1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 Address NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 314 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 315 316 // If the argument is smaller than a slot, and this is a big-endian 317 // target, the argument will be right-adjusted in its slot. 318 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 319 !DirectTy->isStructTy()) { 320 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 321 } 322 323 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 324 return Addr; 325 } 326 327 /// Emit va_arg for a platform using the common void* representation, 328 /// where arguments are simply emitted in an array of slots on the stack. 329 /// 330 /// \param IsIndirect - Values of this type are passed indirectly. 331 /// \param ValueInfo - The size and alignment of this type, generally 332 /// computed with getContext().getTypeInfoInChars(ValueTy). 333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 334 /// Each argument will be allocated to a multiple of this number of 335 /// slots, and all the slots will be aligned to this value. 336 /// \param AllowHigherAlign - The slot alignment is not a cap; 337 /// an argument type with an alignment greater than the slot size 338 /// will be emitted on a higher-alignment address, potentially 339 /// leaving one or more empty slots behind as padding. 340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 341 QualType ValueTy, bool IsIndirect, 342 std::pair<CharUnits, CharUnits> ValueInfo, 343 CharUnits SlotSizeAndAlign, 344 bool AllowHigherAlign) { 345 // The size and alignment of the value that was passed directly. 346 CharUnits DirectSize, DirectAlign; 347 if (IsIndirect) { 348 DirectSize = CGF.getPointerSize(); 349 DirectAlign = CGF.getPointerAlign(); 350 } else { 351 DirectSize = ValueInfo.first; 352 DirectAlign = ValueInfo.second; 353 } 354 355 // Cast the address we've calculated to the right type. 356 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 357 if (IsIndirect) 358 DirectTy = DirectTy->getPointerTo(0); 359 360 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 361 DirectSize, DirectAlign, 362 SlotSizeAndAlign, 363 AllowHigherAlign); 364 365 if (IsIndirect) { 366 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 367 } 368 369 return Addr; 370 371 } 372 373 static Address emitMergePHI(CodeGenFunction &CGF, 374 Address Addr1, llvm::BasicBlock *Block1, 375 Address Addr2, llvm::BasicBlock *Block2, 376 const llvm::Twine &Name = "") { 377 assert(Addr1.getType() == Addr2.getType()); 378 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 379 PHI->addIncoming(Addr1.getPointer(), Block1); 380 PHI->addIncoming(Addr2.getPointer(), Block2); 381 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 382 return Address(PHI, Align); 383 } 384 385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 386 387 // If someone can figure out a general rule for this, that would be great. 388 // It's probably just doomed to be platform-dependent, though. 389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 390 // Verified for: 391 // x86-64 FreeBSD, Linux, Darwin 392 // x86-32 FreeBSD, Linux, Darwin 393 // PowerPC Linux, Darwin 394 // ARM Darwin (*not* EABI) 395 // AArch64 Linux 396 return 32; 397 } 398 399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 400 const FunctionNoProtoType *fnType) const { 401 // The following conventions are known to require this to be false: 402 // x86_stdcall 403 // MIPS 404 // For everything else, we just prefer false unless we opt out. 405 return false; 406 } 407 408 void 409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 410 llvm::SmallString<24> &Opt) const { 411 // This assumes the user is passing a library name like "rt" instead of a 412 // filename like "librt.a/so", and that they don't care whether it's static or 413 // dynamic. 414 Opt = "-l"; 415 Opt += Lib; 416 } 417 418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 419 // OpenCL kernels are called via an explicit runtime API with arguments 420 // set with clSetKernelArg(), not as normal sub-functions. 421 // Return SPIR_KERNEL by default as the kernel calling convention to 422 // ensure the fingerprint is fixed such way that each OpenCL argument 423 // gets one matching argument in the produced kernel function argument 424 // list to enable feasible implementation of clSetKernelArg() with 425 // aggregates etc. In case we would use the default C calling conv here, 426 // clSetKernelArg() might break depending on the target-specific 427 // conventions; different targets might split structs passed as values 428 // to multiple function arguments etc. 429 return llvm::CallingConv::SPIR_KERNEL; 430 } 431 432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 433 llvm::PointerType *T, QualType QT) const { 434 return llvm::ConstantPointerNull::get(T); 435 } 436 437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 438 const VarDecl *D) const { 439 assert(!CGM.getLangOpts().OpenCL && 440 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 441 "Address space agnostic languages only"); 442 return D ? D->getType().getAddressSpace() : LangAS::Default; 443 } 444 445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 446 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 447 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 if (auto *C = dyn_cast<llvm::Constant>(Src)) 451 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 452 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 453 } 454 455 llvm::Constant * 456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 457 LangAS SrcAddr, LangAS DestAddr, 458 llvm::Type *DestTy) const { 459 // Since target may map different address spaces in AST to the same address 460 // space, an address space conversion may end up as a bitcast. 461 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 462 } 463 464 llvm::SyncScope::ID 465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 466 SyncScope Scope, 467 llvm::AtomicOrdering Ordering, 468 llvm::LLVMContext &Ctx) const { 469 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 470 } 471 472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 473 474 /// isEmptyField - Return true iff a the field is "empty", that is it 475 /// is an unnamed bit-field or an (array of) empty record(s). 476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 477 bool AllowArrays) { 478 if (FD->isUnnamedBitfield()) 479 return true; 480 481 QualType FT = FD->getType(); 482 483 // Constant arrays of empty records count as empty, strip them off. 484 // Constant arrays of zero length always count as empty. 485 if (AllowArrays) 486 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 487 if (AT->getSize() == 0) 488 return true; 489 FT = AT->getElementType(); 490 } 491 492 const RecordType *RT = FT->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 496 // C++ record fields are never empty, at least in the Itanium ABI. 497 // 498 // FIXME: We should use a predicate for whether this behavior is true in the 499 // current ABI. 500 if (isa<CXXRecordDecl>(RT->getDecl())) 501 return false; 502 503 return isEmptyRecord(Context, FT, AllowArrays); 504 } 505 506 /// isEmptyRecord - Return true iff a structure contains only empty 507 /// fields. Note that a structure with a flexible array member is not 508 /// considered empty. 509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 510 const RecordType *RT = T->getAs<RecordType>(); 511 if (!RT) 512 return false; 513 const RecordDecl *RD = RT->getDecl(); 514 if (RD->hasFlexibleArrayMember()) 515 return false; 516 517 // If this is a C++ record, check the bases first. 518 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 519 for (const auto &I : CXXRD->bases()) 520 if (!isEmptyRecord(Context, I.getType(), true)) 521 return false; 522 523 for (const auto *I : RD->fields()) 524 if (!isEmptyField(Context, I, AllowArrays)) 525 return false; 526 return true; 527 } 528 529 /// isSingleElementStruct - Determine if a structure is a "single 530 /// element struct", i.e. it has exactly one non-empty field or 531 /// exactly one field which is itself a single element 532 /// struct. Structures with flexible array members are never 533 /// considered single element structs. 534 /// 535 /// \return The field declaration for the single non-empty field, if 536 /// it exists. 537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return nullptr; 541 542 const RecordDecl *RD = RT->getDecl(); 543 if (RD->hasFlexibleArrayMember()) 544 return nullptr; 545 546 const Type *Found = nullptr; 547 548 // If this is a C++ record, check the bases first. 549 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 550 for (const auto &I : CXXRD->bases()) { 551 // Ignore empty records. 552 if (isEmptyRecord(Context, I.getType(), true)) 553 continue; 554 555 // If we already found an element then this isn't a single-element struct. 556 if (Found) 557 return nullptr; 558 559 // If this is non-empty and not a single element struct, the composite 560 // cannot be a single element struct. 561 Found = isSingleElementStruct(I.getType(), Context); 562 if (!Found) 563 return nullptr; 564 } 565 } 566 567 // Check for single element. 568 for (const auto *FD : RD->fields()) { 569 QualType FT = FD->getType(); 570 571 // Ignore empty fields. 572 if (isEmptyField(Context, FD, true)) 573 continue; 574 575 // If we already found an element then this isn't a single-element 576 // struct. 577 if (Found) 578 return nullptr; 579 580 // Treat single element arrays as the element. 581 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 582 if (AT->getSize().getZExtValue() != 1) 583 break; 584 FT = AT->getElementType(); 585 } 586 587 if (!isAggregateTypeForABI(FT)) { 588 Found = FT.getTypePtr(); 589 } else { 590 Found = isSingleElementStruct(FT, Context); 591 if (!Found) 592 return nullptr; 593 } 594 } 595 596 // We don't consider a struct a single-element struct if it has 597 // padding beyond the element type. 598 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 599 return nullptr; 600 601 return Found; 602 } 603 604 namespace { 605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 606 const ABIArgInfo &AI) { 607 // This default implementation defers to the llvm backend's va_arg 608 // instruction. It can handle only passing arguments directly 609 // (typically only handled in the backend for primitive types), or 610 // aggregates passed indirectly by pointer (NOTE: if the "byval" 611 // flag has ABI impact in the callee, this implementation cannot 612 // work.) 613 614 // Only a few cases are covered here at the moment -- those needed 615 // by the default abi. 616 llvm::Value *Val; 617 618 if (AI.isIndirect()) { 619 assert(!AI.getPaddingType() && 620 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 621 assert( 622 !AI.getIndirectRealign() && 623 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 624 625 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 626 CharUnits TyAlignForABI = TyInfo.second; 627 628 llvm::Type *BaseTy = 629 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 630 llvm::Value *Addr = 631 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 632 return Address(Addr, TyAlignForABI); 633 } else { 634 assert((AI.isDirect() || AI.isExtend()) && 635 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 636 637 assert(!AI.getInReg() && 638 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getPaddingType() && 640 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getDirectOffset() && 642 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getCoerceToType() && 644 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 645 646 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 647 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 648 CGF.Builder.CreateStore(Val, Temp); 649 return Temp; 650 } 651 } 652 653 /// DefaultABIInfo - The default implementation for ABI specific 654 /// details. This implementation provides information which results in 655 /// self-consistent and sensible LLVM IR generation, but does not 656 /// conform to any particular ABI. 657 class DefaultABIInfo : public ABIInfo { 658 public: 659 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 660 661 ABIArgInfo classifyReturnType(QualType RetTy) const; 662 ABIArgInfo classifyArgumentType(QualType RetTy) const; 663 664 void computeInfo(CGFunctionInfo &FI) const override { 665 if (!getCXXABI().classifyReturnType(FI)) 666 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 667 for (auto &I : FI.arguments()) 668 I.info = classifyArgumentType(I.type); 669 } 670 671 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 672 QualType Ty) const override { 673 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 674 } 675 }; 676 677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 678 public: 679 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 680 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 681 }; 682 683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 684 Ty = useFirstFieldIfTransparentUnion(Ty); 685 686 if (isAggregateTypeForABI(Ty)) { 687 // Records with non-trivial destructors/copy-constructors should not be 688 // passed by value. 689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 690 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 691 692 return getNaturalAlignIndirect(Ty); 693 } 694 695 // Treat an enum type as its underlying type. 696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 697 Ty = EnumTy->getDecl()->getIntegerType(); 698 699 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 700 : ABIArgInfo::getDirect()); 701 } 702 703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 704 if (RetTy->isVoidType()) 705 return ABIArgInfo::getIgnore(); 706 707 if (isAggregateTypeForABI(RetTy)) 708 return getNaturalAlignIndirect(RetTy); 709 710 // Treat an enum type as its underlying type. 711 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 712 RetTy = EnumTy->getDecl()->getIntegerType(); 713 714 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 715 : ABIArgInfo::getDirect()); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // WebAssembly ABI Implementation 720 // 721 // This is a very simple ABI that relies a lot on DefaultABIInfo. 722 //===----------------------------------------------------------------------===// 723 724 class WebAssemblyABIInfo final : public SwiftABIInfo { 725 DefaultABIInfo defaultInfo; 726 727 public: 728 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 729 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 730 731 private: 732 ABIArgInfo classifyReturnType(QualType RetTy) const; 733 ABIArgInfo classifyArgumentType(QualType Ty) const; 734 735 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 736 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 737 // overload them. 738 void computeInfo(CGFunctionInfo &FI) const override { 739 if (!getCXXABI().classifyReturnType(FI)) 740 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 741 for (auto &Arg : FI.arguments()) 742 Arg.info = classifyArgumentType(Arg.type); 743 } 744 745 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 746 QualType Ty) const override; 747 748 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 749 bool asReturnValue) const override { 750 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 751 } 752 753 bool isSwiftErrorInRegister() const override { 754 return false; 755 } 756 }; 757 758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 759 public: 760 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 761 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 762 763 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 764 CodeGen::CodeGenModule &CGM) const override { 765 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 766 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 767 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 768 llvm::Function *Fn = cast<llvm::Function>(GV); 769 llvm::AttrBuilder B; 770 B.addAttribute("wasm-import-module", Attr->getImportModule()); 771 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 772 } 773 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 774 llvm::Function *Fn = cast<llvm::Function>(GV); 775 llvm::AttrBuilder B; 776 B.addAttribute("wasm-import-name", Attr->getImportName()); 777 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 778 } 779 } 780 781 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 782 llvm::Function *Fn = cast<llvm::Function>(GV); 783 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 784 Fn->addFnAttr("no-prototype"); 785 } 786 } 787 }; 788 789 /// Classify argument of given type \p Ty. 790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 791 Ty = useFirstFieldIfTransparentUnion(Ty); 792 793 if (isAggregateTypeForABI(Ty)) { 794 // Records with non-trivial destructors/copy-constructors should not be 795 // passed by value. 796 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 797 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 798 // Ignore empty structs/unions. 799 if (isEmptyRecord(getContext(), Ty, true)) 800 return ABIArgInfo::getIgnore(); 801 // Lower single-element structs to just pass a regular value. TODO: We 802 // could do reasonable-size multiple-element structs too, using getExpand(), 803 // though watch out for things like bitfields. 804 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 805 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 806 } 807 808 // Otherwise just do the default thing. 809 return defaultInfo.classifyArgumentType(Ty); 810 } 811 812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 813 if (isAggregateTypeForABI(RetTy)) { 814 // Records with non-trivial destructors/copy-constructors should not be 815 // returned by value. 816 if (!getRecordArgABI(RetTy, getCXXABI())) { 817 // Ignore empty structs/unions. 818 if (isEmptyRecord(getContext(), RetTy, true)) 819 return ABIArgInfo::getIgnore(); 820 // Lower single-element structs to just return a regular value. TODO: We 821 // could do reasonable-size multiple-element structs too, using 822 // ABIArgInfo::getDirect(). 823 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 824 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 825 } 826 } 827 828 // Otherwise just do the default thing. 829 return defaultInfo.classifyReturnType(RetTy); 830 } 831 832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 833 QualType Ty) const { 834 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 835 getContext().getTypeInfoInChars(Ty), 836 CharUnits::fromQuantity(4), 837 /*AllowHigherAlign=*/ true); 838 } 839 840 //===----------------------------------------------------------------------===// 841 // le32/PNaCl bitcode ABI Implementation 842 // 843 // This is a simplified version of the x86_32 ABI. Arguments and return values 844 // are always passed on the stack. 845 //===----------------------------------------------------------------------===// 846 847 class PNaClABIInfo : public ABIInfo { 848 public: 849 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 850 851 ABIArgInfo classifyReturnType(QualType RetTy) const; 852 ABIArgInfo classifyArgumentType(QualType RetTy) const; 853 854 void computeInfo(CGFunctionInfo &FI) const override; 855 Address EmitVAArg(CodeGenFunction &CGF, 856 Address VAListAddr, QualType Ty) const override; 857 }; 858 859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 860 public: 861 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 862 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 863 }; 864 865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 866 if (!getCXXABI().classifyReturnType(FI)) 867 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 868 869 for (auto &I : FI.arguments()) 870 I.info = classifyArgumentType(I.type); 871 } 872 873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 874 QualType Ty) const { 875 // The PNaCL ABI is a bit odd, in that varargs don't use normal 876 // function classification. Structs get passed directly for varargs 877 // functions, through a rewriting transform in 878 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 879 // this target to actually support a va_arg instructions with an 880 // aggregate type, unlike other targets. 881 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 882 } 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 886 if (isAggregateTypeForABI(Ty)) { 887 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 888 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 889 return getNaturalAlignIndirect(Ty); 890 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 891 // Treat an enum type as its underlying type. 892 Ty = EnumTy->getDecl()->getIntegerType(); 893 } else if (Ty->isFloatingType()) { 894 // Floating-point types don't go inreg. 895 return ABIArgInfo::getDirect(); 896 } 897 898 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 899 : ABIArgInfo::getDirect()); 900 } 901 902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 903 if (RetTy->isVoidType()) 904 return ABIArgInfo::getIgnore(); 905 906 // In the PNaCl ABI we always return records/structures on the stack. 907 if (isAggregateTypeForABI(RetTy)) 908 return getNaturalAlignIndirect(RetTy); 909 910 // Treat an enum type as its underlying type. 911 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 912 RetTy = EnumTy->getDecl()->getIntegerType(); 913 914 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 915 : ABIArgInfo::getDirect()); 916 } 917 918 /// IsX86_MMXType - Return true if this is an MMX type. 919 bool IsX86_MMXType(llvm::Type *IRType) { 920 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 921 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 922 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 923 IRType->getScalarSizeInBits() != 64; 924 } 925 926 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 927 StringRef Constraint, 928 llvm::Type* Ty) { 929 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 930 .Cases("y", "&y", "^Ym", true) 931 .Default(false); 932 if (IsMMXCons && Ty->isVectorTy()) { 933 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 934 // Invalid MMX constraint 935 return nullptr; 936 } 937 938 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 939 } 940 941 // No operation needed 942 return Ty; 943 } 944 945 /// Returns true if this type can be passed in SSE registers with the 946 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 947 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 948 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 949 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 950 if (BT->getKind() == BuiltinType::LongDouble) { 951 if (&Context.getTargetInfo().getLongDoubleFormat() == 952 &llvm::APFloat::x87DoubleExtended()) 953 return false; 954 } 955 return true; 956 } 957 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 958 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 959 // registers specially. 960 unsigned VecSize = Context.getTypeSize(VT); 961 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 962 return true; 963 } 964 return false; 965 } 966 967 /// Returns true if this aggregate is small enough to be passed in SSE registers 968 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 969 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 970 return NumMembers <= 4; 971 } 972 973 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 974 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 975 auto AI = ABIArgInfo::getDirect(T); 976 AI.setInReg(true); 977 AI.setCanBeFlattened(false); 978 return AI; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // X86-32 ABI Implementation 983 //===----------------------------------------------------------------------===// 984 985 /// Similar to llvm::CCState, but for Clang. 986 struct CCState { 987 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 988 989 unsigned CC; 990 unsigned FreeRegs; 991 unsigned FreeSSERegs; 992 }; 993 994 enum { 995 // Vectorcall only allows the first 6 parameters to be passed in registers. 996 VectorcallMaxParamNumAsReg = 6 997 }; 998 999 /// X86_32ABIInfo - The X86-32 ABI information. 1000 class X86_32ABIInfo : public SwiftABIInfo { 1001 enum Class { 1002 Integer, 1003 Float 1004 }; 1005 1006 static const unsigned MinABIStackAlignInBytes = 4; 1007 1008 bool IsDarwinVectorABI; 1009 bool IsRetSmallStructInRegABI; 1010 bool IsWin32StructABI; 1011 bool IsSoftFloatABI; 1012 bool IsMCUABI; 1013 unsigned DefaultNumRegisterParameters; 1014 1015 static bool isRegisterSize(unsigned Size) { 1016 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1017 } 1018 1019 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1020 // FIXME: Assumes vectorcall is in use. 1021 return isX86VectorTypeForVectorCall(getContext(), Ty); 1022 } 1023 1024 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1025 uint64_t NumMembers) const override { 1026 // FIXME: Assumes vectorcall is in use. 1027 return isX86VectorCallAggregateSmallEnough(NumMembers); 1028 } 1029 1030 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1031 1032 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1033 /// such that the argument will be passed in memory. 1034 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1035 1036 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1037 1038 /// Return the alignment to use for the given type on the stack. 1039 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1040 1041 Class classify(QualType Ty) const; 1042 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1043 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1044 1045 /// Updates the number of available free registers, returns 1046 /// true if any registers were allocated. 1047 bool updateFreeRegs(QualType Ty, CCState &State) const; 1048 1049 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1050 bool &NeedsPadding) const; 1051 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1052 1053 bool canExpandIndirectArgument(QualType Ty) const; 1054 1055 /// Rewrite the function info so that all memory arguments use 1056 /// inalloca. 1057 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1058 1059 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1060 CharUnits &StackOffset, ABIArgInfo &Info, 1061 QualType Type) const; 1062 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1063 bool &UsedInAlloca) const; 1064 1065 public: 1066 1067 void computeInfo(CGFunctionInfo &FI) const override; 1068 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1069 QualType Ty) const override; 1070 1071 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1072 bool RetSmallStructInRegABI, bool Win32StructABI, 1073 unsigned NumRegisterParameters, bool SoftFloatABI) 1074 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1075 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1076 IsWin32StructABI(Win32StructABI), 1077 IsSoftFloatABI(SoftFloatABI), 1078 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1079 DefaultNumRegisterParameters(NumRegisterParameters) {} 1080 1081 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1082 bool asReturnValue) const override { 1083 // LLVM's x86-32 lowering currently only assigns up to three 1084 // integer registers and three fp registers. Oddly, it'll use up to 1085 // four vector registers for vectors, but those can overlap with the 1086 // scalar registers. 1087 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1088 } 1089 1090 bool isSwiftErrorInRegister() const override { 1091 // x86-32 lowering does not support passing swifterror in a register. 1092 return false; 1093 } 1094 }; 1095 1096 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1097 public: 1098 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1099 bool RetSmallStructInRegABI, bool Win32StructABI, 1100 unsigned NumRegisterParameters, bool SoftFloatABI) 1101 : TargetCodeGenInfo(new X86_32ABIInfo( 1102 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1103 NumRegisterParameters, SoftFloatABI)) {} 1104 1105 static bool isStructReturnInRegABI( 1106 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1107 1108 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1109 CodeGen::CodeGenModule &CGM) const override; 1110 1111 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1112 // Darwin uses different dwarf register numbers for EH. 1113 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1114 return 4; 1115 } 1116 1117 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1118 llvm::Value *Address) const override; 1119 1120 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1121 StringRef Constraint, 1122 llvm::Type* Ty) const override { 1123 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1124 } 1125 1126 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1127 std::string &Constraints, 1128 std::vector<llvm::Type *> &ResultRegTypes, 1129 std::vector<llvm::Type *> &ResultTruncRegTypes, 1130 std::vector<LValue> &ResultRegDests, 1131 std::string &AsmString, 1132 unsigned NumOutputs) const override; 1133 1134 llvm::Constant * 1135 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1136 unsigned Sig = (0xeb << 0) | // jmp rel8 1137 (0x06 << 8) | // .+0x08 1138 ('v' << 16) | 1139 ('2' << 24); 1140 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1141 } 1142 1143 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1144 return "movl\t%ebp, %ebp" 1145 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1146 } 1147 }; 1148 1149 } 1150 1151 /// Rewrite input constraint references after adding some output constraints. 1152 /// In the case where there is one output and one input and we add one output, 1153 /// we need to replace all operand references greater than or equal to 1: 1154 /// mov $0, $1 1155 /// mov eax, $1 1156 /// The result will be: 1157 /// mov $0, $2 1158 /// mov eax, $2 1159 static void rewriteInputConstraintReferences(unsigned FirstIn, 1160 unsigned NumNewOuts, 1161 std::string &AsmString) { 1162 std::string Buf; 1163 llvm::raw_string_ostream OS(Buf); 1164 size_t Pos = 0; 1165 while (Pos < AsmString.size()) { 1166 size_t DollarStart = AsmString.find('$', Pos); 1167 if (DollarStart == std::string::npos) 1168 DollarStart = AsmString.size(); 1169 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1170 if (DollarEnd == std::string::npos) 1171 DollarEnd = AsmString.size(); 1172 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1173 Pos = DollarEnd; 1174 size_t NumDollars = DollarEnd - DollarStart; 1175 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1176 // We have an operand reference. 1177 size_t DigitStart = Pos; 1178 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1179 if (DigitEnd == std::string::npos) 1180 DigitEnd = AsmString.size(); 1181 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1182 unsigned OperandIndex; 1183 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1184 if (OperandIndex >= FirstIn) 1185 OperandIndex += NumNewOuts; 1186 OS << OperandIndex; 1187 } else { 1188 OS << OperandStr; 1189 } 1190 Pos = DigitEnd; 1191 } 1192 } 1193 AsmString = std::move(OS.str()); 1194 } 1195 1196 /// Add output constraints for EAX:EDX because they are return registers. 1197 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1198 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1199 std::vector<llvm::Type *> &ResultRegTypes, 1200 std::vector<llvm::Type *> &ResultTruncRegTypes, 1201 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1202 unsigned NumOutputs) const { 1203 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1204 1205 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1206 // larger. 1207 if (!Constraints.empty()) 1208 Constraints += ','; 1209 if (RetWidth <= 32) { 1210 Constraints += "={eax}"; 1211 ResultRegTypes.push_back(CGF.Int32Ty); 1212 } else { 1213 // Use the 'A' constraint for EAX:EDX. 1214 Constraints += "=A"; 1215 ResultRegTypes.push_back(CGF.Int64Ty); 1216 } 1217 1218 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1219 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1220 ResultTruncRegTypes.push_back(CoerceTy); 1221 1222 // Coerce the integer by bitcasting the return slot pointer. 1223 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1224 CoerceTy->getPointerTo())); 1225 ResultRegDests.push_back(ReturnSlot); 1226 1227 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1228 } 1229 1230 /// shouldReturnTypeInRegister - Determine if the given type should be 1231 /// returned in a register (for the Darwin and MCU ABI). 1232 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1233 ASTContext &Context) const { 1234 uint64_t Size = Context.getTypeSize(Ty); 1235 1236 // For i386, type must be register sized. 1237 // For the MCU ABI, it only needs to be <= 8-byte 1238 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1239 return false; 1240 1241 if (Ty->isVectorType()) { 1242 // 64- and 128- bit vectors inside structures are not returned in 1243 // registers. 1244 if (Size == 64 || Size == 128) 1245 return false; 1246 1247 return true; 1248 } 1249 1250 // If this is a builtin, pointer, enum, complex type, member pointer, or 1251 // member function pointer it is ok. 1252 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1253 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1254 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1255 return true; 1256 1257 // Arrays are treated like records. 1258 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1259 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1260 1261 // Otherwise, it must be a record type. 1262 const RecordType *RT = Ty->getAs<RecordType>(); 1263 if (!RT) return false; 1264 1265 // FIXME: Traverse bases here too. 1266 1267 // Structure types are passed in register if all fields would be 1268 // passed in a register. 1269 for (const auto *FD : RT->getDecl()->fields()) { 1270 // Empty fields are ignored. 1271 if (isEmptyField(Context, FD, true)) 1272 continue; 1273 1274 // Check fields recursively. 1275 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1276 return false; 1277 } 1278 return true; 1279 } 1280 1281 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1282 // Treat complex types as the element type. 1283 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1284 Ty = CTy->getElementType(); 1285 1286 // Check for a type which we know has a simple scalar argument-passing 1287 // convention without any padding. (We're specifically looking for 32 1288 // and 64-bit integer and integer-equivalents, float, and double.) 1289 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1290 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1291 return false; 1292 1293 uint64_t Size = Context.getTypeSize(Ty); 1294 return Size == 32 || Size == 64; 1295 } 1296 1297 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1298 uint64_t &Size) { 1299 for (const auto *FD : RD->fields()) { 1300 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1301 // argument is smaller than 32-bits, expanding the struct will create 1302 // alignment padding. 1303 if (!is32Or64BitBasicType(FD->getType(), Context)) 1304 return false; 1305 1306 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1307 // how to expand them yet, and the predicate for telling if a bitfield still 1308 // counts as "basic" is more complicated than what we were doing previously. 1309 if (FD->isBitField()) 1310 return false; 1311 1312 Size += Context.getTypeSize(FD->getType()); 1313 } 1314 return true; 1315 } 1316 1317 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1318 uint64_t &Size) { 1319 // Don't do this if there are any non-empty bases. 1320 for (const CXXBaseSpecifier &Base : RD->bases()) { 1321 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1322 Size)) 1323 return false; 1324 } 1325 if (!addFieldSizes(Context, RD, Size)) 1326 return false; 1327 return true; 1328 } 1329 1330 /// Test whether an argument type which is to be passed indirectly (on the 1331 /// stack) would have the equivalent layout if it was expanded into separate 1332 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1333 /// optimizations. 1334 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1335 // We can only expand structure types. 1336 const RecordType *RT = Ty->getAs<RecordType>(); 1337 if (!RT) 1338 return false; 1339 const RecordDecl *RD = RT->getDecl(); 1340 uint64_t Size = 0; 1341 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1342 if (!IsWin32StructABI) { 1343 // On non-Windows, we have to conservatively match our old bitcode 1344 // prototypes in order to be ABI-compatible at the bitcode level. 1345 if (!CXXRD->isCLike()) 1346 return false; 1347 } else { 1348 // Don't do this for dynamic classes. 1349 if (CXXRD->isDynamicClass()) 1350 return false; 1351 } 1352 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1353 return false; 1354 } else { 1355 if (!addFieldSizes(getContext(), RD, Size)) 1356 return false; 1357 } 1358 1359 // We can do this if there was no alignment padding. 1360 return Size == getContext().getTypeSize(Ty); 1361 } 1362 1363 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1364 // If the return value is indirect, then the hidden argument is consuming one 1365 // integer register. 1366 if (State.FreeRegs) { 1367 --State.FreeRegs; 1368 if (!IsMCUABI) 1369 return getNaturalAlignIndirectInReg(RetTy); 1370 } 1371 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1372 } 1373 1374 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1375 CCState &State) const { 1376 if (RetTy->isVoidType()) 1377 return ABIArgInfo::getIgnore(); 1378 1379 const Type *Base = nullptr; 1380 uint64_t NumElts = 0; 1381 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1382 State.CC == llvm::CallingConv::X86_RegCall) && 1383 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1384 // The LLVM struct type for such an aggregate should lower properly. 1385 return ABIArgInfo::getDirect(); 1386 } 1387 1388 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1389 // On Darwin, some vectors are returned in registers. 1390 if (IsDarwinVectorABI) { 1391 uint64_t Size = getContext().getTypeSize(RetTy); 1392 1393 // 128-bit vectors are a special case; they are returned in 1394 // registers and we need to make sure to pick a type the LLVM 1395 // backend will like. 1396 if (Size == 128) 1397 return ABIArgInfo::getDirect(llvm::VectorType::get( 1398 llvm::Type::getInt64Ty(getVMContext()), 2)); 1399 1400 // Always return in register if it fits in a general purpose 1401 // register, or if it is 64 bits and has a single element. 1402 if ((Size == 8 || Size == 16 || Size == 32) || 1403 (Size == 64 && VT->getNumElements() == 1)) 1404 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1405 Size)); 1406 1407 return getIndirectReturnResult(RetTy, State); 1408 } 1409 1410 return ABIArgInfo::getDirect(); 1411 } 1412 1413 if (isAggregateTypeForABI(RetTy)) { 1414 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1415 // Structures with flexible arrays are always indirect. 