1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 112 return false; 113 } 114 115 void ABIArgInfo::dump() const { 116 raw_ostream &OS = llvm::errs(); 117 OS << "(ABIArgInfo Kind="; 118 switch (TheKind) { 119 case Direct: 120 OS << "Direct Type="; 121 if (llvm::Type *Ty = getCoerceToType()) 122 Ty->print(OS); 123 else 124 OS << "null"; 125 break; 126 case Extend: 127 OS << "Extend"; 128 break; 129 case Ignore: 130 OS << "Ignore"; 131 break; 132 case InAlloca: 133 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 134 break; 135 case Indirect: 136 OS << "Indirect Align=" << getIndirectAlign() 137 << " ByVal=" << getIndirectByVal() 138 << " Realign=" << getIndirectRealign(); 139 break; 140 case Expand: 141 OS << "Expand"; 142 break; 143 } 144 OS << ")\n"; 145 } 146 147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 148 149 // If someone can figure out a general rule for this, that would be great. 150 // It's probably just doomed to be platform-dependent, though. 151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 152 // Verified for: 153 // x86-64 FreeBSD, Linux, Darwin 154 // x86-32 FreeBSD, Linux, Darwin 155 // PowerPC Linux, Darwin 156 // ARM Darwin (*not* EABI) 157 // AArch64 Linux 158 return 32; 159 } 160 161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 162 const FunctionNoProtoType *fnType) const { 163 // The following conventions are known to require this to be false: 164 // x86_stdcall 165 // MIPS 166 // For everything else, we just prefer false unless we opt out. 167 return false; 168 } 169 170 void 171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 172 llvm::SmallString<24> &Opt) const { 173 // This assumes the user is passing a library name like "rt" instead of a 174 // filename like "librt.a/so", and that they don't care whether it's static or 175 // dynamic. 176 Opt = "-l"; 177 Opt += Lib; 178 } 179 180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 181 182 /// isEmptyField - Return true iff a the field is "empty", that is it 183 /// is an unnamed bit-field or an (array of) empty record(s). 184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 185 bool AllowArrays) { 186 if (FD->isUnnamedBitfield()) 187 return true; 188 189 QualType FT = FD->getType(); 190 191 // Constant arrays of empty records count as empty, strip them off. 192 // Constant arrays of zero length always count as empty. 193 if (AllowArrays) 194 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 195 if (AT->getSize() == 0) 196 return true; 197 FT = AT->getElementType(); 198 } 199 200 const RecordType *RT = FT->getAs<RecordType>(); 201 if (!RT) 202 return false; 203 204 // C++ record fields are never empty, at least in the Itanium ABI. 205 // 206 // FIXME: We should use a predicate for whether this behavior is true in the 207 // current ABI. 208 if (isa<CXXRecordDecl>(RT->getDecl())) 209 return false; 210 211 return isEmptyRecord(Context, FT, AllowArrays); 212 } 213 214 /// isEmptyRecord - Return true iff a structure contains only empty 215 /// fields. Note that a structure with a flexible array member is not 216 /// considered empty. 217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 218 const RecordType *RT = T->getAs<RecordType>(); 219 if (!RT) 220 return 0; 221 const RecordDecl *RD = RT->getDecl(); 222 if (RD->hasFlexibleArrayMember()) 223 return false; 224 225 // If this is a C++ record, check the bases first. 226 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 227 for (const auto &I : CXXRD->bases()) 228 if (!isEmptyRecord(Context, I.getType(), true)) 229 return false; 230 231 for (const auto *I : RD->fields()) 232 if (!isEmptyField(Context, I, AllowArrays)) 233 return false; 234 return true; 235 } 236 237 /// isSingleElementStruct - Determine if a structure is a "single 238 /// element struct", i.e. it has exactly one non-empty field or 239 /// exactly one field which is itself a single element 240 /// struct. Structures with flexible array members are never 241 /// considered single element structs. 242 /// 243 /// \return The field declaration for the single non-empty field, if 244 /// it exists. 245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 246 const RecordType *RT = T->getAs<RecordType>(); 247 if (!RT) 248 return nullptr; 249 250 const RecordDecl *RD = RT->getDecl(); 251 if (RD->hasFlexibleArrayMember()) 252 return nullptr; 253 254 const Type *Found = nullptr; 255 256 // If this is a C++ record, check the bases first. 257 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 258 for (const auto &I : CXXRD->bases()) { 259 // Ignore empty records. 260 if (isEmptyRecord(Context, I.getType(), true)) 261 continue; 262 263 // If we already found an element then this isn't a single-element struct. 264 if (Found) 265 return nullptr; 266 267 // If this is non-empty and not a single element struct, the composite 268 // cannot be a single element struct. 269 Found = isSingleElementStruct(I.getType(), Context); 270 if (!Found) 271 return nullptr; 272 } 273 } 274 275 // Check for single element. 276 for (const auto *FD : RD->fields()) { 277 QualType FT = FD->getType(); 278 279 // Ignore empty fields. 280 if (isEmptyField(Context, FD, true)) 281 continue; 282 283 // If we already found an element then this isn't a single-element 284 // struct. 285 if (Found) 286 return nullptr; 287 288 // Treat single element arrays as the element. 289 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 290 if (AT->getSize().getZExtValue() != 1) 291 break; 292 FT = AT->getElementType(); 293 } 294 295 if (!isAggregateTypeForABI(FT)) { 296 Found = FT.getTypePtr(); 297 } else { 298 Found = isSingleElementStruct(FT, Context); 299 if (!Found) 300 return nullptr; 301 } 302 } 303 304 // We don't consider a struct a single-element struct if it has 305 // padding beyond the element type. 306 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 307 return nullptr; 308 309 return Found; 310 } 311 312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 313 // Treat complex types as the element type. 314 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 315 Ty = CTy->getElementType(); 316 317 // Check for a type which we know has a simple scalar argument-passing 318 // convention without any padding. (We're specifically looking for 32 319 // and 64-bit integer and integer-equivalents, float, and double.) 320 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 321 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 322 return false; 323 324 uint64_t Size = Context.getTypeSize(Ty); 325 return Size == 32 || Size == 64; 326 } 327 328 /// canExpandIndirectArgument - Test whether an argument type which is to be 329 /// passed indirectly (on the stack) would have the equivalent layout if it was 330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 331 /// inhibiting optimizations. 332 /// 333 // FIXME: This predicate is missing many cases, currently it just follows 334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 335 // should probably make this smarter, or better yet make the LLVM backend 336 // capable of handling it. 337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 338 // We can only expand structure types. 339 const RecordType *RT = Ty->getAs<RecordType>(); 340 if (!RT) 341 return false; 342 343 // We can only expand (C) structures. 344 // 345 // FIXME: This needs to be generalized to handle classes as well. 346 const RecordDecl *RD = RT->getDecl(); 347 if (!RD->isStruct()) 348 return false; 349 350 // We try to expand CLike CXXRecordDecl. 351 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 352 if (!CXXRD->isCLike()) 353 return false; 354 } 355 356 uint64_t Size = 0; 357 358 for (const auto *FD : RD->fields()) { 359 if (!is32Or64BitBasicType(FD->getType(), Context)) 360 return false; 361 362 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 363 // how to expand them yet, and the predicate for telling if a bitfield still 364 // counts as "basic" is more complicated than what we were doing previously. 365 if (FD->isBitField()) 366 return false; 367 368 Size += Context.getTypeSize(FD->getType()); 369 } 370 371 // Make sure there are not any holes in the struct. 372 if (Size != Context.getTypeSize(Ty)) 373 return false; 374 375 return true; 376 } 377 378 namespace { 379 /// DefaultABIInfo - The default implementation for ABI specific 380 /// details. This implementation provides information which results in 381 /// self-consistent and sensible LLVM IR generation, but does not 382 /// conform to any particular ABI. 383 class DefaultABIInfo : public ABIInfo { 384 public: 385 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 386 387 ABIArgInfo classifyReturnType(QualType RetTy) const; 388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 389 390 void computeInfo(CGFunctionInfo &FI) const override { 391 if (!getCXXABI().classifyReturnType(FI)) 392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 393 for (auto &I : FI.arguments()) 394 I.info = classifyArgumentType(I.type); 395 } 396 397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 398 CodeGenFunction &CGF) const override; 399 }; 400 401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 402 public: 403 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 404 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 405 }; 406 407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 408 CodeGenFunction &CGF) const { 409 return nullptr; 410 } 411 412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 413 Ty = useFirstFieldIfTransparentUnion(Ty); 414 415 if (isAggregateTypeForABI(Ty)) { 416 // Records with non-trivial destructors/copy-constructors should not be 417 // passed by value. 418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 419 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 420 421 return ABIArgInfo::getIndirect(0); 422 } 423 424 // Treat an enum type as its underlying type. 425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 426 Ty = EnumTy->getDecl()->getIntegerType(); 427 428 return (Ty->isPromotableIntegerType() ? 429 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 430 } 431 432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 433 if (RetTy->isVoidType()) 434 return ABIArgInfo::getIgnore(); 435 436 if (isAggregateTypeForABI(RetTy)) 437 return ABIArgInfo::getIndirect(0); 438 439 // Treat an enum type as its underlying type. 440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 441 RetTy = EnumTy->getDecl()->getIntegerType(); 442 443 return (RetTy->isPromotableIntegerType() ? 444 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // le32/PNaCl bitcode ABI Implementation 449 // 450 // This is a simplified version of the x86_32 ABI. Arguments and return values 451 // are always passed on the stack. 452 //===----------------------------------------------------------------------===// 453 454 class PNaClABIInfo : public ABIInfo { 455 public: 456 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 457 458 ABIArgInfo classifyReturnType(QualType RetTy) const; 459 ABIArgInfo classifyArgumentType(QualType RetTy) const; 460 461 void computeInfo(CGFunctionInfo &FI) const override; 462 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const override; 464 }; 465 466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 467 public: 468 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 469 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 470 }; 471 472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 473 if (!getCXXABI().classifyReturnType(FI)) 474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 475 476 for (auto &I : FI.arguments()) 477 I.info = classifyArgumentType(I.type); 478 } 479 480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 481 CodeGenFunction &CGF) const { 482 return nullptr; 483 } 484 485 /// \brief Classify argument of given type \p Ty. 486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 487 if (isAggregateTypeForABI(Ty)) { 488 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 489 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 490 return ABIArgInfo::getIndirect(0); 491 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 492 // Treat an enum type as its underlying type. 493 Ty = EnumTy->getDecl()->getIntegerType(); 494 } else if (Ty->isFloatingType()) { 495 // Floating-point types don't go inreg. 496 return ABIArgInfo::getDirect(); 497 } 498 499 return (Ty->isPromotableIntegerType() ? 500 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 501 } 502 503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 504 if (RetTy->isVoidType()) 505 return ABIArgInfo::getIgnore(); 506 507 // In the PNaCl ABI we always return records/structures on the stack. 508 if (isAggregateTypeForABI(RetTy)) 509 return ABIArgInfo::getIndirect(0); 510 511 // Treat an enum type as its underlying type. 512 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 513 RetTy = EnumTy->getDecl()->getIntegerType(); 514 515 return (RetTy->isPromotableIntegerType() ? 516 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 517 } 518 519 /// IsX86_MMXType - Return true if this is an MMX type. 520 bool IsX86_MMXType(llvm::Type *IRType) { 521 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 522 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 523 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 524 IRType->getScalarSizeInBits() != 64; 525 } 526 527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 528 StringRef Constraint, 529 llvm::Type* Ty) { 530 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 531 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 532 // Invalid MMX constraint 533 return nullptr; 534 } 535 536 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 537 } 538 539 // No operation needed 540 return Ty; 541 } 542 543 /// Returns true if this type can be passed in SSE registers with the 544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 546 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 547 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 548 return true; 549 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 550 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 551 // registers specially. 552 unsigned VecSize = Context.getTypeSize(VT); 553 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 554 return true; 555 } 556 return false; 557 } 558 559 /// Returns true if this aggregate is small enough to be passed in SSE registers 560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 562 return NumMembers <= 4; 563 } 564 565 //===----------------------------------------------------------------------===// 566 // X86-32 ABI Implementation 567 //===----------------------------------------------------------------------===// 568 569 /// \brief Similar to llvm::CCState, but for Clang. 570 struct CCState { 571 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 572 573 unsigned CC; 574 unsigned FreeRegs; 575 unsigned FreeSSERegs; 576 }; 577 578 /// X86_32ABIInfo - The X86-32 ABI information. 579 class X86_32ABIInfo : public ABIInfo { 580 enum Class { 581 Integer, 582 Float 583 }; 584 585 static const unsigned MinABIStackAlignInBytes = 4; 586 587 bool IsDarwinVectorABI; 588 bool IsSmallStructInRegABI; 589 bool IsWin32StructABI; 590 unsigned DefaultNumRegisterParameters; 591 592 static bool isRegisterSize(unsigned Size) { 593 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 594 } 595 596 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 597 // FIXME: Assumes vectorcall is in use. 598 return isX86VectorTypeForVectorCall(getContext(), Ty); 599 } 600 601 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 602 uint64_t NumMembers) const override { 603 // FIXME: Assumes vectorcall is in use. 604 return isX86VectorCallAggregateSmallEnough(NumMembers); 605 } 606 607 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 608 609 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 610 /// such that the argument will be passed in memory. 611 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 612 613 ABIArgInfo getIndirectReturnResult(CCState &State) const; 614 615 /// \brief Return the alignment to use for the given type on the stack. 616 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 617 618 Class classify(QualType Ty) const; 619 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 620 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 621 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 622 623 /// \brief Rewrite the function info so that all memory arguments use 624 /// inalloca. 625 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 626 627 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 628 unsigned &StackOffset, ABIArgInfo &Info, 629 QualType Type) const; 630 631 public: 632 633 void computeInfo(CGFunctionInfo &FI) const override; 634 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 635 CodeGenFunction &CGF) const override; 636 637 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 638 unsigned r) 639 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 640 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 641 }; 642 643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 644 public: 645 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 646 bool d, bool p, bool w, unsigned r) 647 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 648 649 static bool isStructReturnInRegABI( 650 const llvm::Triple &Triple, const CodeGenOptions &Opts); 651 652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 653 CodeGen::CodeGenModule &CGM) const override; 654 655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 656 // Darwin uses different dwarf register numbers for EH. 657 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 658 return 4; 659 } 660 661 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 662 llvm::Value *Address) const override; 663 664 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 665 StringRef Constraint, 666 llvm::Type* Ty) const override { 667 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 668 } 669 670 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 671 std::string &Constraints, 672 std::vector<llvm::Type *> &ResultRegTypes, 673 std::vector<llvm::Type *> &ResultTruncRegTypes, 674 std::vector<LValue> &ResultRegDests, 675 std::string &AsmString, 676 unsigned NumOutputs) const override; 677 678 llvm::Constant * 679 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 680 unsigned Sig = (0xeb << 0) | // jmp rel8 681 (0x06 << 8) | // .+0x08 682 ('F' << 16) | 683 ('T' << 24); 684 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 685 } 686 }; 687 688 } 689 690 /// Rewrite input constraint references after adding some output constraints. 691 /// In the case where there is one output and one input and we add one output, 692 /// we need to replace all operand references greater than or equal to 1: 693 /// mov $0, $1 694 /// mov eax, $1 695 /// The result will be: 696 /// mov $0, $2 697 /// mov eax, $2 698 static void rewriteInputConstraintReferences(unsigned FirstIn, 699 unsigned NumNewOuts, 700 std::string &AsmString) { 701 std::string Buf; 702 llvm::raw_string_ostream OS(Buf); 703 size_t Pos = 0; 704 while (Pos < AsmString.size()) { 705 size_t DollarStart = AsmString.find('$', Pos); 706 if (DollarStart == std::string::npos) 707 DollarStart = AsmString.size(); 708 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 709 if (DollarEnd == std::string::npos) 710 DollarEnd = AsmString.size(); 711 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 712 Pos = DollarEnd; 713 size_t NumDollars = DollarEnd - DollarStart; 714 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 715 // We have an operand reference. 716 size_t DigitStart = Pos; 717 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 718 if (DigitEnd == std::string::npos) 719 DigitEnd = AsmString.size(); 720 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 721 unsigned OperandIndex; 722 if (!OperandStr.getAsInteger(10, OperandIndex)) { 723 if (OperandIndex >= FirstIn) 724 OperandIndex += NumNewOuts; 725 OS << OperandIndex; 726 } else { 727 OS << OperandStr; 728 } 729 Pos = DigitEnd; 730 } 731 } 732 AsmString = std::move(OS.str()); 733 } 734 735 /// Add output constraints for EAX:EDX because they are return registers. 736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 737 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 738 std::vector<llvm::Type *> &ResultRegTypes, 739 std::vector<llvm::Type *> &ResultTruncRegTypes, 740 std::vector<LValue> &ResultRegDests, std::string &AsmString, 741 unsigned NumOutputs) const { 742 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 743 744 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 745 // larger. 746 if (!Constraints.empty()) 747 Constraints += ','; 748 if (RetWidth <= 32) { 749 Constraints += "={eax}"; 750 ResultRegTypes.push_back(CGF.Int32Ty); 751 } else { 752 // Use the 'A' constraint for EAX:EDX. 753 Constraints += "=A"; 754 ResultRegTypes.push_back(CGF.Int64Ty); 755 } 756 757 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 758 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 759 ResultTruncRegTypes.push_back(CoerceTy); 760 761 // Coerce the integer by bitcasting the return slot pointer. 762 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 763 CoerceTy->getPointerTo())); 764 ResultRegDests.push_back(ReturnSlot); 765 766 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 767 } 768 769 /// shouldReturnTypeInRegister - Determine if the given type should be 770 /// passed in a register (for the Darwin ABI). 771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 772 ASTContext &Context) const { 773 uint64_t Size = Context.getTypeSize(Ty); 774 775 // Type must be register sized. 776 if (!isRegisterSize(Size)) 777 return false; 778 779 if (Ty->isVectorType()) { 780 // 64- and 128- bit vectors inside structures are not returned in 781 // registers. 782 if (Size == 64 || Size == 128) 783 return false; 784 785 return true; 786 } 787 788 // If this is a builtin, pointer, enum, complex type, member pointer, or 789 // member function pointer it is ok. 790 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 791 Ty->isAnyComplexType() || Ty->isEnumeralType() || 792 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 793 return true; 794 795 // Arrays are treated like records. 796 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 797 return shouldReturnTypeInRegister(AT->getElementType(), Context); 798 799 // Otherwise, it must be a record type. 800 const RecordType *RT = Ty->getAs<RecordType>(); 801 if (!RT) return false; 802 803 // FIXME: Traverse bases here too. 804 805 // Structure types are passed in register if all fields would be 806 // passed in a register. 807 for (const auto *FD : RT->getDecl()->fields()) { 808 // Empty fields are ignored. 809 if (isEmptyField(Context, FD, true)) 810 continue; 811 812 // Check fields recursively. 813 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 814 return false; 815 } 816 return true; 817 } 818 819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 820 // If the return value is indirect, then the hidden argument is consuming one 821 // integer register. 822 if (State.FreeRegs) { 823 --State.FreeRegs; 824 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 825 } 826 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 827 } 828 829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 830 CCState &State) const { 831 if (RetTy->isVoidType()) 832 return ABIArgInfo::getIgnore(); 833 834 const Type *Base = nullptr; 835 uint64_t NumElts = 0; 836 if (State.CC == llvm::CallingConv::X86_VectorCall && 837 isHomogeneousAggregate(RetTy, Base, NumElts)) { 838 // The LLVM struct type for such an aggregate should lower properly. 839 return ABIArgInfo::getDirect(); 840 } 841 842 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 843 // On Darwin, some vectors are returned in registers. 844 if (IsDarwinVectorABI) { 845 uint64_t Size = getContext().getTypeSize(RetTy); 846 847 // 128-bit vectors are a special case; they are returned in 848 // registers and we need to make sure to pick a type the LLVM 849 // backend will like. 850 if (Size == 128) 851 return ABIArgInfo::getDirect(llvm::VectorType::get( 852 llvm::Type::getInt64Ty(getVMContext()), 2)); 853 854 // Always return in register if it fits in a general purpose 855 // register, or if it is 64 bits and has a single element. 856 if ((Size == 8 || Size == 16 || Size == 32) || 857 (Size == 64 && VT->getNumElements() == 1)) 858 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 859 Size)); 860 861 return getIndirectReturnResult(State); 862 } 863 864 return ABIArgInfo::getDirect(); 865 } 866 867 if (isAggregateTypeForABI(RetTy)) { 868 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 869 // Structures with flexible arrays are always indirect. 870 if (RT->getDecl()->hasFlexibleArrayMember()) 871 return getIndirectReturnResult(State); 872 } 873 874 // If specified, structs and unions are always indirect. 875 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 876 return getIndirectReturnResult(State); 877 878 // Small structures which are register sized are generally returned 879 // in a register. 880 if (shouldReturnTypeInRegister(RetTy, getContext())) { 881 uint64_t Size = getContext().getTypeSize(RetTy); 882 883 // As a special-case, if the struct is a "single-element" struct, and 884 // the field is of type "float" or "double", return it in a 885 // floating-point register. (MSVC does not apply this special case.) 886 // We apply a similar transformation for pointer types to improve the 887 // quality of the generated IR. 888 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 889 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 890 || SeltTy->hasPointerRepresentation()) 891 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 892 893 // FIXME: We should be able to narrow this integer in cases with dead 894 // padding. 895 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 896 } 897 898 return getIndirectReturnResult(State); 899 } 900 901 // Treat an enum type as its underlying type. 902 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 903 RetTy = EnumTy->getDecl()->getIntegerType(); 904 905 return (RetTy->isPromotableIntegerType() ? 906 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 907 } 908 909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 910 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 911 } 912 913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 914 const RecordType *RT = Ty->getAs<RecordType>(); 915 if (!RT) 916 return 0; 917 const RecordDecl *RD = RT->getDecl(); 918 919 // If this is a C++ record, check the bases first. 920 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 921 for (const auto &I : CXXRD->bases()) 922 if (!isRecordWithSSEVectorType(Context, I.getType())) 923 return false; 924 925 for (const auto *i : RD->fields()) { 926 QualType FT = i->getType(); 927 928 if (isSSEVectorType(Context, FT)) 929 return true; 930 931 if (isRecordWithSSEVectorType(Context, FT)) 932 return true; 933 } 934 935 return false; 936 } 937 938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 939 unsigned Align) const { 940 // Otherwise, if the alignment is less than or equal to the minimum ABI 941 // alignment, just use the default; the backend will handle this. 942 if (Align <= MinABIStackAlignInBytes) 943 return 0; // Use default alignment. 944 945 // On non-Darwin, the stack type alignment is always 4. 946 if (!IsDarwinVectorABI) { 947 // Set explicit alignment, since we may need to realign the top. 948 return MinABIStackAlignInBytes; 949 } 950 951 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 952 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 953 isRecordWithSSEVectorType(getContext(), Ty))) 954 return 16; 955 956 return MinABIStackAlignInBytes; 957 } 958 959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 960 CCState &State) const { 961 if (!ByVal) { 962 if (State.FreeRegs) { 963 --State.FreeRegs; // Non-byval indirects just use one pointer. 964 return ABIArgInfo::getIndirectInReg(0, false); 965 } 966 return ABIArgInfo::getIndirect(0, false); 967 } 968 969 // Compute the byval alignment. 970 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 971 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 972 if (StackAlign == 0) 973 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 974 975 // If the stack alignment is less than the type alignment, realign the 976 // argument. 977 bool Realign = TypeAlign > StackAlign; 978 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 979 } 980 981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 982 const Type *T = isSingleElementStruct(Ty, getContext()); 983 if (!T) 984 T = Ty.getTypePtr(); 985 986 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 987 BuiltinType::Kind K = BT->getKind(); 988 if (K == BuiltinType::Float || K == BuiltinType::Double) 989 return Float; 990 } 991 return Integer; 992 } 993 994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 995 bool &NeedsPadding) const { 996 NeedsPadding = false; 997 Class C = classify(Ty); 998 if (C == Float) 999 return false; 1000 1001 unsigned Size = getContext().getTypeSize(Ty); 1002 unsigned SizeInRegs = (Size + 31) / 32; 1003 1004 if (SizeInRegs == 0) 1005 return false; 1006 1007 if (SizeInRegs > State.FreeRegs) { 1008 State.FreeRegs = 0; 1009 return false; 1010 } 1011 1012 State.FreeRegs -= SizeInRegs; 1013 1014 if (State.CC == llvm::CallingConv::X86_FastCall || 1015 State.CC == llvm::CallingConv::X86_VectorCall) { 1016 if (Size > 32) 1017 return false; 1018 1019 if (Ty->isIntegralOrEnumerationType()) 1020 return true; 1021 1022 if (Ty->isPointerType()) 1023 return true; 1024 1025 if (Ty->isReferenceType()) 1026 return true; 1027 1028 if (State.FreeRegs) 1029 NeedsPadding = true; 1030 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1038 CCState &State) const { 1039 // FIXME: Set alignment on indirect arguments. 1040 1041 Ty = useFirstFieldIfTransparentUnion(Ty); 1042 1043 // Check with the C++ ABI first. 1044 const RecordType *RT = Ty->getAs<RecordType>(); 1045 if (RT) { 1046 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1047 if (RAA == CGCXXABI::RAA_Indirect) { 1048 return getIndirectResult(Ty, false, State); 1049 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1050 // The field index doesn't matter, we'll fix it up later. 1051 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1052 } 1053 } 1054 1055 // vectorcall adds the concept of a homogenous vector aggregate, similar 1056 // to other targets. 1057 const Type *Base = nullptr; 1058 uint64_t NumElts = 0; 1059 if (State.CC == llvm::CallingConv::X86_VectorCall && 1060 isHomogeneousAggregate(Ty, Base, NumElts)) { 1061 if (State.FreeSSERegs >= NumElts) { 1062 State.FreeSSERegs -= NumElts; 1063 if (Ty->isBuiltinType() || Ty->isVectorType()) 1064 return ABIArgInfo::getDirect(); 1065 return ABIArgInfo::getExpand(); 1066 } 1067 return getIndirectResult(Ty, /*ByVal=*/false, State); 1068 } 1069 1070 if (isAggregateTypeForABI(Ty)) { 1071 if (RT) { 1072 // Structs are always byval on win32, regardless of what they contain. 