1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateStore(Value, Cell);
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIInfo::~ABIInfo() {}
52 
53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
54                                               CGCXXABI &CXXABI) {
55   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
56   if (!RD)
57     return CGCXXABI::RAA_Default;
58   return CXXABI.getRecordArgABI(RD);
59 }
60 
61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
62                                               CGCXXABI &CXXABI) {
63   const RecordType *RT = T->getAs<RecordType>();
64   if (!RT)
65     return CGCXXABI::RAA_Default;
66   return getRecordArgABI(RT, CXXABI);
67 }
68 
69 /// Pass transparent unions as if they were the type of the first element. Sema
70 /// should ensure that all elements of the union have the same "machine type".
71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
72   if (const RecordType *UT = Ty->getAsUnionType()) {
73     const RecordDecl *UD = UT->getDecl();
74     if (UD->hasAttr<TransparentUnionAttr>()) {
75       assert(!UD->field_empty() && "sema created an empty transparent union");
76       return UD->field_begin()->getType();
77     }
78   }
79   return Ty;
80 }
81 
82 CGCXXABI &ABIInfo::getCXXABI() const {
83   return CGT.getCXXABI();
84 }
85 
86 ASTContext &ABIInfo::getContext() const {
87   return CGT.getContext();
88 }
89 
90 llvm::LLVMContext &ABIInfo::getVMContext() const {
91   return CGT.getLLVMContext();
92 }
93 
94 const llvm::DataLayout &ABIInfo::getDataLayout() const {
95   return CGT.getDataLayout();
96 }
97 
98 const TargetInfo &ABIInfo::getTarget() const {
99   return CGT.getTarget();
100 }
101 
102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
103   return false;
104 }
105 
106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
107                                                 uint64_t Members) const {
108   return false;
109 }
110 
111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
112   return false;
113 }
114 
115 void ABIArgInfo::dump() const {
116   raw_ostream &OS = llvm::errs();
117   OS << "(ABIArgInfo Kind=";
118   switch (TheKind) {
119   case Direct:
120     OS << "Direct Type=";
121     if (llvm::Type *Ty = getCoerceToType())
122       Ty->print(OS);
123     else
124       OS << "null";
125     break;
126   case Extend:
127     OS << "Extend";
128     break;
129   case Ignore:
130     OS << "Ignore";
131     break;
132   case InAlloca:
133     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
134     break;
135   case Indirect:
136     OS << "Indirect Align=" << getIndirectAlign()
137        << " ByVal=" << getIndirectByVal()
138        << " Realign=" << getIndirectRealign();
139     break;
140   case Expand:
141     OS << "Expand";
142     break;
143   }
144   OS << ")\n";
145 }
146 
147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
148 
149 // If someone can figure out a general rule for this, that would be great.
150 // It's probably just doomed to be platform-dependent, though.
151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
152   // Verified for:
153   //   x86-64     FreeBSD, Linux, Darwin
154   //   x86-32     FreeBSD, Linux, Darwin
155   //   PowerPC    Linux, Darwin
156   //   ARM        Darwin (*not* EABI)
157   //   AArch64    Linux
158   return 32;
159 }
160 
161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
162                                      const FunctionNoProtoType *fnType) const {
163   // The following conventions are known to require this to be false:
164   //   x86_stdcall
165   //   MIPS
166   // For everything else, we just prefer false unless we opt out.
167   return false;
168 }
169 
170 void
171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
172                                              llvm::SmallString<24> &Opt) const {
173   // This assumes the user is passing a library name like "rt" instead of a
174   // filename like "librt.a/so", and that they don't care whether it's static or
175   // dynamic.
176   Opt = "-l";
177   Opt += Lib;
178 }
179 
180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
181 
182 /// isEmptyField - Return true iff a the field is "empty", that is it
183 /// is an unnamed bit-field or an (array of) empty record(s).
184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
185                          bool AllowArrays) {
186   if (FD->isUnnamedBitfield())
187     return true;
188 
189   QualType FT = FD->getType();
190 
191   // Constant arrays of empty records count as empty, strip them off.
192   // Constant arrays of zero length always count as empty.
193   if (AllowArrays)
194     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
195       if (AT->getSize() == 0)
196         return true;
197       FT = AT->getElementType();
198     }
199 
200   const RecordType *RT = FT->getAs<RecordType>();
201   if (!RT)
202     return false;
203 
204   // C++ record fields are never empty, at least in the Itanium ABI.
205   //
206   // FIXME: We should use a predicate for whether this behavior is true in the
207   // current ABI.
208   if (isa<CXXRecordDecl>(RT->getDecl()))
209     return false;
210 
211   return isEmptyRecord(Context, FT, AllowArrays);
212 }
213 
214 /// isEmptyRecord - Return true iff a structure contains only empty
215 /// fields. Note that a structure with a flexible array member is not
216 /// considered empty.
217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
218   const RecordType *RT = T->getAs<RecordType>();
219   if (!RT)
220     return 0;
221   const RecordDecl *RD = RT->getDecl();
222   if (RD->hasFlexibleArrayMember())
223     return false;
224 
225   // If this is a C++ record, check the bases first.
226   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
227     for (const auto &I : CXXRD->bases())
228       if (!isEmptyRecord(Context, I.getType(), true))
229         return false;
230 
231   for (const auto *I : RD->fields())
232     if (!isEmptyField(Context, I, AllowArrays))
233       return false;
234   return true;
235 }
236 
237 /// isSingleElementStruct - Determine if a structure is a "single
238 /// element struct", i.e. it has exactly one non-empty field or
239 /// exactly one field which is itself a single element
240 /// struct. Structures with flexible array members are never
241 /// considered single element structs.
242 ///
243 /// \return The field declaration for the single non-empty field, if
244 /// it exists.
245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
246   const RecordType *RT = T->getAs<RecordType>();
247   if (!RT)
248     return nullptr;
249 
250   const RecordDecl *RD = RT->getDecl();
251   if (RD->hasFlexibleArrayMember())
252     return nullptr;
253 
254   const Type *Found = nullptr;
255 
256   // If this is a C++ record, check the bases first.
257   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
258     for (const auto &I : CXXRD->bases()) {
259       // Ignore empty records.
260       if (isEmptyRecord(Context, I.getType(), true))
261         continue;
262 
263       // If we already found an element then this isn't a single-element struct.
264       if (Found)
265         return nullptr;
266 
267       // If this is non-empty and not a single element struct, the composite
268       // cannot be a single element struct.
269       Found = isSingleElementStruct(I.getType(), Context);
270       if (!Found)
271         return nullptr;
272     }
273   }
274 
275   // Check for single element.
276   for (const auto *FD : RD->fields()) {
277     QualType FT = FD->getType();
278 
279     // Ignore empty fields.
280     if (isEmptyField(Context, FD, true))
281       continue;
282 
283     // If we already found an element then this isn't a single-element
284     // struct.
285     if (Found)
286       return nullptr;
287 
288     // Treat single element arrays as the element.
289     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
290       if (AT->getSize().getZExtValue() != 1)
291         break;
292       FT = AT->getElementType();
293     }
294 
295     if (!isAggregateTypeForABI(FT)) {
296       Found = FT.getTypePtr();
297     } else {
298       Found = isSingleElementStruct(FT, Context);
299       if (!Found)
300         return nullptr;
301     }
302   }
303 
304   // We don't consider a struct a single-element struct if it has
305   // padding beyond the element type.
306   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
307     return nullptr;
308 
309   return Found;
310 }
311 
312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
313   // Treat complex types as the element type.
314   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
315     Ty = CTy->getElementType();
316 
317   // Check for a type which we know has a simple scalar argument-passing
318   // convention without any padding.  (We're specifically looking for 32
319   // and 64-bit integer and integer-equivalents, float, and double.)
320   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
321       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
322     return false;
323 
324   uint64_t Size = Context.getTypeSize(Ty);
325   return Size == 32 || Size == 64;
326 }
327 
328 /// canExpandIndirectArgument - Test whether an argument type which is to be
329 /// passed indirectly (on the stack) would have the equivalent layout if it was
330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
331 /// inhibiting optimizations.
332 ///
333 // FIXME: This predicate is missing many cases, currently it just follows
334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
335 // should probably make this smarter, or better yet make the LLVM backend
336 // capable of handling it.
337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
338   // We can only expand structure types.
339   const RecordType *RT = Ty->getAs<RecordType>();
340   if (!RT)
341     return false;
342 
343   // We can only expand (C) structures.
344   //
345   // FIXME: This needs to be generalized to handle classes as well.
346   const RecordDecl *RD = RT->getDecl();
347   if (!RD->isStruct())
348     return false;
349 
350   // We try to expand CLike CXXRecordDecl.
351   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
352     if (!CXXRD->isCLike())
353       return false;
354   }
355 
356   uint64_t Size = 0;
357 
358   for (const auto *FD : RD->fields()) {
359     if (!is32Or64BitBasicType(FD->getType(), Context))
360       return false;
361 
362     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
363     // how to expand them yet, and the predicate for telling if a bitfield still
364     // counts as "basic" is more complicated than what we were doing previously.
365     if (FD->isBitField())
366       return false;
367 
368     Size += Context.getTypeSize(FD->getType());
369   }
370 
371   // Make sure there are not any holes in the struct.
372   if (Size != Context.getTypeSize(Ty))
373     return false;
374 
375   return true;
376 }
377 
378 namespace {
379 /// DefaultABIInfo - The default implementation for ABI specific
380 /// details. This implementation provides information which results in
381 /// self-consistent and sensible LLVM IR generation, but does not
382 /// conform to any particular ABI.
383 class DefaultABIInfo : public ABIInfo {
384 public:
385   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
386 
387   ABIArgInfo classifyReturnType(QualType RetTy) const;
388   ABIArgInfo classifyArgumentType(QualType RetTy) const;
389 
390   void computeInfo(CGFunctionInfo &FI) const override {
391     if (!getCXXABI().classifyReturnType(FI))
392       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
393     for (auto &I : FI.arguments())
394       I.info = classifyArgumentType(I.type);
395   }
396 
397   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
398                          CodeGenFunction &CGF) const override;
399 };
400 
401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
402 public:
403   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
404     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
405 };
406 
407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
408                                        CodeGenFunction &CGF) const {
409   return nullptr;
410 }
411 
412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
413   Ty = useFirstFieldIfTransparentUnion(Ty);
414 
415   if (isAggregateTypeForABI(Ty)) {
416     // Records with non-trivial destructors/copy-constructors should not be
417     // passed by value.
418     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
419       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
420 
421     return ABIArgInfo::getIndirect(0);
422   }
423 
424   // Treat an enum type as its underlying type.
425   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
426     Ty = EnumTy->getDecl()->getIntegerType();
427 
428   return (Ty->isPromotableIntegerType() ?
429           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
430 }
431 
432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
433   if (RetTy->isVoidType())
434     return ABIArgInfo::getIgnore();
435 
436   if (isAggregateTypeForABI(RetTy))
437     return ABIArgInfo::getIndirect(0);
438 
439   // Treat an enum type as its underlying type.
440   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
441     RetTy = EnumTy->getDecl()->getIntegerType();
442 
443   return (RetTy->isPromotableIntegerType() ?
444           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
445 }
446 
447 //===----------------------------------------------------------------------===//
448 // le32/PNaCl bitcode ABI Implementation
449 //
450 // This is a simplified version of the x86_32 ABI.  Arguments and return values
451 // are always passed on the stack.
452 //===----------------------------------------------------------------------===//
453 
454 class PNaClABIInfo : public ABIInfo {
455  public:
456   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
457 
458   ABIArgInfo classifyReturnType(QualType RetTy) const;
459   ABIArgInfo classifyArgumentType(QualType RetTy) const;
460 
461   void computeInfo(CGFunctionInfo &FI) const override;
462   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                          CodeGenFunction &CGF) const override;
464 };
465 
466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
467  public:
468   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
469     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
470 };
471 
472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
473   if (!getCXXABI().classifyReturnType(FI))
474     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
475 
476   for (auto &I : FI.arguments())
477     I.info = classifyArgumentType(I.type);
478 }
479 
480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
481                                        CodeGenFunction &CGF) const {
482   return nullptr;
483 }
484 
485 /// \brief Classify argument of given type \p Ty.
486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
487   if (isAggregateTypeForABI(Ty)) {
488     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
489       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
490     return ABIArgInfo::getIndirect(0);
491   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
492     // Treat an enum type as its underlying type.
493     Ty = EnumTy->getDecl()->getIntegerType();
494   } else if (Ty->isFloatingType()) {
495     // Floating-point types don't go inreg.
496     return ABIArgInfo::getDirect();
497   }
498 
499   return (Ty->isPromotableIntegerType() ?
500           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
501 }
502 
503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
504   if (RetTy->isVoidType())
505     return ABIArgInfo::getIgnore();
506 
507   // In the PNaCl ABI we always return records/structures on the stack.
508   if (isAggregateTypeForABI(RetTy))
509     return ABIArgInfo::getIndirect(0);
510 
511   // Treat an enum type as its underlying type.
512   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
513     RetTy = EnumTy->getDecl()->getIntegerType();
514 
515   return (RetTy->isPromotableIntegerType() ?
516           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
517 }
518 
519 /// IsX86_MMXType - Return true if this is an MMX type.
520 bool IsX86_MMXType(llvm::Type *IRType) {
521   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
522   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
523     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
524     IRType->getScalarSizeInBits() != 64;
525 }
526 
527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
528                                           StringRef Constraint,
529                                           llvm::Type* Ty) {
530   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
531     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
532       // Invalid MMX constraint
533       return nullptr;
534     }
535 
536     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
537   }
538 
539   // No operation needed
540   return Ty;
541 }
542 
543 /// Returns true if this type can be passed in SSE registers with the
544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
546   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
547     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
548       return true;
549   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
550     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
551     // registers specially.
552     unsigned VecSize = Context.getTypeSize(VT);
553     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
554       return true;
555   }
556   return false;
557 }
558 
559 /// Returns true if this aggregate is small enough to be passed in SSE registers
560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
562   return NumMembers <= 4;
563 }
564 
565 //===----------------------------------------------------------------------===//
566 // X86-32 ABI Implementation
567 //===----------------------------------------------------------------------===//
568 
569 /// \brief Similar to llvm::CCState, but for Clang.
570 struct CCState {
571   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
572 
573   unsigned CC;
574   unsigned FreeRegs;
575   unsigned FreeSSERegs;
576 };
577 
578 /// X86_32ABIInfo - The X86-32 ABI information.
579 class X86_32ABIInfo : public ABIInfo {
580   enum Class {
581     Integer,
582     Float
583   };
584 
585   static const unsigned MinABIStackAlignInBytes = 4;
586 
587   bool IsDarwinVectorABI;
588   bool IsSmallStructInRegABI;
589   bool IsWin32StructABI;
590   unsigned DefaultNumRegisterParameters;
591 
592   static bool isRegisterSize(unsigned Size) {
593     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
594   }
595 
596   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
597     // FIXME: Assumes vectorcall is in use.
598     return isX86VectorTypeForVectorCall(getContext(), Ty);
599   }
600 
601   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
602                                          uint64_t NumMembers) const override {
603     // FIXME: Assumes vectorcall is in use.
604     return isX86VectorCallAggregateSmallEnough(NumMembers);
605   }
606 
607   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
608 
609   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
610   /// such that the argument will be passed in memory.
611   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
612 
613   ABIArgInfo getIndirectReturnResult(CCState &State) const;
614 
615   /// \brief Return the alignment to use for the given type on the stack.
616   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
617 
618   Class classify(QualType Ty) const;
619   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
620   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
621   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
622 
623   /// \brief Rewrite the function info so that all memory arguments use
624   /// inalloca.
625   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
626 
627   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
628                            unsigned &StackOffset, ABIArgInfo &Info,
629                            QualType Type) const;
630 
631 public:
632 
633   void computeInfo(CGFunctionInfo &FI) const override;
634   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
635                          CodeGenFunction &CGF) const override;
636 
637   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
638                 unsigned r)
639     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
640       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
641 };
642 
643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
644 public:
645   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
646       bool d, bool p, bool w, unsigned r)
647     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
648 
649   static bool isStructReturnInRegABI(
650       const llvm::Triple &Triple, const CodeGenOptions &Opts);
651 
652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
653                            CodeGen::CodeGenModule &CGM) const override;
654 
655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
656     // Darwin uses different dwarf register numbers for EH.
657     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
658     return 4;
659   }
660 
661   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
662                                llvm::Value *Address) const override;
663 
664   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
665                                   StringRef Constraint,
666                                   llvm::Type* Ty) const override {
667     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
668   }
669 
670   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
671                                 std::string &Constraints,
672                                 std::vector<llvm::Type *> &ResultRegTypes,
673                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
674                                 std::vector<LValue> &ResultRegDests,
675                                 std::string &AsmString,
676                                 unsigned NumOutputs) const override;
677 
678   llvm::Constant *
679   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
680     unsigned Sig = (0xeb << 0) |  // jmp rel8
681                    (0x06 << 8) |  //           .+0x08
682                    ('F' << 16) |
683                    ('T' << 24);
684     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
685   }
686 };
687 
688 }
689 
690 /// Rewrite input constraint references after adding some output constraints.
691 /// In the case where there is one output and one input and we add one output,
692 /// we need to replace all operand references greater than or equal to 1:
693 ///     mov $0, $1
694 ///     mov eax, $1
695 /// The result will be:
696 ///     mov $0, $2
697 ///     mov eax, $2
698 static void rewriteInputConstraintReferences(unsigned FirstIn,
699                                              unsigned NumNewOuts,
700                                              std::string &AsmString) {
701   std::string Buf;
702   llvm::raw_string_ostream OS(Buf);
703   size_t Pos = 0;
704   while (Pos < AsmString.size()) {
705     size_t DollarStart = AsmString.find('$', Pos);
706     if (DollarStart == std::string::npos)
707       DollarStart = AsmString.size();
708     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
709     if (DollarEnd == std::string::npos)
710       DollarEnd = AsmString.size();
711     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
712     Pos = DollarEnd;
713     size_t NumDollars = DollarEnd - DollarStart;
714     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
715       // We have an operand reference.
716       size_t DigitStart = Pos;
717       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
718       if (DigitEnd == std::string::npos)
719         DigitEnd = AsmString.size();
720       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
721       unsigned OperandIndex;
722       if (!OperandStr.getAsInteger(10, OperandIndex)) {
723         if (OperandIndex >= FirstIn)
724           OperandIndex += NumNewOuts;
725         OS << OperandIndex;
726       } else {
727         OS << OperandStr;
728       }
729       Pos = DigitEnd;
730     }
731   }
732   AsmString = std::move(OS.str());
733 }
734 
735 /// Add output constraints for EAX:EDX because they are return registers.
736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
737     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
738     std::vector<llvm::Type *> &ResultRegTypes,
739     std::vector<llvm::Type *> &ResultTruncRegTypes,
740     std::vector<LValue> &ResultRegDests, std::string &AsmString,
741     unsigned NumOutputs) const {
742   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
743 
744   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
745   // larger.
746   if (!Constraints.empty())
747     Constraints += ',';
748   if (RetWidth <= 32) {
749     Constraints += "={eax}";
750     ResultRegTypes.push_back(CGF.Int32Ty);
751   } else {
752     // Use the 'A' constraint for EAX:EDX.
753     Constraints += "=A";
754     ResultRegTypes.push_back(CGF.Int64Ty);
755   }
756 
757   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
758   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
759   ResultTruncRegTypes.push_back(CoerceTy);
760 
761   // Coerce the integer by bitcasting the return slot pointer.
762   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
763                                                   CoerceTy->getPointerTo()));
764   ResultRegDests.push_back(ReturnSlot);
765 
766   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
767 }
768 
769 /// shouldReturnTypeInRegister - Determine if the given type should be
770 /// passed in a register (for the Darwin ABI).
771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
772                                                ASTContext &Context) const {
773   uint64_t Size = Context.getTypeSize(Ty);
774 
775   // Type must be register sized.
776   if (!isRegisterSize(Size))
777     return false;
778 
779   if (Ty->isVectorType()) {
780     // 64- and 128- bit vectors inside structures are not returned in
781     // registers.
782     if (Size == 64 || Size == 128)
783       return false;
784 
785     return true;
786   }
787 
788   // If this is a builtin, pointer, enum, complex type, member pointer, or
789   // member function pointer it is ok.
790   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
791       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
792       Ty->isBlockPointerType() || Ty->isMemberPointerType())
793     return true;
794 
795   // Arrays are treated like records.
796   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
797     return shouldReturnTypeInRegister(AT->getElementType(), Context);
798 
799   // Otherwise, it must be a record type.
800   const RecordType *RT = Ty->getAs<RecordType>();
801   if (!RT) return false;
802 
803   // FIXME: Traverse bases here too.
804 
805   // Structure types are passed in register if all fields would be
806   // passed in a register.
807   for (const auto *FD : RT->getDecl()->fields()) {
808     // Empty fields are ignored.
809     if (isEmptyField(Context, FD, true))
810       continue;
811 
812     // Check fields recursively.
813     if (!shouldReturnTypeInRegister(FD->getType(), Context))
814       return false;
815   }
816   return true;
817 }
818 
819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
820   // If the return value is indirect, then the hidden argument is consuming one
821   // integer register.
822   if (State.FreeRegs) {
823     --State.FreeRegs;
824     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
825   }
826   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
827 }
828 
829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
830                                              CCState &State) const {
831   if (RetTy->isVoidType())
832     return ABIArgInfo::getIgnore();
833 
834   const Type *Base = nullptr;
835   uint64_t NumElts = 0;
836   if (State.CC == llvm::CallingConv::X86_VectorCall &&
837       isHomogeneousAggregate(RetTy, Base, NumElts)) {
838     // The LLVM struct type for such an aggregate should lower properly.
839     return ABIArgInfo::getDirect();
840   }
841 
842   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
843     // On Darwin, some vectors are returned in registers.
844     if (IsDarwinVectorABI) {
845       uint64_t Size = getContext().getTypeSize(RetTy);
846 
847       // 128-bit vectors are a special case; they are returned in
848       // registers and we need to make sure to pick a type the LLVM
849       // backend will like.
850       if (Size == 128)
851         return ABIArgInfo::getDirect(llvm::VectorType::get(
852                   llvm::Type::getInt64Ty(getVMContext()), 2));
853 
854       // Always return in register if it fits in a general purpose
855       // register, or if it is 64 bits and has a single element.
856       if ((Size == 8 || Size == 16 || Size == 32) ||
857           (Size == 64 && VT->getNumElements() == 1))
858         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
859                                                             Size));
860 
861       return getIndirectReturnResult(State);
862     }
863 
864     return ABIArgInfo::getDirect();
865   }
866 
867   if (isAggregateTypeForABI(RetTy)) {
868     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
869       // Structures with flexible arrays are always indirect.
870       if (RT->getDecl()->hasFlexibleArrayMember())
871         return getIndirectReturnResult(State);
872     }
873 
874     // If specified, structs and unions are always indirect.
875     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
876       return getIndirectReturnResult(State);
877 
878     // Small structures which are register sized are generally returned
879     // in a register.
880     if (shouldReturnTypeInRegister(RetTy, getContext())) {
881       uint64_t Size = getContext().getTypeSize(RetTy);
882 
883       // As a special-case, if the struct is a "single-element" struct, and
884       // the field is of type "float" or "double", return it in a
885       // floating-point register. (MSVC does not apply this special case.)
886       // We apply a similar transformation for pointer types to improve the
887       // quality of the generated IR.
888       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
889         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
890             || SeltTy->hasPointerRepresentation())
891           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
892 
893       // FIXME: We should be able to narrow this integer in cases with dead
894       // padding.
895       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
896     }
897 
898     return getIndirectReturnResult(State);
899   }
900 
901   // Treat an enum type as its underlying type.
902   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
903     RetTy = EnumTy->getDecl()->getIntegerType();
904 
905   return (RetTy->isPromotableIntegerType() ?
906           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
907 }
908 
909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
910   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
911 }
912 
913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
914   const RecordType *RT = Ty->getAs<RecordType>();
915   if (!RT)
916     return 0;
917   const RecordDecl *RD = RT->getDecl();
918 
919   // If this is a C++ record, check the bases first.
920   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
921     for (const auto &I : CXXRD->bases())
922       if (!isRecordWithSSEVectorType(Context, I.getType()))
923         return false;
924 
925   for (const auto *i : RD->fields()) {
926     QualType FT = i->getType();
927 
928     if (isSSEVectorType(Context, FT))
929       return true;
930 
931     if (isRecordWithSSEVectorType(Context, FT))
932       return true;
933   }
934 
935   return false;
936 }
937 
938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
939                                                  unsigned Align) const {
940   // Otherwise, if the alignment is less than or equal to the minimum ABI
941   // alignment, just use the default; the backend will handle this.
942   if (Align <= MinABIStackAlignInBytes)
943     return 0; // Use default alignment.
944 
945   // On non-Darwin, the stack type alignment is always 4.
946   if (!IsDarwinVectorABI) {
947     // Set explicit alignment, since we may need to realign the top.
948     return MinABIStackAlignInBytes;
949   }
950 
951   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
952   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
953                       isRecordWithSSEVectorType(getContext(), Ty)))
954     return 16;
955 
956   return MinABIStackAlignInBytes;
957 }
958 
959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
960                                             CCState &State) const {
961   if (!ByVal) {
962     if (State.FreeRegs) {
963       --State.FreeRegs; // Non-byval indirects just use one pointer.
964       return ABIArgInfo::getIndirectInReg(0, false);
965     }
966     return ABIArgInfo::getIndirect(0, false);
967   }
968 
969   // Compute the byval alignment.
970   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
971   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
972   if (StackAlign == 0)
973     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
974 
975   // If the stack alignment is less than the type alignment, realign the
976   // argument.