1416 if (RT->getDecl()->hasFlexibleArrayMember()) 1417 return getIndirectReturnResult(RetTy, State); 1418 } 1419 1420 // If specified, structs and unions are always indirect. 1421 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1422 return getIndirectReturnResult(RetTy, State); 1423 1424 // Ignore empty structs/unions. 1425 if (isEmptyRecord(getContext(), RetTy, true)) 1426 return ABIArgInfo::getIgnore(); 1427 1428 // Small structures which are register sized are generally returned 1429 // in a register. 1430 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1431 uint64_t Size = getContext().getTypeSize(RetTy); 1432 1433 // As a special-case, if the struct is a "single-element" struct, and 1434 // the field is of type "float" or "double", return it in a 1435 // floating-point register. (MSVC does not apply this special case.) 1436 // We apply a similar transformation for pointer types to improve the 1437 // quality of the generated IR. 1438 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1439 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1440 || SeltTy->hasPointerRepresentation()) 1441 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1442 1443 // FIXME: We should be able to narrow this integer in cases with dead 1444 // padding. 1445 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1446 } 1447 1448 return getIndirectReturnResult(RetTy, State); 1449 } 1450 1451 // Treat an enum type as its underlying type. 1452 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1453 RetTy = EnumTy->getDecl()->getIntegerType(); 1454 1455 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1456 : ABIArgInfo::getDirect()); 1457 } 1458 1459 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1460 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1461 } 1462 1463 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1464 const RecordType *RT = Ty->getAs<RecordType>(); 1465 if (!RT) 1466 return 0; 1467 const RecordDecl *RD = RT->getDecl(); 1468 1469 // If this is a C++ record, check the bases first. 1470 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1471 for (const auto &I : CXXRD->bases()) 1472 if (!isRecordWithSSEVectorType(Context, I.getType())) 1473 return false; 1474 1475 for (const auto *i : RD->fields()) { 1476 QualType FT = i->getType(); 1477 1478 if (isSSEVectorType(Context, FT)) 1479 return true; 1480 1481 if (isRecordWithSSEVectorType(Context, FT)) 1482 return true; 1483 } 1484 1485 return false; 1486 } 1487 1488 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1489 unsigned Align) const { 1490 // Otherwise, if the alignment is less than or equal to the minimum ABI 1491 // alignment, just use the default; the backend will handle this. 1492 if (Align <= MinABIStackAlignInBytes) 1493 return 0; // Use default alignment. 1494 1495 // On non-Darwin, the stack type alignment is always 4. 1496 if (!IsDarwinVectorABI) { 1497 // Set explicit alignment, since we may need to realign the top. 1498 return MinABIStackAlignInBytes; 1499 } 1500 1501 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1502 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1503 isRecordWithSSEVectorType(getContext(), Ty))) 1504 return 16; 1505 1506 return MinABIStackAlignInBytes; 1507 } 1508 1509 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1510 CCState &State) const { 1511 if (!ByVal) { 1512 if (State.FreeRegs) { 1513 --State.FreeRegs; // Non-byval indirects just use one pointer. 1514 if (!IsMCUABI) 1515 return getNaturalAlignIndirectInReg(Ty); 1516 } 1517 return getNaturalAlignIndirect(Ty, false); 1518 } 1519 1520 // Compute the byval alignment. 1521 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1522 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1523 if (StackAlign == 0) 1524 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1525 1526 // If the stack alignment is less than the type alignment, realign the 1527 // argument. 1528 bool Realign = TypeAlign > StackAlign; 1529 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1530 /*ByVal=*/true, Realign); 1531 } 1532 1533 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1534 const Type *T = isSingleElementStruct(Ty, getContext()); 1535 if (!T) 1536 T = Ty.getTypePtr(); 1537 1538 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1539 BuiltinType::Kind K = BT->getKind(); 1540 if (K == BuiltinType::Float || K == BuiltinType::Double) 1541 return Float; 1542 } 1543 return Integer; 1544 } 1545 1546 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1547 if (!IsSoftFloatABI) { 1548 Class C = classify(Ty); 1549 if (C == Float) 1550 return false; 1551 } 1552 1553 unsigned Size = getContext().getTypeSize(Ty); 1554 unsigned SizeInRegs = (Size + 31) / 32; 1555 1556 if (SizeInRegs == 0) 1557 return false; 1558 1559 if (!IsMCUABI) { 1560 if (SizeInRegs > State.FreeRegs) { 1561 State.FreeRegs = 0; 1562 return false; 1563 } 1564 } else { 1565 // The MCU psABI allows passing parameters in-reg even if there are 1566 // earlier parameters that are passed on the stack. Also, 1567 // it does not allow passing >8-byte structs in-register, 1568 // even if there are 3 free registers available. 1569 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1570 return false; 1571 } 1572 1573 State.FreeRegs -= SizeInRegs; 1574 return true; 1575 } 1576 1577 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1578 bool &InReg, 1579 bool &NeedsPadding) const { 1580 // On Windows, aggregates other than HFAs are never passed in registers, and 1581 // they do not consume register slots. Homogenous floating-point aggregates 1582 // (HFAs) have already been dealt with at this point. 1583 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1584 return false; 1585 1586 NeedsPadding = false; 1587 InReg = !IsMCUABI; 1588 1589 if (!updateFreeRegs(Ty, State)) 1590 return false; 1591 1592 if (IsMCUABI) 1593 return true; 1594 1595 if (State.CC == llvm::CallingConv::X86_FastCall || 1596 State.CC == llvm::CallingConv::X86_VectorCall || 1597 State.CC == llvm::CallingConv::X86_RegCall) { 1598 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1599 NeedsPadding = true; 1600 1601 return false; 1602 } 1603 1604 return true; 1605 } 1606 1607 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1608 if (!updateFreeRegs(Ty, State)) 1609 return false; 1610 1611 if (IsMCUABI) 1612 return false; 1613 1614 if (State.CC == llvm::CallingConv::X86_FastCall || 1615 State.CC == llvm::CallingConv::X86_VectorCall || 1616 State.CC == llvm::CallingConv::X86_RegCall) { 1617 if (getContext().getTypeSize(Ty) > 32) 1618 return false; 1619 1620 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1621 Ty->isReferenceType()); 1622 } 1623 1624 return true; 1625 } 1626 1627 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1628 CCState &State) const { 1629 // FIXME: Set alignment on indirect arguments. 1630 1631 Ty = useFirstFieldIfTransparentUnion(Ty); 1632 1633 // Check with the C++ ABI first. 1634 const RecordType *RT = Ty->getAs<RecordType>(); 1635 if (RT) { 1636 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1637 if (RAA == CGCXXABI::RAA_Indirect) { 1638 return getIndirectResult(Ty, false, State); 1639 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1640 // The field index doesn't matter, we'll fix it up later. 1641 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1642 } 1643 } 1644 1645 // Regcall uses the concept of a homogenous vector aggregate, similar 1646 // to other targets. 1647 const Type *Base = nullptr; 1648 uint64_t NumElts = 0; 1649 if (State.CC == llvm::CallingConv::X86_RegCall && 1650 isHomogeneousAggregate(Ty, Base, NumElts)) { 1651 1652 if (State.FreeSSERegs >= NumElts) { 1653 State.FreeSSERegs -= NumElts; 1654 if (Ty->isBuiltinType() || Ty->isVectorType()) 1655 return ABIArgInfo::getDirect(); 1656 return ABIArgInfo::getExpand(); 1657 } 1658 return getIndirectResult(Ty, /*ByVal=*/false, State); 1659 } 1660 1661 if (isAggregateTypeForABI(Ty)) { 1662 // Structures with flexible arrays are always indirect. 1663 // FIXME: This should not be byval! 1664 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1665 return getIndirectResult(Ty, true, State); 1666 1667 // Ignore empty structs/unions on non-Windows. 1668 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1669 return ABIArgInfo::getIgnore(); 1670 1671 llvm::LLVMContext &LLVMContext = getVMContext(); 1672 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1673 bool NeedsPadding = false; 1674 bool InReg; 1675 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1676 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1677 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1678 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1679 if (InReg) 1680 return ABIArgInfo::getDirectInReg(Result); 1681 else 1682 return ABIArgInfo::getDirect(Result); 1683 } 1684 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1685 1686 // Expand small (<= 128-bit) record types when we know that the stack layout 1687 // of those arguments will match the struct. This is important because the 1688 // LLVM backend isn't smart enough to remove byval, which inhibits many 1689 // optimizations. 1690 // Don't do this for the MCU if there are still free integer registers 1691 // (see X86_64 ABI for full explanation). 1692 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1693 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1694 return ABIArgInfo::getExpandWithPadding( 1695 State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall, 1698 PaddingType); 1699 1700 return getIndirectResult(Ty, true, State); 1701 } 1702 1703 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1704 // On Darwin, some vectors are passed in memory, we handle this by passing 1705 // it as an i8/i16/i32/i64. 1706 if (IsDarwinVectorABI) { 1707 uint64_t Size = getContext().getTypeSize(Ty); 1708 if ((Size == 8 || Size == 16 || Size == 32) || 1709 (Size == 64 && VT->getNumElements() == 1)) 1710 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1711 Size)); 1712 } 1713 1714 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1715 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1716 1717 return ABIArgInfo::getDirect(); 1718 } 1719 1720 1721 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1722 Ty = EnumTy->getDecl()->getIntegerType(); 1723 1724 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1725 1726 if (Ty->isPromotableIntegerType()) { 1727 if (InReg) 1728 return ABIArgInfo::getExtendInReg(Ty); 1729 return ABIArgInfo::getExtend(Ty); 1730 } 1731 1732 if (InReg) 1733 return ABIArgInfo::getDirectInReg(); 1734 return ABIArgInfo::getDirect(); 1735 } 1736 1737 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1738 bool &UsedInAlloca) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1745 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1746 // first take up the remaining YMM/XMM registers. If insufficient registers 1747 // remain but an integer register (ECX/EDX) is available, it will be passed 1748 // in that, else, on the stack. 1749 for (auto &I : FI.arguments()) { 1750 // First pass do all the vector types. 1751 const Type *Base = nullptr; 1752 uint64_t NumElts = 0; 1753 const QualType& Ty = I.type; 1754 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1755 isHomogeneousAggregate(Ty, Base, NumElts)) { 1756 if (State.FreeSSERegs >= NumElts) { 1757 State.FreeSSERegs -= NumElts; 1758 I.info = ABIArgInfo::getDirect(); 1759 } else { 1760 I.info = classifyArgumentType(Ty, State); 1761 } 1762 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1763 } 1764 } 1765 1766 for (auto &I : FI.arguments()) { 1767 // Second pass, do the rest! 1768 const Type *Base = nullptr; 1769 uint64_t NumElts = 0; 1770 const QualType& Ty = I.type; 1771 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1772 1773 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1774 // Assign true HVAs (non vector/native FP types). 1775 if (State.FreeSSERegs >= NumElts) { 1776 State.FreeSSERegs -= NumElts; 1777 I.info = getDirectX86Hva(); 1778 } else { 1779 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1780 } 1781 } else if (!IsHva) { 1782 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1783 I.info = classifyArgumentType(Ty, State); 1784 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1785 } 1786 } 1787 } 1788 1789 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1790 CCState State(FI.getCallingConvention()); 1791 if (IsMCUABI) 1792 State.FreeRegs = 3; 1793 else if (State.CC == llvm::CallingConv::X86_FastCall) 1794 State.FreeRegs = 2; 1795 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1796 State.FreeRegs = 2; 1797 State.FreeSSERegs = 6; 1798 } else if (FI.getHasRegParm()) 1799 State.FreeRegs = FI.getRegParm(); 1800 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1801 State.FreeRegs = 5; 1802 State.FreeSSERegs = 8; 1803 } else 1804 State.FreeRegs = DefaultNumRegisterParameters; 1805 1806 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1807 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1808 } else if (FI.getReturnInfo().isIndirect()) { 1809 // The C++ ABI is not aware of register usage, so we have to check if the 1810 // return value was sret and put it in a register ourselves if appropriate. 1811 if (State.FreeRegs) { 1812 --State.FreeRegs; // The sret parameter consumes a register. 1813 if (!IsMCUABI) 1814 FI.getReturnInfo().setInReg(true); 1815 } 1816 } 1817 1818 // The chain argument effectively gives us another free register. 1819 if (FI.isChainCall()) 1820 ++State.FreeRegs; 1821 1822 bool UsedInAlloca = false; 1823 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1824 computeVectorCallArgs(FI, State, UsedInAlloca); 1825 } else { 1826 // If not vectorcall, revert to normal behavior. 1827 for (auto &I : FI.arguments()) { 1828 I.info = classifyArgumentType(I.type, State); 1829 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1830 } 1831 } 1832 1833 // If we needed to use inalloca for any argument, do a second pass and rewrite 1834 // all the memory arguments to use inalloca. 1835 if (UsedInAlloca) 1836 rewriteWithInAlloca(FI); 1837 } 1838 1839 void 1840 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1841 CharUnits &StackOffset, ABIArgInfo &Info, 1842 QualType Type) const { 1843 // Arguments are always 4-byte-aligned. 1844 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1845 1846 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1847 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1848 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1849 StackOffset += getContext().getTypeSizeInChars(Type); 1850 1851 // Insert padding bytes to respect alignment. 1852 CharUnits FieldEnd = StackOffset; 1853 StackOffset = FieldEnd.alignTo(FieldAlign); 1854 if (StackOffset != FieldEnd) { 1855 CharUnits NumBytes = StackOffset - FieldEnd; 1856 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1857 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1858 FrameFields.push_back(Ty); 1859 } 1860 } 1861 1862 static bool isArgInAlloca(const ABIArgInfo &Info) { 1863 // Leave ignored and inreg arguments alone. 1864 switch (Info.getKind()) { 1865 case ABIArgInfo::InAlloca: 1866 return true; 1867 case ABIArgInfo::Indirect: 1868 assert(Info.getIndirectByVal()); 1869 return true; 1870 case ABIArgInfo::Ignore: 1871 return false; 1872 case ABIArgInfo::Direct: 1873 case ABIArgInfo::Extend: 1874 if (Info.getInReg()) 1875 return false; 1876 return true; 1877 case ABIArgInfo::Expand: 1878 case ABIArgInfo::CoerceAndExpand: 1879 // These are aggregate types which are never passed in registers when 1880 // inalloca is involved. 1881 return true; 1882 } 1883 llvm_unreachable("invalid enum"); 1884 } 1885 1886 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1887 assert(IsWin32StructABI && "inalloca only supported on win32"); 1888 1889 // Build a packed struct type for all of the arguments in memory. 1890 SmallVector<llvm::Type *, 6> FrameFields; 1891 1892 // The stack alignment is always 4. 1893 CharUnits StackAlign = CharUnits::fromQuantity(4); 1894 1895 CharUnits StackOffset; 1896 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1897 1898 // Put 'this' into the struct before 'sret', if necessary. 1899 bool IsThisCall = 1900 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1901 ABIArgInfo &Ret = FI.getReturnInfo(); 1902 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1903 isArgInAlloca(I->info)) { 1904 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1905 ++I; 1906 } 1907 1908 // Put the sret parameter into the inalloca struct if it's in memory. 1909 if (Ret.isIndirect() && !Ret.getInReg()) { 1910 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1911 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1912 // On Windows, the hidden sret parameter is always returned in eax. 1913 Ret.setInAllocaSRet(IsWin32StructABI); 1914 } 1915 1916 // Skip the 'this' parameter in ecx. 1917 if (IsThisCall) 1918 ++I; 1919 1920 // Put arguments passed in memory into the struct. 1921 for (; I != E; ++I) { 1922 if (isArgInAlloca(I->info)) 1923 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1924 } 1925 1926 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1927 /*isPacked=*/true), 1928 StackAlign); 1929 } 1930 1931 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1932 Address VAListAddr, QualType Ty) const { 1933 1934 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1935 1936 // x86-32 changes the alignment of certain arguments on the stack. 1937 // 1938 // Just messing with TypeInfo like this works because we never pass 1939 // anything indirectly. 1940 TypeInfo.second = CharUnits::fromQuantity( 1941 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1942 1943 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1944 TypeInfo, CharUnits::fromQuantity(4), 1945 /*AllowHigherAlign*/ true); 1946 } 1947 1948 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1949 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1950 assert(Triple.getArch() == llvm::Triple::x86); 1951 1952 switch (Opts.getStructReturnConvention()) { 1953 case CodeGenOptions::SRCK_Default: 1954 break; 1955 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1956 return false; 1957 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1958 return true; 1959 } 1960 1961 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1962 return true; 1963 1964 switch (Triple.getOS()) { 1965 case llvm::Triple::DragonFly: 1966 case llvm::Triple::FreeBSD: 1967 case llvm::Triple::OpenBSD: 1968 case llvm::Triple::Win32: 1969 return true; 1970 default: 1971 return false; 1972 } 1973 } 1974 1975 void X86_32TargetCodeGenInfo::setTargetAttributes( 1976 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1977 if (GV->isDeclaration()) 1978 return; 1979 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1980 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1981 llvm::Function *Fn = cast<llvm::Function>(GV); 1982 Fn->addFnAttr("stackrealign"); 1983 } 1984 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1985 llvm::Function *Fn = cast<llvm::Function>(GV); 1986 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1987 } 1988 } 1989 } 1990 1991 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1992 CodeGen::CodeGenFunction &CGF, 1993 llvm::Value *Address) const { 1994 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1995 1996 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1997 1998 // 0-7 are the eight integer registers; the order is different 1999 // on Darwin (for EH), but the range is the same. 2000 // 8 is %eip. 2001 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2002 2003 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2004 // 12-16 are st(0..4). Not sure why we stop at 4. 2005 // These have size 16, which is sizeof(long double) on 2006 // platforms with 8-byte alignment for that type. 2007 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2008 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2009 2010 } else { 2011 // 9 is %eflags, which doesn't get a size on Darwin for some 2012 // reason. 2013 Builder.CreateAlignedStore( 2014 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2015 CharUnits::One()); 2016 2017 // 11-16 are st(0..5). Not sure why we stop at 5. 2018 // These have size 12, which is sizeof(long double) on 2019 // platforms with 4-byte alignment for that type. 2020 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2021 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2022 } 2023 2024 return false; 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // X86-64 ABI Implementation 2029 //===----------------------------------------------------------------------===// 2030 2031 2032 namespace { 2033 /// The AVX ABI level for X86 targets. 2034 enum class X86AVXABILevel { 2035 None, 2036 AVX, 2037 AVX512 2038 }; 2039 2040 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2041 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2042 switch (AVXLevel) { 2043 case X86AVXABILevel::AVX512: 2044 return 512; 2045 case X86AVXABILevel::AVX: 2046 return 256; 2047 case X86AVXABILevel::None: 2048 return 128; 2049 } 2050 llvm_unreachable("Unknown AVXLevel"); 2051 } 2052 2053 /// X86_64ABIInfo - The X86_64 ABI information. 2054 class X86_64ABIInfo : public SwiftABIInfo { 2055 enum Class { 2056 Integer = 0, 2057 SSE, 2058 SSEUp, 2059 X87, 2060 X87Up, 2061 ComplexX87, 2062 NoClass, 2063 Memory 2064 }; 2065 2066 /// merge - Implement the X86_64 ABI merging algorithm. 2067 /// 2068 /// Merge an accumulating classification \arg Accum with a field 2069 /// classification \arg Field. 2070 /// 2071 /// \param Accum - The accumulating classification. This should 2072 /// always be either NoClass or the result of a previous merge 2073 /// call. In addition, this should never be Memory (the caller 2074 /// should just return Memory for the aggregate). 2075 static Class merge(Class Accum, Class Field); 2076 2077 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2078 /// 2079 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2080 /// final MEMORY or SSE classes when necessary. 2081 /// 2082 /// \param AggregateSize - The size of the current aggregate in 2083 /// the classification process. 2084 /// 2085 /// \param Lo - The classification for the parts of the type 2086 /// residing in the low word of the containing object. 2087 /// 2088 /// \param Hi - The classification for the parts of the type 2089 /// residing in the higher words of the containing object. 2090 /// 2091 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2092 2093 /// classify - Determine the x86_64 register classes in which the 2094 /// given type T should be passed. 2095 /// 2096 /// \param Lo - The classification for the parts of the type 2097 /// residing in the low word of the containing object. 2098 /// 2099 /// \param Hi - The classification for the parts of the type 2100 /// residing in the high word of the containing object. 2101 /// 2102 /// \param OffsetBase - The bit offset of this type in the 2103 /// containing object. Some parameters are classified different 2104 /// depending on whether they straddle an eightbyte boundary. 2105 /// 2106 /// \param isNamedArg - Whether the argument in question is a "named" 2107 /// argument, as used in AMD64-ABI 3.5.7. 2108 /// 2109 /// If a word is unused its result will be NoClass; if a type should 2110 /// be passed in Memory then at least the classification of \arg Lo 2111 /// will be Memory. 2112 /// 2113 /// The \arg Lo class will be NoClass iff the argument is ignored. 2114 /// 2115 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2116 /// also be ComplexX87. 2117 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2118 bool isNamedArg) const; 2119 2120 llvm::Type *GetByteVectorType(QualType Ty) const; 2121 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2122 unsigned IROffset, QualType SourceTy, 2123 unsigned SourceOffset) const; 2124 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2125 unsigned IROffset, QualType SourceTy, 2126 unsigned SourceOffset) const; 2127 2128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2129 /// such that the argument will be returned in memory. 2130 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2131 2132 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2133 /// such that the argument will be passed in memory. 2134 /// 2135 /// \param freeIntRegs - The number of free integer registers remaining 2136 /// available. 2137 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2138 2139 ABIArgInfo classifyReturnType(QualType RetTy) const; 2140 2141 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2142 unsigned &neededInt, unsigned &neededSSE, 2143 bool isNamedArg) const; 2144 2145 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2146 unsigned &NeededSSE) const; 2147 2148 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2149 unsigned &NeededSSE) const; 2150 2151 bool IsIllegalVectorType(QualType Ty) const; 2152 2153 /// The 0.98 ABI revision clarified a lot of ambiguities, 2154 /// unfortunately in ways that were not always consistent with 2155 /// certain previous compilers. In particular, platforms which 2156 /// required strict binary compatibility with older versions of GCC 2157 /// may need to exempt themselves. 2158 bool honorsRevision0_98() const { 2159 return !getTarget().getTriple().isOSDarwin(); 2160 } 2161 2162 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2163 /// classify it as INTEGER (for compatibility with older clang compilers). 2164 bool classifyIntegerMMXAsSSE() const { 2165 // Clang <= 3.8 did not do this. 2166 if (getContext().getLangOpts().getClangABICompat() <= 2167 LangOptions::ClangABI::Ver3_8) 2168 return false; 2169 2170 const llvm::Triple &Triple = getTarget().getTriple(); 2171 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2172 return false; 2173 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2174 return false; 2175 return true; 2176 } 2177 2178 X86AVXABILevel AVXLevel; 2179 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2180 // 64-bit hardware. 2181 bool Has64BitPointers; 2182 2183 public: 2184 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2185 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2186 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2187 } 2188 2189 bool isPassedUsingAVXType(QualType type) const { 2190 unsigned neededInt, neededSSE; 2191 // The freeIntRegs argument doesn't matter here. 2192 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2193 /*isNamedArg*/true); 2194 if (info.isDirect()) { 2195 llvm::Type *ty = info.getCoerceToType(); 2196 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2197 return (vectorTy->getBitWidth() > 128); 2198 } 2199 return false; 2200 } 2201 2202 void computeInfo(CGFunctionInfo &FI) const override; 2203 2204 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2205 QualType Ty) const override; 2206 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2207 QualType Ty) const override; 2208 2209 bool has64BitPointers() const { 2210 return Has64BitPointers; 2211 } 2212 2213 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2214 bool asReturnValue) const override { 2215 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2216 } 2217 bool isSwiftErrorInRegister() const override { 2218 return true; 2219 } 2220 }; 2221 2222 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2223 class WinX86_64ABIInfo : public SwiftABIInfo { 2224 public: 2225 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2226 : SwiftABIInfo(CGT), 2227 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2228 2229 void computeInfo(CGFunctionInfo &FI) const override; 2230 2231 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2232 QualType Ty) const override; 2233 2234 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2235 // FIXME: Assumes vectorcall is in use. 2236 return isX86VectorTypeForVectorCall(getContext(), Ty); 2237 } 2238 2239 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2240 uint64_t NumMembers) const override { 2241 // FIXME: Assumes vectorcall is in use. 2242 return isX86VectorCallAggregateSmallEnough(NumMembers); 2243 } 2244 2245 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2246 bool asReturnValue) const override { 2247 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2248 } 2249 2250 bool isSwiftErrorInRegister() const override { 2251 return true; 2252 } 2253 2254 private: 2255 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2256 bool IsVectorCall, bool IsRegCall) const; 2257 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2258 const ABIArgInfo ¤t) const; 2259 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2260 bool IsVectorCall, bool IsRegCall) const; 2261 2262 bool IsMingw64; 2263 }; 2264 2265 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2266 public: 2267 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2268 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2269 2270 const X86_64ABIInfo &getABIInfo() const { 2271 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2272 } 2273 2274 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2275 /// the autoreleaseRV/retainRV optimization. 2276 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2277 return true; 2278 } 2279 2280 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2281 return 7; 2282 } 2283 2284 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2285 llvm::Value *Address) const override { 2286 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2287 2288 // 0-15 are the 16 integer registers. 2289 // 16 is %rip. 2290 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2291 return false; 2292 } 2293 2294 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2295 StringRef Constraint, 2296 llvm::Type* Ty) const override { 2297 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2298 } 2299 2300 bool isNoProtoCallVariadic(const CallArgList &args, 2301 const FunctionNoProtoType *fnType) const override { 2302 // The default CC on x86-64 sets %al to the number of SSA 2303 // registers used, and GCC sets this when calling an unprototyped 2304 // function, so we override the default behavior. However, don't do 2305 // that when AVX types are involved: the ABI explicitly states it is 2306 // undefined, and it doesn't work in practice because of how the ABI 2307 // defines varargs anyway. 2308 if (fnType->getCallConv() == CC_C) { 2309 bool HasAVXType = false; 2310 for (CallArgList::const_iterator 2311 it = args.begin(), ie = args.end(); it != ie; ++it) { 2312 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2313 HasAVXType = true; 2314 break; 2315 } 2316 } 2317 2318 if (!HasAVXType) 2319 return true; 2320 } 2321 2322 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2323 } 2324 2325 llvm::Constant * 2326 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2327 unsigned Sig = (0xeb << 0) | // jmp rel8 2328 (0x06 << 8) | // .+0x08 2329 ('v' << 16) | 2330 ('2' << 24); 2331 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2332 } 2333 2334 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2335 CodeGen::CodeGenModule &CGM) const override { 2336 if (GV->isDeclaration()) 2337 return; 2338 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2339 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2340 llvm::Function *Fn = cast<llvm::Function>(GV); 2341 Fn->addFnAttr("stackrealign"); 2342 } 2343 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2344 llvm::Function *Fn = cast<llvm::Function>(GV); 2345 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2346 } 2347 } 2348 } 2349 }; 2350 2351 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2352 // If the argument does not end in .lib, automatically add the suffix. 2353 // If the argument contains a space, enclose it in quotes. 2354 // This matches the behavior of MSVC. 2355 bool Quote = (Lib.find(" ") != StringRef::npos); 2356 std::string ArgStr = Quote ? "\"" : ""; 2357 ArgStr += Lib; 2358 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2359 ArgStr += ".lib"; 2360 ArgStr += Quote ? "\"" : ""; 2361 return ArgStr; 2362 } 2363 2364 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2365 public: 2366 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2367 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2368 unsigned NumRegisterParameters) 2369 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2370 Win32StructABI, NumRegisterParameters, false) {} 2371 2372 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2373 CodeGen::CodeGenModule &CGM) const override; 2374 2375 void getDependentLibraryOption(llvm::StringRef Lib, 2376 llvm::SmallString<24> &Opt) const override { 2377 Opt = "/DEFAULTLIB:"; 2378 Opt += qualifyWindowsLibrary(Lib); 2379 } 2380 2381 void getDetectMismatchOption(llvm::StringRef Name, 2382 llvm::StringRef Value, 2383 llvm::SmallString<32> &Opt) const override { 2384 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2385 } 2386 }; 2387 2388 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2389 CodeGen::CodeGenModule &CGM) { 2390 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2391 2392 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2393 Fn->addFnAttr("stack-probe-size", 2394 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2395 if (CGM.getCodeGenOpts().NoStackArgProbe) 2396 Fn->addFnAttr("no-stack-arg-probe"); 2397 } 2398 } 2399 2400 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2401 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2402 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2403 if (GV->isDeclaration()) 2404 return; 2405 addStackProbeTargetAttributes(D, GV, CGM); 2406 } 2407 2408 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2409 public: 2410 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2411 X86AVXABILevel AVXLevel) 2412 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2413 2414 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2415 CodeGen::CodeGenModule &CGM) const override; 2416 2417 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2418 return 7; 2419 } 2420 2421 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2422 llvm::Value *Address) const override { 2423 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2424 2425 // 0-15 are the 16 integer registers. 2426 // 16 is %rip. 2427 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2428 return false; 2429 } 2430 2431 void getDependentLibraryOption(llvm::StringRef Lib, 2432 llvm::SmallString<24> &Opt) const override { 2433 Opt = "/DEFAULTLIB:"; 2434 Opt += qualifyWindowsLibrary(Lib); 2435 } 2436 2437 void getDetectMismatchOption(llvm::StringRef Name, 2438 llvm::StringRef Value, 2439 llvm::SmallString<32> &Opt) const override { 2440 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2441 } 2442 }; 2443 2444 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2445 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2446 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2447 if (GV->isDeclaration()) 2448 return; 2449 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2450 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2451 llvm::Function *Fn = cast<llvm::Function>(GV); 2452 Fn->addFnAttr("stackrealign"); 2453 } 2454 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2455 llvm::Function *Fn = cast<llvm::Function>(GV); 2456 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2457 } 2458 } 2459 2460 addStackProbeTargetAttributes(D, GV, CGM); 2461 } 2462 } 2463 2464 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2465 Class &Hi) const { 2466 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2467 // 2468 // (a) If one of the classes is Memory, the whole argument is passed in 2469 // memory. 2470 // 2471 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2472 // memory. 2473 // 2474 // (c) If the size of the aggregate exceeds two eightbytes and the first 2475 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2476 // argument is passed in memory. NOTE: This is necessary to keep the 2477 // ABI working for processors that don't support the __m256 type. 2478 // 2479 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2480 // 2481 // Some of these are enforced by the merging logic. Others can arise 2482 // only with unions; for example: 2483 // union { _Complex double; unsigned; } 2484 // 2485 // Note that clauses (b) and (c) were added in 0.98. 2486 // 2487 if (Hi == Memory) 2488 Lo = Memory; 2489 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2490 Lo = Memory; 2491 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2492 Lo = Memory; 2493 if (Hi == SSEUp && Lo != SSE) 2494 Hi = SSE; 2495 } 2496 2497 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2498 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2499 // classified recursively so that always two fields are 2500 // considered. The resulting class is calculated according to 2501 // the classes of the fields in the eightbyte: 2502 // 2503 // (a) If both classes are equal, this is the resulting class. 2504 // 2505 // (b) If one of the classes is NO_CLASS, the resulting class is 2506 // the other class. 2507 // 2508 // (c) If one of the classes is MEMORY, the result is the MEMORY 2509 // class. 2510 // 2511 // (d) If one of the classes is INTEGER, the result is the 2512 // INTEGER. 2513 // 2514 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2515 // MEMORY is used as class. 2516 // 2517 // (f) Otherwise class SSE is used. 2518 2519 // Accum should never be memory (we should have returned) or 2520 // ComplexX87 (because this cannot be passed in a structure). 2521 assert((Accum != Memory && Accum != ComplexX87) && 2522 "Invalid accumulated classification during merge."); 2523 if (Accum == Field || Field == NoClass) 2524 return Accum; 2525 if (Field == Memory) 2526 return Memory; 2527 if (Accum == NoClass) 2528 return Field; 2529 if (Accum == Integer || Field == Integer) 2530 return Integer; 2531 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2532 Accum == X87 || Accum == X87Up) 2533 return Memory; 2534 return SSE; 2535 } 2536 2537 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2538 Class &Lo, Class &Hi, bool isNamedArg) const { 2539 // FIXME: This code can be simplified by introducing a simple value class for 2540 // Class pairs with appropriate constructor methods for the various 2541 // situations. 2542 2543 // FIXME: Some of the split computations are wrong; unaligned vectors 2544 // shouldn't be passed in registers for example, so there is no chance they 2545 // can straddle an eightbyte. Verify & simplify. 