6649     llvm_unreachable("Unsupported ABI kind for va_arg");
6650 
6651   case ABIArgInfo::Extend: {
6652     Stride = SlotSize;
6653     CharUnits Offset = SlotSize - TypeInfo.first;
6654     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6655     break;
6656   }
6657 
6658   case ABIArgInfo::Direct: {
6659     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6660     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6661     ArgAddr = Addr;
6662     break;
6663   }
6664 
6665   case ABIArgInfo::Indirect:
6666     Stride = SlotSize;
6667     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6668     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6669                       TypeInfo.second);
6670     break;
6671 
6672   case ABIArgInfo::Ignore:
6673     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6674   }
6675 
6676   // Update VAList.
6677   llvm::Value *NextPtr =
6678     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6679   Builder.CreateStore(NextPtr, VAListAddr);
6680 
6681   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6682 }
6683 
6684 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6685   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6686   for (auto &I : FI.arguments())
6687     I.info = classifyType(I.type, 16 * 8);
6688 }
6689 
6690 namespace {
6691 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6692 public:
6693   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6694     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6695 
6696   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6697     return 14;
6698   }
6699 
6700   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6701                                llvm::Value *Address) const override;
6702 };
6703 } // end anonymous namespace
6704 
6705 bool
6706 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6707                                                 llvm::Value *Address) const {
6708   // This is calculated from the LLVM and GCC tables and verified
6709   // against gcc output.  AFAIK all ABIs use the same encoding.
6710 
6711   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6712 
6713   llvm::IntegerType *i8 = CGF.Int8Ty;
6714   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6715   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6716 
6717   // 0-31: the 8-byte general-purpose registers
6718   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6719 
6720   // 32-63: f0-31, the 4-byte floating-point registers
6721   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6722 
6723   //   Y   = 64
6724   //   PSR = 65
6725   //   WIM = 66
6726   //   TBR = 67
6727   //   PC  = 68
6728   //   NPC = 69
6729   //   FSR = 70
6730   //   CSR = 71
6731   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6732 
6733   // 72-87: d0-15, the 8-byte floating-point registers
6734   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6735 
6736   return false;
6737 }
6738 
6739 
6740 //===----------------------------------------------------------------------===//
6741 // XCore ABI Implementation
6742 //===----------------------------------------------------------------------===//
6743 
6744 namespace {
6745 
6746 /// A SmallStringEnc instance is used to build up the TypeString by passing
6747 /// it by reference between functions that append to it.
6748 typedef llvm::SmallString<128> SmallStringEnc;
6749 
6750 /// TypeStringCache caches the meta encodings of Types.
6751 ///
6752 /// The reason for caching TypeStrings is two fold:
6753 ///   1. To cache a type's encoding for later uses;
6754 ///   2. As a means to break recursive member type inclusion.
6755 ///
6756 /// A cache Entry can have a Status of:
6757 ///   NonRecursive:   The type encoding is not recursive;
6758 ///   Recursive:      The type encoding is recursive;
6759 ///   Incomplete:     An incomplete TypeString;
6760 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6761 ///                   Recursive type encoding.
6762 ///
6763 /// A NonRecursive entry will have all of its sub-members expanded as fully
6764 /// as possible. Whilst it may contain types which are recursive, the type
6765 /// itself is not recursive and thus its encoding may be safely used whenever
6766 /// the type is encountered.
6767 ///
6768 /// A Recursive entry will have all of its sub-members expanded as fully as
6769 /// possible. The type itself is recursive and it may contain other types which
6770 /// are recursive. The Recursive encoding must not be used during the expansion
6771 /// of a recursive type's recursive branch. For simplicity the code uses
6772 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6773 ///
6774 /// An Incomplete entry is always a RecordType and only encodes its
6775 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6776 /// are placed into the cache during type expansion as a means to identify and
6777 /// handle recursive inclusion of types as sub-members. If there is recursion
6778 /// the entry becomes IncompleteUsed.