1073 if (IsWin32StructABI) 1074 return getIndirectResult(Ty, true, State); 1075 1076 // Structures with flexible arrays are always indirect. 1077 if (RT->getDecl()->hasFlexibleArrayMember()) 1078 return getIndirectResult(Ty, true, State); 1079 } 1080 1081 // Ignore empty structs/unions. 1082 if (isEmptyRecord(getContext(), Ty, true)) 1083 return ABIArgInfo::getIgnore(); 1084 1085 llvm::LLVMContext &LLVMContext = getVMContext(); 1086 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1087 bool NeedsPadding; 1088 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1089 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1090 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1091 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1092 return ABIArgInfo::getDirectInReg(Result); 1093 } 1094 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1095 1096 // Expand small (<= 128-bit) record types when we know that the stack layout 1097 // of those arguments will match the struct. This is important because the 1098 // LLVM backend isn't smart enough to remove byval, which inhibits many 1099 // optimizations. 1100 if (getContext().getTypeSize(Ty) <= 4*32 && 1101 canExpandIndirectArgument(Ty, getContext())) 1102 return ABIArgInfo::getExpandWithPadding( 1103 State.CC == llvm::CallingConv::X86_FastCall || 1104 State.CC == llvm::CallingConv::X86_VectorCall, 1105 PaddingType); 1106 1107 return getIndirectResult(Ty, true, State); 1108 } 1109 1110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1111 // On Darwin, some vectors are passed in memory, we handle this by passing 1112 // it as an i8/i16/i32/i64. 1113 if (IsDarwinVectorABI) { 1114 uint64_t Size = getContext().getTypeSize(Ty); 1115 if ((Size == 8 || Size == 16 || Size == 32) || 1116 (Size == 64 && VT->getNumElements() == 1)) 1117 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1118 Size)); 1119 } 1120 1121 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1122 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1123 1124 return ABIArgInfo::getDirect(); 1125 } 1126 1127 1128 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1129 Ty = EnumTy->getDecl()->getIntegerType(); 1130 1131 bool NeedsPadding; 1132 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1133 1134 if (Ty->isPromotableIntegerType()) { 1135 if (InReg) 1136 return ABIArgInfo::getExtendInReg(); 1137 return ABIArgInfo::getExtend(); 1138 } 1139 if (InReg) 1140 return ABIArgInfo::getDirectInReg(); 1141 return ABIArgInfo::getDirect(); 1142 } 1143 1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1145 CCState State(FI.getCallingConvention()); 1146 if (State.CC == llvm::CallingConv::X86_FastCall) 1147 State.FreeRegs = 2; 1148 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1149 State.FreeRegs = 2; 1150 State.FreeSSERegs = 6; 1151 } else if (FI.getHasRegParm()) 1152 State.FreeRegs = FI.getRegParm(); 1153 else 1154 State.FreeRegs = DefaultNumRegisterParameters; 1155 1156 if (!getCXXABI().classifyReturnType(FI)) { 1157 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1158 } else if (FI.getReturnInfo().isIndirect()) { 1159 // The C++ ABI is not aware of register usage, so we have to check if the 1160 // return value was sret and put it in a register ourselves if appropriate. 1161 if (State.FreeRegs) { 1162 --State.FreeRegs; // The sret parameter consumes a register. 1163 FI.getReturnInfo().setInReg(true); 1164 } 1165 } 1166 1167 // The chain argument effectively gives us another free register. 1168 if (FI.isChainCall()) 1169 ++State.FreeRegs; 1170 1171 bool UsedInAlloca = false; 1172 for (auto &I : FI.arguments()) { 1173 I.info = classifyArgumentType(I.type, State); 1174 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1175 } 1176 1177 // If we needed to use inalloca for any argument, do a second pass and rewrite 1178 // all the memory arguments to use inalloca. 1179 if (UsedInAlloca) 1180 rewriteWithInAlloca(FI); 1181 } 1182 1183 void 1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1185 unsigned &StackOffset, 1186 ABIArgInfo &Info, QualType Type) const { 1187 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1188 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1189 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1190 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1191 1192 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1193 // byte aligned. 1194 if (StackOffset % 4U) { 1195 unsigned OldOffset = StackOffset; 1196 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1197 unsigned NumBytes = StackOffset - OldOffset; 1198 assert(NumBytes); 1199 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1200 Ty = llvm::ArrayType::get(Ty, NumBytes); 1201 FrameFields.push_back(Ty); 1202 } 1203 } 1204 1205 static bool isArgInAlloca(const ABIArgInfo &Info) { 1206 // Leave ignored and inreg arguments alone. 1207 switch (Info.getKind()) { 1208 case ABIArgInfo::InAlloca: 1209 return true; 1210 case ABIArgInfo::Indirect: 1211 assert(Info.getIndirectByVal()); 1212 return true; 1213 case ABIArgInfo::Ignore: 1214 return false; 1215 case ABIArgInfo::Direct: 1216 case ABIArgInfo::Extend: 1217 case ABIArgInfo::Expand: 1218 if (Info.getInReg()) 1219 return false; 1220 return true; 1221 } 1222 llvm_unreachable("invalid enum"); 1223 } 1224 1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1226 assert(IsWin32StructABI && "inalloca only supported on win32"); 1227 1228 // Build a packed struct type for all of the arguments in memory. 1229 SmallVector<llvm::Type *, 6> FrameFields; 1230 1231 unsigned StackOffset = 0; 1232 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1233 1234 // Put 'this' into the struct before 'sret', if necessary. 1235 bool IsThisCall = 1236 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1237 ABIArgInfo &Ret = FI.getReturnInfo(); 1238 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1239 isArgInAlloca(I->info)) { 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 ++I; 1242 } 1243 1244 // Put the sret parameter into the inalloca struct if it's in memory. 1245 if (Ret.isIndirect() && !Ret.getInReg()) { 1246 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1247 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1248 // On Windows, the hidden sret parameter is always returned in eax. 1249 Ret.setInAllocaSRet(IsWin32StructABI); 1250 } 1251 1252 // Skip the 'this' parameter in ecx. 1253 if (IsThisCall) 1254 ++I; 1255 1256 // Put arguments passed in memory into the struct. 1257 for (; I != E; ++I) { 1258 if (isArgInAlloca(I->info)) 1259 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1260 } 1261 1262 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1263 /*isPacked=*/true)); 1264 } 1265 1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1267 CodeGenFunction &CGF) const { 1268 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1269 1270 CGBuilderTy &Builder = CGF.Builder; 1271 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1272 "ap"); 1273 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1274 1275 // Compute if the address needs to be aligned 1276 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1277 Align = getTypeStackAlignInBytes(Ty, Align); 1278 Align = std::max(Align, 4U); 1279 if (Align > 4) { 1280 // addr = (addr + align - 1) & -align; 1281 llvm::Value *Offset = 1282 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1283 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1284 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1285 CGF.Int32Ty); 1286 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1287 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1288 Addr->getType(), 1289 "ap.cur.aligned"); 1290 } 1291 1292 llvm::Type *PTy = 1293 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1294 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1295 1296 uint64_t Offset = 1297 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1298 llvm::Value *NextAddr = 1299 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1300 "ap.next"); 1301 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1302 1303 return AddrTyped; 1304 } 1305 1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1307 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1308 assert(Triple.getArch() == llvm::Triple::x86); 1309 1310 switch (Opts.getStructReturnConvention()) { 1311 case CodeGenOptions::SRCK_Default: 1312 break; 1313 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1314 return false; 1315 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1316 return true; 1317 } 1318 1319 if (Triple.isOSDarwin()) 1320 return true; 1321 1322 switch (Triple.getOS()) { 1323 case llvm::Triple::DragonFly: 1324 case llvm::Triple::FreeBSD: 1325 case llvm::Triple::OpenBSD: 1326 case llvm::Triple::Bitrig: 1327 case llvm::Triple::Win32: 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1335 llvm::GlobalValue *GV, 1336 CodeGen::CodeGenModule &CGM) const { 1337 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1338 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1339 // Get the LLVM function. 1340 llvm::Function *Fn = cast<llvm::Function>(GV); 1341 1342 // Now add the 'alignstack' attribute with a value of 16. 1343 llvm::AttrBuilder B; 1344 B.addStackAlignmentAttr(16); 1345 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1346 llvm::AttributeSet::get(CGM.getLLVMContext(), 1347 llvm::AttributeSet::FunctionIndex, 1348 B)); 1349 } 1350 } 1351 } 1352 1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1354 CodeGen::CodeGenFunction &CGF, 1355 llvm::Value *Address) const { 1356 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1357 1358 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1359 1360 // 0-7 are the eight integer registers; the order is different 1361 // on Darwin (for EH), but the range is the same. 1362 // 8 is %eip. 1363 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1364 1365 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1366 // 12-16 are st(0..4). Not sure why we stop at 4. 1367 // These have size 16, which is sizeof(long double) on 1368 // platforms with 8-byte alignment for that type. 1369 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1370 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1371 1372 } else { 1373 // 9 is %eflags, which doesn't get a size on Darwin for some 1374 // reason. 1375 Builder.CreateStore( 1376 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1377 1378 // 11-16 are st(0..5). Not sure why we stop at 5. 1379 // These have size 12, which is sizeof(long double) on 1380 // platforms with 4-byte alignment for that type. 1381 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1382 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1383 } 1384 1385 return false; 1386 } 1387 1388 //===----------------------------------------------------------------------===// 1389 // X86-64 ABI Implementation 1390 //===----------------------------------------------------------------------===// 1391 1392 1393 namespace { 1394 /// The AVX ABI level for X86 targets. 1395 enum class X86AVXABILevel { 1396 None, 1397 AVX, 1398 AVX512 1399 }; 1400 1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1403 switch (AVXLevel) { 1404 case X86AVXABILevel::AVX512: 1405 return 512; 1406 case X86AVXABILevel::AVX: 1407 return 256; 1408 case X86AVXABILevel::None: 1409 return 128; 1410 } 1411 llvm_unreachable("Unknown AVXLevel"); 1412 } 1413 1414 /// X86_64ABIInfo - The X86_64 ABI information. 1415 class X86_64ABIInfo : public ABIInfo { 1416 enum Class { 1417 Integer = 0, 1418 SSE, 1419 SSEUp, 1420 X87, 1421 X87Up, 1422 ComplexX87, 1423 NoClass, 1424 Memory 1425 }; 1426 1427 /// merge - Implement the X86_64 ABI merging algorithm. 1428 /// 1429 /// Merge an accumulating classification \arg Accum with a field 1430 /// classification \arg Field. 1431 /// 1432 /// \param Accum - The accumulating classification. This should 1433 /// always be either NoClass or the result of a previous merge 1434 /// call. In addition, this should never be Memory (the caller 1435 /// should just return Memory for the aggregate). 1436 static Class merge(Class Accum, Class Field); 1437 1438 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1439 /// 1440 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1441 /// final MEMORY or SSE classes when necessary. 1442 /// 1443 /// \param AggregateSize - The size of the current aggregate in 1444 /// the classification process. 1445 /// 1446 /// \param Lo - The classification for the parts of the type 1447 /// residing in the low word of the containing object. 1448 /// 1449 /// \param Hi - The classification for the parts of the type 1450 /// residing in the higher words of the containing object. 1451 /// 1452 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1453 1454 /// classify - Determine the x86_64 register classes in which the 1455 /// given type T should be passed. 1456 /// 1457 /// \param Lo - The classification for the parts of the type 1458 /// residing in the low word of the containing object. 1459 /// 1460 /// \param Hi - The classification for the parts of the type 1461 /// residing in the high word of the containing object. 1462 /// 1463 /// \param OffsetBase - The bit offset of this type in the 1464 /// containing object. Some parameters are classified different 1465 /// depending on whether they straddle an eightbyte boundary. 1466 /// 1467 /// \param isNamedArg - Whether the argument in question is a "named" 1468 /// argument, as used in AMD64-ABI 3.5.7. 1469 /// 1470 /// If a word is unused its result will be NoClass; if a type should 1471 /// be passed in Memory then at least the classification of \arg Lo 1472 /// will be Memory. 1473 /// 1474 /// The \arg Lo class will be NoClass iff the argument is ignored. 1475 /// 1476 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1477 /// also be ComplexX87. 1478 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1479 bool isNamedArg) const; 1480 1481 llvm::Type *GetByteVectorType(QualType Ty) const; 1482 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1483 unsigned IROffset, QualType SourceTy, 1484 unsigned SourceOffset) const; 1485 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1486 unsigned IROffset, QualType SourceTy, 1487 unsigned SourceOffset) const; 1488 1489 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1490 /// such that the argument will be returned in memory. 1491 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1492 1493 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1494 /// such that the argument will be passed in memory. 1495 /// 1496 /// \param freeIntRegs - The number of free integer registers remaining 1497 /// available. 1498 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1499 1500 ABIArgInfo classifyReturnType(QualType RetTy) const; 1501 1502 ABIArgInfo classifyArgumentType(QualType Ty, 1503 unsigned freeIntRegs, 1504 unsigned &neededInt, 1505 unsigned &neededSSE, 1506 bool isNamedArg) const; 1507 1508 bool IsIllegalVectorType(QualType Ty) const; 1509 1510 /// The 0.98 ABI revision clarified a lot of ambiguities, 1511 /// unfortunately in ways that were not always consistent with 1512 /// certain previous compilers. In particular, platforms which 1513 /// required strict binary compatibility with older versions of GCC 1514 /// may need to exempt themselves. 1515 bool honorsRevision0_98() const { 1516 return !getTarget().getTriple().isOSDarwin(); 1517 } 1518 1519 X86AVXABILevel AVXLevel; 1520 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1521 // 64-bit hardware. 1522 bool Has64BitPointers; 1523 1524 public: 1525 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1526 ABIInfo(CGT), AVXLevel(AVXLevel), 1527 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1528 } 1529 1530 bool isPassedUsingAVXType(QualType type) const { 1531 unsigned neededInt, neededSSE; 1532 // The freeIntRegs argument doesn't matter here. 1533 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1534 /*isNamedArg*/true); 1535 if (info.isDirect()) { 1536 llvm::Type *ty = info.getCoerceToType(); 1537 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1538 return (vectorTy->getBitWidth() > 128); 1539 } 1540 return false; 1541 } 1542 1543 void computeInfo(CGFunctionInfo &FI) const override; 1544 1545 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1546 CodeGenFunction &CGF) const override; 1547 1548 bool has64BitPointers() const { 1549 return Has64BitPointers; 1550 } 1551 }; 1552 1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1554 class WinX86_64ABIInfo : public ABIInfo { 1555 1556 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1557 bool IsReturnType) const; 1558 1559 public: 1560 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1561 1562 void computeInfo(CGFunctionInfo &FI) const override; 1563 1564 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1565 CodeGenFunction &CGF) const override; 1566 1567 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1568 // FIXME: Assumes vectorcall is in use. 1569 return isX86VectorTypeForVectorCall(getContext(), Ty); 1570 } 1571 1572 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1573 uint64_t NumMembers) const override { 1574 // FIXME: Assumes vectorcall is in use. 1575 return isX86VectorCallAggregateSmallEnough(NumMembers); 1576 } 1577 }; 1578 1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1580 public: 1581 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1582 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1583 1584 const X86_64ABIInfo &getABIInfo() const { 1585 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1586 } 1587 1588 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1589 return 7; 1590 } 1591 1592 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1593 llvm::Value *Address) const override { 1594 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1595 1596 // 0-15 are the 16 integer registers. 1597 // 16 is %rip. 1598 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1599 return false; 1600 } 1601 1602 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1603 StringRef Constraint, 1604 llvm::Type* Ty) const override { 1605 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1606 } 1607 1608 bool isNoProtoCallVariadic(const CallArgList &args, 1609 const FunctionNoProtoType *fnType) const override { 1610 // The default CC on x86-64 sets %al to the number of SSA 1611 // registers used, and GCC sets this when calling an unprototyped 1612 // function, so we override the default behavior. However, don't do 1613 // that when AVX types are involved: the ABI explicitly states it is 1614 // undefined, and it doesn't work in practice because of how the ABI 1615 // defines varargs anyway. 1616 if (fnType->getCallConv() == CC_C) { 1617 bool HasAVXType = false; 1618 for (CallArgList::const_iterator 1619 it = args.begin(), ie = args.end(); it != ie; ++it) { 1620 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1621 HasAVXType = true; 1622 break; 1623 } 1624 } 1625 1626 if (!HasAVXType) 1627 return true; 1628 } 1629 1630 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1631 } 1632 1633 llvm::Constant * 1634 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1635 unsigned Sig; 1636 if (getABIInfo().has64BitPointers()) 1637 Sig = (0xeb << 0) | // jmp rel8 1638 (0x0a << 8) | // .+0x0c 1639 ('F' << 16) | 1640 ('T' << 24); 1641 else 1642 Sig = (0xeb << 0) | // jmp rel8 1643 (0x06 << 8) | // .+0x08 1644 ('F' << 16) | 1645 ('T' << 24); 1646 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1647 } 1648 }; 1649 1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1651 public: 1652 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1653 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1654 1655 void getDependentLibraryOption(llvm::StringRef Lib, 1656 llvm::SmallString<24> &Opt) const override { 1657 Opt = "\01"; 1658 // If the argument contains a space, enclose it in quotes. 1659 if (Lib.find(" ") != StringRef::npos) 1660 Opt += "\"" + Lib.str() + "\""; 1661 else 1662 Opt += Lib; 1663 } 1664 }; 1665 1666 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1667 // If the argument does not end in .lib, automatically add the suffix. 1668 // If the argument contains a space, enclose it in quotes. 1669 // This matches the behavior of MSVC. 1670 bool Quote = (Lib.find(" ") != StringRef::npos); 1671 std::string ArgStr = Quote ? "\"" : ""; 1672 ArgStr += Lib; 1673 if (!Lib.endswith_lower(".lib")) 1674 ArgStr += ".lib"; 1675 ArgStr += Quote ? "\"" : ""; 1676 return ArgStr; 1677 } 1678 1679 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1680 public: 1681 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1682 bool d, bool p, bool w, unsigned RegParms) 1683 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1684 1685 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1686 CodeGen::CodeGenModule &CGM) const override; 1687 1688 void getDependentLibraryOption(llvm::StringRef Lib, 1689 llvm::SmallString<24> &Opt) const override { 1690 Opt = "/DEFAULTLIB:"; 1691 Opt += qualifyWindowsLibrary(Lib); 1692 } 1693 1694 void getDetectMismatchOption(llvm::StringRef Name, 1695 llvm::StringRef Value, 1696 llvm::SmallString<32> &Opt) const override { 1697 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1698 } 1699 }; 1700 1701 static void addStackProbeSizeTargetAttribute(const Decl *D, 1702 llvm::GlobalValue *GV, 1703 CodeGen::CodeGenModule &CGM) { 1704 if (isa<FunctionDecl>(D)) { 1705 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1706 llvm::Function *Fn = cast<llvm::Function>(GV); 1707 1708 Fn->addFnAttr("stack-probe-size", 1709 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1710 } 1711 } 1712 } 1713 1714 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1715 llvm::GlobalValue *GV, 1716 CodeGen::CodeGenModule &CGM) const { 1717 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1718 1719 addStackProbeSizeTargetAttribute(D, GV, CGM); 1720 } 1721 1722 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1723 public: 1724 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1725 X86AVXABILevel AVXLevel) 1726 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1727 1728 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1729 CodeGen::CodeGenModule &CGM) const override; 1730 1731 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1732 return 7; 1733 } 1734 1735 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1736 llvm::Value *Address) const override { 1737 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1738 1739 // 0-15 are the 16 integer registers. 1740 // 16 is %rip. 1741 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1742 return false; 1743 } 1744 1745 void getDependentLibraryOption(llvm::StringRef Lib, 1746 llvm::SmallString<24> &Opt) const override { 1747 Opt = "/DEFAULTLIB:"; 1748 Opt += qualifyWindowsLibrary(Lib); 1749 } 1750 1751 void getDetectMismatchOption(llvm::StringRef Name, 1752 llvm::StringRef Value, 1753 llvm::SmallString<32> &Opt) const override { 1754 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1755 } 1756 }; 1757 1758 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1759 llvm::GlobalValue *GV, 1760 CodeGen::CodeGenModule &CGM) const { 1761 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1762 1763 addStackProbeSizeTargetAttribute(D, GV, CGM); 1764 } 1765 } 1766 1767 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1768 Class &Hi) const { 1769 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1770 // 1771 // (a) If one of the classes is Memory, the whole argument is passed in 1772 // memory. 1773 // 1774 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1775 // memory. 1776 // 1777 // (c) If the size of the aggregate exceeds two eightbytes and the first 1778 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1779 // argument is passed in memory. NOTE: This is necessary to keep the 1780 // ABI working for processors that don't support the __m256 type. 1781 // 1782 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1783 // 1784 // Some of these are enforced by the merging logic. Others can arise 1785 // only with unions; for example: 1786 // union { _Complex double; unsigned; } 1787 // 1788 // Note that clauses (b) and (c) were added in 0.98. 1789 // 1790 if (Hi == Memory) 1791 Lo = Memory; 1792 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1793 Lo = Memory; 1794 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1795 Lo = Memory; 1796 if (Hi == SSEUp && Lo != SSE) 1797 Hi = SSE; 1798 } 1799 1800 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1801 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1802 // classified recursively so that always two fields are 1803 // considered. The resulting class is calculated according to 1804 // the classes of the fields in the eightbyte: 1805 // 1806 // (a) If both classes are equal, this is the resulting class. 1807 // 1808 // (b) If one of the classes is NO_CLASS, the resulting class is 1809 // the other class. 1810 // 1811 // (c) If one of the classes is MEMORY, the result is the MEMORY 1812 // class. 1813 // 1814 // (d) If one of the classes is INTEGER, the result is the 1815 // INTEGER. 1816 // 1817 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1818 // MEMORY is used as class. 1819 // 1820 // (f) Otherwise class SSE is used. 1821 1822 // Accum should never be memory (we should have returned) or 1823 // ComplexX87 (because this cannot be passed in a structure). 1824 assert((Accum != Memory && Accum != ComplexX87) && 1825 "Invalid accumulated classification during merge."); 1826 if (Accum == Field || Field == NoClass) 1827 return Accum; 1828 if (Field == Memory) 1829 return Memory; 1830 if (Accum == NoClass) 1831 return Field; 1832 if (Accum == Integer || Field == Integer) 1833 return Integer; 1834 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1835 Accum == X87 || Accum == X87Up) 1836 return Memory; 1837 return SSE; 1838 } 1839 1840 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1841 Class &Lo, Class &Hi, bool isNamedArg) const { 1842 // FIXME: This code can be simplified by introducing a simple value class for 1843 // Class pairs with appropriate constructor methods for the various 1844 // situations. 1845 1846 // FIXME: Some of the split computations are wrong; unaligned vectors 1847 // shouldn't be passed in registers for example, so there is no chance they 1848 // can straddle an eightbyte. Verify & simplify. 1849 1850 Lo = Hi = NoClass; 1851 1852 Class &Current = OffsetBase < 64 ? Lo : Hi; 1853 Current = Memory; 1854 1855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1856 BuiltinType::Kind k = BT->getKind(); 1857 1858 if (k == BuiltinType::Void) { 1859 Current = NoClass; 1860 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1861 Lo = Integer; 1862 Hi = Integer; 1863 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1864 Current = Integer; 1865 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1866 (k == BuiltinType::LongDouble && 1867 getTarget().getTriple().isOSNaCl())) { 1868 Current = SSE; 1869 } else if (k == BuiltinType::LongDouble) { 1870 Lo = X87; 1871 Hi = X87Up; 1872 } 1873 // FIXME: _Decimal32 and _Decimal64 are SSE. 1874 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1875 return; 1876 } 1877 1878 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1879 // Classify the underlying integer type. 1880 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1881 return; 1882 } 1883 1884 if (Ty->hasPointerRepresentation()) { 1885 Current = Integer; 1886 return; 1887 } 1888 1889 if (Ty->isMemberPointerType()) { 1890 if (Ty->isMemberFunctionPointerType()) { 1891 if (Has64BitPointers) { 1892 // If Has64BitPointers, this is an {i64, i64}, so classify both 1893 // Lo and Hi now. 1894 Lo = Hi = Integer; 1895 } else { 1896 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1897 // straddles an eightbyte boundary, Hi should be classified as well. 1898 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1899 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1900 if (EB_FuncPtr != EB_ThisAdj) { 1901 Lo = Hi = Integer; 1902 } else { 1903 Current = Integer; 1904 } 1905 } 1906 } else { 1907 Current = Integer; 1908 } 1909 return; 1910 } 1911 1912 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1913 uint64_t Size = getContext().getTypeSize(VT); 1914 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1915 // gcc passes the following as integer: 1916 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1917 // 2 bytes - <2 x char>, <1 x short> 1918 // 1 byte - <1 x char> 1919 Current = Integer; 1920 1921 // If this type crosses an eightbyte boundary, it should be 1922 // split. 1923 uint64_t EB_Lo = (OffsetBase) / 64; 1924 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1925 if (EB_Lo != EB_Hi) 1926 Hi = Lo; 1927 } else if (Size == 64) { 1928 // gcc passes <1 x double> in memory. :( 1929 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1930 return; 1931 1932 // gcc passes <1 x long long> as INTEGER. 1933 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1934 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1935 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1936 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1937 Current = Integer; 1938 else 1939 Current = SSE; 1940 1941 // If this type crosses an eightbyte boundary, it should be 1942 // split. 1943 if (OffsetBase && OffsetBase != 64) 1944 Hi = Lo; 1945 } else if (Size == 128 || 1946 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1947 // Arguments of 256-bits are split into four eightbyte chunks. The 1948 // least significant one belongs to class SSE and all the others to class 1949 // SSEUP. The original Lo and Hi design considers that types can't be 1950 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1951 // This design isn't correct for 256-bits, but since there're no cases 1952 // where the upper parts would need to be inspected, avoid adding 1953 // complexity and just consider Hi to match the 64-256 part. 1954 // 1955 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1956 // registers if they are "named", i.e. not part of the "..." of a 1957 // variadic function. 1958 // 1959 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1960 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1961 Lo = SSE; 1962 Hi = SSEUp; 1963 } 1964 return; 1965 } 1966 1967 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1968 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1969 1970 uint64_t Size = getContext().getTypeSize(Ty); 1971 if (ET->isIntegralOrEnumerationType()) { 1972 if (Size <= 64) 1973 Current = Integer; 1974 else if (Size <= 128) 1975 Lo = Hi = Integer; 1976 } else if (ET == getContext().FloatTy) 1977 Current = SSE; 1978 else if (ET == getContext().DoubleTy || 1979 (ET == getContext().LongDoubleTy && 1980 getTarget().getTriple().isOSNaCl())) 1981 Lo = Hi = SSE; 1982 else if (ET == getContext().LongDoubleTy) 1983 Current = ComplexX87; 1984 1985 // If this complex type crosses an eightbyte boundary then it 1986 // should be split. 