977   bool Realign = TypeAlign > StackAlign;
978   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
979 }
980 
981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
982   const Type *T = isSingleElementStruct(Ty, getContext());
983   if (!T)
984     T = Ty.getTypePtr();
985 
986   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
987     BuiltinType::Kind K = BT->getKind();
988     if (K == BuiltinType::Float || K == BuiltinType::Double)
989       return Float;
990   }
991   return Integer;
992 }
993 
994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
995                                    bool &NeedsPadding) const {
996   NeedsPadding = false;
997   Class C = classify(Ty);
998   if (C == Float)
999     return false;
1000 
1001   unsigned Size = getContext().getTypeSize(Ty);
1002   unsigned SizeInRegs = (Size + 31) / 32;
1003 
1004   if (SizeInRegs == 0)
1005     return false;
1006 
1007   if (SizeInRegs > State.FreeRegs) {
1008     State.FreeRegs = 0;
1009     return false;
1010   }
1011 
1012   State.FreeRegs -= SizeInRegs;
1013 
1014   if (State.CC == llvm::CallingConv::X86_FastCall ||
1015       State.CC == llvm::CallingConv::X86_VectorCall) {
1016     if (Size > 32)
1017       return false;
1018 
1019     if (Ty->isIntegralOrEnumerationType())
1020       return true;
1021 
1022     if (Ty->isPointerType())
1023       return true;
1024 
1025     if (Ty->isReferenceType())
1026       return true;
1027 
1028     if (State.FreeRegs)
1029       NeedsPadding = true;
1030 
1031     return false;
1032   }
1033 
1034   return true;
1035 }
1036 
1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1038                                                CCState &State) const {
1039   // FIXME: Set alignment on indirect arguments.
1040 
1041   Ty = useFirstFieldIfTransparentUnion(Ty);
1042 
1043   // Check with the C++ ABI first.
1044   const RecordType *RT = Ty->getAs<RecordType>();
1045   if (RT) {
1046     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1047     if (RAA == CGCXXABI::RAA_Indirect) {
1048       return getIndirectResult(Ty, false, State);
1049     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1050       // The field index doesn't matter, we'll fix it up later.
1051       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1052     }
1053   }
1054 
1055   // vectorcall adds the concept of a homogenous vector aggregate, similar
1056   // to other targets.
1057   const Type *Base = nullptr;
1058   uint64_t NumElts = 0;
1059   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1060       isHomogeneousAggregate(Ty, Base, NumElts)) {
1061     if (State.FreeSSERegs >= NumElts) {
1062       State.FreeSSERegs -= NumElts;
1063       if (Ty->isBuiltinType() || Ty->isVectorType())
1064         return ABIArgInfo::getDirect();
1065       return ABIArgInfo::getExpand();
1066     }
1067     return getIndirectResult(Ty, /*ByVal=*/false, State);
1068   }
1069 
1070   if (isAggregateTypeForABI(Ty)) {
1071     if (RT) {
1072       // Structs are always byval on win32, regardless of what they contain.
1073       if (IsWin32StructABI)
1074         return getIndirectResult(Ty, true, State);
1075 
1076       // Structures with flexible arrays are always indirect.
1077       if (RT->getDecl()->hasFlexibleArrayMember())
1078         return getIndirectResult(Ty, true, State);
1079     }
1080 
1081     // Ignore empty structs/unions.
1082     if (isEmptyRecord(getContext(), Ty, true))
1083       return ABIArgInfo::getIgnore();
1084 
1085     llvm::LLVMContext &LLVMContext = getVMContext();
1086     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1087     bool NeedsPadding;
1088     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1089       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1090       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1091       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1092       return ABIArgInfo::getDirectInReg(Result);
1093     }
1094     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1095 
1096     // Expand small (<= 128-bit) record types when we know that the stack layout
1097     // of those arguments will match the struct. This is important because the
1098     // LLVM backend isn't smart enough to remove byval, which inhibits many
1099     // optimizations.
1100     if (getContext().getTypeSize(Ty) <= 4*32 &&
1101         canExpandIndirectArgument(Ty, getContext()))
1102       return ABIArgInfo::getExpandWithPadding(
1103           State.CC == llvm::CallingConv::X86_FastCall ||
1104               State.CC == llvm::CallingConv::X86_VectorCall,
1105           PaddingType);
1106 
1107     return getIndirectResult(Ty, true, State);
1108   }
1109 
1110   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1111     // On Darwin, some vectors are passed in memory, we handle this by passing
1112     // it as an i8/i16/i32/i64.
1113     if (IsDarwinVectorABI) {
1114       uint64_t Size = getContext().getTypeSize(Ty);
1115       if ((Size == 8 || Size == 16 || Size == 32) ||
1116           (Size == 64 && VT->getNumElements() == 1))
1117         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1118                                                             Size));
1119     }
1120 
1121     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1122       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1123 
1124     return ABIArgInfo::getDirect();
1125   }
1126 
1127 
1128   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1129     Ty = EnumTy->getDecl()->getIntegerType();
1130 
1131   bool NeedsPadding;
1132   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1133 
1134   if (Ty->isPromotableIntegerType()) {
1135     if (InReg)
1136       return ABIArgInfo::getExtendInReg();
1137     return ABIArgInfo::getExtend();
1138   }
1139   if (InReg)
1140     return ABIArgInfo::getDirectInReg();
1141   return ABIArgInfo::getDirect();
1142 }
1143 
1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1145   CCState State(FI.getCallingConvention());
1146   if (State.CC == llvm::CallingConv::X86_FastCall)
1147     State.FreeRegs = 2;
1148   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1149     State.FreeRegs = 2;
1150     State.FreeSSERegs = 6;
1151   } else if (FI.getHasRegParm())
1152     State.FreeRegs = FI.getRegParm();
1153   else
1154     State.FreeRegs = DefaultNumRegisterParameters;
1155 
1156   if (!getCXXABI().classifyReturnType(FI)) {
1157     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1158   } else if (FI.getReturnInfo().isIndirect()) {
1159     // The C++ ABI is not aware of register usage, so we have to check if the
1160     // return value was sret and put it in a register ourselves if appropriate.
1161     if (State.FreeRegs) {
1162       --State.FreeRegs;  // The sret parameter consumes a register.
1163       FI.getReturnInfo().setInReg(true);
1164     }
1165   }
1166 
1167   // The chain argument effectively gives us another free register.
1168   if (FI.isChainCall())
1169     ++State.FreeRegs;
1170 
1171   bool UsedInAlloca = false;
1172   for (auto &I : FI.arguments()) {
1173     I.info = classifyArgumentType(I.type, State);
1174     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1175   }
1176 
1177   // If we needed to use inalloca for any argument, do a second pass and rewrite
1178   // all the memory arguments to use inalloca.
1179   if (UsedInAlloca)
1180     rewriteWithInAlloca(FI);
1181 }
1182 
1183 void
1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1185                                    unsigned &StackOffset,
1186                                    ABIArgInfo &Info, QualType Type) const {
1187   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1188   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1189   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1190   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1191 
1192   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1193   // byte aligned.
1194   if (StackOffset % 4U) {
1195     unsigned OldOffset = StackOffset;
1196     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1197     unsigned NumBytes = StackOffset - OldOffset;
1198     assert(NumBytes);
1199     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1200     Ty = llvm::ArrayType::get(Ty, NumBytes);
1201     FrameFields.push_back(Ty);
1202   }
1203 }
1204 
1205 static bool isArgInAlloca(const ABIArgInfo &Info) {
1206   // Leave ignored and inreg arguments alone.
1207   switch (Info.getKind()) {
1208   case ABIArgInfo::InAlloca:
1209     return true;
1210   case ABIArgInfo::Indirect:
1211     assert(Info.getIndirectByVal());
1212     return true;
1213   case ABIArgInfo::Ignore:
1214     return false;
1215   case ABIArgInfo::Direct:
1216   case ABIArgInfo::Extend:
1217   case ABIArgInfo::Expand:
1218     if (Info.getInReg())
1219       return false;
1220     return true;
1221   }
1222   llvm_unreachable("invalid enum");
1223 }
1224 
1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1226   assert(IsWin32StructABI && "inalloca only supported on win32");
1227 
1228   // Build a packed struct type for all of the arguments in memory.
1229   SmallVector<llvm::Type *, 6> FrameFields;
1230 
1231   unsigned StackOffset = 0;
1232   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1233 
1234   // Put 'this' into the struct before 'sret', if necessary.
1235   bool IsThisCall =
1236       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1237   ABIArgInfo &Ret = FI.getReturnInfo();
1238   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1239       isArgInAlloca(I->info)) {
1240     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1241     ++I;
1242   }
1243 
1244   // Put the sret parameter into the inalloca struct if it's in memory.
1245   if (Ret.isIndirect() && !Ret.getInReg()) {
1246     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1247     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1248     // On Windows, the hidden sret parameter is always returned in eax.
1249     Ret.setInAllocaSRet(IsWin32StructABI);
1250   }
1251 
1252   // Skip the 'this' parameter in ecx.
1253   if (IsThisCall)
1254     ++I;
1255 
1256   // Put arguments passed in memory into the struct.
1257   for (; I != E; ++I) {
1258     if (isArgInAlloca(I->info))
1259       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1260   }
1261 
1262   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1263                                         /*isPacked=*/true));
1264 }
1265 
1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1267                                       CodeGenFunction &CGF) const {
1268   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1269 
1270   CGBuilderTy &Builder = CGF.Builder;
1271   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1272                                                        "ap");
1273   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1274 
1275   // Compute if the address needs to be aligned
1276   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1277   Align = getTypeStackAlignInBytes(Ty, Align);
1278   Align = std::max(Align, 4U);
1279   if (Align > 4) {
1280     // addr = (addr + align - 1) & -align;
1281     llvm::Value *Offset =
1282       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1283     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1284     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1285                                                     CGF.Int32Ty);
1286     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1287     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1288                                       Addr->getType(),
1289                                       "ap.cur.aligned");
1290   }
1291 
1292   llvm::Type *PTy =
1293     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1294   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1295 
1296   uint64_t Offset =
1297     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1298   llvm::Value *NextAddr =
1299     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1300                       "ap.next");
1301   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1302 
1303   return AddrTyped;
1304 }
1305 
1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1307     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1308   assert(Triple.getArch() == llvm::Triple::x86);
1309 
1310   switch (Opts.getStructReturnConvention()) {
1311   case CodeGenOptions::SRCK_Default:
1312     break;
1313   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1314     return false;
1315   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1316     return true;
1317   }
1318 
1319   if (Triple.isOSDarwin())
1320     return true;
1321 
1322   switch (Triple.getOS()) {
1323   case llvm::Triple::DragonFly:
1324   case llvm::Triple::FreeBSD:
1325   case llvm::Triple::OpenBSD:
1326   case llvm::Triple::Bitrig:
1327   case llvm::Triple::Win32:
1328     return true;
1329   default:
1330     return false;
1331   }
1332 }
1333 
1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1335                                                   llvm::GlobalValue *GV,
1336                                             CodeGen::CodeGenModule &CGM) const {
1337   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1338     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1339       // Get the LLVM function.
1340       llvm::Function *Fn = cast<llvm::Function>(GV);
1341 
1342       // Now add the 'alignstack' attribute with a value of 16.
1343       llvm::AttrBuilder B;
1344       B.addStackAlignmentAttr(16);
1345       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1346                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1347                                               llvm::AttributeSet::FunctionIndex,
1348                                               B));
1349     }
1350   }
1351 }
1352 
1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1354                                                CodeGen::CodeGenFunction &CGF,
1355                                                llvm::Value *Address) const {
1356   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1357 
1358   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1359 
1360   // 0-7 are the eight integer registers;  the order is different
1361   //   on Darwin (for EH), but the range is the same.
1362   // 8 is %eip.
1363   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1364 
1365   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1366     // 12-16 are st(0..4).  Not sure why we stop at 4.
1367     // These have size 16, which is sizeof(long double) on
1368     // platforms with 8-byte alignment for that type.
1369     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1370     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1371 
1372   } else {
1373     // 9 is %eflags, which doesn't get a size on Darwin for some
1374     // reason.
1375     Builder.CreateStore(
1376         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
1377 
1378     // 11-16 are st(0..5).  Not sure why we stop at 5.
1379     // These have size 12, which is sizeof(long double) on
1380     // platforms with 4-byte alignment for that type.
1381     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1382     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1383   }
1384 
1385   return false;
1386 }
1387 
1388 //===----------------------------------------------------------------------===//
1389 // X86-64 ABI Implementation
1390 //===----------------------------------------------------------------------===//
1391 
1392 
1393 namespace {
1394 /// The AVX ABI level for X86 targets.
1395 enum class X86AVXABILevel {
1396   None,
1397   AVX,
1398   AVX512
1399 };
1400 
1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1403   switch (AVXLevel) {
1404   case X86AVXABILevel::AVX512:
1405     return 512;
1406   case X86AVXABILevel::AVX:
1407     return 256;
1408   case X86AVXABILevel::None:
1409     return 128;
1410   }
1411   llvm_unreachable("Unknown AVXLevel");
1412 }
1413 
1414 /// X86_64ABIInfo - The X86_64 ABI information.
1415 class X86_64ABIInfo : public ABIInfo {
1416   enum Class {
1417     Integer = 0,
1418     SSE,
1419     SSEUp,
1420     X87,
1421     X87Up,
1422     ComplexX87,
1423     NoClass,
1424     Memory
1425   };
1426 
1427   /// merge - Implement the X86_64 ABI merging algorithm.
1428   ///
1429   /// Merge an accumulating classification \arg Accum with a field
1430   /// classification \arg Field.
1431   ///
1432   /// \param Accum - The accumulating classification. This should
1433   /// always be either NoClass or the result of a previous merge
1434   /// call. In addition, this should never be Memory (the caller
1435   /// should just return Memory for the aggregate).
1436   static Class merge(Class Accum, Class Field);
1437 
1438   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1439   ///
1440   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1441   /// final MEMORY or SSE classes when necessary.
1442   ///
1443   /// \param AggregateSize - The size of the current aggregate in
1444   /// the classification process.
1445   ///
1446   /// \param Lo - The classification for the parts of the type
1447   /// residing in the low word of the containing object.
1448   ///
1449   /// \param Hi - The classification for the parts of the type
1450   /// residing in the higher words of the containing object.
1451   ///
1452   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1453 
1454   /// classify - Determine the x86_64 register classes in which the
1455   /// given type T should be passed.
1456   ///
1457   /// \param Lo - The classification for the parts of the type
1458   /// residing in the low word of the containing object.
1459   ///
1460   /// \param Hi - The classification for the parts of the type
1461   /// residing in the high word of the containing object.
1462   ///
1463   /// \param OffsetBase - The bit offset of this type in the
1464   /// containing object.  Some parameters are classified different
1465   /// depending on whether they straddle an eightbyte boundary.
1466   ///
1467   /// \param isNamedArg - Whether the argument in question is a "named"
1468   /// argument, as used in AMD64-ABI 3.5.7.
1469   ///
1470   /// If a word is unused its result will be NoClass; if a type should
1471   /// be passed in Memory then at least the classification of \arg Lo
1472   /// will be Memory.
1473   ///
1474   /// The \arg Lo class will be NoClass iff the argument is ignored.
1475   ///
1476   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1477   /// also be ComplexX87.
1478   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1479                 bool isNamedArg) const;
1480 
1481   llvm::Type *GetByteVectorType(QualType Ty) const;
1482   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1483                                  unsigned IROffset, QualType SourceTy,
1484                                  unsigned SourceOffset) const;
1485   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1486                                      unsigned IROffset, QualType SourceTy,
1487                                      unsigned SourceOffset) const;
1488 
1489   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1490   /// such that the argument will be returned in memory.
1491   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1492 
1493   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1494   /// such that the argument will be passed in memory.
1495   ///
1496   /// \param freeIntRegs - The number of free integer registers remaining
1497   /// available.
1498   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1499 
1500   ABIArgInfo classifyReturnType(QualType RetTy) const;
1501 
1502   ABIArgInfo classifyArgumentType(QualType Ty,
1503                                   unsigned freeIntRegs,
1504                                   unsigned &neededInt,
1505                                   unsigned &neededSSE,
1506                                   bool isNamedArg) const;
1507 
1508   bool IsIllegalVectorType(QualType Ty) const;
1509 
1510   /// The 0.98 ABI revision clarified a lot of ambiguities,
1511   /// unfortunately in ways that were not always consistent with
1512   /// certain previous compilers.  In particular, platforms which
1513   /// required strict binary compatibility with older versions of GCC
1514   /// may need to exempt themselves.
1515   bool honorsRevision0_98() const {
1516     return !getTarget().getTriple().isOSDarwin();
1517   }
1518 
1519   X86AVXABILevel AVXLevel;
1520   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1521   // 64-bit hardware.
1522   bool Has64BitPointers;
1523 
1524 public:
1525   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1526       ABIInfo(CGT), AVXLevel(AVXLevel),
1527       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1528   }
1529 
1530   bool isPassedUsingAVXType(QualType type) const {
1531     unsigned neededInt, neededSSE;
1532     // The freeIntRegs argument doesn't matter here.
1533     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1534                                            /*isNamedArg*/true);
1535     if (info.isDirect()) {
1536       llvm::Type *ty = info.getCoerceToType();
1537       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1538         return (vectorTy->getBitWidth() > 128);
1539     }
1540     return false;
1541   }
1542 
1543   void computeInfo(CGFunctionInfo &FI) const override;
1544 
1545   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1546                          CodeGenFunction &CGF) const override;
1547 
1548   bool has64BitPointers() const {
1549     return Has64BitPointers;
1550   }
1551 };
1552 
1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1554 class WinX86_64ABIInfo : public ABIInfo {
1555 
1556   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1557                       bool IsReturnType) const;
1558 
1559 public:
1560   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1561 
1562   void computeInfo(CGFunctionInfo &FI) const override;
1563 
1564   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1565                          CodeGenFunction &CGF) const override;
1566 
1567   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1568     // FIXME: Assumes vectorcall is in use.
1569     return isX86VectorTypeForVectorCall(getContext(), Ty);
1570   }
1571 
1572   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1573                                          uint64_t NumMembers) const override {
1574     // FIXME: Assumes vectorcall is in use.
1575     return isX86VectorCallAggregateSmallEnough(NumMembers);
1576   }
1577 };
1578 
1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1580 public:
1581   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1582       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1583 
1584   const X86_64ABIInfo &getABIInfo() const {
1585     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1586   }
1587 
1588   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1589     return 7;
1590   }
1591 
1592   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1593                                llvm::Value *Address) const override {
1594     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1595 
1596     // 0-15 are the 16 integer registers.
1597     // 16 is %rip.
1598     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1599     return false;
1600   }
1601 
1602   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1603                                   StringRef Constraint,
1604                                   llvm::Type* Ty) const override {
1605     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1606   }
1607 
1608   bool isNoProtoCallVariadic(const CallArgList &args,
1609                              const FunctionNoProtoType *fnType) const override {
1610     // The default CC on x86-64 sets %al to the number of SSA
1611     // registers used, and GCC sets this when calling an unprototyped
1612     // function, so we override the default behavior.  However, don't do
1613     // that when AVX types are involved: the ABI explicitly states it is
1614     // undefined, and it doesn't work in practice because of how the ABI
1615     // defines varargs anyway.
1616     if (fnType->getCallConv() == CC_C) {
1617       bool HasAVXType = false;
1618       for (CallArgList::const_iterator
1619              it = args.begin(), ie = args.end(); it != ie; ++it) {
1620         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1621           HasAVXType = true;
1622           break;
1623         }
1624       }
1625 
1626       if (!HasAVXType)
1627         return true;
1628     }
1629 
1630     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1631   }
1632 
1633   llvm::Constant *
1634   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1635     unsigned Sig;
1636     if (getABIInfo().has64BitPointers())
1637       Sig = (0xeb << 0) |  // jmp rel8
1638             (0x0a << 8) |  //           .+0x0c
1639             ('F' << 16) |
1640             ('T' << 24);
1641     else
1642       Sig = (0xeb << 0) |  // jmp rel8
1643             (0x06 << 8) |  //           .+0x08
1644             ('F' << 16) |
1645             ('T' << 24);
1646     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1647   }
1648 };
1649 
1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1651 public:
1652   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1653     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1654 
1655   void getDependentLibraryOption(llvm::StringRef Lib,
1656                                  llvm::SmallString<24> &Opt) const override {
1657     Opt = "\01";
1658     // If the argument contains a space, enclose it in quotes.
1659     if (Lib.find(" ") != StringRef::npos)
1660       Opt += "\"" + Lib.str() + "\"";
1661     else
1662       Opt += Lib;
1663   }
1664 };
1665 
1666 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1667   // If the argument does not end in .lib, automatically add the suffix.
1668   // If the argument contains a space, enclose it in quotes.
1669   // This matches the behavior of MSVC.
1670   bool Quote = (Lib.find(" ") != StringRef::npos);
1671   std::string ArgStr = Quote ? "\"" : "";
1672   ArgStr += Lib;
1673   if (!Lib.endswith_lower(".lib"))
1674     ArgStr += ".lib";
1675   ArgStr += Quote ? "\"" : "";
1676   return ArgStr;
1677 }
1678 
1679 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1680 public:
1681   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1682         bool d, bool p, bool w, unsigned RegParms)
1683     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1684 
1685   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1686                            CodeGen::CodeGenModule &CGM) const override;
1687 
1688   void getDependentLibraryOption(llvm::StringRef Lib,
1689                                  llvm::SmallString<24> &Opt) const override {
1690     Opt = "/DEFAULTLIB:";
1691     Opt += qualifyWindowsLibrary(Lib);
1692   }
1693 
1694   void getDetectMismatchOption(llvm::StringRef Name,
1695                                llvm::StringRef Value,
1696                                llvm::SmallString<32> &Opt) const override {
1697     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1698   }
1699 };
1700 
1701 static void addStackProbeSizeTargetAttribute(const Decl *D,
1702                                              llvm::GlobalValue *GV,
1703                                              CodeGen::CodeGenModule &CGM) {
1704   if (isa<FunctionDecl>(D)) {
1705     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1706       llvm::Function *Fn = cast<llvm::Function>(GV);
1707 
1708       Fn->addFnAttr("stack-probe-size",
1709                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1710     }
1711   }
1712 }
1713 
1714 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1715                                                      llvm::GlobalValue *GV,
1716                                             CodeGen::CodeGenModule &CGM) const {
1717   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1718 
1719   addStackProbeSizeTargetAttribute(D, GV, CGM);
1720 }
1721 
1722 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1723 public:
1724   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1725                              X86AVXABILevel AVXLevel)
1726       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1727 
1728   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1729                            CodeGen::CodeGenModule &CGM) const override;
1730 
1731   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1732     return 7;
1733   }
1734 
1735   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1736                                llvm::Value *Address) const override {
1737     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1738 
1739     // 0-15 are the 16 integer registers.
1740     // 16 is %rip.
1741     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1742     return false;
1743   }
1744 
1745   void getDependentLibraryOption(llvm::StringRef Lib,
1746                                  llvm::SmallString<24> &Opt) const override {
1747     Opt = "/DEFAULTLIB:";
1748     Opt += qualifyWindowsLibrary(Lib);
1749   }
1750 
1751   void getDetectMismatchOption(llvm::StringRef Name,
1752                                llvm::StringRef Value,
1753                                llvm::SmallString<32> &Opt) const override {
1754     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1755   }
1756 };
1757 
1758 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1759                                                      llvm::GlobalValue *GV,
1760                                             CodeGen::CodeGenModule &CGM) const {
1761   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1762 
1763   addStackProbeSizeTargetAttribute(D, GV, CGM);
1764 }
1765 }
1766 
1767 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1768                               Class &Hi) const {
1769   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1770   //
1771   // (a) If one of the classes is Memory, the whole argument is passed in
1772   //     memory.
1773   //
1774   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1775   //     memory.
1776   //
1777   // (c) If the size of the aggregate exceeds two eightbytes and the first
1778   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1779   //     argument is passed in memory. NOTE: This is necessary to keep the
1780   //     ABI working for processors that don't support the __m256 type.
1781   //
1782   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1783   //
1784   // Some of these are enforced by the merging logic.  Others can arise
1785   // only with unions; for example:
1786   //   union { _Complex double; unsigned; }
1787   //
1788   // Note that clauses (b) and (c) were added in 0.98.
1789   //
1790   if (Hi == Memory)
1791     Lo = Memory;
1792   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1793     Lo = Memory;
1794   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1795     Lo = Memory;
1796   if (Hi == SSEUp && Lo != SSE)
1797     Hi = SSE;
1798 }
1799 
1800 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1801   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1802   // classified recursively so that always two fields are
1803   // considered. The resulting class is calculated according to
1804   // the classes of the fields in the eightbyte:
1805   //
1806   // (a) If both classes are equal, this is the resulting class.
1807   //
1808   // (b) If one of the classes is NO_CLASS, the resulting class is
1809   // the other class.
1810   //
1811   // (c) If one of the classes is MEMORY, the result is the MEMORY
1812   // class.
1813   //
1814   // (d) If one of the classes is INTEGER, the result is the
1815   // INTEGER.
1816   //
1817   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1818   // MEMORY is used as class.
1819   //
1820   // (f) Otherwise class SSE is used.
1821 
1822   // Accum should never be memory (we should have returned) or
1823   // ComplexX87 (because this cannot be passed in a structure).