2546 2547 Lo = Hi = NoClass; 2548 2549 Class &Current = OffsetBase < 64 ? Lo : Hi; 2550 Current = Memory; 2551 2552 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2553 BuiltinType::Kind k = BT->getKind(); 2554 2555 if (k == BuiltinType::Void) { 2556 Current = NoClass; 2557 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2558 Lo = Integer; 2559 Hi = Integer; 2560 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2561 Current = Integer; 2562 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2563 Current = SSE; 2564 } else if (k == BuiltinType::LongDouble) { 2565 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2566 if (LDF == &llvm::APFloat::IEEEquad()) { 2567 Lo = SSE; 2568 Hi = SSEUp; 2569 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2570 Lo = X87; 2571 Hi = X87Up; 2572 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2573 Current = SSE; 2574 } else 2575 llvm_unreachable("unexpected long double representation!"); 2576 } 2577 // FIXME: _Decimal32 and _Decimal64 are SSE. 2578 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2579 return; 2580 } 2581 2582 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2583 // Classify the underlying integer type. 2584 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2585 return; 2586 } 2587 2588 if (Ty->hasPointerRepresentation()) { 2589 Current = Integer; 2590 return; 2591 } 2592 2593 if (Ty->isMemberPointerType()) { 2594 if (Ty->isMemberFunctionPointerType()) { 2595 if (Has64BitPointers) { 2596 // If Has64BitPointers, this is an {i64, i64}, so classify both 2597 // Lo and Hi now. 2598 Lo = Hi = Integer; 2599 } else { 2600 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2601 // straddles an eightbyte boundary, Hi should be classified as well. 2602 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2603 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2604 if (EB_FuncPtr != EB_ThisAdj) { 2605 Lo = Hi = Integer; 2606 } else { 2607 Current = Integer; 2608 } 2609 } 2610 } else { 2611 Current = Integer; 2612 } 2613 return; 2614 } 2615 2616 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2617 uint64_t Size = getContext().getTypeSize(VT); 2618 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2619 // gcc passes the following as integer: 2620 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2621 // 2 bytes - <2 x char>, <1 x short> 2622 // 1 byte - <1 x char> 2623 Current = Integer; 2624 2625 // If this type crosses an eightbyte boundary, it should be 2626 // split. 2627 uint64_t EB_Lo = (OffsetBase) / 64; 2628 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2629 if (EB_Lo != EB_Hi) 2630 Hi = Lo; 2631 } else if (Size == 64) { 2632 QualType ElementType = VT->getElementType(); 2633 2634 // gcc passes <1 x double> in memory. :( 2635 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2636 return; 2637 2638 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2639 // pass them as integer. For platforms where clang is the de facto 2640 // platform compiler, we must continue to use integer. 2641 if (!classifyIntegerMMXAsSSE() && 2642 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2643 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2644 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2645 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2646 Current = Integer; 2647 else 2648 Current = SSE; 2649 2650 // If this type crosses an eightbyte boundary, it should be 2651 // split. 2652 if (OffsetBase && OffsetBase != 64) 2653 Hi = Lo; 2654 } else if (Size == 128 || 2655 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2656 // Arguments of 256-bits are split into four eightbyte chunks. The 2657 // least significant one belongs to class SSE and all the others to class 2658 // SSEUP. The original Lo and Hi design considers that types can't be 2659 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2660 // This design isn't correct for 256-bits, but since there're no cases 2661 // where the upper parts would need to be inspected, avoid adding 2662 // complexity and just consider Hi to match the 64-256 part. 2663 // 2664 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2665 // registers if they are "named", i.e. not part of the "..." of a 2666 // variadic function. 2667 // 2668 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2669 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2670 Lo = SSE; 2671 Hi = SSEUp; 2672 } 2673 return; 2674 } 2675 2676 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2677 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2678 2679 uint64_t Size = getContext().getTypeSize(Ty); 2680 if (ET->isIntegralOrEnumerationType()) { 2681 if (Size <= 64) 2682 Current = Integer; 2683 else if (Size <= 128) 2684 Lo = Hi = Integer; 2685 } else if (ET == getContext().FloatTy) { 2686 Current = SSE; 2687 } else if (ET == getContext().DoubleTy) { 2688 Lo = Hi = SSE; 2689 } else if (ET == getContext().LongDoubleTy) { 2690 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2691 if (LDF == &llvm::APFloat::IEEEquad()) 2692 Current = Memory; 2693 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2694 Current = ComplexX87; 2695 else if (LDF == &llvm::APFloat::IEEEdouble()) 2696 Lo = Hi = SSE; 2697 else 2698 llvm_unreachable("unexpected long double representation!"); 2699 } 2700 2701 // If this complex type crosses an eightbyte boundary then it 2702 // should be split. 2703 uint64_t EB_Real = (OffsetBase) / 64; 2704 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2705 if (Hi == NoClass && EB_Real != EB_Imag) 2706 Hi = Lo; 2707 2708 return; 2709 } 2710 2711 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2712 // Arrays are treated like structures. 2713 2714 uint64_t Size = getContext().getTypeSize(Ty); 2715 2716 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2717 // than eight eightbytes, ..., it has class MEMORY. 2718 if (Size > 512) 2719 return; 2720 2721 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2722 // fields, it has class MEMORY. 2723 // 2724 // Only need to check alignment of array base. 2725 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2726 return; 2727 2728 // Otherwise implement simplified merge. We could be smarter about 2729 // this, but it isn't worth it and would be harder to verify. 2730 Current = NoClass; 2731 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2732 uint64_t ArraySize = AT->getSize().getZExtValue(); 2733 2734 // The only case a 256-bit wide vector could be used is when the array 2735 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2736 // to work for sizes wider than 128, early check and fallback to memory. 2737 // 2738 if (Size > 128 && 2739 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2740 return; 2741 2742 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2743 Class FieldLo, FieldHi; 2744 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2745 Lo = merge(Lo, FieldLo); 2746 Hi = merge(Hi, FieldHi); 2747 if (Lo == Memory || Hi == Memory) 2748 break; 2749 } 2750 2751 postMerge(Size, Lo, Hi); 2752 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2753 return; 2754 } 2755 2756 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2757 uint64_t Size = getContext().getTypeSize(Ty); 2758 2759 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2760 // than eight eightbytes, ..., it has class MEMORY. 2761 if (Size > 512) 2762 return; 2763 2764 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2765 // copy constructor or a non-trivial destructor, it is passed by invisible 2766 // reference. 2767 if (getRecordArgABI(RT, getCXXABI())) 2768 return; 2769 2770 const RecordDecl *RD = RT->getDecl(); 2771 2772 // Assume variable sized types are passed in memory. 2773 if (RD->hasFlexibleArrayMember()) 2774 return; 2775 2776 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2777 2778 // Reset Lo class, this will be recomputed. 2779 Current = NoClass; 2780 2781 // If this is a C++ record, classify the bases first. 2782 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2783 for (const auto &I : CXXRD->bases()) { 2784 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2785 "Unexpected base class!"); 2786 const CXXRecordDecl *Base = 2787 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2788 2789 // Classify this field. 2790 // 2791 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2792 // single eightbyte, each is classified separately. Each eightbyte gets 2793 // initialized to class NO_CLASS. 2794 Class FieldLo, FieldHi; 2795 uint64_t Offset = 2796 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2797 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2798 Lo = merge(Lo, FieldLo); 2799 Hi = merge(Hi, FieldHi); 2800 if (Lo == Memory || Hi == Memory) { 2801 postMerge(Size, Lo, Hi); 2802 return; 2803 } 2804 } 2805 } 2806 2807 // Classify the fields one at a time, merging the results. 2808 unsigned idx = 0; 2809 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2810 i != e; ++i, ++idx) { 2811 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2812 bool BitField = i->isBitField(); 2813 2814 // Ignore padding bit-fields. 2815 if (BitField && i->isUnnamedBitfield()) 2816 continue; 2817 2818 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2819 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2820 // 2821 // The only case a 256-bit wide vector could be used is when the struct 2822 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2823 // to work for sizes wider than 128, early check and fallback to memory. 2824 // 2825 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2826 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2827 Lo = Memory; 2828 postMerge(Size, Lo, Hi); 2829 return; 2830 } 2831 // Note, skip this test for bit-fields, see below. 2832 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2833 Lo = Memory; 2834 postMerge(Size, Lo, Hi); 2835 return; 2836 } 2837 2838 // Classify this field. 2839 // 2840 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2841 // exceeds a single eightbyte, each is classified 2842 // separately. Each eightbyte gets initialized to class 2843 // NO_CLASS. 2844 Class FieldLo, FieldHi; 2845 2846 // Bit-fields require special handling, they do not force the 2847 // structure to be passed in memory even if unaligned, and 2848 // therefore they can straddle an eightbyte. 2849 if (BitField) { 2850 assert(!i->isUnnamedBitfield()); 2851 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2852 uint64_t Size = i->getBitWidthValue(getContext()); 2853 2854 uint64_t EB_Lo = Offset / 64; 2855 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2856 2857 if (EB_Lo) { 2858 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2859 FieldLo = NoClass; 2860 FieldHi = Integer; 2861 } else { 2862 FieldLo = Integer; 2863 FieldHi = EB_Hi ? Integer : NoClass; 2864 } 2865 } else 2866 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2867 Lo = merge(Lo, FieldLo); 2868 Hi = merge(Hi, FieldHi); 2869 if (Lo == Memory || Hi == Memory) 2870 break; 2871 } 2872 2873 postMerge(Size, Lo, Hi); 2874 } 2875 } 2876 2877 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2878 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2879 // place naturally. 2880 if (!isAggregateTypeForABI(Ty)) { 2881 // Treat an enum type as its underlying type. 2882 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2883 Ty = EnumTy->getDecl()->getIntegerType(); 2884 2885 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2886 : ABIArgInfo::getDirect()); 2887 } 2888 2889 return getNaturalAlignIndirect(Ty); 2890 } 2891 2892 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2893 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2894 uint64_t Size = getContext().getTypeSize(VecTy); 2895 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2896 if (Size <= 64 || Size > LargestVector) 2897 return true; 2898 } 2899 2900 return false; 2901 } 2902 2903 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2904 unsigned freeIntRegs) const { 2905 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2906 // place naturally. 2907 // 2908 // This assumption is optimistic, as there could be free registers available 2909 // when we need to pass this argument in memory, and LLVM could try to pass 2910 // the argument in the free register. This does not seem to happen currently, 2911 // but this code would be much safer if we could mark the argument with 2912 // 'onstack'. See PR12193. 2913 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2914 // Treat an enum type as its underlying type. 2915 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2916 Ty = EnumTy->getDecl()->getIntegerType(); 2917 2918 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2919 : ABIArgInfo::getDirect()); 2920 } 2921 2922 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2923 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2924 2925 // Compute the byval alignment. We specify the alignment of the byval in all 2926 // cases so that the mid-level optimizer knows the alignment of the byval. 2927 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2928 2929 // Attempt to avoid passing indirect results using byval when possible. This 2930 // is important for good codegen. 2931 // 2932 // We do this by coercing the value into a scalar type which the backend can 2933 // handle naturally (i.e., without using byval). 2934 // 2935 // For simplicity, we currently only do this when we have exhausted all of the 2936 // free integer registers. Doing this when there are free integer registers 2937 // would require more care, as we would have to ensure that the coerced value 2938 // did not claim the unused register. That would require either reording the 2939 // arguments to the function (so that any subsequent inreg values came first), 2940 // or only doing this optimization when there were no following arguments that 2941 // might be inreg. 2942 // 2943 // We currently expect it to be rare (particularly in well written code) for 2944 // arguments to be passed on the stack when there are still free integer 2945 // registers available (this would typically imply large structs being passed 2946 // by value), so this seems like a fair tradeoff for now. 2947 // 2948 // We can revisit this if the backend grows support for 'onstack' parameter 2949 // attributes. See PR12193. 2950 if (freeIntRegs == 0) { 2951 uint64_t Size = getContext().getTypeSize(Ty); 2952 2953 // If this type fits in an eightbyte, coerce it into the matching integral 2954 // type, which will end up on the stack (with alignment 8). 2955 if (Align == 8 && Size <= 64) 2956 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2957 Size)); 2958 } 2959 2960 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2961 } 2962 2963 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2964 /// register. Pick an LLVM IR type that will be passed as a vector register. 2965 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2966 // Wrapper structs/arrays that only contain vectors are passed just like 2967 // vectors; strip them off if present. 2968 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2969 Ty = QualType(InnerTy, 0); 2970 2971 llvm::Type *IRType = CGT.ConvertType(Ty); 2972 if (isa<llvm::VectorType>(IRType) || 2973 IRType->getTypeID() == llvm::Type::FP128TyID) 2974 return IRType; 2975 2976 // We couldn't find the preferred IR vector type for 'Ty'. 2977 uint64_t Size = getContext().getTypeSize(Ty); 2978 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2979 2980 // Return a LLVM IR vector type based on the size of 'Ty'. 2981 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2982 Size / 64); 2983 } 2984 2985 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2986 /// is known to either be off the end of the specified type or being in 2987 /// alignment padding. The user type specified is known to be at most 128 bits 2988 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2989 /// classification that put one of the two halves in the INTEGER class. 2990 /// 2991 /// It is conservatively correct to return false. 2992 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2993 unsigned EndBit, ASTContext &Context) { 2994 // If the bytes being queried are off the end of the type, there is no user 2995 // data hiding here. This handles analysis of builtins, vectors and other 2996 // types that don't contain interesting padding. 2997 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2998 if (TySize <= StartBit) 2999 return true; 3000 3001 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3002 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3003 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3004 3005 // Check each element to see if the element overlaps with the queried range. 3006 for (unsigned i = 0; i != NumElts; ++i) { 3007 // If the element is after the span we care about, then we're done.. 3008 unsigned EltOffset = i*EltSize; 3009 if (EltOffset >= EndBit) break; 3010 3011 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3012 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3013 EndBit-EltOffset, Context)) 3014 return false; 3015 } 3016 // If it overlaps no elements, then it is safe to process as padding. 3017 return true; 3018 } 3019 3020 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3021 const RecordDecl *RD = RT->getDecl(); 3022 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3023 3024 // If this is a C++ record, check the bases first. 3025 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3026 for (const auto &I : CXXRD->bases()) { 3027 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3028 "Unexpected base class!"); 3029 const CXXRecordDecl *Base = 3030 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3031 3032 // If the base is after the span we care about, ignore it. 3033 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3034 if (BaseOffset >= EndBit) continue; 3035 3036 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3037 if (!BitsContainNoUserData(I.getType(), BaseStart, 3038 EndBit-BaseOffset, Context)) 3039 return false; 3040 } 3041 } 3042 3043 // Verify that no field has data that overlaps the region of interest. Yes 3044 // this could be sped up a lot by being smarter about queried fields, 3045 // however we're only looking at structs up to 16 bytes, so we don't care 3046 // much. 3047 unsigned idx = 0; 3048 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3049 i != e; ++i, ++idx) { 3050 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3051 3052 // If we found a field after the region we care about, then we're done. 3053 if (FieldOffset >= EndBit) break; 3054 3055 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3056 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3057 Context)) 3058 return false; 3059 } 3060 3061 // If nothing in this record overlapped the area of interest, then we're 3062 // clean. 3063 return true; 3064 } 3065 3066 return false; 3067 } 3068 3069 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3070 /// float member at the specified offset. For example, {int,{float}} has a 3071 /// float at offset 4. It is conservatively correct for this routine to return 3072 /// false. 3073 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3074 const llvm::DataLayout &TD) { 3075 // Base case if we find a float. 3076 if (IROffset == 0 && IRType->isFloatTy()) 3077 return true; 3078 3079 // If this is a struct, recurse into the field at the specified offset. 3080 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3081 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3082 unsigned Elt = SL->getElementContainingOffset(IROffset); 3083 IROffset -= SL->getElementOffset(Elt); 3084 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3085 } 3086 3087 // If this is an array, recurse into the field at the specified offset. 3088 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3089 llvm::Type *EltTy = ATy->getElementType(); 3090 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3091 IROffset -= IROffset/EltSize*EltSize; 3092 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3093 } 3094 3095 return false; 3096 } 3097 3098 3099 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3100 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3101 llvm::Type *X86_64ABIInfo:: 3102 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3103 QualType SourceTy, unsigned SourceOffset) const { 3104 // The only three choices we have are either double, <2 x float>, or float. We 3105 // pass as float if the last 4 bytes is just padding. This happens for 3106 // structs that contain 3 floats. 3107 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3108 SourceOffset*8+64, getContext())) 3109 return llvm::Type::getFloatTy(getVMContext()); 3110 3111 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3112 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3113 // case. 3114 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3115 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3116 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3117 3118 return llvm::Type::getDoubleTy(getVMContext()); 3119 } 3120 3121 3122 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3123 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3124 /// about the high or low part of an up-to-16-byte struct. This routine picks 3125 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3126 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3127 /// etc). 3128 /// 3129 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3130 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3131 /// the 8-byte value references. PrefType may be null. 3132 /// 3133 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3134 /// an offset into this that we're processing (which is always either 0 or 8). 3135 /// 3136 llvm::Type *X86_64ABIInfo:: 3137 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3138 QualType SourceTy, unsigned SourceOffset) const { 3139 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3140 // returning an 8-byte unit starting with it. See if we can safely use it. 3141 if (IROffset == 0) { 3142 // Pointers and int64's always fill the 8-byte unit. 3143 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3144 IRType->isIntegerTy(64)) 3145 return IRType; 3146 3147 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3148 // goodness in the source type is just tail padding. This is allowed to 3149 // kick in for struct {double,int} on the int, but not on 3150 // struct{double,int,int} because we wouldn't return the second int. We 3151 // have to do this analysis on the source type because we can't depend on 3152 // unions being lowered a specific way etc. 3153 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3154 IRType->isIntegerTy(32) || 3155 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3156 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3157 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3158 3159 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3160 SourceOffset*8+64, getContext())) 3161 return IRType; 3162 } 3163 } 3164 3165 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3166 // If this is a struct, recurse into the field at the specified offset. 3167 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3168 if (IROffset < SL->getSizeInBytes()) { 3169 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3170 IROffset -= SL->getElementOffset(FieldIdx); 3171 3172 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3173 SourceTy, SourceOffset); 3174 } 3175 } 3176 3177 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3178 llvm::Type *EltTy = ATy->getElementType(); 3179 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3180 unsigned EltOffset = IROffset/EltSize*EltSize; 3181 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3182 SourceOffset); 3183 } 3184 3185 // Okay, we don't have any better idea of what to pass, so we pass this in an 3186 // integer register that isn't too big to fit the rest of the struct. 3187 unsigned TySizeInBytes = 3188 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3189 3190 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3191 3192 // It is always safe to classify this as an integer type up to i64 that 3193 // isn't larger than the structure. 3194 return llvm::IntegerType::get(getVMContext(), 3195 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3196 } 3197 3198 3199 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3200 /// be used as elements of a two register pair to pass or return, return a 3201 /// first class aggregate to represent them. For example, if the low part of 3202 /// a by-value argument should be passed as i32* and the high part as float, 3203 /// return {i32*, float}. 3204 static llvm::Type * 3205 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3206 const llvm::DataLayout &TD) { 3207 // In order to correctly satisfy the ABI, we need to the high part to start 3208 // at offset 8. If the high and low parts we inferred are both 4-byte types 3209 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3210 // the second element at offset 8. Check for this: 3211 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3212 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3213 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3214 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3215 3216 // To handle this, we have to increase the size of the low part so that the 3217 // second element will start at an 8 byte offset. We can't increase the size 3218 // of the second element because it might make us access off the end of the 3219 // struct. 3220 if (HiStart != 8) { 3221 // There are usually two sorts of types the ABI generation code can produce 3222 // for the low part of a pair that aren't 8 bytes in size: float or 3223 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3224 // NaCl). 3225 // Promote these to a larger type. 3226 if (Lo->isFloatTy()) 3227 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3228 else { 3229 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3230 && "Invalid/unknown lo type"); 3231 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3232 } 3233 } 3234 3235 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3236 3237 // Verify that the second element is at an 8-byte offset. 3238 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3239 "Invalid x86-64 argument pair!"); 3240 return Result; 3241 } 3242 3243 ABIArgInfo X86_64ABIInfo:: 3244 classifyReturnType(QualType RetTy) const { 3245 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3246 // classification algorithm. 3247 X86_64ABIInfo::Class Lo, Hi; 3248 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3249 3250 // Check some invariants. 3251 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3252 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3253 3254 llvm::Type *ResType = nullptr; 3255 switch (Lo) { 3256 case NoClass: 3257 if (Hi == NoClass) 3258 return ABIArgInfo::getIgnore(); 3259 // If the low part is just padding, it takes no register, leave ResType 3260 // null. 3261 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3262 "Unknown missing lo part"); 3263 break; 3264 3265 case SSEUp: 3266 case X87Up: 3267 llvm_unreachable("Invalid classification for lo word."); 3268 3269 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3270 // hidden argument. 3271 case Memory: 3272 return getIndirectReturnResult(RetTy); 3273 3274 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3275 // available register of the sequence %rax, %rdx is used. 3276 case Integer: 3277 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3278 3279 // If we have a sign or zero extended integer, make sure to return Extend 3280 // so that the parameter gets the right LLVM IR attributes. 3281 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3282 // Treat an enum type as its underlying type. 3283 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3284 RetTy = EnumTy->getDecl()->getIntegerType(); 3285 3286 if (RetTy->isIntegralOrEnumerationType() && 3287 RetTy->isPromotableIntegerType()) 3288 return ABIArgInfo::getExtend(RetTy); 3289 } 3290 break; 3291 3292 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3293 // available SSE register of the sequence %xmm0, %xmm1 is used. 3294 case SSE: 3295 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3296 break; 3297 3298 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3299 // returned on the X87 stack in %st0 as 80-bit x87 number. 3300 case X87: 3301 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3302 break; 3303 3304 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3305 // part of the value is returned in %st0 and the imaginary part in 3306 // %st1. 3307 case ComplexX87: 3308 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3309 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3310 llvm::Type::getX86_FP80Ty(getVMContext())); 3311 break; 3312 } 3313 3314 llvm::Type *HighPart = nullptr; 3315 switch (Hi) { 3316 // Memory was handled previously and X87 should 3317 // never occur as a hi class. 3318 case Memory: 3319 case X87: 3320 llvm_unreachable("Invalid classification for hi word."); 3321 3322 case ComplexX87: // Previously handled. 3323 case NoClass: 3324 break; 3325 3326 case Integer: 3327 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3328 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3329 return ABIArgInfo::getDirect(HighPart, 8); 3330 break; 3331 case SSE: 3332 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3333 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3334 return ABIArgInfo::getDirect(HighPart, 8); 3335 break; 3336 3337 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3338 // is passed in the next available eightbyte chunk if the last used 3339 // vector register. 3340 // 3341 // SSEUP should always be preceded by SSE, just widen. 3342 case SSEUp: 3343 assert(Lo == SSE && "Unexpected SSEUp classification."); 3344 ResType = GetByteVectorType(RetTy); 3345 break; 3346 3347 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3348 // returned together with the previous X87 value in %st0. 3349 case X87Up: 3350 // If X87Up is preceded by X87, we don't need to do 3351 // anything. However, in some cases with unions it may not be 3352 // preceded by X87. In such situations we follow gcc and pass the 3353 // extra bits in an SSE reg. 3354 if (Lo != X87) { 3355 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3356 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3357 return ABIArgInfo::getDirect(HighPart, 8); 3358 } 3359 break; 3360 } 3361 3362 // If a high part was specified, merge it together with the low part. It is 3363 // known to pass in the high eightbyte of the result. We do this by forming a 3364 // first class struct aggregate with the high and low part: {low, high} 3365 if (HighPart) 3366 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3367 3368 return ABIArgInfo::getDirect(ResType); 3369 } 3370 3371 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3372 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3373 bool isNamedArg) 3374 const 3375 { 3376 Ty = useFirstFieldIfTransparentUnion(Ty); 3377 3378 X86_64ABIInfo::Class Lo, Hi; 3379 classify(Ty, 0, Lo, Hi, isNamedArg); 3380 3381 // Check some invariants. 3382 // FIXME: Enforce these by construction. 3383 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3384 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3385 3386 neededInt = 0; 3387 neededSSE = 0; 3388 llvm::Type *ResType = nullptr; 3389 switch (Lo) { 3390 case NoClass: 3391 if (Hi == NoClass) 3392 return ABIArgInfo::getIgnore(); 3393 // If the low part is just padding, it takes no register, leave ResType 3394 // null. 3395 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3396 "Unknown missing lo part"); 3397 break; 3398 3399 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3400 // on the stack. 3401 case Memory: 3402 3403 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3404 // COMPLEX_X87, it is passed in memory. 3405 case X87: 3406 case ComplexX87: 3407 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3408 ++neededInt; 3409 return getIndirectResult(Ty, freeIntRegs); 3410 3411 case SSEUp: 3412 case X87Up: 3413 llvm_unreachable("Invalid classification for lo word."); 3414 3415 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3416 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3417 // and %r9 is used. 3418 case Integer: 3419 ++neededInt; 3420 3421 // Pick an 8-byte type based on the preferred type. 3422 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3423 3424 // If we have a sign or zero extended integer, make sure to return Extend 3425 // so that the parameter gets the right LLVM IR attributes. 3426 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3427 // Treat an enum type as its underlying type. 3428 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3429 Ty = EnumTy->getDecl()->getIntegerType(); 3430 3431 if (Ty->isIntegralOrEnumerationType() && 3432 Ty->isPromotableIntegerType()) 3433 return ABIArgInfo::getExtend(Ty); 3434 } 3435 3436 break; 3437 3438 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3439 // available SSE register is used, the registers are taken in the 3440 // order from %xmm0 to %xmm7. 3441 case SSE: { 3442 llvm::Type *IRType = CGT.ConvertType(Ty); 3443 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3444 ++neededSSE; 3445 break; 3446 } 3447 } 3448 3449 llvm::Type *HighPart = nullptr; 3450 switch (Hi) { 3451 // Memory was handled previously, ComplexX87 and X87 should 3452 // never occur as hi classes, and X87Up must be preceded by X87, 3453 // which is passed in memory. 3454 case Memory: 3455 case X87: 3456 case ComplexX87: 3457 llvm_unreachable("Invalid classification for hi word."); 3458 3459 case NoClass: break; 3460 3461 case Integer: 3462 ++neededInt; 3463 // Pick an 8-byte type based on the preferred type. 3464 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3465 3466 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3467 return ABIArgInfo::getDirect(HighPart, 8); 3468 break; 3469 3470 // X87Up generally doesn't occur here (long double is passed in 3471 // memory), except in situations involving unions. 3472 case X87Up: 3473 case SSE: 3474 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3475 3476 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3477 return ABIArgInfo::getDirect(HighPart, 8); 3478 3479 ++neededSSE; 3480 break; 3481 3482 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3483 // eightbyte is passed in the upper half of the last used SSE 3484 // register. This only happens when 128-bit vectors are passed. 3485 case SSEUp: 3486 assert(Lo == SSE && "Unexpected SSEUp classification"); 3487 ResType = GetByteVectorType(Ty); 3488 break; 3489 } 3490 3491 // If a high part was specified, merge it together with the low part. It is 3492 // known to pass in the high eightbyte of the result. We do this by forming a 3493 // first class struct aggregate with the high and low part: {low, high} 3494 if (HighPart) 3495 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3496 3497 return ABIArgInfo::getDirect(ResType); 3498 } 3499 3500 ABIArgInfo 3501 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3502 unsigned &NeededSSE) const { 3503 auto RT = Ty->getAs<RecordType>(); 3504 assert(RT && "classifyRegCallStructType only valid with struct types"); 3505 3506 if (RT->getDecl()->hasFlexibleArrayMember()) 3507 return getIndirectReturnResult(Ty); 3508 3509 // Sum up bases 3510 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3511 if (CXXRD->isDynamicClass()) { 3512 NeededInt = NeededSSE = 0; 3513 return getIndirectReturnResult(Ty); 3514 } 3515 3516 for (const auto &I : CXXRD->bases()) 3517 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3518 .isIndirect()) { 3519 NeededInt = NeededSSE = 0; 3520 return getIndirectReturnResult(Ty); 3521 } 3522 } 3523 3524 // Sum up members 3525 for (const auto *FD : RT->getDecl()->fields()) { 3526 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3527 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3528 .isIndirect()) { 3529 NeededInt = NeededSSE = 0; 3530 return getIndirectReturnResult(Ty); 3531 } 3532 } else { 3533 unsigned LocalNeededInt, LocalNeededSSE; 3534 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3535 LocalNeededSSE, true) 3536 .isIndirect()) { 3537 NeededInt = NeededSSE = 0; 3538 return getIndirectReturnResult(Ty); 3539 } 3540 NeededInt += LocalNeededInt; 3541 NeededSSE += LocalNeededSSE; 3542 } 3543 } 3544 3545 return ABIArgInfo::getDirect(); 3546 } 3547 3548 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3549 unsigned &NeededInt, 3550 unsigned &NeededSSE) const { 3551 3552 NeededInt = 0; 3553 NeededSSE = 0; 3554 3555 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3556 } 3557 3558 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3559 3560 const unsigned CallingConv = FI.getCallingConvention(); 3561 // It is possible to force Win64 calling convention on any x86_64 target by 3562 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3563 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3564 if (CallingConv == llvm::CallingConv::Win64) { 3565 WinX86_64ABIInfo Win64ABIInfo(CGT); 3566 Win64ABIInfo.computeInfo(FI); 3567 return; 3568 } 3569 3570 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3571 3572 // Keep track of the number of assigned registers. 3573 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3574 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3575 unsigned NeededInt, NeededSSE; 3576 3577 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3578 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3579 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3580 FI.getReturnInfo() = 3581 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3582 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3583 FreeIntRegs -= NeededInt; 3584 FreeSSERegs -= NeededSSE; 3585 } else { 3586 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3587 } 3588 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3589 // Complex Long Double Type is passed in Memory when Regcall 3590 // calling convention is used. 3591 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3592 if (getContext().getCanonicalType(CT->getElementType()) == 3593 getContext().LongDoubleTy) 3594 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3595 } else 3596 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3597 } 3598 3599 // If the return value is indirect, then the hidden argument is consuming one 3600 // integer register. 3601 if (FI.getReturnInfo().isIndirect()) 3602 --FreeIntRegs; 3603 3604 // The chain argument effectively gives us another free register. 3605 if (FI.isChainCall()) 3606 ++FreeIntRegs; 3607 3608 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3609 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3610 // get assigned (in left-to-right order) for passing as follows... 