1987 uint64_t EB_Real = (OffsetBase) / 64; 1988 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1989 if (Hi == NoClass && EB_Real != EB_Imag) 1990 Hi = Lo; 1991 1992 return; 1993 } 1994 1995 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1996 // Arrays are treated like structures. 1997 1998 uint64_t Size = getContext().getTypeSize(Ty); 1999 2000 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2001 // than four eightbytes, ..., it has class MEMORY. 2002 if (Size > 256) 2003 return; 2004 2005 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2006 // fields, it has class MEMORY. 2007 // 2008 // Only need to check alignment of array base. 2009 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2010 return; 2011 2012 // Otherwise implement simplified merge. We could be smarter about 2013 // this, but it isn't worth it and would be harder to verify. 2014 Current = NoClass; 2015 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2016 uint64_t ArraySize = AT->getSize().getZExtValue(); 2017 2018 // The only case a 256-bit wide vector could be used is when the array 2019 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2020 // to work for sizes wider than 128, early check and fallback to memory. 2021 if (Size > 128 && EltSize != 256) 2022 return; 2023 2024 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2025 Class FieldLo, FieldHi; 2026 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2027 Lo = merge(Lo, FieldLo); 2028 Hi = merge(Hi, FieldHi); 2029 if (Lo == Memory || Hi == Memory) 2030 break; 2031 } 2032 2033 postMerge(Size, Lo, Hi); 2034 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2035 return; 2036 } 2037 2038 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2039 uint64_t Size = getContext().getTypeSize(Ty); 2040 2041 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2042 // than four eightbytes, ..., it has class MEMORY. 2043 if (Size > 256) 2044 return; 2045 2046 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2047 // copy constructor or a non-trivial destructor, it is passed by invisible 2048 // reference. 2049 if (getRecordArgABI(RT, getCXXABI())) 2050 return; 2051 2052 const RecordDecl *RD = RT->getDecl(); 2053 2054 // Assume variable sized types are passed in memory. 2055 if (RD->hasFlexibleArrayMember()) 2056 return; 2057 2058 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2059 2060 // Reset Lo class, this will be recomputed. 2061 Current = NoClass; 2062 2063 // If this is a C++ record, classify the bases first. 2064 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2065 for (const auto &I : CXXRD->bases()) { 2066 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2067 "Unexpected base class!"); 2068 const CXXRecordDecl *Base = 2069 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2070 2071 // Classify this field. 2072 // 2073 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2074 // single eightbyte, each is classified separately. Each eightbyte gets 2075 // initialized to class NO_CLASS. 2076 Class FieldLo, FieldHi; 2077 uint64_t Offset = 2078 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2079 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2080 Lo = merge(Lo, FieldLo); 2081 Hi = merge(Hi, FieldHi); 2082 if (Lo == Memory || Hi == Memory) { 2083 postMerge(Size, Lo, Hi); 2084 return; 2085 } 2086 } 2087 } 2088 2089 // Classify the fields one at a time, merging the results. 2090 unsigned idx = 0; 2091 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2092 i != e; ++i, ++idx) { 2093 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2094 bool BitField = i->isBitField(); 2095 2096 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2097 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2098 // 2099 // The only case a 256-bit wide vector could be used is when the struct 2100 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2101 // to work for sizes wider than 128, early check and fallback to memory. 2102 // 2103 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2104 Lo = Memory; 2105 postMerge(Size, Lo, Hi); 2106 return; 2107 } 2108 // Note, skip this test for bit-fields, see below. 2109 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2110 Lo = Memory; 2111 postMerge(Size, Lo, Hi); 2112 return; 2113 } 2114 2115 // Classify this field. 2116 // 2117 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2118 // exceeds a single eightbyte, each is classified 2119 // separately. Each eightbyte gets initialized to class 2120 // NO_CLASS. 2121 Class FieldLo, FieldHi; 2122 2123 // Bit-fields require special handling, they do not force the 2124 // structure to be passed in memory even if unaligned, and 2125 // therefore they can straddle an eightbyte. 2126 if (BitField) { 2127 // Ignore padding bit-fields. 2128 if (i->isUnnamedBitfield()) 2129 continue; 2130 2131 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2132 uint64_t Size = i->getBitWidthValue(getContext()); 2133 2134 uint64_t EB_Lo = Offset / 64; 2135 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2136 2137 if (EB_Lo) { 2138 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2139 FieldLo = NoClass; 2140 FieldHi = Integer; 2141 } else { 2142 FieldLo = Integer; 2143 FieldHi = EB_Hi ? Integer : NoClass; 2144 } 2145 } else 2146 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2147 Lo = merge(Lo, FieldLo); 2148 Hi = merge(Hi, FieldHi); 2149 if (Lo == Memory || Hi == Memory) 2150 break; 2151 } 2152 2153 postMerge(Size, Lo, Hi); 2154 } 2155 } 2156 2157 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2158 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2159 // place naturally. 2160 if (!isAggregateTypeForABI(Ty)) { 2161 // Treat an enum type as its underlying type. 2162 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2163 Ty = EnumTy->getDecl()->getIntegerType(); 2164 2165 return (Ty->isPromotableIntegerType() ? 2166 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2167 } 2168 2169 return ABIArgInfo::getIndirect(0); 2170 } 2171 2172 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2173 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2174 uint64_t Size = getContext().getTypeSize(VecTy); 2175 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2176 if (Size <= 64 || Size > LargestVector) 2177 return true; 2178 } 2179 2180 return false; 2181 } 2182 2183 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2184 unsigned freeIntRegs) const { 2185 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2186 // place naturally. 2187 // 2188 // This assumption is optimistic, as there could be free registers available 2189 // when we need to pass this argument in memory, and LLVM could try to pass 2190 // the argument in the free register. This does not seem to happen currently, 2191 // but this code would be much safer if we could mark the argument with 2192 // 'onstack'. See PR12193. 2193 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2194 // Treat an enum type as its underlying type. 2195 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2196 Ty = EnumTy->getDecl()->getIntegerType(); 2197 2198 return (Ty->isPromotableIntegerType() ? 2199 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2200 } 2201 2202 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2203 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2204 2205 // Compute the byval alignment. We specify the alignment of the byval in all 2206 // cases so that the mid-level optimizer knows the alignment of the byval. 2207 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2208 2209 // Attempt to avoid passing indirect results using byval when possible. This 2210 // is important for good codegen. 2211 // 2212 // We do this by coercing the value into a scalar type which the backend can 2213 // handle naturally (i.e., without using byval). 2214 // 2215 // For simplicity, we currently only do this when we have exhausted all of the 2216 // free integer registers. Doing this when there are free integer registers 2217 // would require more care, as we would have to ensure that the coerced value 2218 // did not claim the unused register. That would require either reording the 2219 // arguments to the function (so that any subsequent inreg values came first), 2220 // or only doing this optimization when there were no following arguments that 2221 // might be inreg. 2222 // 2223 // We currently expect it to be rare (particularly in well written code) for 2224 // arguments to be passed on the stack when there are still free integer 2225 // registers available (this would typically imply large structs being passed 2226 // by value), so this seems like a fair tradeoff for now. 2227 // 2228 // We can revisit this if the backend grows support for 'onstack' parameter 2229 // attributes. See PR12193. 2230 if (freeIntRegs == 0) { 2231 uint64_t Size = getContext().getTypeSize(Ty); 2232 2233 // If this type fits in an eightbyte, coerce it into the matching integral 2234 // type, which will end up on the stack (with alignment 8). 2235 if (Align == 8 && Size <= 64) 2236 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2237 Size)); 2238 } 2239 2240 return ABIArgInfo::getIndirect(Align); 2241 } 2242 2243 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2244 /// register. Pick an LLVM IR type that will be passed as a vector register. 2245 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2246 // Wrapper structs/arrays that only contain vectors are passed just like 2247 // vectors; strip them off if present. 2248 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2249 Ty = QualType(InnerTy, 0); 2250 2251 llvm::Type *IRType = CGT.ConvertType(Ty); 2252 if(isa<llvm::VectorType>(IRType)) 2253 return IRType; 2254 2255 // We couldn't find the preferred IR vector type for 'Ty'. 2256 uint64_t Size = getContext().getTypeSize(Ty); 2257 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2258 2259 // Return a LLVM IR vector type based on the size of 'Ty'. 2260 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2261 Size / 64); 2262 } 2263 2264 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2265 /// is known to either be off the end of the specified type or being in 2266 /// alignment padding. The user type specified is known to be at most 128 bits 2267 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2268 /// classification that put one of the two halves in the INTEGER class. 2269 /// 2270 /// It is conservatively correct to return false. 2271 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2272 unsigned EndBit, ASTContext &Context) { 2273 // If the bytes being queried are off the end of the type, there is no user 2274 // data hiding here. This handles analysis of builtins, vectors and other 2275 // types that don't contain interesting padding. 2276 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2277 if (TySize <= StartBit) 2278 return true; 2279 2280 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2281 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2282 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2283 2284 // Check each element to see if the element overlaps with the queried range. 2285 for (unsigned i = 0; i != NumElts; ++i) { 2286 // If the element is after the span we care about, then we're done.. 2287 unsigned EltOffset = i*EltSize; 2288 if (EltOffset >= EndBit) break; 2289 2290 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2291 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2292 EndBit-EltOffset, Context)) 2293 return false; 2294 } 2295 // If it overlaps no elements, then it is safe to process as padding. 2296 return true; 2297 } 2298 2299 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2300 const RecordDecl *RD = RT->getDecl(); 2301 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2302 2303 // If this is a C++ record, check the bases first. 2304 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2305 for (const auto &I : CXXRD->bases()) { 2306 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2307 "Unexpected base class!"); 2308 const CXXRecordDecl *Base = 2309 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2310 2311 // If the base is after the span we care about, ignore it. 2312 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2313 if (BaseOffset >= EndBit) continue; 2314 2315 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2316 if (!BitsContainNoUserData(I.getType(), BaseStart, 2317 EndBit-BaseOffset, Context)) 2318 return false; 2319 } 2320 } 2321 2322 // Verify that no field has data that overlaps the region of interest. Yes 2323 // this could be sped up a lot by being smarter about queried fields, 2324 // however we're only looking at structs up to 16 bytes, so we don't care 2325 // much. 2326 unsigned idx = 0; 2327 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2328 i != e; ++i, ++idx) { 2329 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2330 2331 // If we found a field after the region we care about, then we're done. 2332 if (FieldOffset >= EndBit) break; 2333 2334 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2335 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2336 Context)) 2337 return false; 2338 } 2339 2340 // If nothing in this record overlapped the area of interest, then we're 2341 // clean. 2342 return true; 2343 } 2344 2345 return false; 2346 } 2347 2348 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2349 /// float member at the specified offset. For example, {int,{float}} has a 2350 /// float at offset 4. It is conservatively correct for this routine to return 2351 /// false. 2352 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2353 const llvm::DataLayout &TD) { 2354 // Base case if we find a float. 2355 if (IROffset == 0 && IRType->isFloatTy()) 2356 return true; 2357 2358 // If this is a struct, recurse into the field at the specified offset. 2359 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2360 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2361 unsigned Elt = SL->getElementContainingOffset(IROffset); 2362 IROffset -= SL->getElementOffset(Elt); 2363 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2364 } 2365 2366 // If this is an array, recurse into the field at the specified offset. 2367 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2368 llvm::Type *EltTy = ATy->getElementType(); 2369 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2370 IROffset -= IROffset/EltSize*EltSize; 2371 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2372 } 2373 2374 return false; 2375 } 2376 2377 2378 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2379 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2380 llvm::Type *X86_64ABIInfo:: 2381 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2382 QualType SourceTy, unsigned SourceOffset) const { 2383 // The only three choices we have are either double, <2 x float>, or float. We 2384 // pass as float if the last 4 bytes is just padding. This happens for 2385 // structs that contain 3 floats. 2386 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2387 SourceOffset*8+64, getContext())) 2388 return llvm::Type::getFloatTy(getVMContext()); 2389 2390 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2391 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2392 // case. 2393 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2394 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2395 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2396 2397 return llvm::Type::getDoubleTy(getVMContext()); 2398 } 2399 2400 2401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2402 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2403 /// about the high or low part of an up-to-16-byte struct. This routine picks 2404 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2406 /// etc). 2407 /// 2408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2409 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2410 /// the 8-byte value references. PrefType may be null. 2411 /// 2412 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2413 /// an offset into this that we're processing (which is always either 0 or 8). 2414 /// 2415 llvm::Type *X86_64ABIInfo:: 2416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2417 QualType SourceTy, unsigned SourceOffset) const { 2418 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2419 // returning an 8-byte unit starting with it. See if we can safely use it. 2420 if (IROffset == 0) { 2421 // Pointers and int64's always fill the 8-byte unit. 2422 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2423 IRType->isIntegerTy(64)) 2424 return IRType; 2425 2426 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2427 // goodness in the source type is just tail padding. This is allowed to 2428 // kick in for struct {double,int} on the int, but not on 2429 // struct{double,int,int} because we wouldn't return the second int. We 2430 // have to do this analysis on the source type because we can't depend on 2431 // unions being lowered a specific way etc. 2432 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2433 IRType->isIntegerTy(32) || 2434 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2435 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2436 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2437 2438 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2439 SourceOffset*8+64, getContext())) 2440 return IRType; 2441 } 2442 } 2443 2444 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2445 // If this is a struct, recurse into the field at the specified offset. 2446 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2447 if (IROffset < SL->getSizeInBytes()) { 2448 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2449 IROffset -= SL->getElementOffset(FieldIdx); 2450 2451 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2452 SourceTy, SourceOffset); 2453 } 2454 } 2455 2456 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2457 llvm::Type *EltTy = ATy->getElementType(); 2458 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2459 unsigned EltOffset = IROffset/EltSize*EltSize; 2460 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2461 SourceOffset); 2462 } 2463 2464 // Okay, we don't have any better idea of what to pass, so we pass this in an 2465 // integer register that isn't too big to fit the rest of the struct. 2466 unsigned TySizeInBytes = 2467 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2468 2469 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2470 2471 // It is always safe to classify this as an integer type up to i64 that 2472 // isn't larger than the structure. 2473 return llvm::IntegerType::get(getVMContext(), 2474 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2475 } 2476 2477 2478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2479 /// be used as elements of a two register pair to pass or return, return a 2480 /// first class aggregate to represent them. For example, if the low part of 2481 /// a by-value argument should be passed as i32* and the high part as float, 2482 /// return {i32*, float}. 2483 static llvm::Type * 2484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2485 const llvm::DataLayout &TD) { 2486 // In order to correctly satisfy the ABI, we need to the high part to start 2487 // at offset 8. If the high and low parts we inferred are both 4-byte types 2488 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2489 // the second element at offset 8. Check for this: 2490 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2491 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2492 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2493 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2494 2495 // To handle this, we have to increase the size of the low part so that the 2496 // second element will start at an 8 byte offset. We can't increase the size 2497 // of the second element because it might make us access off the end of the 2498 // struct. 2499 if (HiStart != 8) { 2500 // There are usually two sorts of types the ABI generation code can produce 2501 // for the low part of a pair that aren't 8 bytes in size: float or 2502 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2503 // NaCl). 2504 // Promote these to a larger type. 2505 if (Lo->isFloatTy()) 2506 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2507 else { 2508 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2509 && "Invalid/unknown lo type"); 2510 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2511 } 2512 } 2513 2514 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2515 2516 2517 // Verify that the second element is at an 8-byte offset. 2518 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2519 "Invalid x86-64 argument pair!"); 2520 return Result; 2521 } 2522 2523 ABIArgInfo X86_64ABIInfo:: 2524 classifyReturnType(QualType RetTy) const { 2525 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2526 // classification algorithm. 2527 X86_64ABIInfo::Class Lo, Hi; 2528 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2529 2530 // Check some invariants. 2531 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2532 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2533 2534 llvm::Type *ResType = nullptr; 2535 switch (Lo) { 2536 case NoClass: 2537 if (Hi == NoClass) 2538 return ABIArgInfo::getIgnore(); 2539 // If the low part is just padding, it takes no register, leave ResType 2540 // null. 2541 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2542 "Unknown missing lo part"); 2543 break; 2544 2545 case SSEUp: 2546 case X87Up: 2547 llvm_unreachable("Invalid classification for lo word."); 2548 2549 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2550 // hidden argument. 2551 case Memory: 2552 return getIndirectReturnResult(RetTy); 2553 2554 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2555 // available register of the sequence %rax, %rdx is used. 2556 case Integer: 2557 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2558 2559 // If we have a sign or zero extended integer, make sure to return Extend 2560 // so that the parameter gets the right LLVM IR attributes. 2561 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2562 // Treat an enum type as its underlying type. 2563 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2564 RetTy = EnumTy->getDecl()->getIntegerType(); 2565 2566 if (RetTy->isIntegralOrEnumerationType() && 2567 RetTy->isPromotableIntegerType()) 2568 return ABIArgInfo::getExtend(); 2569 } 2570 break; 2571 2572 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2573 // available SSE register of the sequence %xmm0, %xmm1 is used. 2574 case SSE: 2575 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2576 break; 2577 2578 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2579 // returned on the X87 stack in %st0 as 80-bit x87 number. 2580 case X87: 2581 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2582 break; 2583 2584 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2585 // part of the value is returned in %st0 and the imaginary part in 2586 // %st1. 2587 case ComplexX87: 2588 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2589 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2590 llvm::Type::getX86_FP80Ty(getVMContext()), 2591 nullptr); 2592 break; 2593 } 2594 2595 llvm::Type *HighPart = nullptr; 2596 switch (Hi) { 2597 // Memory was handled previously and X87 should 2598 // never occur as a hi class. 2599 case Memory: 2600 case X87: 2601 llvm_unreachable("Invalid classification for hi word."); 2602 2603 case ComplexX87: // Previously handled. 2604 case NoClass: 2605 break; 2606 2607 case Integer: 2608 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2609 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2610 return ABIArgInfo::getDirect(HighPart, 8); 2611 break; 2612 case SSE: 2613 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2614 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2615 return ABIArgInfo::getDirect(HighPart, 8); 2616 break; 2617 2618 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2619 // is passed in the next available eightbyte chunk if the last used 2620 // vector register. 2621 // 2622 // SSEUP should always be preceded by SSE, just widen. 2623 case SSEUp: 2624 assert(Lo == SSE && "Unexpected SSEUp classification."); 2625 ResType = GetByteVectorType(RetTy); 2626 break; 2627 2628 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2629 // returned together with the previous X87 value in %st0. 2630 case X87Up: 2631 // If X87Up is preceded by X87, we don't need to do 2632 // anything. However, in some cases with unions it may not be 2633 // preceded by X87. In such situations we follow gcc and pass the 2634 // extra bits in an SSE reg. 2635 if (Lo != X87) { 2636 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2637 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2638 return ABIArgInfo::getDirect(HighPart, 8); 2639 } 2640 break; 2641 } 2642 2643 // If a high part was specified, merge it together with the low part. It is 2644 // known to pass in the high eightbyte of the result. We do this by forming a 2645 // first class struct aggregate with the high and low part: {low, high} 2646 if (HighPart) 2647 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2648 2649 return ABIArgInfo::getDirect(ResType); 2650 } 2651 2652 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2653 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2654 bool isNamedArg) 2655 const 2656 { 2657 Ty = useFirstFieldIfTransparentUnion(Ty); 2658 2659 X86_64ABIInfo::Class Lo, Hi; 2660 classify(Ty, 0, Lo, Hi, isNamedArg); 2661 2662 // Check some invariants. 2663 // FIXME: Enforce these by construction. 2664 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2665 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2666 2667 neededInt = 0; 2668 neededSSE = 0; 2669 llvm::Type *ResType = nullptr; 2670 switch (Lo) { 2671 case NoClass: 2672 if (Hi == NoClass) 2673 return ABIArgInfo::getIgnore(); 2674 // If the low part is just padding, it takes no register, leave ResType 2675 // null. 2676 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2677 "Unknown missing lo part"); 2678 break; 2679 2680 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2681 // on the stack. 2682 case Memory: 2683 2684 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2685 // COMPLEX_X87, it is passed in memory. 2686 case X87: 2687 case ComplexX87: 2688 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2689 ++neededInt; 2690 return getIndirectResult(Ty, freeIntRegs); 2691 2692 case SSEUp: 2693 case X87Up: 2694 llvm_unreachable("Invalid classification for lo word."); 2695 2696 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2697 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2698 // and %r9 is used. 2699 case Integer: 2700 ++neededInt; 2701 2702 // Pick an 8-byte type based on the preferred type. 2703 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2704 2705 // If we have a sign or zero extended integer, make sure to return Extend 2706 // so that the parameter gets the right LLVM IR attributes. 2707 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2708 // Treat an enum type as its underlying type. 2709 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2710 Ty = EnumTy->getDecl()->getIntegerType(); 2711 2712 if (Ty->isIntegralOrEnumerationType() && 2713 Ty->isPromotableIntegerType()) 2714 return ABIArgInfo::getExtend(); 2715 } 2716 2717 break; 2718 2719 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2720 // available SSE register is used, the registers are taken in the 2721 // order from %xmm0 to %xmm7. 2722 case SSE: { 2723 llvm::Type *IRType = CGT.ConvertType(Ty); 2724 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2725 ++neededSSE; 2726 break; 2727 } 2728 } 2729 2730 llvm::Type *HighPart = nullptr; 2731 switch (Hi) { 2732 // Memory was handled previously, ComplexX87 and X87 should 2733 // never occur as hi classes, and X87Up must be preceded by X87, 2734 // which is passed in memory. 2735 case Memory: 2736 case X87: 2737 case ComplexX87: 2738 llvm_unreachable("Invalid classification for hi word."); 2739 2740 case NoClass: break; 2741 2742 case Integer: 2743 ++neededInt; 2744 // Pick an 8-byte type based on the preferred type. 2745 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2746 2747 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2748 return ABIArgInfo::getDirect(HighPart, 8); 2749 break; 2750 2751 // X87Up generally doesn't occur here (long double is passed in 2752 // memory), except in situations involving unions. 2753 case X87Up: 2754 case SSE: 2755 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2756 2757 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2758 return ABIArgInfo::getDirect(HighPart, 8); 2759 2760 ++neededSSE; 2761 break; 2762 2763 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2764 // eightbyte is passed in the upper half of the last used SSE 2765 // register. This only happens when 128-bit vectors are passed. 2766 case SSEUp: 2767 assert(Lo == SSE && "Unexpected SSEUp classification"); 2768 ResType = GetByteVectorType(Ty); 2769 break; 2770 } 2771 2772 // If a high part was specified, merge it together with the low part. It is 2773 // known to pass in the high eightbyte of the result. We do this by forming a 2774 // first class struct aggregate with the high and low part: {low, high} 2775 if (HighPart) 2776 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2777 2778 return ABIArgInfo::getDirect(ResType); 2779 } 2780 2781 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2782 2783 if (!getCXXABI().classifyReturnType(FI)) 2784 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2785 2786 // Keep track of the number of assigned registers. 2787 unsigned freeIntRegs = 6, freeSSERegs = 8; 2788 2789 // If the return value is indirect, then the hidden argument is consuming one 2790 // integer register. 2791 if (FI.getReturnInfo().isIndirect()) 2792 --freeIntRegs; 2793 2794 // The chain argument effectively gives us another free register. 2795 if (FI.isChainCall()) 2796 ++freeIntRegs; 2797 2798 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2799 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2800 // get assigned (in left-to-right order) for passing as follows... 2801 unsigned ArgNo = 0; 2802 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2803 it != ie; ++it, ++ArgNo) { 2804 bool IsNamedArg = ArgNo < NumRequiredArgs; 2805 2806 unsigned neededInt, neededSSE; 2807 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2808 neededSSE, IsNamedArg); 2809 2810 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2811 // eightbyte of an argument, the whole argument is passed on the 2812 // stack. If registers have already been assigned for some 2813 // eightbytes of such an argument, the assignments get reverted. 