1824   assert((Accum != Memory && Accum != ComplexX87) &&
1825          "Invalid accumulated classification during merge.");
1826   if (Accum == Field || Field == NoClass)
1827     return Accum;
1828   if (Field == Memory)
1829     return Memory;
1830   if (Accum == NoClass)
1831     return Field;
1832   if (Accum == Integer || Field == Integer)
1833     return Integer;
1834   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1835       Accum == X87 || Accum == X87Up)
1836     return Memory;
1837   return SSE;
1838 }
1839 
1840 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1841                              Class &Lo, Class &Hi, bool isNamedArg) const {
1842   // FIXME: This code can be simplified by introducing a simple value class for
1843   // Class pairs with appropriate constructor methods for the various
1844   // situations.
1845 
1846   // FIXME: Some of the split computations are wrong; unaligned vectors
1847   // shouldn't be passed in registers for example, so there is no chance they
1848   // can straddle an eightbyte. Verify & simplify.
1849 
1850   Lo = Hi = NoClass;
1851 
1852   Class &Current = OffsetBase < 64 ? Lo : Hi;
1853   Current = Memory;
1854 
1855   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1856     BuiltinType::Kind k = BT->getKind();
1857 
1858     if (k == BuiltinType::Void) {
1859       Current = NoClass;
1860     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1861       Lo = Integer;
1862       Hi = Integer;
1863     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1864       Current = Integer;
1865     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1866                (k == BuiltinType::LongDouble &&
1867                 getTarget().getTriple().isOSNaCl())) {
1868       Current = SSE;
1869     } else if (k == BuiltinType::LongDouble) {
1870       Lo = X87;
1871       Hi = X87Up;
1872     }
1873     // FIXME: _Decimal32 and _Decimal64 are SSE.
1874     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1875     return;
1876   }
1877 
1878   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1879     // Classify the underlying integer type.
1880     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1881     return;
1882   }
1883 
1884   if (Ty->hasPointerRepresentation()) {
1885     Current = Integer;
1886     return;
1887   }
1888 
1889   if (Ty->isMemberPointerType()) {
1890     if (Ty->isMemberFunctionPointerType()) {
1891       if (Has64BitPointers) {
1892         // If Has64BitPointers, this is an {i64, i64}, so classify both
1893         // Lo and Hi now.
1894         Lo = Hi = Integer;
1895       } else {
1896         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1897         // straddles an eightbyte boundary, Hi should be classified as well.
1898         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1899         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1900         if (EB_FuncPtr != EB_ThisAdj) {
1901           Lo = Hi = Integer;
1902         } else {
1903           Current = Integer;
1904         }
1905       }
1906     } else {
1907       Current = Integer;
1908     }
1909     return;
1910   }
1911 
1912   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1913     uint64_t Size = getContext().getTypeSize(VT);
1914     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1915       // gcc passes the following as integer:
1916       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1917       // 2 bytes - <2 x char>, <1 x short>
1918       // 1 byte  - <1 x char>
1919       Current = Integer;
1920 
1921       // If this type crosses an eightbyte boundary, it should be
1922       // split.
1923       uint64_t EB_Lo = (OffsetBase) / 64;
1924       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1925       if (EB_Lo != EB_Hi)
1926         Hi = Lo;
1927     } else if (Size == 64) {
1928       // gcc passes <1 x double> in memory. :(
1929       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1930         return;
1931 
1932       // gcc passes <1 x long long> as INTEGER.
1933       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1934           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1935           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1936           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1937         Current = Integer;
1938       else
1939         Current = SSE;
1940 
1941       // If this type crosses an eightbyte boundary, it should be
1942       // split.
1943       if (OffsetBase && OffsetBase != 64)
1944         Hi = Lo;
1945     } else if (Size == 128 ||
1946                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1947       // Arguments of 256-bits are split into four eightbyte chunks. The
1948       // least significant one belongs to class SSE and all the others to class
1949       // SSEUP. The original Lo and Hi design considers that types can't be
1950       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1951       // This design isn't correct for 256-bits, but since there're no cases
1952       // where the upper parts would need to be inspected, avoid adding
1953       // complexity and just consider Hi to match the 64-256 part.
1954       //
1955       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1956       // registers if they are "named", i.e. not part of the "..." of a
1957       // variadic function.
1958       //
1959       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1960       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1961       Lo = SSE;
1962       Hi = SSEUp;
1963     }
1964     return;
1965   }
1966 
1967   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1968     QualType ET = getContext().getCanonicalType(CT->getElementType());
1969 
1970     uint64_t Size = getContext().getTypeSize(Ty);
1971     if (ET->isIntegralOrEnumerationType()) {
1972       if (Size <= 64)
1973         Current = Integer;
1974       else if (Size <= 128)
1975         Lo = Hi = Integer;
1976     } else if (ET == getContext().FloatTy)
1977       Current = SSE;
1978     else if (ET == getContext().DoubleTy ||
1979              (ET == getContext().LongDoubleTy &&
1980               getTarget().getTriple().isOSNaCl()))
1981       Lo = Hi = SSE;
1982     else if (ET == getContext().LongDoubleTy)
1983       Current = ComplexX87;
1984 
1985     // If this complex type crosses an eightbyte boundary then it
1986     // should be split.
1987     uint64_t EB_Real = (OffsetBase) / 64;
1988     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1989     if (Hi == NoClass && EB_Real != EB_Imag)
1990       Hi = Lo;
1991 
1992     return;
1993   }
1994 
1995   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1996     // Arrays are treated like structures.
1997 
1998     uint64_t Size = getContext().getTypeSize(Ty);
1999 
2000     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2001     // than four eightbytes, ..., it has class MEMORY.
2002     if (Size > 256)
2003       return;
2004 
2005     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2006     // fields, it has class MEMORY.
2007     //
2008     // Only need to check alignment of array base.
2009     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2010       return;
2011 
2012     // Otherwise implement simplified merge. We could be smarter about
2013     // this, but it isn't worth it and would be harder to verify.
2014     Current = NoClass;
2015     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2016     uint64_t ArraySize = AT->getSize().getZExtValue();
2017 
2018     // The only case a 256-bit wide vector could be used is when the array
2019     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2020     // to work for sizes wider than 128, early check and fallback to memory.
2021     if (Size > 128 && EltSize != 256)
2022       return;
2023 
2024     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2025       Class FieldLo, FieldHi;
2026       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2027       Lo = merge(Lo, FieldLo);
2028       Hi = merge(Hi, FieldHi);
2029       if (Lo == Memory || Hi == Memory)
2030         break;
2031     }
2032 
2033     postMerge(Size, Lo, Hi);
2034     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2035     return;
2036   }
2037 
2038   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2039     uint64_t Size = getContext().getTypeSize(Ty);
2040 
2041     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2042     // than four eightbytes, ..., it has class MEMORY.
2043     if (Size > 256)
2044       return;
2045 
2046     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2047     // copy constructor or a non-trivial destructor, it is passed by invisible
2048     // reference.
2049     if (getRecordArgABI(RT, getCXXABI()))
2050       return;
2051 
2052     const RecordDecl *RD = RT->getDecl();
2053 
2054     // Assume variable sized types are passed in memory.
2055     if (RD->hasFlexibleArrayMember())
2056       return;
2057 
2058     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2059 
2060     // Reset Lo class, this will be recomputed.
2061     Current = NoClass;
2062 
2063     // If this is a C++ record, classify the bases first.
2064     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2065       for (const auto &I : CXXRD->bases()) {
2066         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2067                "Unexpected base class!");
2068         const CXXRecordDecl *Base =
2069           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2070 
2071         // Classify this field.
2072         //
2073         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2074         // single eightbyte, each is classified separately. Each eightbyte gets
2075         // initialized to class NO_CLASS.
2076         Class FieldLo, FieldHi;
2077         uint64_t Offset =
2078           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2079         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2080         Lo = merge(Lo, FieldLo);
2081         Hi = merge(Hi, FieldHi);
2082         if (Lo == Memory || Hi == Memory) {
2083           postMerge(Size, Lo, Hi);
2084           return;
2085         }
2086       }
2087     }
2088 
2089     // Classify the fields one at a time, merging the results.
2090     unsigned idx = 0;
2091     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2092            i != e; ++i, ++idx) {
2093       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2094       bool BitField = i->isBitField();
2095 
2096       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2097       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2098       //
2099       // The only case a 256-bit wide vector could be used is when the struct
2100       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2101       // to work for sizes wider than 128, early check and fallback to memory.
2102       //
2103       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2104         Lo = Memory;
2105         postMerge(Size, Lo, Hi);
2106         return;
2107       }
2108       // Note, skip this test for bit-fields, see below.
2109       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2110         Lo = Memory;
2111         postMerge(Size, Lo, Hi);
2112         return;
2113       }
2114 
2115       // Classify this field.
2116       //
2117       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2118       // exceeds a single eightbyte, each is classified
2119       // separately. Each eightbyte gets initialized to class
2120       // NO_CLASS.
2121       Class FieldLo, FieldHi;
2122 
2123       // Bit-fields require special handling, they do not force the
2124       // structure to be passed in memory even if unaligned, and
2125       // therefore they can straddle an eightbyte.
2126       if (BitField) {
2127         // Ignore padding bit-fields.
2128         if (i->isUnnamedBitfield())
2129           continue;
2130 
2131         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2132         uint64_t Size = i->getBitWidthValue(getContext());
2133 
2134         uint64_t EB_Lo = Offset / 64;
2135         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2136 
2137         if (EB_Lo) {
2138           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2139           FieldLo = NoClass;
2140           FieldHi = Integer;
2141         } else {
2142           FieldLo = Integer;
2143           FieldHi = EB_Hi ? Integer : NoClass;
2144         }
2145       } else
2146         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2147       Lo = merge(Lo, FieldLo);
2148       Hi = merge(Hi, FieldHi);
2149       if (Lo == Memory || Hi == Memory)
2150         break;
2151     }
2152 
2153     postMerge(Size, Lo, Hi);
2154   }
2155 }
2156 
2157 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2158   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2159   // place naturally.
2160   if (!isAggregateTypeForABI(Ty)) {
2161     // Treat an enum type as its underlying type.
2162     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2163       Ty = EnumTy->getDecl()->getIntegerType();
2164 
2165     return (Ty->isPromotableIntegerType() ?
2166             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2167   }
2168 
2169   return ABIArgInfo::getIndirect(0);
2170 }
2171 
2172 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2173   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2174     uint64_t Size = getContext().getTypeSize(VecTy);
2175     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2176     if (Size <= 64 || Size > LargestVector)
2177       return true;
2178   }
2179 
2180   return false;
2181 }
2182 
2183 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2184                                             unsigned freeIntRegs) const {
2185   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2186   // place naturally.
2187   //
2188   // This assumption is optimistic, as there could be free registers available
2189   // when we need to pass this argument in memory, and LLVM could try to pass
2190   // the argument in the free register. This does not seem to happen currently,
2191   // but this code would be much safer if we could mark the argument with
2192   // 'onstack'. See PR12193.
2193   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2194     // Treat an enum type as its underlying type.
2195     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2196       Ty = EnumTy->getDecl()->getIntegerType();
2197 
2198     return (Ty->isPromotableIntegerType() ?
2199             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2200   }
2201 
2202   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2203     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2204 
2205   // Compute the byval alignment. We specify the alignment of the byval in all
2206   // cases so that the mid-level optimizer knows the alignment of the byval.
2207   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2208 
2209   // Attempt to avoid passing indirect results using byval when possible. This
2210   // is important for good codegen.
2211   //
2212   // We do this by coercing the value into a scalar type which the backend can
2213   // handle naturally (i.e., without using byval).
2214   //
2215   // For simplicity, we currently only do this when we have exhausted all of the
2216   // free integer registers. Doing this when there are free integer registers
2217   // would require more care, as we would have to ensure that the coerced value
2218   // did not claim the unused register. That would require either reording the
2219   // arguments to the function (so that any subsequent inreg values came first),
2220   // or only doing this optimization when there were no following arguments that
2221   // might be inreg.
2222   //
2223   // We currently expect it to be rare (particularly in well written code) for
2224   // arguments to be passed on the stack when there are still free integer
2225   // registers available (this would typically imply large structs being passed
2226   // by value), so this seems like a fair tradeoff for now.
2227   //
2228   // We can revisit this if the backend grows support for 'onstack' parameter
2229   // attributes. See PR12193.
2230   if (freeIntRegs == 0) {
2231     uint64_t Size = getContext().getTypeSize(Ty);
2232 
2233     // If this type fits in an eightbyte, coerce it into the matching integral
2234     // type, which will end up on the stack (with alignment 8).
2235     if (Align == 8 && Size <= 64)
2236       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2237                                                           Size));
2238   }
2239 
2240   return ABIArgInfo::getIndirect(Align);
2241 }
2242 
2243 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2244 /// register. Pick an LLVM IR type that will be passed as a vector register.
2245 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2246   // Wrapper structs/arrays that only contain vectors are passed just like
2247   // vectors; strip them off if present.
2248   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2249     Ty = QualType(InnerTy, 0);
2250 
2251   llvm::Type *IRType = CGT.ConvertType(Ty);
2252   if(isa<llvm::VectorType>(IRType))
2253     return IRType;
2254 
2255   // We couldn't find the preferred IR vector type for 'Ty'.
2256   uint64_t Size = getContext().getTypeSize(Ty);
2257   assert((Size == 128 || Size == 256) && "Invalid type found!");
2258 
2259   // Return a LLVM IR vector type based on the size of 'Ty'.
2260   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2261                                Size / 64);
2262 }
2263 
2264 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2265 /// is known to either be off the end of the specified type or being in
2266 /// alignment padding.  The user type specified is known to be at most 128 bits
2267 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2268 /// classification that put one of the two halves in the INTEGER class.
2269 ///
2270 /// It is conservatively correct to return false.
2271 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2272                                   unsigned EndBit, ASTContext &Context) {
2273   // If the bytes being queried are off the end of the type, there is no user
2274   // data hiding here.  This handles analysis of builtins, vectors and other
2275   // types that don't contain interesting padding.
2276   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2277   if (TySize <= StartBit)
2278     return true;
2279 
2280   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2281     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2282     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2283 
2284     // Check each element to see if the element overlaps with the queried range.
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       // If the element is after the span we care about, then we're done..
2287       unsigned EltOffset = i*EltSize;
2288       if (EltOffset >= EndBit) break;
2289 
2290       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2291       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2292                                  EndBit-EltOffset, Context))
2293         return false;
2294     }
2295     // If it overlaps no elements, then it is safe to process as padding.
2296     return true;
2297   }
2298 
2299   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2300     const RecordDecl *RD = RT->getDecl();
2301     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2302 
2303     // If this is a C++ record, check the bases first.
2304     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2305       for (const auto &I : CXXRD->bases()) {
2306         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2307                "Unexpected base class!");
2308         const CXXRecordDecl *Base =
2309           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2310 
2311         // If the base is after the span we care about, ignore it.
2312         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2313         if (BaseOffset >= EndBit) continue;
2314 
2315         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2316         if (!BitsContainNoUserData(I.getType(), BaseStart,
2317                                    EndBit-BaseOffset, Context))
2318           return false;
2319       }
2320     }
2321 
2322     // Verify that no field has data that overlaps the region of interest.  Yes
2323     // this could be sped up a lot by being smarter about queried fields,
2324     // however we're only looking at structs up to 16 bytes, so we don't care
2325     // much.
2326     unsigned idx = 0;
2327     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2328          i != e; ++i, ++idx) {
2329       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2330 
2331       // If we found a field after the region we care about, then we're done.
2332       if (FieldOffset >= EndBit) break;
2333 
2334       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2335       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2336                                  Context))
2337         return false;
2338     }
2339 
2340     // If nothing in this record overlapped the area of interest, then we're
2341     // clean.
2342     return true;
2343   }
2344 
2345   return false;
2346 }
2347 
2348 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2349 /// float member at the specified offset.  For example, {int,{float}} has a
2350 /// float at offset 4.  It is conservatively correct for this routine to return
2351 /// false.
2352 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2353                                   const llvm::DataLayout &TD) {
2354   // Base case if we find a float.
2355   if (IROffset == 0 && IRType->isFloatTy())
2356     return true;
2357 
2358   // If this is a struct, recurse into the field at the specified offset.
2359   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2360     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2361     unsigned Elt = SL->getElementContainingOffset(IROffset);
2362     IROffset -= SL->getElementOffset(Elt);
2363     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2364   }
2365 
2366   // If this is an array, recurse into the field at the specified offset.
2367   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2368     llvm::Type *EltTy = ATy->getElementType();
2369     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2370     IROffset -= IROffset/EltSize*EltSize;
2371     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2372   }
2373 
2374   return false;
2375 }
2376 
2377 
2378 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2379 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2380 llvm::Type *X86_64ABIInfo::
2381 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2382                    QualType SourceTy, unsigned SourceOffset) const {
2383   // The only three choices we have are either double, <2 x float>, or float. We
2384   // pass as float if the last 4 bytes is just padding.  This happens for
2385   // structs that contain 3 floats.
2386   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2387                             SourceOffset*8+64, getContext()))
2388     return llvm::Type::getFloatTy(getVMContext());
2389 
2390   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2391   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2392   // case.
2393   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2394       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2395     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2396 
2397   return llvm::Type::getDoubleTy(getVMContext());
2398 }
2399 
2400 
2401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2402 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2403 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2404 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2406 /// etc).
2407 ///
2408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2409 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2410 /// the 8-byte value references.  PrefType may be null.
2411 ///
2412 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2413 /// an offset into this that we're processing (which is always either 0 or 8).
2414 ///
2415 llvm::Type *X86_64ABIInfo::
2416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2417                        QualType SourceTy, unsigned SourceOffset) const {
2418   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2419   // returning an 8-byte unit starting with it.  See if we can safely use it.
2420   if (IROffset == 0) {
2421     // Pointers and int64's always fill the 8-byte unit.
2422     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2423         IRType->isIntegerTy(64))
2424       return IRType;
2425 
2426     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2427     // goodness in the source type is just tail padding.  This is allowed to
2428     // kick in for struct {double,int} on the int, but not on
2429     // struct{double,int,int} because we wouldn't return the second int.  We
2430     // have to do this analysis on the source type because we can't depend on
2431     // unions being lowered a specific way etc.
2432     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2433         IRType->isIntegerTy(32) ||
2434         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2435       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2436           cast<llvm::IntegerType>(IRType)->getBitWidth();
2437 
2438       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2439                                 SourceOffset*8+64, getContext()))
2440         return IRType;
2441     }
2442   }
2443 
2444   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2445     // If this is a struct, recurse into the field at the specified offset.
2446     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2447     if (IROffset < SL->getSizeInBytes()) {
2448       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2449       IROffset -= SL->getElementOffset(FieldIdx);
2450 
2451       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2452                                     SourceTy, SourceOffset);
2453     }
2454   }
2455 
2456   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2457     llvm::Type *EltTy = ATy->getElementType();
2458     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2459     unsigned EltOffset = IROffset/EltSize*EltSize;
2460     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2461                                   SourceOffset);
2462   }
2463 
2464   // Okay, we don't have any better idea of what to pass, so we pass this in an
2465   // integer register that isn't too big to fit the rest of the struct.
2466   unsigned TySizeInBytes =
2467     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2468 
2469   assert(TySizeInBytes != SourceOffset && "Empty field?");
2470 
2471   // It is always safe to classify this as an integer type up to i64 that
2472   // isn't larger than the structure.
2473   return llvm::IntegerType::get(getVMContext(),
2474                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2475 }
2476 
2477 
2478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2479 /// be used as elements of a two register pair to pass or return, return a
2480 /// first class aggregate to represent them.  For example, if the low part of
2481 /// a by-value argument should be passed as i32* and the high part as float,
2482 /// return {i32*, float}.
2483 static llvm::Type *
2484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2485                            const llvm::DataLayout &TD) {
2486   // In order to correctly satisfy the ABI, we need to the high part to start
2487   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2488   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2489   // the second element at offset 8.  Check for this:
2490   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2491   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2492   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2493   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2494 
2495   // To handle this, we have to increase the size of the low part so that the
2496   // second element will start at an 8 byte offset.  We can't increase the size
2497   // of the second element because it might make us access off the end of the
2498   // struct.
2499   if (HiStart != 8) {
2500     // There are usually two sorts of types the ABI generation code can produce
2501     // for the low part of a pair that aren't 8 bytes in size: float or
2502     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2503     // NaCl).
2504     // Promote these to a larger type.
2505     if (Lo->isFloatTy())
2506       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2507     else {
2508       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2509              && "Invalid/unknown lo type");
2510       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2511     }
2512   }
2513 
2514   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2515 
2516 
2517   // Verify that the second element is at an 8-byte offset.
2518   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2519          "Invalid x86-64 argument pair!");
2520   return Result;
2521 }
2522 
2523 ABIArgInfo X86_64ABIInfo::
2524 classifyReturnType(QualType RetTy) const {
2525   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2526   // classification algorithm.
2527   X86_64ABIInfo::Class Lo, Hi;
2528   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2529 
2530   // Check some invariants.
2531   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2532   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2533 
2534   llvm::Type *ResType = nullptr;
2535   switch (Lo) {
2536   case NoClass:
2537     if (Hi == NoClass)
2538       return ABIArgInfo::getIgnore();
2539     // If the low part is just padding, it takes no register, leave ResType
2540     // null.
2541     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2542            "Unknown missing lo part");
2543     break;
2544 
2545   case SSEUp:
2546   case X87Up:
2547     llvm_unreachable("Invalid classification for lo word.");
2548 
2549     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2550     // hidden argument.
2551   case Memory:
2552     return getIndirectReturnResult(RetTy);
2553 
2554     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2555     // available register of the sequence %rax, %rdx is used.
2556   case Integer:
2557     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2558 
2559     // If we have a sign or zero extended integer, make sure to return Extend
2560     // so that the parameter gets the right LLVM IR attributes.
2561     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2562       // Treat an enum type as its underlying type.
2563       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2564         RetTy = EnumTy->getDecl()->getIntegerType();
2565 
2566       if (RetTy->isIntegralOrEnumerationType() &&
2567           RetTy->isPromotableIntegerType())
2568         return ABIArgInfo::getExtend();
2569     }
2570     break;
2571 
2572     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2573     // available SSE register of the sequence %xmm0, %xmm1 is used.
2574   case SSE:
2575     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2576     break;
2577 
2578     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2579     // returned on the X87 stack in %st0 as 80-bit x87 number.
2580   case X87:
2581     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2582     break;
2583 
2584     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2585     // part of the value is returned in %st0 and the imaginary part in
2586     // %st1.
2587   case ComplexX87:
2588     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2589     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2590                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2591                                     nullptr);
2592     break;
2593   }
2594 
2595   llvm::Type *HighPart = nullptr;
2596   switch (Hi) {
2597     // Memory was handled previously and X87 should
2598     // never occur as a hi class.
2599   case Memory:
2600   case X87:
2601     llvm_unreachable("Invalid classification for hi word.");
2602 
2603   case ComplexX87: // Previously handled.
2604   case NoClass:
2605     break;
2606 
2607   case Integer:
2608     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2609     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2610       return ABIArgInfo::getDirect(HighPart, 8);
2611     break;
2612   case SSE:
2613     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2614     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2615       return ABIArgInfo::getDirect(HighPart, 8);
2616     break;
2617 
2618     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2619     // is passed in the next available eightbyte chunk if the last used
2620     // vector register.
2621     //
2622     // SSEUP should always be preceded by SSE, just widen.
2623   case SSEUp:
2624     assert(Lo == SSE && "Unexpected SSEUp classification.");
2625     ResType = GetByteVectorType(RetTy);
2626     break;
2627 
2628     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2629     // returned together with the previous X87 value in %st0.
2630   case X87Up:
2631     // If X87Up is preceded by X87, we don't need to do
2632     // anything. However, in some cases with unions it may not be
2633     // preceded by X87. In such situations we follow gcc and pass the
2634     // extra bits in an SSE reg.
2635     if (Lo != X87) {
2636       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2637       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2638         return ABIArgInfo::getDirect(HighPart, 8);
2639     }
2640     break;
2641   }
2642 
2643   // If a high part was specified, merge it together with the low part.  It is
2644   // known to pass in the high eightbyte of the result.  We do this by forming a
2645   // first class struct aggregate with the high and low part: {low, high}
2646   if (HighPart)
2647     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2648 
2649   return ABIArgInfo::getDirect(ResType);
2650 }
2651 
2652 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2653   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2654   bool isNamedArg)
2655   const
2656 {
2657   Ty = useFirstFieldIfTransparentUnion(Ty);
2658 
2659   X86_64ABIInfo::Class Lo, Hi;
2660   classify(Ty, 0, Lo, Hi, isNamedArg);
2661 
2662   // Check some invariants.
2663   // FIXME: Enforce these by construction.
2664   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2665   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2666 
2667   neededInt = 0;
2668   neededSSE = 0;
2669   llvm::Type *ResType = nullptr;
2670   switch (Lo) {
2671   case NoClass:
2672     if (Hi == NoClass)
2673       return ABIArgInfo::getIgnore();
2674     // If the low part is just padding, it takes no register, leave ResType
2675     // null.
2676     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2677            "Unknown missing lo part");
2678     break;
2679 
2680     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2681     // on the stack.
2682   case Memory:
2683 
2684     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2685     // COMPLEX_X87, it is passed in memory.
2686   case X87:
2687   case ComplexX87:
2688     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2689       ++neededInt;
2690     return getIndirectResult(Ty, freeIntRegs);
2691 
2692   case SSEUp:
2693   case X87Up:
2694     llvm_unreachable("Invalid classification for lo word.");
2695 
2696     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2697     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2698     // and %r9 is used.
2699   case Integer:
2700     ++neededInt;
2701 
2702     // Pick an 8-byte type based on the preferred type.
2703     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2704 
2705     // If we have a sign or zero extended integer, make sure to return Extend
2706     // so that the parameter gets the right LLVM IR attributes.
2707     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2708       // Treat an enum type as its underlying type.