6779 ///
6780 /// During the expansion of a RecordType's members:
6781 ///
6782 ///   If the cache contains a NonRecursive encoding for the member type, the
6783 ///   cached encoding is used;
6784 ///
6785 ///   If the cache contains a Recursive encoding for the member type, the
6786 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6787 ///
6788 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6789 ///   cache to break potential recursive inclusion of itself as a sub-member;
6790 ///
6791 ///   Once a member RecordType has been expanded, its temporary incomplete
6792 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6793 ///   it is swapped back in;
6794 ///
6795 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6796 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6797 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6798 ///
6799 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6800 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6801 ///   Else the member is part of a recursive type and thus the recursion has
6802 ///   been exited too soon for the encoding to be correct for the member.
6803 ///
6804 class TypeStringCache {
6805   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6806   struct Entry {
6807     std::string Str;     // The encoded TypeString for the type.
6808     enum Status State;   // Information about the encoding in 'Str'.
6809     std::string Swapped; // A temporary place holder for a Recursive encoding
6810                          // during the expansion of RecordType's members.
6811   };
6812   std::map<const IdentifierInfo *, struct Entry> Map;
6813   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6814   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6815 public:
6816   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6817   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6818   bool removeIncomplete(const IdentifierInfo *ID);
6819   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6820                      bool IsRecursive);
6821   StringRef lookupStr(const IdentifierInfo *ID);
6822 };
6823 
6824 /// TypeString encodings for enum & union fields must be order.
6825 /// FieldEncoding is a helper for this ordering process.
6826 class FieldEncoding {
6827   bool HasName;
6828   std::string Enc;
6829 public:
6830   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6831   StringRef str() {return Enc.c_str();}
6832   bool operator<(const FieldEncoding &rhs) const {
6833     if (HasName != rhs.HasName) return HasName;
6834     return Enc < rhs.Enc;
6835   }
6836 };
6837 
6838 class XCoreABIInfo : public DefaultABIInfo {
6839 public:
6840   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6841   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6842                     QualType Ty) const override;
6843 };
6844 
6845 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6846   mutable TypeStringCache TSC;
6847 public:
6848   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6849     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6850   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6851                     CodeGen::CodeGenModule &M) const override;
6852 };
6853 
6854 } // End anonymous namespace.
6855 
6856 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6857                                 QualType Ty) const {
6858   CGBuilderTy &Builder = CGF.Builder;
6859 
6860   // Get the VAList.
6861   CharUnits SlotSize = CharUnits::fromQuantity(4);
6862   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6863 
6864   // Handle the argument.
6865   ABIArgInfo AI = classifyArgumentType(Ty);
6866   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6867   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6868   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6869     AI.setCoerceToType(ArgTy);
6870   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6871 
6872   Address Val = Address::invalid();
6873   CharUnits ArgSize = CharUnits::Zero();
6874   switch (AI.getKind()) {
6875   case ABIArgInfo::Expand:
6876   case ABIArgInfo::InAlloca:
6877     llvm_unreachable("Unsupported ABI kind for va_arg");
6878   case ABIArgInfo::Ignore:
6879     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6880     ArgSize = CharUnits::Zero();
6881     break;
6882   case ABIArgInfo::Extend:
6883   case ABIArgInfo::Direct:
6884     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6885     ArgSize = CharUnits::fromQuantity(
6886                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6887     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6888     break;
6889   case ABIArgInfo::Indirect:
6890     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6891     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6892     ArgSize = SlotSize;
6893     break;
6894   }
6895 
6896   // Increment the VAList.
6897   if (!ArgSize.isZero()) {
6898     llvm::Value *APN =
6899       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6900     Builder.CreateStore(APN, VAListAddr);
6901   }
6902 
6903   return Val;
6904 }
6905 
6906 /// During the expansion of a RecordType, an incomplete TypeString is placed
6907 /// into the cache as a means to identify and break recursion.