2814 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2815 freeIntRegs -= neededInt; 2816 freeSSERegs -= neededSSE; 2817 } else { 2818 it->info = getIndirectResult(it->type, freeIntRegs); 2819 } 2820 } 2821 } 2822 2823 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2824 QualType Ty, 2825 CodeGenFunction &CGF) { 2826 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2827 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2828 llvm::Value *overflow_arg_area = 2829 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2830 2831 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2832 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2833 // It isn't stated explicitly in the standard, but in practice we use 2834 // alignment greater than 16 where necessary. 2835 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2836 if (Align > 8) { 2837 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2838 llvm::Value *Offset = 2839 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2840 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2841 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2842 CGF.Int64Ty); 2843 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2844 overflow_arg_area = 2845 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2846 overflow_arg_area->getType(), 2847 "overflow_arg_area.align"); 2848 } 2849 2850 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2851 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2852 llvm::Value *Res = 2853 CGF.Builder.CreateBitCast(overflow_arg_area, 2854 llvm::PointerType::getUnqual(LTy)); 2855 2856 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2857 // l->overflow_arg_area + sizeof(type). 2858 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2859 // an 8 byte boundary. 2860 2861 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2862 llvm::Value *Offset = 2863 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2864 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2865 "overflow_arg_area.next"); 2866 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2867 2868 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2869 return Res; 2870 } 2871 2872 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2873 CodeGenFunction &CGF) const { 2874 // Assume that va_list type is correct; should be pointer to LLVM type: 2875 // struct { 2876 // i32 gp_offset; 2877 // i32 fp_offset; 2878 // i8* overflow_arg_area; 2879 // i8* reg_save_area; 2880 // }; 2881 unsigned neededInt, neededSSE; 2882 2883 Ty = CGF.getContext().getCanonicalType(Ty); 2884 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2885 /*isNamedArg*/false); 2886 2887 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2888 // in the registers. If not go to step 7. 2889 if (!neededInt && !neededSSE) 2890 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2891 2892 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2893 // general purpose registers needed to pass type and num_fp to hold 2894 // the number of floating point registers needed. 2895 2896 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2897 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2898 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2899 // 2900 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2901 // register save space). 2902 2903 llvm::Value *InRegs = nullptr; 2904 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2905 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2906 if (neededInt) { 2907 gp_offset_p = 2908 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2909 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2910 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2911 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2912 } 2913 2914 if (neededSSE) { 2915 fp_offset_p = 2916 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2917 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2918 llvm::Value *FitsInFP = 2919 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2920 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2921 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2922 } 2923 2924 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2925 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2926 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2927 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2928 2929 // Emit code to load the value if it was passed in registers. 2930 2931 CGF.EmitBlock(InRegBlock); 2932 2933 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2934 // an offset of l->gp_offset and/or l->fp_offset. This may require 2935 // copying to a temporary location in case the parameter is passed 2936 // in different register classes or requires an alignment greater 2937 // than 8 for general purpose registers and 16 for XMM registers. 2938 // 2939 // FIXME: This really results in shameful code when we end up needing to 2940 // collect arguments from different places; often what should result in a 2941 // simple assembling of a structure from scattered addresses has many more 2942 // loads than necessary. Can we clean this up? 2943 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2944 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2945 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2946 if (neededInt && neededSSE) { 2947 // FIXME: Cleanup. 2948 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2949 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2950 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2951 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2952 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2953 llvm::Type *TyLo = ST->getElementType(0); 2954 llvm::Type *TyHi = ST->getElementType(1); 2955 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2956 "Unexpected ABI info for mixed regs"); 2957 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2958 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2959 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2960 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2961 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2962 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2963 llvm::Value *V = 2964 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2965 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2966 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2967 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2968 2969 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2970 llvm::PointerType::getUnqual(LTy)); 2971 } else if (neededInt) { 2972 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2973 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2974 llvm::PointerType::getUnqual(LTy)); 2975 2976 // Copy to a temporary if necessary to ensure the appropriate alignment. 2977 std::pair<CharUnits, CharUnits> SizeAlign = 2978 CGF.getContext().getTypeInfoInChars(Ty); 2979 uint64_t TySize = SizeAlign.first.getQuantity(); 2980 unsigned TyAlign = SizeAlign.second.getQuantity(); 2981 if (TyAlign > 8) { 2982 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2983 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2984 RegAddr = Tmp; 2985 } 2986 } else if (neededSSE == 1) { 2987 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2988 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2989 llvm::PointerType::getUnqual(LTy)); 2990 } else { 2991 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2992 // SSE registers are spaced 16 bytes apart in the register save 2993 // area, we need to collect the two eightbytes together. 2994 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2995 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2996 llvm::Type *DoubleTy = CGF.DoubleTy; 2997 llvm::Type *DblPtrTy = 2998 llvm::PointerType::getUnqual(DoubleTy); 2999 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3000 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 3001 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 3002 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 3003 DblPtrTy)); 3004 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 3005 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 3006 DblPtrTy)); 3007 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 3008 RegAddr = CGF.Builder.CreateBitCast(Tmp, 3009 llvm::PointerType::getUnqual(LTy)); 3010 } 3011 3012 // AMD64-ABI 3.5.7p5: Step 5. Set: 3013 // l->gp_offset = l->gp_offset + num_gp * 8 3014 // l->fp_offset = l->fp_offset + num_fp * 16. 3015 if (neededInt) { 3016 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3017 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3018 gp_offset_p); 3019 } 3020 if (neededSSE) { 3021 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3022 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3023 fp_offset_p); 3024 } 3025 CGF.EmitBranch(ContBlock); 3026 3027 // Emit code to load the value if it was passed in memory. 3028 3029 CGF.EmitBlock(InMemBlock); 3030 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 3031 3032 // Return the appropriate result. 3033 3034 CGF.EmitBlock(ContBlock); 3035 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 3036 "vaarg.addr"); 3037 ResAddr->addIncoming(RegAddr, InRegBlock); 3038 ResAddr->addIncoming(MemAddr, InMemBlock); 3039 return ResAddr; 3040 } 3041 3042 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3043 bool IsReturnType) const { 3044 3045 if (Ty->isVoidType()) 3046 return ABIArgInfo::getIgnore(); 3047 3048 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3049 Ty = EnumTy->getDecl()->getIntegerType(); 3050 3051 TypeInfo Info = getContext().getTypeInfo(Ty); 3052 uint64_t Width = Info.Width; 3053 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3054 3055 const RecordType *RT = Ty->getAs<RecordType>(); 3056 if (RT) { 3057 if (!IsReturnType) { 3058 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3059 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3060 } 3061 3062 if (RT->getDecl()->hasFlexibleArrayMember()) 3063 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3064 3065 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3066 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3067 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3068 Width)); 3069 } 3070 3071 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3072 // other targets. 3073 const Type *Base = nullptr; 3074 uint64_t NumElts = 0; 3075 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3076 if (FreeSSERegs >= NumElts) { 3077 FreeSSERegs -= NumElts; 3078 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3079 return ABIArgInfo::getDirect(); 3080 return ABIArgInfo::getExpand(); 3081 } 3082 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3083 } 3084 3085 3086 if (Ty->isMemberPointerType()) { 3087 // If the member pointer is represented by an LLVM int or ptr, pass it 3088 // directly. 3089 llvm::Type *LLTy = CGT.ConvertType(Ty); 3090 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3091 return ABIArgInfo::getDirect(); 3092 } 3093 3094 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3095 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3096 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3097 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3098 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3099 3100 // Otherwise, coerce it to a small integer. 3101 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3102 } 3103 3104 // Bool type is always extended to the ABI, other builtin types are not 3105 // extended. 3106 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3107 if (BT && BT->getKind() == BuiltinType::Bool) 3108 return ABIArgInfo::getExtend(); 3109 3110 return ABIArgInfo::getDirect(); 3111 } 3112 3113 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3114 bool IsVectorCall = 3115 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3116 3117 // We can use up to 4 SSE return registers with vectorcall. 3118 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3119 if (!getCXXABI().classifyReturnType(FI)) 3120 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3121 3122 // We can use up to 6 SSE register parameters with vectorcall. 3123 FreeSSERegs = IsVectorCall ? 6 : 0; 3124 for (auto &I : FI.arguments()) 3125 I.info = classify(I.type, FreeSSERegs, false); 3126 } 3127 3128 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3129 CodeGenFunction &CGF) const { 3130 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3131 3132 CGBuilderTy &Builder = CGF.Builder; 3133 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3134 "ap"); 3135 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3136 llvm::Type *PTy = 3137 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3138 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3139 3140 uint64_t Offset = 3141 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3142 llvm::Value *NextAddr = 3143 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3144 "ap.next"); 3145 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3146 3147 return AddrTyped; 3148 } 3149 3150 // PowerPC-32 3151 namespace { 3152 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3153 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3154 public: 3155 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3156 3157 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3158 CodeGenFunction &CGF) const override; 3159 }; 3160 3161 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3162 public: 3163 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) 3164 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3165 3166 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3167 // This is recovered from gcc output. 3168 return 1; // r1 is the dedicated stack pointer 3169 } 3170 3171 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3172 llvm::Value *Address) const override; 3173 }; 3174 3175 } 3176 3177 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3178 QualType Ty, 3179 CodeGenFunction &CGF) const { 3180 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3181 // TODO: Implement this. For now ignore. 3182 (void)CTy; 3183 return nullptr; 3184 } 3185 3186 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3187 bool isInt = 3188 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3189 llvm::Type *CharPtr = CGF.Int8PtrTy; 3190 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3191 3192 CGBuilderTy &Builder = CGF.Builder; 3193 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3194 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3195 llvm::Value *FPRPtrAsInt = 3196 Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3197 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3198 llvm::Value *OverflowAreaPtrAsInt = 3199 Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3200 llvm::Value *OverflowAreaPtr = 3201 Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3202 llvm::Value *RegsaveAreaPtrAsInt = 3203 Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3204 llvm::Value *RegsaveAreaPtr = 3205 Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3206 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3207 // Align GPR when TY is i64. 3208 if (isI64) { 3209 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3210 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3211 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3212 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3213 } 3214 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3215 llvm::Value *OverflowArea = 3216 Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3217 llvm::Value *OverflowAreaAsInt = 3218 Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3219 llvm::Value *RegsaveArea = 3220 Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3221 llvm::Value *RegsaveAreaAsInt = 3222 Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3223 3224 llvm::Value *CC = 3225 Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond"); 3226 3227 llvm::Value *RegConstant = 3228 Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8)); 3229 3230 llvm::Value *OurReg = Builder.CreateAdd( 3231 RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3232 3233 if (Ty->isFloatingType()) 3234 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3235 3236 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3237 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3238 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3239 3240 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3241 3242 CGF.EmitBlock(UsingRegs); 3243 3244 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3245 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3246 // Increase the GPR/FPR indexes. 3247 if (isInt) { 3248 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3249 Builder.CreateStore(GPR, GPRPtr); 3250 } else { 3251 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3252 Builder.CreateStore(FPR, FPRPtr); 3253 } 3254 CGF.EmitBranch(Cont); 3255 3256 CGF.EmitBlock(UsingOverflow); 3257 3258 // Increase the overflow area. 3259 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3260 OverflowAreaAsInt = 3261 Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3262 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), 3263 OverflowAreaPtr); 3264 CGF.EmitBranch(Cont); 3265 3266 CGF.EmitBlock(Cont); 3267 3268 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3269 Result->addIncoming(Result1, UsingRegs); 3270 Result->addIncoming(Result2, UsingOverflow); 3271 3272 if (Ty->isAggregateType()) { 3273 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr"); 3274 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3275 } 3276 3277 return Result; 3278 } 3279 3280 bool 3281 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3282 llvm::Value *Address) const { 3283 // This is calculated from the LLVM and GCC tables and verified 3284 // against gcc output. AFAIK all ABIs use the same encoding. 3285 3286 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3287 3288 llvm::IntegerType *i8 = CGF.Int8Ty; 3289 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3290 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3291 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3292 3293 // 0-31: r0-31, the 4-byte general-purpose registers 3294 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3295 3296 // 32-63: fp0-31, the 8-byte floating-point registers 3297 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3298 3299 // 64-76 are various 4-byte special-purpose registers: 3300 // 64: mq 3301 // 65: lr 3302 // 66: ctr 3303 // 67: ap 3304 // 68-75 cr0-7 3305 // 76: xer 3306 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3307 3308 // 77-108: v0-31, the 16-byte vector registers 3309 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3310 3311 // 109: vrsave 3312 // 110: vscr 3313 // 111: spe_acc 3314 // 112: spefscr 3315 // 113: sfp 3316 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3317 3318 return false; 3319 } 3320 3321 // PowerPC-64 3322 3323 namespace { 3324 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3325 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3326 public: 3327 enum ABIKind { 3328 ELFv1 = 0, 3329 ELFv2 3330 }; 3331 3332 private: 3333 static const unsigned GPRBits = 64; 3334 ABIKind Kind; 3335 bool HasQPX; 3336 3337 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3338 // will be passed in a QPX register. 3339 bool IsQPXVectorTy(const Type *Ty) const { 3340 if (!HasQPX) 3341 return false; 3342 3343 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3344 unsigned NumElements = VT->getNumElements(); 3345 if (NumElements == 1) 3346 return false; 3347 3348 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3349 if (getContext().getTypeSize(Ty) <= 256) 3350 return true; 3351 } else if (VT->getElementType()-> 3352 isSpecificBuiltinType(BuiltinType::Float)) { 3353 if (getContext().getTypeSize(Ty) <= 128) 3354 return true; 3355 } 3356 } 3357 3358 return false; 3359 } 3360 3361 bool IsQPXVectorTy(QualType Ty) const { 3362 return IsQPXVectorTy(Ty.getTypePtr()); 3363 } 3364 3365 public: 3366 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3367 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3368 3369 bool isPromotableTypeForABI(QualType Ty) const; 3370 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3371 3372 ABIArgInfo classifyReturnType(QualType RetTy) const; 3373 ABIArgInfo classifyArgumentType(QualType Ty) const; 3374 3375 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3376 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3377 uint64_t Members) const override; 3378 3379 // TODO: We can add more logic to computeInfo to improve performance. 3380 // Example: For aggregate arguments that fit in a register, we could 3381 // use getDirectInReg (as is done below for structs containing a single 3382 // floating-point value) to avoid pushing them to memory on function 3383 // entry. This would require changing the logic in PPCISelLowering 3384 // when lowering the parameters in the caller and args in the callee. 3385 void computeInfo(CGFunctionInfo &FI) const override { 3386 if (!getCXXABI().classifyReturnType(FI)) 3387 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3388 for (auto &I : FI.arguments()) { 3389 // We rely on the default argument classification for the most part. 3390 // One exception: An aggregate containing a single floating-point 3391 // or vector item must be passed in a register if one is available. 3392 const Type *T = isSingleElementStruct(I.type, getContext()); 3393 if (T) { 3394 const BuiltinType *BT = T->getAs<BuiltinType>(); 3395 if (IsQPXVectorTy(T) || 3396 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3397 (BT && BT->isFloatingPoint())) { 3398 QualType QT(T, 0); 3399 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3400 continue; 3401 } 3402 } 3403 I.info = classifyArgumentType(I.type); 3404 } 3405 } 3406 3407 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3408 CodeGenFunction &CGF) const override; 3409 }; 3410 3411 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3412 3413 public: 3414 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3415 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3416 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3417 3418 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3419 // This is recovered from gcc output. 3420 return 1; // r1 is the dedicated stack pointer 3421 } 3422 3423 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3424 llvm::Value *Address) const override; 3425 }; 3426 3427 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3428 public: 3429 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3430 3431 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3432 // This is recovered from gcc output. 3433 return 1; // r1 is the dedicated stack pointer 3434 } 3435 3436 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3437 llvm::Value *Address) const override; 3438 }; 3439 3440 } 3441 3442 // Return true if the ABI requires Ty to be passed sign- or zero- 3443 // extended to 64 bits. 3444 bool 3445 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3446 // Treat an enum type as its underlying type. 3447 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3448 Ty = EnumTy->getDecl()->getIntegerType(); 3449 3450 // Promotable integer types are required to be promoted by the ABI. 3451 if (Ty->isPromotableIntegerType()) 3452 return true; 3453 3454 // In addition to the usual promotable integer types, we also need to 3455 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3457 switch (BT->getKind()) { 3458 case BuiltinType::Int: 3459 case BuiltinType::UInt: 3460 return true; 3461 default: 3462 break; 3463 } 3464 3465 return false; 3466 } 3467 3468 /// isAlignedParamType - Determine whether a type requires 16-byte 3469 /// alignment in the parameter area. 3470 bool 3471 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3472 Align32 = false; 3473 3474 // Complex types are passed just like their elements. 3475 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3476 Ty = CTy->getElementType(); 3477 3478 // Only vector types of size 16 bytes need alignment (larger types are 3479 // passed via reference, smaller types are not aligned). 3480 if (IsQPXVectorTy(Ty)) { 3481 if (getContext().getTypeSize(Ty) > 128) 3482 Align32 = true; 3483 3484 return true; 3485 } else if (Ty->isVectorType()) { 3486 return getContext().getTypeSize(Ty) == 128; 3487 } 3488 3489 // For single-element float/vector structs, we consider the whole type 3490 // to have the same alignment requirements as its single element. 3491 const Type *AlignAsType = nullptr; 3492 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3493 if (EltType) { 3494 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3495 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3496 getContext().getTypeSize(EltType) == 128) || 3497 (BT && BT->isFloatingPoint())) 3498 AlignAsType = EltType; 3499 } 3500 3501 // Likewise for ELFv2 homogeneous aggregates. 3502 const Type *Base = nullptr; 3503 uint64_t Members = 0; 3504 if (!AlignAsType && Kind == ELFv2 && 3505 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3506 AlignAsType = Base; 3507 3508 // With special case aggregates, only vector base types need alignment. 3509 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3510 if (getContext().getTypeSize(AlignAsType) > 128) 3511 Align32 = true; 3512 3513 return true; 3514 } else if (AlignAsType) { 3515 return AlignAsType->isVectorType(); 3516 } 3517 3518 // Otherwise, we only need alignment for any aggregate type that 3519 // has an alignment requirement of >= 16 bytes. 3520 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3521 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3522 Align32 = true; 3523 return true; 3524 } 3525 3526 return false; 3527 } 3528 3529 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3530 /// aggregate. Base is set to the base element type, and Members is set 3531 /// to the number of base elements. 3532 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3533 uint64_t &Members) const { 3534 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3535 uint64_t NElements = AT->getSize().getZExtValue(); 3536 if (NElements == 0) 3537 return false; 3538 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3539 return false; 3540 Members *= NElements; 3541 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3542 const RecordDecl *RD = RT->getDecl(); 3543 if (RD->hasFlexibleArrayMember()) 3544 return false; 3545 3546 Members = 0; 3547 3548 // If this is a C++ record, check the bases first. 3549 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3550 for (const auto &I : CXXRD->bases()) { 3551 // Ignore empty records. 3552 if (isEmptyRecord(getContext(), I.getType(), true)) 3553 continue; 3554 3555 uint64_t FldMembers; 3556 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3557 return false; 3558 3559 Members += FldMembers; 3560 } 3561 } 3562 3563 for (const auto *FD : RD->fields()) { 3564 // Ignore (non-zero arrays of) empty records. 3565 QualType FT = FD->getType(); 3566 while (const ConstantArrayType *AT = 3567 getContext().getAsConstantArrayType(FT)) { 3568 if (AT->getSize().getZExtValue() == 0) 3569 return false; 3570 FT = AT->getElementType(); 3571 } 3572 if (isEmptyRecord(getContext(), FT, true)) 3573 continue; 3574 3575 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3576 if (getContext().getLangOpts().CPlusPlus && 3577 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3578 continue; 3579 3580 uint64_t FldMembers; 3581 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3582 return false; 3583 3584 Members = (RD->isUnion() ? 3585 std::max(Members, FldMembers) : Members + FldMembers); 3586 } 3587 3588 if (!Base) 3589 return false; 3590 3591 // Ensure there is no padding. 3592 if (getContext().getTypeSize(Base) * Members != 3593 getContext().getTypeSize(Ty)) 3594 return false; 3595 } else { 3596 Members = 1; 3597 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3598 Members = 2; 3599 Ty = CT->getElementType(); 3600 } 3601 3602 // Most ABIs only support float, double, and some vector type widths. 3603 if (!isHomogeneousAggregateBaseType(Ty)) 3604 return false; 3605 3606 // The base type must be the same for all members. Types that 3607 // agree in both total size and mode (float vs. vector) are 3608 // treated as being equivalent here. 3609 const Type *TyPtr = Ty.getTypePtr(); 3610 if (!Base) 3611 Base = TyPtr; 3612 3613 if (Base->isVectorType() != TyPtr->isVectorType() || 3614 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3615 return false; 3616 } 3617 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3618 } 3619 3620 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3621 // Homogeneous aggregates for ELFv2 must have base types of float, 3622 // double, long double, or 128-bit vectors. 3623 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3624 if (BT->getKind() == BuiltinType::Float || 3625 BT->getKind() == BuiltinType::Double || 3626 BT->getKind() == BuiltinType::LongDouble) 3627 return true; 3628 } 3629 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3630 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3631 return true; 3632 } 3633 return false; 3634 } 3635 3636 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3637 const Type *Base, uint64_t Members) const { 3638 // Vector types require one register, floating point types require one 3639 // or two registers depending on their size. 3640 uint32_t NumRegs = 3641 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3642 3643 // Homogeneous Aggregates may occupy at most 8 registers. 3644 return Members * NumRegs <= 8; 3645 } 3646 3647 ABIArgInfo 3648 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3649 Ty = useFirstFieldIfTransparentUnion(Ty); 3650 3651 if (Ty->isAnyComplexType()) 3652 return ABIArgInfo::getDirect(); 3653 3654 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3655 // or via reference (larger than 16 bytes). 3656 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3657 uint64_t Size = getContext().getTypeSize(Ty); 3658 if (Size > 128) 3659 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3660 else if (Size < 128) { 3661 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3662 return ABIArgInfo::getDirect(CoerceTy); 3663 } 3664 } 3665 3666 if (isAggregateTypeForABI(Ty)) { 3667 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3668 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3669 3670 bool Align32; 3671 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3672 (Align32 ? 32 : 16) : 8; 3673 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3674 3675 // ELFv2 homogeneous aggregates are passed as array types. 3676 const Type *Base = nullptr; 3677 uint64_t Members = 0; 3678 if (Kind == ELFv2 && 3679 isHomogeneousAggregate(Ty, Base, Members)) { 3680 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3681 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3682 return ABIArgInfo::getDirect(CoerceTy); 3683 } 3684 3685 // If an aggregate may end up fully in registers, we do not 3686 // use the ByVal method, but pass the aggregate as array. 3687 // This is usually beneficial since we avoid forcing the 3688 // back-end to store the argument to memory. 