2709       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2710         Ty = EnumTy->getDecl()->getIntegerType();
2711 
2712       if (Ty->isIntegralOrEnumerationType() &&
2713           Ty->isPromotableIntegerType())
2714         return ABIArgInfo::getExtend();
2715     }
2716 
2717     break;
2718 
2719     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2720     // available SSE register is used, the registers are taken in the
2721     // order from %xmm0 to %xmm7.
2722   case SSE: {
2723     llvm::Type *IRType = CGT.ConvertType(Ty);
2724     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2725     ++neededSSE;
2726     break;
2727   }
2728   }
2729 
2730   llvm::Type *HighPart = nullptr;
2731   switch (Hi) {
2732     // Memory was handled previously, ComplexX87 and X87 should
2733     // never occur as hi classes, and X87Up must be preceded by X87,
2734     // which is passed in memory.
2735   case Memory:
2736   case X87:
2737   case ComplexX87:
2738     llvm_unreachable("Invalid classification for hi word.");
2739 
2740   case NoClass: break;
2741 
2742   case Integer:
2743     ++neededInt;
2744     // Pick an 8-byte type based on the preferred type.
2745     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2746 
2747     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2748       return ABIArgInfo::getDirect(HighPart, 8);
2749     break;
2750 
2751     // X87Up generally doesn't occur here (long double is passed in
2752     // memory), except in situations involving unions.
2753   case X87Up:
2754   case SSE:
2755     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2756 
2757     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2758       return ABIArgInfo::getDirect(HighPart, 8);
2759 
2760     ++neededSSE;
2761     break;
2762 
2763     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2764     // eightbyte is passed in the upper half of the last used SSE
2765     // register.  This only happens when 128-bit vectors are passed.
2766   case SSEUp:
2767     assert(Lo == SSE && "Unexpected SSEUp classification");
2768     ResType = GetByteVectorType(Ty);
2769     break;
2770   }
2771 
2772   // If a high part was specified, merge it together with the low part.  It is
2773   // known to pass in the high eightbyte of the result.  We do this by forming a
2774   // first class struct aggregate with the high and low part: {low, high}
2775   if (HighPart)
2776     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2777 
2778   return ABIArgInfo::getDirect(ResType);
2779 }
2780 
2781 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2782 
2783   if (!getCXXABI().classifyReturnType(FI))
2784     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2785 
2786   // Keep track of the number of assigned registers.
2787   unsigned freeIntRegs = 6, freeSSERegs = 8;
2788 
2789   // If the return value is indirect, then the hidden argument is consuming one
2790   // integer register.
2791   if (FI.getReturnInfo().isIndirect())
2792     --freeIntRegs;
2793 
2794   // The chain argument effectively gives us another free register.
2795   if (FI.isChainCall())
2796     ++freeIntRegs;
2797 
2798   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2799   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2800   // get assigned (in left-to-right order) for passing as follows...
2801   unsigned ArgNo = 0;
2802   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2803        it != ie; ++it, ++ArgNo) {
2804     bool IsNamedArg = ArgNo < NumRequiredArgs;
2805 
2806     unsigned neededInt, neededSSE;
2807     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2808                                     neededSSE, IsNamedArg);
2809 
2810     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2811     // eightbyte of an argument, the whole argument is passed on the
2812     // stack. If registers have already been assigned for some
2813     // eightbytes of such an argument, the assignments get reverted.
2814     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2815       freeIntRegs -= neededInt;
2816       freeSSERegs -= neededSSE;
2817     } else {
2818       it->info = getIndirectResult(it->type, freeIntRegs);
2819     }
2820   }
2821 }
2822 
2823 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2824                                         QualType Ty,
2825                                         CodeGenFunction &CGF) {
2826   llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
2827       nullptr, VAListAddr, 2, "overflow_arg_area_p");
2828   llvm::Value *overflow_arg_area =
2829     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2830 
2831   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2832   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2833   // It isn't stated explicitly in the standard, but in practice we use
2834   // alignment greater than 16 where necessary.
2835   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2836   if (Align > 8) {
2837     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2838     llvm::Value *Offset =
2839       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2840     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2841     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2842                                                     CGF.Int64Ty);
2843     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2844     overflow_arg_area =
2845       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2846                                  overflow_arg_area->getType(),
2847                                  "overflow_arg_area.align");
2848   }
2849 
2850   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2851   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2852   llvm::Value *Res =
2853     CGF.Builder.CreateBitCast(overflow_arg_area,
2854                               llvm::PointerType::getUnqual(LTy));
2855 
2856   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2857   // l->overflow_arg_area + sizeof(type).
2858   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2859   // an 8 byte boundary.
2860 
2861   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2862   llvm::Value *Offset =
2863       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2864   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2865                                             "overflow_arg_area.next");
2866   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2867 
2868   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2869   return Res;
2870 }
2871 
2872 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2873                                       CodeGenFunction &CGF) const {
2874   // Assume that va_list type is correct; should be pointer to LLVM type:
2875   // struct {
2876   //   i32 gp_offset;
2877   //   i32 fp_offset;
2878   //   i8* overflow_arg_area;
2879   //   i8* reg_save_area;
2880   // };
2881   unsigned neededInt, neededSSE;
2882 
2883   Ty = CGF.getContext().getCanonicalType(Ty);
2884   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2885                                        /*isNamedArg*/false);
2886 
2887   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2888   // in the registers. If not go to step 7.
2889   if (!neededInt && !neededSSE)
2890     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2891 
2892   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2893   // general purpose registers needed to pass type and num_fp to hold
2894   // the number of floating point registers needed.
2895 
2896   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2897   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2898   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2899   //
2900   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2901   // register save space).
2902 
2903   llvm::Value *InRegs = nullptr;
2904   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2905   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2906   if (neededInt) {
2907     gp_offset_p =
2908         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
2909     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2910     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2911     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2912   }
2913 
2914   if (neededSSE) {
2915     fp_offset_p =
2916         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
2917     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2918     llvm::Value *FitsInFP =
2919       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2920     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2921     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2922   }
2923 
2924   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2925   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2926   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2927   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2928 
2929   // Emit code to load the value if it was passed in registers.
2930 
2931   CGF.EmitBlock(InRegBlock);
2932 
2933   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2934   // an offset of l->gp_offset and/or l->fp_offset. This may require
2935   // copying to a temporary location in case the parameter is passed
2936   // in different register classes or requires an alignment greater
2937   // than 8 for general purpose registers and 16 for XMM registers.
2938   //
2939   // FIXME: This really results in shameful code when we end up needing to
2940   // collect arguments from different places; often what should result in a
2941   // simple assembling of a structure from scattered addresses has many more
2942   // loads than necessary. Can we clean this up?
2943   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2944   llvm::Value *RegAddr = CGF.Builder.CreateLoad(
2945       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
2946   if (neededInt && neededSSE) {
2947     // FIXME: Cleanup.
2948     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2949     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2950     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2951     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2952     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2953     llvm::Type *TyLo = ST->getElementType(0);
2954     llvm::Type *TyHi = ST->getElementType(1);
2955     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2956            "Unexpected ABI info for mixed regs");
2957     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2958     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2959     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2960     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2961     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2962     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2963     llvm::Value *V =
2964       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2965     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2966     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2967     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2968 
2969     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2970                                         llvm::PointerType::getUnqual(LTy));
2971   } else if (neededInt) {
2972     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2973     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2974                                         llvm::PointerType::getUnqual(LTy));
2975 
2976     // Copy to a temporary if necessary to ensure the appropriate alignment.
2977     std::pair<CharUnits, CharUnits> SizeAlign =
2978         CGF.getContext().getTypeInfoInChars(Ty);
2979     uint64_t TySize = SizeAlign.first.getQuantity();
2980     unsigned TyAlign = SizeAlign.second.getQuantity();
2981     if (TyAlign > 8) {
2982       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2983       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2984       RegAddr = Tmp;
2985     }
2986   } else if (neededSSE == 1) {
2987     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2988     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2989                                         llvm::PointerType::getUnqual(LTy));
2990   } else {
2991     assert(neededSSE == 2 && "Invalid number of needed registers!");
2992     // SSE registers are spaced 16 bytes apart in the register save
2993     // area, we need to collect the two eightbytes together.
2994     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2995     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2996     llvm::Type *DoubleTy = CGF.DoubleTy;
2997     llvm::Type *DblPtrTy =
2998       llvm::PointerType::getUnqual(DoubleTy);
2999     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3000     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
3001     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
3002     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
3003                                                          DblPtrTy));
3004     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
3005     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
3006                                                          DblPtrTy));
3007     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
3008     RegAddr = CGF.Builder.CreateBitCast(Tmp,
3009                                         llvm::PointerType::getUnqual(LTy));
3010   }
3011 
3012   // AMD64-ABI 3.5.7p5: Step 5. Set:
3013   // l->gp_offset = l->gp_offset + num_gp * 8
3014   // l->fp_offset = l->fp_offset + num_fp * 16.
3015   if (neededInt) {
3016     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3017     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3018                             gp_offset_p);
3019   }
3020   if (neededSSE) {
3021     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3022     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3023                             fp_offset_p);
3024   }
3025   CGF.EmitBranch(ContBlock);
3026 
3027   // Emit code to load the value if it was passed in memory.
3028 
3029   CGF.EmitBlock(InMemBlock);
3030   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
3031 
3032   // Return the appropriate result.
3033 
3034   CGF.EmitBlock(ContBlock);
3035   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
3036                                                  "vaarg.addr");
3037   ResAddr->addIncoming(RegAddr, InRegBlock);
3038   ResAddr->addIncoming(MemAddr, InMemBlock);
3039   return ResAddr;
3040 }
3041 
3042 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3043                                       bool IsReturnType) const {
3044 
3045   if (Ty->isVoidType())
3046     return ABIArgInfo::getIgnore();
3047 
3048   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3049     Ty = EnumTy->getDecl()->getIntegerType();
3050 
3051   TypeInfo Info = getContext().getTypeInfo(Ty);
3052   uint64_t Width = Info.Width;
3053   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3054 
3055   const RecordType *RT = Ty->getAs<RecordType>();
3056   if (RT) {
3057     if (!IsReturnType) {
3058       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3059         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3060     }
3061 
3062     if (RT->getDecl()->hasFlexibleArrayMember())
3063       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3064 
3065     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3066     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3067       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3068                                                           Width));
3069   }
3070 
3071   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3072   // other targets.
3073   const Type *Base = nullptr;
3074   uint64_t NumElts = 0;
3075   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3076     if (FreeSSERegs >= NumElts) {
3077       FreeSSERegs -= NumElts;
3078       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3079         return ABIArgInfo::getDirect();
3080       return ABIArgInfo::getExpand();
3081     }
3082     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3083   }
3084 
3085 
3086   if (Ty->isMemberPointerType()) {
3087     // If the member pointer is represented by an LLVM int or ptr, pass it
3088     // directly.
3089     llvm::Type *LLTy = CGT.ConvertType(Ty);
3090     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3091       return ABIArgInfo::getDirect();
3092   }
3093 
3094   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3095     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3096     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3097     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3098       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3099 
3100     // Otherwise, coerce it to a small integer.
3101     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3102   }
3103 
3104   // Bool type is always extended to the ABI, other builtin types are not
3105   // extended.
3106   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3107   if (BT && BT->getKind() == BuiltinType::Bool)
3108     return ABIArgInfo::getExtend();
3109 
3110   return ABIArgInfo::getDirect();
3111 }
3112 
3113 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3114   bool IsVectorCall =
3115       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3116 
3117   // We can use up to 4 SSE return registers with vectorcall.
3118   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3119   if (!getCXXABI().classifyReturnType(FI))
3120     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3121 
3122   // We can use up to 6 SSE register parameters with vectorcall.
3123   FreeSSERegs = IsVectorCall ? 6 : 0;
3124   for (auto &I : FI.arguments())
3125     I.info = classify(I.type, FreeSSERegs, false);
3126 }
3127 
3128 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3129                                       CodeGenFunction &CGF) const {
3130   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3131 
3132   CGBuilderTy &Builder = CGF.Builder;
3133   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3134                                                        "ap");
3135   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3136   llvm::Type *PTy =
3137     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3138   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3139 
3140   uint64_t Offset =
3141     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3142   llvm::Value *NextAddr =
3143     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3144                       "ap.next");
3145   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3146 
3147   return AddrTyped;
3148 }
3149 
3150 // PowerPC-32
3151 namespace {
3152 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3153 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3154 public:
3155   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3156 
3157   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3158                          CodeGenFunction &CGF) const override;
3159 };
3160 
3161 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3162 public:
3163   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3164       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3165 
3166   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3167     // This is recovered from gcc output.
3168     return 1; // r1 is the dedicated stack pointer
3169   }
3170 
3171   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3172                                llvm::Value *Address) const override;
3173 };
3174 
3175 }
3176 
3177 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3178                                            QualType Ty,
3179                                            CodeGenFunction &CGF) const {
3180   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3181     // TODO: Implement this. For now ignore.
3182     (void)CTy;
3183     return nullptr;
3184   }
3185 
3186   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3187   bool isInt =
3188       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3189   llvm::Type *CharPtr = CGF.Int8PtrTy;
3190   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3191 
3192   CGBuilderTy &Builder = CGF.Builder;
3193   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3194   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3195   llvm::Value *FPRPtrAsInt =
3196       Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3197   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3198   llvm::Value *OverflowAreaPtrAsInt =
3199       Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3200   llvm::Value *OverflowAreaPtr =
3201       Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3202   llvm::Value *RegsaveAreaPtrAsInt =
3203       Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3204   llvm::Value *RegsaveAreaPtr =
3205       Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3206   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3207   // Align GPR when TY is i64.
3208   if (isI64) {
3209     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3210     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3211     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3212     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3213   }
3214   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3215   llvm::Value *OverflowArea =
3216       Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3217   llvm::Value *OverflowAreaAsInt =
3218       Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3219   llvm::Value *RegsaveArea =
3220       Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3221   llvm::Value *RegsaveAreaAsInt =
3222       Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3223 
3224   llvm::Value *CC =
3225       Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond");
3226 
3227   llvm::Value *RegConstant =
3228       Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8));
3229 
3230   llvm::Value *OurReg = Builder.CreateAdd(
3231       RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3232 
3233   if (Ty->isFloatingType())
3234     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3235 
3236   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3237   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3238   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3239 
3240   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3241 
3242   CGF.EmitBlock(UsingRegs);
3243 
3244   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3245   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3246   // Increase the GPR/FPR indexes.
3247   if (isInt) {
3248     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3249     Builder.CreateStore(GPR, GPRPtr);
3250   } else {
3251     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3252     Builder.CreateStore(FPR, FPRPtr);
3253   }
3254   CGF.EmitBranch(Cont);
3255 
3256   CGF.EmitBlock(UsingOverflow);
3257 
3258   // Increase the overflow area.
3259   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3260   OverflowAreaAsInt =
3261       Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3262   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr),
3263                       OverflowAreaPtr);
3264   CGF.EmitBranch(Cont);
3265 
3266   CGF.EmitBlock(Cont);
3267 
3268   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3269   Result->addIncoming(Result1, UsingRegs);
3270   Result->addIncoming(Result2, UsingOverflow);
3271 
3272   if (Ty->isAggregateType()) {
3273     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr");
3274     return Builder.CreateLoad(AGGPtr, false, "aggr");
3275   }
3276 
3277   return Result;
3278 }
3279 
3280 bool
3281 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3282                                                 llvm::Value *Address) const {
3283   // This is calculated from the LLVM and GCC tables and verified
3284   // against gcc output.  AFAIK all ABIs use the same encoding.
3285 
3286   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3287 
3288   llvm::IntegerType *i8 = CGF.Int8Ty;
3289   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3290   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3291   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3292 
3293   // 0-31: r0-31, the 4-byte general-purpose registers
3294   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3295 
3296   // 32-63: fp0-31, the 8-byte floating-point registers
3297   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3298 
3299   // 64-76 are various 4-byte special-purpose registers:
3300   // 64: mq
3301   // 65: lr
3302   // 66: ctr
3303   // 67: ap
3304   // 68-75 cr0-7
3305   // 76: xer
3306   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3307 
3308   // 77-108: v0-31, the 16-byte vector registers
3309   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3310 
3311   // 109: vrsave
3312   // 110: vscr
3313   // 111: spe_acc
3314   // 112: spefscr
3315   // 113: sfp
3316   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3317 
3318   return false;
3319 }
3320 
3321 // PowerPC-64
3322 
3323 namespace {
3324 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3325 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3326 public:
3327   enum ABIKind {
3328     ELFv1 = 0,
3329     ELFv2
3330   };
3331 
3332 private:
3333   static const unsigned GPRBits = 64;
3334   ABIKind Kind;
3335   bool HasQPX;
3336 
3337   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3338   // will be passed in a QPX register.
3339   bool IsQPXVectorTy(const Type *Ty) const {
3340     if (!HasQPX)
3341       return false;
3342 
3343     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3344       unsigned NumElements = VT->getNumElements();
3345       if (NumElements == 1)
3346         return false;
3347 
3348       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3349         if (getContext().getTypeSize(Ty) <= 256)
3350           return true;
3351       } else if (VT->getElementType()->
3352                    isSpecificBuiltinType(BuiltinType::Float)) {
3353         if (getContext().getTypeSize(Ty) <= 128)
3354           return true;
3355       }
3356     }
3357 
3358     return false;
3359   }
3360 
3361   bool IsQPXVectorTy(QualType Ty) const {
3362     return IsQPXVectorTy(Ty.getTypePtr());
3363   }
3364 
3365 public:
3366   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3367     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3368 
3369   bool isPromotableTypeForABI(QualType Ty) const;
3370   bool isAlignedParamType(QualType Ty, bool &Align32) const;
3371 
3372   ABIArgInfo classifyReturnType(QualType RetTy) const;
3373   ABIArgInfo classifyArgumentType(QualType Ty) const;
3374 
3375   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3376   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3377                                          uint64_t Members) const override;
3378 
3379   // TODO: We can add more logic to computeInfo to improve performance.
3380   // Example: For aggregate arguments that fit in a register, we could
3381   // use getDirectInReg (as is done below for structs containing a single
3382   // floating-point value) to avoid pushing them to memory on function
3383   // entry.  This would require changing the logic in PPCISelLowering
3384   // when lowering the parameters in the caller and args in the callee.
3385   void computeInfo(CGFunctionInfo &FI) const override {
3386     if (!getCXXABI().classifyReturnType(FI))
3387       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3388     for (auto &I : FI.arguments()) {
3389       // We rely on the default argument classification for the most part.
3390       // One exception:  An aggregate containing a single floating-point
3391       // or vector item must be passed in a register if one is available.
3392       const Type *T = isSingleElementStruct(I.type, getContext());
3393       if (T) {
3394         const BuiltinType *BT = T->getAs<BuiltinType>();
3395         if (IsQPXVectorTy(T) ||
3396             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3397             (BT && BT->isFloatingPoint())) {
3398           QualType QT(T, 0);
3399           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3400           continue;
3401         }
3402       }
3403       I.info = classifyArgumentType(I.type);
3404     }
3405   }
3406 
3407   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3408                          CodeGenFunction &CGF) const override;
3409 };
3410 
3411 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3412 
3413 public:
3414   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3415                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3416       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3417 
3418   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3419     // This is recovered from gcc output.
3420     return 1; // r1 is the dedicated stack pointer
3421   }
3422 
3423   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3424                                llvm::Value *Address) const override;
3425 };
3426 
3427 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3428 public:
3429   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3430 
3431   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3432     // This is recovered from gcc output.
3433     return 1; // r1 is the dedicated stack pointer
3434   }
3435 
3436   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3437                                llvm::Value *Address) const override;
3438 };
3439 
3440 }
3441 
3442 // Return true if the ABI requires Ty to be passed sign- or zero-
3443 // extended to 64 bits.
3444 bool
3445 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3446   // Treat an enum type as its underlying type.
3447   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3448     Ty = EnumTy->getDecl()->getIntegerType();
3449 
3450   // Promotable integer types are required to be promoted by the ABI.
3451   if (Ty->isPromotableIntegerType())
3452     return true;
3453 
3454   // In addition to the usual promotable integer types, we also need to
3455   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3456   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3457     switch (BT->getKind()) {
3458     case BuiltinType::Int:
3459     case BuiltinType::UInt:
3460       return true;
3461     default:
3462       break;
3463     }
3464 
3465   return false;
3466 }
3467 
3468 /// isAlignedParamType - Determine whether a type requires 16-byte
3469 /// alignment in the parameter area.
3470 bool
3471 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
3472   Align32 = false;
3473 
3474   // Complex types are passed just like their elements.
3475   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3476     Ty = CTy->getElementType();
3477 
3478   // Only vector types of size 16 bytes need alignment (larger types are
3479   // passed via reference, smaller types are not aligned).
3480   if (IsQPXVectorTy(Ty)) {
3481     if (getContext().getTypeSize(Ty) > 128)
3482       Align32 = true;
3483 
3484     return true;
3485   } else if (Ty->isVectorType()) {
3486     return getContext().getTypeSize(Ty) == 128;
3487   }
3488 
3489   // For single-element float/vector structs, we consider the whole type
3490   // to have the same alignment requirements as its single element.
3491   const Type *AlignAsType = nullptr;
3492   const Type *EltType = isSingleElementStruct(Ty, getContext());
3493   if (EltType) {
3494     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3495     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3496          getContext().getTypeSize(EltType) == 128) ||
3497         (BT && BT->isFloatingPoint()))
3498       AlignAsType = EltType;
3499   }
3500 
3501   // Likewise for ELFv2 homogeneous aggregates.
3502   const Type *Base = nullptr;
3503   uint64_t Members = 0;
3504   if (!AlignAsType && Kind == ELFv2 &&
3505       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3506     AlignAsType = Base;
3507 
3508   // With special case aggregates, only vector base types need alignment.
3509   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3510     if (getContext().getTypeSize(AlignAsType) > 128)
3511       Align32 = true;
3512 
3513     return true;
3514   } else if (AlignAsType) {
3515     return AlignAsType->isVectorType();
3516   }
3517 
3518   // Otherwise, we only need alignment for any aggregate type that
3519   // has an alignment requirement of >= 16 bytes.
3520   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3521     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3522       Align32 = true;
3523     return true;
3524   }
3525 
3526   return false;
3527 }
3528 
3529 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3530 /// aggregate.  Base is set to the base element type, and Members is set
3531 /// to the number of base elements.
3532 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3533                                      uint64_t &Members) const {
3534   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3535     uint64_t NElements = AT->getSize().getZExtValue();
3536     if (NElements == 0)
3537       return false;
3538     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3539       return false;
3540     Members *= NElements;
3541   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3542     const RecordDecl *RD = RT->getDecl();
3543     if (RD->hasFlexibleArrayMember())
3544       return false;
3545 
3546     Members = 0;
3547 
3548     // If this is a C++ record, check the bases first.
3549     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3550       for (const auto &I : CXXRD->bases()) {
3551         // Ignore empty records.
3552         if (isEmptyRecord(getContext(), I.getType(), true))
3553           continue;
3554 
3555         uint64_t FldMembers;
3556         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3557           return false;
3558 
3559         Members += FldMembers;
3560       }
3561     }
3562 
3563     for (const auto *FD : RD->fields()) {
3564       // Ignore (non-zero arrays of) empty records.
3565       QualType FT = FD->getType();
3566       while (const ConstantArrayType *AT =
3567              getContext().getAsConstantArrayType(FT)) {
3568         if (AT->getSize().getZExtValue() == 0)
3569           return false;
3570         FT = AT->getElementType();
3571       }
3572       if (isEmptyRecord(getContext(), FT, true))
3573         continue;
3574 
3575       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3576       if (getContext().getLangOpts().CPlusPlus &&
3577           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3578         continue;
3579 
3580       uint64_t FldMembers;
3581       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3582         return false;
3583 
3584       Members = (RD->isUnion() ?
3585                  std::max(Members, FldMembers) : Members + FldMembers);
3586     }
3587 
3588     if (!Base)
3589       return false;
3590 
3591     // Ensure there is no padding.
3592     if (getContext().getTypeSize(Base) * Members !=
3593         getContext().getTypeSize(Ty))
3594       return false;
3595   } else {
3596     Members = 1;
3597     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3598       Members = 2;
3599       Ty = CT->getElementType();
3600     }
3601 
3602     // Most ABIs only support float, double, and some vector type widths.
3603     if (!isHomogeneousAggregateBaseType(Ty))
3604       return false;
3605 
3606     // The base type must be the same for all members.  Types that
3607     // agree in both total size and mode (float vs. vector) are
3608     // treated as being equivalent here.
3609     const Type *TyPtr = Ty.getTypePtr();
3610     if (!Base)
3611       Base = TyPtr;
3612 
3613     if (Base->isVectorType() != TyPtr->isVectorType() ||
3614         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3615       return false;
3616   }
3617   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3618 }
3619 
3620 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3621   // Homogeneous aggregates for ELFv2 must have base types of float,
3622   // double, long double, or 128-bit vectors.
3623   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3624     if (BT->getKind() == BuiltinType::Float ||
3625         BT->getKind() == BuiltinType::Double ||
3626         BT->getKind() == BuiltinType::LongDouble)
3627       return true;
3628   }
3629   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3630     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3631       return true;
3632   }
3633   return false;
3634 }
3635 
3636 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3637     const Type *Base, uint64_t Members) const {
3638   // Vector types require one register, floating point types require one
3639   // or two registers depending on their size.
3640   uint32_t NumRegs =
3641       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3642 
3643   // Homogeneous Aggregates may occupy at most 8 registers.
3644   return Members * NumRegs <= 8;
3645 }
3646 
3647 ABIArgInfo
3648 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3649   Ty = useFirstFieldIfTransparentUnion(Ty);
3650 
3651   if (Ty->isAnyComplexType())
3652     return ABIArgInfo::getDirect();
3653 
3654   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3655   // or via reference (larger than 16 bytes).