6908 /// If there is a Recursive encoding in the cache, it is swapped out and will
6909 /// be reinserted by removeIncomplete().
6910 /// All other types of encoding should have been used rather than arriving here.
6911 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6912                                     std::string StubEnc) {
6913   if (!ID)
6914     return;
6915   Entry &E = Map[ID];
6916   assert( (E.Str.empty() || E.State == Recursive) &&
6917          "Incorrectly use of addIncomplete");
6918   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6919   E.Swapped.swap(E.Str); // swap out the Recursive
6920   E.Str.swap(StubEnc);
6921   E.State = Incomplete;
6922   ++IncompleteCount;
6923 }
6924 
6925 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6926 /// must be removed from the cache.
6927 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6928 /// Returns true if the RecordType was defined recursively.
6929 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6930   if (!ID)
6931     return false;
6932   auto I = Map.find(ID);
6933   assert(I != Map.end() && "Entry not present");
6934   Entry &E = I->second;
6935   assert( (E.State == Incomplete ||
6936            E.State == IncompleteUsed) &&
6937          "Entry must be an incomplete type");
6938   bool IsRecursive = false;
6939   if (E.State == IncompleteUsed) {
6940     // We made use of our Incomplete encoding, thus we are recursive.
6941     IsRecursive = true;
6942     --IncompleteUsedCount;
6943   }
6944   if (E.Swapped.empty())
6945     Map.erase(I);
6946   else {
6947     // Swap the Recursive back.
6948     E.Swapped.swap(E.Str);
6949     E.Swapped.clear();
6950     E.State = Recursive;
6951   }
6952   --IncompleteCount;
6953   return IsRecursive;
6954 }
6955 
6956 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6957 /// Recursive (viz: all sub-members were expanded as fully as possible).
6958 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6959                                     bool IsRecursive) {
6960   if (!ID || IncompleteUsedCount)
6961     return; // No key or it is is an incomplete sub-type so don't add.
6962   Entry &E = Map[ID];
6963   if (IsRecursive && !E.Str.empty()) {
6964     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6965            "This is not the same Recursive entry");
6966     // The parent container was not recursive after all, so we could have used
6967     // this Recursive sub-member entry after all, but we assumed the worse when
6968     // we started viz: IncompleteCount!=0.
6969     return;
6970   }
6971   assert(E.Str.empty() && "Entry already present");
6972   E.Str = Str.str();
6973   E.State = IsRecursive? Recursive : NonRecursive;
6974 }
6975 
6976 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6977 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6978 /// encoding is Recursive, return an empty StringRef.
6979 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6980   if (!ID)
6981     return StringRef();   // We have no key.
6982   auto I = Map.find(ID);
6983   if (I == Map.end())
6984     return StringRef();   // We have no encoding.
6985   Entry &E = I->second;
6986   if (E.State == Recursive && IncompleteCount)
6987     return StringRef();   // We don't use Recursive encodings for member types.
6988 
6989   if (E.State == Incomplete) {
6990     // The incomplete type is being used to break out of recursion.
6991     E.State = IncompleteUsed;
6992     ++IncompleteUsedCount;
6993   }
6994   return E.Str.c_str();
6995 }
6996 
6997 /// The XCore ABI includes a type information section that communicates symbol
6998 /// type information to the linker. The linker uses this information to verify
6999 /// safety/correctness of things such as array bound and pointers et al.
7000 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7001 /// This type information (TypeString) is emitted into meta data for all global
7002 /// symbols: definitions, declarations, functions & variables.
7003 ///
7004 /// The TypeString carries type, qualifier, name, size & value details.