3689 uint64_t Bits = getContext().getTypeSize(Ty); 3690 if (Bits > 0 && Bits <= 8 * GPRBits) { 3691 llvm::Type *CoerceTy; 3692 3693 // Types up to 8 bytes are passed as integer type (which will be 3694 // properly aligned in the argument save area doubleword). 3695 if (Bits <= GPRBits) 3696 CoerceTy = llvm::IntegerType::get(getVMContext(), 3697 llvm::RoundUpToAlignment(Bits, 8)); 3698 // Larger types are passed as arrays, with the base type selected 3699 // according to the required alignment in the save area. 3700 else { 3701 uint64_t RegBits = ABIAlign * 8; 3702 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3703 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3704 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3705 } 3706 3707 return ABIArgInfo::getDirect(CoerceTy); 3708 } 3709 3710 // All other aggregates are passed ByVal. 3711 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3712 /*Realign=*/TyAlign > ABIAlign); 3713 } 3714 3715 return (isPromotableTypeForABI(Ty) ? 3716 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3717 } 3718 3719 ABIArgInfo 3720 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3721 if (RetTy->isVoidType()) 3722 return ABIArgInfo::getIgnore(); 3723 3724 if (RetTy->isAnyComplexType()) 3725 return ABIArgInfo::getDirect(); 3726 3727 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3728 // or via reference (larger than 16 bytes). 3729 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3730 uint64_t Size = getContext().getTypeSize(RetTy); 3731 if (Size > 128) 3732 return ABIArgInfo::getIndirect(0); 3733 else if (Size < 128) { 3734 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3735 return ABIArgInfo::getDirect(CoerceTy); 3736 } 3737 } 3738 3739 if (isAggregateTypeForABI(RetTy)) { 3740 // ELFv2 homogeneous aggregates are returned as array types. 3741 const Type *Base = nullptr; 3742 uint64_t Members = 0; 3743 if (Kind == ELFv2 && 3744 isHomogeneousAggregate(RetTy, Base, Members)) { 3745 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3746 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3747 return ABIArgInfo::getDirect(CoerceTy); 3748 } 3749 3750 // ELFv2 small aggregates are returned in up to two registers. 3751 uint64_t Bits = getContext().getTypeSize(RetTy); 3752 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3753 if (Bits == 0) 3754 return ABIArgInfo::getIgnore(); 3755 3756 llvm::Type *CoerceTy; 3757 if (Bits > GPRBits) { 3758 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3759 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3760 } else 3761 CoerceTy = llvm::IntegerType::get(getVMContext(), 3762 llvm::RoundUpToAlignment(Bits, 8)); 3763 return ABIArgInfo::getDirect(CoerceTy); 3764 } 3765 3766 // All other aggregates are returned indirectly. 3767 return ABIArgInfo::getIndirect(0); 3768 } 3769 3770 return (isPromotableTypeForABI(RetTy) ? 3771 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3772 } 3773 3774 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3775 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3776 QualType Ty, 3777 CodeGenFunction &CGF) const { 3778 llvm::Type *BP = CGF.Int8PtrTy; 3779 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3780 3781 CGBuilderTy &Builder = CGF.Builder; 3782 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3783 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3784 3785 // Handle types that require 16-byte alignment in the parameter save area. 3786 bool Align32; 3787 if (isAlignedParamType(Ty, Align32)) { 3788 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3789 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3790 Builder.getInt64(Align32 ? 31 : 15)); 3791 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3792 Builder.getInt64(Align32 ? -32 : -16)); 3793 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3794 } 3795 3796 // Update the va_list pointer. The pointer should be bumped by the 3797 // size of the object. We can trust getTypeSize() except for a complex 3798 // type whose base type is smaller than a doubleword. For these, the 3799 // size of the object is 16 bytes; see below for further explanation. 3800 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3801 QualType BaseTy; 3802 unsigned CplxBaseSize = 0; 3803 3804 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3805 BaseTy = CTy->getElementType(); 3806 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3807 if (CplxBaseSize < 8) 3808 SizeInBytes = 16; 3809 } 3810 3811 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3812 llvm::Value *NextAddr = 3813 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3814 "ap.next"); 3815 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3816 3817 // If we have a complex type and the base type is smaller than 8 bytes, 3818 // the ABI calls for the real and imaginary parts to be right-adjusted 3819 // in separate doublewords. However, Clang expects us to produce a 3820 // pointer to a structure with the two parts packed tightly. So generate 3821 // loads of the real and imaginary parts relative to the va_list pointer, 3822 // and store them to a temporary structure. 3823 if (CplxBaseSize && CplxBaseSize < 8) { 3824 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3825 llvm::Value *ImagAddr = RealAddr; 3826 if (CGF.CGM.getDataLayout().isBigEndian()) { 3827 RealAddr = 3828 Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3829 ImagAddr = 3830 Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3831 } else { 3832 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3833 } 3834 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3835 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3836 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3837 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3838 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3839 llvm::AllocaInst *Ptr = 3840 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3841 llvm::Value *RealPtr = 3842 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3843 llvm::Value *ImagPtr = 3844 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3845 Builder.CreateStore(Real, RealPtr, false); 3846 Builder.CreateStore(Imag, ImagPtr, false); 3847 return Ptr; 3848 } 3849 3850 // If the argument is smaller than 8 bytes, it is right-adjusted in 3851 // its doubleword slot. Adjust the pointer to pick it up from the 3852 // correct offset. 3853 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3854 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3855 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3856 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3857 } 3858 3859 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3860 return Builder.CreateBitCast(Addr, PTy); 3861 } 3862 3863 static bool 3864 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3865 llvm::Value *Address) { 3866 // This is calculated from the LLVM and GCC tables and verified 3867 // against gcc output. AFAIK all ABIs use the same encoding. 3868 3869 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3870 3871 llvm::IntegerType *i8 = CGF.Int8Ty; 3872 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3873 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3874 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3875 3876 // 0-31: r0-31, the 8-byte general-purpose registers 3877 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3878 3879 // 32-63: fp0-31, the 8-byte floating-point registers 3880 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3881 3882 // 64-76 are various 4-byte special-purpose registers: 3883 // 64: mq 3884 // 65: lr 3885 // 66: ctr 3886 // 67: ap 3887 // 68-75 cr0-7 3888 // 76: xer 3889 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3890 3891 // 77-108: v0-31, the 16-byte vector registers 3892 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3893 3894 // 109: vrsave 3895 // 110: vscr 3896 // 111: spe_acc 3897 // 112: spefscr 3898 // 113: sfp 3899 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3900 3901 return false; 3902 } 3903 3904 bool 3905 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3906 CodeGen::CodeGenFunction &CGF, 3907 llvm::Value *Address) const { 3908 3909 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3910 } 3911 3912 bool 3913 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3914 llvm::Value *Address) const { 3915 3916 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3917 } 3918 3919 //===----------------------------------------------------------------------===// 3920 // AArch64 ABI Implementation 3921 //===----------------------------------------------------------------------===// 3922 3923 namespace { 3924 3925 class AArch64ABIInfo : public ABIInfo { 3926 public: 3927 enum ABIKind { 3928 AAPCS = 0, 3929 DarwinPCS 3930 }; 3931 3932 private: 3933 ABIKind Kind; 3934 3935 public: 3936 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3937 3938 private: 3939 ABIKind getABIKind() const { return Kind; } 3940 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3941 3942 ABIArgInfo classifyReturnType(QualType RetTy) const; 3943 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3944 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3945 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3946 uint64_t Members) const override; 3947 3948 bool isIllegalVectorType(QualType Ty) const; 3949 3950 void computeInfo(CGFunctionInfo &FI) const override { 3951 if (!getCXXABI().classifyReturnType(FI)) 3952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3953 3954 for (auto &it : FI.arguments()) 3955 it.info = classifyArgumentType(it.type); 3956 } 3957 3958 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3959 CodeGenFunction &CGF) const; 3960 3961 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3962 CodeGenFunction &CGF) const; 3963 3964 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3965 CodeGenFunction &CGF) const override { 3966 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3967 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3968 } 3969 }; 3970 3971 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3972 public: 3973 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3974 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3975 3976 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3977 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3978 } 3979 3980 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3981 return 31; 3982 } 3983 3984 bool doesReturnSlotInterfereWithArgs() const override { return false; } 3985 }; 3986 } 3987 3988 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3989 Ty = useFirstFieldIfTransparentUnion(Ty); 3990 3991 // Handle illegal vector types here. 3992 if (isIllegalVectorType(Ty)) { 3993 uint64_t Size = getContext().getTypeSize(Ty); 3994 if (Size <= 32) { 3995 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3996 return ABIArgInfo::getDirect(ResType); 3997 } 3998 if (Size == 64) { 3999 llvm::Type *ResType = 4000 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4001 return ABIArgInfo::getDirect(ResType); 4002 } 4003 if (Size == 128) { 4004 llvm::Type *ResType = 4005 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4006 return ABIArgInfo::getDirect(ResType); 4007 } 4008 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4009 } 4010 4011 if (!isAggregateTypeForABI(Ty)) { 4012 // Treat an enum type as its underlying type. 4013 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4014 Ty = EnumTy->getDecl()->getIntegerType(); 4015 4016 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4017 ? ABIArgInfo::getExtend() 4018 : ABIArgInfo::getDirect()); 4019 } 4020 4021 // Structures with either a non-trivial destructor or a non-trivial 4022 // copy constructor are always indirect. 4023 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4024 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 4025 CGCXXABI::RAA_DirectInMemory); 4026 } 4027 4028 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4029 // elsewhere for GNU compatibility. 4030 if (isEmptyRecord(getContext(), Ty, true)) { 4031 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4032 return ABIArgInfo::getIgnore(); 4033 4034 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4035 } 4036 4037 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4038 const Type *Base = nullptr; 4039 uint64_t Members = 0; 4040 if (isHomogeneousAggregate(Ty, Base, Members)) { 4041 return ABIArgInfo::getDirect( 4042 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4043 } 4044 4045 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4046 uint64_t Size = getContext().getTypeSize(Ty); 4047 if (Size <= 128) { 4048 unsigned Alignment = getContext().getTypeAlign(Ty); 4049 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4050 4051 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4052 // For aggregates with 16-byte alignment, we use i128. 4053 if (Alignment < 128 && Size == 128) { 4054 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4055 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4056 } 4057 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4058 } 4059 4060 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4061 } 4062 4063 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4064 if (RetTy->isVoidType()) 4065 return ABIArgInfo::getIgnore(); 4066 4067 // Large vector types should be returned via memory. 4068 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4069 return ABIArgInfo::getIndirect(0); 4070 4071 if (!isAggregateTypeForABI(RetTy)) { 4072 // Treat an enum type as its underlying type. 4073 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4074 RetTy = EnumTy->getDecl()->getIntegerType(); 4075 4076 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4077 ? ABIArgInfo::getExtend() 4078 : ABIArgInfo::getDirect()); 4079 } 4080 4081 if (isEmptyRecord(getContext(), RetTy, true)) 4082 return ABIArgInfo::getIgnore(); 4083 4084 const Type *Base = nullptr; 4085 uint64_t Members = 0; 4086 if (isHomogeneousAggregate(RetTy, Base, Members)) 4087 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4088 return ABIArgInfo::getDirect(); 4089 4090 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4091 uint64_t Size = getContext().getTypeSize(RetTy); 4092 if (Size <= 128) { 4093 unsigned Alignment = getContext().getTypeAlign(RetTy); 4094 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4095 4096 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4097 // For aggregates with 16-byte alignment, we use i128. 4098 if (Alignment < 128 && Size == 128) { 4099 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4100 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4101 } 4102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4103 } 4104 4105 return ABIArgInfo::getIndirect(0); 4106 } 4107 4108 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4109 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4111 // Check whether VT is legal. 4112 unsigned NumElements = VT->getNumElements(); 4113 uint64_t Size = getContext().getTypeSize(VT); 4114 // NumElements should be power of 2 between 1 and 16. 4115 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4116 return true; 4117 return Size != 64 && (Size != 128 || NumElements == 1); 4118 } 4119 return false; 4120 } 4121 4122 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4123 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4124 // point type or a short-vector type. This is the same as the 32-bit ABI, 4125 // but with the difference that any floating-point type is allowed, 4126 // including __fp16. 4127 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4128 if (BT->isFloatingPoint()) 4129 return true; 4130 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4131 unsigned VecSize = getContext().getTypeSize(VT); 4132 if (VecSize == 64 || VecSize == 128) 4133 return true; 4134 } 4135 return false; 4136 } 4137 4138 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4139 uint64_t Members) const { 4140 return Members <= 4; 4141 } 4142 4143 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4144 QualType Ty, 4145 CodeGenFunction &CGF) const { 4146 ABIArgInfo AI = classifyArgumentType(Ty); 4147 bool IsIndirect = AI.isIndirect(); 4148 4149 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4150 if (IsIndirect) 4151 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4152 else if (AI.getCoerceToType()) 4153 BaseTy = AI.getCoerceToType(); 4154 4155 unsigned NumRegs = 1; 4156 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4157 BaseTy = ArrTy->getElementType(); 4158 NumRegs = ArrTy->getNumElements(); 4159 } 4160 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4161 4162 // The AArch64 va_list type and handling is specified in the Procedure Call 4163 // Standard, section B.4: 4164 // 4165 // struct { 4166 // void *__stack; 4167 // void *__gr_top; 4168 // void *__vr_top; 4169 // int __gr_offs; 4170 // int __vr_offs; 4171 // }; 4172 4173 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4174 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4175 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4176 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4177 auto &Ctx = CGF.getContext(); 4178 4179 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4180 int reg_top_index; 4181 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4182 if (!IsFPR) { 4183 // 3 is the field number of __gr_offs 4184 reg_offs_p = 4185 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4186 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4187 reg_top_index = 1; // field number for __gr_top 4188 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4189 } else { 4190 // 4 is the field number of __vr_offs. 4191 reg_offs_p = 4192 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4193 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4194 reg_top_index = 2; // field number for __vr_top 4195 RegSize = 16 * NumRegs; 4196 } 4197 4198 //======================================= 4199 // Find out where argument was passed 4200 //======================================= 4201 4202 // If reg_offs >= 0 we're already using the stack for this type of 4203 // argument. We don't want to keep updating reg_offs (in case it overflows, 4204 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4205 // whatever they get). 4206 llvm::Value *UsingStack = nullptr; 4207 UsingStack = CGF.Builder.CreateICmpSGE( 4208 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4209 4210 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4211 4212 // Otherwise, at least some kind of argument could go in these registers, the 4213 // question is whether this particular type is too big. 4214 CGF.EmitBlock(MaybeRegBlock); 4215 4216 // Integer arguments may need to correct register alignment (for example a 4217 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4218 // align __gr_offs to calculate the potential address. 4219 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4220 int Align = Ctx.getTypeAlign(Ty) / 8; 4221 4222 reg_offs = CGF.Builder.CreateAdd( 4223 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4224 "align_regoffs"); 4225 reg_offs = CGF.Builder.CreateAnd( 4226 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4227 "aligned_regoffs"); 4228 } 4229 4230 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4231 llvm::Value *NewOffset = nullptr; 4232 NewOffset = CGF.Builder.CreateAdd( 4233 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4234 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4235 4236 // Now we're in a position to decide whether this argument really was in 4237 // registers or not. 4238 llvm::Value *InRegs = nullptr; 4239 InRegs = CGF.Builder.CreateICmpSLE( 4240 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4241 4242 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4243 4244 //======================================= 4245 // Argument was in registers 4246 //======================================= 4247 4248 // Now we emit the code for if the argument was originally passed in 4249 // registers. First start the appropriate block: 4250 CGF.EmitBlock(InRegBlock); 4251 4252 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4253 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4254 "reg_top_p"); 4255 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4256 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4257 llvm::Value *RegAddr = nullptr; 4258 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4259 4260 if (IsIndirect) { 4261 // If it's been passed indirectly (actually a struct), whatever we find from 4262 // stored registers or on the stack will actually be a struct **. 4263 MemTy = llvm::PointerType::getUnqual(MemTy); 4264 } 4265 4266 const Type *Base = nullptr; 4267 uint64_t NumMembers = 0; 4268 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4269 if (IsHFA && NumMembers > 1) { 4270 // Homogeneous aggregates passed in registers will have their elements split 4271 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4272 // qN+1, ...). We reload and store into a temporary local variable 4273 // contiguously. 4274 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4275 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4276 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4277 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4278 int Offset = 0; 4279 4280 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4281 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4282 for (unsigned i = 0; i < NumMembers; ++i) { 4283 llvm::Value *BaseOffset = 4284 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4285 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4286 LoadAddr = CGF.Builder.CreateBitCast( 4287 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4288 llvm::Value *StoreAddr = 4289 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4290 4291 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4292 CGF.Builder.CreateStore(Elem, StoreAddr); 4293 } 4294 4295 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4296 } else { 4297 // Otherwise the object is contiguous in memory 4298 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4299 if (CGF.CGM.getDataLayout().isBigEndian() && 4300 (IsHFA || !isAggregateTypeForABI(Ty)) && 4301 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4302 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4303 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4304 4305 BaseAddr = CGF.Builder.CreateAdd( 4306 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4307 4308 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4309 } 4310 4311 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4312 } 4313 4314 CGF.EmitBranch(ContBlock); 4315 4316 //======================================= 4317 // Argument was on the stack 4318 //======================================= 4319 CGF.EmitBlock(OnStackBlock); 4320 4321 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4322 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4323 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4324 4325 // Again, stack arguments may need realigmnent. In this case both integer and 4326 // floating-point ones might be affected. 4327 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4328 int Align = Ctx.getTypeAlign(Ty) / 8; 4329 4330 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4331 4332 OnStackAddr = CGF.Builder.CreateAdd( 4333 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4334 "align_stack"); 4335 OnStackAddr = CGF.Builder.CreateAnd( 4336 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4337 "align_stack"); 4338 4339 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4340 } 4341 4342 uint64_t StackSize; 4343 if (IsIndirect) 4344 StackSize = 8; 4345 else 4346 StackSize = Ctx.getTypeSize(Ty) / 8; 4347 4348 // All stack slots are 8 bytes 4349 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4350 4351 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4352 llvm::Value *NewStack = 4353 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4354 4355 // Write the new value of __stack for the next call to va_arg 4356 CGF.Builder.CreateStore(NewStack, stack_p); 4357 4358 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4359 Ctx.getTypeSize(Ty) < 64) { 4360 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4361 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4362 4363 OnStackAddr = CGF.Builder.CreateAdd( 4364 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4365 4366 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4367 } 4368 4369 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4370 4371 CGF.EmitBranch(ContBlock); 4372 4373 //======================================= 4374 // Tidy up 4375 //======================================= 4376 CGF.EmitBlock(ContBlock); 4377 4378 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4379 ResAddr->addIncoming(RegAddr, InRegBlock); 4380 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4381 4382 if (IsIndirect) 4383 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4384 4385 return ResAddr; 4386 } 4387 4388 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, 4389 QualType Ty, 4390 CodeGenFunction &CGF) const { 4391 // We do not support va_arg for aggregates or illegal vector types. 4392 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4393 // other cases. 4394 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4395 return nullptr; 4396 4397 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4398 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4399 4400 const Type *Base = nullptr; 4401 uint64_t Members = 0; 4402 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4403 4404 bool isIndirect = false; 4405 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4406 // be passed indirectly. 4407 if (Size > 16 && !isHA) { 4408 isIndirect = true; 4409 Size = 8; 4410 Align = 8; 4411 } 4412 4413 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4414 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4415 4416 CGBuilderTy &Builder = CGF.Builder; 4417 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4418 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4419 4420 if (isEmptyRecord(getContext(), Ty, true)) { 4421 // These are ignored for parameter passing purposes. 4422 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4423 return Builder.CreateBitCast(Addr, PTy); 4424 } 4425 4426 const uint64_t MinABIAlign = 8; 4427 if (Align > MinABIAlign) { 4428 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4429 Addr = Builder.CreateGEP(Addr, Offset); 4430 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4431 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4432 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4433 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4434 } 4435 4436 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4437 llvm::Value *NextAddr = Builder.CreateGEP( 4438 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4439 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4440 4441 if (isIndirect) 4442 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4443 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4444 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4445 4446 return AddrTyped; 4447 } 4448 4449 //===----------------------------------------------------------------------===// 4450 // ARM ABI Implementation 4451 //===----------------------------------------------------------------------===// 4452 4453 namespace { 4454 4455 class ARMABIInfo : public ABIInfo { 4456 public: 4457 enum ABIKind { 4458 APCS = 0, 4459 AAPCS = 1, 4460 AAPCS_VFP 4461 }; 4462 4463 private: 4464 ABIKind Kind; 4465 4466 public: 4467 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4468 setCCs(); 4469 } 4470 4471 bool isEABI() const { 4472 switch (getTarget().getTriple().getEnvironment()) { 4473 case llvm::Triple::Android: 4474 case llvm::Triple::EABI: 4475 case llvm::Triple::EABIHF: 4476 case llvm::Triple::GNUEABI: 4477 case llvm::Triple::GNUEABIHF: 4478 return true; 4479 default: 4480 return false; 4481 } 4482 } 4483 4484 bool isEABIHF() const { 4485 switch (getTarget().getTriple().getEnvironment()) { 4486 case llvm::Triple::EABIHF: 4487 case llvm::Triple::GNUEABIHF: 4488 return true; 4489 default: 4490 return false; 4491 } 4492 } 4493 4494 ABIKind getABIKind() const { return Kind; } 4495 4496 private: 4497 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4498 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4499 bool isIllegalVectorType(QualType Ty) const; 4500 4501 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4502 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4503 uint64_t Members) const override; 4504 4505 void computeInfo(CGFunctionInfo &FI) const override; 4506 4507 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4508 CodeGenFunction &CGF) const override; 4509 4510 llvm::CallingConv::ID getLLVMDefaultCC() const; 4511 llvm::CallingConv::ID getABIDefaultCC() const; 4512 void setCCs(); 4513 }; 4514 4515 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4516 public: 4517 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4518 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4519 4520 const ARMABIInfo &getABIInfo() const { 4521 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4522 } 4523 4524 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4525 return 13; 4526 } 4527 4528 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4529 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4530 } 4531 4532 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4533 llvm::Value *Address) const override { 4534 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4535 4536 // 0-15 are the 16 integer registers. 4537 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4538 return false; 4539 } 4540 4541 unsigned getSizeOfUnwindException() const override { 4542 if (getABIInfo().isEABI()) return 88; 4543 return TargetCodeGenInfo::getSizeOfUnwindException(); 4544 } 4545 4546 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4547 CodeGen::CodeGenModule &CGM) const override { 4548 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4549 if (!FD) 4550 return; 4551 4552 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4553 if (!Attr) 4554 return; 4555 4556 const char *Kind; 4557 switch (Attr->getInterrupt()) { 4558 case ARMInterruptAttr::Generic: Kind = ""; break; 4559 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4560 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4561 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4562 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4563 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4564 } 4565 4566 llvm::Function *Fn = cast<llvm::Function>(GV); 4567 4568 Fn->addFnAttr("interrupt", Kind); 4569 4570 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4571 return; 4572 4573 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4574 // however this is not necessarily true on taking any interrupt. Instruct 4575 // the backend to perform a realignment as part of the function prologue. 