3656   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3657     uint64_t Size = getContext().getTypeSize(Ty);
3658     if (Size > 128)
3659       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3660     else if (Size < 128) {
3661       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3662       return ABIArgInfo::getDirect(CoerceTy);
3663     }
3664   }
3665 
3666   if (isAggregateTypeForABI(Ty)) {
3667     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3668       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3669 
3670     bool Align32;
3671     uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
3672                           (Align32 ? 32 : 16) : 8;
3673     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3674 
3675     // ELFv2 homogeneous aggregates are passed as array types.
3676     const Type *Base = nullptr;
3677     uint64_t Members = 0;
3678     if (Kind == ELFv2 &&
3679         isHomogeneousAggregate(Ty, Base, Members)) {
3680       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3681       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3682       return ABIArgInfo::getDirect(CoerceTy);
3683     }
3684 
3685     // If an aggregate may end up fully in registers, we do not
3686     // use the ByVal method, but pass the aggregate as array.
3687     // This is usually beneficial since we avoid forcing the
3688     // back-end to store the argument to memory.
3689     uint64_t Bits = getContext().getTypeSize(Ty);
3690     if (Bits > 0 && Bits <= 8 * GPRBits) {
3691       llvm::Type *CoerceTy;
3692 
3693       // Types up to 8 bytes are passed as integer type (which will be
3694       // properly aligned in the argument save area doubleword).
3695       if (Bits <= GPRBits)
3696         CoerceTy = llvm::IntegerType::get(getVMContext(),
3697                                           llvm::RoundUpToAlignment(Bits, 8));
3698       // Larger types are passed as arrays, with the base type selected
3699       // according to the required alignment in the save area.
3700       else {
3701         uint64_t RegBits = ABIAlign * 8;
3702         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3703         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3704         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3705       }
3706 
3707       return ABIArgInfo::getDirect(CoerceTy);
3708     }
3709 
3710     // All other aggregates are passed ByVal.
3711     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3712                                    /*Realign=*/TyAlign > ABIAlign);
3713   }
3714 
3715   return (isPromotableTypeForABI(Ty) ?
3716           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3717 }
3718 
3719 ABIArgInfo
3720 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3721   if (RetTy->isVoidType())
3722     return ABIArgInfo::getIgnore();
3723 
3724   if (RetTy->isAnyComplexType())
3725     return ABIArgInfo::getDirect();
3726 
3727   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3728   // or via reference (larger than 16 bytes).
3729   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3730     uint64_t Size = getContext().getTypeSize(RetTy);
3731     if (Size > 128)
3732       return ABIArgInfo::getIndirect(0);
3733     else if (Size < 128) {
3734       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3735       return ABIArgInfo::getDirect(CoerceTy);
3736     }
3737   }
3738 
3739   if (isAggregateTypeForABI(RetTy)) {
3740     // ELFv2 homogeneous aggregates are returned as array types.
3741     const Type *Base = nullptr;
3742     uint64_t Members = 0;
3743     if (Kind == ELFv2 &&
3744         isHomogeneousAggregate(RetTy, Base, Members)) {
3745       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3746       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3747       return ABIArgInfo::getDirect(CoerceTy);
3748     }
3749 
3750     // ELFv2 small aggregates are returned in up to two registers.
3751     uint64_t Bits = getContext().getTypeSize(RetTy);
3752     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3753       if (Bits == 0)
3754         return ABIArgInfo::getIgnore();
3755 
3756       llvm::Type *CoerceTy;
3757       if (Bits > GPRBits) {
3758         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3759         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3760       } else
3761         CoerceTy = llvm::IntegerType::get(getVMContext(),
3762                                           llvm::RoundUpToAlignment(Bits, 8));
3763       return ABIArgInfo::getDirect(CoerceTy);
3764     }
3765 
3766     // All other aggregates are returned indirectly.
3767     return ABIArgInfo::getIndirect(0);
3768   }
3769 
3770   return (isPromotableTypeForABI(RetTy) ?
3771           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3772 }
3773 
3774 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3775 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3776                                            QualType Ty,
3777                                            CodeGenFunction &CGF) const {
3778   llvm::Type *BP = CGF.Int8PtrTy;
3779   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3780 
3781   CGBuilderTy &Builder = CGF.Builder;
3782   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3783   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3784 
3785   // Handle types that require 16-byte alignment in the parameter save area.
3786   bool Align32;
3787   if (isAlignedParamType(Ty, Align32)) {
3788     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3789     AddrAsInt = Builder.CreateAdd(AddrAsInt,
3790                                   Builder.getInt64(Align32 ? 31 : 15));
3791     AddrAsInt = Builder.CreateAnd(AddrAsInt,
3792                                   Builder.getInt64(Align32 ? -32 : -16));
3793     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3794   }
3795 
3796   // Update the va_list pointer.  The pointer should be bumped by the
3797   // size of the object.  We can trust getTypeSize() except for a complex
3798   // type whose base type is smaller than a doubleword.  For these, the
3799   // size of the object is 16 bytes; see below for further explanation.
3800   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3801   QualType BaseTy;
3802   unsigned CplxBaseSize = 0;
3803 
3804   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3805     BaseTy = CTy->getElementType();
3806     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3807     if (CplxBaseSize < 8)
3808       SizeInBytes = 16;
3809   }
3810 
3811   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3812   llvm::Value *NextAddr =
3813     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3814                       "ap.next");
3815   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3816 
3817   // If we have a complex type and the base type is smaller than 8 bytes,
3818   // the ABI calls for the real and imaginary parts to be right-adjusted
3819   // in separate doublewords.  However, Clang expects us to produce a
3820   // pointer to a structure with the two parts packed tightly.  So generate
3821   // loads of the real and imaginary parts relative to the va_list pointer,
3822   // and store them to a temporary structure.
3823   if (CplxBaseSize && CplxBaseSize < 8) {
3824     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3825     llvm::Value *ImagAddr = RealAddr;
3826     if (CGF.CGM.getDataLayout().isBigEndian()) {
3827       RealAddr =
3828           Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3829       ImagAddr =
3830           Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3831     } else {
3832       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3833     }
3834     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3835     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3836     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3837     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3838     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3839     llvm::AllocaInst *Ptr =
3840         CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
3841     llvm::Value *RealPtr =
3842         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
3843     llvm::Value *ImagPtr =
3844         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
3845     Builder.CreateStore(Real, RealPtr, false);
3846     Builder.CreateStore(Imag, ImagPtr, false);
3847     return Ptr;
3848   }
3849 
3850   // If the argument is smaller than 8 bytes, it is right-adjusted in
3851   // its doubleword slot.  Adjust the pointer to pick it up from the
3852   // correct offset.
3853   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3854     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3855     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3856     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3857   }
3858 
3859   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3860   return Builder.CreateBitCast(Addr, PTy);
3861 }
3862 
3863 static bool
3864 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3865                               llvm::Value *Address) {
3866   // This is calculated from the LLVM and GCC tables and verified
3867   // against gcc output.  AFAIK all ABIs use the same encoding.
3868 
3869   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3870 
3871   llvm::IntegerType *i8 = CGF.Int8Ty;
3872   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3873   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3874   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3875 
3876   // 0-31: r0-31, the 8-byte general-purpose registers
3877   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3878 
3879   // 32-63: fp0-31, the 8-byte floating-point registers
3880   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3881 
3882   // 64-76 are various 4-byte special-purpose registers:
3883   // 64: mq
3884   // 65: lr
3885   // 66: ctr
3886   // 67: ap
3887   // 68-75 cr0-7
3888   // 76: xer
3889   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3890 
3891   // 77-108: v0-31, the 16-byte vector registers
3892   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3893 
3894   // 109: vrsave
3895   // 110: vscr
3896   // 111: spe_acc
3897   // 112: spefscr
3898   // 113: sfp
3899   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3900 
3901   return false;
3902 }
3903 
3904 bool
3905 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3906   CodeGen::CodeGenFunction &CGF,
3907   llvm::Value *Address) const {
3908 
3909   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3910 }
3911 
3912 bool
3913 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3914                                                 llvm::Value *Address) const {
3915 
3916   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3917 }
3918 
3919 //===----------------------------------------------------------------------===//
3920 // AArch64 ABI Implementation
3921 //===----------------------------------------------------------------------===//
3922 
3923 namespace {
3924 
3925 class AArch64ABIInfo : public ABIInfo {
3926 public:
3927   enum ABIKind {
3928     AAPCS = 0,
3929     DarwinPCS
3930   };
3931 
3932 private:
3933   ABIKind Kind;
3934 
3935 public:
3936   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3937 
3938 private:
3939   ABIKind getABIKind() const { return Kind; }
3940   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3941 
3942   ABIArgInfo classifyReturnType(QualType RetTy) const;
3943   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3944   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3945   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3946                                          uint64_t Members) const override;
3947 
3948   bool isIllegalVectorType(QualType Ty) const;
3949 
3950   void computeInfo(CGFunctionInfo &FI) const override {
3951     if (!getCXXABI().classifyReturnType(FI))
3952       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3953 
3954     for (auto &it : FI.arguments())
3955       it.info = classifyArgumentType(it.type);
3956   }
3957 
3958   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3959                                CodeGenFunction &CGF) const;
3960 
3961   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3962                               CodeGenFunction &CGF) const;
3963 
3964   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3965                          CodeGenFunction &CGF) const override {
3966     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3967                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3968   }
3969 };
3970 
3971 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3972 public:
3973   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3974       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3975 
3976   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3977     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3978   }
3979 
3980   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3981     return 31;
3982   }
3983 
3984   bool doesReturnSlotInterfereWithArgs() const override { return false; }
3985 };
3986 }
3987 
3988 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3989   Ty = useFirstFieldIfTransparentUnion(Ty);
3990 
3991   // Handle illegal vector types here.
3992   if (isIllegalVectorType(Ty)) {
3993     uint64_t Size = getContext().getTypeSize(Ty);
3994     if (Size <= 32) {
3995       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3996       return ABIArgInfo::getDirect(ResType);
3997     }
3998     if (Size == 64) {
3999       llvm::Type *ResType =
4000           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4001       return ABIArgInfo::getDirect(ResType);
4002     }
4003     if (Size == 128) {
4004       llvm::Type *ResType =
4005           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4006       return ABIArgInfo::getDirect(ResType);
4007     }
4008     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4009   }
4010 
4011   if (!isAggregateTypeForABI(Ty)) {
4012     // Treat an enum type as its underlying type.
4013     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4014       Ty = EnumTy->getDecl()->getIntegerType();
4015 
4016     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4017                 ? ABIArgInfo::getExtend()
4018                 : ABIArgInfo::getDirect());
4019   }
4020 
4021   // Structures with either a non-trivial destructor or a non-trivial
4022   // copy constructor are always indirect.
4023   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4024     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
4025                                    CGCXXABI::RAA_DirectInMemory);
4026   }
4027 
4028   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4029   // elsewhere for GNU compatibility.
4030   if (isEmptyRecord(getContext(), Ty, true)) {
4031     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4032       return ABIArgInfo::getIgnore();
4033 
4034     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4035   }
4036 
4037   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4038   const Type *Base = nullptr;
4039   uint64_t Members = 0;
4040   if (isHomogeneousAggregate(Ty, Base, Members)) {
4041     return ABIArgInfo::getDirect(
4042         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4043   }
4044 
4045   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4046   uint64_t Size = getContext().getTypeSize(Ty);
4047   if (Size <= 128) {
4048     unsigned Alignment = getContext().getTypeAlign(Ty);
4049     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4050 
4051     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4052     // For aggregates with 16-byte alignment, we use i128.
4053     if (Alignment < 128 && Size == 128) {
4054       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4055       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4056     }
4057     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4058   }
4059 
4060   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4061 }
4062 
4063 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4064   if (RetTy->isVoidType())
4065     return ABIArgInfo::getIgnore();
4066 
4067   // Large vector types should be returned via memory.
4068   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4069     return ABIArgInfo::getIndirect(0);
4070 
4071   if (!isAggregateTypeForABI(RetTy)) {
4072     // Treat an enum type as its underlying type.
4073     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4074       RetTy = EnumTy->getDecl()->getIntegerType();
4075 
4076     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4077                 ? ABIArgInfo::getExtend()
4078                 : ABIArgInfo::getDirect());
4079   }
4080 
4081   if (isEmptyRecord(getContext(), RetTy, true))
4082     return ABIArgInfo::getIgnore();
4083 
4084   const Type *Base = nullptr;
4085   uint64_t Members = 0;
4086   if (isHomogeneousAggregate(RetTy, Base, Members))
4087     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4088     return ABIArgInfo::getDirect();
4089 
4090   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4091   uint64_t Size = getContext().getTypeSize(RetTy);
4092   if (Size <= 128) {
4093     unsigned Alignment = getContext().getTypeAlign(RetTy);
4094     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4095 
4096     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4097     // For aggregates with 16-byte alignment, we use i128.
4098     if (Alignment < 128 && Size == 128) {
4099       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4100       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4101     }
4102     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4103   }
4104 
4105   return ABIArgInfo::getIndirect(0);
4106 }
4107 
4108 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4109 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4110   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4111     // Check whether VT is legal.
4112     unsigned NumElements = VT->getNumElements();
4113     uint64_t Size = getContext().getTypeSize(VT);
4114     // NumElements should be power of 2 between 1 and 16.
4115     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4116       return true;
4117     return Size != 64 && (Size != 128 || NumElements == 1);
4118   }
4119   return false;
4120 }
4121 
4122 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4123   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4124   // point type or a short-vector type. This is the same as the 32-bit ABI,
4125   // but with the difference that any floating-point type is allowed,
4126   // including __fp16.
4127   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4128     if (BT->isFloatingPoint())
4129       return true;
4130   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4131     unsigned VecSize = getContext().getTypeSize(VT);
4132     if (VecSize == 64 || VecSize == 128)
4133       return true;
4134   }
4135   return false;
4136 }
4137 
4138 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4139                                                        uint64_t Members) const {
4140   return Members <= 4;
4141 }
4142 
4143 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4144                                             QualType Ty,
4145                                             CodeGenFunction &CGF) const {
4146   ABIArgInfo AI = classifyArgumentType(Ty);
4147   bool IsIndirect = AI.isIndirect();
4148 
4149   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4150   if (IsIndirect)
4151     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4152   else if (AI.getCoerceToType())
4153     BaseTy = AI.getCoerceToType();
4154 
4155   unsigned NumRegs = 1;
4156   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4157     BaseTy = ArrTy->getElementType();
4158     NumRegs = ArrTy->getNumElements();
4159   }
4160   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4161 
4162   // The AArch64 va_list type and handling is specified in the Procedure Call
4163   // Standard, section B.4:
4164   //
4165   // struct {
4166   //   void *__stack;
4167   //   void *__gr_top;
4168   //   void *__vr_top;
4169   //   int __gr_offs;
4170   //   int __vr_offs;
4171   // };
4172 
4173   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4174   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4175   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4176   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4177   auto &Ctx = CGF.getContext();
4178 
4179   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4180   int reg_top_index;
4181   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4182   if (!IsFPR) {
4183     // 3 is the field number of __gr_offs
4184     reg_offs_p =
4185         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
4186     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4187     reg_top_index = 1; // field number for __gr_top
4188     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4189   } else {
4190     // 4 is the field number of __vr_offs.
4191     reg_offs_p =
4192         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
4193     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4194     reg_top_index = 2; // field number for __vr_top
4195     RegSize = 16 * NumRegs;
4196   }
4197 
4198   //=======================================
4199   // Find out where argument was passed
4200   //=======================================
4201 
4202   // If reg_offs >= 0 we're already using the stack for this type of
4203   // argument. We don't want to keep updating reg_offs (in case it overflows,
4204   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4205   // whatever they get).
4206   llvm::Value *UsingStack = nullptr;
4207   UsingStack = CGF.Builder.CreateICmpSGE(
4208       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4209 
4210   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4211 
4212   // Otherwise, at least some kind of argument could go in these registers, the
4213   // question is whether this particular type is too big.
4214   CGF.EmitBlock(MaybeRegBlock);
4215 
4216   // Integer arguments may need to correct register alignment (for example a
4217   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4218   // align __gr_offs to calculate the potential address.
4219   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4220     int Align = Ctx.getTypeAlign(Ty) / 8;
4221 
4222     reg_offs = CGF.Builder.CreateAdd(
4223         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4224         "align_regoffs");
4225     reg_offs = CGF.Builder.CreateAnd(
4226         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4227         "aligned_regoffs");
4228   }
4229 
4230   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4231   llvm::Value *NewOffset = nullptr;
4232   NewOffset = CGF.Builder.CreateAdd(
4233       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4234   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4235 
4236   // Now we're in a position to decide whether this argument really was in
4237   // registers or not.
4238   llvm::Value *InRegs = nullptr;
4239   InRegs = CGF.Builder.CreateICmpSLE(
4240       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4241 
4242   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4243 
4244   //=======================================
4245   // Argument was in registers
4246   //=======================================
4247 
4248   // Now we emit the code for if the argument was originally passed in
4249   // registers. First start the appropriate block:
4250   CGF.EmitBlock(InRegBlock);
4251 
4252   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4253   reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
4254                                           "reg_top_p");
4255   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4256   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4257   llvm::Value *RegAddr = nullptr;
4258   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4259 
4260   if (IsIndirect) {
4261     // If it's been passed indirectly (actually a struct), whatever we find from
4262     // stored registers or on the stack will actually be a struct **.
4263     MemTy = llvm::PointerType::getUnqual(MemTy);
4264   }
4265 
4266   const Type *Base = nullptr;
4267   uint64_t NumMembers = 0;
4268   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4269   if (IsHFA && NumMembers > 1) {
4270     // Homogeneous aggregates passed in registers will have their elements split
4271     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4272     // qN+1, ...). We reload and store into a temporary local variable
4273     // contiguously.
4274     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4275     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4276     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4277     llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
4278     int Offset = 0;
4279 
4280     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4281       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4282     for (unsigned i = 0; i < NumMembers; ++i) {
4283       llvm::Value *BaseOffset =
4284           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4285       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4286       LoadAddr = CGF.Builder.CreateBitCast(
4287           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4288       llvm::Value *StoreAddr =
4289           CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
4290 
4291       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4292       CGF.Builder.CreateStore(Elem, StoreAddr);
4293     }
4294 
4295     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4296   } else {
4297     // Otherwise the object is contiguous in memory
4298     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4299     if (CGF.CGM.getDataLayout().isBigEndian() &&
4300         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4301         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4302       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4303       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4304 
4305       BaseAddr = CGF.Builder.CreateAdd(
4306           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4307 
4308       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4309     }
4310 
4311     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4312   }
4313 
4314   CGF.EmitBranch(ContBlock);
4315 
4316   //=======================================
4317   // Argument was on the stack
4318   //=======================================
4319   CGF.EmitBlock(OnStackBlock);
4320 
4321   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4322   stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
4323   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4324 
4325   // Again, stack arguments may need realigmnent. In this case both integer and
4326   // floating-point ones might be affected.
4327   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4328     int Align = Ctx.getTypeAlign(Ty) / 8;
4329 
4330     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4331 
4332     OnStackAddr = CGF.Builder.CreateAdd(
4333         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4334         "align_stack");
4335     OnStackAddr = CGF.Builder.CreateAnd(
4336         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4337         "align_stack");
4338 
4339     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4340   }
4341 
4342   uint64_t StackSize;
4343   if (IsIndirect)
4344     StackSize = 8;
4345   else
4346     StackSize = Ctx.getTypeSize(Ty) / 8;
4347 
4348   // All stack slots are 8 bytes
4349   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4350 
4351   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4352   llvm::Value *NewStack =
4353       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4354 
4355   // Write the new value of __stack for the next call to va_arg
4356   CGF.Builder.CreateStore(NewStack, stack_p);
4357 
4358   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4359       Ctx.getTypeSize(Ty) < 64) {
4360     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4361     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4362 
4363     OnStackAddr = CGF.Builder.CreateAdd(
4364         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4365 
4366     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4367   }
4368 
4369   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4370 
4371   CGF.EmitBranch(ContBlock);
4372 
4373   //=======================================
4374   // Tidy up
4375   //=======================================
4376   CGF.EmitBlock(ContBlock);
4377 
4378   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4379   ResAddr->addIncoming(RegAddr, InRegBlock);
4380   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4381 
4382   if (IsIndirect)
4383     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4384 
4385   return ResAddr;
4386 }
4387 
4388 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr,
4389                                              QualType Ty,
4390                                              CodeGenFunction &CGF) const {
4391   // We do not support va_arg for aggregates or illegal vector types.
4392   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4393   // other cases.
4394   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4395     return nullptr;
4396 
4397   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4398   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4399 
4400   const Type *Base = nullptr;
4401   uint64_t Members = 0;
4402   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4403 
4404   bool isIndirect = false;
4405   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4406   // be passed indirectly.
4407   if (Size > 16 && !isHA) {
4408     isIndirect = true;
4409     Size = 8;
4410     Align = 8;
4411   }
4412 
4413   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4414   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4415 
4416   CGBuilderTy &Builder = CGF.Builder;
4417   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4418   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4419 
4420   if (isEmptyRecord(getContext(), Ty, true)) {
4421     // These are ignored for parameter passing purposes.
4422     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4423     return Builder.CreateBitCast(Addr, PTy);
4424   }
4425 
4426   const uint64_t MinABIAlign = 8;
4427   if (Align > MinABIAlign) {
4428     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4429     Addr = Builder.CreateGEP(Addr, Offset);
4430     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4431     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4432     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4433     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4434   }
4435 
4436   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4437   llvm::Value *NextAddr = Builder.CreateGEP(
4438       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4439   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4440 
4441   if (isIndirect)
4442     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4443   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4444   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4445 
4446   return AddrTyped;
4447 }
4448 
4449 //===----------------------------------------------------------------------===//
4450 // ARM ABI Implementation
4451 //===----------------------------------------------------------------------===//
4452 
4453 namespace {
4454 
4455 class ARMABIInfo : public ABIInfo {
4456 public:
4457   enum ABIKind {
4458     APCS = 0,
4459     AAPCS = 1,
4460     AAPCS_VFP
4461   };
4462 
4463 private:
4464   ABIKind Kind;
4465 
4466 public:
4467   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4468     setCCs();
4469   }
4470 
4471   bool isEABI() const {
4472     switch (getTarget().getTriple().getEnvironment()) {
4473     case llvm::Triple::Android:
4474     case llvm::Triple::EABI:
4475     case llvm::Triple::EABIHF:
4476     case llvm::Triple::GNUEABI:
4477     case llvm::Triple::GNUEABIHF:
4478       return true;
4479     default:
4480       return false;
4481     }
4482   }
4483 
4484   bool isEABIHF() const {
4485     switch (getTarget().getTriple().getEnvironment()) {
4486     case llvm::Triple::EABIHF:
4487     case llvm::Triple::GNUEABIHF:
4488       return true;
4489     default:
4490       return false;
4491     }
4492   }
4493 
4494   ABIKind getABIKind() const { return Kind; }
4495 
4496 private:
4497   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4498   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4499   bool isIllegalVectorType(QualType Ty) const;
4500 
4501   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4502   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4503                                          uint64_t Members) const override;
4504 
4505   void computeInfo(CGFunctionInfo &FI) const override;
4506 
4507   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4508                          CodeGenFunction &CGF) const override;
4509 
4510   llvm::CallingConv::ID getLLVMDefaultCC() const;
4511   llvm::CallingConv::ID getABIDefaultCC() const;
4512   void setCCs();
4513 };
4514 
4515 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4516 public:
4517   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4518     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4519 
4520   const ARMABIInfo &getABIInfo() const {
4521     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4522   }
4523 
4524   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4525     return 13;
4526   }
4527 
4528   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4529     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4530   }
4531 
4532   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4533                                llvm::Value *Address) const override {
4534     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4535 
4536     // 0-15 are the 16 integer registers.
4537     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4538     return false;
4539   }
4540 
4541   unsigned getSizeOfUnwindException() const override {
4542     if (getABIInfo().isEABI()) return 88;
4543     return TargetCodeGenInfo::getSizeOfUnwindException();
4544   }
4545 
4546   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4547                            CodeGen::CodeGenModule &CGM) const override {
4548     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4549     if (!FD)
4550       return;
4551 
4552     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4553     if (!Attr)
4554       return;
4555 
4556     const char *Kind;
4557     switch (Attr->getInterrupt()) {
4558     case ARMInterruptAttr::Generic: Kind = ""; break;
4559     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4560     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4561     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4562     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4563     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4564     }
4565 
4566     llvm::Function *Fn = cast<llvm::Function>(GV);
4567 
4568     Fn->addFnAttr("interrupt", Kind);
4569 
4570     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4571       return;
4572 
4573     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4574     // however this is not necessarily true on taking any interrupt. Instruct
4575     // the backend to perform a realignment as part of the function prologue.
4576     llvm::AttrBuilder B;
4577     B.addStackAlignmentAttr(8);
4578     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4579                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4580                                               llvm::AttributeSet::FunctionIndex,
4581                                               B));
4582   }
4583 };
4584 
4585 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4586   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4587                                         CodeGen::CodeGenModule &CGM) const;
4588 
4589 public:
4590   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4591       : ARMTargetCodeGenInfo(CGT, K) {}
4592 
4593   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4594                            CodeGen::CodeGenModule &CGM) const override;
4595 };
4596 
4597 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4598     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4599   if (!isa<FunctionDecl>(D))
4600     return;
4601   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4602     return;
4603 
4604   llvm::Function *F = cast<llvm::Function>(GV);
4605   F->addFnAttr("stack-probe-size",
4606                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4607 }
4608 
4609 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4610     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4611   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4612   addStackProbeSizeTargetAttribute(D, GV, CGM);
4613 }
4614 }
4615 
4616 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4617   if (!getCXXABI().classifyReturnType(FI))
4618     FI.getReturnInfo() =
4619         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4620 
4621   for (auto &I : FI.arguments())
4622     I.info = classifyArgumentType(I.type, FI.isVariadic());
4623 
4624   // Always honor user-specified calling convention.