3611 unsigned ArgNo = 0; 3612 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3613 it != ie; ++it, ++ArgNo) { 3614 bool IsNamedArg = ArgNo < NumRequiredArgs; 3615 3616 if (IsRegCall && it->type->isStructureOrClassType()) 3617 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3618 else 3619 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3620 NeededSSE, IsNamedArg); 3621 3622 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3623 // eightbyte of an argument, the whole argument is passed on the 3624 // stack. If registers have already been assigned for some 3625 // eightbytes of such an argument, the assignments get reverted. 3626 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3627 FreeIntRegs -= NeededInt; 3628 FreeSSERegs -= NeededSSE; 3629 } else { 3630 it->info = getIndirectResult(it->type, FreeIntRegs); 3631 } 3632 } 3633 } 3634 3635 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3636 Address VAListAddr, QualType Ty) { 3637 Address overflow_arg_area_p = 3638 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3639 llvm::Value *overflow_arg_area = 3640 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3641 3642 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3643 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3644 // It isn't stated explicitly in the standard, but in practice we use 3645 // alignment greater than 16 where necessary. 3646 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3647 if (Align > CharUnits::fromQuantity(8)) { 3648 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3649 Align); 3650 } 3651 3652 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3653 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3654 llvm::Value *Res = 3655 CGF.Builder.CreateBitCast(overflow_arg_area, 3656 llvm::PointerType::getUnqual(LTy)); 3657 3658 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3659 // l->overflow_arg_area + sizeof(type). 3660 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3661 // an 8 byte boundary. 3662 3663 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3664 llvm::Value *Offset = 3665 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3666 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3667 "overflow_arg_area.next"); 3668 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3669 3670 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3671 return Address(Res, Align); 3672 } 3673 3674 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3675 QualType Ty) const { 3676 // Assume that va_list type is correct; should be pointer to LLVM type: 3677 // struct { 3678 // i32 gp_offset; 3679 // i32 fp_offset; 3680 // i8* overflow_arg_area; 3681 // i8* reg_save_area; 3682 // }; 3683 unsigned neededInt, neededSSE; 3684 3685 Ty = getContext().getCanonicalType(Ty); 3686 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3687 /*isNamedArg*/false); 3688 3689 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3690 // in the registers. If not go to step 7. 3691 if (!neededInt && !neededSSE) 3692 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3693 3694 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3695 // general purpose registers needed to pass type and num_fp to hold 3696 // the number of floating point registers needed. 3697 3698 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3699 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3700 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3701 // 3702 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3703 // register save space). 3704 3705 llvm::Value *InRegs = nullptr; 3706 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3707 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3708 if (neededInt) { 3709 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3710 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3711 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3712 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3713 } 3714 3715 if (neededSSE) { 3716 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3717 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3718 llvm::Value *FitsInFP = 3719 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3720 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3721 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3722 } 3723 3724 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3725 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3726 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3727 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3728 3729 // Emit code to load the value if it was passed in registers. 3730 3731 CGF.EmitBlock(InRegBlock); 3732 3733 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3734 // an offset of l->gp_offset and/or l->fp_offset. This may require 3735 // copying to a temporary location in case the parameter is passed 3736 // in different register classes or requires an alignment greater 3737 // than 8 for general purpose registers and 16 for XMM registers. 3738 // 3739 // FIXME: This really results in shameful code when we end up needing to 3740 // collect arguments from different places; often what should result in a 3741 // simple assembling of a structure from scattered addresses has many more 3742 // loads than necessary. Can we clean this up? 3743 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3744 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3745 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3746 3747 Address RegAddr = Address::invalid(); 3748 if (neededInt && neededSSE) { 3749 // FIXME: Cleanup. 3750 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3751 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3752 Address Tmp = CGF.CreateMemTemp(Ty); 3753 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3754 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3755 llvm::Type *TyLo = ST->getElementType(0); 3756 llvm::Type *TyHi = ST->getElementType(1); 3757 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3758 "Unexpected ABI info for mixed regs"); 3759 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3760 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3761 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3762 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3763 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3764 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3765 3766 // Copy the first element. 3767 // FIXME: Our choice of alignment here and below is probably pessimistic. 3768 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3769 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3770 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3771 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3772 3773 // Copy the second element. 3774 V = CGF.Builder.CreateAlignedLoad( 3775 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3776 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3777 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3778 3779 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3780 } else if (neededInt) { 3781 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3782 CharUnits::fromQuantity(8)); 3783 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3784 3785 // Copy to a temporary if necessary to ensure the appropriate alignment. 3786 std::pair<CharUnits, CharUnits> SizeAlign = 3787 getContext().getTypeInfoInChars(Ty); 3788 uint64_t TySize = SizeAlign.first.getQuantity(); 3789 CharUnits TyAlign = SizeAlign.second; 3790 3791 // Copy into a temporary if the type is more aligned than the 3792 // register save area. 3793 if (TyAlign.getQuantity() > 8) { 3794 Address Tmp = CGF.CreateMemTemp(Ty); 3795 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3796 RegAddr = Tmp; 3797 } 3798 3799 } else if (neededSSE == 1) { 3800 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3801 CharUnits::fromQuantity(16)); 3802 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3803 } else { 3804 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3805 // SSE registers are spaced 16 bytes apart in the register save 3806 // area, we need to collect the two eightbytes together. 3807 // The ABI isn't explicit about this, but it seems reasonable 3808 // to assume that the slots are 16-byte aligned, since the stack is 3809 // naturally 16-byte aligned and the prologue is expected to store 3810 // all the SSE registers to the RSA. 3811 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3812 CharUnits::fromQuantity(16)); 3813 Address RegAddrHi = 3814 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3815 CharUnits::fromQuantity(16)); 3816 llvm::Type *ST = AI.canHaveCoerceToType() 3817 ? AI.getCoerceToType() 3818 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3819 llvm::Value *V; 3820 Address Tmp = CGF.CreateMemTemp(Ty); 3821 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3822 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3823 RegAddrLo, ST->getStructElementType(0))); 3824 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3825 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3826 RegAddrHi, ST->getStructElementType(1))); 3827 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3828 3829 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3830 } 3831 3832 // AMD64-ABI 3.5.7p5: Step 5. Set: 3833 // l->gp_offset = l->gp_offset + num_gp * 8 3834 // l->fp_offset = l->fp_offset + num_fp * 16. 3835 if (neededInt) { 3836 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3837 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3838 gp_offset_p); 3839 } 3840 if (neededSSE) { 3841 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3842 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3843 fp_offset_p); 3844 } 3845 CGF.EmitBranch(ContBlock); 3846 3847 // Emit code to load the value if it was passed in memory. 3848 3849 CGF.EmitBlock(InMemBlock); 3850 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3851 3852 // Return the appropriate result. 3853 3854 CGF.EmitBlock(ContBlock); 3855 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3856 "vaarg.addr"); 3857 return ResAddr; 3858 } 3859 3860 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3861 QualType Ty) const { 3862 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3863 CGF.getContext().getTypeInfoInChars(Ty), 3864 CharUnits::fromQuantity(8), 3865 /*allowHigherAlign*/ false); 3866 } 3867 3868 ABIArgInfo 3869 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3870 const ABIArgInfo ¤t) const { 3871 // Assumes vectorCall calling convention. 3872 const Type *Base = nullptr; 3873 uint64_t NumElts = 0; 3874 3875 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3876 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3877 FreeSSERegs -= NumElts; 3878 return getDirectX86Hva(); 3879 } 3880 return current; 3881 } 3882 3883 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3884 bool IsReturnType, bool IsVectorCall, 3885 bool IsRegCall) const { 3886 3887 if (Ty->isVoidType()) 3888 return ABIArgInfo::getIgnore(); 3889 3890 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3891 Ty = EnumTy->getDecl()->getIntegerType(); 3892 3893 TypeInfo Info = getContext().getTypeInfo(Ty); 3894 uint64_t Width = Info.Width; 3895 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3896 3897 const RecordType *RT = Ty->getAs<RecordType>(); 3898 if (RT) { 3899 if (!IsReturnType) { 3900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3901 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3902 } 3903 3904 if (RT->getDecl()->hasFlexibleArrayMember()) 3905 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3906 3907 } 3908 3909 const Type *Base = nullptr; 3910 uint64_t NumElts = 0; 3911 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3912 // other targets. 3913 if ((IsVectorCall || IsRegCall) && 3914 isHomogeneousAggregate(Ty, Base, NumElts)) { 3915 if (IsRegCall) { 3916 if (FreeSSERegs >= NumElts) { 3917 FreeSSERegs -= NumElts; 3918 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3919 return ABIArgInfo::getDirect(); 3920 return ABIArgInfo::getExpand(); 3921 } 3922 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3923 } else if (IsVectorCall) { 3924 if (FreeSSERegs >= NumElts && 3925 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3926 FreeSSERegs -= NumElts; 3927 return ABIArgInfo::getDirect(); 3928 } else if (IsReturnType) { 3929 return ABIArgInfo::getExpand(); 3930 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3931 // HVAs are delayed and reclassified in the 2nd step. 3932 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3933 } 3934 } 3935 } 3936 3937 if (Ty->isMemberPointerType()) { 3938 // If the member pointer is represented by an LLVM int or ptr, pass it 3939 // directly. 3940 llvm::Type *LLTy = CGT.ConvertType(Ty); 3941 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3942 return ABIArgInfo::getDirect(); 3943 } 3944 3945 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3946 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3947 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3948 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3949 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3950 3951 // Otherwise, coerce it to a small integer. 3952 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3953 } 3954 3955 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3956 switch (BT->getKind()) { 3957 case BuiltinType::Bool: 3958 // Bool type is always extended to the ABI, other builtin types are not 3959 // extended. 3960 return ABIArgInfo::getExtend(Ty); 3961 3962 case BuiltinType::LongDouble: 3963 // Mingw64 GCC uses the old 80 bit extended precision floating point 3964 // unit. It passes them indirectly through memory. 3965 if (IsMingw64) { 3966 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3967 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3968 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3969 } 3970 break; 3971 3972 case BuiltinType::Int128: 3973 case BuiltinType::UInt128: 3974 // If it's a parameter type, the normal ABI rule is that arguments larger 3975 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3976 // even though it isn't particularly efficient. 3977 if (!IsReturnType) 3978 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3979 3980 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3981 // Clang matches them for compatibility. 3982 return ABIArgInfo::getDirect( 3983 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3984 3985 default: 3986 break; 3987 } 3988 } 3989 3990 return ABIArgInfo::getDirect(); 3991 } 3992 3993 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3994 unsigned FreeSSERegs, 3995 bool IsVectorCall, 3996 bool IsRegCall) const { 3997 unsigned Count = 0; 3998 for (auto &I : FI.arguments()) { 3999 // Vectorcall in x64 only permits the first 6 arguments to be passed 4000 // as XMM/YMM registers. 4001 if (Count < VectorcallMaxParamNumAsReg) 4002 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4003 else { 4004 // Since these cannot be passed in registers, pretend no registers 4005 // are left. 4006 unsigned ZeroSSERegsAvail = 0; 4007 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4008 IsVectorCall, IsRegCall); 4009 } 4010 ++Count; 4011 } 4012 4013 for (auto &I : FI.arguments()) { 4014 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4015 } 4016 } 4017 4018 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4019 bool IsVectorCall = 4020 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4021 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4022 4023 unsigned FreeSSERegs = 0; 4024 if (IsVectorCall) { 4025 // We can use up to 4 SSE return registers with vectorcall. 4026 FreeSSERegs = 4; 4027 } else if (IsRegCall) { 4028 // RegCall gives us 16 SSE registers. 4029 FreeSSERegs = 16; 4030 } 4031 4032 if (!getCXXABI().classifyReturnType(FI)) 4033 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4034 IsVectorCall, IsRegCall); 4035 4036 if (IsVectorCall) { 4037 // We can use up to 6 SSE register parameters with vectorcall. 4038 FreeSSERegs = 6; 4039 } else if (IsRegCall) { 4040 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4041 FreeSSERegs = 16; 4042 } 4043 4044 if (IsVectorCall) { 4045 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4046 } else { 4047 for (auto &I : FI.arguments()) 4048 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4049 } 4050 4051 } 4052 4053 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4054 QualType Ty) const { 4055 4056 bool IsIndirect = false; 4057 4058 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4059 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4060 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4061 uint64_t Width = getContext().getTypeSize(Ty); 4062 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4063 } 4064 4065 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4066 CGF.getContext().getTypeInfoInChars(Ty), 4067 CharUnits::fromQuantity(8), 4068 /*allowHigherAlign*/ false); 4069 } 4070 4071 // PowerPC-32 4072 namespace { 4073 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4074 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4075 bool IsSoftFloatABI; 4076 4077 CharUnits getParamTypeAlignment(QualType Ty) const; 4078 4079 public: 4080 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4081 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4082 4083 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4084 QualType Ty) const override; 4085 }; 4086 4087 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4088 public: 4089 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4090 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4091 4092 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4093 // This is recovered from gcc output. 4094 return 1; // r1 is the dedicated stack pointer 4095 } 4096 4097 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4098 llvm::Value *Address) const override; 4099 }; 4100 } 4101 4102 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4103 // Complex types are passed just like their elements 4104 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4105 Ty = CTy->getElementType(); 4106 4107 if (Ty->isVectorType()) 4108 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4109 : 4); 4110 4111 // For single-element float/vector structs, we consider the whole type 4112 // to have the same alignment requirements as its single element. 4113 const Type *AlignTy = nullptr; 4114 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4115 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4116 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4117 (BT && BT->isFloatingPoint())) 4118 AlignTy = EltType; 4119 } 4120 4121 if (AlignTy) 4122 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4123 return CharUnits::fromQuantity(4); 4124 } 4125 4126 // TODO: this implementation is now likely redundant with 4127 // DefaultABIInfo::EmitVAArg. 4128 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4129 QualType Ty) const { 4130 if (getTarget().getTriple().isOSDarwin()) { 4131 auto TI = getContext().getTypeInfoInChars(Ty); 4132 TI.second = getParamTypeAlignment(Ty); 4133 4134 CharUnits SlotSize = CharUnits::fromQuantity(4); 4135 return emitVoidPtrVAArg(CGF, VAList, Ty, 4136 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4137 /*AllowHigherAlign=*/true); 4138 } 4139 4140 const unsigned OverflowLimit = 8; 4141 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4142 // TODO: Implement this. For now ignore. 4143 (void)CTy; 4144 return Address::invalid(); // FIXME? 4145 } 4146 4147 // struct __va_list_tag { 4148 // unsigned char gpr; 4149 // unsigned char fpr; 4150 // unsigned short reserved; 4151 // void *overflow_arg_area; 4152 // void *reg_save_area; 4153 // }; 4154 4155 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4156 bool isInt = 4157 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4158 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4159 4160 // All aggregates are passed indirectly? That doesn't seem consistent 4161 // with the argument-lowering code. 4162 bool isIndirect = Ty->isAggregateType(); 4163 4164 CGBuilderTy &Builder = CGF.Builder; 4165 4166 // The calling convention either uses 1-2 GPRs or 1 FPR. 4167 Address NumRegsAddr = Address::invalid(); 4168 if (isInt || IsSoftFloatABI) { 4169 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4170 } else { 4171 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4172 } 4173 4174 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4175 4176 // "Align" the register count when TY is i64. 4177 if (isI64 || (isF64 && IsSoftFloatABI)) { 4178 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4179 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4180 } 4181 4182 llvm::Value *CC = 4183 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4184 4185 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4186 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4187 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4188 4189 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4190 4191 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4192 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4193 4194 // Case 1: consume registers. 4195 Address RegAddr = Address::invalid(); 4196 { 4197 CGF.EmitBlock(UsingRegs); 4198 4199 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4200 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4201 CharUnits::fromQuantity(8)); 4202 assert(RegAddr.getElementType() == CGF.Int8Ty); 4203 4204 // Floating-point registers start after the general-purpose registers. 4205 if (!(isInt || IsSoftFloatABI)) { 4206 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4207 CharUnits::fromQuantity(32)); 4208 } 4209 4210 // Get the address of the saved value by scaling the number of 4211 // registers we've used by the number of 4212 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4213 llvm::Value *RegOffset = 4214 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4215 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4216 RegAddr.getPointer(), RegOffset), 4217 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4218 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4219 4220 // Increase the used-register count. 4221 NumRegs = 4222 Builder.CreateAdd(NumRegs, 4223 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4224 Builder.CreateStore(NumRegs, NumRegsAddr); 4225 4226 CGF.EmitBranch(Cont); 4227 } 4228 4229 // Case 2: consume space in the overflow area. 4230 Address MemAddr = Address::invalid(); 4231 { 4232 CGF.EmitBlock(UsingOverflow); 4233 4234 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4235 4236 // Everything in the overflow area is rounded up to a size of at least 4. 4237 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4238 4239 CharUnits Size; 4240 if (!isIndirect) { 4241 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4242 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4243 } else { 4244 Size = CGF.getPointerSize(); 4245 } 4246 4247 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4248 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4249 OverflowAreaAlign); 4250 // Round up address of argument to alignment 4251 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4252 if (Align > OverflowAreaAlign) { 4253 llvm::Value *Ptr = OverflowArea.getPointer(); 4254 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4255 Align); 4256 } 4257 4258 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4259 4260 // Increase the overflow area. 4261 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4262 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4263 CGF.EmitBranch(Cont); 4264 } 4265 4266 CGF.EmitBlock(Cont); 4267 4268 // Merge the cases with a phi. 4269 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4270 "vaarg.addr"); 4271 4272 // Load the pointer if the argument was passed indirectly. 4273 if (isIndirect) { 4274 Result = Address(Builder.CreateLoad(Result, "aggr"), 4275 getContext().getTypeAlignInChars(Ty)); 4276 } 4277 4278 return Result; 4279 } 4280 4281 bool 4282 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4283 llvm::Value *Address) const { 4284 // This is calculated from the LLVM and GCC tables and verified 4285 // against gcc output. AFAIK all ABIs use the same encoding. 4286 4287 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4288 4289 llvm::IntegerType *i8 = CGF.Int8Ty; 4290 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4291 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4292 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4293 4294 // 0-31: r0-31, the 4-byte general-purpose registers 4295 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4296 4297 // 32-63: fp0-31, the 8-byte floating-point registers 4298 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4299 4300 // 64-76 are various 4-byte special-purpose registers: 4301 // 64: mq 4302 // 65: lr 4303 // 66: ctr 4304 // 67: ap 4305 // 68-75 cr0-7 4306 // 76: xer 4307 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4308 4309 // 77-108: v0-31, the 16-byte vector registers 4310 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4311 4312 // 109: vrsave 4313 // 110: vscr 4314 // 111: spe_acc 4315 // 112: spefscr 4316 // 113: sfp 4317 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4318 4319 return false; 4320 } 4321 4322 // PowerPC-64 4323 4324 namespace { 4325 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4326 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4327 public: 4328 enum ABIKind { 4329 ELFv1 = 0, 4330 ELFv2 4331 }; 4332 4333 private: 4334 static const unsigned GPRBits = 64; 4335 ABIKind Kind; 4336 bool HasQPX; 4337 bool IsSoftFloatABI; 4338 4339 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4340 // will be passed in a QPX register. 4341 bool IsQPXVectorTy(const Type *Ty) const { 4342 if (!HasQPX) 4343 return false; 4344 4345 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4346 unsigned NumElements = VT->getNumElements(); 4347 if (NumElements == 1) 4348 return false; 4349 4350 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4351 if (getContext().getTypeSize(Ty) <= 256) 4352 return true; 4353 } else if (VT->getElementType()-> 4354 isSpecificBuiltinType(BuiltinType::Float)) { 4355 if (getContext().getTypeSize(Ty) <= 128) 4356 return true; 4357 } 4358 } 4359 4360 return false; 4361 } 4362 4363 bool IsQPXVectorTy(QualType Ty) const { 4364 return IsQPXVectorTy(Ty.getTypePtr()); 4365 } 4366 4367 public: 4368 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4369 bool SoftFloatABI) 4370 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4371 IsSoftFloatABI(SoftFloatABI) {} 4372 4373 bool isPromotableTypeForABI(QualType Ty) const; 4374 CharUnits getParamTypeAlignment(QualType Ty) const; 4375 4376 ABIArgInfo classifyReturnType(QualType RetTy) const; 4377 ABIArgInfo classifyArgumentType(QualType Ty) const; 4378 4379 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4380 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4381 uint64_t Members) const override; 4382 4383 // TODO: We can add more logic to computeInfo to improve performance. 4384 // Example: For aggregate arguments that fit in a register, we could 4385 // use getDirectInReg (as is done below for structs containing a single 4386 // floating-point value) to avoid pushing them to memory on function 4387 // entry. This would require changing the logic in PPCISelLowering 4388 // when lowering the parameters in the caller and args in the callee. 4389 void computeInfo(CGFunctionInfo &FI) const override { 4390 if (!getCXXABI().classifyReturnType(FI)) 4391 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4392 for (auto &I : FI.arguments()) { 4393 // We rely on the default argument classification for the most part. 4394 // One exception: An aggregate containing a single floating-point 4395 // or vector item must be passed in a register if one is available. 4396 const Type *T = isSingleElementStruct(I.type, getContext()); 4397 if (T) { 4398 const BuiltinType *BT = T->getAs<BuiltinType>(); 4399 if (IsQPXVectorTy(T) || 4400 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4401 (BT && BT->isFloatingPoint())) { 4402 QualType QT(T, 0); 4403 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4404 continue; 4405 } 4406 } 4407 I.info = classifyArgumentType(I.type); 4408 } 4409 } 4410 4411 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4412 QualType Ty) const override; 4413 4414 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4415 bool asReturnValue) const override { 4416 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4417 } 4418 4419 bool isSwiftErrorInRegister() const override { 4420 return false; 4421 } 4422 }; 4423 4424 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4425 4426 public: 4427 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4428 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4429 bool SoftFloatABI) 4430 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4431 SoftFloatABI)) {} 4432 4433 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4434 // This is recovered from gcc output. 4435 return 1; // r1 is the dedicated stack pointer 4436 } 4437 4438 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4439 llvm::Value *Address) const override; 4440 }; 4441 4442 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4443 public: 4444 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4445 4446 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4447 // This is recovered from gcc output. 4448 return 1; // r1 is the dedicated stack pointer 4449 } 4450 4451 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4452 llvm::Value *Address) const override; 4453 }; 4454 4455 } 4456 4457 // Return true if the ABI requires Ty to be passed sign- or zero- 4458 // extended to 64 bits. 4459 bool 4460 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4461 // Treat an enum type as its underlying type. 4462 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4463 Ty = EnumTy->getDecl()->getIntegerType(); 4464 4465 // Promotable integer types are required to be promoted by the ABI. 4466 if (Ty->isPromotableIntegerType()) 4467 return true; 4468 4469 // In addition to the usual promotable integer types, we also need to 4470 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4471 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4472 switch (BT->getKind()) { 4473 case BuiltinType::Int: 4474 case BuiltinType::UInt: 4475 return true; 4476 default: 4477 break; 4478 } 4479 4480 return false; 4481 } 4482 4483 /// isAlignedParamType - Determine whether a type requires 16-byte or 4484 /// higher alignment in the parameter area. Always returns at least 8. 4485 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4486 // Complex types are passed just like their elements. 4487 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4488 Ty = CTy->getElementType(); 4489 4490 // Only vector types of size 16 bytes need alignment (larger types are 4491 // passed via reference, smaller types are not aligned). 4492 if (IsQPXVectorTy(Ty)) { 4493 if (getContext().getTypeSize(Ty) > 128) 4494 return CharUnits::fromQuantity(32); 4495 4496 return CharUnits::fromQuantity(16); 4497 } else if (Ty->isVectorType()) { 4498 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4499 } 4500 4501 // For single-element float/vector structs, we consider the whole type 4502 // to have the same alignment requirements as its single element. 4503 const Type *AlignAsType = nullptr; 4504 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4505 if (EltType) { 4506 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4507 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4508 getContext().getTypeSize(EltType) == 128) || 4509 (BT && BT->isFloatingPoint())) 4510 AlignAsType = EltType; 4511 } 4512 4513 // Likewise for ELFv2 homogeneous aggregates. 4514 const Type *Base = nullptr; 4515 uint64_t Members = 0; 4516 if (!AlignAsType && Kind == ELFv2 && 4517 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4518 AlignAsType = Base; 4519 4520 // With special case aggregates, only vector base types need alignment. 4521 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4522 if (getContext().getTypeSize(AlignAsType) > 128) 4523 return CharUnits::fromQuantity(32); 4524 4525 return CharUnits::fromQuantity(16); 4526 } else if (AlignAsType) { 4527 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4528 } 4529 4530 // Otherwise, we only need alignment for any aggregate type that 4531 // has an alignment requirement of >= 16 bytes. 4532 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4533 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4534 return CharUnits::fromQuantity(32); 4535 return CharUnits::fromQuantity(16); 4536 } 4537 4538 return CharUnits::fromQuantity(8); 4539 } 4540 4541 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4542 /// aggregate. Base is set to the base element type, and Members is set 4543 /// to the number of base elements. 4544 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4545 uint64_t &Members) const { 4546 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4547 uint64_t NElements = AT->getSize().getZExtValue(); 4548 if (NElements == 0) 4549 return false; 4550 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4551 return false; 4552 Members *= NElements; 4553 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4554 const RecordDecl *RD = RT->getDecl(); 4555 if (RD->hasFlexibleArrayMember()) 4556 return false; 4557 4558 Members = 0; 4559 4560 // If this is a C++ record, check the bases first. 4561 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4562 for (const auto &I : CXXRD->bases()) { 4563 // Ignore empty records. 4564 if (isEmptyRecord(getContext(), I.getType(), true)) 4565 continue; 4566 4567 uint64_t FldMembers; 4568 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4569 return false; 4570 4571 Members += FldMembers; 4572 } 4573 } 4574 4575 for (const auto *FD : RD->fields()) { 4576 // Ignore (non-zero arrays of) empty records. 4577 QualType FT = FD->getType(); 4578 while (const ConstantArrayType *AT = 4579 getContext().getAsConstantArrayType(FT)) { 4580 if (AT->getSize().getZExtValue() == 0) 4581 return false; 4582 FT = AT->getElementType(); 4583 } 4584 if (isEmptyRecord(getContext(), FT, true)) 4585 continue; 4586 4587 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4588 if (getContext().getLangOpts().CPlusPlus && 4589 FD->isZeroLengthBitField(getContext())) 4590 continue; 4591 4592 uint64_t FldMembers; 4593 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4594 return false; 4595 4596 Members = (RD->isUnion() ? 4597 std::max(Members, FldMembers) : Members + FldMembers); 4598 } 4599 4600 if (!Base) 4601 return false; 4602 4603 // Ensure there is no padding. 4604 if (getContext().getTypeSize(Base) * Members != 4605 getContext().getTypeSize(Ty)) 4606 return false; 4607 } else { 4608 Members = 1; 4609 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4610 Members = 2; 4611 Ty = CT->getElementType(); 4612 } 4613 4614 // Most ABIs only support float, double, and some vector type widths. 4615 if (!isHomogeneousAggregateBaseType(Ty)) 4616 return false; 4617 4618 // The base type must be the same for all members. Types that 4619 // agree in both total size and mode (float vs. vector) are 4620 // treated as being equivalent here. 4621 const Type *TyPtr = Ty.getTypePtr(); 4622 if (!Base) { 4623 Base = TyPtr; 4624 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4625 // so make sure to widen it explicitly. 4626 if (const VectorType *VT = Base->getAs<VectorType>()) { 4627 QualType EltTy = VT->getElementType(); 4628 unsigned NumElements = 4629 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4630 Base = getContext() 4631 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4632 .getTypePtr(); 4633 } 4634 } 4635 4636 if (Base->isVectorType() != TyPtr->isVectorType() || 4637 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4638 return false; 4639 } 4640 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4641 } 4642 4643 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4644 // Homogeneous aggregates for ELFv2 must have base types of float, 4645 // double, long double, or 128-bit vectors. 4646 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4647 if (BT->getKind() == BuiltinType::Float || 4648 BT->getKind() == BuiltinType::Double || 4649 BT->getKind() == BuiltinType::LongDouble || 4650 (getContext().getTargetInfo().hasFloat128Type() && 4651 (BT->getKind() == BuiltinType::Float128))) { 4652 if (IsSoftFloatABI) 4653 return false; 4654 return true; 4655 } 4656 } 4657 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4658 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4659 return true; 4660 } 4661 return false; 4662 } 4663 4664 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4665 const Type *Base, uint64_t Members) const { 4666 // Vector and fp128 types require one register, other floating point types 4667 // require one or two registers depending on their size. 4668 uint32_t NumRegs = 4669 ((getContext().getTargetInfo().hasFloat128Type() && 4670 Base->isFloat128Type()) || 4671 Base->isVectorType()) ? 1 4672 : (getContext().getTypeSize(Base) + 63) / 64; 4673 4674 // Homogeneous Aggregates may occupy at most 8 registers. 4675 return Members * NumRegs <= 8; 4676 } 4677 4678 ABIArgInfo 4679 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4680 Ty = useFirstFieldIfTransparentUnion(Ty); 4681 4682 if (Ty->isAnyComplexType()) 4683 return ABIArgInfo::getDirect(); 4684 4685 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4686 // or via reference (larger than 16 bytes). 4687 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4688 uint64_t Size = getContext().getTypeSize(Ty); 4689 if (Size > 128) 4690 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4691 else if (Size < 128) { 4692 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4693 return ABIArgInfo::getDirect(CoerceTy); 4694 } 4695 } 4696 4697 if (isAggregateTypeForABI(Ty)) { 4698 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4699 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4700 4701 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4702 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4703 4704 // ELFv2 homogeneous aggregates are passed as array types. 4705 const Type *Base = nullptr; 4706 uint64_t Members = 0; 4707 if (Kind == ELFv2 && 4708 isHomogeneousAggregate(Ty, Base, Members)) { 4709 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4710 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4711 return ABIArgInfo::getDirect(CoerceTy); 4712 } 4713 4714 // If an aggregate may end up fully in registers, we do not 4715 // use the ByVal method, but pass the aggregate as array. 4716 // This is usually beneficial since we avoid forcing the 4717 // back-end to store the argument to memory. 