4576 llvm::AttrBuilder B; 4577 B.addStackAlignmentAttr(8); 4578 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4579 llvm::AttributeSet::get(CGM.getLLVMContext(), 4580 llvm::AttributeSet::FunctionIndex, 4581 B)); 4582 } 4583 }; 4584 4585 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4586 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4587 CodeGen::CodeGenModule &CGM) const; 4588 4589 public: 4590 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4591 : ARMTargetCodeGenInfo(CGT, K) {} 4592 4593 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4594 CodeGen::CodeGenModule &CGM) const override; 4595 }; 4596 4597 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4598 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4599 if (!isa<FunctionDecl>(D)) 4600 return; 4601 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4602 return; 4603 4604 llvm::Function *F = cast<llvm::Function>(GV); 4605 F->addFnAttr("stack-probe-size", 4606 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4607 } 4608 4609 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4610 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4611 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4612 addStackProbeSizeTargetAttribute(D, GV, CGM); 4613 } 4614 } 4615 4616 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4617 if (!getCXXABI().classifyReturnType(FI)) 4618 FI.getReturnInfo() = 4619 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4620 4621 for (auto &I : FI.arguments()) 4622 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4623 4624 // Always honor user-specified calling convention. 4625 if (FI.getCallingConvention() != llvm::CallingConv::C) 4626 return; 4627 4628 llvm::CallingConv::ID cc = getRuntimeCC(); 4629 if (cc != llvm::CallingConv::C) 4630 FI.setEffectiveCallingConvention(cc); 4631 } 4632 4633 /// Return the default calling convention that LLVM will use. 4634 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4635 // The default calling convention that LLVM will infer. 4636 if (isEABIHF()) 4637 return llvm::CallingConv::ARM_AAPCS_VFP; 4638 else if (isEABI()) 4639 return llvm::CallingConv::ARM_AAPCS; 4640 else 4641 return llvm::CallingConv::ARM_APCS; 4642 } 4643 4644 /// Return the calling convention that our ABI would like us to use 4645 /// as the C calling convention. 4646 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4647 switch (getABIKind()) { 4648 case APCS: return llvm::CallingConv::ARM_APCS; 4649 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4650 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4651 } 4652 llvm_unreachable("bad ABI kind"); 4653 } 4654 4655 void ARMABIInfo::setCCs() { 4656 assert(getRuntimeCC() == llvm::CallingConv::C); 4657 4658 // Don't muddy up the IR with a ton of explicit annotations if 4659 // they'd just match what LLVM will infer from the triple. 4660 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4661 if (abiCC != getLLVMDefaultCC()) 4662 RuntimeCC = abiCC; 4663 4664 BuiltinCC = (getABIKind() == APCS ? 4665 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4666 } 4667 4668 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4669 bool isVariadic) const { 4670 // 6.1.2.1 The following argument types are VFP CPRCs: 4671 // A single-precision floating-point type (including promoted 4672 // half-precision types); A double-precision floating-point type; 4673 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4674 // with a Base Type of a single- or double-precision floating-point type, 4675 // 64-bit containerized vectors or 128-bit containerized vectors with one 4676 // to four Elements. 4677 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4678 4679 Ty = useFirstFieldIfTransparentUnion(Ty); 4680 4681 // Handle illegal vector types here. 4682 if (isIllegalVectorType(Ty)) { 4683 uint64_t Size = getContext().getTypeSize(Ty); 4684 if (Size <= 32) { 4685 llvm::Type *ResType = 4686 llvm::Type::getInt32Ty(getVMContext()); 4687 return ABIArgInfo::getDirect(ResType); 4688 } 4689 if (Size == 64) { 4690 llvm::Type *ResType = llvm::VectorType::get( 4691 llvm::Type::getInt32Ty(getVMContext()), 2); 4692 return ABIArgInfo::getDirect(ResType); 4693 } 4694 if (Size == 128) { 4695 llvm::Type *ResType = llvm::VectorType::get( 4696 llvm::Type::getInt32Ty(getVMContext()), 4); 4697 return ABIArgInfo::getDirect(ResType); 4698 } 4699 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4700 } 4701 4702 if (!isAggregateTypeForABI(Ty)) { 4703 // Treat an enum type as its underlying type. 4704 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4705 Ty = EnumTy->getDecl()->getIntegerType(); 4706 } 4707 4708 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4709 : ABIArgInfo::getDirect()); 4710 } 4711 4712 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4713 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4714 } 4715 4716 // Ignore empty records. 4717 if (isEmptyRecord(getContext(), Ty, true)) 4718 return ABIArgInfo::getIgnore(); 4719 4720 if (IsEffectivelyAAPCS_VFP) { 4721 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4722 // into VFP registers. 4723 const Type *Base = nullptr; 4724 uint64_t Members = 0; 4725 if (isHomogeneousAggregate(Ty, Base, Members)) { 4726 assert(Base && "Base class should be set for homogeneous aggregate"); 4727 // Base can be a floating-point or a vector. 4728 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4729 } 4730 } 4731 4732 // Support byval for ARM. 4733 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4734 // most 8-byte. We realign the indirect argument if type alignment is bigger 4735 // than ABI alignment. 4736 uint64_t ABIAlign = 4; 4737 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4738 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4739 getABIKind() == ARMABIInfo::AAPCS) 4740 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4741 4742 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4743 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4744 /*Realign=*/TyAlign > ABIAlign); 4745 } 4746 4747 // Otherwise, pass by coercing to a structure of the appropriate size. 4748 llvm::Type* ElemTy; 4749 unsigned SizeRegs; 4750 // FIXME: Try to match the types of the arguments more accurately where 4751 // we can. 4752 if (getContext().getTypeAlign(Ty) <= 32) { 4753 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4754 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4755 } else { 4756 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4757 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4758 } 4759 4760 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4761 } 4762 4763 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4764 llvm::LLVMContext &VMContext) { 4765 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4766 // is called integer-like if its size is less than or equal to one word, and 4767 // the offset of each of its addressable sub-fields is zero. 4768 4769 uint64_t Size = Context.getTypeSize(Ty); 4770 4771 // Check that the type fits in a word. 4772 if (Size > 32) 4773 return false; 4774 4775 // FIXME: Handle vector types! 4776 if (Ty->isVectorType()) 4777 return false; 4778 4779 // Float types are never treated as "integer like". 4780 if (Ty->isRealFloatingType()) 4781 return false; 4782 4783 // If this is a builtin or pointer type then it is ok. 4784 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4785 return true; 4786 4787 // Small complex integer types are "integer like". 4788 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4789 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4790 4791 // Single element and zero sized arrays should be allowed, by the definition 4792 // above, but they are not. 4793 4794 // Otherwise, it must be a record type. 4795 const RecordType *RT = Ty->getAs<RecordType>(); 4796 if (!RT) return false; 4797 4798 // Ignore records with flexible arrays. 4799 const RecordDecl *RD = RT->getDecl(); 4800 if (RD->hasFlexibleArrayMember()) 4801 return false; 4802 4803 // Check that all sub-fields are at offset 0, and are themselves "integer 4804 // like". 4805 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4806 4807 bool HadField = false; 4808 unsigned idx = 0; 4809 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4810 i != e; ++i, ++idx) { 4811 const FieldDecl *FD = *i; 4812 4813 // Bit-fields are not addressable, we only need to verify they are "integer 4814 // like". We still have to disallow a subsequent non-bitfield, for example: 4815 // struct { int : 0; int x } 4816 // is non-integer like according to gcc. 4817 if (FD->isBitField()) { 4818 if (!RD->isUnion()) 4819 HadField = true; 4820 4821 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4822 return false; 4823 4824 continue; 4825 } 4826 4827 // Check if this field is at offset 0. 4828 if (Layout.getFieldOffset(idx) != 0) 4829 return false; 4830 4831 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4832 return false; 4833 4834 // Only allow at most one field in a structure. This doesn't match the 4835 // wording above, but follows gcc in situations with a field following an 4836 // empty structure. 4837 if (!RD->isUnion()) { 4838 if (HadField) 4839 return false; 4840 4841 HadField = true; 4842 } 4843 } 4844 4845 return true; 4846 } 4847 4848 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4849 bool isVariadic) const { 4850 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4851 4852 if (RetTy->isVoidType()) 4853 return ABIArgInfo::getIgnore(); 4854 4855 // Large vector types should be returned via memory. 4856 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4857 return ABIArgInfo::getIndirect(0); 4858 } 4859 4860 if (!isAggregateTypeForABI(RetTy)) { 4861 // Treat an enum type as its underlying type. 4862 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4863 RetTy = EnumTy->getDecl()->getIntegerType(); 4864 4865 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4866 : ABIArgInfo::getDirect(); 4867 } 4868 4869 // Are we following APCS? 4870 if (getABIKind() == APCS) { 4871 if (isEmptyRecord(getContext(), RetTy, false)) 4872 return ABIArgInfo::getIgnore(); 4873 4874 // Complex types are all returned as packed integers. 4875 // 4876 // FIXME: Consider using 2 x vector types if the back end handles them 4877 // correctly. 4878 if (RetTy->isAnyComplexType()) 4879 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4880 getVMContext(), getContext().getTypeSize(RetTy))); 4881 4882 // Integer like structures are returned in r0. 4883 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4884 // Return in the smallest viable integer type. 4885 uint64_t Size = getContext().getTypeSize(RetTy); 4886 if (Size <= 8) 4887 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4888 if (Size <= 16) 4889 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4890 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4891 } 4892 4893 // Otherwise return in memory. 4894 return ABIArgInfo::getIndirect(0); 4895 } 4896 4897 // Otherwise this is an AAPCS variant. 4898 4899 if (isEmptyRecord(getContext(), RetTy, true)) 4900 return ABIArgInfo::getIgnore(); 4901 4902 // Check for homogeneous aggregates with AAPCS-VFP. 4903 if (IsEffectivelyAAPCS_VFP) { 4904 const Type *Base = nullptr; 4905 uint64_t Members; 4906 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4907 assert(Base && "Base class should be set for homogeneous aggregate"); 4908 // Homogeneous Aggregates are returned directly. 4909 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4910 } 4911 } 4912 4913 // Aggregates <= 4 bytes are returned in r0; other aggregates 4914 // are returned indirectly. 4915 uint64_t Size = getContext().getTypeSize(RetTy); 4916 if (Size <= 32) { 4917 if (getDataLayout().isBigEndian()) 4918 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4919 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4920 4921 // Return in the smallest viable integer type. 4922 if (Size <= 8) 4923 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4924 if (Size <= 16) 4925 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4926 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4927 } 4928 4929 return ABIArgInfo::getIndirect(0); 4930 } 4931 4932 /// isIllegalVector - check whether Ty is an illegal vector type. 4933 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4934 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4935 // Check whether VT is legal. 4936 unsigned NumElements = VT->getNumElements(); 4937 uint64_t Size = getContext().getTypeSize(VT); 4938 // NumElements should be power of 2. 4939 if ((NumElements & (NumElements - 1)) != 0) 4940 return true; 4941 // Size should be greater than 32 bits. 4942 return Size <= 32; 4943 } 4944 return false; 4945 } 4946 4947 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4948 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4949 // double, or 64-bit or 128-bit vectors. 4950 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4951 if (BT->getKind() == BuiltinType::Float || 4952 BT->getKind() == BuiltinType::Double || 4953 BT->getKind() == BuiltinType::LongDouble) 4954 return true; 4955 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4956 unsigned VecSize = getContext().getTypeSize(VT); 4957 if (VecSize == 64 || VecSize == 128) 4958 return true; 4959 } 4960 return false; 4961 } 4962 4963 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4964 uint64_t Members) const { 4965 return Members <= 4; 4966 } 4967 4968 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4969 CodeGenFunction &CGF) const { 4970 llvm::Type *BP = CGF.Int8PtrTy; 4971 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4972 4973 CGBuilderTy &Builder = CGF.Builder; 4974 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4975 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4976 4977 if (isEmptyRecord(getContext(), Ty, true)) { 4978 // These are ignored for parameter passing purposes. 4979 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4980 return Builder.CreateBitCast(Addr, PTy); 4981 } 4982 4983 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4984 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4985 bool IsIndirect = false; 4986 4987 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4988 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4989 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4990 getABIKind() == ARMABIInfo::AAPCS) 4991 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4992 else 4993 TyAlign = 4; 4994 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4995 if (isIllegalVectorType(Ty) && Size > 16) { 4996 IsIndirect = true; 4997 Size = 4; 4998 TyAlign = 4; 4999 } 5000 5001 // Handle address alignment for ABI alignment > 4 bytes. 5002 if (TyAlign > 4) { 5003 assert((TyAlign & (TyAlign - 1)) == 0 && 5004 "Alignment is not power of 2!"); 5005 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 5006 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 5007 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 5008 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 5009 } 5010 5011 uint64_t Offset = 5012 llvm::RoundUpToAlignment(Size, 4); 5013 llvm::Value *NextAddr = 5014 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5015 "ap.next"); 5016 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5017 5018 if (IsIndirect) 5019 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5020 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5021 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5022 // may not be correctly aligned for the vector type. We create an aligned 5023 // temporary space and copy the content over from ap.cur to the temporary 5024 // space. This is necessary if the natural alignment of the type is greater 5025 // than the ABI alignment. 5026 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5027 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5028 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5029 "var.align"); 5030 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5031 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5032 Builder.CreateMemCpy(Dst, Src, 5033 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5034 TyAlign, false); 5035 Addr = AlignedTemp; //The content is in aligned location. 5036 } 5037 llvm::Type *PTy = 5038 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5039 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5040 5041 return AddrTyped; 5042 } 5043 5044 //===----------------------------------------------------------------------===// 5045 // NVPTX ABI Implementation 5046 //===----------------------------------------------------------------------===// 5047 5048 namespace { 5049 5050 class NVPTXABIInfo : public ABIInfo { 5051 public: 5052 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5053 5054 ABIArgInfo classifyReturnType(QualType RetTy) const; 5055 ABIArgInfo classifyArgumentType(QualType Ty) const; 5056 5057 void computeInfo(CGFunctionInfo &FI) const override; 5058 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5059 CodeGenFunction &CFG) const override; 5060 }; 5061 5062 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5063 public: 5064 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5065 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5066 5067 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5068 CodeGen::CodeGenModule &M) const override; 5069 private: 5070 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5071 // resulting MDNode to the nvvm.annotations MDNode. 5072 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5073 }; 5074 5075 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5076 if (RetTy->isVoidType()) 5077 return ABIArgInfo::getIgnore(); 5078 5079 // note: this is different from default ABI 5080 if (!RetTy->isScalarType()) 5081 return ABIArgInfo::getDirect(); 5082 5083 // Treat an enum type as its underlying type. 5084 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5085 RetTy = EnumTy->getDecl()->getIntegerType(); 5086 5087 return (RetTy->isPromotableIntegerType() ? 5088 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5089 } 5090 5091 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5092 // Treat an enum type as its underlying type. 5093 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5094 Ty = EnumTy->getDecl()->getIntegerType(); 5095 5096 // Return aggregates type as indirect by value 5097 if (isAggregateTypeForABI(Ty)) 5098 return ABIArgInfo::getIndirect(0, /* byval */ true); 5099 5100 return (Ty->isPromotableIntegerType() ? 5101 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5102 } 5103 5104 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5105 if (!getCXXABI().classifyReturnType(FI)) 5106 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5107 for (auto &I : FI.arguments()) 5108 I.info = classifyArgumentType(I.type); 5109 5110 // Always honor user-specified calling convention. 5111 if (FI.getCallingConvention() != llvm::CallingConv::C) 5112 return; 5113 5114 FI.setEffectiveCallingConvention(getRuntimeCC()); 5115 } 5116 5117 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5118 CodeGenFunction &CFG) const { 5119 llvm_unreachable("NVPTX does not support varargs"); 5120 } 5121 5122 void NVPTXTargetCodeGenInfo:: 5123 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5124 CodeGen::CodeGenModule &M) const{ 5125 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5126 if (!FD) return; 5127 5128 llvm::Function *F = cast<llvm::Function>(GV); 5129 5130 // Perform special handling in OpenCL mode 5131 if (M.getLangOpts().OpenCL) { 5132 // Use OpenCL function attributes to check for kernel functions 5133 // By default, all functions are device functions 5134 if (FD->hasAttr<OpenCLKernelAttr>()) { 5135 // OpenCL __kernel functions get kernel metadata 5136 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5137 addNVVMMetadata(F, "kernel", 1); 5138 // And kernel functions are not subject to inlining 5139 F->addFnAttr(llvm::Attribute::NoInline); 5140 } 5141 } 5142 5143 // Perform special handling in CUDA mode. 5144 if (M.getLangOpts().CUDA) { 5145 // CUDA __global__ functions get a kernel metadata entry. Since 5146 // __global__ functions cannot be called from the device, we do not 5147 // need to set the noinline attribute. 5148 if (FD->hasAttr<CUDAGlobalAttr>()) { 5149 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5150 addNVVMMetadata(F, "kernel", 1); 5151 } 5152 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5153 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5154 llvm::APSInt MaxThreads(32); 5155 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5156 if (MaxThreads > 0) 5157 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5158 5159 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5160 // not specified in __launch_bounds__ or if the user specified a 0 value, 5161 // we don't have to add a PTX directive. 5162 if (Attr->getMinBlocks()) { 5163 llvm::APSInt MinBlocks(32); 5164 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5165 if (MinBlocks > 0) 5166 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5167 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5168 } 5169 } 5170 } 5171 } 5172 5173 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5174 int Operand) { 5175 llvm::Module *M = F->getParent(); 5176 llvm::LLVMContext &Ctx = M->getContext(); 5177 5178 // Get "nvvm.annotations" metadata node 5179 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5180 5181 llvm::Metadata *MDVals[] = { 5182 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5183 llvm::ConstantAsMetadata::get( 5184 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5185 // Append metadata to nvvm.annotations 5186 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5187 } 5188 } 5189 5190 //===----------------------------------------------------------------------===// 5191 // SystemZ ABI Implementation 5192 //===----------------------------------------------------------------------===// 5193 5194 namespace { 5195 5196 class SystemZABIInfo : public ABIInfo { 5197 bool HasVector; 5198 5199 public: 5200 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5201 : ABIInfo(CGT), HasVector(HV) {} 5202 5203 bool isPromotableIntegerType(QualType Ty) const; 5204 bool isCompoundType(QualType Ty) const; 5205 bool isVectorArgumentType(QualType Ty) const; 5206 bool isFPArgumentType(QualType Ty) const; 5207 QualType GetSingleElementType(QualType Ty) const; 5208 5209 ABIArgInfo classifyReturnType(QualType RetTy) const; 5210 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5211 5212 void computeInfo(CGFunctionInfo &FI) const override { 5213 if (!getCXXABI().classifyReturnType(FI)) 5214 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5215 for (auto &I : FI.arguments()) 5216 I.info = classifyArgumentType(I.type); 5217 } 5218 5219 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5220 CodeGenFunction &CGF) const override; 5221 }; 5222 5223 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5224 public: 5225 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5226 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5227 }; 5228 5229 } 5230 5231 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5232 // Treat an enum type as its underlying type. 5233 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5234 Ty = EnumTy->getDecl()->getIntegerType(); 5235 5236 // Promotable integer types are required to be promoted by the ABI. 5237 if (Ty->isPromotableIntegerType()) 5238 return true; 5239 5240 // 32-bit values must also be promoted. 5241 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5242 switch (BT->getKind()) { 5243 case BuiltinType::Int: 5244 case BuiltinType::UInt: 5245 return true; 5246 default: 5247 return false; 5248 } 5249 return false; 5250 } 5251 5252 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5253 return (Ty->isAnyComplexType() || 5254 Ty->isVectorType() || 5255 isAggregateTypeForABI(Ty)); 5256 } 5257 5258 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5259 return (HasVector && 5260 Ty->isVectorType() && 5261 getContext().getTypeSize(Ty) <= 128); 5262 } 5263 5264 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5265 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5266 switch (BT->getKind()) { 5267 case BuiltinType::Float: 5268 case BuiltinType::Double: 5269 return true; 5270 default: 5271 return false; 5272 } 5273 5274 return false; 5275 } 5276 5277 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5278 if (const RecordType *RT = Ty->getAsStructureType()) { 5279 const RecordDecl *RD = RT->getDecl(); 5280 QualType Found; 5281 5282 // If this is a C++ record, check the bases first. 5283 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5284 for (const auto &I : CXXRD->bases()) { 5285 QualType Base = I.getType(); 5286 5287 // Empty bases don't affect things either way. 5288 if (isEmptyRecord(getContext(), Base, true)) 5289 continue; 5290 5291 if (!Found.isNull()) 5292 return Ty; 5293 Found = GetSingleElementType(Base); 5294 } 5295 5296 // Check the fields. 5297 for (const auto *FD : RD->fields()) { 5298 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5299 // Unlike isSingleElementStruct(), empty structure and array fields 5300 // do count. So do anonymous bitfields that aren't zero-sized. 5301 if (getContext().getLangOpts().CPlusPlus && 5302 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5303 continue; 5304 5305 // Unlike isSingleElementStruct(), arrays do not count. 5306 // Nested structures still do though. 5307 if (!Found.isNull()) 5308 return Ty; 5309 Found = GetSingleElementType(FD->getType()); 5310 } 5311 5312 // Unlike isSingleElementStruct(), trailing padding is allowed. 5313 // An 8-byte aligned struct s { float f; } is passed as a double. 5314 if (!Found.isNull()) 5315 return Found; 5316 } 5317 5318 return Ty; 5319 } 5320 5321 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5322 CodeGenFunction &CGF) const { 5323 // Assume that va_list type is correct; should be pointer to LLVM type: 5324 // struct { 5325 // i64 __gpr; 5326 // i64 __fpr; 5327 // i8 *__overflow_arg_area; 5328 // i8 *__reg_save_area; 5329 // }; 5330 5331 // Every non-vector argument occupies 8 bytes and is passed by preference 5332 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5333 // always passed on the stack. 5334 Ty = CGF.getContext().getCanonicalType(Ty); 5335 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5336 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5337 ABIArgInfo AI = classifyArgumentType(Ty); 5338 bool IsIndirect = AI.isIndirect(); 5339 bool InFPRs = false; 5340 bool IsVector = false; 5341 unsigned UnpaddedBitSize; 5342 if (IsIndirect) { 5343 APTy = llvm::PointerType::getUnqual(APTy); 5344 UnpaddedBitSize = 64; 5345 } else { 5346 if (AI.getCoerceToType()) 5347 ArgTy = AI.getCoerceToType(); 5348 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5349 IsVector = ArgTy->isVectorTy(); 5350 UnpaddedBitSize = getContext().getTypeSize(Ty); 5351 } 5352 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5353 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5354 5355 unsigned PaddedSize = PaddedBitSize / 8; 5356 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5357 5358 llvm::Type *IndexTy = CGF.Int64Ty; 5359 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5360 5361 if (IsVector) { 5362 // Work out the address of a vector argument on the stack. 5363 // Vector arguments are always passed in the high bits of a 5364 // single (8 byte) or double (16 byte) stack slot. 5365 llvm::Value *OverflowArgAreaPtr = 5366 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5367 "overflow_arg_area_ptr"); 5368 llvm::Value *OverflowArgArea = 5369 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5370 llvm::Value *MemAddr = 5371 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5372 5373 // Update overflow_arg_area_ptr pointer 5374 llvm::Value *NewOverflowArgArea = 5375 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5376 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5377 5378 return MemAddr; 5379 } 5380 5381 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5382 if (InFPRs) { 5383 MaxRegs = 4; // Maximum of 4 FPR arguments 5384 RegCountField = 1; // __fpr 5385 RegSaveIndex = 16; // save offset for f0 5386 RegPadding = 0; // floats are passed in the high bits of an FPR 5387 } else { 5388 MaxRegs = 5; // Maximum of 5 GPR arguments 5389 RegCountField = 0; // __gpr 5390 RegSaveIndex = 2; // save offset for r2 5391 RegPadding = Padding; // values are passed in the low bits of a GPR 5392 } 5393 5394 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5395 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5396 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5397 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5398 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5399 "fits_in_regs"); 5400 5401 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5402 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5403 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5404 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5405 5406 // Emit code to load the value if it was passed in registers. 5407 CGF.EmitBlock(InRegBlock); 5408 5409 // Work out the address of an argument register. 5410 llvm::Value *ScaledRegCount = 5411 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5412 llvm::Value *RegBase = 5413 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5414 llvm::Value *RegOffset = 5415 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5416 llvm::Value *RegSaveAreaPtr = 5417 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5418 llvm::Value *RegSaveArea = 5419 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5420 llvm::Value *RawRegAddr = 5421 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5422 llvm::Value *RegAddr = 5423 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5424 5425 // Update the register count 5426 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5427 llvm::Value *NewRegCount = 5428 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5429 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5430 CGF.EmitBranch(ContBlock); 5431 5432 // Emit code to load the value if it was passed in memory. 5433 CGF.EmitBlock(InMemBlock); 5434 5435 // Work out the address of a stack argument. 5436 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5437 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5438 llvm::Value *OverflowArgArea = 5439 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5440 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5441 llvm::Value *RawMemAddr = 5442 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5443 llvm::Value *MemAddr = 5444 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5445 5446 // Update overflow_arg_area_ptr pointer 5447 llvm::Value *NewOverflowArgArea = 5448 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5449 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5450 CGF.EmitBranch(ContBlock); 5451 5452 // Return the appropriate result. 