4625   if (FI.getCallingConvention() != llvm::CallingConv::C)
4626     return;
4627 
4628   llvm::CallingConv::ID cc = getRuntimeCC();
4629   if (cc != llvm::CallingConv::C)
4630     FI.setEffectiveCallingConvention(cc);
4631 }
4632 
4633 /// Return the default calling convention that LLVM will use.
4634 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4635   // The default calling convention that LLVM will infer.
4636   if (isEABIHF())
4637     return llvm::CallingConv::ARM_AAPCS_VFP;
4638   else if (isEABI())
4639     return llvm::CallingConv::ARM_AAPCS;
4640   else
4641     return llvm::CallingConv::ARM_APCS;
4642 }
4643 
4644 /// Return the calling convention that our ABI would like us to use
4645 /// as the C calling convention.
4646 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4647   switch (getABIKind()) {
4648   case APCS: return llvm::CallingConv::ARM_APCS;
4649   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4650   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4651   }
4652   llvm_unreachable("bad ABI kind");
4653 }
4654 
4655 void ARMABIInfo::setCCs() {
4656   assert(getRuntimeCC() == llvm::CallingConv::C);
4657 
4658   // Don't muddy up the IR with a ton of explicit annotations if
4659   // they'd just match what LLVM will infer from the triple.
4660   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4661   if (abiCC != getLLVMDefaultCC())
4662     RuntimeCC = abiCC;
4663 
4664   BuiltinCC = (getABIKind() == APCS ?
4665                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4666 }
4667 
4668 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4669                                             bool isVariadic) const {
4670   // 6.1.2.1 The following argument types are VFP CPRCs:
4671   //   A single-precision floating-point type (including promoted
4672   //   half-precision types); A double-precision floating-point type;
4673   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4674   //   with a Base Type of a single- or double-precision floating-point type,
4675   //   64-bit containerized vectors or 128-bit containerized vectors with one
4676   //   to four Elements.
4677   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4678 
4679   Ty = useFirstFieldIfTransparentUnion(Ty);
4680 
4681   // Handle illegal vector types here.
4682   if (isIllegalVectorType(Ty)) {
4683     uint64_t Size = getContext().getTypeSize(Ty);
4684     if (Size <= 32) {
4685       llvm::Type *ResType =
4686           llvm::Type::getInt32Ty(getVMContext());
4687       return ABIArgInfo::getDirect(ResType);
4688     }
4689     if (Size == 64) {
4690       llvm::Type *ResType = llvm::VectorType::get(
4691           llvm::Type::getInt32Ty(getVMContext()), 2);
4692       return ABIArgInfo::getDirect(ResType);
4693     }
4694     if (Size == 128) {
4695       llvm::Type *ResType = llvm::VectorType::get(
4696           llvm::Type::getInt32Ty(getVMContext()), 4);
4697       return ABIArgInfo::getDirect(ResType);
4698     }
4699     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4700   }
4701 
4702   if (!isAggregateTypeForABI(Ty)) {
4703     // Treat an enum type as its underlying type.
4704     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4705       Ty = EnumTy->getDecl()->getIntegerType();
4706     }
4707 
4708     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4709                                           : ABIArgInfo::getDirect());
4710   }
4711 
4712   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4713     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4714   }
4715 
4716   // Ignore empty records.
4717   if (isEmptyRecord(getContext(), Ty, true))
4718     return ABIArgInfo::getIgnore();
4719 
4720   if (IsEffectivelyAAPCS_VFP) {
4721     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4722     // into VFP registers.
4723     const Type *Base = nullptr;
4724     uint64_t Members = 0;
4725     if (isHomogeneousAggregate(Ty, Base, Members)) {
4726       assert(Base && "Base class should be set for homogeneous aggregate");
4727       // Base can be a floating-point or a vector.
4728       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4729     }
4730   }
4731 
4732   // Support byval for ARM.
4733   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4734   // most 8-byte. We realign the indirect argument if type alignment is bigger
4735   // than ABI alignment.
4736   uint64_t ABIAlign = 4;
4737   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4738   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4739        getABIKind() == ARMABIInfo::AAPCS)
4740     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4741 
4742   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4743     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
4744            /*Realign=*/TyAlign > ABIAlign);
4745   }
4746 
4747   // Otherwise, pass by coercing to a structure of the appropriate size.
4748   llvm::Type* ElemTy;
4749   unsigned SizeRegs;
4750   // FIXME: Try to match the types of the arguments more accurately where
4751   // we can.
4752   if (getContext().getTypeAlign(Ty) <= 32) {
4753     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4754     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4755   } else {
4756     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4757     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4758   }
4759 
4760   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4761 }
4762 
4763 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4764                               llvm::LLVMContext &VMContext) {
4765   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4766   // is called integer-like if its size is less than or equal to one word, and
4767   // the offset of each of its addressable sub-fields is zero.
4768 
4769   uint64_t Size = Context.getTypeSize(Ty);
4770 
4771   // Check that the type fits in a word.
4772   if (Size > 32)
4773     return false;
4774 
4775   // FIXME: Handle vector types!
4776   if (Ty->isVectorType())
4777     return false;
4778 
4779   // Float types are never treated as "integer like".
4780   if (Ty->isRealFloatingType())
4781     return false;
4782 
4783   // If this is a builtin or pointer type then it is ok.
4784   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4785     return true;
4786 
4787   // Small complex integer types are "integer like".
4788   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4789     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4790 
4791   // Single element and zero sized arrays should be allowed, by the definition
4792   // above, but they are not.
4793 
4794   // Otherwise, it must be a record type.
4795   const RecordType *RT = Ty->getAs<RecordType>();
4796   if (!RT) return false;
4797 
4798   // Ignore records with flexible arrays.
4799   const RecordDecl *RD = RT->getDecl();
4800   if (RD->hasFlexibleArrayMember())
4801     return false;
4802 
4803   // Check that all sub-fields are at offset 0, and are themselves "integer
4804   // like".
4805   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4806 
4807   bool HadField = false;
4808   unsigned idx = 0;
4809   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4810        i != e; ++i, ++idx) {
4811     const FieldDecl *FD = *i;
4812 
4813     // Bit-fields are not addressable, we only need to verify they are "integer
4814     // like". We still have to disallow a subsequent non-bitfield, for example:
4815     //   struct { int : 0; int x }
4816     // is non-integer like according to gcc.
4817     if (FD->isBitField()) {
4818       if (!RD->isUnion())
4819         HadField = true;
4820 
4821       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4822         return false;
4823 
4824       continue;
4825     }
4826 
4827     // Check if this field is at offset 0.
4828     if (Layout.getFieldOffset(idx) != 0)
4829       return false;
4830 
4831     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4832       return false;
4833 
4834     // Only allow at most one field in a structure. This doesn't match the
4835     // wording above, but follows gcc in situations with a field following an
4836     // empty structure.
4837     if (!RD->isUnion()) {
4838       if (HadField)
4839         return false;
4840 
4841       HadField = true;
4842     }
4843   }
4844 
4845   return true;
4846 }
4847 
4848 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4849                                           bool isVariadic) const {
4850   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4851 
4852   if (RetTy->isVoidType())
4853     return ABIArgInfo::getIgnore();
4854 
4855   // Large vector types should be returned via memory.
4856   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4857     return ABIArgInfo::getIndirect(0);
4858   }
4859 
4860   if (!isAggregateTypeForABI(RetTy)) {
4861     // Treat an enum type as its underlying type.
4862     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4863       RetTy = EnumTy->getDecl()->getIntegerType();
4864 
4865     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4866                                             : ABIArgInfo::getDirect();
4867   }
4868 
4869   // Are we following APCS?
4870   if (getABIKind() == APCS) {
4871     if (isEmptyRecord(getContext(), RetTy, false))
4872       return ABIArgInfo::getIgnore();
4873 
4874     // Complex types are all returned as packed integers.
4875     //
4876     // FIXME: Consider using 2 x vector types if the back end handles them
4877     // correctly.
4878     if (RetTy->isAnyComplexType())
4879       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4880           getVMContext(), getContext().getTypeSize(RetTy)));
4881 
4882     // Integer like structures are returned in r0.
4883     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4884       // Return in the smallest viable integer type.
4885       uint64_t Size = getContext().getTypeSize(RetTy);
4886       if (Size <= 8)
4887         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4888       if (Size <= 16)
4889         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4890       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4891     }
4892 
4893     // Otherwise return in memory.
4894     return ABIArgInfo::getIndirect(0);
4895   }
4896 
4897   // Otherwise this is an AAPCS variant.
4898 
4899   if (isEmptyRecord(getContext(), RetTy, true))
4900     return ABIArgInfo::getIgnore();
4901 
4902   // Check for homogeneous aggregates with AAPCS-VFP.
4903   if (IsEffectivelyAAPCS_VFP) {
4904     const Type *Base = nullptr;
4905     uint64_t Members;
4906     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4907       assert(Base && "Base class should be set for homogeneous aggregate");
4908       // Homogeneous Aggregates are returned directly.
4909       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4910     }
4911   }
4912 
4913   // Aggregates <= 4 bytes are returned in r0; other aggregates
4914   // are returned indirectly.
4915   uint64_t Size = getContext().getTypeSize(RetTy);
4916   if (Size <= 32) {
4917     if (getDataLayout().isBigEndian())
4918       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4919       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4920 
4921     // Return in the smallest viable integer type.
4922     if (Size <= 8)
4923       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4924     if (Size <= 16)
4925       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4926     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4927   }
4928 
4929   return ABIArgInfo::getIndirect(0);
4930 }
4931 
4932 /// isIllegalVector - check whether Ty is an illegal vector type.
4933 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4934   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4935     // Check whether VT is legal.
4936     unsigned NumElements = VT->getNumElements();
4937     uint64_t Size = getContext().getTypeSize(VT);
4938     // NumElements should be power of 2.
4939     if ((NumElements & (NumElements - 1)) != 0)
4940       return true;
4941     // Size should be greater than 32 bits.
4942     return Size <= 32;
4943   }
4944   return false;
4945 }
4946 
4947 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4948   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4949   // double, or 64-bit or 128-bit vectors.
4950   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4951     if (BT->getKind() == BuiltinType::Float ||
4952         BT->getKind() == BuiltinType::Double ||
4953         BT->getKind() == BuiltinType::LongDouble)
4954       return true;
4955   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4956     unsigned VecSize = getContext().getTypeSize(VT);
4957     if (VecSize == 64 || VecSize == 128)
4958       return true;
4959   }
4960   return false;
4961 }
4962 
4963 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4964                                                    uint64_t Members) const {
4965   return Members <= 4;
4966 }
4967 
4968 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4969                                    CodeGenFunction &CGF) const {
4970   llvm::Type *BP = CGF.Int8PtrTy;
4971   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4972 
4973   CGBuilderTy &Builder = CGF.Builder;
4974   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4975   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4976 
4977   if (isEmptyRecord(getContext(), Ty, true)) {
4978     // These are ignored for parameter passing purposes.
4979     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4980     return Builder.CreateBitCast(Addr, PTy);
4981   }
4982 
4983   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4984   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4985   bool IsIndirect = false;
4986 
4987   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4988   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4989   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4990       getABIKind() == ARMABIInfo::AAPCS)
4991     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4992   else
4993     TyAlign = 4;
4994   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4995   if (isIllegalVectorType(Ty) && Size > 16) {
4996     IsIndirect = true;
4997     Size = 4;
4998     TyAlign = 4;
4999   }
5000 
5001   // Handle address alignment for ABI alignment > 4 bytes.
5002   if (TyAlign > 4) {
5003     assert((TyAlign & (TyAlign - 1)) == 0 &&
5004            "Alignment is not power of 2!");
5005     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
5006     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
5007     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
5008     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
5009   }
5010 
5011   uint64_t Offset =
5012     llvm::RoundUpToAlignment(Size, 4);
5013   llvm::Value *NextAddr =
5014     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5015                       "ap.next");
5016   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5017 
5018   if (IsIndirect)
5019     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
5020   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
5021     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
5022     // may not be correctly aligned for the vector type. We create an aligned
5023     // temporary space and copy the content over from ap.cur to the temporary
5024     // space. This is necessary if the natural alignment of the type is greater
5025     // than the ABI alignment.
5026     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
5027     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
5028     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
5029                                                     "var.align");
5030     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
5031     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
5032     Builder.CreateMemCpy(Dst, Src,
5033         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
5034         TyAlign, false);
5035     Addr = AlignedTemp; //The content is in aligned location.
5036   }
5037   llvm::Type *PTy =
5038     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5039   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5040 
5041   return AddrTyped;
5042 }
5043 
5044 //===----------------------------------------------------------------------===//
5045 // NVPTX ABI Implementation
5046 //===----------------------------------------------------------------------===//
5047 
5048 namespace {
5049 
5050 class NVPTXABIInfo : public ABIInfo {
5051 public:
5052   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5053 
5054   ABIArgInfo classifyReturnType(QualType RetTy) const;
5055   ABIArgInfo classifyArgumentType(QualType Ty) const;
5056 
5057   void computeInfo(CGFunctionInfo &FI) const override;
5058   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5059                          CodeGenFunction &CFG) const override;
5060 };
5061 
5062 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5063 public:
5064   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5065     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5066 
5067   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5068                            CodeGen::CodeGenModule &M) const override;
5069 private:
5070   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5071   // resulting MDNode to the nvvm.annotations MDNode.
5072   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5073 };
5074 
5075 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5076   if (RetTy->isVoidType())
5077     return ABIArgInfo::getIgnore();
5078 
5079   // note: this is different from default ABI
5080   if (!RetTy->isScalarType())
5081     return ABIArgInfo::getDirect();
5082 
5083   // Treat an enum type as its underlying type.
5084   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5085     RetTy = EnumTy->getDecl()->getIntegerType();
5086 
5087   return (RetTy->isPromotableIntegerType() ?
5088           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5089 }
5090 
5091 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5092   // Treat an enum type as its underlying type.
5093   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5094     Ty = EnumTy->getDecl()->getIntegerType();
5095 
5096   // Return aggregates type as indirect by value
5097   if (isAggregateTypeForABI(Ty))
5098     return ABIArgInfo::getIndirect(0, /* byval */ true);
5099 
5100   return (Ty->isPromotableIntegerType() ?
5101           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5102 }
5103 
5104 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5105   if (!getCXXABI().classifyReturnType(FI))
5106     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5107   for (auto &I : FI.arguments())
5108     I.info = classifyArgumentType(I.type);
5109 
5110   // Always honor user-specified calling convention.
5111   if (FI.getCallingConvention() != llvm::CallingConv::C)
5112     return;
5113 
5114   FI.setEffectiveCallingConvention(getRuntimeCC());
5115 }
5116 
5117 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5118                                      CodeGenFunction &CFG) const {
5119   llvm_unreachable("NVPTX does not support varargs");
5120 }
5121 
5122 void NVPTXTargetCodeGenInfo::
5123 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5124                     CodeGen::CodeGenModule &M) const{
5125   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5126   if (!FD) return;
5127 
5128   llvm::Function *F = cast<llvm::Function>(GV);
5129 
5130   // Perform special handling in OpenCL mode
5131   if (M.getLangOpts().OpenCL) {
5132     // Use OpenCL function attributes to check for kernel functions
5133     // By default, all functions are device functions
5134     if (FD->hasAttr<OpenCLKernelAttr>()) {
5135       // OpenCL __kernel functions get kernel metadata
5136       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5137       addNVVMMetadata(F, "kernel", 1);
5138       // And kernel functions are not subject to inlining
5139       F->addFnAttr(llvm::Attribute::NoInline);
5140     }
5141   }
5142 
5143   // Perform special handling in CUDA mode.
5144   if (M.getLangOpts().CUDA) {
5145     // CUDA __global__ functions get a kernel metadata entry.  Since
5146     // __global__ functions cannot be called from the device, we do not
5147     // need to set the noinline attribute.
5148     if (FD->hasAttr<CUDAGlobalAttr>()) {
5149       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5150       addNVVMMetadata(F, "kernel", 1);
5151     }
5152     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5153       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5154       llvm::APSInt MaxThreads(32);
5155       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5156       if (MaxThreads > 0)
5157         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5158 
5159       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5160       // not specified in __launch_bounds__ or if the user specified a 0 value,
5161       // we don't have to add a PTX directive.
5162       if (Attr->getMinBlocks()) {
5163         llvm::APSInt MinBlocks(32);
5164         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5165         if (MinBlocks > 0)
5166           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5167           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5168       }
5169     }
5170   }
5171 }
5172 
5173 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5174                                              int Operand) {
5175   llvm::Module *M = F->getParent();
5176   llvm::LLVMContext &Ctx = M->getContext();
5177 
5178   // Get "nvvm.annotations" metadata node
5179   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5180 
5181   llvm::Metadata *MDVals[] = {
5182       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5183       llvm::ConstantAsMetadata::get(
5184           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5185   // Append metadata to nvvm.annotations
5186   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5187 }
5188 }
5189 
5190 //===----------------------------------------------------------------------===//
5191 // SystemZ ABI Implementation
5192 //===----------------------------------------------------------------------===//
5193 
5194 namespace {
5195 
5196 class SystemZABIInfo : public ABIInfo {
5197   bool HasVector;
5198 
5199 public:
5200   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5201     : ABIInfo(CGT), HasVector(HV) {}
5202 
5203   bool isPromotableIntegerType(QualType Ty) const;
5204   bool isCompoundType(QualType Ty) const;
5205   bool isVectorArgumentType(QualType Ty) const;
5206   bool isFPArgumentType(QualType Ty) const;
5207   QualType GetSingleElementType(QualType Ty) const;
5208 
5209   ABIArgInfo classifyReturnType(QualType RetTy) const;
5210   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5211 
5212   void computeInfo(CGFunctionInfo &FI) const override {
5213     if (!getCXXABI().classifyReturnType(FI))
5214       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5215     for (auto &I : FI.arguments())
5216       I.info = classifyArgumentType(I.type);
5217   }
5218 
5219   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5220                          CodeGenFunction &CGF) const override;
5221 };
5222 
5223 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5224 public:
5225   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5226     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5227 };
5228 
5229 }
5230 
5231 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5232   // Treat an enum type as its underlying type.
5233   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5234     Ty = EnumTy->getDecl()->getIntegerType();
5235 
5236   // Promotable integer types are required to be promoted by the ABI.
5237   if (Ty->isPromotableIntegerType())
5238     return true;
5239 
5240   // 32-bit values must also be promoted.
5241   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5242     switch (BT->getKind()) {
5243     case BuiltinType::Int:
5244     case BuiltinType::UInt:
5245       return true;
5246     default:
5247       return false;
5248     }
5249   return false;
5250 }
5251 
5252 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5253   return (Ty->isAnyComplexType() ||
5254           Ty->isVectorType() ||
5255           isAggregateTypeForABI(Ty));
5256 }
5257 
5258 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5259   return (HasVector &&
5260           Ty->isVectorType() &&
5261           getContext().getTypeSize(Ty) <= 128);
5262 }
5263 
5264 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5265   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5266     switch (BT->getKind()) {
5267     case BuiltinType::Float:
5268     case BuiltinType::Double:
5269       return true;
5270     default:
5271       return false;
5272     }
5273 
5274   return false;
5275 }
5276 
5277 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5278   if (const RecordType *RT = Ty->getAsStructureType()) {
5279     const RecordDecl *RD = RT->getDecl();
5280     QualType Found;
5281 
5282     // If this is a C++ record, check the bases first.
5283     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5284       for (const auto &I : CXXRD->bases()) {
5285         QualType Base = I.getType();
5286 
5287         // Empty bases don't affect things either way.
5288         if (isEmptyRecord(getContext(), Base, true))
5289           continue;
5290 
5291         if (!Found.isNull())
5292           return Ty;
5293         Found = GetSingleElementType(Base);
5294       }
5295 
5296     // Check the fields.
5297     for (const auto *FD : RD->fields()) {
5298       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5299       // Unlike isSingleElementStruct(), empty structure and array fields
5300       // do count.  So do anonymous bitfields that aren't zero-sized.
5301       if (getContext().getLangOpts().CPlusPlus &&
5302           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5303         continue;
5304 
5305       // Unlike isSingleElementStruct(), arrays do not count.
5306       // Nested structures still do though.
5307       if (!Found.isNull())
5308         return Ty;
5309       Found = GetSingleElementType(FD->getType());
5310     }
5311 
5312     // Unlike isSingleElementStruct(), trailing padding is allowed.
5313     // An 8-byte aligned struct s { float f; } is passed as a double.
5314     if (!Found.isNull())
5315       return Found;
5316   }
5317 
5318   return Ty;
5319 }
5320 
5321 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5322                                        CodeGenFunction &CGF) const {
5323   // Assume that va_list type is correct; should be pointer to LLVM type:
5324   // struct {
5325   //   i64 __gpr;
5326   //   i64 __fpr;
5327   //   i8 *__overflow_arg_area;
5328   //   i8 *__reg_save_area;
5329   // };
5330 
5331   // Every non-vector argument occupies 8 bytes and is passed by preference
5332   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5333   // always passed on the stack.
5334   Ty = CGF.getContext().getCanonicalType(Ty);
5335   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5336   llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
5337   ABIArgInfo AI = classifyArgumentType(Ty);
5338   bool IsIndirect = AI.isIndirect();
5339   bool InFPRs = false;
5340   bool IsVector = false;
5341   unsigned UnpaddedBitSize;
5342   if (IsIndirect) {
5343     APTy = llvm::PointerType::getUnqual(APTy);
5344     UnpaddedBitSize = 64;
5345   } else {
5346     if (AI.getCoerceToType())
5347       ArgTy = AI.getCoerceToType();
5348     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5349     IsVector = ArgTy->isVectorTy();
5350     UnpaddedBitSize = getContext().getTypeSize(Ty);
5351   }
5352   unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64;
5353   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5354 
5355   unsigned PaddedSize = PaddedBitSize / 8;
5356   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5357 
5358   llvm::Type *IndexTy = CGF.Int64Ty;
5359   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5360 
5361   if (IsVector) {
5362     // Work out the address of a vector argument on the stack.
5363     // Vector arguments are always passed in the high bits of a
5364     // single (8 byte) or double (16 byte) stack slot.
5365     llvm::Value *OverflowArgAreaPtr =
5366       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2,
5367                                   "overflow_arg_area_ptr");
5368     llvm::Value *OverflowArgArea =
5369       CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5370     llvm::Value *MemAddr =
5371       CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr");
5372 
5373     // Update overflow_arg_area_ptr pointer
5374     llvm::Value *NewOverflowArgArea =
5375       CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5376     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5377 
5378     return MemAddr;
5379   }
5380 
5381   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5382   if (InFPRs) {
5383     MaxRegs = 4; // Maximum of 4 FPR arguments
5384     RegCountField = 1; // __fpr
5385     RegSaveIndex = 16; // save offset for f0
5386     RegPadding = 0; // floats are passed in the high bits of an FPR
5387   } else {
5388     MaxRegs = 5; // Maximum of 5 GPR arguments
5389     RegCountField = 0; // __gpr
5390     RegSaveIndex = 2; // save offset for r2
5391     RegPadding = Padding; // values are passed in the low bits of a GPR
5392   }
5393 
5394   llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
5395       nullptr, VAListAddr, RegCountField, "reg_count_ptr");
5396   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5397   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5398   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5399                                                  "fits_in_regs");
5400 
5401   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5402   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5403   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5404   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5405 
5406   // Emit code to load the value if it was passed in registers.
5407   CGF.EmitBlock(InRegBlock);
5408 
5409   // Work out the address of an argument register.
5410   llvm::Value *ScaledRegCount =
5411     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5412   llvm::Value *RegBase =
5413     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5414   llvm::Value *RegOffset =
5415     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5416   llvm::Value *RegSaveAreaPtr =
5417       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
5418   llvm::Value *RegSaveArea =
5419     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5420   llvm::Value *RawRegAddr =
5421     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5422   llvm::Value *RegAddr =
5423     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5424 
5425   // Update the register count
5426   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5427   llvm::Value *NewRegCount =
5428     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5429   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5430   CGF.EmitBranch(ContBlock);
5431 
5432   // Emit code to load the value if it was passed in memory.
5433   CGF.EmitBlock(InMemBlock);
5434 
5435   // Work out the address of a stack argument.
5436   llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5437       nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
5438   llvm::Value *OverflowArgArea =
5439     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5440   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5441   llvm::Value *RawMemAddr =
5442     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5443   llvm::Value *MemAddr =
5444     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5445 
5446   // Update overflow_arg_area_ptr pointer
5447   llvm::Value *NewOverflowArgArea =
5448     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5449   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5450   CGF.EmitBranch(ContBlock);
5451 
5452   // Return the appropriate result.
5453   CGF.EmitBlock(ContBlock);
5454   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5455   ResAddr->addIncoming(RegAddr, InRegBlock);
5456   ResAddr->addIncoming(MemAddr, InMemBlock);
5457 
5458   if (IsIndirect)
5459     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5460 
5461   return ResAddr;
5462 }
5463 
5464 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5465   if (RetTy->isVoidType())
5466     return ABIArgInfo::getIgnore();
5467   if (isVectorArgumentType(RetTy))
5468     return ABIArgInfo::getDirect();
5469   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5470     return ABIArgInfo::getIndirect(0);
5471   return (isPromotableIntegerType(RetTy) ?