4718 uint64_t Bits = getContext().getTypeSize(Ty); 4719 if (Bits > 0 && Bits <= 8 * GPRBits) { 4720 llvm::Type *CoerceTy; 4721 4722 // Types up to 8 bytes are passed as integer type (which will be 4723 // properly aligned in the argument save area doubleword). 4724 if (Bits <= GPRBits) 4725 CoerceTy = 4726 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4727 // Larger types are passed as arrays, with the base type selected 4728 // according to the required alignment in the save area. 4729 else { 4730 uint64_t RegBits = ABIAlign * 8; 4731 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4732 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4733 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4734 } 4735 4736 return ABIArgInfo::getDirect(CoerceTy); 4737 } 4738 4739 // All other aggregates are passed ByVal. 4740 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4741 /*ByVal=*/true, 4742 /*Realign=*/TyAlign > ABIAlign); 4743 } 4744 4745 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4746 : ABIArgInfo::getDirect()); 4747 } 4748 4749 ABIArgInfo 4750 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4751 if (RetTy->isVoidType()) 4752 return ABIArgInfo::getIgnore(); 4753 4754 if (RetTy->isAnyComplexType()) 4755 return ABIArgInfo::getDirect(); 4756 4757 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4758 // or via reference (larger than 16 bytes). 4759 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4760 uint64_t Size = getContext().getTypeSize(RetTy); 4761 if (Size > 128) 4762 return getNaturalAlignIndirect(RetTy); 4763 else if (Size < 128) { 4764 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4765 return ABIArgInfo::getDirect(CoerceTy); 4766 } 4767 } 4768 4769 if (isAggregateTypeForABI(RetTy)) { 4770 // ELFv2 homogeneous aggregates are returned as array types. 4771 const Type *Base = nullptr; 4772 uint64_t Members = 0; 4773 if (Kind == ELFv2 && 4774 isHomogeneousAggregate(RetTy, Base, Members)) { 4775 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4776 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4777 return ABIArgInfo::getDirect(CoerceTy); 4778 } 4779 4780 // ELFv2 small aggregates are returned in up to two registers. 4781 uint64_t Bits = getContext().getTypeSize(RetTy); 4782 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4783 if (Bits == 0) 4784 return ABIArgInfo::getIgnore(); 4785 4786 llvm::Type *CoerceTy; 4787 if (Bits > GPRBits) { 4788 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4789 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4790 } else 4791 CoerceTy = 4792 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4793 return ABIArgInfo::getDirect(CoerceTy); 4794 } 4795 4796 // All other aggregates are returned indirectly. 4797 return getNaturalAlignIndirect(RetTy); 4798 } 4799 4800 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4801 : ABIArgInfo::getDirect()); 4802 } 4803 4804 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4805 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4806 QualType Ty) const { 4807 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4808 TypeInfo.second = getParamTypeAlignment(Ty); 4809 4810 CharUnits SlotSize = CharUnits::fromQuantity(8); 4811 4812 // If we have a complex type and the base type is smaller than 8 bytes, 4813 // the ABI calls for the real and imaginary parts to be right-adjusted 4814 // in separate doublewords. However, Clang expects us to produce a 4815 // pointer to a structure with the two parts packed tightly. So generate 4816 // loads of the real and imaginary parts relative to the va_list pointer, 4817 // and store them to a temporary structure. 4818 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4819 CharUnits EltSize = TypeInfo.first / 2; 4820 if (EltSize < SlotSize) { 4821 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4822 SlotSize * 2, SlotSize, 4823 SlotSize, /*AllowHigher*/ true); 4824 4825 Address RealAddr = Addr; 4826 Address ImagAddr = RealAddr; 4827 if (CGF.CGM.getDataLayout().isBigEndian()) { 4828 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4829 SlotSize - EltSize); 4830 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4831 2 * SlotSize - EltSize); 4832 } else { 4833 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4834 } 4835 4836 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4837 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4838 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4839 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4840 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4841 4842 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4843 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4844 /*init*/ true); 4845 return Temp; 4846 } 4847 } 4848 4849 // Otherwise, just use the general rule. 4850 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4851 TypeInfo, SlotSize, /*AllowHigher*/ true); 4852 } 4853 4854 static bool 4855 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4856 llvm::Value *Address) { 4857 // This is calculated from the LLVM and GCC tables and verified 4858 // against gcc output. AFAIK all ABIs use the same encoding. 4859 4860 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4861 4862 llvm::IntegerType *i8 = CGF.Int8Ty; 4863 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4864 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4865 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4866 4867 // 0-31: r0-31, the 8-byte general-purpose registers 4868 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4869 4870 // 32-63: fp0-31, the 8-byte floating-point registers 4871 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4872 4873 // 64-67 are various 8-byte special-purpose registers: 4874 // 64: mq 4875 // 65: lr 4876 // 66: ctr 4877 // 67: ap 4878 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4879 4880 // 68-76 are various 4-byte special-purpose registers: 4881 // 68-75 cr0-7 4882 // 76: xer 4883 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4884 4885 // 77-108: v0-31, the 16-byte vector registers 4886 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4887 4888 // 109: vrsave 4889 // 110: vscr 4890 // 111: spe_acc 4891 // 112: spefscr 4892 // 113: sfp 4893 // 114: tfhar 4894 // 115: tfiar 4895 // 116: texasr 4896 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4897 4898 return false; 4899 } 4900 4901 bool 4902 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4903 CodeGen::CodeGenFunction &CGF, 4904 llvm::Value *Address) const { 4905 4906 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4907 } 4908 4909 bool 4910 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4911 llvm::Value *Address) const { 4912 4913 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4914 } 4915 4916 //===----------------------------------------------------------------------===// 4917 // AArch64 ABI Implementation 4918 //===----------------------------------------------------------------------===// 4919 4920 namespace { 4921 4922 class AArch64ABIInfo : public SwiftABIInfo { 4923 public: 4924 enum ABIKind { 4925 AAPCS = 0, 4926 DarwinPCS, 4927 Win64 4928 }; 4929 4930 private: 4931 ABIKind Kind; 4932 4933 public: 4934 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4935 : SwiftABIInfo(CGT), Kind(Kind) {} 4936 4937 private: 4938 ABIKind getABIKind() const { return Kind; } 4939 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4940 4941 ABIArgInfo classifyReturnType(QualType RetTy) const; 4942 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4943 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4944 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4945 uint64_t Members) const override; 4946 4947 bool isIllegalVectorType(QualType Ty) const; 4948 4949 void computeInfo(CGFunctionInfo &FI) const override { 4950 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4951 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4952 4953 for (auto &it : FI.arguments()) 4954 it.info = classifyArgumentType(it.type); 4955 } 4956 4957 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4958 CodeGenFunction &CGF) const; 4959 4960 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4961 CodeGenFunction &CGF) const; 4962 4963 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4964 QualType Ty) const override { 4965 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4966 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4967 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4968 } 4969 4970 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4971 QualType Ty) const override; 4972 4973 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4974 bool asReturnValue) const override { 4975 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4976 } 4977 bool isSwiftErrorInRegister() const override { 4978 return true; 4979 } 4980 4981 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4982 unsigned elts) const override; 4983 }; 4984 4985 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4986 public: 4987 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4988 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4989 4990 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4991 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4992 } 4993 4994 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4995 return 31; 4996 } 4997 4998 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4999 5000 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5001 CodeGen::CodeGenModule &CGM) const override { 5002 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5003 if (!FD) 5004 return; 5005 llvm::Function *Fn = cast<llvm::Function>(GV); 5006 5007 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5008 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5009 Fn->addFnAttr("sign-return-address", 5010 Kind == CodeGenOptions::SignReturnAddressScope::All 5011 ? "all" 5012 : "non-leaf"); 5013 5014 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5015 Fn->addFnAttr("sign-return-address-key", 5016 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5017 ? "a_key" 5018 : "b_key"); 5019 } 5020 5021 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5022 Fn->addFnAttr("branch-target-enforcement"); 5023 } 5024 }; 5025 5026 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5027 public: 5028 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5029 : AArch64TargetCodeGenInfo(CGT, K) {} 5030 5031 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5032 CodeGen::CodeGenModule &CGM) const override; 5033 5034 void getDependentLibraryOption(llvm::StringRef Lib, 5035 llvm::SmallString<24> &Opt) const override { 5036 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5037 } 5038 5039 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5040 llvm::SmallString<32> &Opt) const override { 5041 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5042 } 5043 }; 5044 5045 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5046 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5047 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5048 if (GV->isDeclaration()) 5049 return; 5050 addStackProbeTargetAttributes(D, GV, CGM); 5051 } 5052 } 5053 5054 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5055 Ty = useFirstFieldIfTransparentUnion(Ty); 5056 5057 // Handle illegal vector types here. 5058 if (isIllegalVectorType(Ty)) { 5059 uint64_t Size = getContext().getTypeSize(Ty); 5060 // Android promotes <2 x i8> to i16, not i32 5061 if (isAndroid() && (Size <= 16)) { 5062 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5063 return ABIArgInfo::getDirect(ResType); 5064 } 5065 if (Size <= 32) { 5066 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5067 return ABIArgInfo::getDirect(ResType); 5068 } 5069 if (Size == 64) { 5070 llvm::Type *ResType = 5071 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5072 return ABIArgInfo::getDirect(ResType); 5073 } 5074 if (Size == 128) { 5075 llvm::Type *ResType = 5076 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5077 return ABIArgInfo::getDirect(ResType); 5078 } 5079 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5080 } 5081 5082 if (!isAggregateTypeForABI(Ty)) { 5083 // Treat an enum type as its underlying type. 5084 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5085 Ty = EnumTy->getDecl()->getIntegerType(); 5086 5087 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5088 ? ABIArgInfo::getExtend(Ty) 5089 : ABIArgInfo::getDirect()); 5090 } 5091 5092 // Structures with either a non-trivial destructor or a non-trivial 5093 // copy constructor are always indirect. 5094 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5095 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5096 CGCXXABI::RAA_DirectInMemory); 5097 } 5098 5099 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5100 // elsewhere for GNU compatibility. 5101 uint64_t Size = getContext().getTypeSize(Ty); 5102 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5103 if (IsEmpty || Size == 0) { 5104 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5105 return ABIArgInfo::getIgnore(); 5106 5107 // GNU C mode. The only argument that gets ignored is an empty one with size 5108 // 0. 5109 if (IsEmpty && Size == 0) 5110 return ABIArgInfo::getIgnore(); 5111 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5112 } 5113 5114 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5115 const Type *Base = nullptr; 5116 uint64_t Members = 0; 5117 if (isHomogeneousAggregate(Ty, Base, Members)) { 5118 return ABIArgInfo::getDirect( 5119 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5120 } 5121 5122 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5123 if (Size <= 128) { 5124 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5125 // same size and alignment. 5126 if (getTarget().isRenderScriptTarget()) { 5127 return coerceToIntArray(Ty, getContext(), getVMContext()); 5128 } 5129 unsigned Alignment; 5130 if (Kind == AArch64ABIInfo::AAPCS) { 5131 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5132 Alignment = Alignment < 128 ? 64 : 128; 5133 } else { 5134 Alignment = getContext().getTypeAlign(Ty); 5135 } 5136 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5137 5138 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5139 // For aggregates with 16-byte alignment, we use i128. 5140 if (Alignment < 128 && Size == 128) { 5141 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5142 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5143 } 5144 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5145 } 5146 5147 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5148 } 5149 5150 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5151 if (RetTy->isVoidType()) 5152 return ABIArgInfo::getIgnore(); 5153 5154 // Large vector types should be returned via memory. 5155 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5156 return getNaturalAlignIndirect(RetTy); 5157 5158 if (!isAggregateTypeForABI(RetTy)) { 5159 // Treat an enum type as its underlying type. 5160 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5161 RetTy = EnumTy->getDecl()->getIntegerType(); 5162 5163 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5164 ? ABIArgInfo::getExtend(RetTy) 5165 : ABIArgInfo::getDirect()); 5166 } 5167 5168 uint64_t Size = getContext().getTypeSize(RetTy); 5169 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5170 return ABIArgInfo::getIgnore(); 5171 5172 const Type *Base = nullptr; 5173 uint64_t Members = 0; 5174 if (isHomogeneousAggregate(RetTy, Base, Members)) 5175 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5176 return ABIArgInfo::getDirect(); 5177 5178 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5179 if (Size <= 128) { 5180 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5181 // same size and alignment. 5182 if (getTarget().isRenderScriptTarget()) { 5183 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5184 } 5185 unsigned Alignment = getContext().getTypeAlign(RetTy); 5186 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5187 5188 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5189 // For aggregates with 16-byte alignment, we use i128. 5190 if (Alignment < 128 && Size == 128) { 5191 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5192 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5193 } 5194 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5195 } 5196 5197 return getNaturalAlignIndirect(RetTy); 5198 } 5199 5200 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5201 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5202 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5203 // Check whether VT is legal. 5204 unsigned NumElements = VT->getNumElements(); 5205 uint64_t Size = getContext().getTypeSize(VT); 5206 // NumElements should be power of 2. 5207 if (!llvm::isPowerOf2_32(NumElements)) 5208 return true; 5209 return Size != 64 && (Size != 128 || NumElements == 1); 5210 } 5211 return false; 5212 } 5213 5214 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5215 llvm::Type *eltTy, 5216 unsigned elts) const { 5217 if (!llvm::isPowerOf2_32(elts)) 5218 return false; 5219 if (totalSize.getQuantity() != 8 && 5220 (totalSize.getQuantity() != 16 || elts == 1)) 5221 return false; 5222 return true; 5223 } 5224 5225 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5226 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5227 // point type or a short-vector type. This is the same as the 32-bit ABI, 5228 // but with the difference that any floating-point type is allowed, 5229 // including __fp16. 5230 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5231 if (BT->isFloatingPoint()) 5232 return true; 5233 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5234 unsigned VecSize = getContext().getTypeSize(VT); 5235 if (VecSize == 64 || VecSize == 128) 5236 return true; 5237 } 5238 return false; 5239 } 5240 5241 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5242 uint64_t Members) const { 5243 return Members <= 4; 5244 } 5245 5246 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5247 QualType Ty, 5248 CodeGenFunction &CGF) const { 5249 ABIArgInfo AI = classifyArgumentType(Ty); 5250 bool IsIndirect = AI.isIndirect(); 5251 5252 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5253 if (IsIndirect) 5254 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5255 else if (AI.getCoerceToType()) 5256 BaseTy = AI.getCoerceToType(); 5257 5258 unsigned NumRegs = 1; 5259 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5260 BaseTy = ArrTy->getElementType(); 5261 NumRegs = ArrTy->getNumElements(); 5262 } 5263 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5264 5265 // The AArch64 va_list type and handling is specified in the Procedure Call 5266 // Standard, section B.4: 5267 // 5268 // struct { 5269 // void *__stack; 5270 // void *__gr_top; 5271 // void *__vr_top; 5272 // int __gr_offs; 5273 // int __vr_offs; 5274 // }; 5275 5276 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5277 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5278 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5279 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5280 5281 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5282 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5283 5284 Address reg_offs_p = Address::invalid(); 5285 llvm::Value *reg_offs = nullptr; 5286 int reg_top_index; 5287 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5288 if (!IsFPR) { 5289 // 3 is the field number of __gr_offs 5290 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5291 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5292 reg_top_index = 1; // field number for __gr_top 5293 RegSize = llvm::alignTo(RegSize, 8); 5294 } else { 5295 // 4 is the field number of __vr_offs. 5296 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5297 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5298 reg_top_index = 2; // field number for __vr_top 5299 RegSize = 16 * NumRegs; 5300 } 5301 5302 //======================================= 5303 // Find out where argument was passed 5304 //======================================= 5305 5306 // If reg_offs >= 0 we're already using the stack for this type of 5307 // argument. We don't want to keep updating reg_offs (in case it overflows, 5308 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5309 // whatever they get). 5310 llvm::Value *UsingStack = nullptr; 5311 UsingStack = CGF.Builder.CreateICmpSGE( 5312 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5313 5314 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5315 5316 // Otherwise, at least some kind of argument could go in these registers, the 5317 // question is whether this particular type is too big. 5318 CGF.EmitBlock(MaybeRegBlock); 5319 5320 // Integer arguments may need to correct register alignment (for example a 5321 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5322 // align __gr_offs to calculate the potential address. 5323 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5324 int Align = TyAlign.getQuantity(); 5325 5326 reg_offs = CGF.Builder.CreateAdd( 5327 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5328 "align_regoffs"); 5329 reg_offs = CGF.Builder.CreateAnd( 5330 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5331 "aligned_regoffs"); 5332 } 5333 5334 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5335 // The fact that this is done unconditionally reflects the fact that 5336 // allocating an argument to the stack also uses up all the remaining 5337 // registers of the appropriate kind. 5338 llvm::Value *NewOffset = nullptr; 5339 NewOffset = CGF.Builder.CreateAdd( 5340 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5341 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5342 5343 // Now we're in a position to decide whether this argument really was in 5344 // registers or not. 5345 llvm::Value *InRegs = nullptr; 5346 InRegs = CGF.Builder.CreateICmpSLE( 5347 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5348 5349 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5350 5351 //======================================= 5352 // Argument was in registers 5353 //======================================= 5354 5355 // Now we emit the code for if the argument was originally passed in 5356 // registers. First start the appropriate block: 5357 CGF.EmitBlock(InRegBlock); 5358 5359 llvm::Value *reg_top = nullptr; 5360 Address reg_top_p = 5361 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5362 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5363 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5364 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5365 Address RegAddr = Address::invalid(); 5366 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5367 5368 if (IsIndirect) { 5369 // If it's been passed indirectly (actually a struct), whatever we find from 5370 // stored registers or on the stack will actually be a struct **. 5371 MemTy = llvm::PointerType::getUnqual(MemTy); 5372 } 5373 5374 const Type *Base = nullptr; 5375 uint64_t NumMembers = 0; 5376 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5377 if (IsHFA && NumMembers > 1) { 5378 // Homogeneous aggregates passed in registers will have their elements split 5379 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5380 // qN+1, ...). We reload and store into a temporary local variable 5381 // contiguously. 5382 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5383 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5384 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5385 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5386 Address Tmp = CGF.CreateTempAlloca(HFATy, 5387 std::max(TyAlign, BaseTyInfo.second)); 5388 5389 // On big-endian platforms, the value will be right-aligned in its slot. 5390 int Offset = 0; 5391 if (CGF.CGM.getDataLayout().isBigEndian() && 5392 BaseTyInfo.first.getQuantity() < 16) 5393 Offset = 16 - BaseTyInfo.first.getQuantity(); 5394 5395 for (unsigned i = 0; i < NumMembers; ++i) { 5396 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5397 Address LoadAddr = 5398 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5399 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5400 5401 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5402 5403 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5404 CGF.Builder.CreateStore(Elem, StoreAddr); 5405 } 5406 5407 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5408 } else { 5409 // Otherwise the object is contiguous in memory. 5410 5411 // It might be right-aligned in its slot. 5412 CharUnits SlotSize = BaseAddr.getAlignment(); 5413 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5414 (IsHFA || !isAggregateTypeForABI(Ty)) && 5415 TySize < SlotSize) { 5416 CharUnits Offset = SlotSize - TySize; 5417 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5418 } 5419 5420 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5421 } 5422 5423 CGF.EmitBranch(ContBlock); 5424 5425 //======================================= 5426 // Argument was on the stack 5427 //======================================= 5428 CGF.EmitBlock(OnStackBlock); 5429 5430 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5431 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5432 5433 // Again, stack arguments may need realignment. In this case both integer and 5434 // floating-point ones might be affected. 5435 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5436 int Align = TyAlign.getQuantity(); 5437 5438 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5439 5440 OnStackPtr = CGF.Builder.CreateAdd( 5441 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5442 "align_stack"); 5443 OnStackPtr = CGF.Builder.CreateAnd( 5444 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5445 "align_stack"); 5446 5447 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5448 } 5449 Address OnStackAddr(OnStackPtr, 5450 std::max(CharUnits::fromQuantity(8), TyAlign)); 5451 5452 // All stack slots are multiples of 8 bytes. 5453 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5454 CharUnits StackSize; 5455 if (IsIndirect) 5456 StackSize = StackSlotSize; 5457 else 5458 StackSize = TySize.alignTo(StackSlotSize); 5459 5460 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5461 llvm::Value *NewStack = 5462 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5463 5464 // Write the new value of __stack for the next call to va_arg 5465 CGF.Builder.CreateStore(NewStack, stack_p); 5466 5467 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5468 TySize < StackSlotSize) { 5469 CharUnits Offset = StackSlotSize - TySize; 5470 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5471 } 5472 5473 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5474 5475 CGF.EmitBranch(ContBlock); 5476 5477 //======================================= 5478 // Tidy up 5479 //======================================= 5480 CGF.EmitBlock(ContBlock); 5481 5482 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5483 OnStackAddr, OnStackBlock, "vaargs.addr"); 5484 5485 if (IsIndirect) 5486 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5487 TyAlign); 5488 5489 return ResAddr; 5490 } 5491 5492 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5493 CodeGenFunction &CGF) const { 5494 // The backend's lowering doesn't support va_arg for aggregates or 5495 // illegal vector types. Lower VAArg here for these cases and use 5496 // the LLVM va_arg instruction for everything else. 5497 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5498 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5499 5500 CharUnits SlotSize = CharUnits::fromQuantity(8); 5501 5502 // Empty records are ignored for parameter passing purposes. 5503 if (isEmptyRecord(getContext(), Ty, true)) { 5504 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5505 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5506 return Addr; 5507 } 5508 5509 // The size of the actual thing passed, which might end up just 5510 // being a pointer for indirect types. 5511 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5512 5513 // Arguments bigger than 16 bytes which aren't homogeneous 5514 // aggregates should be passed indirectly. 5515 bool IsIndirect = false; 5516 if (TyInfo.first.getQuantity() > 16) { 5517 const Type *Base = nullptr; 5518 uint64_t Members = 0; 5519 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5520 } 5521 5522 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5523 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5524 } 5525 5526 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5527 QualType Ty) const { 5528 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5529 CGF.getContext().getTypeInfoInChars(Ty), 5530 CharUnits::fromQuantity(8), 5531 /*allowHigherAlign*/ false); 5532 } 5533 5534 //===----------------------------------------------------------------------===// 5535 // ARM ABI Implementation 5536 //===----------------------------------------------------------------------===// 5537 5538 namespace { 5539 5540 class ARMABIInfo : public SwiftABIInfo { 5541 public: 5542 enum ABIKind { 5543 APCS = 0, 5544 AAPCS = 1, 5545 AAPCS_VFP = 2, 5546 AAPCS16_VFP = 3, 5547 }; 5548 5549 private: 5550 ABIKind Kind; 5551 5552 public: 5553 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5554 : SwiftABIInfo(CGT), Kind(_Kind) { 5555 setCCs(); 5556 } 5557 5558 bool isEABI() const { 5559 switch (getTarget().getTriple().getEnvironment()) { 5560 case llvm::Triple::Android: 5561 case llvm::Triple::EABI: 5562 case llvm::Triple::EABIHF: 5563 case llvm::Triple::GNUEABI: 5564 case llvm::Triple::GNUEABIHF: 5565 case llvm::Triple::MuslEABI: 5566 case llvm::Triple::MuslEABIHF: 5567 return true; 5568 default: 5569 return false; 5570 } 5571 } 5572 5573 bool isEABIHF() const { 5574 switch (getTarget().getTriple().getEnvironment()) { 5575 case llvm::Triple::EABIHF: 5576 case llvm::Triple::GNUEABIHF: 5577 case llvm::Triple::MuslEABIHF: 5578 return true; 5579 default: 5580 return false; 5581 } 5582 } 5583 5584 ABIKind getABIKind() const { return Kind; } 5585 5586 private: 5587 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5588 unsigned functionCallConv) const; 5589 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5590 unsigned functionCallConv) const; 5591 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5592 uint64_t Members) const; 5593 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5594 bool isIllegalVectorType(QualType Ty) const; 5595 5596 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5597 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5598 uint64_t Members) const override; 5599 5600 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5601 5602 void computeInfo(CGFunctionInfo &FI) const override; 5603 5604 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5605 QualType Ty) const override; 5606 5607 llvm::CallingConv::ID getLLVMDefaultCC() const; 5608 llvm::CallingConv::ID getABIDefaultCC() const; 5609 void setCCs(); 5610 5611 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5612 bool asReturnValue) const override { 5613 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5614 } 5615 bool isSwiftErrorInRegister() const override { 5616 return true; 5617 } 5618 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5619 unsigned elts) const override; 5620 }; 5621 5622 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5623 public: 5624 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5625 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5626 5627 const ARMABIInfo &getABIInfo() const { 5628 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5629 } 5630 5631 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5632 return 13; 5633 } 5634 5635 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5636 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5637 } 5638 5639 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5640 llvm::Value *Address) const override { 5641 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5642 5643 // 0-15 are the 16 integer registers. 5644 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5645 return false; 5646 } 5647 5648 unsigned getSizeOfUnwindException() const override { 5649 if (getABIInfo().isEABI()) return 88; 5650 return TargetCodeGenInfo::getSizeOfUnwindException(); 5651 } 5652 5653 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5654 CodeGen::CodeGenModule &CGM) const override { 5655 if (GV->isDeclaration()) 5656 return; 5657 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5658 if (!FD) 5659 return; 5660 5661 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5662 if (!Attr) 5663 return; 5664 5665 const char *Kind; 5666 switch (Attr->getInterrupt()) { 5667 case ARMInterruptAttr::Generic: Kind = ""; break; 5668 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5669 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5670 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5671 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5672 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5673 } 5674 5675 llvm::Function *Fn = cast<llvm::Function>(GV); 5676 5677 Fn->addFnAttr("interrupt", Kind); 5678 5679 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5680 if (ABI == ARMABIInfo::APCS) 5681 return; 5682 5683 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5684 // however this is not necessarily true on taking any interrupt. Instruct 5685 // the backend to perform a realignment as part of the function prologue. 5686 llvm::AttrBuilder B; 5687 B.addStackAlignmentAttr(8); 5688 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5689 } 5690 }; 5691 5692 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5693 public: 5694 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5695 : ARMTargetCodeGenInfo(CGT, K) {} 5696 5697 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5698 CodeGen::CodeGenModule &CGM) const override; 5699 5700 void getDependentLibraryOption(llvm::StringRef Lib, 5701 llvm::SmallString<24> &Opt) const override { 5702 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5703 } 5704 5705 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5706 llvm::SmallString<32> &Opt) const override { 5707 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5708 } 5709 }; 5710 5711 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5712 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5713 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5714 if (GV->isDeclaration()) 5715 return; 5716 addStackProbeTargetAttributes(D, GV, CGM); 5717 } 5718 } 5719 5720 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5721 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5722 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5723 FI.getCallingConvention()); 5724 5725 for (auto &I : FI.arguments()) 5726 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5727 FI.getCallingConvention()); 5728 5729 5730 // Always honor user-specified calling convention. 5731 if (FI.getCallingConvention() != llvm::CallingConv::C) 5732 return; 5733 5734 llvm::CallingConv::ID cc = getRuntimeCC(); 5735 if (cc != llvm::CallingConv::C) 5736 FI.setEffectiveCallingConvention(cc); 5737 } 5738 5739 /// Return the default calling convention that LLVM will use. 5740 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5741 // The default calling convention that LLVM will infer. 5742 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5743 return llvm::CallingConv::ARM_AAPCS_VFP; 5744 else if (isEABI()) 5745 return llvm::CallingConv::ARM_AAPCS; 5746 else 5747 return llvm::CallingConv::ARM_APCS; 5748 } 5749 5750 /// Return the calling convention that our ABI would like us to use 5751 /// as the C calling convention. 5752 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5753 switch (getABIKind()) { 5754 case APCS: return llvm::CallingConv::ARM_APCS; 5755 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5756 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5757 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5758 } 5759 llvm_unreachable("bad ABI kind"); 5760 } 5761 5762 void ARMABIInfo::setCCs() { 5763 assert(getRuntimeCC() == llvm::CallingConv::C); 5764 5765 // Don't muddy up the IR with a ton of explicit annotations if 5766 // they'd just match what LLVM will infer from the triple. 5767 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5768 if (abiCC != getLLVMDefaultCC()) 5769 RuntimeCC = abiCC; 5770 } 5771 5772 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5773 uint64_t Size = getContext().getTypeSize(Ty); 5774 if (Size <= 32) { 5775 llvm::Type *ResType = 5776 llvm::Type::getInt32Ty(getVMContext()); 5777 return ABIArgInfo::getDirect(ResType); 5778 } 5779 if (Size == 64 || Size == 128) { 5780 llvm::Type *ResType = llvm::VectorType::get( 5781 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5782 return ABIArgInfo::getDirect(ResType); 5783 } 5784 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5785 } 5786 5787 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5788 const Type *Base, 5789 uint64_t Members) const { 5790 assert(Base && "Base class should be set for homogeneous aggregate"); 5791 // Base can be a floating-point or a vector. 5792 if (const VectorType *VT = Base->getAs<VectorType>()) { 5793 // FP16 vectors should be converted to integer vectors 5794 if (!getTarget().hasLegalHalfType() && 5795 (VT->getElementType()->isFloat16Type() || 5796 VT->getElementType()->isHalfType())) { 5797 uint64_t Size = getContext().getTypeSize(VT); 5798 llvm::Type *NewVecTy = llvm::VectorType::get( 5799 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5800 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5801 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5802 } 5803 } 5804 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5805 } 5806 5807 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5808 unsigned functionCallConv) const { 5809 // 6.1.2.1 The following argument types are VFP CPRCs: 5810 // A single-precision floating-point type (including promoted 5811 // half-precision types); A double-precision floating-point type; 5812 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5813 // with a Base Type of a single- or double-precision floating-point type, 5814 // 64-bit containerized vectors or 128-bit containerized vectors with one 5815 // to four Elements. 5816 // Variadic functions should always marshal to the base standard. 5817 bool IsAAPCS_VFP = 5818 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5819 5820 Ty = useFirstFieldIfTransparentUnion(Ty); 5821 5822 // Handle illegal vector types here. 5823 if (isIllegalVectorType(Ty)) 5824 return coerceIllegalVector(Ty); 5825 5826 // _Float16 and __fp16 get passed as if it were an int or float, but with 5827 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5828 // half type natively, and does not need to interwork with AAPCS code. 5829 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5830 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5831 llvm::Type *ResType = IsAAPCS_VFP ? 