5453 CGF.EmitBlock(ContBlock); 5454 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5455 ResAddr->addIncoming(RegAddr, InRegBlock); 5456 ResAddr->addIncoming(MemAddr, InMemBlock); 5457 5458 if (IsIndirect) 5459 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5460 5461 return ResAddr; 5462 } 5463 5464 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5465 if (RetTy->isVoidType()) 5466 return ABIArgInfo::getIgnore(); 5467 if (isVectorArgumentType(RetTy)) 5468 return ABIArgInfo::getDirect(); 5469 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5470 return ABIArgInfo::getIndirect(0); 5471 return (isPromotableIntegerType(RetTy) ? 5472 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5473 } 5474 5475 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5476 // Handle the generic C++ ABI. 5477 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5478 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5479 5480 // Integers and enums are extended to full register width. 5481 if (isPromotableIntegerType(Ty)) 5482 return ABIArgInfo::getExtend(); 5483 5484 // Handle vector types and vector-like structure types. Note that 5485 // as opposed to float-like structure types, we do not allow any 5486 // padding for vector-like structures, so verify the sizes match. 5487 uint64_t Size = getContext().getTypeSize(Ty); 5488 QualType SingleElementTy = GetSingleElementType(Ty); 5489 if (isVectorArgumentType(SingleElementTy) && 5490 getContext().getTypeSize(SingleElementTy) == Size) 5491 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5492 5493 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5494 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5495 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5496 5497 // Handle small structures. 5498 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5499 // Structures with flexible arrays have variable length, so really 5500 // fail the size test above. 5501 const RecordDecl *RD = RT->getDecl(); 5502 if (RD->hasFlexibleArrayMember()) 5503 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5504 5505 // The structure is passed as an unextended integer, a float, or a double. 5506 llvm::Type *PassTy; 5507 if (isFPArgumentType(SingleElementTy)) { 5508 assert(Size == 32 || Size == 64); 5509 if (Size == 32) 5510 PassTy = llvm::Type::getFloatTy(getVMContext()); 5511 else 5512 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5513 } else 5514 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5515 return ABIArgInfo::getDirect(PassTy); 5516 } 5517 5518 // Non-structure compounds are passed indirectly. 5519 if (isCompoundType(Ty)) 5520 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5521 5522 return ABIArgInfo::getDirect(nullptr); 5523 } 5524 5525 //===----------------------------------------------------------------------===// 5526 // MSP430 ABI Implementation 5527 //===----------------------------------------------------------------------===// 5528 5529 namespace { 5530 5531 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5532 public: 5533 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5534 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5535 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5536 CodeGen::CodeGenModule &M) const override; 5537 }; 5538 5539 } 5540 5541 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5542 llvm::GlobalValue *GV, 5543 CodeGen::CodeGenModule &M) const { 5544 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5545 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5546 // Handle 'interrupt' attribute: 5547 llvm::Function *F = cast<llvm::Function>(GV); 5548 5549 // Step 1: Set ISR calling convention. 5550 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5551 5552 // Step 2: Add attributes goodness. 5553 F->addFnAttr(llvm::Attribute::NoInline); 5554 5555 // Step 3: Emit ISR vector alias. 5556 unsigned Num = attr->getNumber() / 2; 5557 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5558 "__isr_" + Twine(Num), F); 5559 } 5560 } 5561 } 5562 5563 //===----------------------------------------------------------------------===// 5564 // MIPS ABI Implementation. This works for both little-endian and 5565 // big-endian variants. 5566 //===----------------------------------------------------------------------===// 5567 5568 namespace { 5569 class MipsABIInfo : public ABIInfo { 5570 bool IsO32; 5571 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5572 void CoerceToIntArgs(uint64_t TySize, 5573 SmallVectorImpl<llvm::Type *> &ArgList) const; 5574 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5575 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5576 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5577 public: 5578 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5579 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5580 StackAlignInBytes(IsO32 ? 8 : 16) {} 5581 5582 ABIArgInfo classifyReturnType(QualType RetTy) const; 5583 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5584 void computeInfo(CGFunctionInfo &FI) const override; 5585 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5586 CodeGenFunction &CGF) const override; 5587 bool shouldSignExtUnsignedType(QualType Ty) const override; 5588 }; 5589 5590 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5591 unsigned SizeOfUnwindException; 5592 public: 5593 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5594 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5595 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5596 5597 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5598 return 29; 5599 } 5600 5601 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5602 CodeGen::CodeGenModule &CGM) const override { 5603 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5604 if (!FD) return; 5605 llvm::Function *Fn = cast<llvm::Function>(GV); 5606 if (FD->hasAttr<Mips16Attr>()) { 5607 Fn->addFnAttr("mips16"); 5608 } 5609 else if (FD->hasAttr<NoMips16Attr>()) { 5610 Fn->addFnAttr("nomips16"); 5611 } 5612 } 5613 5614 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5615 llvm::Value *Address) const override; 5616 5617 unsigned getSizeOfUnwindException() const override { 5618 return SizeOfUnwindException; 5619 } 5620 }; 5621 } 5622 5623 void MipsABIInfo::CoerceToIntArgs( 5624 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 5625 llvm::IntegerType *IntTy = 5626 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5627 5628 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5629 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5630 ArgList.push_back(IntTy); 5631 5632 // If necessary, add one more integer type to ArgList. 5633 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5634 5635 if (R) 5636 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5637 } 5638 5639 // In N32/64, an aligned double precision floating point field is passed in 5640 // a register. 5641 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5642 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5643 5644 if (IsO32) { 5645 CoerceToIntArgs(TySize, ArgList); 5646 return llvm::StructType::get(getVMContext(), ArgList); 5647 } 5648 5649 if (Ty->isComplexType()) 5650 return CGT.ConvertType(Ty); 5651 5652 const RecordType *RT = Ty->getAs<RecordType>(); 5653 5654 // Unions/vectors are passed in integer registers. 5655 if (!RT || !RT->isStructureOrClassType()) { 5656 CoerceToIntArgs(TySize, ArgList); 5657 return llvm::StructType::get(getVMContext(), ArgList); 5658 } 5659 5660 const RecordDecl *RD = RT->getDecl(); 5661 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5662 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5663 5664 uint64_t LastOffset = 0; 5665 unsigned idx = 0; 5666 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5667 5668 // Iterate over fields in the struct/class and check if there are any aligned 5669 // double fields. 5670 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5671 i != e; ++i, ++idx) { 5672 const QualType Ty = i->getType(); 5673 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5674 5675 if (!BT || BT->getKind() != BuiltinType::Double) 5676 continue; 5677 5678 uint64_t Offset = Layout.getFieldOffset(idx); 5679 if (Offset % 64) // Ignore doubles that are not aligned. 5680 continue; 5681 5682 // Add ((Offset - LastOffset) / 64) args of type i64. 5683 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5684 ArgList.push_back(I64); 5685 5686 // Add double type. 5687 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5688 LastOffset = Offset + 64; 5689 } 5690 5691 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5692 ArgList.append(IntArgList.begin(), IntArgList.end()); 5693 5694 return llvm::StructType::get(getVMContext(), ArgList); 5695 } 5696 5697 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5698 uint64_t Offset) const { 5699 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5700 return nullptr; 5701 5702 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5703 } 5704 5705 ABIArgInfo 5706 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5707 Ty = useFirstFieldIfTransparentUnion(Ty); 5708 5709 uint64_t OrigOffset = Offset; 5710 uint64_t TySize = getContext().getTypeSize(Ty); 5711 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5712 5713 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5714 (uint64_t)StackAlignInBytes); 5715 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5716 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5717 5718 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5719 // Ignore empty aggregates. 5720 if (TySize == 0) 5721 return ABIArgInfo::getIgnore(); 5722 5723 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5724 Offset = OrigOffset + MinABIStackAlignInBytes; 5725 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5726 } 5727 5728 // If we have reached here, aggregates are passed directly by coercing to 5729 // another structure type. Padding is inserted if the offset of the 5730 // aggregate is unaligned. 5731 ABIArgInfo ArgInfo = 5732 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5733 getPaddingType(OrigOffset, CurrOffset)); 5734 ArgInfo.setInReg(true); 5735 return ArgInfo; 5736 } 5737 5738 // Treat an enum type as its underlying type. 5739 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5740 Ty = EnumTy->getDecl()->getIntegerType(); 5741 5742 // All integral types are promoted to the GPR width. 5743 if (Ty->isIntegralOrEnumerationType()) 5744 return ABIArgInfo::getExtend(); 5745 5746 return ABIArgInfo::getDirect( 5747 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5748 } 5749 5750 llvm::Type* 5751 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5752 const RecordType *RT = RetTy->getAs<RecordType>(); 5753 SmallVector<llvm::Type*, 8> RTList; 5754 5755 if (RT && RT->isStructureOrClassType()) { 5756 const RecordDecl *RD = RT->getDecl(); 5757 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5758 unsigned FieldCnt = Layout.getFieldCount(); 5759 5760 // N32/64 returns struct/classes in floating point registers if the 5761 // following conditions are met: 5762 // 1. The size of the struct/class is no larger than 128-bit. 5763 // 2. The struct/class has one or two fields all of which are floating 5764 // point types. 5765 // 3. The offset of the first field is zero (this follows what gcc does). 5766 // 5767 // Any other composite results are returned in integer registers. 5768 // 5769 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5770 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5771 for (; b != e; ++b) { 5772 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5773 5774 if (!BT || !BT->isFloatingPoint()) 5775 break; 5776 5777 RTList.push_back(CGT.ConvertType(b->getType())); 5778 } 5779 5780 if (b == e) 5781 return llvm::StructType::get(getVMContext(), RTList, 5782 RD->hasAttr<PackedAttr>()); 5783 5784 RTList.clear(); 5785 } 5786 } 5787 5788 CoerceToIntArgs(Size, RTList); 5789 return llvm::StructType::get(getVMContext(), RTList); 5790 } 5791 5792 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5793 uint64_t Size = getContext().getTypeSize(RetTy); 5794 5795 if (RetTy->isVoidType()) 5796 return ABIArgInfo::getIgnore(); 5797 5798 // O32 doesn't treat zero-sized structs differently from other structs. 5799 // However, N32/N64 ignores zero sized return values. 5800 if (!IsO32 && Size == 0) 5801 return ABIArgInfo::getIgnore(); 5802 5803 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5804 if (Size <= 128) { 5805 if (RetTy->isAnyComplexType()) 5806 return ABIArgInfo::getDirect(); 5807 5808 // O32 returns integer vectors in registers and N32/N64 returns all small 5809 // aggregates in registers. 5810 if (!IsO32 || 5811 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5812 ABIArgInfo ArgInfo = 5813 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5814 ArgInfo.setInReg(true); 5815 return ArgInfo; 5816 } 5817 } 5818 5819 return ABIArgInfo::getIndirect(0); 5820 } 5821 5822 // Treat an enum type as its underlying type. 5823 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5824 RetTy = EnumTy->getDecl()->getIntegerType(); 5825 5826 return (RetTy->isPromotableIntegerType() ? 5827 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5828 } 5829 5830 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5831 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5832 if (!getCXXABI().classifyReturnType(FI)) 5833 RetInfo = classifyReturnType(FI.getReturnType()); 5834 5835 // Check if a pointer to an aggregate is passed as a hidden argument. 5836 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5837 5838 for (auto &I : FI.arguments()) 5839 I.info = classifyArgumentType(I.type, Offset); 5840 } 5841 5842 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5843 CodeGenFunction &CGF) const { 5844 llvm::Type *BP = CGF.Int8PtrTy; 5845 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5846 5847 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5848 // Pointers are also promoted in the same way but this only matters for N32. 5849 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5850 unsigned PtrWidth = getTarget().getPointerWidth(0); 5851 if ((Ty->isIntegerType() && 5852 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5853 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5854 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5855 Ty->isSignedIntegerType()); 5856 } 5857 5858 CGBuilderTy &Builder = CGF.Builder; 5859 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5860 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5861 int64_t TypeAlign = 5862 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5863 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5864 llvm::Value *AddrTyped; 5865 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5866 5867 if (TypeAlign > MinABIStackAlignInBytes) { 5868 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5869 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5870 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5871 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5872 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5873 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5874 } 5875 else 5876 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5877 5878 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5879 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5880 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5881 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5882 llvm::Value *NextAddr = 5883 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5884 "ap.next"); 5885 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5886 5887 return AddrTyped; 5888 } 5889 5890 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 5891 int TySize = getContext().getTypeSize(Ty); 5892 5893 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 5894 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 5895 return true; 5896 5897 return false; 5898 } 5899 5900 bool 5901 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5902 llvm::Value *Address) const { 5903 // This information comes from gcc's implementation, which seems to 5904 // as canonical as it gets. 5905 5906 // Everything on MIPS is 4 bytes. Double-precision FP registers 5907 // are aliased to pairs of single-precision FP registers. 5908 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5909 5910 // 0-31 are the general purpose registers, $0 - $31. 5911 // 32-63 are the floating-point registers, $f0 - $f31. 5912 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5913 // 66 is the (notional, I think) register for signal-handler return. 5914 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5915 5916 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5917 // They are one bit wide and ignored here. 5918 5919 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5920 // (coprocessor 1 is the FP unit) 5921 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5922 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5923 // 176-181 are the DSP accumulator registers. 5924 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5925 return false; 5926 } 5927 5928 //===----------------------------------------------------------------------===// 5929 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5930 // Currently subclassed only to implement custom OpenCL C function attribute 5931 // handling. 5932 //===----------------------------------------------------------------------===// 5933 5934 namespace { 5935 5936 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5937 public: 5938 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5939 : DefaultTargetCodeGenInfo(CGT) {} 5940 5941 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5942 CodeGen::CodeGenModule &M) const override; 5943 }; 5944 5945 void TCETargetCodeGenInfo::setTargetAttributes( 5946 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 5947 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5948 if (!FD) return; 5949 5950 llvm::Function *F = cast<llvm::Function>(GV); 5951 5952 if (M.getLangOpts().OpenCL) { 5953 if (FD->hasAttr<OpenCLKernelAttr>()) { 5954 // OpenCL C Kernel functions are not subject to inlining 5955 F->addFnAttr(llvm::Attribute::NoInline); 5956 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5957 if (Attr) { 5958 // Convert the reqd_work_group_size() attributes to metadata. 5959 llvm::LLVMContext &Context = F->getContext(); 5960 llvm::NamedMDNode *OpenCLMetadata = 5961 M.getModule().getOrInsertNamedMetadata( 5962 "opencl.kernel_wg_size_info"); 5963 5964 SmallVector<llvm::Metadata *, 5> Operands; 5965 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5966 5967 Operands.push_back( 5968 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5969 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5970 Operands.push_back( 5971 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5972 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5973 Operands.push_back( 5974 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5975 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5976 5977 // Add a boolean constant operand for "required" (true) or "hint" 5978 // (false) for implementing the work_group_size_hint attr later. 5979 // Currently always true as the hint is not yet implemented. 5980 Operands.push_back( 5981 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5982 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5983 } 5984 } 5985 } 5986 } 5987 5988 } 5989 5990 //===----------------------------------------------------------------------===// 5991 // Hexagon ABI Implementation 5992 //===----------------------------------------------------------------------===// 5993 5994 namespace { 5995 5996 class HexagonABIInfo : public ABIInfo { 5997 5998 5999 public: 6000 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6001 6002 private: 6003 6004 ABIArgInfo classifyReturnType(QualType RetTy) const; 6005 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6006 6007 void computeInfo(CGFunctionInfo &FI) const override; 6008 6009 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6010 CodeGenFunction &CGF) const override; 6011 }; 6012 6013 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6014 public: 6015 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6016 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6017 6018 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6019 return 29; 6020 } 6021 }; 6022 6023 } 6024 6025 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6026 if (!getCXXABI().classifyReturnType(FI)) 6027 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6028 for (auto &I : FI.arguments()) 6029 I.info = classifyArgumentType(I.type); 6030 } 6031 6032 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6033 if (!isAggregateTypeForABI(Ty)) { 6034 // Treat an enum type as its underlying type. 6035 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6036 Ty = EnumTy->getDecl()->getIntegerType(); 6037 6038 return (Ty->isPromotableIntegerType() ? 6039 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6040 } 6041 6042 // Ignore empty records. 6043 if (isEmptyRecord(getContext(), Ty, true)) 6044 return ABIArgInfo::getIgnore(); 6045 6046 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6047 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6048 6049 uint64_t Size = getContext().getTypeSize(Ty); 6050 if (Size > 64) 6051 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6052 // Pass in the smallest viable integer type. 6053 else if (Size > 32) 6054 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6055 else if (Size > 16) 6056 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6057 else if (Size > 8) 6058 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6059 else 6060 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6061 } 6062 6063 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6064 if (RetTy->isVoidType()) 6065 return ABIArgInfo::getIgnore(); 6066 6067 // Large vector types should be returned via memory. 6068 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6069 return ABIArgInfo::getIndirect(0); 6070 6071 if (!isAggregateTypeForABI(RetTy)) { 6072 // Treat an enum type as its underlying type. 6073 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6074 RetTy = EnumTy->getDecl()->getIntegerType(); 6075 6076 return (RetTy->isPromotableIntegerType() ? 6077 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6078 } 6079 6080 if (isEmptyRecord(getContext(), RetTy, true)) 6081 return ABIArgInfo::getIgnore(); 6082 6083 // Aggregates <= 8 bytes are returned in r0; other aggregates 6084 // are returned indirectly. 6085 uint64_t Size = getContext().getTypeSize(RetTy); 6086 if (Size <= 64) { 6087 // Return in the smallest viable integer type. 6088 if (Size <= 8) 6089 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6090 if (Size <= 16) 6091 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6092 if (Size <= 32) 6093 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6094 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6095 } 6096 6097 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6098 } 6099 6100 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6101 CodeGenFunction &CGF) const { 6102 // FIXME: Need to handle alignment 6103 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6104 6105 CGBuilderTy &Builder = CGF.Builder; 6106 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6107 "ap"); 6108 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6109 llvm::Type *PTy = 6110 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6111 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6112 6113 uint64_t Offset = 6114 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6115 llvm::Value *NextAddr = 6116 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6117 "ap.next"); 6118 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6119 6120 return AddrTyped; 6121 } 6122 6123 //===----------------------------------------------------------------------===// 6124 // AMDGPU ABI Implementation 6125 //===----------------------------------------------------------------------===// 6126 6127 namespace { 6128 6129 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6130 public: 6131 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6132 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6133 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6134 CodeGen::CodeGenModule &M) const override; 6135 }; 6136 6137 } 6138 6139 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6140 const Decl *D, 6141 llvm::GlobalValue *GV, 6142 CodeGen::CodeGenModule &M) const { 6143 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6144 if (!FD) 6145 return; 6146 6147 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6148 llvm::Function *F = cast<llvm::Function>(GV); 6149 uint32_t NumVGPR = Attr->getNumVGPR(); 6150 if (NumVGPR != 0) 6151 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6152 } 6153 6154 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6155 llvm::Function *F = cast<llvm::Function>(GV); 6156 unsigned NumSGPR = Attr->getNumSGPR(); 6157 if (NumSGPR != 0) 6158 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6159 } 6160 } 6161 6162 6163 //===----------------------------------------------------------------------===// 6164 // SPARC v9 ABI Implementation. 6165 // Based on the SPARC Compliance Definition version 2.4.1. 6166 // 6167 // Function arguments a mapped to a nominal "parameter array" and promoted to 6168 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6169 // the array, structs larger than 16 bytes are passed indirectly. 6170 // 6171 // One case requires special care: 6172 // 6173 // struct mixed { 6174 // int i; 6175 // float f; 6176 // }; 6177 // 6178 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6179 // parameter array, but the int is passed in an integer register, and the float 6180 // is passed in a floating point register. This is represented as two arguments 6181 // with the LLVM IR inreg attribute: 6182 // 6183 // declare void f(i32 inreg %i, float inreg %f) 6184 // 6185 // The code generator will only allocate 4 bytes from the parameter array for 6186 // the inreg arguments. All other arguments are allocated a multiple of 8 6187 // bytes. 6188 // 6189 namespace { 6190 class SparcV9ABIInfo : public ABIInfo { 6191 public: 6192 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6193 6194 private: 6195 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6196 void computeInfo(CGFunctionInfo &FI) const override; 6197 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6198 CodeGenFunction &CGF) const override; 6199 6200 // Coercion type builder for structs passed in registers. The coercion type 6201 // serves two purposes: 6202 // 6203 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6204 // in registers. 6205 // 2. Expose aligned floating point elements as first-level elements, so the 6206 // code generator knows to pass them in floating point registers. 6207 // 6208 // We also compute the InReg flag which indicates that the struct contains 6209 // aligned 32-bit floats. 6210 // 6211 struct CoerceBuilder { 6212 llvm::LLVMContext &Context; 6213 const llvm::DataLayout &DL; 6214 SmallVector<llvm::Type*, 8> Elems; 6215 uint64_t Size; 6216 bool InReg; 6217 6218 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6219 : Context(c), DL(dl), Size(0), InReg(false) {} 6220 6221 // Pad Elems with integers until Size is ToSize. 6222 void pad(uint64_t ToSize) { 6223 assert(ToSize >= Size && "Cannot remove elements"); 6224 if (ToSize == Size) 6225 return; 6226 6227 // Finish the current 64-bit word. 6228 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6229 if (Aligned > Size && Aligned <= ToSize) { 6230 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6231 Size = Aligned; 6232 } 6233 6234 // Add whole 64-bit words. 6235 while (Size + 64 <= ToSize) { 6236 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6237 Size += 64; 6238 } 6239 6240 // Final in-word padding. 6241 if (Size < ToSize) { 6242 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6243 Size = ToSize; 6244 } 6245 } 6246 6247 // Add a floating point element at Offset. 6248 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6249 // Unaligned floats are treated as integers. 6250 if (Offset % Bits) 6251 return; 6252 // The InReg flag is only required if there are any floats < 64 bits. 6253 if (Bits < 64) 6254 InReg = true; 6255 pad(Offset); 6256 Elems.push_back(Ty); 6257 Size = Offset + Bits; 6258 } 6259 6260 // Add a struct type to the coercion type, starting at Offset (in bits). 6261 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6262 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6263 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6264 llvm::Type *ElemTy = StrTy->getElementType(i); 6265 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6266 switch (ElemTy->getTypeID()) { 6267 case llvm::Type::StructTyID: 6268 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6269 break; 6270 case llvm::Type::FloatTyID: 6271 addFloat(ElemOffset, ElemTy, 32); 6272 break; 6273 case llvm::Type::DoubleTyID: 6274 addFloat(ElemOffset, ElemTy, 64); 6275 break; 6276 case llvm::Type::FP128TyID: 6277 addFloat(ElemOffset, ElemTy, 128); 6278 break; 6279 case llvm::Type::PointerTyID: 6280 if (ElemOffset % 64 == 0) { 6281 pad(ElemOffset); 6282 Elems.push_back(ElemTy); 6283 Size += 64; 6284 } 6285 break; 6286 default: 6287 break; 6288 } 6289 } 6290 } 6291 6292 // Check if Ty is a usable substitute for the coercion type. 6293 bool isUsableType(llvm::StructType *Ty) const { 6294 return llvm::makeArrayRef(Elems) == Ty->elements(); 6295 } 6296 6297 // Get the coercion type as a literal struct type. 6298 llvm::Type *getType() const { 6299 if (Elems.size() == 1) 6300 return Elems.front(); 6301 else 6302 return llvm::StructType::get(Context, Elems); 6303 } 6304 }; 6305 }; 6306 } // end anonymous namespace 6307 6308 ABIArgInfo 6309 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6310 if (Ty->isVoidType()) 6311 return ABIArgInfo::getIgnore(); 6312 6313 uint64_t Size = getContext().getTypeSize(Ty); 6314 6315 // Anything too big to fit in registers is passed with an explicit indirect 6316 // pointer / sret pointer. 6317 if (Size > SizeLimit) 6318 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6319 6320 // Treat an enum type as its underlying type. 6321 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6322 Ty = EnumTy->getDecl()->getIntegerType(); 6323 6324 // Integer types smaller than a register are extended. 6325 if (Size < 64 && Ty->isIntegerType()) 6326 return ABIArgInfo::getExtend(); 6327 6328 // Other non-aggregates go in registers. 6329 if (!isAggregateTypeForABI(Ty)) 6330 return ABIArgInfo::getDirect(); 6331 6332 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6333 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6334 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6335 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6336 6337 // This is a small aggregate type that should be passed in registers. 