7005 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7006 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7007 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7008 ///
7009 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7010                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7011 
7012 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7013 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7014                                           CodeGen::CodeGenModule &CGM) const {
7015   SmallStringEnc Enc;
7016   if (getTypeString(Enc, D, CGM, TSC)) {
7017     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7018     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7019     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7020     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7021     llvm::NamedMDNode *MD =
7022       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7023     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7024   }
7025 }
7026 
7027 static bool appendType(SmallStringEnc &Enc, QualType QType,
7028                        const CodeGen::CodeGenModule &CGM,
7029                        TypeStringCache &TSC);
7030 
7031 /// Helper function for appendRecordType().
7032 /// Builds a SmallVector containing the encoded field types in declaration
7033 /// order.
7034 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7035                              const RecordDecl *RD,
7036                              const CodeGen::CodeGenModule &CGM,
7037                              TypeStringCache &TSC) {
7038   for (const auto *Field : RD->fields()) {
7039     SmallStringEnc Enc;
7040     Enc += "m(";
7041     Enc += Field->getName();
7042     Enc += "){";
7043     if (Field->isBitField()) {
7044       Enc += "b(";
7045       llvm::raw_svector_ostream OS(Enc);
7046       OS << Field->getBitWidthValue(CGM.getContext());
7047       Enc += ':';
7048     }
7049     if (!appendType(Enc, Field->getType(), CGM, TSC))
7050       return false;
7051     if (Field->isBitField())
7052       Enc += ')';
7053     Enc += '}';
7054     FE.emplace_back(!Field->getName().empty(), Enc);
7055   }
7056   return true;
7057 }
7058 
7059 /// Appends structure and union types to Enc and adds encoding to cache.
7060 /// Recursively calls appendType (via extractFieldType) for each field.
7061 /// Union types have their fields ordered according to the ABI.
7062 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7063                              const CodeGen::CodeGenModule &CGM,
7064                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7065   // Append the cached TypeString if we have one.
7066   StringRef TypeString = TSC.lookupStr(ID);
7067   if (!TypeString.empty()) {
7068     Enc += TypeString;
7069     return true;
7070   }
7071 
7072   // Start to emit an incomplete TypeString.
7073   size_t Start = Enc.size();
7074   Enc += (RT->isUnionType()? 'u' : 's');
7075   Enc += '(';
7076   if (ID)
7077     Enc += ID->getName();
7078   Enc += "){";
7079 
7080   // We collect all encoded fields and order as necessary.
7081   bool IsRecursive = false;
7082   const RecordDecl *RD = RT->getDecl()->getDefinition();
7083   if (RD && !RD->field_empty()) {
7084     // An incomplete TypeString stub is placed in the cache for this RecordType
7085     // so that recursive calls to this RecordType will use it whilst building a
7086     // complete TypeString for this RecordType.
7087     SmallVector<FieldEncoding, 16> FE;
7088     std::string StubEnc(Enc.substr(Start).str());
7089     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7090     TSC.addIncomplete(ID, std::move(StubEnc));
7091     if (!extractFieldType(FE, RD, CGM, TSC)) {
7092       (void) TSC.removeIncomplete(ID);
7093       return false;
7094     }
7095     IsRecursive = TSC.removeIncomplete(ID);
7096     // The ABI requires unions to be sorted but not structures.
7097     // See FieldEncoding::operator< for sort algorithm.
7098     if (RT->isUnionType())
7099       std::sort(FE.begin(), FE.end());
7100     // We can now complete the TypeString.
7101     unsigned E = FE.size();
7102     for (unsigned I = 0; I != E; ++I) {
7103       if (I)
7104         Enc += ',';
7105       Enc += FE[I].str();
7106     }
7107   }
7108   Enc += '}';
7109   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7110   return true;
7111 }
7112 
7113 /// Appends enum types to Enc and adds the encoding to the cache.
7114 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7115                            TypeStringCache &TSC,
7116                            const IdentifierInfo *ID) {
7117   // Append the cached TypeString if we have one.