5832 llvm::Type::getFloatTy(getVMContext()) : 5833 llvm::Type::getInt32Ty(getVMContext()); 5834 return ABIArgInfo::getDirect(ResType); 5835 } 5836 5837 if (!isAggregateTypeForABI(Ty)) { 5838 // Treat an enum type as its underlying type. 5839 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5840 Ty = EnumTy->getDecl()->getIntegerType(); 5841 } 5842 5843 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5844 : ABIArgInfo::getDirect()); 5845 } 5846 5847 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5848 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5849 } 5850 5851 // Ignore empty records. 5852 if (isEmptyRecord(getContext(), Ty, true)) 5853 return ABIArgInfo::getIgnore(); 5854 5855 if (IsAAPCS_VFP) { 5856 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5857 // into VFP registers. 5858 const Type *Base = nullptr; 5859 uint64_t Members = 0; 5860 if (isHomogeneousAggregate(Ty, Base, Members)) 5861 return classifyHomogeneousAggregate(Ty, Base, Members); 5862 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5863 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5864 // this convention even for a variadic function: the backend will use GPRs 5865 // if needed. 5866 const Type *Base = nullptr; 5867 uint64_t Members = 0; 5868 if (isHomogeneousAggregate(Ty, Base, Members)) { 5869 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5870 llvm::Type *Ty = 5871 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5872 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5873 } 5874 } 5875 5876 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5877 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5878 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5879 // bigger than 128-bits, they get placed in space allocated by the caller, 5880 // and a pointer is passed. 5881 return ABIArgInfo::getIndirect( 5882 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5883 } 5884 5885 // Support byval for ARM. 5886 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5887 // most 8-byte. We realign the indirect argument if type alignment is bigger 5888 // than ABI alignment. 5889 uint64_t ABIAlign = 4; 5890 uint64_t TyAlign; 5891 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5892 getABIKind() == ARMABIInfo::AAPCS) { 5893 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5894 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5895 } else { 5896 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5897 } 5898 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5899 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5900 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5901 /*ByVal=*/true, 5902 /*Realign=*/TyAlign > ABIAlign); 5903 } 5904 5905 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5906 // same size and alignment. 5907 if (getTarget().isRenderScriptTarget()) { 5908 return coerceToIntArray(Ty, getContext(), getVMContext()); 5909 } 5910 5911 // Otherwise, pass by coercing to a structure of the appropriate size. 5912 llvm::Type* ElemTy; 5913 unsigned SizeRegs; 5914 // FIXME: Try to match the types of the arguments more accurately where 5915 // we can. 5916 if (TyAlign <= 4) { 5917 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5918 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5919 } else { 5920 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5921 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5922 } 5923 5924 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5925 } 5926 5927 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5928 llvm::LLVMContext &VMContext) { 5929 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5930 // is called integer-like if its size is less than or equal to one word, and 5931 // the offset of each of its addressable sub-fields is zero. 5932 5933 uint64_t Size = Context.getTypeSize(Ty); 5934 5935 // Check that the type fits in a word. 5936 if (Size > 32) 5937 return false; 5938 5939 // FIXME: Handle vector types! 5940 if (Ty->isVectorType()) 5941 return false; 5942 5943 // Float types are never treated as "integer like". 5944 if (Ty->isRealFloatingType()) 5945 return false; 5946 5947 // If this is a builtin or pointer type then it is ok. 5948 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5949 return true; 5950 5951 // Small complex integer types are "integer like". 5952 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5953 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5954 5955 // Single element and zero sized arrays should be allowed, by the definition 5956 // above, but they are not. 5957 5958 // Otherwise, it must be a record type. 5959 const RecordType *RT = Ty->getAs<RecordType>(); 5960 if (!RT) return false; 5961 5962 // Ignore records with flexible arrays. 5963 const RecordDecl *RD = RT->getDecl(); 5964 if (RD->hasFlexibleArrayMember()) 5965 return false; 5966 5967 // Check that all sub-fields are at offset 0, and are themselves "integer 5968 // like". 5969 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5970 5971 bool HadField = false; 5972 unsigned idx = 0; 5973 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5974 i != e; ++i, ++idx) { 5975 const FieldDecl *FD = *i; 5976 5977 // Bit-fields are not addressable, we only need to verify they are "integer 5978 // like". We still have to disallow a subsequent non-bitfield, for example: 5979 // struct { int : 0; int x } 5980 // is non-integer like according to gcc. 5981 if (FD->isBitField()) { 5982 if (!RD->isUnion()) 5983 HadField = true; 5984 5985 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5986 return false; 5987 5988 continue; 5989 } 5990 5991 // Check if this field is at offset 0. 5992 if (Layout.getFieldOffset(idx) != 0) 5993 return false; 5994 5995 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5996 return false; 5997 5998 // Only allow at most one field in a structure. This doesn't match the 5999 // wording above, but follows gcc in situations with a field following an 6000 // empty structure. 6001 if (!RD->isUnion()) { 6002 if (HadField) 6003 return false; 6004 6005 HadField = true; 6006 } 6007 } 6008 6009 return true; 6010 } 6011 6012 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6013 unsigned functionCallConv) const { 6014 6015 // Variadic functions should always marshal to the base standard. 6016 bool IsAAPCS_VFP = 6017 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6018 6019 if (RetTy->isVoidType()) 6020 return ABIArgInfo::getIgnore(); 6021 6022 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6023 // Large vector types should be returned via memory. 6024 if (getContext().getTypeSize(RetTy) > 128) 6025 return getNaturalAlignIndirect(RetTy); 6026 // FP16 vectors should be converted to integer vectors 6027 if (!getTarget().hasLegalHalfType() && 6028 (VT->getElementType()->isFloat16Type() || 6029 VT->getElementType()->isHalfType())) 6030 return coerceIllegalVector(RetTy); 6031 } 6032 6033 // _Float16 and __fp16 get returned as if it were an int or float, but with 6034 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6035 // half type natively, and does not need to interwork with AAPCS code. 6036 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6037 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6038 llvm::Type *ResType = IsAAPCS_VFP ? 6039 llvm::Type::getFloatTy(getVMContext()) : 6040 llvm::Type::getInt32Ty(getVMContext()); 6041 return ABIArgInfo::getDirect(ResType); 6042 } 6043 6044 if (!isAggregateTypeForABI(RetTy)) { 6045 // Treat an enum type as its underlying type. 6046 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6047 RetTy = EnumTy->getDecl()->getIntegerType(); 6048 6049 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6050 : ABIArgInfo::getDirect(); 6051 } 6052 6053 // Are we following APCS? 6054 if (getABIKind() == APCS) { 6055 if (isEmptyRecord(getContext(), RetTy, false)) 6056 return ABIArgInfo::getIgnore(); 6057 6058 // Complex types are all returned as packed integers. 6059 // 6060 // FIXME: Consider using 2 x vector types if the back end handles them 6061 // correctly. 6062 if (RetTy->isAnyComplexType()) 6063 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6064 getVMContext(), getContext().getTypeSize(RetTy))); 6065 6066 // Integer like structures are returned in r0. 6067 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6068 // Return in the smallest viable integer type. 6069 uint64_t Size = getContext().getTypeSize(RetTy); 6070 if (Size <= 8) 6071 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6072 if (Size <= 16) 6073 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6074 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6075 } 6076 6077 // Otherwise return in memory. 6078 return getNaturalAlignIndirect(RetTy); 6079 } 6080 6081 // Otherwise this is an AAPCS variant. 6082 6083 if (isEmptyRecord(getContext(), RetTy, true)) 6084 return ABIArgInfo::getIgnore(); 6085 6086 // Check for homogeneous aggregates with AAPCS-VFP. 6087 if (IsAAPCS_VFP) { 6088 const Type *Base = nullptr; 6089 uint64_t Members = 0; 6090 if (isHomogeneousAggregate(RetTy, Base, Members)) 6091 return classifyHomogeneousAggregate(RetTy, Base, Members); 6092 } 6093 6094 // Aggregates <= 4 bytes are returned in r0; other aggregates 6095 // are returned indirectly. 6096 uint64_t Size = getContext().getTypeSize(RetTy); 6097 if (Size <= 32) { 6098 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6099 // same size and alignment. 6100 if (getTarget().isRenderScriptTarget()) { 6101 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6102 } 6103 if (getDataLayout().isBigEndian()) 6104 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6105 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6106 6107 // Return in the smallest viable integer type. 6108 if (Size <= 8) 6109 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6110 if (Size <= 16) 6111 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6112 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6113 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6114 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6115 llvm::Type *CoerceTy = 6116 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6117 return ABIArgInfo::getDirect(CoerceTy); 6118 } 6119 6120 return getNaturalAlignIndirect(RetTy); 6121 } 6122 6123 /// isIllegalVector - check whether Ty is an illegal vector type. 6124 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6125 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6126 // On targets that don't support FP16, FP16 is expanded into float, and we 6127 // don't want the ABI to depend on whether or not FP16 is supported in 6128 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6129 if (!getTarget().hasLegalHalfType() && 6130 (VT->getElementType()->isFloat16Type() || 6131 VT->getElementType()->isHalfType())) 6132 return true; 6133 if (isAndroid()) { 6134 // Android shipped using Clang 3.1, which supported a slightly different 6135 // vector ABI. The primary differences were that 3-element vector types 6136 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6137 // accepts that legacy behavior for Android only. 6138 // Check whether VT is legal. 6139 unsigned NumElements = VT->getNumElements(); 6140 // NumElements should be power of 2 or equal to 3. 6141 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6142 return true; 6143 } else { 6144 // Check whether VT is legal. 6145 unsigned NumElements = VT->getNumElements(); 6146 uint64_t Size = getContext().getTypeSize(VT); 6147 // NumElements should be power of 2. 6148 if (!llvm::isPowerOf2_32(NumElements)) 6149 return true; 6150 // Size should be greater than 32 bits. 6151 return Size <= 32; 6152 } 6153 } 6154 return false; 6155 } 6156 6157 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6158 llvm::Type *eltTy, 6159 unsigned numElts) const { 6160 if (!llvm::isPowerOf2_32(numElts)) 6161 return false; 6162 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6163 if (size > 64) 6164 return false; 6165 if (vectorSize.getQuantity() != 8 && 6166 (vectorSize.getQuantity() != 16 || numElts == 1)) 6167 return false; 6168 return true; 6169 } 6170 6171 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6172 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6173 // double, or 64-bit or 128-bit vectors. 6174 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6175 if (BT->getKind() == BuiltinType::Float || 6176 BT->getKind() == BuiltinType::Double || 6177 BT->getKind() == BuiltinType::LongDouble) 6178 return true; 6179 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6180 unsigned VecSize = getContext().getTypeSize(VT); 6181 if (VecSize == 64 || VecSize == 128) 6182 return true; 6183 } 6184 return false; 6185 } 6186 6187 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6188 uint64_t Members) const { 6189 return Members <= 4; 6190 } 6191 6192 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6193 bool acceptHalf) const { 6194 // Give precedence to user-specified calling conventions. 6195 if (callConvention != llvm::CallingConv::C) 6196 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6197 else 6198 return (getABIKind() == AAPCS_VFP) || 6199 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6200 } 6201 6202 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6203 QualType Ty) const { 6204 CharUnits SlotSize = CharUnits::fromQuantity(4); 6205 6206 // Empty records are ignored for parameter passing purposes. 6207 if (isEmptyRecord(getContext(), Ty, true)) { 6208 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6209 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6210 return Addr; 6211 } 6212 6213 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6214 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6215 6216 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6217 bool IsIndirect = false; 6218 const Type *Base = nullptr; 6219 uint64_t Members = 0; 6220 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6221 IsIndirect = true; 6222 6223 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6224 // allocated by the caller. 6225 } else if (TySize > CharUnits::fromQuantity(16) && 6226 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6227 !isHomogeneousAggregate(Ty, Base, Members)) { 6228 IsIndirect = true; 6229 6230 // Otherwise, bound the type's ABI alignment. 6231 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6232 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6233 // Our callers should be prepared to handle an under-aligned address. 6234 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6235 getABIKind() == ARMABIInfo::AAPCS) { 6236 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6237 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6238 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6239 // ARMv7k allows type alignment up to 16 bytes. 6240 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6241 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6242 } else { 6243 TyAlignForABI = CharUnits::fromQuantity(4); 6244 } 6245 6246 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6247 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6248 SlotSize, /*AllowHigherAlign*/ true); 6249 } 6250 6251 //===----------------------------------------------------------------------===// 6252 // NVPTX ABI Implementation 6253 //===----------------------------------------------------------------------===// 6254 6255 namespace { 6256 6257 class NVPTXABIInfo : public ABIInfo { 6258 public: 6259 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6260 6261 ABIArgInfo classifyReturnType(QualType RetTy) const; 6262 ABIArgInfo classifyArgumentType(QualType Ty) const; 6263 6264 void computeInfo(CGFunctionInfo &FI) const override; 6265 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6266 QualType Ty) const override; 6267 }; 6268 6269 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6270 public: 6271 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6272 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6273 6274 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6275 CodeGen::CodeGenModule &M) const override; 6276 bool shouldEmitStaticExternCAliases() const override; 6277 6278 private: 6279 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6280 // resulting MDNode to the nvvm.annotations MDNode. 6281 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6282 }; 6283 6284 /// Checks if the type is unsupported directly by the current target. 6285 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6286 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6287 return true; 6288 if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type()) 6289 return true; 6290 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6291 Context.getTypeSize(T) > 64) 6292 return true; 6293 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6294 return isUnsupportedType(Context, AT->getElementType()); 6295 const auto *RT = T->getAs<RecordType>(); 6296 if (!RT) 6297 return false; 6298 const RecordDecl *RD = RT->getDecl(); 6299 6300 // If this is a C++ record, check the bases first. 6301 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6302 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6303 if (isUnsupportedType(Context, I.getType())) 6304 return true; 6305 6306 for (const FieldDecl *I : RD->fields()) 6307 if (isUnsupportedType(Context, I->getType())) 6308 return true; 6309 return false; 6310 } 6311 6312 /// Coerce the given type into an array with maximum allowed size of elements. 6313 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6314 llvm::LLVMContext &LLVMContext, 6315 unsigned MaxSize) { 6316 // Alignment and Size are measured in bits. 6317 const uint64_t Size = Context.getTypeSize(Ty); 6318 const uint64_t Alignment = Context.getTypeAlign(Ty); 6319 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6320 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6321 const uint64_t NumElements = (Size + Div - 1) / Div; 6322 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6323 } 6324 6325 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6326 if (RetTy->isVoidType()) 6327 return ABIArgInfo::getIgnore(); 6328 6329 if (getContext().getLangOpts().OpenMP && 6330 getContext().getLangOpts().OpenMPIsDevice && 6331 isUnsupportedType(getContext(), RetTy)) 6332 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6333 6334 // note: this is different from default ABI 6335 if (!RetTy->isScalarType()) 6336 return ABIArgInfo::getDirect(); 6337 6338 // Treat an enum type as its underlying type. 6339 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6340 RetTy = EnumTy->getDecl()->getIntegerType(); 6341 6342 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6343 : ABIArgInfo::getDirect()); 6344 } 6345 6346 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6347 // Treat an enum type as its underlying type. 6348 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6349 Ty = EnumTy->getDecl()->getIntegerType(); 6350 6351 // Return aggregates type as indirect by value 6352 if (isAggregateTypeForABI(Ty)) 6353 return getNaturalAlignIndirect(Ty, /* byval */ true); 6354 6355 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6356 : ABIArgInfo::getDirect()); 6357 } 6358 6359 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6360 if (!getCXXABI().classifyReturnType(FI)) 6361 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6362 for (auto &I : FI.arguments()) 6363 I.info = classifyArgumentType(I.type); 6364 6365 // Always honor user-specified calling convention. 6366 if (FI.getCallingConvention() != llvm::CallingConv::C) 6367 return; 6368 6369 FI.setEffectiveCallingConvention(getRuntimeCC()); 6370 } 6371 6372 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6373 QualType Ty) const { 6374 llvm_unreachable("NVPTX does not support varargs"); 6375 } 6376 6377 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6378 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6379 if (GV->isDeclaration()) 6380 return; 6381 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6382 if (!FD) return; 6383 6384 llvm::Function *F = cast<llvm::Function>(GV); 6385 6386 // Perform special handling in OpenCL mode 6387 if (M.getLangOpts().OpenCL) { 6388 // Use OpenCL function attributes to check for kernel functions 6389 // By default, all functions are device functions 6390 if (FD->hasAttr<OpenCLKernelAttr>()) { 6391 // OpenCL __kernel functions get kernel metadata 6392 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6393 addNVVMMetadata(F, "kernel", 1); 6394 // And kernel functions are not subject to inlining 6395 F->addFnAttr(llvm::Attribute::NoInline); 6396 } 6397 } 6398 6399 // Perform special handling in CUDA mode. 6400 if (M.getLangOpts().CUDA) { 6401 // CUDA __global__ functions get a kernel metadata entry. Since 6402 // __global__ functions cannot be called from the device, we do not 6403 // need to set the noinline attribute. 6404 if (FD->hasAttr<CUDAGlobalAttr>()) { 6405 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6406 addNVVMMetadata(F, "kernel", 1); 6407 } 6408 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6409 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6410 llvm::APSInt MaxThreads(32); 6411 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6412 if (MaxThreads > 0) 6413 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6414 6415 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6416 // not specified in __launch_bounds__ or if the user specified a 0 value, 6417 // we don't have to add a PTX directive. 6418 if (Attr->getMinBlocks()) { 6419 llvm::APSInt MinBlocks(32); 6420 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6421 if (MinBlocks > 0) 6422 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6423 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6424 } 6425 } 6426 } 6427 } 6428 6429 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6430 int Operand) { 6431 llvm::Module *M = F->getParent(); 6432 llvm::LLVMContext &Ctx = M->getContext(); 6433 6434 // Get "nvvm.annotations" metadata node 6435 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6436 6437 llvm::Metadata *MDVals[] = { 6438 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6439 llvm::ConstantAsMetadata::get( 6440 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6441 // Append metadata to nvvm.annotations 6442 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6443 } 6444 6445 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6446 return false; 6447 } 6448 } 6449 6450 //===----------------------------------------------------------------------===// 6451 // SystemZ ABI Implementation 6452 //===----------------------------------------------------------------------===// 6453 6454 namespace { 6455 6456 class SystemZABIInfo : public SwiftABIInfo { 6457 bool HasVector; 6458 6459 public: 6460 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6461 : SwiftABIInfo(CGT), HasVector(HV) {} 6462 6463 bool isPromotableIntegerType(QualType Ty) const; 6464 bool isCompoundType(QualType Ty) const; 6465 bool isVectorArgumentType(QualType Ty) const; 6466 bool isFPArgumentType(QualType Ty) const; 6467 QualType GetSingleElementType(QualType Ty) const; 6468 6469 ABIArgInfo classifyReturnType(QualType RetTy) const; 6470 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6471 6472 void computeInfo(CGFunctionInfo &FI) const override { 6473 if (!getCXXABI().classifyReturnType(FI)) 6474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6475 for (auto &I : FI.arguments()) 6476 I.info = classifyArgumentType(I.type); 6477 } 6478 6479 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6480 QualType Ty) const override; 6481 6482 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6483 bool asReturnValue) const override { 6484 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6485 } 6486 bool isSwiftErrorInRegister() const override { 6487 return false; 6488 } 6489 }; 6490 6491 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6492 public: 6493 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6494 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6495 }; 6496 6497 } 6498 6499 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6500 // Treat an enum type as its underlying type. 6501 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6502 Ty = EnumTy->getDecl()->getIntegerType(); 6503 6504 // Promotable integer types are required to be promoted by the ABI. 6505 if (Ty->isPromotableIntegerType()) 6506 return true; 6507 6508 // 32-bit values must also be promoted. 6509 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6510 switch (BT->getKind()) { 6511 case BuiltinType::Int: 6512 case BuiltinType::UInt: 6513 return true; 6514 default: 6515 return false; 6516 } 6517 return false; 6518 } 6519 6520 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6521 return (Ty->isAnyComplexType() || 6522 Ty->isVectorType() || 6523 isAggregateTypeForABI(Ty)); 6524 } 6525 6526 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6527 return (HasVector && 6528 Ty->isVectorType() && 6529 getContext().getTypeSize(Ty) <= 128); 6530 } 6531 6532 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6533 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6534 switch (BT->getKind()) { 6535 case BuiltinType::Float: 6536 case BuiltinType::Double: 6537 return true; 6538 default: 6539 return false; 6540 } 6541 6542 return false; 6543 } 6544 6545 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6546 if (const RecordType *RT = Ty->getAsStructureType()) { 6547 const RecordDecl *RD = RT->getDecl(); 6548 QualType Found; 6549 6550 // If this is a C++ record, check the bases first. 6551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6552 for (const auto &I : CXXRD->bases()) { 6553 QualType Base = I.getType(); 6554 6555 // Empty bases don't affect things either way. 6556 if (isEmptyRecord(getContext(), Base, true)) 6557 continue; 6558 6559 if (!Found.isNull()) 6560 return Ty; 6561 Found = GetSingleElementType(Base); 6562 } 6563 6564 // Check the fields. 6565 for (const auto *FD : RD->fields()) { 6566 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6567 // Unlike isSingleElementStruct(), empty structure and array fields 6568 // do count. So do anonymous bitfields that aren't zero-sized. 6569 if (getContext().getLangOpts().CPlusPlus && 6570 FD->isZeroLengthBitField(getContext())) 6571 continue; 6572 6573 // Unlike isSingleElementStruct(), arrays do not count. 6574 // Nested structures still do though. 6575 if (!Found.isNull()) 6576 return Ty; 6577 Found = GetSingleElementType(FD->getType()); 6578 } 6579 6580 // Unlike isSingleElementStruct(), trailing padding is allowed. 6581 // An 8-byte aligned struct s { float f; } is passed as a double. 6582 if (!Found.isNull()) 6583 return Found; 6584 } 6585 6586 return Ty; 6587 } 6588 6589 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6590 QualType Ty) const { 6591 // Assume that va_list type is correct; should be pointer to LLVM type: 6592 // struct { 6593 // i64 __gpr; 6594 // i64 __fpr; 6595 // i8 *__overflow_arg_area; 6596 // i8 *__reg_save_area; 6597 // }; 6598 6599 // Every non-vector argument occupies 8 bytes and is passed by preference 6600 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6601 // always passed on the stack. 6602 Ty = getContext().getCanonicalType(Ty); 6603 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6604 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6605 llvm::Type *DirectTy = ArgTy; 6606 ABIArgInfo AI = classifyArgumentType(Ty); 6607 bool IsIndirect = AI.isIndirect(); 6608 bool InFPRs = false; 6609 bool IsVector = false; 6610 CharUnits UnpaddedSize; 6611 CharUnits DirectAlign; 6612 if (IsIndirect) { 6613 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6614 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6615 } else { 6616 if (AI.getCoerceToType()) 6617 ArgTy = AI.getCoerceToType(); 6618 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6619 IsVector = ArgTy->isVectorTy(); 6620 UnpaddedSize = TyInfo.first; 6621 DirectAlign = TyInfo.second; 6622 } 6623 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6624 if (IsVector && UnpaddedSize > PaddedSize) 6625 PaddedSize = CharUnits::fromQuantity(16); 6626 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6627 6628 CharUnits Padding = (PaddedSize - UnpaddedSize); 6629 6630 llvm::Type *IndexTy = CGF.Int64Ty; 6631 llvm::Value *PaddedSizeV = 6632 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6633 6634 if (IsVector) { 6635 // Work out the address of a vector argument on the stack. 6636 // Vector arguments are always passed in the high bits of a 6637 // single (8 byte) or double (16 byte) stack slot. 6638 Address OverflowArgAreaPtr = 6639 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6640 Address OverflowArgArea = 6641 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6642 TyInfo.second); 6643 Address MemAddr = 6644 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6645 6646 // Update overflow_arg_area_ptr pointer 6647 llvm::Value *NewOverflowArgArea = 6648 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6649 "overflow_arg_area"); 6650 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6651 6652 return MemAddr; 6653 } 6654 6655 assert(PaddedSize.getQuantity() == 8); 6656 6657 unsigned MaxRegs, RegCountField, RegSaveIndex; 6658 CharUnits RegPadding; 6659 if (InFPRs) { 6660 MaxRegs = 4; // Maximum of 4 FPR arguments 6661 RegCountField = 1; // __fpr 6662 RegSaveIndex = 16; // save offset for f0 6663 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6664 } else { 6665 MaxRegs = 5; // Maximum of 5 GPR arguments 6666 RegCountField = 0; // __gpr 6667 RegSaveIndex = 2; // save offset for r2 6668 RegPadding = Padding; // values are passed in the low bits of a GPR 6669 } 6670 6671 Address RegCountPtr = 6672 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6673 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6674 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6675 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6676 "fits_in_regs"); 6677 6678 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6679 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6680 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6681 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6682 6683 // Emit code to load the value if it was passed in registers. 6684 CGF.EmitBlock(InRegBlock); 6685 6686 // Work out the address of an argument register. 6687 llvm::Value *ScaledRegCount = 6688 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6689 llvm::Value *RegBase = 6690 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6691 + RegPadding.getQuantity()); 6692 llvm::Value *RegOffset = 6693 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6694 Address RegSaveAreaPtr = 6695 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6696 llvm::Value *RegSaveArea = 6697 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6698 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6699 "raw_reg_addr"), 6700 PaddedSize); 6701 Address RegAddr = 6702 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6703 6704 // Update the register count 6705 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6706 llvm::Value *NewRegCount = 6707 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6708 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6709 CGF.EmitBranch(ContBlock); 6710 6711 // Emit code to load the value if it was passed in memory. 6712 CGF.EmitBlock(InMemBlock); 6713 6714 // Work out the address of a stack argument. 6715 Address OverflowArgAreaPtr = 6716 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6717 Address OverflowArgArea = 6718 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6719 PaddedSize); 6720 Address RawMemAddr = 6721 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6722 Address MemAddr = 6723 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6724 6725 // Update overflow_arg_area_ptr pointer 6726 llvm::Value *NewOverflowArgArea = 6727 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6728 "overflow_arg_area"); 6729 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6730 CGF.EmitBranch(ContBlock); 6731 6732 // Return the appropriate result. 6733 CGF.EmitBlock(ContBlock); 6734 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6735 MemAddr, InMemBlock, "va_arg.addr"); 6736 6737 if (IsIndirect) 6738 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6739 TyInfo.second); 6740 6741 return ResAddr; 6742 } 6743 6744 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6745 if (RetTy->isVoidType()) 6746 return ABIArgInfo::getIgnore(); 6747 if (isVectorArgumentType(RetTy)) 6748 return ABIArgInfo::getDirect(); 6749 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6750 return getNaturalAlignIndirect(RetTy); 6751 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6752 : ABIArgInfo::getDirect()); 6753 } 6754 6755 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6756 // Handle the generic C++ ABI. 6757 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6758 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6759 6760 // Integers and enums are extended to full register width. 6761 if (isPromotableIntegerType(Ty)) 6762 return ABIArgInfo::getExtend(Ty); 6763 6764 // Handle vector types and vector-like structure types. Note that 6765 // as opposed to float-like structure types, we do not allow any 6766 // padding for vector-like structures, so verify the sizes match. 6767 uint64_t Size = getContext().getTypeSize(Ty); 6768 QualType SingleElementTy = GetSingleElementType(Ty); 6769 if (isVectorArgumentType(SingleElementTy) && 6770 getContext().getTypeSize(SingleElementTy) == Size) 6771 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6772 6773 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6774 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6775 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6776 6777 // Handle small structures. 6778 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6779 // Structures with flexible arrays have variable length, so really 6780 // fail the size test above. 6781 const RecordDecl *RD = RT->getDecl(); 6782 if (RD->hasFlexibleArrayMember()) 6783 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6784 6785 // The structure is passed as an unextended integer, a float, or a double. 6786 llvm::Type *PassTy; 6787 if (isFPArgumentType(SingleElementTy)) { 6788 assert(Size == 32 || Size == 64); 6789 if (Size == 32) 6790 PassTy = llvm::Type::getFloatTy(getVMContext()); 6791 else 6792 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6793 } else 6794 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6795 return ABIArgInfo::getDirect(PassTy); 6796 } 6797 6798 // Non-structure compounds are passed indirectly. 6799 if (isCompoundType(Ty)) 6800 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6801 6802 return ABIArgInfo::getDirect(nullptr); 6803 } 6804 6805 //===----------------------------------------------------------------------===// 6806 // MSP430 ABI Implementation 6807 //===----------------------------------------------------------------------===// 6808 6809 namespace { 6810 6811 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6812 public: 6813 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6814 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6815 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6816 CodeGen::CodeGenModule &M) const override; 6817 }; 6818 6819 } 6820 6821 void MSP430TargetCodeGenInfo::setTargetAttributes( 6822 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6823 if (GV->isDeclaration()) 6824 return; 6825 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6826 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6827 if (!InterruptAttr) 6828 return; 6829 6830 // Handle 'interrupt' attribute: 6831 llvm::Function *F = cast<llvm::Function>(GV); 6832 6833 // Step 1: Set ISR calling convention. 6834 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6835 6836 // Step 2: Add attributes goodness. 6837 F->addFnAttr(llvm::Attribute::NoInline); 6838 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6839 } 6840 } 6841 6842 //===----------------------------------------------------------------------===// 6843 // MIPS ABI Implementation. This works for both little-endian and 6844 // big-endian variants. 6845 //===----------------------------------------------------------------------===// 6846 6847 namespace { 6848 class MipsABIInfo : public ABIInfo { 6849 bool IsO32; 6850 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6851 void CoerceToIntArgs(uint64_t TySize, 6852 SmallVectorImpl<llvm::Type *> &ArgList) const; 6853 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6854 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6855 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6856 public: 6857 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6858 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6859 StackAlignInBytes(IsO32 ? 8 : 16) {} 6860 6861 ABIArgInfo classifyReturnType(QualType RetTy) const; 6862 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6863 void computeInfo(CGFunctionInfo &FI) const override; 6864 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6865 QualType Ty) const override; 6866 ABIArgInfo extendType(QualType Ty) const; 6867 }; 6868 6869 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6870 unsigned SizeOfUnwindException; 6871 public: 6872 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6873 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6874 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6875 6876 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6877 return 29; 6878 } 6879 6880 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6881 CodeGen::CodeGenModule &CGM) const override { 6882 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6883 if (!FD) return; 6884 llvm::Function *Fn = cast<llvm::Function>(GV); 6885 6886 if (FD->hasAttr<MipsLongCallAttr>()) 6887 Fn->addFnAttr("long-call"); 6888 else if (FD->hasAttr<MipsShortCallAttr>()) 6889 Fn->addFnAttr("short-call"); 6890 6891 // Other attributes do not have a meaning for declarations. 