6338 // Build a coercion type from the LLVM struct type. 6339 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6340 if (!StrTy) 6341 return ABIArgInfo::getDirect(); 6342 6343 CoerceBuilder CB(getVMContext(), getDataLayout()); 6344 CB.addStruct(0, StrTy); 6345 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6346 6347 // Try to use the original type for coercion. 6348 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6349 6350 if (CB.InReg) 6351 return ABIArgInfo::getDirectInReg(CoerceTy); 6352 else 6353 return ABIArgInfo::getDirect(CoerceTy); 6354 } 6355 6356 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6357 CodeGenFunction &CGF) const { 6358 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6359 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6360 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6361 AI.setCoerceToType(ArgTy); 6362 6363 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6364 CGBuilderTy &Builder = CGF.Builder; 6365 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6366 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6367 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6368 llvm::Value *ArgAddr; 6369 unsigned Stride; 6370 6371 switch (AI.getKind()) { 6372 case ABIArgInfo::Expand: 6373 case ABIArgInfo::InAlloca: 6374 llvm_unreachable("Unsupported ABI kind for va_arg"); 6375 6376 case ABIArgInfo::Extend: 6377 Stride = 8; 6378 ArgAddr = Builder 6379 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6380 "extend"); 6381 break; 6382 6383 case ABIArgInfo::Direct: 6384 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6385 ArgAddr = Addr; 6386 break; 6387 6388 case ABIArgInfo::Indirect: 6389 Stride = 8; 6390 ArgAddr = Builder.CreateBitCast(Addr, 6391 llvm::PointerType::getUnqual(ArgPtrTy), 6392 "indirect"); 6393 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6394 break; 6395 6396 case ABIArgInfo::Ignore: 6397 return llvm::UndefValue::get(ArgPtrTy); 6398 } 6399 6400 // Update VAList. 6401 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6402 Builder.CreateStore(Addr, VAListAddrAsBPP); 6403 6404 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6405 } 6406 6407 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6408 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6409 for (auto &I : FI.arguments()) 6410 I.info = classifyType(I.type, 16 * 8); 6411 } 6412 6413 namespace { 6414 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6415 public: 6416 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6417 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6418 6419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6420 return 14; 6421 } 6422 6423 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6424 llvm::Value *Address) const override; 6425 }; 6426 } // end anonymous namespace 6427 6428 bool 6429 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6430 llvm::Value *Address) const { 6431 // This is calculated from the LLVM and GCC tables and verified 6432 // against gcc output. AFAIK all ABIs use the same encoding. 6433 6434 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6435 6436 llvm::IntegerType *i8 = CGF.Int8Ty; 6437 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6438 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6439 6440 // 0-31: the 8-byte general-purpose registers 6441 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6442 6443 // 32-63: f0-31, the 4-byte floating-point registers 6444 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6445 6446 // Y = 64 6447 // PSR = 65 6448 // WIM = 66 6449 // TBR = 67 6450 // PC = 68 6451 // NPC = 69 6452 // FSR = 70 6453 // CSR = 71 6454 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6455 6456 // 72-87: d0-15, the 8-byte floating-point registers 6457 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6458 6459 return false; 6460 } 6461 6462 6463 //===----------------------------------------------------------------------===// 6464 // XCore ABI Implementation 6465 //===----------------------------------------------------------------------===// 6466 6467 namespace { 6468 6469 /// A SmallStringEnc instance is used to build up the TypeString by passing 6470 /// it by reference between functions that append to it. 6471 typedef llvm::SmallString<128> SmallStringEnc; 6472 6473 /// TypeStringCache caches the meta encodings of Types. 6474 /// 6475 /// The reason for caching TypeStrings is two fold: 6476 /// 1. To cache a type's encoding for later uses; 6477 /// 2. As a means to break recursive member type inclusion. 6478 /// 6479 /// A cache Entry can have a Status of: 6480 /// NonRecursive: The type encoding is not recursive; 6481 /// Recursive: The type encoding is recursive; 6482 /// Incomplete: An incomplete TypeString; 6483 /// IncompleteUsed: An incomplete TypeString that has been used in a 6484 /// Recursive type encoding. 6485 /// 6486 /// A NonRecursive entry will have all of its sub-members expanded as fully 6487 /// as possible. Whilst it may contain types which are recursive, the type 6488 /// itself is not recursive and thus its encoding may be safely used whenever 6489 /// the type is encountered. 6490 /// 6491 /// A Recursive entry will have all of its sub-members expanded as fully as 6492 /// possible. The type itself is recursive and it may contain other types which 6493 /// are recursive. The Recursive encoding must not be used during the expansion 6494 /// of a recursive type's recursive branch. For simplicity the code uses 6495 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6496 /// 6497 /// An Incomplete entry is always a RecordType and only encodes its 6498 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6499 /// are placed into the cache during type expansion as a means to identify and 6500 /// handle recursive inclusion of types as sub-members. If there is recursion 6501 /// the entry becomes IncompleteUsed. 6502 /// 6503 /// During the expansion of a RecordType's members: 6504 /// 6505 /// If the cache contains a NonRecursive encoding for the member type, the 6506 /// cached encoding is used; 6507 /// 6508 /// If the cache contains a Recursive encoding for the member type, the 6509 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6510 /// 6511 /// If the member is a RecordType, an Incomplete encoding is placed into the 6512 /// cache to break potential recursive inclusion of itself as a sub-member; 6513 /// 6514 /// Once a member RecordType has been expanded, its temporary incomplete 6515 /// entry is removed from the cache. If a Recursive encoding was swapped out 6516 /// it is swapped back in; 6517 /// 6518 /// If an incomplete entry is used to expand a sub-member, the incomplete 6519 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6520 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6521 /// 6522 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6523 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6524 /// Else the member is part of a recursive type and thus the recursion has 6525 /// been exited too soon for the encoding to be correct for the member. 6526 /// 6527 class TypeStringCache { 6528 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6529 struct Entry { 6530 std::string Str; // The encoded TypeString for the type. 6531 enum Status State; // Information about the encoding in 'Str'. 6532 std::string Swapped; // A temporary place holder for a Recursive encoding 6533 // during the expansion of RecordType's members. 6534 }; 6535 std::map<const IdentifierInfo *, struct Entry> Map; 6536 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6537 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6538 public: 6539 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6540 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6541 bool removeIncomplete(const IdentifierInfo *ID); 6542 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6543 bool IsRecursive); 6544 StringRef lookupStr(const IdentifierInfo *ID); 6545 }; 6546 6547 /// TypeString encodings for enum & union fields must be order. 6548 /// FieldEncoding is a helper for this ordering process. 6549 class FieldEncoding { 6550 bool HasName; 6551 std::string Enc; 6552 public: 6553 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6554 StringRef str() {return Enc.c_str();}; 6555 bool operator<(const FieldEncoding &rhs) const { 6556 if (HasName != rhs.HasName) return HasName; 6557 return Enc < rhs.Enc; 6558 } 6559 }; 6560 6561 class XCoreABIInfo : public DefaultABIInfo { 6562 public: 6563 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6564 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6565 CodeGenFunction &CGF) const override; 6566 }; 6567 6568 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6569 mutable TypeStringCache TSC; 6570 public: 6571 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6572 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6573 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6574 CodeGen::CodeGenModule &M) const override; 6575 }; 6576 6577 } // End anonymous namespace. 6578 6579 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6580 CodeGenFunction &CGF) const { 6581 CGBuilderTy &Builder = CGF.Builder; 6582 6583 // Get the VAList. 6584 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6585 CGF.Int8PtrPtrTy); 6586 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6587 6588 // Handle the argument. 6589 ABIArgInfo AI = classifyArgumentType(Ty); 6590 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6591 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6592 AI.setCoerceToType(ArgTy); 6593 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6594 llvm::Value *Val; 6595 uint64_t ArgSize = 0; 6596 switch (AI.getKind()) { 6597 case ABIArgInfo::Expand: 6598 case ABIArgInfo::InAlloca: 6599 llvm_unreachable("Unsupported ABI kind for va_arg"); 6600 case ABIArgInfo::Ignore: 6601 Val = llvm::UndefValue::get(ArgPtrTy); 6602 ArgSize = 0; 6603 break; 6604 case ABIArgInfo::Extend: 6605 case ABIArgInfo::Direct: 6606 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6607 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6608 if (ArgSize < 4) 6609 ArgSize = 4; 6610 break; 6611 case ABIArgInfo::Indirect: 6612 llvm::Value *ArgAddr; 6613 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6614 ArgAddr = Builder.CreateLoad(ArgAddr); 6615 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6616 ArgSize = 4; 6617 break; 6618 } 6619 6620 // Increment the VAList. 6621 if (ArgSize) { 6622 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6623 Builder.CreateStore(APN, VAListAddrAsBPP); 6624 } 6625 return Val; 6626 } 6627 6628 /// During the expansion of a RecordType, an incomplete TypeString is placed 6629 /// into the cache as a means to identify and break recursion. 6630 /// If there is a Recursive encoding in the cache, it is swapped out and will 6631 /// be reinserted by removeIncomplete(). 6632 /// All other types of encoding should have been used rather than arriving here. 6633 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6634 std::string StubEnc) { 6635 if (!ID) 6636 return; 6637 Entry &E = Map[ID]; 6638 assert( (E.Str.empty() || E.State == Recursive) && 6639 "Incorrectly use of addIncomplete"); 6640 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6641 E.Swapped.swap(E.Str); // swap out the Recursive 6642 E.Str.swap(StubEnc); 6643 E.State = Incomplete; 6644 ++IncompleteCount; 6645 } 6646 6647 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6648 /// must be removed from the cache. 6649 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6650 /// Returns true if the RecordType was defined recursively. 6651 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6652 if (!ID) 6653 return false; 6654 auto I = Map.find(ID); 6655 assert(I != Map.end() && "Entry not present"); 6656 Entry &E = I->second; 6657 assert( (E.State == Incomplete || 6658 E.State == IncompleteUsed) && 6659 "Entry must be an incomplete type"); 6660 bool IsRecursive = false; 6661 if (E.State == IncompleteUsed) { 6662 // We made use of our Incomplete encoding, thus we are recursive. 6663 IsRecursive = true; 6664 --IncompleteUsedCount; 6665 } 6666 if (E.Swapped.empty()) 6667 Map.erase(I); 6668 else { 6669 // Swap the Recursive back. 6670 E.Swapped.swap(E.Str); 6671 E.Swapped.clear(); 6672 E.State = Recursive; 6673 } 6674 --IncompleteCount; 6675 return IsRecursive; 6676 } 6677 6678 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6679 /// Recursive (viz: all sub-members were expanded as fully as possible). 6680 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6681 bool IsRecursive) { 6682 if (!ID || IncompleteUsedCount) 6683 return; // No key or it is is an incomplete sub-type so don't add. 6684 Entry &E = Map[ID]; 6685 if (IsRecursive && !E.Str.empty()) { 6686 assert(E.State==Recursive && E.Str.size() == Str.size() && 6687 "This is not the same Recursive entry"); 6688 // The parent container was not recursive after all, so we could have used 6689 // this Recursive sub-member entry after all, but we assumed the worse when 6690 // we started viz: IncompleteCount!=0. 6691 return; 6692 } 6693 assert(E.Str.empty() && "Entry already present"); 6694 E.Str = Str.str(); 6695 E.State = IsRecursive? Recursive : NonRecursive; 6696 } 6697 6698 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6699 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6700 /// encoding is Recursive, return an empty StringRef. 6701 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6702 if (!ID) 6703 return StringRef(); // We have no key. 6704 auto I = Map.find(ID); 6705 if (I == Map.end()) 6706 return StringRef(); // We have no encoding. 6707 Entry &E = I->second; 6708 if (E.State == Recursive && IncompleteCount) 6709 return StringRef(); // We don't use Recursive encodings for member types. 6710 6711 if (E.State == Incomplete) { 6712 // The incomplete type is being used to break out of recursion. 6713 E.State = IncompleteUsed; 6714 ++IncompleteUsedCount; 6715 } 6716 return E.Str.c_str(); 6717 } 6718 6719 /// The XCore ABI includes a type information section that communicates symbol 6720 /// type information to the linker. The linker uses this information to verify 6721 /// safety/correctness of things such as array bound and pointers et al. 6722 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6723 /// This type information (TypeString) is emitted into meta data for all global 6724 /// symbols: definitions, declarations, functions & variables. 6725 /// 6726 /// The TypeString carries type, qualifier, name, size & value details. 6727 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6728 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 6729 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6730 /// 6731 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6732 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6733 6734 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6735 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6736 CodeGen::CodeGenModule &CGM) const { 6737 SmallStringEnc Enc; 6738 if (getTypeString(Enc, D, CGM, TSC)) { 6739 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6740 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6741 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6742 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6743 llvm::NamedMDNode *MD = 6744 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6745 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6746 } 6747 } 6748 6749 static bool appendType(SmallStringEnc &Enc, QualType QType, 6750 const CodeGen::CodeGenModule &CGM, 6751 TypeStringCache &TSC); 6752 6753 /// Helper function for appendRecordType(). 6754 /// Builds a SmallVector containing the encoded field types in declaration 6755 /// order. 6756 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6757 const RecordDecl *RD, 6758 const CodeGen::CodeGenModule &CGM, 6759 TypeStringCache &TSC) { 6760 for (const auto *Field : RD->fields()) { 6761 SmallStringEnc Enc; 6762 Enc += "m("; 6763 Enc += Field->getName(); 6764 Enc += "){"; 6765 if (Field->isBitField()) { 6766 Enc += "b("; 6767 llvm::raw_svector_ostream OS(Enc); 6768 OS.resync(); 6769 OS << Field->getBitWidthValue(CGM.getContext()); 6770 OS.flush(); 6771 Enc += ':'; 6772 } 6773 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6774 return false; 6775 if (Field->isBitField()) 6776 Enc += ')'; 6777 Enc += '}'; 6778 FE.emplace_back(!Field->getName().empty(), Enc); 6779 } 6780 return true; 6781 } 6782 6783 /// Appends structure and union types to Enc and adds encoding to cache. 6784 /// Recursively calls appendType (via extractFieldType) for each field. 6785 /// Union types have their fields ordered according to the ABI. 6786 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6787 const CodeGen::CodeGenModule &CGM, 6788 TypeStringCache &TSC, const IdentifierInfo *ID) { 6789 // Append the cached TypeString if we have one. 6790 StringRef TypeString = TSC.lookupStr(ID); 6791 if (!TypeString.empty()) { 6792 Enc += TypeString; 6793 return true; 6794 } 6795 6796 // Start to emit an incomplete TypeString. 6797 size_t Start = Enc.size(); 6798 Enc += (RT->isUnionType()? 'u' : 's'); 6799 Enc += '('; 6800 if (ID) 6801 Enc += ID->getName(); 6802 Enc += "){"; 6803 6804 // We collect all encoded fields and order as necessary. 6805 bool IsRecursive = false; 6806 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6807 if (RD && !RD->field_empty()) { 6808 // An incomplete TypeString stub is placed in the cache for this RecordType 6809 // so that recursive calls to this RecordType will use it whilst building a 6810 // complete TypeString for this RecordType. 6811 SmallVector<FieldEncoding, 16> FE; 6812 std::string StubEnc(Enc.substr(Start).str()); 6813 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6814 TSC.addIncomplete(ID, std::move(StubEnc)); 6815 if (!extractFieldType(FE, RD, CGM, TSC)) { 6816 (void) TSC.removeIncomplete(ID); 6817 return false; 6818 } 6819 IsRecursive = TSC.removeIncomplete(ID); 6820 // The ABI requires unions to be sorted but not structures. 6821 // See FieldEncoding::operator< for sort algorithm. 6822 if (RT->isUnionType()) 6823 std::sort(FE.begin(), FE.end()); 6824 // We can now complete the TypeString. 6825 unsigned E = FE.size(); 6826 for (unsigned I = 0; I != E; ++I) { 6827 if (I) 6828 Enc += ','; 6829 Enc += FE[I].str(); 6830 } 6831 } 6832 Enc += '}'; 6833 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6834 return true; 6835 } 6836 6837 /// Appends enum types to Enc and adds the encoding to the cache. 6838 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6839 TypeStringCache &TSC, 6840 const IdentifierInfo *ID) { 6841 // Append the cached TypeString if we have one. 6842 StringRef TypeString = TSC.lookupStr(ID); 6843 if (!TypeString.empty()) { 6844 Enc += TypeString; 6845 return true; 6846 } 6847 6848 size_t Start = Enc.size(); 6849 Enc += "e("; 6850 if (ID) 6851 Enc += ID->getName(); 6852 Enc += "){"; 6853 6854 // We collect all encoded enumerations and order them alphanumerically. 6855 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6856 SmallVector<FieldEncoding, 16> FE; 6857 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6858 ++I) { 6859 SmallStringEnc EnumEnc; 6860 EnumEnc += "m("; 6861 EnumEnc += I->getName(); 6862 EnumEnc += "){"; 6863 I->getInitVal().toString(EnumEnc); 6864 EnumEnc += '}'; 6865 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6866 } 6867 std::sort(FE.begin(), FE.end()); 6868 unsigned E = FE.size(); 6869 for (unsigned I = 0; I != E; ++I) { 6870 if (I) 6871 Enc += ','; 6872 Enc += FE[I].str(); 6873 } 6874 } 6875 Enc += '}'; 6876 TSC.addIfComplete(ID, Enc.substr(Start), false); 6877 return true; 6878 } 6879 6880 /// Appends type's qualifier to Enc. 6881 /// This is done prior to appending the type's encoding. 6882 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6883 // Qualifiers are emitted in alphabetical order. 6884 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6885 int Lookup = 0; 6886 if (QT.isConstQualified()) 6887 Lookup += 1<<0; 6888 if (QT.isRestrictQualified()) 6889 Lookup += 1<<1; 6890 if (QT.isVolatileQualified()) 6891 Lookup += 1<<2; 6892 Enc += Table[Lookup]; 6893 } 6894 6895 /// Appends built-in types to Enc. 6896 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6897 const char *EncType; 6898 switch (BT->getKind()) { 6899 case BuiltinType::Void: 6900 EncType = "0"; 6901 break; 6902 case BuiltinType::Bool: 6903 EncType = "b"; 6904 break; 6905 case BuiltinType::Char_U: 6906 EncType = "uc"; 6907 break; 6908 case BuiltinType::UChar: 6909 EncType = "uc"; 6910 break; 6911 case BuiltinType::SChar: 6912 EncType = "sc"; 6913 break; 6914 case BuiltinType::UShort: 6915 EncType = "us"; 6916 break; 6917 case BuiltinType::Short: 6918 EncType = "ss"; 6919 break; 6920 case BuiltinType::UInt: 6921 EncType = "ui"; 6922 break; 6923 case BuiltinType::Int: 6924 EncType = "si"; 6925 break; 6926 case BuiltinType::ULong: 6927 EncType = "ul"; 6928 break; 6929 case BuiltinType::Long: 6930 EncType = "sl"; 6931 break; 6932 case BuiltinType::ULongLong: 6933 EncType = "ull"; 6934 break; 6935 case BuiltinType::LongLong: 6936 EncType = "sll"; 6937 break; 6938 case BuiltinType::Float: 6939 EncType = "ft"; 6940 break; 6941 case BuiltinType::Double: 6942 EncType = "d"; 6943 break; 6944 case BuiltinType::LongDouble: 6945 EncType = "ld"; 6946 break; 6947 default: 6948 return false; 6949 } 6950 Enc += EncType; 6951 return true; 6952 } 6953 6954 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6955 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6956 const CodeGen::CodeGenModule &CGM, 6957 TypeStringCache &TSC) { 6958 Enc += "p("; 6959 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6960 return false; 6961 Enc += ')'; 6962 return true; 6963 } 6964 6965 /// Appends array encoding to Enc before calling appendType for the element. 6966 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6967 const ArrayType *AT, 6968 const CodeGen::CodeGenModule &CGM, 6969 TypeStringCache &TSC, StringRef NoSizeEnc) { 6970 if (AT->getSizeModifier() != ArrayType::Normal) 6971 return false; 6972 Enc += "a("; 6973 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6974 CAT->getSize().toStringUnsigned(Enc); 6975 else 6976 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6977 Enc += ':'; 6978 // The Qualifiers should be attached to the type rather than the array. 6979 appendQualifier(Enc, QT); 6980 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6981 return false; 6982 Enc += ')'; 6983 return true; 6984 } 6985 6986 /// Appends a function encoding to Enc, calling appendType for the return type 6987 /// and the arguments. 6988 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6989 const CodeGen::CodeGenModule &CGM, 6990 TypeStringCache &TSC) { 6991 Enc += "f{"; 6992 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6993 return false; 6994 Enc += "}("; 6995 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6996 // N.B. we are only interested in the adjusted param types. 6997 auto I = FPT->param_type_begin(); 6998 auto E = FPT->param_type_end(); 6999 if (I != E) { 7000 do { 7001 if (!appendType(Enc, *I, CGM, TSC)) 7002 return false; 7003 ++I; 7004 if (I != E) 7005 Enc += ','; 7006 } while (I != E); 7007 if (FPT->isVariadic()) 7008 Enc += ",va"; 7009 } else { 7010 if (FPT->isVariadic()) 7011 Enc += "va"; 7012 else 7013 Enc += '0'; 7014 } 7015 } 7016 Enc += ')'; 7017 return true; 7018 } 7019 7020 /// Handles the type's qualifier before dispatching a call to handle specific 7021 /// type encodings. 7022 static bool appendType(SmallStringEnc &Enc, QualType QType, 7023 const CodeGen::CodeGenModule &CGM, 7024 TypeStringCache &TSC) { 7025 7026 QualType QT = QType.getCanonicalType(); 7027 7028 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7029 // The Qualifiers should be attached to the type rather than the array. 7030 // Thus we don't call appendQualifier() here. 7031 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7032 7033 appendQualifier(Enc, QT); 7034 7035 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7036 return appendBuiltinType(Enc, BT); 7037 7038 if (const PointerType *PT = QT->getAs<PointerType>()) 7039 return appendPointerType(Enc, PT, CGM, TSC); 7040 7041 if (const EnumType *ET = QT->getAs<EnumType>()) 7042 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7043 7044 if (const RecordType *RT = QT->getAsStructureType()) 7045 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7046 7047 if (const RecordType *RT = QT->getAsUnionType()) 7048 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7049 7050 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7051 return appendFunctionType(Enc, FT, CGM, TSC); 7052 7053 return false; 7054 } 7055 7056 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7057 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7058 if (!D) 7059 return false; 7060 7061 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7062 if (FD->getLanguageLinkage() != CLanguageLinkage) 7063 return false; 7064 return appendType(Enc, FD->getType(), CGM, TSC); 7065 } 7066 7067 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7068 if (VD->getLanguageLinkage() != CLanguageLinkage) 7069 return false; 7070 QualType QT = VD->getType().getCanonicalType(); 7071 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7072 // Global ArrayTypes are given a size of '*' if the size is unknown. 7073 // The Qualifiers should be attached to the type rather than the array. 7074 // Thus we don't call appendQualifier() here. 7075 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7076 } 7077 return appendType(Enc, QT, CGM, TSC); 7078 } 7079 return false; 7080 } 7081 7082 7083 //===----------------------------------------------------------------------===// 7084 // Driver code 7085 //===----------------------------------------------------------------------===// 7086 7087 const llvm::Triple &CodeGenModule::getTriple() const { 7088 return getTarget().getTriple(); 7089 } 7090 7091 bool CodeGenModule::supportsCOMDAT() const { 7092 return !getTriple().isOSBinFormatMachO(); 7093 } 7094 7095 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7096 if (TheTargetCodeGenInfo) 7097 return *TheTargetCodeGenInfo; 7098 7099 const llvm::Triple &Triple = getTarget().getTriple(); 7100 switch (Triple.getArch()) { 7101 default: 7102 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7103 7104 case llvm::Triple::le32: 7105 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7106 case llvm::Triple::mips: 7107 case llvm::Triple::mipsel: 7108 if (Triple.getOS() == llvm::Triple::NaCl) 7109 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7110 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7111 7112 case llvm::Triple::mips64: 7113 case llvm::Triple::mips64el: 7114 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7115 7116 case llvm::Triple::aarch64: 7117 case llvm::Triple::aarch64_be: { 7118 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7119 if (getTarget().getABI() == "darwinpcs") 7120 Kind = AArch64ABIInfo::DarwinPCS; 7121 7122 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7123 } 7124 7125 case llvm::Triple::arm: 7126 case llvm::Triple::armeb: 7127 case llvm::Triple::thumb: 7128 case llvm::Triple::thumbeb: 7129 { 7130 if (Triple.getOS() == llvm::Triple::Win32) { 7131 TheTargetCodeGenInfo = 7132 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7133 return *TheTargetCodeGenInfo; 7134 } 7135 7136 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7137 if (getTarget().getABI() == "apcs-gnu") 7138 Kind = ARMABIInfo::APCS; 7139 else if (CodeGenOpts.FloatABI == "hard" || 7140 (CodeGenOpts.FloatABI != "soft" && 7141 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7142 Kind = ARMABIInfo::AAPCS_VFP; 7143 7144 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7145 } 7146 7147 case llvm::Triple::ppc: 7148 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7149 case llvm::Triple::ppc64: 7150 if (Triple.isOSBinFormatELF()) { 7151 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7152 if (getTarget().getABI() == "elfv2") 7153 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7154 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7155 7156 return *(TheTargetCodeGenInfo = 7157 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7158 } else 7159 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7160 case llvm::Triple::ppc64le: { 7161 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7162 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7163 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7164 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7165 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7166 7167 return *(TheTargetCodeGenInfo = 7168 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7169 } 7170 7171 case llvm::Triple::nvptx: 7172 case llvm::Triple::nvptx64: 7173 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7174 7175 case llvm::Triple::msp430: 7176 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7177 7178 case llvm::Triple::systemz: { 7179 bool HasVector = getTarget().getABI() == "vector"; 7180 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7181 HasVector)); 7182 } 7183 7184 case llvm::Triple::tce: 7185 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7186 7187 case llvm::Triple::x86: { 7188 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7189 bool IsSmallStructInRegABI = 7190 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7191 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7192 7193 if (Triple.getOS() == llvm::Triple::Win32) { 7194 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7195 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7196 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7197 } else { 7198 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7199 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7200 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7201 } 7202 } 7203 7204 case llvm::Triple::x86_64: { 7205 StringRef ABI = getTarget().getABI(); 7206 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7207 ABI == "avx" ? X86AVXABILevel::AVX : 7208 X86AVXABILevel::None); 7209 7210 switch (Triple.getOS()) { 7211 case llvm::Triple::Win32: 7212 return *(TheTargetCodeGenInfo = 7213 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7214 case llvm::Triple::PS4: 7215 return *(TheTargetCodeGenInfo = 7216 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7217 default: 7218 return *(TheTargetCodeGenInfo = 7219 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7220 } 7221 } 7222 case llvm::Triple::hexagon: 7223 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7224 case llvm::Triple::r600: 7225 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7226 case llvm::Triple::amdgcn: 7227 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7228 case llvm::Triple::sparcv9: 7229 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7230 case llvm::Triple::xcore: 7231 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7232 } 7233 } 7234