7118   StringRef TypeString = TSC.lookupStr(ID);
7119   if (!TypeString.empty()) {
7120     Enc += TypeString;
7121     return true;
7122   }
7123 
7124   size_t Start = Enc.size();
7125   Enc += "e(";
7126   if (ID)
7127     Enc += ID->getName();
7128   Enc += "){";
7129 
7130   // We collect all encoded enumerations and order them alphanumerically.
7131   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7132     SmallVector<FieldEncoding, 16> FE;
7133     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7134          ++I) {
7135       SmallStringEnc EnumEnc;
7136       EnumEnc += "m(";
7137       EnumEnc += I->getName();
7138       EnumEnc += "){";
7139       I->getInitVal().toString(EnumEnc);
7140       EnumEnc += '}';
7141       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7142     }
7143     std::sort(FE.begin(), FE.end());
7144     unsigned E = FE.size();
7145     for (unsigned I = 0; I != E; ++I) {
7146       if (I)
7147         Enc += ',';
7148       Enc += FE[I].str();
7149     }
7150   }
7151   Enc += '}';
7152   TSC.addIfComplete(ID, Enc.substr(Start), false);
7153   return true;
7154 }
7155 
7156 /// Appends type's qualifier to Enc.
7157 /// This is done prior to appending the type's encoding.
7158 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7159   // Qualifiers are emitted in alphabetical order.
7160   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7161   int Lookup = 0;
7162   if (QT.isConstQualified())
7163     Lookup += 1<<0;
7164   if (QT.isRestrictQualified())
7165     Lookup += 1<<1;
7166   if (QT.isVolatileQualified())
7167     Lookup += 1<<2;
7168   Enc += Table[Lookup];
7169 }
7170 
7171 /// Appends built-in types to Enc.
7172 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7173   const char *EncType;
7174   switch (BT->getKind()) {
7175     case BuiltinType::Void:
7176       EncType = "0";
7177       break;
7178     case BuiltinType::Bool:
7179       EncType = "b";
7180       break;
7181     case BuiltinType::Char_U:
7182       EncType = "uc";
7183       break;
7184     case BuiltinType::UChar:
7185       EncType = "uc";
7186       break;
7187     case BuiltinType::SChar:
7188       EncType = "sc";
7189       break;
7190     case BuiltinType::UShort:
7191       EncType = "us";
7192       break;
7193     case BuiltinType::Short:
7194       EncType = "ss";
7195       break;
7196     case BuiltinType::UInt:
7197       EncType = "ui";
7198       break;
7199     case BuiltinType::Int:
7200       EncType = "si";
7201       break;
7202     case BuiltinType::ULong:
7203       EncType = "ul";
7204       break;
7205     case BuiltinType::Long:
7206       EncType = "sl";
7207       break;
7208     case BuiltinType::ULongLong:
7209       EncType = "ull";
7210       break;
7211     case BuiltinType::LongLong:
7212       EncType = "sll";
7213       break;
7214     case BuiltinType::Float:
7215       EncType = "ft";
7216       break;
7217     case BuiltinType::Double:
7218       EncType = "d";
7219       break;
7220     case BuiltinType::LongDouble:
7221       EncType = "ld";
7222       break;
7223     default:
7224       return false;
7225   }
7226   Enc += EncType;
7227   return true;
7228 }
7229 
7230 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7231 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7232                               const CodeGen::CodeGenModule &CGM,
7233                               TypeStringCache &TSC) {
7234   Enc += "p(";
7235   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7236     return false;
7237   Enc += ')';
7238   return true;
7239 }
7240 
7241 /// Appends array encoding to Enc before calling appendType for the element.
7242 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7243                             const ArrayType *AT,
7244                             const CodeGen::CodeGenModule &CGM,
7245                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7246   if (AT->getSizeModifier() != ArrayType::Normal)
7247     return false;
7248   Enc += "a(";
7249   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7250     CAT->getSize().toStringUnsigned(Enc);
7251   else
7252     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7253   Enc += ':';
7254   // The Qualifiers should be attached to the type rather than the array.