6892 if (GV->isDeclaration()) 6893 return; 6894 6895 if (FD->hasAttr<Mips16Attr>()) { 6896 Fn->addFnAttr("mips16"); 6897 } 6898 else if (FD->hasAttr<NoMips16Attr>()) { 6899 Fn->addFnAttr("nomips16"); 6900 } 6901 6902 if (FD->hasAttr<MicroMipsAttr>()) 6903 Fn->addFnAttr("micromips"); 6904 else if (FD->hasAttr<NoMicroMipsAttr>()) 6905 Fn->addFnAttr("nomicromips"); 6906 6907 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6908 if (!Attr) 6909 return; 6910 6911 const char *Kind; 6912 switch (Attr->getInterrupt()) { 6913 case MipsInterruptAttr::eic: Kind = "eic"; break; 6914 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6915 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6916 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6917 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6918 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6919 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6920 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6921 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6922 } 6923 6924 Fn->addFnAttr("interrupt", Kind); 6925 6926 } 6927 6928 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6929 llvm::Value *Address) const override; 6930 6931 unsigned getSizeOfUnwindException() const override { 6932 return SizeOfUnwindException; 6933 } 6934 }; 6935 } 6936 6937 void MipsABIInfo::CoerceToIntArgs( 6938 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6939 llvm::IntegerType *IntTy = 6940 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6941 6942 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6943 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6944 ArgList.push_back(IntTy); 6945 6946 // If necessary, add one more integer type to ArgList. 6947 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6948 6949 if (R) 6950 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6951 } 6952 6953 // In N32/64, an aligned double precision floating point field is passed in 6954 // a register. 6955 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6956 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6957 6958 if (IsO32) { 6959 CoerceToIntArgs(TySize, ArgList); 6960 return llvm::StructType::get(getVMContext(), ArgList); 6961 } 6962 6963 if (Ty->isComplexType()) 6964 return CGT.ConvertType(Ty); 6965 6966 const RecordType *RT = Ty->getAs<RecordType>(); 6967 6968 // Unions/vectors are passed in integer registers. 6969 if (!RT || !RT->isStructureOrClassType()) { 6970 CoerceToIntArgs(TySize, ArgList); 6971 return llvm::StructType::get(getVMContext(), ArgList); 6972 } 6973 6974 const RecordDecl *RD = RT->getDecl(); 6975 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6976 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6977 6978 uint64_t LastOffset = 0; 6979 unsigned idx = 0; 6980 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6981 6982 // Iterate over fields in the struct/class and check if there are any aligned 6983 // double fields. 6984 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6985 i != e; ++i, ++idx) { 6986 const QualType Ty = i->getType(); 6987 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6988 6989 if (!BT || BT->getKind() != BuiltinType::Double) 6990 continue; 6991 6992 uint64_t Offset = Layout.getFieldOffset(idx); 6993 if (Offset % 64) // Ignore doubles that are not aligned. 6994 continue; 6995 6996 // Add ((Offset - LastOffset) / 64) args of type i64. 6997 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6998 ArgList.push_back(I64); 6999 7000 // Add double type. 7001 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7002 LastOffset = Offset + 64; 7003 } 7004 7005 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7006 ArgList.append(IntArgList.begin(), IntArgList.end()); 7007 7008 return llvm::StructType::get(getVMContext(), ArgList); 7009 } 7010 7011 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7012 uint64_t Offset) const { 7013 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7014 return nullptr; 7015 7016 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7017 } 7018 7019 ABIArgInfo 7020 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7021 Ty = useFirstFieldIfTransparentUnion(Ty); 7022 7023 uint64_t OrigOffset = Offset; 7024 uint64_t TySize = getContext().getTypeSize(Ty); 7025 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7026 7027 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7028 (uint64_t)StackAlignInBytes); 7029 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7030 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7031 7032 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7033 // Ignore empty aggregates. 7034 if (TySize == 0) 7035 return ABIArgInfo::getIgnore(); 7036 7037 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7038 Offset = OrigOffset + MinABIStackAlignInBytes; 7039 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7040 } 7041 7042 // If we have reached here, aggregates are passed directly by coercing to 7043 // another structure type. Padding is inserted if the offset of the 7044 // aggregate is unaligned. 7045 ABIArgInfo ArgInfo = 7046 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7047 getPaddingType(OrigOffset, CurrOffset)); 7048 ArgInfo.setInReg(true); 7049 return ArgInfo; 7050 } 7051 7052 // Treat an enum type as its underlying type. 7053 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7054 Ty = EnumTy->getDecl()->getIntegerType(); 7055 7056 // All integral types are promoted to the GPR width. 7057 if (Ty->isIntegralOrEnumerationType()) 7058 return extendType(Ty); 7059 7060 return ABIArgInfo::getDirect( 7061 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7062 } 7063 7064 llvm::Type* 7065 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7066 const RecordType *RT = RetTy->getAs<RecordType>(); 7067 SmallVector<llvm::Type*, 8> RTList; 7068 7069 if (RT && RT->isStructureOrClassType()) { 7070 const RecordDecl *RD = RT->getDecl(); 7071 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7072 unsigned FieldCnt = Layout.getFieldCount(); 7073 7074 // N32/64 returns struct/classes in floating point registers if the 7075 // following conditions are met: 7076 // 1. The size of the struct/class is no larger than 128-bit. 7077 // 2. The struct/class has one or two fields all of which are floating 7078 // point types. 7079 // 3. The offset of the first field is zero (this follows what gcc does). 7080 // 7081 // Any other composite results are returned in integer registers. 7082 // 7083 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7084 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7085 for (; b != e; ++b) { 7086 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7087 7088 if (!BT || !BT->isFloatingPoint()) 7089 break; 7090 7091 RTList.push_back(CGT.ConvertType(b->getType())); 7092 } 7093 7094 if (b == e) 7095 return llvm::StructType::get(getVMContext(), RTList, 7096 RD->hasAttr<PackedAttr>()); 7097 7098 RTList.clear(); 7099 } 7100 } 7101 7102 CoerceToIntArgs(Size, RTList); 7103 return llvm::StructType::get(getVMContext(), RTList); 7104 } 7105 7106 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7107 uint64_t Size = getContext().getTypeSize(RetTy); 7108 7109 if (RetTy->isVoidType()) 7110 return ABIArgInfo::getIgnore(); 7111 7112 // O32 doesn't treat zero-sized structs differently from other structs. 7113 // However, N32/N64 ignores zero sized return values. 7114 if (!IsO32 && Size == 0) 7115 return ABIArgInfo::getIgnore(); 7116 7117 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7118 if (Size <= 128) { 7119 if (RetTy->isAnyComplexType()) 7120 return ABIArgInfo::getDirect(); 7121 7122 // O32 returns integer vectors in registers and N32/N64 returns all small 7123 // aggregates in registers. 7124 if (!IsO32 || 7125 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7126 ABIArgInfo ArgInfo = 7127 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7128 ArgInfo.setInReg(true); 7129 return ArgInfo; 7130 } 7131 } 7132 7133 return getNaturalAlignIndirect(RetTy); 7134 } 7135 7136 // Treat an enum type as its underlying type. 7137 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7138 RetTy = EnumTy->getDecl()->getIntegerType(); 7139 7140 if (RetTy->isPromotableIntegerType()) 7141 return ABIArgInfo::getExtend(RetTy); 7142 7143 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7144 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7145 return ABIArgInfo::getSignExtend(RetTy); 7146 7147 return ABIArgInfo::getDirect(); 7148 } 7149 7150 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7151 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7152 if (!getCXXABI().classifyReturnType(FI)) 7153 RetInfo = classifyReturnType(FI.getReturnType()); 7154 7155 // Check if a pointer to an aggregate is passed as a hidden argument. 7156 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7157 7158 for (auto &I : FI.arguments()) 7159 I.info = classifyArgumentType(I.type, Offset); 7160 } 7161 7162 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7163 QualType OrigTy) const { 7164 QualType Ty = OrigTy; 7165 7166 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7167 // Pointers are also promoted in the same way but this only matters for N32. 7168 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7169 unsigned PtrWidth = getTarget().getPointerWidth(0); 7170 bool DidPromote = false; 7171 if ((Ty->isIntegerType() && 7172 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7173 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7174 DidPromote = true; 7175 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7176 Ty->isSignedIntegerType()); 7177 } 7178 7179 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7180 7181 // The alignment of things in the argument area is never larger than 7182 // StackAlignInBytes. 7183 TyInfo.second = 7184 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7185 7186 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7187 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7188 7189 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7190 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7191 7192 7193 // If there was a promotion, "unpromote" into a temporary. 7194 // TODO: can we just use a pointer into a subset of the original slot? 7195 if (DidPromote) { 7196 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7197 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7198 7199 // Truncate down to the right width. 7200 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7201 : CGF.IntPtrTy); 7202 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7203 if (OrigTy->isPointerType()) 7204 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7205 7206 CGF.Builder.CreateStore(V, Temp); 7207 Addr = Temp; 7208 } 7209 7210 return Addr; 7211 } 7212 7213 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7214 int TySize = getContext().getTypeSize(Ty); 7215 7216 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7217 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7218 return ABIArgInfo::getSignExtend(Ty); 7219 7220 return ABIArgInfo::getExtend(Ty); 7221 } 7222 7223 bool 7224 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7225 llvm::Value *Address) const { 7226 // This information comes from gcc's implementation, which seems to 7227 // as canonical as it gets. 7228 7229 // Everything on MIPS is 4 bytes. Double-precision FP registers 7230 // are aliased to pairs of single-precision FP registers. 7231 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7232 7233 // 0-31 are the general purpose registers, $0 - $31. 7234 // 32-63 are the floating-point registers, $f0 - $f31. 7235 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7236 // 66 is the (notional, I think) register for signal-handler return. 7237 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7238 7239 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7240 // They are one bit wide and ignored here. 7241 7242 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7243 // (coprocessor 1 is the FP unit) 7244 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7245 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7246 // 176-181 are the DSP accumulator registers. 7247 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7248 return false; 7249 } 7250 7251 //===----------------------------------------------------------------------===// 7252 // AVR ABI Implementation. 7253 //===----------------------------------------------------------------------===// 7254 7255 namespace { 7256 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7257 public: 7258 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7259 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7260 7261 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7262 CodeGen::CodeGenModule &CGM) const override { 7263 if (GV->isDeclaration()) 7264 return; 7265 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7266 if (!FD) return; 7267 auto *Fn = cast<llvm::Function>(GV); 7268 7269 if (FD->getAttr<AVRInterruptAttr>()) 7270 Fn->addFnAttr("interrupt"); 7271 7272 if (FD->getAttr<AVRSignalAttr>()) 7273 Fn->addFnAttr("signal"); 7274 } 7275 }; 7276 } 7277 7278 //===----------------------------------------------------------------------===// 7279 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7280 // Currently subclassed only to implement custom OpenCL C function attribute 7281 // handling. 7282 //===----------------------------------------------------------------------===// 7283 7284 namespace { 7285 7286 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7287 public: 7288 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7289 : DefaultTargetCodeGenInfo(CGT) {} 7290 7291 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7292 CodeGen::CodeGenModule &M) const override; 7293 }; 7294 7295 void TCETargetCodeGenInfo::setTargetAttributes( 7296 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7297 if (GV->isDeclaration()) 7298 return; 7299 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7300 if (!FD) return; 7301 7302 llvm::Function *F = cast<llvm::Function>(GV); 7303 7304 if (M.getLangOpts().OpenCL) { 7305 if (FD->hasAttr<OpenCLKernelAttr>()) { 7306 // OpenCL C Kernel functions are not subject to inlining 7307 F->addFnAttr(llvm::Attribute::NoInline); 7308 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7309 if (Attr) { 7310 // Convert the reqd_work_group_size() attributes to metadata. 7311 llvm::LLVMContext &Context = F->getContext(); 7312 llvm::NamedMDNode *OpenCLMetadata = 7313 M.getModule().getOrInsertNamedMetadata( 7314 "opencl.kernel_wg_size_info"); 7315 7316 SmallVector<llvm::Metadata *, 5> Operands; 7317 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7318 7319 Operands.push_back( 7320 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7321 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7322 Operands.push_back( 7323 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7324 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7325 Operands.push_back( 7326 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7327 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7328 7329 // Add a boolean constant operand for "required" (true) or "hint" 7330 // (false) for implementing the work_group_size_hint attr later. 7331 // Currently always true as the hint is not yet implemented. 7332 Operands.push_back( 7333 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7334 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7335 } 7336 } 7337 } 7338 } 7339 7340 } 7341 7342 //===----------------------------------------------------------------------===// 7343 // Hexagon ABI Implementation 7344 //===----------------------------------------------------------------------===// 7345 7346 namespace { 7347 7348 class HexagonABIInfo : public ABIInfo { 7349 7350 7351 public: 7352 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7353 7354 private: 7355 7356 ABIArgInfo classifyReturnType(QualType RetTy) const; 7357 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7358 7359 void computeInfo(CGFunctionInfo &FI) const override; 7360 7361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7362 QualType Ty) const override; 7363 }; 7364 7365 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7366 public: 7367 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7368 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7369 7370 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7371 return 29; 7372 } 7373 }; 7374 7375 } 7376 7377 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7378 if (!getCXXABI().classifyReturnType(FI)) 7379 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7380 for (auto &I : FI.arguments()) 7381 I.info = classifyArgumentType(I.type); 7382 } 7383 7384 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7385 if (!isAggregateTypeForABI(Ty)) { 7386 // Treat an enum type as its underlying type. 7387 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7388 Ty = EnumTy->getDecl()->getIntegerType(); 7389 7390 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7391 : ABIArgInfo::getDirect()); 7392 } 7393 7394 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7395 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7396 7397 // Ignore empty records. 7398 if (isEmptyRecord(getContext(), Ty, true)) 7399 return ABIArgInfo::getIgnore(); 7400 7401 uint64_t Size = getContext().getTypeSize(Ty); 7402 if (Size > 64) 7403 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7404 // Pass in the smallest viable integer type. 7405 else if (Size > 32) 7406 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7407 else if (Size > 16) 7408 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7409 else if (Size > 8) 7410 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7411 else 7412 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7413 } 7414 7415 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7416 if (RetTy->isVoidType()) 7417 return ABIArgInfo::getIgnore(); 7418 7419 // Large vector types should be returned via memory. 7420 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7421 return getNaturalAlignIndirect(RetTy); 7422 7423 if (!isAggregateTypeForABI(RetTy)) { 7424 // Treat an enum type as its underlying type. 7425 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7426 RetTy = EnumTy->getDecl()->getIntegerType(); 7427 7428 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7429 : ABIArgInfo::getDirect()); 7430 } 7431 7432 if (isEmptyRecord(getContext(), RetTy, true)) 7433 return ABIArgInfo::getIgnore(); 7434 7435 // Aggregates <= 8 bytes are returned in r0; other aggregates 7436 // are returned indirectly. 7437 uint64_t Size = getContext().getTypeSize(RetTy); 7438 if (Size <= 64) { 7439 // Return in the smallest viable integer type. 7440 if (Size <= 8) 7441 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7442 if (Size <= 16) 7443 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7444 if (Size <= 32) 7445 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7446 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7447 } 7448 7449 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7450 } 7451 7452 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7453 QualType Ty) const { 7454 // FIXME: Someone needs to audit that this handle alignment correctly. 7455 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7456 getContext().getTypeInfoInChars(Ty), 7457 CharUnits::fromQuantity(4), 7458 /*AllowHigherAlign*/ true); 7459 } 7460 7461 //===----------------------------------------------------------------------===// 7462 // Lanai ABI Implementation 7463 //===----------------------------------------------------------------------===// 7464 7465 namespace { 7466 class LanaiABIInfo : public DefaultABIInfo { 7467 public: 7468 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7469 7470 bool shouldUseInReg(QualType Ty, CCState &State) const; 7471 7472 void computeInfo(CGFunctionInfo &FI) const override { 7473 CCState State(FI.getCallingConvention()); 7474 // Lanai uses 4 registers to pass arguments unless the function has the 7475 // regparm attribute set. 7476 if (FI.getHasRegParm()) { 7477 State.FreeRegs = FI.getRegParm(); 7478 } else { 7479 State.FreeRegs = 4; 7480 } 7481 7482 if (!getCXXABI().classifyReturnType(FI)) 7483 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7484 for (auto &I : FI.arguments()) 7485 I.info = classifyArgumentType(I.type, State); 7486 } 7487 7488 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7489 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7490 }; 7491 } // end anonymous namespace 7492 7493 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7494 unsigned Size = getContext().getTypeSize(Ty); 7495 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7496 7497 if (SizeInRegs == 0) 7498 return false; 7499 7500 if (SizeInRegs > State.FreeRegs) { 7501 State.FreeRegs = 0; 7502 return false; 7503 } 7504 7505 State.FreeRegs -= SizeInRegs; 7506 7507 return true; 7508 } 7509 7510 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7511 CCState &State) const { 7512 if (!ByVal) { 7513 if (State.FreeRegs) { 7514 --State.FreeRegs; // Non-byval indirects just use one pointer. 7515 return getNaturalAlignIndirectInReg(Ty); 7516 } 7517 return getNaturalAlignIndirect(Ty, false); 7518 } 7519 7520 // Compute the byval alignment. 7521 const unsigned MinABIStackAlignInBytes = 4; 7522 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7523 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7524 /*Realign=*/TypeAlign > 7525 MinABIStackAlignInBytes); 7526 } 7527 7528 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7529 CCState &State) const { 7530 // Check with the C++ ABI first. 7531 const RecordType *RT = Ty->getAs<RecordType>(); 7532 if (RT) { 7533 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7534 if (RAA == CGCXXABI::RAA_Indirect) { 7535 return getIndirectResult(Ty, /*ByVal=*/false, State); 7536 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7537 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7538 } 7539 } 7540 7541 if (isAggregateTypeForABI(Ty)) { 7542 // Structures with flexible arrays are always indirect. 7543 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7544 return getIndirectResult(Ty, /*ByVal=*/true, State); 7545 7546 // Ignore empty structs/unions. 7547 if (isEmptyRecord(getContext(), Ty, true)) 7548 return ABIArgInfo::getIgnore(); 7549 7550 llvm::LLVMContext &LLVMContext = getVMContext(); 7551 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7552 if (SizeInRegs <= State.FreeRegs) { 7553 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7554 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7555 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7556 State.FreeRegs -= SizeInRegs; 7557 return ABIArgInfo::getDirectInReg(Result); 7558 } else { 7559 State.FreeRegs = 0; 7560 } 7561 return getIndirectResult(Ty, true, State); 7562 } 7563 7564 // Treat an enum type as its underlying type. 7565 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7566 Ty = EnumTy->getDecl()->getIntegerType(); 7567 7568 bool InReg = shouldUseInReg(Ty, State); 7569 if (Ty->isPromotableIntegerType()) { 7570 if (InReg) 7571 return ABIArgInfo::getDirectInReg(); 7572 return ABIArgInfo::getExtend(Ty); 7573 } 7574 if (InReg) 7575 return ABIArgInfo::getDirectInReg(); 7576 return ABIArgInfo::getDirect(); 7577 } 7578 7579 namespace { 7580 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7581 public: 7582 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7583 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7584 }; 7585 } 7586 7587 //===----------------------------------------------------------------------===// 7588 // AMDGPU ABI Implementation 7589 //===----------------------------------------------------------------------===// 7590 7591 namespace { 7592 7593 class AMDGPUABIInfo final : public DefaultABIInfo { 7594 private: 7595 static const unsigned MaxNumRegsForArgsRet = 16; 7596 7597 unsigned numRegsForType(QualType Ty) const; 7598 7599 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7600 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7601 uint64_t Members) const override; 7602 7603 public: 7604 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7605 DefaultABIInfo(CGT) {} 7606 7607 ABIArgInfo classifyReturnType(QualType RetTy) const; 7608 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7609 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7610 7611 void computeInfo(CGFunctionInfo &FI) const override; 7612 }; 7613 7614 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7615 return true; 7616 } 7617 7618 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7619 const Type *Base, uint64_t Members) const { 7620 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7621 7622 // Homogeneous Aggregates may occupy at most 16 registers. 7623 return Members * NumRegs <= MaxNumRegsForArgsRet; 7624 } 7625 7626 /// Estimate number of registers the type will use when passed in registers. 7627 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7628 unsigned NumRegs = 0; 7629 7630 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7631 // Compute from the number of elements. The reported size is based on the 7632 // in-memory size, which includes the padding 4th element for 3-vectors. 7633 QualType EltTy = VT->getElementType(); 7634 unsigned EltSize = getContext().getTypeSize(EltTy); 7635 7636 // 16-bit element vectors should be passed as packed. 7637 if (EltSize == 16) 7638 return (VT->getNumElements() + 1) / 2; 7639 7640 unsigned EltNumRegs = (EltSize + 31) / 32; 7641 return EltNumRegs * VT->getNumElements(); 7642 } 7643 7644 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7645 const RecordDecl *RD = RT->getDecl(); 7646 assert(!RD->hasFlexibleArrayMember()); 7647 7648 for (const FieldDecl *Field : RD->fields()) { 7649 QualType FieldTy = Field->getType(); 7650 NumRegs += numRegsForType(FieldTy); 7651 } 7652 7653 return NumRegs; 7654 } 7655 7656 return (getContext().getTypeSize(Ty) + 31) / 32; 7657 } 7658 7659 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7660 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7661 7662 if (!getCXXABI().classifyReturnType(FI)) 7663 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7664 7665 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7666 for (auto &Arg : FI.arguments()) { 7667 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7668 Arg.info = classifyKernelArgumentType(Arg.type); 7669 } else { 7670 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7671 } 7672 } 7673 } 7674 7675 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7676 if (isAggregateTypeForABI(RetTy)) { 7677 // Records with non-trivial destructors/copy-constructors should not be 7678 // returned by value. 7679 if (!getRecordArgABI(RetTy, getCXXABI())) { 7680 // Ignore empty structs/unions. 7681 if (isEmptyRecord(getContext(), RetTy, true)) 7682 return ABIArgInfo::getIgnore(); 7683 7684 // Lower single-element structs to just return a regular value. 7685 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7686 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7687 7688 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7689 const RecordDecl *RD = RT->getDecl(); 7690 if (RD->hasFlexibleArrayMember()) 7691 return DefaultABIInfo::classifyReturnType(RetTy); 7692 } 7693 7694 // Pack aggregates <= 4 bytes into single VGPR or pair. 7695 uint64_t Size = getContext().getTypeSize(RetTy); 7696 if (Size <= 16) 7697 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7698 7699 if (Size <= 32) 7700 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7701 7702 if (Size <= 64) { 7703 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7704 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7705 } 7706 7707 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7708 return ABIArgInfo::getDirect(); 7709 } 7710 } 7711 7712 // Otherwise just do the default thing. 7713 return DefaultABIInfo::classifyReturnType(RetTy); 7714 } 7715 7716 /// For kernels all parameters are really passed in a special buffer. It doesn't 7717 /// make sense to pass anything byval, so everything must be direct. 7718 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7719 Ty = useFirstFieldIfTransparentUnion(Ty); 7720 7721 // TODO: Can we omit empty structs? 7722 7723 // Coerce single element structs to its element. 7724 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7725 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7726 7727 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7728 // individual elements, which confuses the Clover OpenCL backend; therefore we 7729 // have to set it to false here. Other args of getDirect() are just defaults. 7730 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7731 } 7732 7733 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7734 unsigned &NumRegsLeft) const { 7735 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7736 7737 Ty = useFirstFieldIfTransparentUnion(Ty); 7738 7739 if (isAggregateTypeForABI(Ty)) { 7740 // Records with non-trivial destructors/copy-constructors should not be 7741 // passed by value. 7742 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7743 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7744 7745 // Ignore empty structs/unions. 7746 if (isEmptyRecord(getContext(), Ty, true)) 7747 return ABIArgInfo::getIgnore(); 7748 7749 // Lower single-element structs to just pass a regular value. TODO: We 7750 // could do reasonable-size multiple-element structs too, using getExpand(), 7751 // though watch out for things like bitfields. 7752 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7753 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7754 7755 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7756 const RecordDecl *RD = RT->getDecl(); 7757 if (RD->hasFlexibleArrayMember()) 7758 return DefaultABIInfo::classifyArgumentType(Ty); 7759 } 7760 7761 // Pack aggregates <= 8 bytes into single VGPR or pair. 7762 uint64_t Size = getContext().getTypeSize(Ty); 7763 if (Size <= 64) { 7764 unsigned NumRegs = (Size + 31) / 32; 7765 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7766 7767 if (Size <= 16) 7768 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7769 7770 if (Size <= 32) 7771 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7772 7773 // XXX: Should this be i64 instead, and should the limit increase? 7774 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7775 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7776 } 7777 7778 if (NumRegsLeft > 0) { 7779 unsigned NumRegs = numRegsForType(Ty); 7780 if (NumRegsLeft >= NumRegs) { 7781 NumRegsLeft -= NumRegs; 7782 return ABIArgInfo::getDirect(); 7783 } 7784 } 7785 } 7786 7787 // Otherwise just do the default thing. 7788 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7789 if (!ArgInfo.isIndirect()) { 7790 unsigned NumRegs = numRegsForType(Ty); 7791 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7792 } 7793 7794 return ArgInfo; 7795 } 7796 7797 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7798 public: 7799 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7800 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7801 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7802 CodeGen::CodeGenModule &M) const override; 7803 unsigned getOpenCLKernelCallingConv() const override; 7804 7805 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7806 llvm::PointerType *T, QualType QT) const override; 7807 7808 LangAS getASTAllocaAddressSpace() const override { 7809 return getLangASFromTargetAS( 7810 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7811 } 7812 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7813 const VarDecl *D) const override; 7814 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7815 SyncScope Scope, 7816 llvm::AtomicOrdering Ordering, 7817 llvm::LLVMContext &Ctx) const override; 7818 llvm::Function * 7819 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7820 llvm::Function *BlockInvokeFunc, 7821 llvm::Value *BlockLiteral) const override; 7822 bool shouldEmitStaticExternCAliases() const override; 7823 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7824 }; 7825 } 7826 7827 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7828 llvm::GlobalValue *GV) { 7829 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7830 return false; 7831 7832 return D->hasAttr<OpenCLKernelAttr>() || 7833 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7834 (isa<VarDecl>(D) && 7835 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())); 7836 } 7837 7838 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7839 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7840 if (requiresAMDGPUProtectedVisibility(D, GV)) { 7841 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 7842 GV->setDSOLocal(true); 7843 } 7844 7845 if (GV->isDeclaration()) 7846 return; 7847 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7848 if (!FD) 7849 return; 7850 7851 llvm::Function *F = cast<llvm::Function>(GV); 7852 7853 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7854 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7855 7856 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7857 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7858 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7859 7860 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7861 if (ReqdWGS || FlatWGS) { 7862 unsigned Min = 0; 7863 unsigned Max = 0; 7864 if (FlatWGS) { 7865 Min = FlatWGS->getMin() 7866 ->EvaluateKnownConstInt(M.getContext()) 7867 .getExtValue(); 7868 Max = FlatWGS->getMax() 7869 ->EvaluateKnownConstInt(M.getContext()) 7870 .getExtValue(); 7871 } 7872 if (ReqdWGS && Min == 0 && Max == 0) 7873 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7874 7875 if (Min != 0) { 7876 assert(Min <= Max && "Min must be less than or equal Max"); 7877 7878 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7879 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7880 } else 7881 assert(Max == 0 && "Max must be zero"); 7882 } 7883 7884 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7885 unsigned Min = 7886 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 7887 unsigned Max = Attr->getMax() ? Attr->getMax() 7888 ->EvaluateKnownConstInt(M.getContext()) 7889 .getExtValue() 7890 : 0; 7891 7892 if (Min != 0) { 7893 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7894 7895 std::string AttrVal = llvm::utostr(Min); 7896 if (Max != 0) 7897 AttrVal = AttrVal + "," + llvm::utostr(Max); 7898 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7899 } else 7900 assert(Max == 0 && "Max must be zero"); 7901 } 7902 7903 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7904 unsigned NumSGPR = Attr->getNumSGPR(); 7905 7906 if (NumSGPR != 0) 7907 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7908 } 7909 7910 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7911 uint32_t NumVGPR = Attr->getNumVGPR(); 7912 7913 if (NumVGPR != 0) 7914 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7915 } 7916 } 7917 7918 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7919 return llvm::CallingConv::AMDGPU_KERNEL; 7920 } 7921 7922 // Currently LLVM assumes null pointers always have value 0, 7923 // which results in incorrectly transformed IR. Therefore, instead of 7924 // emitting null pointers in private and local address spaces, a null 7925 // pointer in generic address space is emitted which is casted to a 7926 // pointer in local or private address space. 7927 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7928 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7929 QualType QT) const { 7930 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7931 return llvm::ConstantPointerNull::get(PT); 7932 7933 auto &Ctx = CGM.getContext(); 7934 auto NPT = llvm::PointerType::get(PT->getElementType(), 7935 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7936 return llvm::ConstantExpr::getAddrSpaceCast( 7937 llvm::ConstantPointerNull::get(NPT), PT); 7938 } 7939 7940 LangAS 7941 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7942 const VarDecl *D) const { 7943 assert(!CGM.getLangOpts().OpenCL && 7944 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7945 "Address space agnostic languages only"); 7946 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7947 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7948 if (!D) 7949 return DefaultGlobalAS; 7950 7951 LangAS AddrSpace = D->getType().getAddressSpace(); 7952 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7953 if (AddrSpace != LangAS::Default) 7954 return AddrSpace; 7955 7956 if (CGM.isTypeConstant(D->getType(), false)) { 7957 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7958 return ConstAS.getValue(); 7959 } 7960 return DefaultGlobalAS; 7961 } 7962 7963 llvm::SyncScope::ID 7964 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 7965 SyncScope Scope, 7966 llvm::AtomicOrdering Ordering, 7967 llvm::LLVMContext &Ctx) const { 7968 std::string Name; 7969 switch (Scope) { 7970 case SyncScope::OpenCLWorkGroup: 7971 Name = "workgroup"; 7972 break; 7973 case SyncScope::OpenCLDevice: 7974 Name = "agent"; 7975 break; 7976 case SyncScope::OpenCLAllSVMDevices: 7977 Name = ""; 7978 break; 7979 case SyncScope::OpenCLSubGroup: 7980 Name = "wavefront"; 7981 } 7982 7983 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 7984 if (!Name.empty()) 7985 Name = Twine(Twine(Name) + Twine("-")).str(); 7986 7987 Name = Twine(Twine(Name) + Twine("one-as")).str(); 7988 } 7989 7990 return Ctx.getOrInsertSyncScopeID(Name); 7991 } 7992 7993 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7994 return false; 7995 } 7996 7997 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7998 const FunctionType *&FT) const { 7999 FT = getABIInfo().getContext().adjustFunctionType( 8000 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8001 } 8002 8003 //===----------------------------------------------------------------------===// 8004 // SPARC v8 ABI Implementation. 8005 // Based on the SPARC Compliance Definition version 2.4.1. 8006 // 8007 // Ensures that complex values are passed in registers. 8008 // 8009 namespace { 8010 class SparcV8ABIInfo : public DefaultABIInfo { 8011 public: 8012 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8013 8014 private: 8015 ABIArgInfo classifyReturnType(QualType RetTy) const; 8016 void computeInfo(CGFunctionInfo &FI) const override; 8017 }; 8018 } // end anonymous namespace 8019 8020 8021 ABIArgInfo 8022 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8023 if (Ty->isAnyComplexType()) { 8024 return ABIArgInfo::getDirect(); 8025 } 8026 else { 8027 return DefaultABIInfo::classifyReturnType(Ty); 8028 } 8029 } 8030 8031 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8032 8033 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8034 for (auto &Arg : FI.arguments()) 8035 Arg.info = classifyArgumentType(Arg.type); 8036 } 8037 8038 namespace { 8039 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8040 public: 8041 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8042 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8043 }; 8044 } // end anonymous namespace 8045 8046 //===----------------------------------------------------------------------===// 8047 // SPARC v9 ABI Implementation. 8048 // Based on the SPARC Compliance Definition version 2.4.1. 