5472           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5473 }
5474 
5475 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5476   // Handle the generic C++ ABI.
5477   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5478     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5479 
5480   // Integers and enums are extended to full register width.
5481   if (isPromotableIntegerType(Ty))
5482     return ABIArgInfo::getExtend();
5483 
5484   // Handle vector types and vector-like structure types.  Note that
5485   // as opposed to float-like structure types, we do not allow any
5486   // padding for vector-like structures, so verify the sizes match.
5487   uint64_t Size = getContext().getTypeSize(Ty);
5488   QualType SingleElementTy = GetSingleElementType(Ty);
5489   if (isVectorArgumentType(SingleElementTy) &&
5490       getContext().getTypeSize(SingleElementTy) == Size)
5491     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5492 
5493   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5494   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5495     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5496 
5497   // Handle small structures.
5498   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5499     // Structures with flexible arrays have variable length, so really
5500     // fail the size test above.
5501     const RecordDecl *RD = RT->getDecl();
5502     if (RD->hasFlexibleArrayMember())
5503       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5504 
5505     // The structure is passed as an unextended integer, a float, or a double.
5506     llvm::Type *PassTy;
5507     if (isFPArgumentType(SingleElementTy)) {
5508       assert(Size == 32 || Size == 64);
5509       if (Size == 32)
5510         PassTy = llvm::Type::getFloatTy(getVMContext());
5511       else
5512         PassTy = llvm::Type::getDoubleTy(getVMContext());
5513     } else
5514       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5515     return ABIArgInfo::getDirect(PassTy);
5516   }
5517 
5518   // Non-structure compounds are passed indirectly.
5519   if (isCompoundType(Ty))
5520     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5521 
5522   return ABIArgInfo::getDirect(nullptr);
5523 }
5524 
5525 //===----------------------------------------------------------------------===//
5526 // MSP430 ABI Implementation
5527 //===----------------------------------------------------------------------===//
5528 
5529 namespace {
5530 
5531 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5532 public:
5533   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5534     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5535   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5536                            CodeGen::CodeGenModule &M) const override;
5537 };
5538 
5539 }
5540 
5541 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5542                                                   llvm::GlobalValue *GV,
5543                                              CodeGen::CodeGenModule &M) const {
5544   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5545     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5546       // Handle 'interrupt' attribute:
5547       llvm::Function *F = cast<llvm::Function>(GV);
5548 
5549       // Step 1: Set ISR calling convention.
5550       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5551 
5552       // Step 2: Add attributes goodness.
5553       F->addFnAttr(llvm::Attribute::NoInline);
5554 
5555       // Step 3: Emit ISR vector alias.
5556       unsigned Num = attr->getNumber() / 2;
5557       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5558                                 "__isr_" + Twine(Num), F);
5559     }
5560   }
5561 }
5562 
5563 //===----------------------------------------------------------------------===//
5564 // MIPS ABI Implementation.  This works for both little-endian and
5565 // big-endian variants.
5566 //===----------------------------------------------------------------------===//
5567 
5568 namespace {
5569 class MipsABIInfo : public ABIInfo {
5570   bool IsO32;
5571   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5572   void CoerceToIntArgs(uint64_t TySize,
5573                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5574   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5575   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5576   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5577 public:
5578   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5579     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5580     StackAlignInBytes(IsO32 ? 8 : 16) {}
5581 
5582   ABIArgInfo classifyReturnType(QualType RetTy) const;
5583   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5584   void computeInfo(CGFunctionInfo &FI) const override;
5585   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5586                          CodeGenFunction &CGF) const override;
5587   bool shouldSignExtUnsignedType(QualType Ty) const override;
5588 };
5589 
5590 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5591   unsigned SizeOfUnwindException;
5592 public:
5593   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5594     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5595       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5596 
5597   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5598     return 29;
5599   }
5600 
5601   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5602                            CodeGen::CodeGenModule &CGM) const override {
5603     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5604     if (!FD) return;
5605     llvm::Function *Fn = cast<llvm::Function>(GV);
5606     if (FD->hasAttr<Mips16Attr>()) {
5607       Fn->addFnAttr("mips16");
5608     }
5609     else if (FD->hasAttr<NoMips16Attr>()) {
5610       Fn->addFnAttr("nomips16");
5611     }
5612   }
5613 
5614   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5615                                llvm::Value *Address) const override;
5616 
5617   unsigned getSizeOfUnwindException() const override {
5618     return SizeOfUnwindException;
5619   }
5620 };
5621 }
5622 
5623 void MipsABIInfo::CoerceToIntArgs(
5624     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5625   llvm::IntegerType *IntTy =
5626     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5627 
5628   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5629   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5630     ArgList.push_back(IntTy);
5631 
5632   // If necessary, add one more integer type to ArgList.
5633   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5634 
5635   if (R)
5636     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5637 }
5638 
5639 // In N32/64, an aligned double precision floating point field is passed in
5640 // a register.
5641 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5642   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5643 
5644   if (IsO32) {
5645     CoerceToIntArgs(TySize, ArgList);
5646     return llvm::StructType::get(getVMContext(), ArgList);
5647   }
5648 
5649   if (Ty->isComplexType())
5650     return CGT.ConvertType(Ty);
5651 
5652   const RecordType *RT = Ty->getAs<RecordType>();
5653 
5654   // Unions/vectors are passed in integer registers.
5655   if (!RT || !RT->isStructureOrClassType()) {
5656     CoerceToIntArgs(TySize, ArgList);
5657     return llvm::StructType::get(getVMContext(), ArgList);
5658   }
5659 
5660   const RecordDecl *RD = RT->getDecl();
5661   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5662   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5663 
5664   uint64_t LastOffset = 0;
5665   unsigned idx = 0;
5666   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5667 
5668   // Iterate over fields in the struct/class and check if there are any aligned
5669   // double fields.
5670   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5671        i != e; ++i, ++idx) {
5672     const QualType Ty = i->getType();
5673     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5674 
5675     if (!BT || BT->getKind() != BuiltinType::Double)
5676       continue;
5677 
5678     uint64_t Offset = Layout.getFieldOffset(idx);
5679     if (Offset % 64) // Ignore doubles that are not aligned.
5680       continue;
5681 
5682     // Add ((Offset - LastOffset) / 64) args of type i64.
5683     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5684       ArgList.push_back(I64);
5685 
5686     // Add double type.
5687     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5688     LastOffset = Offset + 64;
5689   }
5690 
5691   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5692   ArgList.append(IntArgList.begin(), IntArgList.end());
5693 
5694   return llvm::StructType::get(getVMContext(), ArgList);
5695 }
5696 
5697 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5698                                         uint64_t Offset) const {
5699   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5700     return nullptr;
5701 
5702   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5703 }
5704 
5705 ABIArgInfo
5706 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5707   Ty = useFirstFieldIfTransparentUnion(Ty);
5708 
5709   uint64_t OrigOffset = Offset;
5710   uint64_t TySize = getContext().getTypeSize(Ty);
5711   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5712 
5713   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5714                    (uint64_t)StackAlignInBytes);
5715   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5716   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5717 
5718   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5719     // Ignore empty aggregates.
5720     if (TySize == 0)
5721       return ABIArgInfo::getIgnore();
5722 
5723     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5724       Offset = OrigOffset + MinABIStackAlignInBytes;
5725       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5726     }
5727 
5728     // If we have reached here, aggregates are passed directly by coercing to
5729     // another structure type. Padding is inserted if the offset of the
5730     // aggregate is unaligned.
5731     ABIArgInfo ArgInfo =
5732         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5733                               getPaddingType(OrigOffset, CurrOffset));
5734     ArgInfo.setInReg(true);
5735     return ArgInfo;
5736   }
5737 
5738   // Treat an enum type as its underlying type.
5739   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5740     Ty = EnumTy->getDecl()->getIntegerType();
5741 
5742   // All integral types are promoted to the GPR width.
5743   if (Ty->isIntegralOrEnumerationType())
5744     return ABIArgInfo::getExtend();
5745 
5746   return ABIArgInfo::getDirect(
5747       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5748 }
5749 
5750 llvm::Type*
5751 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5752   const RecordType *RT = RetTy->getAs<RecordType>();
5753   SmallVector<llvm::Type*, 8> RTList;
5754 
5755   if (RT && RT->isStructureOrClassType()) {
5756     const RecordDecl *RD = RT->getDecl();
5757     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5758     unsigned FieldCnt = Layout.getFieldCount();
5759 
5760     // N32/64 returns struct/classes in floating point registers if the
5761     // following conditions are met:
5762     // 1. The size of the struct/class is no larger than 128-bit.
5763     // 2. The struct/class has one or two fields all of which are floating
5764     //    point types.
5765     // 3. The offset of the first field is zero (this follows what gcc does).
5766     //
5767     // Any other composite results are returned in integer registers.
5768     //
5769     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5770       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5771       for (; b != e; ++b) {
5772         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5773 
5774         if (!BT || !BT->isFloatingPoint())
5775           break;
5776 
5777         RTList.push_back(CGT.ConvertType(b->getType()));
5778       }
5779 
5780       if (b == e)
5781         return llvm::StructType::get(getVMContext(), RTList,
5782                                      RD->hasAttr<PackedAttr>());
5783 
5784       RTList.clear();
5785     }
5786   }
5787 
5788   CoerceToIntArgs(Size, RTList);
5789   return llvm::StructType::get(getVMContext(), RTList);
5790 }
5791 
5792 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5793   uint64_t Size = getContext().getTypeSize(RetTy);
5794 
5795   if (RetTy->isVoidType())
5796     return ABIArgInfo::getIgnore();
5797 
5798   // O32 doesn't treat zero-sized structs differently from other structs.
5799   // However, N32/N64 ignores zero sized return values.
5800   if (!IsO32 && Size == 0)
5801     return ABIArgInfo::getIgnore();
5802 
5803   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5804     if (Size <= 128) {
5805       if (RetTy->isAnyComplexType())
5806         return ABIArgInfo::getDirect();
5807 
5808       // O32 returns integer vectors in registers and N32/N64 returns all small
5809       // aggregates in registers.
5810       if (!IsO32 ||
5811           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5812         ABIArgInfo ArgInfo =
5813             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5814         ArgInfo.setInReg(true);
5815         return ArgInfo;
5816       }
5817     }
5818 
5819     return ABIArgInfo::getIndirect(0);
5820   }
5821 
5822   // Treat an enum type as its underlying type.
5823   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5824     RetTy = EnumTy->getDecl()->getIntegerType();
5825 
5826   return (RetTy->isPromotableIntegerType() ?
5827           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5828 }
5829 
5830 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5831   ABIArgInfo &RetInfo = FI.getReturnInfo();
5832   if (!getCXXABI().classifyReturnType(FI))
5833     RetInfo = classifyReturnType(FI.getReturnType());
5834 
5835   // Check if a pointer to an aggregate is passed as a hidden argument.
5836   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5837 
5838   for (auto &I : FI.arguments())
5839     I.info = classifyArgumentType(I.type, Offset);
5840 }
5841 
5842 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5843                                     CodeGenFunction &CGF) const {
5844   llvm::Type *BP = CGF.Int8PtrTy;
5845   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5846 
5847   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5848   // Pointers are also promoted in the same way but this only matters for N32.
5849   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5850   unsigned PtrWidth = getTarget().getPointerWidth(0);
5851   if ((Ty->isIntegerType() &&
5852           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5853       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5854     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5855                                                 Ty->isSignedIntegerType());
5856   }
5857 
5858   CGBuilderTy &Builder = CGF.Builder;
5859   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5860   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5861   int64_t TypeAlign =
5862       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5863   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5864   llvm::Value *AddrTyped;
5865   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5866 
5867   if (TypeAlign > MinABIStackAlignInBytes) {
5868     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5869     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5870     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5871     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5872     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5873     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5874   }
5875   else
5876     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5877 
5878   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5879   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5880   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5881   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5882   llvm::Value *NextAddr =
5883     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5884                       "ap.next");
5885   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5886 
5887   return AddrTyped;
5888 }
5889 
5890 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
5891   int TySize = getContext().getTypeSize(Ty);
5892 
5893   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
5894   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
5895     return true;
5896 
5897   return false;
5898 }
5899 
5900 bool
5901 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5902                                                llvm::Value *Address) const {
5903   // This information comes from gcc's implementation, which seems to
5904   // as canonical as it gets.
5905 
5906   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5907   // are aliased to pairs of single-precision FP registers.
5908   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5909 
5910   // 0-31 are the general purpose registers, $0 - $31.
5911   // 32-63 are the floating-point registers, $f0 - $f31.
5912   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5913   // 66 is the (notional, I think) register for signal-handler return.
5914   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5915 
5916   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5917   // They are one bit wide and ignored here.
5918 
5919   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5920   // (coprocessor 1 is the FP unit)
5921   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5922   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5923   // 176-181 are the DSP accumulator registers.
5924   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5925   return false;
5926 }
5927 
5928 //===----------------------------------------------------------------------===//
5929 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5930 // Currently subclassed only to implement custom OpenCL C function attribute
5931 // handling.
5932 //===----------------------------------------------------------------------===//
5933 
5934 namespace {
5935 
5936 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5937 public:
5938   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5939     : DefaultTargetCodeGenInfo(CGT) {}
5940 
5941   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5942                            CodeGen::CodeGenModule &M) const override;
5943 };
5944 
5945 void TCETargetCodeGenInfo::setTargetAttributes(
5946     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
5947   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5948   if (!FD) return;
5949 
5950   llvm::Function *F = cast<llvm::Function>(GV);
5951 
5952   if (M.getLangOpts().OpenCL) {
5953     if (FD->hasAttr<OpenCLKernelAttr>()) {
5954       // OpenCL C Kernel functions are not subject to inlining
5955       F->addFnAttr(llvm::Attribute::NoInline);
5956       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5957       if (Attr) {
5958         // Convert the reqd_work_group_size() attributes to metadata.
5959         llvm::LLVMContext &Context = F->getContext();
5960         llvm::NamedMDNode *OpenCLMetadata =
5961             M.getModule().getOrInsertNamedMetadata(
5962                 "opencl.kernel_wg_size_info");
5963 
5964         SmallVector<llvm::Metadata *, 5> Operands;
5965         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5966 
5967         Operands.push_back(
5968             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5969                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5970         Operands.push_back(
5971             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5972                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5973         Operands.push_back(
5974             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5975                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5976 
5977         // Add a boolean constant operand for "required" (true) or "hint"
5978         // (false) for implementing the work_group_size_hint attr later.
5979         // Currently always true as the hint is not yet implemented.
5980         Operands.push_back(
5981             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5982         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5983       }
5984     }
5985   }
5986 }
5987 
5988 }
5989 
5990 //===----------------------------------------------------------------------===//
5991 // Hexagon ABI Implementation
5992 //===----------------------------------------------------------------------===//
5993 
5994 namespace {
5995 
5996 class HexagonABIInfo : public ABIInfo {
5997 
5998 
5999 public:
6000   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6001 
6002 private:
6003 
6004   ABIArgInfo classifyReturnType(QualType RetTy) const;
6005   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6006 
6007   void computeInfo(CGFunctionInfo &FI) const override;
6008 
6009   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6010                          CodeGenFunction &CGF) const override;
6011 };
6012 
6013 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6014 public:
6015   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6016     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6017 
6018   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6019     return 29;
6020   }
6021 };
6022 
6023 }
6024 
6025 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6026   if (!getCXXABI().classifyReturnType(FI))
6027     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6028   for (auto &I : FI.arguments())
6029     I.info = classifyArgumentType(I.type);
6030 }
6031 
6032 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6033   if (!isAggregateTypeForABI(Ty)) {
6034     // Treat an enum type as its underlying type.
6035     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6036       Ty = EnumTy->getDecl()->getIntegerType();
6037 
6038     return (Ty->isPromotableIntegerType() ?
6039             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6040   }
6041 
6042   // Ignore empty records.
6043   if (isEmptyRecord(getContext(), Ty, true))
6044     return ABIArgInfo::getIgnore();
6045 
6046   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6047     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6048 
6049   uint64_t Size = getContext().getTypeSize(Ty);
6050   if (Size > 64)
6051     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6052     // Pass in the smallest viable integer type.
6053   else if (Size > 32)
6054       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6055   else if (Size > 16)
6056       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6057   else if (Size > 8)
6058       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6059   else
6060       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6061 }
6062 
6063 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6064   if (RetTy->isVoidType())
6065     return ABIArgInfo::getIgnore();
6066 
6067   // Large vector types should be returned via memory.
6068   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6069     return ABIArgInfo::getIndirect(0);
6070 
6071   if (!isAggregateTypeForABI(RetTy)) {
6072     // Treat an enum type as its underlying type.
6073     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6074       RetTy = EnumTy->getDecl()->getIntegerType();
6075 
6076     return (RetTy->isPromotableIntegerType() ?
6077             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6078   }
6079 
6080   if (isEmptyRecord(getContext(), RetTy, true))
6081     return ABIArgInfo::getIgnore();
6082 
6083   // Aggregates <= 8 bytes are returned in r0; other aggregates
6084   // are returned indirectly.
6085   uint64_t Size = getContext().getTypeSize(RetTy);
6086   if (Size <= 64) {
6087     // Return in the smallest viable integer type.
6088     if (Size <= 8)
6089       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6090     if (Size <= 16)
6091       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6092     if (Size <= 32)
6093       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6094     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6095   }
6096 
6097   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6098 }
6099 
6100 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6101                                        CodeGenFunction &CGF) const {
6102   // FIXME: Need to handle alignment
6103   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6104 
6105   CGBuilderTy &Builder = CGF.Builder;
6106   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6107                                                        "ap");
6108   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6109   llvm::Type *PTy =
6110     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6111   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6112 
6113   uint64_t Offset =
6114     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6115   llvm::Value *NextAddr =
6116     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6117                       "ap.next");
6118   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6119 
6120   return AddrTyped;
6121 }
6122 
6123 //===----------------------------------------------------------------------===//
6124 // AMDGPU ABI Implementation
6125 //===----------------------------------------------------------------------===//
6126 
6127 namespace {
6128 
6129 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6130 public:
6131   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6132     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6133   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6134                            CodeGen::CodeGenModule &M) const override;
6135 };
6136 
6137 }
6138 
6139 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6140   const Decl *D,
6141   llvm::GlobalValue *GV,
6142   CodeGen::CodeGenModule &M) const {
6143   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6144   if (!FD)
6145     return;
6146 
6147   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6148     llvm::Function *F = cast<llvm::Function>(GV);
6149     uint32_t NumVGPR = Attr->getNumVGPR();
6150     if (NumVGPR != 0)
6151       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6152   }
6153 
6154   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6155     llvm::Function *F = cast<llvm::Function>(GV);
6156     unsigned NumSGPR = Attr->getNumSGPR();
6157     if (NumSGPR != 0)
6158       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6159   }
6160 }
6161 
6162 
6163 //===----------------------------------------------------------------------===//
6164 // SPARC v9 ABI Implementation.
6165 // Based on the SPARC Compliance Definition version 2.4.1.
6166 //
6167 // Function arguments a mapped to a nominal "parameter array" and promoted to
6168 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6169 // the array, structs larger than 16 bytes are passed indirectly.
6170 //
6171 // One case requires special care:
6172 //
6173 //   struct mixed {
6174 //     int i;
6175 //     float f;
6176 //   };
6177 //
6178 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6179 // parameter array, but the int is passed in an integer register, and the float
6180 // is passed in a floating point register. This is represented as two arguments
6181 // with the LLVM IR inreg attribute:
6182 //
6183 //   declare void f(i32 inreg %i, float inreg %f)
6184 //
6185 // The code generator will only allocate 4 bytes from the parameter array for
6186 // the inreg arguments. All other arguments are allocated a multiple of 8
6187 // bytes.
6188 //
6189 namespace {
6190 class SparcV9ABIInfo : public ABIInfo {
6191 public:
6192   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6193 
6194 private:
6195   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6196   void computeInfo(CGFunctionInfo &FI) const override;
6197   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6198                          CodeGenFunction &CGF) const override;
6199 
6200   // Coercion type builder for structs passed in registers. The coercion type
6201   // serves two purposes:
6202   //
6203   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6204   //    in registers.
6205   // 2. Expose aligned floating point elements as first-level elements, so the
6206   //    code generator knows to pass them in floating point registers.
6207   //
6208   // We also compute the InReg flag which indicates that the struct contains
6209   // aligned 32-bit floats.
6210   //
6211   struct CoerceBuilder {
6212     llvm::LLVMContext &Context;
6213     const llvm::DataLayout &DL;
6214     SmallVector<llvm::Type*, 8> Elems;
6215     uint64_t Size;
6216     bool InReg;
6217 
6218     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6219       : Context(c), DL(dl), Size(0), InReg(false) {}
6220 
6221     // Pad Elems with integers until Size is ToSize.
6222     void pad(uint64_t ToSize) {
6223       assert(ToSize >= Size && "Cannot remove elements");
6224       if (ToSize == Size)
6225         return;
6226 
6227       // Finish the current 64-bit word.
6228       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6229       if (Aligned > Size && Aligned <= ToSize) {
6230         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6231         Size = Aligned;
6232       }
6233 
6234       // Add whole 64-bit words.
6235       while (Size + 64 <= ToSize) {
6236         Elems.push_back(llvm::Type::getInt64Ty(Context));
6237         Size += 64;
6238       }
6239 
6240       // Final in-word padding.
6241       if (Size < ToSize) {
6242         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6243         Size = ToSize;
6244       }
6245     }
6246 
6247     // Add a floating point element at Offset.
6248     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6249       // Unaligned floats are treated as integers.
6250       if (Offset % Bits)
6251         return;
6252       // The InReg flag is only required if there are any floats < 64 bits.
6253       if (Bits < 64)
6254         InReg = true;
6255       pad(Offset);
6256       Elems.push_back(Ty);
6257       Size = Offset + Bits;
6258     }
6259 
6260     // Add a struct type to the coercion type, starting at Offset (in bits).
6261     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6262       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6263       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6264         llvm::Type *ElemTy = StrTy->getElementType(i);
6265         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6266         switch (ElemTy->getTypeID()) {
6267         case llvm::Type::StructTyID:
6268           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6269           break;
6270         case llvm::Type::FloatTyID:
6271           addFloat(ElemOffset, ElemTy, 32);
6272           break;
6273         case llvm::Type::DoubleTyID:
6274           addFloat(ElemOffset, ElemTy, 64);
6275           break;
6276         case llvm::Type::FP128TyID:
6277           addFloat(ElemOffset, ElemTy, 128);
6278           break;
6279         case llvm::Type::PointerTyID:
6280           if (ElemOffset % 64 == 0) {
6281             pad(ElemOffset);
6282             Elems.push_back(ElemTy);
6283             Size += 64;
6284           }
6285           break;
6286         default:
6287           break;
6288         }
6289       }
6290     }
6291 
6292     // Check if Ty is a usable substitute for the coercion type.
6293     bool isUsableType(llvm::StructType *Ty) const {
6294       return llvm::makeArrayRef(Elems) == Ty->elements();
6295     }
6296 
6297     // Get the coercion type as a literal struct type.
6298     llvm::Type *getType() const {
6299       if (Elems.size() == 1)
6300         return Elems.front();
6301       else
6302         return llvm::StructType::get(Context, Elems);
6303     }
6304   };
6305 };
6306 } // end anonymous namespace
6307 
6308 ABIArgInfo
6309 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6310   if (Ty->isVoidType())
6311     return ABIArgInfo::getIgnore();
6312 
6313   uint64_t Size = getContext().getTypeSize(Ty);
6314 
6315   // Anything too big to fit in registers is passed with an explicit indirect
6316   // pointer / sret pointer.
6317   if (Size > SizeLimit)
6318     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6319 
6320   // Treat an enum type as its underlying type.
6321   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6322     Ty = EnumTy->getDecl()->getIntegerType();
6323 
6324   // Integer types smaller than a register are extended.
6325   if (Size < 64 && Ty->isIntegerType())
6326     return ABIArgInfo::getExtend();
6327 
6328   // Other non-aggregates go in registers.
6329   if (!isAggregateTypeForABI(Ty))
6330     return ABIArgInfo::getDirect();
6331 
6332   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6333   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6334   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6335     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6336 
6337   // This is a small aggregate type that should be passed in registers.
6338   // Build a coercion type from the LLVM struct type.
6339   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6340   if (!StrTy)
6341     return ABIArgInfo::getDirect();
6342 
6343   CoerceBuilder CB(getVMContext(), getDataLayout());
6344   CB.addStruct(0, StrTy);
6345   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6346 
6347   // Try to use the original type for coercion.
6348   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6349 
6350   if (CB.InReg)
6351     return ABIArgInfo::getDirectInReg(CoerceTy);
6352   else
6353     return ABIArgInfo::getDirect(CoerceTy);
6354 }
6355 
6356 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6357                                        CodeGenFunction &CGF) const {
6358   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6359   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6360   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6361     AI.setCoerceToType(ArgTy);
6362 
6363   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6364   CGBuilderTy &Builder = CGF.Builder;
6365   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6366   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6367   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6368   llvm::Value *ArgAddr;
6369   unsigned Stride;
6370 
6371   switch (AI.getKind()) {
6372   case ABIArgInfo::Expand:
6373   case ABIArgInfo::InAlloca:
6374     llvm_unreachable("Unsupported ABI kind for va_arg");
6375 
6376   case ABIArgInfo::Extend:
6377     Stride = 8;
6378     ArgAddr = Builder
6379       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6380                           "extend");
6381     break;
6382 
6383   case ABIArgInfo::Direct:
6384     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6385     ArgAddr = Addr;
6386     break;
6387 
6388   case ABIArgInfo::Indirect:
6389     Stride = 8;
6390     ArgAddr = Builder.CreateBitCast(Addr,
6391                                     llvm::PointerType::getUnqual(ArgPtrTy),
6392                                     "indirect");
6393     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6394     break;
6395 
6396   case ABIArgInfo::Ignore:
6397     return llvm::UndefValue::get(ArgPtrTy);
6398   }
6399 
6400   // Update VAList.