7255   appendQualifier(Enc, QT);
7256   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7257     return false;
7258   Enc += ')';
7259   return true;
7260 }
7261 
7262 /// Appends a function encoding to Enc, calling appendType for the return type
7263 /// and the arguments.
7264 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7265                              const CodeGen::CodeGenModule &CGM,
7266                              TypeStringCache &TSC) {
7267   Enc += "f{";
7268   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7269     return false;
7270   Enc += "}(";
7271   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7272     // N.B. we are only interested in the adjusted param types.
7273     auto I = FPT->param_type_begin();
7274     auto E = FPT->param_type_end();
7275     if (I != E) {
7276       do {
7277         if (!appendType(Enc, *I, CGM, TSC))
7278           return false;
7279         ++I;
7280         if (I != E)
7281           Enc += ',';
7282       } while (I != E);
7283       if (FPT->isVariadic())
7284         Enc += ",va";
7285     } else {
7286       if (FPT->isVariadic())
7287         Enc += "va";
7288       else
7289         Enc += '0';
7290     }
7291   }
7292   Enc += ')';
7293   return true;
7294 }
7295 
7296 /// Handles the type's qualifier before dispatching a call to handle specific
7297 /// type encodings.
7298 static bool appendType(SmallStringEnc &Enc, QualType QType,
7299                        const CodeGen::CodeGenModule &CGM,
7300                        TypeStringCache &TSC) {
7301 
7302   QualType QT = QType.getCanonicalType();
7303 
7304   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7305     // The Qualifiers should be attached to the type rather than the array.
7306     // Thus we don't call appendQualifier() here.
7307     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7308 
7309   appendQualifier(Enc, QT);
7310 
7311   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7312     return appendBuiltinType(Enc, BT);
7313 
7314   if (const PointerType *PT = QT->getAs<PointerType>())
7315     return appendPointerType(Enc, PT, CGM, TSC);
7316 
7317   if (const EnumType *ET = QT->getAs<EnumType>())
7318     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7319 
7320   if (const RecordType *RT = QT->getAsStructureType())
7321     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7322 
7323   if (const RecordType *RT = QT->getAsUnionType())
7324     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7325 
7326   if (const FunctionType *FT = QT->getAs<FunctionType>())
7327     return appendFunctionType(Enc, FT, CGM, TSC);
7328 
7329   return false;
7330 }
7331 
7332 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7333                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7334   if (!D)
7335     return false;
7336 
7337   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7338     if (FD->getLanguageLinkage() != CLanguageLinkage)
7339       return false;
7340     return appendType(Enc, FD->getType(), CGM, TSC);
7341   }
7342 
7343   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7344     if (VD->getLanguageLinkage() != CLanguageLinkage)
7345       return false;
7346     QualType QT = VD->getType().getCanonicalType();
7347     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7348       // Global ArrayTypes are given a size of '*' if the size is unknown.
7349       // The Qualifiers should be attached to the type rather than the array.
7350       // Thus we don't call appendQualifier() here.
7351       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7352     }
7353     return appendType(Enc, QT, CGM, TSC);
7354   }
7355   return false;
7356 }
7357 
7358 
7359 //===----------------------------------------------------------------------===//
7360 // Driver code
7361 //===----------------------------------------------------------------------===//
7362 
7363 const llvm::Triple &CodeGenModule::getTriple() const {
7364   return getTarget().getTriple();
7365 }
7366 
7367 bool CodeGenModule::supportsCOMDAT() const {
7368   return !getTriple().isOSBinFormatMachO();
7369 }
7370 
7371 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7372   if (TheTargetCodeGenInfo)
7373     return *TheTargetCodeGenInfo;
7374 
7375   const llvm::Triple &Triple = getTarget().getTriple();
7376   switch (Triple.getArch()) {
7377   default:
7378     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7379 
7380   case llvm::Triple::le32:
7381     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7382   case llvm::Triple::mips:
7383   case llvm::Triple::mipsel:
7384     if (Triple.getOS() == llvm::Triple::NaCl)
7385       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7386     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7387 
7388   case llvm::Triple::mips64:
7389   case llvm::Triple::mips64el:
7390     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7391 
7392   case llvm::Triple::aarch64:
7393   case llvm::Triple::aarch64_be: {
7394     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7395     if (getTarget().getABI() == "darwinpcs")
7396       Kind = AArch64ABIInfo::DarwinPCS;
7397 
7398     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7399   }
7400 
7401   case llvm::Triple::wasm32:
7402   case llvm::Triple::wasm64:
7403     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7404 
7405   case llvm::Triple::arm:
7406   case llvm::Triple::armeb:
7407   case llvm::Triple::thumb:
7408   case llvm::Triple::thumbeb:
7409     {
7410       if (Triple.getOS() == llvm::Triple::Win32) {
7411         TheTargetCodeGenInfo =
7412             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7413         return *TheTargetCodeGenInfo;
7414       }
7415 
7416       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7417       StringRef ABIStr = getTarget().getABI();
7418       if (ABIStr == "apcs-gnu")
7419         Kind = ARMABIInfo::APCS;
7420       else if (ABIStr == "aapcs16")
7421         Kind = ARMABIInfo::AAPCS16_VFP;
7422       else if (CodeGenOpts.FloatABI == "hard" ||
7423                (CodeGenOpts.FloatABI != "soft" &&
7424                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7425         Kind = ARMABIInfo::AAPCS_VFP;
7426 
7427       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7428     }
7429 
7430   case llvm::Triple::ppc:
7431     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7432   case llvm::Triple::ppc64:
7433     if (Triple.isOSBinFormatELF()) {
7434       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7435       if (getTarget().getABI() == "elfv2")
7436         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7437       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7438 
7439       return *(TheTargetCodeGenInfo =
7440                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7441     } else
7442       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7443   case llvm::Triple::ppc64le: {
7444     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7445     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7446     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7447       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7448     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7449 
7450     return *(TheTargetCodeGenInfo =
7451              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7452   }
7453 
7454   case llvm::Triple::nvptx:
7455   case llvm::Triple::nvptx64:
7456     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7457 
7458   case llvm::Triple::msp430:
7459     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7460 
7461   case llvm::Triple::systemz: {
7462     bool HasVector = getTarget().getABI() == "vector";
7463     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7464                                                                  HasVector));
7465   }
7466 
7467   case llvm::Triple::tce:
7468     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7469 
7470   case llvm::Triple::x86: {
7471     bool IsDarwinVectorABI = Triple.isOSDarwin();
7472     bool RetSmallStructInRegABI =
7473         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7474     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7475 
7476     if (Triple.getOS() == llvm::Triple::Win32) {
7477       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7478                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7479                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7480     } else {
7481       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7482                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7483                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7484                    CodeGenOpts.FloatABI == "soft"));
7485     }
7486   }
7487 
7488   case llvm::Triple::x86_64: {
7489     StringRef ABI = getTarget().getABI();
7490     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7491                                ABI == "avx" ? X86AVXABILevel::AVX :
7492                                X86AVXABILevel::None);
7493 
7494     switch (Triple.getOS()) {
7495     case llvm::Triple::Win32:
7496       return *(TheTargetCodeGenInfo =
7497                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7498     case llvm::Triple::PS4:
7499       return *(TheTargetCodeGenInfo =
7500                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7501     default:
7502       return *(TheTargetCodeGenInfo =
7503                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7504     }
7505   }
7506   case llvm::Triple::hexagon:
7507     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7508   case llvm::Triple::r600:
7509     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7510   case llvm::Triple::amdgcn:
7511     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7512   case llvm::Triple::sparcv9:
7513     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7514   case llvm::Triple::xcore:
7515     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7516   }
7517 }
7518