6401   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6402   Builder.CreateStore(Addr, VAListAddrAsBPP);
6403 
6404   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6405 }
6406 
6407 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6408   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6409   for (auto &I : FI.arguments())
6410     I.info = classifyType(I.type, 16 * 8);
6411 }
6412 
6413 namespace {
6414 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6415 public:
6416   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6417     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6418 
6419   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6420     return 14;
6421   }
6422 
6423   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6424                                llvm::Value *Address) const override;
6425 };
6426 } // end anonymous namespace
6427 
6428 bool
6429 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6430                                                 llvm::Value *Address) const {
6431   // This is calculated from the LLVM and GCC tables and verified
6432   // against gcc output.  AFAIK all ABIs use the same encoding.
6433 
6434   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6435 
6436   llvm::IntegerType *i8 = CGF.Int8Ty;
6437   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6438   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6439 
6440   // 0-31: the 8-byte general-purpose registers
6441   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6442 
6443   // 32-63: f0-31, the 4-byte floating-point registers
6444   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6445 
6446   //   Y   = 64
6447   //   PSR = 65
6448   //   WIM = 66
6449   //   TBR = 67
6450   //   PC  = 68
6451   //   NPC = 69
6452   //   FSR = 70
6453   //   CSR = 71
6454   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6455 
6456   // 72-87: d0-15, the 8-byte floating-point registers
6457   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6458 
6459   return false;
6460 }
6461 
6462 
6463 //===----------------------------------------------------------------------===//
6464 // XCore ABI Implementation
6465 //===----------------------------------------------------------------------===//
6466 
6467 namespace {
6468 
6469 /// A SmallStringEnc instance is used to build up the TypeString by passing
6470 /// it by reference between functions that append to it.
6471 typedef llvm::SmallString<128> SmallStringEnc;
6472 
6473 /// TypeStringCache caches the meta encodings of Types.
6474 ///
6475 /// The reason for caching TypeStrings is two fold:
6476 ///   1. To cache a type's encoding for later uses;
6477 ///   2. As a means to break recursive member type inclusion.
6478 ///
6479 /// A cache Entry can have a Status of:
6480 ///   NonRecursive:   The type encoding is not recursive;
6481 ///   Recursive:      The type encoding is recursive;
6482 ///   Incomplete:     An incomplete TypeString;
6483 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6484 ///                   Recursive type encoding.
6485 ///
6486 /// A NonRecursive entry will have all of its sub-members expanded as fully
6487 /// as possible. Whilst it may contain types which are recursive, the type
6488 /// itself is not recursive and thus its encoding may be safely used whenever
6489 /// the type is encountered.
6490 ///
6491 /// A Recursive entry will have all of its sub-members expanded as fully as
6492 /// possible. The type itself is recursive and it may contain other types which
6493 /// are recursive. The Recursive encoding must not be used during the expansion
6494 /// of a recursive type's recursive branch. For simplicity the code uses
6495 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6496 ///
6497 /// An Incomplete entry is always a RecordType and only encodes its
6498 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6499 /// are placed into the cache during type expansion as a means to identify and
6500 /// handle recursive inclusion of types as sub-members. If there is recursion
6501 /// the entry becomes IncompleteUsed.
6502 ///
6503 /// During the expansion of a RecordType's members:
6504 ///
6505 ///   If the cache contains a NonRecursive encoding for the member type, the
6506 ///   cached encoding is used;
6507 ///
6508 ///   If the cache contains a Recursive encoding for the member type, the
6509 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6510 ///
6511 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6512 ///   cache to break potential recursive inclusion of itself as a sub-member;
6513 ///
6514 ///   Once a member RecordType has been expanded, its temporary incomplete
6515 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6516 ///   it is swapped back in;
6517 ///
6518 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6519 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6520 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6521 ///
6522 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6523 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6524 ///   Else the member is part of a recursive type and thus the recursion has
6525 ///   been exited too soon for the encoding to be correct for the member.
6526 ///
6527 class TypeStringCache {
6528   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6529   struct Entry {
6530     std::string Str;     // The encoded TypeString for the type.
6531     enum Status State;   // Information about the encoding in 'Str'.
6532     std::string Swapped; // A temporary place holder for a Recursive encoding
6533                          // during the expansion of RecordType's members.
6534   };
6535   std::map<const IdentifierInfo *, struct Entry> Map;
6536   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6537   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6538 public:
6539   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6540   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6541   bool removeIncomplete(const IdentifierInfo *ID);
6542   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6543                      bool IsRecursive);
6544   StringRef lookupStr(const IdentifierInfo *ID);
6545 };
6546 
6547 /// TypeString encodings for enum & union fields must be order.
6548 /// FieldEncoding is a helper for this ordering process.
6549 class FieldEncoding {
6550   bool HasName;
6551   std::string Enc;
6552 public:
6553   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6554   StringRef str() {return Enc.c_str();};
6555   bool operator<(const FieldEncoding &rhs) const {
6556     if (HasName != rhs.HasName) return HasName;
6557     return Enc < rhs.Enc;
6558   }
6559 };
6560 
6561 class XCoreABIInfo : public DefaultABIInfo {
6562 public:
6563   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6564   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6565                          CodeGenFunction &CGF) const override;
6566 };
6567 
6568 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6569   mutable TypeStringCache TSC;
6570 public:
6571   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6572     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6573   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6574                     CodeGen::CodeGenModule &M) const override;
6575 };
6576 
6577 } // End anonymous namespace.
6578 
6579 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6580                                      CodeGenFunction &CGF) const {
6581   CGBuilderTy &Builder = CGF.Builder;
6582 
6583   // Get the VAList.
6584   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6585                                                        CGF.Int8PtrPtrTy);
6586   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6587 
6588   // Handle the argument.
6589   ABIArgInfo AI = classifyArgumentType(Ty);
6590   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6591   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6592     AI.setCoerceToType(ArgTy);
6593   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6594   llvm::Value *Val;
6595   uint64_t ArgSize = 0;
6596   switch (AI.getKind()) {
6597   case ABIArgInfo::Expand:
6598   case ABIArgInfo::InAlloca:
6599     llvm_unreachable("Unsupported ABI kind for va_arg");
6600   case ABIArgInfo::Ignore:
6601     Val = llvm::UndefValue::get(ArgPtrTy);
6602     ArgSize = 0;
6603     break;
6604   case ABIArgInfo::Extend:
6605   case ABIArgInfo::Direct:
6606     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6607     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6608     if (ArgSize < 4)
6609       ArgSize = 4;
6610     break;
6611   case ABIArgInfo::Indirect:
6612     llvm::Value *ArgAddr;
6613     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6614     ArgAddr = Builder.CreateLoad(ArgAddr);
6615     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6616     ArgSize = 4;
6617     break;
6618   }
6619 
6620   // Increment the VAList.
6621   if (ArgSize) {
6622     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6623     Builder.CreateStore(APN, VAListAddrAsBPP);
6624   }
6625   return Val;
6626 }
6627 
6628 /// During the expansion of a RecordType, an incomplete TypeString is placed
6629 /// into the cache as a means to identify and break recursion.
6630 /// If there is a Recursive encoding in the cache, it is swapped out and will
6631 /// be reinserted by removeIncomplete().
6632 /// All other types of encoding should have been used rather than arriving here.
6633 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6634                                     std::string StubEnc) {
6635   if (!ID)
6636     return;
6637   Entry &E = Map[ID];
6638   assert( (E.Str.empty() || E.State == Recursive) &&
6639          "Incorrectly use of addIncomplete");
6640   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6641   E.Swapped.swap(E.Str); // swap out the Recursive
6642   E.Str.swap(StubEnc);
6643   E.State = Incomplete;
6644   ++IncompleteCount;
6645 }
6646 
6647 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6648 /// must be removed from the cache.
6649 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6650 /// Returns true if the RecordType was defined recursively.
6651 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6652   if (!ID)
6653     return false;
6654   auto I = Map.find(ID);
6655   assert(I != Map.end() && "Entry not present");
6656   Entry &E = I->second;
6657   assert( (E.State == Incomplete ||
6658            E.State == IncompleteUsed) &&
6659          "Entry must be an incomplete type");
6660   bool IsRecursive = false;
6661   if (E.State == IncompleteUsed) {
6662     // We made use of our Incomplete encoding, thus we are recursive.
6663     IsRecursive = true;
6664     --IncompleteUsedCount;
6665   }
6666   if (E.Swapped.empty())
6667     Map.erase(I);
6668   else {
6669     // Swap the Recursive back.
6670     E.Swapped.swap(E.Str);
6671     E.Swapped.clear();
6672     E.State = Recursive;
6673   }
6674   --IncompleteCount;
6675   return IsRecursive;
6676 }
6677 
6678 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6679 /// Recursive (viz: all sub-members were expanded as fully as possible).
6680 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6681                                     bool IsRecursive) {
6682   if (!ID || IncompleteUsedCount)
6683     return; // No key or it is is an incomplete sub-type so don't add.
6684   Entry &E = Map[ID];
6685   if (IsRecursive && !E.Str.empty()) {
6686     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6687            "This is not the same Recursive entry");
6688     // The parent container was not recursive after all, so we could have used
6689     // this Recursive sub-member entry after all, but we assumed the worse when
6690     // we started viz: IncompleteCount!=0.
6691     return;
6692   }
6693   assert(E.Str.empty() && "Entry already present");
6694   E.Str = Str.str();
6695   E.State = IsRecursive? Recursive : NonRecursive;
6696 }
6697 
6698 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6699 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6700 /// encoding is Recursive, return an empty StringRef.
6701 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6702   if (!ID)
6703     return StringRef();   // We have no key.
6704   auto I = Map.find(ID);
6705   if (I == Map.end())
6706     return StringRef();   // We have no encoding.
6707   Entry &E = I->second;
6708   if (E.State == Recursive && IncompleteCount)
6709     return StringRef();   // We don't use Recursive encodings for member types.
6710 
6711   if (E.State == Incomplete) {
6712     // The incomplete type is being used to break out of recursion.
6713     E.State = IncompleteUsed;
6714     ++IncompleteUsedCount;
6715   }
6716   return E.Str.c_str();
6717 }
6718 
6719 /// The XCore ABI includes a type information section that communicates symbol
6720 /// type information to the linker. The linker uses this information to verify
6721 /// safety/correctness of things such as array bound and pointers et al.
6722 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6723 /// This type information (TypeString) is emitted into meta data for all global
6724 /// symbols: definitions, declarations, functions & variables.
6725 ///
6726 /// The TypeString carries type, qualifier, name, size & value details.
6727 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6728 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6729 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6730 ///
6731 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6732                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6733 
6734 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6735 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6736                                           CodeGen::CodeGenModule &CGM) const {
6737   SmallStringEnc Enc;
6738   if (getTypeString(Enc, D, CGM, TSC)) {
6739     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6740     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6741     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6742     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6743     llvm::NamedMDNode *MD =
6744       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6745     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6746   }
6747 }
6748 
6749 static bool appendType(SmallStringEnc &Enc, QualType QType,
6750                        const CodeGen::CodeGenModule &CGM,
6751                        TypeStringCache &TSC);
6752 
6753 /// Helper function for appendRecordType().
6754 /// Builds a SmallVector containing the encoded field types in declaration
6755 /// order.
6756 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6757                              const RecordDecl *RD,
6758                              const CodeGen::CodeGenModule &CGM,
6759                              TypeStringCache &TSC) {
6760   for (const auto *Field : RD->fields()) {
6761     SmallStringEnc Enc;
6762     Enc += "m(";
6763     Enc += Field->getName();
6764     Enc += "){";
6765     if (Field->isBitField()) {
6766       Enc += "b(";
6767       llvm::raw_svector_ostream OS(Enc);
6768       OS.resync();
6769       OS << Field->getBitWidthValue(CGM.getContext());
6770       OS.flush();
6771       Enc += ':';
6772     }
6773     if (!appendType(Enc, Field->getType(), CGM, TSC))
6774       return false;
6775     if (Field->isBitField())
6776       Enc += ')';
6777     Enc += '}';
6778     FE.emplace_back(!Field->getName().empty(), Enc);
6779   }
6780   return true;
6781 }
6782 
6783 /// Appends structure and union types to Enc and adds encoding to cache.
6784 /// Recursively calls appendType (via extractFieldType) for each field.
6785 /// Union types have their fields ordered according to the ABI.
6786 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6787                              const CodeGen::CodeGenModule &CGM,
6788                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6789   // Append the cached TypeString if we have one.
6790   StringRef TypeString = TSC.lookupStr(ID);
6791   if (!TypeString.empty()) {
6792     Enc += TypeString;
6793     return true;
6794   }
6795 
6796   // Start to emit an incomplete TypeString.
6797   size_t Start = Enc.size();
6798   Enc += (RT->isUnionType()? 'u' : 's');
6799   Enc += '(';
6800   if (ID)
6801     Enc += ID->getName();
6802   Enc += "){";
6803 
6804   // We collect all encoded fields and order as necessary.
6805   bool IsRecursive = false;
6806   const RecordDecl *RD = RT->getDecl()->getDefinition();
6807   if (RD && !RD->field_empty()) {
6808     // An incomplete TypeString stub is placed in the cache for this RecordType
6809     // so that recursive calls to this RecordType will use it whilst building a
6810     // complete TypeString for this RecordType.
6811     SmallVector<FieldEncoding, 16> FE;
6812     std::string StubEnc(Enc.substr(Start).str());
6813     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6814     TSC.addIncomplete(ID, std::move(StubEnc));
6815     if (!extractFieldType(FE, RD, CGM, TSC)) {
6816       (void) TSC.removeIncomplete(ID);
6817       return false;
6818     }
6819     IsRecursive = TSC.removeIncomplete(ID);
6820     // The ABI requires unions to be sorted but not structures.
6821     // See FieldEncoding::operator< for sort algorithm.
6822     if (RT->isUnionType())
6823       std::sort(FE.begin(), FE.end());
6824     // We can now complete the TypeString.
6825     unsigned E = FE.size();
6826     for (unsigned I = 0; I != E; ++I) {
6827       if (I)
6828         Enc += ',';
6829       Enc += FE[I].str();
6830     }
6831   }
6832   Enc += '}';
6833   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6834   return true;
6835 }
6836 
6837 /// Appends enum types to Enc and adds the encoding to the cache.
6838 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6839                            TypeStringCache &TSC,
6840                            const IdentifierInfo *ID) {
6841   // Append the cached TypeString if we have one.
6842   StringRef TypeString = TSC.lookupStr(ID);
6843   if (!TypeString.empty()) {
6844     Enc += TypeString;
6845     return true;
6846   }
6847 
6848   size_t Start = Enc.size();
6849   Enc += "e(";
6850   if (ID)
6851     Enc += ID->getName();
6852   Enc += "){";
6853 
6854   // We collect all encoded enumerations and order them alphanumerically.
6855   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6856     SmallVector<FieldEncoding, 16> FE;
6857     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6858          ++I) {
6859       SmallStringEnc EnumEnc;
6860       EnumEnc += "m(";
6861       EnumEnc += I->getName();
6862       EnumEnc += "){";
6863       I->getInitVal().toString(EnumEnc);
6864       EnumEnc += '}';
6865       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6866     }
6867     std::sort(FE.begin(), FE.end());
6868     unsigned E = FE.size();
6869     for (unsigned I = 0; I != E; ++I) {
6870       if (I)
6871         Enc += ',';
6872       Enc += FE[I].str();
6873     }
6874   }
6875   Enc += '}';
6876   TSC.addIfComplete(ID, Enc.substr(Start), false);
6877   return true;
6878 }
6879 
6880 /// Appends type's qualifier to Enc.
6881 /// This is done prior to appending the type's encoding.
6882 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6883   // Qualifiers are emitted in alphabetical order.
6884   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6885   int Lookup = 0;
6886   if (QT.isConstQualified())
6887     Lookup += 1<<0;
6888   if (QT.isRestrictQualified())
6889     Lookup += 1<<1;
6890   if (QT.isVolatileQualified())
6891     Lookup += 1<<2;
6892   Enc += Table[Lookup];
6893 }
6894 
6895 /// Appends built-in types to Enc.
6896 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6897   const char *EncType;
6898   switch (BT->getKind()) {
6899     case BuiltinType::Void:
6900       EncType = "0";
6901       break;
6902     case BuiltinType::Bool:
6903       EncType = "b";
6904       break;
6905     case BuiltinType::Char_U:
6906       EncType = "uc";
6907       break;
6908     case BuiltinType::UChar:
6909       EncType = "uc";
6910       break;
6911     case BuiltinType::SChar:
6912       EncType = "sc";
6913       break;
6914     case BuiltinType::UShort:
6915       EncType = "us";
6916       break;
6917     case BuiltinType::Short:
6918       EncType = "ss";
6919       break;
6920     case BuiltinType::UInt:
6921       EncType = "ui";
6922       break;
6923     case BuiltinType::Int:
6924       EncType = "si";
6925       break;
6926     case BuiltinType::ULong:
6927       EncType = "ul";
6928       break;
6929     case BuiltinType::Long:
6930       EncType = "sl";
6931       break;
6932     case BuiltinType::ULongLong:
6933       EncType = "ull";
6934       break;
6935     case BuiltinType::LongLong:
6936       EncType = "sll";
6937       break;
6938     case BuiltinType::Float:
6939       EncType = "ft";
6940       break;
6941     case BuiltinType::Double:
6942       EncType = "d";
6943       break;
6944     case BuiltinType::LongDouble:
6945       EncType = "ld";
6946       break;
6947     default:
6948       return false;
6949   }
6950   Enc += EncType;
6951   return true;
6952 }
6953 
6954 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6955 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6956                               const CodeGen::CodeGenModule &CGM,
6957                               TypeStringCache &TSC) {
6958   Enc += "p(";
6959   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6960     return false;
6961   Enc += ')';
6962   return true;
6963 }
6964 
6965 /// Appends array encoding to Enc before calling appendType for the element.
6966 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6967                             const ArrayType *AT,
6968                             const CodeGen::CodeGenModule &CGM,
6969                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6970   if (AT->getSizeModifier() != ArrayType::Normal)
6971     return false;
6972   Enc += "a(";
6973   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6974     CAT->getSize().toStringUnsigned(Enc);
6975   else
6976     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6977   Enc += ':';
6978   // The Qualifiers should be attached to the type rather than the array.
6979   appendQualifier(Enc, QT);
6980   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6981     return false;
6982   Enc += ')';
6983   return true;
6984 }
6985 
6986 /// Appends a function encoding to Enc, calling appendType for the return type
6987 /// and the arguments.
6988 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6989                              const CodeGen::CodeGenModule &CGM,
6990                              TypeStringCache &TSC) {
6991   Enc += "f{";
6992   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6993     return false;
6994   Enc += "}(";
6995   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6996     // N.B. we are only interested in the adjusted param types.
6997     auto I = FPT->param_type_begin();
6998     auto E = FPT->param_type_end();
6999     if (I != E) {
7000       do {
7001         if (!appendType(Enc, *I, CGM, TSC))
7002           return false;
7003         ++I;
7004         if (I != E)
7005           Enc += ',';
7006       } while (I != E);
7007       if (FPT->isVariadic())
7008         Enc += ",va";
7009     } else {
7010       if (FPT->isVariadic())
7011         Enc += "va";
7012       else
7013         Enc += '0';
7014     }
7015   }
7016   Enc += ')';
7017   return true;
7018 }
7019 
7020 /// Handles the type's qualifier before dispatching a call to handle specific
7021 /// type encodings.
7022 static bool appendType(SmallStringEnc &Enc, QualType QType,
7023                        const CodeGen::CodeGenModule &CGM,
7024                        TypeStringCache &TSC) {
7025 
7026   QualType QT = QType.getCanonicalType();
7027 
7028   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7029     // The Qualifiers should be attached to the type rather than the array.
7030     // Thus we don't call appendQualifier() here.
7031     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7032 
7033   appendQualifier(Enc, QT);
7034 
7035   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7036     return appendBuiltinType(Enc, BT);
7037 
7038   if (const PointerType *PT = QT->getAs<PointerType>())
7039     return appendPointerType(Enc, PT, CGM, TSC);
7040 
7041   if (const EnumType *ET = QT->getAs<EnumType>())
7042     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7043 
7044   if (const RecordType *RT = QT->getAsStructureType())
7045     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7046 
7047   if (const RecordType *RT = QT->getAsUnionType())
7048     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7049 
7050   if (const FunctionType *FT = QT->getAs<FunctionType>())
7051     return appendFunctionType(Enc, FT, CGM, TSC);
7052 
7053   return false;
7054 }
7055 
7056 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7057                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7058   if (!D)
7059     return false;
7060 
7061   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7062     if (FD->getLanguageLinkage() != CLanguageLinkage)
7063       return false;
7064     return appendType(Enc, FD->getType(), CGM, TSC);
7065   }
7066 
7067   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7068     if (VD->getLanguageLinkage() != CLanguageLinkage)
7069       return false;
7070     QualType QT = VD->getType().getCanonicalType();
7071     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7072       // Global ArrayTypes are given a size of '*' if the size is unknown.
7073       // The Qualifiers should be attached to the type rather than the array.
7074       // Thus we don't call appendQualifier() here.
7075       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7076     }
7077     return appendType(Enc, QT, CGM, TSC);
7078   }
7079   return false;
7080 }
7081 
7082 
7083 //===----------------------------------------------------------------------===//
7084 // Driver code
7085 //===----------------------------------------------------------------------===//
7086 
7087 const llvm::Triple &CodeGenModule::getTriple() const {
7088   return getTarget().getTriple();
7089 }
7090 
7091 bool CodeGenModule::supportsCOMDAT() const {
7092   return !getTriple().isOSBinFormatMachO();
7093 }
7094 
7095 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7096   if (TheTargetCodeGenInfo)
7097     return *TheTargetCodeGenInfo;
7098 
7099   const llvm::Triple &Triple = getTarget().getTriple();
7100   switch (Triple.getArch()) {
7101   default:
7102     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7103 
7104   case llvm::Triple::le32:
7105     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7106   case llvm::Triple::mips:
7107   case llvm::Triple::mipsel:
7108     if (Triple.getOS() == llvm::Triple::NaCl)
7109       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7110     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7111 
7112   case llvm::Triple::mips64:
7113   case llvm::Triple::mips64el:
7114     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7115 
7116   case llvm::Triple::aarch64:
7117   case llvm::Triple::aarch64_be: {
7118     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7119     if (getTarget().getABI() == "darwinpcs")
7120       Kind = AArch64ABIInfo::DarwinPCS;
7121 
7122     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7123   }
7124 
7125   case llvm::Triple::arm:
7126   case llvm::Triple::armeb:
7127   case llvm::Triple::thumb:
7128   case llvm::Triple::thumbeb:
7129     {
7130       if (Triple.getOS() == llvm::Triple::Win32) {
7131         TheTargetCodeGenInfo =
7132             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7133         return *TheTargetCodeGenInfo;
7134       }
7135 
7136       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7137       if (getTarget().getABI() == "apcs-gnu")
7138         Kind = ARMABIInfo::APCS;
7139       else if (CodeGenOpts.FloatABI == "hard" ||
7140                (CodeGenOpts.FloatABI != "soft" &&
7141                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7142         Kind = ARMABIInfo::AAPCS_VFP;
7143 
7144       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7145     }
7146 
7147   case llvm::Triple::ppc:
7148     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7149   case llvm::Triple::ppc64:
7150     if (Triple.isOSBinFormatELF()) {
7151       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7152       if (getTarget().getABI() == "elfv2")
7153         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7154       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7155 
7156       return *(TheTargetCodeGenInfo =
7157                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7158     } else
7159       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7160   case llvm::Triple::ppc64le: {
7161     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7162     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7163     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7164       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7165     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7166 
7167     return *(TheTargetCodeGenInfo =
7168              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7169   }
7170 
7171   case llvm::Triple::nvptx:
7172   case llvm::Triple::nvptx64:
7173     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7174 
7175   case llvm::Triple::msp430:
7176     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7177 
7178   case llvm::Triple::systemz: {
7179     bool HasVector = getTarget().getABI() == "vector";
7180     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7181                                                                  HasVector));
7182   }
7183 
7184   case llvm::Triple::tce:
7185     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7186 
7187   case llvm::Triple::x86: {
7188     bool IsDarwinVectorABI = Triple.isOSDarwin();
7189     bool IsSmallStructInRegABI =
7190         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7191     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7192 
7193     if (Triple.getOS() == llvm::Triple::Win32) {
7194       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7195                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7196                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7197     } else {
7198       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7199                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7200                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7201     }
7202   }
7203 
7204   case llvm::Triple::x86_64: {
7205     StringRef ABI = getTarget().getABI();
7206     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7207                                ABI == "avx" ? X86AVXABILevel::AVX :
7208                                X86AVXABILevel::None);
7209 
7210     switch (Triple.getOS()) {
7211     case llvm::Triple::Win32:
7212       return *(TheTargetCodeGenInfo =
7213                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7214     case llvm::Triple::PS4:
7215       return *(TheTargetCodeGenInfo =
7216                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7217     default:
7218       return *(TheTargetCodeGenInfo =
7219                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7220     }
7221   }
7222   case llvm::Triple::hexagon:
7223     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7224   case llvm::Triple::r600:
7225     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7226   case llvm::Triple::amdgcn:
7227     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7228   case llvm::Triple::sparcv9:
7229     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7230   case llvm::Triple::xcore:
7231     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7232   }
7233 }
7234