8049 // 8050 // Function arguments a mapped to a nominal "parameter array" and promoted to 8051 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8052 // the array, structs larger than 16 bytes are passed indirectly. 8053 // 8054 // One case requires special care: 8055 // 8056 // struct mixed { 8057 // int i; 8058 // float f; 8059 // }; 8060 // 8061 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8062 // parameter array, but the int is passed in an integer register, and the float 8063 // is passed in a floating point register. This is represented as two arguments 8064 // with the LLVM IR inreg attribute: 8065 // 8066 // declare void f(i32 inreg %i, float inreg %f) 8067 // 8068 // The code generator will only allocate 4 bytes from the parameter array for 8069 // the inreg arguments. All other arguments are allocated a multiple of 8 8070 // bytes. 8071 // 8072 namespace { 8073 class SparcV9ABIInfo : public ABIInfo { 8074 public: 8075 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8076 8077 private: 8078 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8079 void computeInfo(CGFunctionInfo &FI) const override; 8080 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8081 QualType Ty) const override; 8082 8083 // Coercion type builder for structs passed in registers. The coercion type 8084 // serves two purposes: 8085 // 8086 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8087 // in registers. 8088 // 2. Expose aligned floating point elements as first-level elements, so the 8089 // code generator knows to pass them in floating point registers. 8090 // 8091 // We also compute the InReg flag which indicates that the struct contains 8092 // aligned 32-bit floats. 8093 // 8094 struct CoerceBuilder { 8095 llvm::LLVMContext &Context; 8096 const llvm::DataLayout &DL; 8097 SmallVector<llvm::Type*, 8> Elems; 8098 uint64_t Size; 8099 bool InReg; 8100 8101 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8102 : Context(c), DL(dl), Size(0), InReg(false) {} 8103 8104 // Pad Elems with integers until Size is ToSize. 8105 void pad(uint64_t ToSize) { 8106 assert(ToSize >= Size && "Cannot remove elements"); 8107 if (ToSize == Size) 8108 return; 8109 8110 // Finish the current 64-bit word. 8111 uint64_t Aligned = llvm::alignTo(Size, 64); 8112 if (Aligned > Size && Aligned <= ToSize) { 8113 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8114 Size = Aligned; 8115 } 8116 8117 // Add whole 64-bit words. 8118 while (Size + 64 <= ToSize) { 8119 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8120 Size += 64; 8121 } 8122 8123 // Final in-word padding. 8124 if (Size < ToSize) { 8125 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8126 Size = ToSize; 8127 } 8128 } 8129 8130 // Add a floating point element at Offset. 8131 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8132 // Unaligned floats are treated as integers. 8133 if (Offset % Bits) 8134 return; 8135 // The InReg flag is only required if there are any floats < 64 bits. 8136 if (Bits < 64) 8137 InReg = true; 8138 pad(Offset); 8139 Elems.push_back(Ty); 8140 Size = Offset + Bits; 8141 } 8142 8143 // Add a struct type to the coercion type, starting at Offset (in bits). 8144 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8145 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8146 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8147 llvm::Type *ElemTy = StrTy->getElementType(i); 8148 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8149 switch (ElemTy->getTypeID()) { 8150 case llvm::Type::StructTyID: 8151 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8152 break; 8153 case llvm::Type::FloatTyID: 8154 addFloat(ElemOffset, ElemTy, 32); 8155 break; 8156 case llvm::Type::DoubleTyID: 8157 addFloat(ElemOffset, ElemTy, 64); 8158 break; 8159 case llvm::Type::FP128TyID: 8160 addFloat(ElemOffset, ElemTy, 128); 8161 break; 8162 case llvm::Type::PointerTyID: 8163 if (ElemOffset % 64 == 0) { 8164 pad(ElemOffset); 8165 Elems.push_back(ElemTy); 8166 Size += 64; 8167 } 8168 break; 8169 default: 8170 break; 8171 } 8172 } 8173 } 8174 8175 // Check if Ty is a usable substitute for the coercion type. 8176 bool isUsableType(llvm::StructType *Ty) const { 8177 return llvm::makeArrayRef(Elems) == Ty->elements(); 8178 } 8179 8180 // Get the coercion type as a literal struct type. 8181 llvm::Type *getType() const { 8182 if (Elems.size() == 1) 8183 return Elems.front(); 8184 else 8185 return llvm::StructType::get(Context, Elems); 8186 } 8187 }; 8188 }; 8189 } // end anonymous namespace 8190 8191 ABIArgInfo 8192 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8193 if (Ty->isVoidType()) 8194 return ABIArgInfo::getIgnore(); 8195 8196 uint64_t Size = getContext().getTypeSize(Ty); 8197 8198 // Anything too big to fit in registers is passed with an explicit indirect 8199 // pointer / sret pointer. 8200 if (Size > SizeLimit) 8201 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8202 8203 // Treat an enum type as its underlying type. 8204 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8205 Ty = EnumTy->getDecl()->getIntegerType(); 8206 8207 // Integer types smaller than a register are extended. 8208 if (Size < 64 && Ty->isIntegerType()) 8209 return ABIArgInfo::getExtend(Ty); 8210 8211 // Other non-aggregates go in registers. 8212 if (!isAggregateTypeForABI(Ty)) 8213 return ABIArgInfo::getDirect(); 8214 8215 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8216 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8217 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8218 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8219 8220 // This is a small aggregate type that should be passed in registers. 8221 // Build a coercion type from the LLVM struct type. 8222 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8223 if (!StrTy) 8224 return ABIArgInfo::getDirect(); 8225 8226 CoerceBuilder CB(getVMContext(), getDataLayout()); 8227 CB.addStruct(0, StrTy); 8228 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8229 8230 // Try to use the original type for coercion. 8231 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8232 8233 if (CB.InReg) 8234 return ABIArgInfo::getDirectInReg(CoerceTy); 8235 else 8236 return ABIArgInfo::getDirect(CoerceTy); 8237 } 8238 8239 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8240 QualType Ty) const { 8241 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8242 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8243 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8244 AI.setCoerceToType(ArgTy); 8245 8246 CharUnits SlotSize = CharUnits::fromQuantity(8); 8247 8248 CGBuilderTy &Builder = CGF.Builder; 8249 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8250 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8251 8252 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8253 8254 Address ArgAddr = Address::invalid(); 8255 CharUnits Stride; 8256 switch (AI.getKind()) { 8257 case ABIArgInfo::Expand: 8258 case ABIArgInfo::CoerceAndExpand: 8259 case ABIArgInfo::InAlloca: 8260 llvm_unreachable("Unsupported ABI kind for va_arg"); 8261 8262 case ABIArgInfo::Extend: { 8263 Stride = SlotSize; 8264 CharUnits Offset = SlotSize - TypeInfo.first; 8265 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8266 break; 8267 } 8268 8269 case ABIArgInfo::Direct: { 8270 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8271 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8272 ArgAddr = Addr; 8273 break; 8274 } 8275 8276 case ABIArgInfo::Indirect: 8277 Stride = SlotSize; 8278 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8279 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8280 TypeInfo.second); 8281 break; 8282 8283 case ABIArgInfo::Ignore: 8284 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8285 } 8286 8287 // Update VAList. 8288 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8289 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8290 8291 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8292 } 8293 8294 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8295 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8296 for (auto &I : FI.arguments()) 8297 I.info = classifyType(I.type, 16 * 8); 8298 } 8299 8300 namespace { 8301 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8302 public: 8303 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8304 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8305 8306 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8307 return 14; 8308 } 8309 8310 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8311 llvm::Value *Address) const override; 8312 }; 8313 } // end anonymous namespace 8314 8315 bool 8316 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8317 llvm::Value *Address) const { 8318 // This is calculated from the LLVM and GCC tables and verified 8319 // against gcc output. AFAIK all ABIs use the same encoding. 8320 8321 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8322 8323 llvm::IntegerType *i8 = CGF.Int8Ty; 8324 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8325 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8326 8327 // 0-31: the 8-byte general-purpose registers 8328 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8329 8330 // 32-63: f0-31, the 4-byte floating-point registers 8331 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8332 8333 // Y = 64 8334 // PSR = 65 8335 // WIM = 66 8336 // TBR = 67 8337 // PC = 68 8338 // NPC = 69 8339 // FSR = 70 8340 // CSR = 71 8341 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8342 8343 // 72-87: d0-15, the 8-byte floating-point registers 8344 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8345 8346 return false; 8347 } 8348 8349 // ARC ABI implementation. 8350 namespace { 8351 8352 class ARCABIInfo : public DefaultABIInfo { 8353 public: 8354 using DefaultABIInfo::DefaultABIInfo; 8355 8356 private: 8357 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8358 QualType Ty) const override; 8359 8360 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8361 if (!State.FreeRegs) 8362 return; 8363 if (Info.isIndirect() && Info.getInReg()) 8364 State.FreeRegs--; 8365 else if (Info.isDirect() && Info.getInReg()) { 8366 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8367 if (sz < State.FreeRegs) 8368 State.FreeRegs -= sz; 8369 else 8370 State.FreeRegs = 0; 8371 } 8372 } 8373 8374 void computeInfo(CGFunctionInfo &FI) const override { 8375 CCState State(FI.getCallingConvention()); 8376 // ARC uses 8 registers to pass arguments. 8377 State.FreeRegs = 8; 8378 8379 if (!getCXXABI().classifyReturnType(FI)) 8380 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8381 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8382 for (auto &I : FI.arguments()) { 8383 I.info = classifyArgumentType(I.type, State.FreeRegs); 8384 updateState(I.info, I.type, State); 8385 } 8386 } 8387 8388 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8389 ABIArgInfo getIndirectByValue(QualType Ty) const; 8390 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8391 ABIArgInfo classifyReturnType(QualType RetTy) const; 8392 }; 8393 8394 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8395 public: 8396 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8397 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8398 }; 8399 8400 8401 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8402 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8403 getNaturalAlignIndirect(Ty, false); 8404 } 8405 8406 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8407 // Compute the byval alignment. 8408 const unsigned MinABIStackAlignInBytes = 4; 8409 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8410 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8411 TypeAlign > MinABIStackAlignInBytes); 8412 } 8413 8414 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8415 QualType Ty) const { 8416 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8417 getContext().getTypeInfoInChars(Ty), 8418 CharUnits::fromQuantity(4), true); 8419 } 8420 8421 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8422 uint8_t FreeRegs) const { 8423 // Handle the generic C++ ABI. 8424 const RecordType *RT = Ty->getAs<RecordType>(); 8425 if (RT) { 8426 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8427 if (RAA == CGCXXABI::RAA_Indirect) 8428 return getIndirectByRef(Ty, FreeRegs > 0); 8429 8430 if (RAA == CGCXXABI::RAA_DirectInMemory) 8431 return getIndirectByValue(Ty); 8432 } 8433 8434 // Treat an enum type as its underlying type. 8435 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8436 Ty = EnumTy->getDecl()->getIntegerType(); 8437 8438 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8439 8440 if (isAggregateTypeForABI(Ty)) { 8441 // Structures with flexible arrays are always indirect. 8442 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8443 return getIndirectByValue(Ty); 8444 8445 // Ignore empty structs/unions. 8446 if (isEmptyRecord(getContext(), Ty, true)) 8447 return ABIArgInfo::getIgnore(); 8448 8449 llvm::LLVMContext &LLVMContext = getVMContext(); 8450 8451 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8452 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8453 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8454 8455 return FreeRegs >= SizeInRegs ? 8456 ABIArgInfo::getDirectInReg(Result) : 8457 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8458 } 8459 8460 return Ty->isPromotableIntegerType() ? 8461 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8462 ABIArgInfo::getExtend(Ty)) : 8463 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8464 ABIArgInfo::getDirect()); 8465 } 8466 8467 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8468 if (RetTy->isAnyComplexType()) 8469 return ABIArgInfo::getDirectInReg(); 8470 8471 // Arguments of size > 4 registers are indirect. 8472 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8473 if (RetSize > 4) 8474 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8475 8476 return DefaultABIInfo::classifyReturnType(RetTy); 8477 } 8478 8479 } // End anonymous namespace. 8480 8481 //===----------------------------------------------------------------------===// 8482 // XCore ABI Implementation 8483 //===----------------------------------------------------------------------===// 8484 8485 namespace { 8486 8487 /// A SmallStringEnc instance is used to build up the TypeString by passing 8488 /// it by reference between functions that append to it. 8489 typedef llvm::SmallString<128> SmallStringEnc; 8490 8491 /// TypeStringCache caches the meta encodings of Types. 8492 /// 8493 /// The reason for caching TypeStrings is two fold: 8494 /// 1. To cache a type's encoding for later uses; 8495 /// 2. As a means to break recursive member type inclusion. 8496 /// 8497 /// A cache Entry can have a Status of: 8498 /// NonRecursive: The type encoding is not recursive; 8499 /// Recursive: The type encoding is recursive; 8500 /// Incomplete: An incomplete TypeString; 8501 /// IncompleteUsed: An incomplete TypeString that has been used in a 8502 /// Recursive type encoding. 8503 /// 8504 /// A NonRecursive entry will have all of its sub-members expanded as fully 8505 /// as possible. Whilst it may contain types which are recursive, the type 8506 /// itself is not recursive and thus its encoding may be safely used whenever 8507 /// the type is encountered. 8508 /// 8509 /// A Recursive entry will have all of its sub-members expanded as fully as 8510 /// possible. The type itself is recursive and it may contain other types which 8511 /// are recursive. The Recursive encoding must not be used during the expansion 8512 /// of a recursive type's recursive branch. For simplicity the code uses 8513 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8514 /// 8515 /// An Incomplete entry is always a RecordType and only encodes its 8516 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8517 /// are placed into the cache during type expansion as a means to identify and 8518 /// handle recursive inclusion of types as sub-members. If there is recursion 8519 /// the entry becomes IncompleteUsed. 8520 /// 8521 /// During the expansion of a RecordType's members: 8522 /// 8523 /// If the cache contains a NonRecursive encoding for the member type, the 8524 /// cached encoding is used; 8525 /// 8526 /// If the cache contains a Recursive encoding for the member type, the 8527 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8528 /// 8529 /// If the member is a RecordType, an Incomplete encoding is placed into the 8530 /// cache to break potential recursive inclusion of itself as a sub-member; 8531 /// 8532 /// Once a member RecordType has been expanded, its temporary incomplete 8533 /// entry is removed from the cache. If a Recursive encoding was swapped out 8534 /// it is swapped back in; 8535 /// 8536 /// If an incomplete entry is used to expand a sub-member, the incomplete 8537 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8538 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8539 /// 8540 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8541 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8542 /// Else the member is part of a recursive type and thus the recursion has 8543 /// been exited too soon for the encoding to be correct for the member. 8544 /// 8545 class TypeStringCache { 8546 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8547 struct Entry { 8548 std::string Str; // The encoded TypeString for the type. 8549 enum Status State; // Information about the encoding in 'Str'. 8550 std::string Swapped; // A temporary place holder for a Recursive encoding 8551 // during the expansion of RecordType's members. 8552 }; 8553 std::map<const IdentifierInfo *, struct Entry> Map; 8554 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8555 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8556 public: 8557 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8558 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8559 bool removeIncomplete(const IdentifierInfo *ID); 8560 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8561 bool IsRecursive); 8562 StringRef lookupStr(const IdentifierInfo *ID); 8563 }; 8564 8565 /// TypeString encodings for enum & union fields must be order. 8566 /// FieldEncoding is a helper for this ordering process. 8567 class FieldEncoding { 8568 bool HasName; 8569 std::string Enc; 8570 public: 8571 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8572 StringRef str() { return Enc; } 8573 bool operator<(const FieldEncoding &rhs) const { 8574 if (HasName != rhs.HasName) return HasName; 8575 return Enc < rhs.Enc; 8576 } 8577 }; 8578 8579 class XCoreABIInfo : public DefaultABIInfo { 8580 public: 8581 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8582 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8583 QualType Ty) const override; 8584 }; 8585 8586 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8587 mutable TypeStringCache TSC; 8588 public: 8589 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8590 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8591 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8592 CodeGen::CodeGenModule &M) const override; 8593 }; 8594 8595 } // End anonymous namespace. 8596 8597 // TODO: this implementation is likely now redundant with the default 8598 // EmitVAArg. 8599 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8600 QualType Ty) const { 8601 CGBuilderTy &Builder = CGF.Builder; 8602 8603 // Get the VAList. 8604 CharUnits SlotSize = CharUnits::fromQuantity(4); 8605 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8606 8607 // Handle the argument. 8608 ABIArgInfo AI = classifyArgumentType(Ty); 8609 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8610 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8611 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8612 AI.setCoerceToType(ArgTy); 8613 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8614 8615 Address Val = Address::invalid(); 8616 CharUnits ArgSize = CharUnits::Zero(); 8617 switch (AI.getKind()) { 8618 case ABIArgInfo::Expand: 8619 case ABIArgInfo::CoerceAndExpand: 8620 case ABIArgInfo::InAlloca: 8621 llvm_unreachable("Unsupported ABI kind for va_arg"); 8622 case ABIArgInfo::Ignore: 8623 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8624 ArgSize = CharUnits::Zero(); 8625 break; 8626 case ABIArgInfo::Extend: 8627 case ABIArgInfo::Direct: 8628 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8629 ArgSize = CharUnits::fromQuantity( 8630 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8631 ArgSize = ArgSize.alignTo(SlotSize); 8632 break; 8633 case ABIArgInfo::Indirect: 8634 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8635 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8636 ArgSize = SlotSize; 8637 break; 8638 } 8639 8640 // Increment the VAList. 8641 if (!ArgSize.isZero()) { 8642 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8643 Builder.CreateStore(APN.getPointer(), VAListAddr); 8644 } 8645 8646 return Val; 8647 } 8648 8649 /// During the expansion of a RecordType, an incomplete TypeString is placed 8650 /// into the cache as a means to identify and break recursion. 8651 /// If there is a Recursive encoding in the cache, it is swapped out and will 8652 /// be reinserted by removeIncomplete(). 8653 /// All other types of encoding should have been used rather than arriving here. 8654 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8655 std::string StubEnc) { 8656 if (!ID) 8657 return; 8658 Entry &E = Map[ID]; 8659 assert( (E.Str.empty() || E.State == Recursive) && 8660 "Incorrectly use of addIncomplete"); 8661 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8662 E.Swapped.swap(E.Str); // swap out the Recursive 8663 E.Str.swap(StubEnc); 8664 E.State = Incomplete; 8665 ++IncompleteCount; 8666 } 8667 8668 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8669 /// must be removed from the cache. 8670 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8671 /// Returns true if the RecordType was defined recursively. 8672 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8673 if (!ID) 8674 return false; 8675 auto I = Map.find(ID); 8676 assert(I != Map.end() && "Entry not present"); 8677 Entry &E = I->second; 8678 assert( (E.State == Incomplete || 8679 E.State == IncompleteUsed) && 8680 "Entry must be an incomplete type"); 8681 bool IsRecursive = false; 8682 if (E.State == IncompleteUsed) { 8683 // We made use of our Incomplete encoding, thus we are recursive. 8684 IsRecursive = true; 8685 --IncompleteUsedCount; 8686 } 8687 if (E.Swapped.empty()) 8688 Map.erase(I); 8689 else { 8690 // Swap the Recursive back. 8691 E.Swapped.swap(E.Str); 8692 E.Swapped.clear(); 8693 E.State = Recursive; 8694 } 8695 --IncompleteCount; 8696 return IsRecursive; 8697 } 8698 8699 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8700 /// Recursive (viz: all sub-members were expanded as fully as possible). 8701 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8702 bool IsRecursive) { 8703 if (!ID || IncompleteUsedCount) 8704 return; // No key or it is is an incomplete sub-type so don't add. 8705 Entry &E = Map[ID]; 8706 if (IsRecursive && !E.Str.empty()) { 8707 assert(E.State==Recursive && E.Str.size() == Str.size() && 8708 "This is not the same Recursive entry"); 8709 // The parent container was not recursive after all, so we could have used 8710 // this Recursive sub-member entry after all, but we assumed the worse when 8711 // we started viz: IncompleteCount!=0. 8712 return; 8713 } 8714 assert(E.Str.empty() && "Entry already present"); 8715 E.Str = Str.str(); 8716 E.State = IsRecursive? Recursive : NonRecursive; 8717 } 8718 8719 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8720 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8721 /// encoding is Recursive, return an empty StringRef. 8722 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8723 if (!ID) 8724 return StringRef(); // We have no key. 8725 auto I = Map.find(ID); 8726 if (I == Map.end()) 8727 return StringRef(); // We have no encoding. 8728 Entry &E = I->second; 8729 if (E.State == Recursive && IncompleteCount) 8730 return StringRef(); // We don't use Recursive encodings for member types. 8731 8732 if (E.State == Incomplete) { 8733 // The incomplete type is being used to break out of recursion. 8734 E.State = IncompleteUsed; 8735 ++IncompleteUsedCount; 8736 } 8737 return E.Str; 8738 } 8739 8740 /// The XCore ABI includes a type information section that communicates symbol 8741 /// type information to the linker. The linker uses this information to verify 8742 /// safety/correctness of things such as array bound and pointers et al. 8743 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8744 /// This type information (TypeString) is emitted into meta data for all global 8745 /// symbols: definitions, declarations, functions & variables. 8746 /// 8747 /// The TypeString carries type, qualifier, name, size & value details. 8748 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8749 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8750 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8751 /// 8752 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8753 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8754 8755 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8756 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8757 CodeGen::CodeGenModule &CGM) const { 8758 SmallStringEnc Enc; 8759 if (getTypeString(Enc, D, CGM, TSC)) { 8760 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8761 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8762 llvm::MDString::get(Ctx, Enc.str())}; 8763 llvm::NamedMDNode *MD = 8764 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8765 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8766 } 8767 } 8768 8769 //===----------------------------------------------------------------------===// 8770 // SPIR ABI Implementation 8771 //===----------------------------------------------------------------------===// 8772 8773 namespace { 8774 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8775 public: 8776 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8777 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8778 unsigned getOpenCLKernelCallingConv() const override; 8779 }; 8780 8781 } // End anonymous namespace. 8782 8783 namespace clang { 8784 namespace CodeGen { 8785 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8786 DefaultABIInfo SPIRABI(CGM.getTypes()); 8787 SPIRABI.computeInfo(FI); 8788 } 8789 } 8790 } 8791 8792 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8793 return llvm::CallingConv::SPIR_KERNEL; 8794 } 8795 8796 static bool appendType(SmallStringEnc &Enc, QualType QType, 8797 const CodeGen::CodeGenModule &CGM, 8798 TypeStringCache &TSC); 8799 8800 /// Helper function for appendRecordType(). 8801 /// Builds a SmallVector containing the encoded field types in declaration 8802 /// order. 8803 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8804 const RecordDecl *RD, 8805 const CodeGen::CodeGenModule &CGM, 8806 TypeStringCache &TSC) { 8807 for (const auto *Field : RD->fields()) { 8808 SmallStringEnc Enc; 8809 Enc += "m("; 8810 Enc += Field->getName(); 8811 Enc += "){"; 8812 if (Field->isBitField()) { 8813 Enc += "b("; 8814 llvm::raw_svector_ostream OS(Enc); 8815 OS << Field->getBitWidthValue(CGM.getContext()); 8816 Enc += ':'; 8817 } 8818 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8819 return false; 8820 if (Field->isBitField()) 8821 Enc += ')'; 8822 Enc += '}'; 8823 FE.emplace_back(!Field->getName().empty(), Enc); 8824 } 8825 return true; 8826 } 8827 8828 /// Appends structure and union types to Enc and adds encoding to cache. 8829 /// Recursively calls appendType (via extractFieldType) for each field. 8830 /// Union types have their fields ordered according to the ABI. 8831 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8832 const CodeGen::CodeGenModule &CGM, 8833 TypeStringCache &TSC, const IdentifierInfo *ID) { 8834 // Append the cached TypeString if we have one. 8835 StringRef TypeString = TSC.lookupStr(ID); 8836 if (!TypeString.empty()) { 8837 Enc += TypeString; 8838 return true; 8839 } 8840 8841 // Start to emit an incomplete TypeString. 8842 size_t Start = Enc.size(); 8843 Enc += (RT->isUnionType()? 'u' : 's'); 8844 Enc += '('; 8845 if (ID) 8846 Enc += ID->getName(); 8847 Enc += "){"; 8848 8849 // We collect all encoded fields and order as necessary. 8850 bool IsRecursive = false; 8851 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8852 if (RD && !RD->field_empty()) { 8853 // An incomplete TypeString stub is placed in the cache for this RecordType 8854 // so that recursive calls to this RecordType will use it whilst building a 8855 // complete TypeString for this RecordType. 8856 SmallVector<FieldEncoding, 16> FE; 8857 std::string StubEnc(Enc.substr(Start).str()); 8858 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8859 TSC.addIncomplete(ID, std::move(StubEnc)); 8860 if (!extractFieldType(FE, RD, CGM, TSC)) { 8861 (void) TSC.removeIncomplete(ID); 8862 return false; 8863 } 8864 IsRecursive = TSC.removeIncomplete(ID); 8865 // The ABI requires unions to be sorted but not structures. 8866 // See FieldEncoding::operator< for sort algorithm. 8867 if (RT->isUnionType()) 8868 llvm::sort(FE); 8869 // We can now complete the TypeString. 8870 unsigned E = FE.size(); 8871 for (unsigned I = 0; I != E; ++I) { 8872 if (I) 8873 Enc += ','; 8874 Enc += FE[I].str(); 8875 } 8876 } 8877 Enc += '}'; 8878 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8879 return true; 8880 } 8881 8882 /// Appends enum types to Enc and adds the encoding to the cache. 8883 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8884 TypeStringCache &TSC, 8885 const IdentifierInfo *ID) { 8886 // Append the cached TypeString if we have one. 8887 StringRef TypeString = TSC.lookupStr(ID); 8888 if (!TypeString.empty()) { 8889 Enc += TypeString; 8890 return true; 8891 } 8892 8893 size_t Start = Enc.size(); 8894 Enc += "e("; 8895 if (ID) 8896 Enc += ID->getName(); 8897 Enc += "){"; 8898 8899 // We collect all encoded enumerations and order them alphanumerically. 8900 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8901 SmallVector<FieldEncoding, 16> FE; 8902 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8903 ++I) { 8904 SmallStringEnc EnumEnc; 8905 EnumEnc += "m("; 8906 EnumEnc += I->getName(); 8907 EnumEnc += "){"; 8908 I->getInitVal().toString(EnumEnc); 8909 EnumEnc += '}'; 8910 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8911 } 8912 llvm::sort(FE); 8913 unsigned E = FE.size(); 8914 for (unsigned I = 0; I != E; ++I) { 8915 if (I) 8916 Enc += ','; 8917 Enc += FE[I].str(); 8918 } 8919 } 8920 Enc += '}'; 8921 TSC.addIfComplete(ID, Enc.substr(Start), false); 8922 return true; 8923 } 8924 8925 /// Appends type's qualifier to Enc. 8926 /// This is done prior to appending the type's encoding. 8927 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8928 // Qualifiers are emitted in alphabetical order. 8929 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8930 int Lookup = 0; 8931 if (QT.isConstQualified()) 8932 Lookup += 1<<0; 8933 if (QT.isRestrictQualified()) 8934 Lookup += 1<<1; 8935 if (QT.isVolatileQualified()) 8936 Lookup += 1<<2; 8937 Enc += Table[Lookup]; 8938 } 8939 8940 /// Appends built-in types to Enc. 8941 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8942 const char *EncType; 8943 switch (BT->getKind()) { 8944 case BuiltinType::Void: 8945 EncType = "0"; 8946 break; 8947 case BuiltinType::Bool: 8948 EncType = "b"; 8949 break; 8950 case BuiltinType::Char_U: 8951 EncType = "uc"; 8952 break; 8953 case BuiltinType::UChar: 8954 EncType = "uc"; 8955 break; 8956 case BuiltinType::SChar: 8957 EncType = "sc"; 8958 break; 8959 case BuiltinType::UShort: 8960 EncType = "us"; 8961 break; 8962 case BuiltinType::Short: 8963 EncType = "ss"; 8964 break; 8965 case BuiltinType::UInt: 8966 EncType = "ui"; 8967 break; 8968 case BuiltinType::Int: 8969 EncType = "si"; 8970 break; 8971 case BuiltinType::ULong: 8972 EncType = "ul"; 8973 break; 8974 case BuiltinType::Long: 8975 EncType = "sl"; 8976 break; 8977 case BuiltinType::ULongLong: 8978 EncType = "ull"; 8979 break; 8980 case BuiltinType::LongLong: 8981 EncType = "sll"; 8982 break; 8983 case BuiltinType::Float: 8984 EncType = "ft"; 8985 break; 8986 case BuiltinType::Double: 8987 EncType = "d"; 8988 break; 8989 case BuiltinType::LongDouble: 8990 EncType = "ld"; 8991 break; 8992 default: 8993 return false; 8994 } 8995 Enc += EncType; 8996 return true; 8997 } 8998 8999 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9000 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9001 const CodeGen::CodeGenModule &CGM, 9002 TypeStringCache &TSC) { 9003 Enc += "p("; 9004 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9005 return false; 9006 Enc += ')'; 9007 return true; 9008 } 9009 9010 /// Appends array encoding to Enc before calling appendType for the element. 9011 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9012 const ArrayType *AT, 9013 const CodeGen::CodeGenModule &CGM, 9014 TypeStringCache &TSC, StringRef NoSizeEnc) { 9015 if (AT->getSizeModifier() != ArrayType::Normal) 9016 return false; 9017 Enc += "a("; 9018 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9019 CAT->getSize().toStringUnsigned(Enc); 9020 else 9021 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9022 Enc += ':'; 9023 // The Qualifiers should be attached to the type rather than the array. 9024 appendQualifier(Enc, QT); 9025 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9026 return false; 9027 Enc += ')'; 9028 return true; 9029 } 9030 9031 /// Appends a function encoding to Enc, calling appendType for the return type 9032 /// and the arguments. 9033 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9034 const CodeGen::CodeGenModule &CGM, 9035 TypeStringCache &TSC) { 9036 Enc += "f{"; 9037 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9038 return false; 9039 Enc += "}("; 9040 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9041 // N.B. we are only interested in the adjusted param types. 9042 auto I = FPT->param_type_begin(); 9043 auto E = FPT->param_type_end(); 9044 if (I != E) { 9045 do { 9046 if (!appendType(Enc, *I, CGM, TSC)) 9047 return false; 9048 ++I; 9049 if (I != E) 9050 Enc += ','; 9051 } while (I != E); 9052 if (FPT->isVariadic()) 9053 Enc += ",va"; 9054 } else { 9055 if (FPT->isVariadic()) 9056 Enc += "va"; 9057 else 9058 Enc += '0'; 9059 } 9060 } 9061 Enc += ')'; 9062 return true; 9063 } 9064 9065 /// Handles the type's qualifier before dispatching a call to handle specific 9066 /// type encodings. 9067 static bool appendType(SmallStringEnc &Enc, QualType QType, 9068 const CodeGen::CodeGenModule &CGM, 9069 TypeStringCache &TSC) { 9070 9071 QualType QT = QType.getCanonicalType(); 9072 9073 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9074 // The Qualifiers should be attached to the type rather than the array. 9075 // Thus we don't call appendQualifier() here. 9076 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9077 9078 appendQualifier(Enc, QT); 9079 9080 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9081 return appendBuiltinType(Enc, BT); 9082 9083 if (const PointerType *PT = QT->getAs<PointerType>()) 9084 return appendPointerType(Enc, PT, CGM, TSC); 9085 9086 if (const EnumType *ET = QT->getAs<EnumType>()) 9087 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9088 9089 if (const RecordType *RT = QT->getAsStructureType()) 9090 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9091 9092 if (const RecordType *RT = QT->getAsUnionType()) 9093 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9094 9095 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9096 return appendFunctionType(Enc, FT, CGM, TSC); 9097 9098 return false; 9099 } 9100 9101 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9102 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9103 if (!D) 9104 return false; 9105 9106 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9107 if (FD->getLanguageLinkage() != CLanguageLinkage) 9108 return false; 9109 return appendType(Enc, FD->getType(), CGM, TSC); 9110 } 9111 9112 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9113 if (VD->getLanguageLinkage() != CLanguageLinkage) 9114 return false; 9115 QualType QT = VD->getType().getCanonicalType(); 9116 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9117 // Global ArrayTypes are given a size of '*' if the size is unknown. 9118 // The Qualifiers should be attached to the type rather than the array. 9119 // Thus we don't call appendQualifier() here. 9120 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9121 } 9122 return appendType(Enc, QT, CGM, TSC); 9123 } 9124 return false; 9125 } 9126 9127 //===----------------------------------------------------------------------===// 9128 // RISCV ABI Implementation 9129 //===----------------------------------------------------------------------===// 9130 9131 namespace { 9132 class RISCVABIInfo : public DefaultABIInfo { 9133 private: 9134 unsigned XLen; // Size of the integer ('x') registers in bits. 9135 static const int NumArgGPRs = 8; 9136 9137 public: 9138 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9139 : DefaultABIInfo(CGT), XLen(XLen) {} 9140 9141 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9142 // non-virtual, but computeInfo is virtual, so we overload it. 9143 void computeInfo(CGFunctionInfo &FI) const override; 9144 9145 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9146 int &ArgGPRsLeft) const; 9147 ABIArgInfo classifyReturnType(QualType RetTy) const; 9148 9149 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9150 QualType Ty) const override; 9151 9152 ABIArgInfo extendType(QualType Ty) const; 9153 }; 9154 } // end anonymous namespace 9155 9156 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9157 QualType RetTy = FI.getReturnType(); 9158 if (!getCXXABI().classifyReturnType(FI)) 9159 FI.getReturnInfo() = classifyReturnType(RetTy); 9160 9161 // IsRetIndirect is true if classifyArgumentType indicated the value should 9162 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9163 // is passed direct in LLVM IR, relying on the backend lowering code to 9164 // rewrite the argument list and pass indirectly on RV32. 9165 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9166 getContext().getTypeSize(RetTy) > (2 * XLen); 9167 9168 // We must track the number of GPRs used in order to conform to the RISC-V 9169 // ABI, as integer scalars passed in registers should have signext/zeroext 9170 // when promoted, but are anyext if passed on the stack. As GPR usage is 9171 // different for variadic arguments, we must also track whether we are 9172 // examining a vararg or not. 9173 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9174 int NumFixedArgs = FI.getNumRequiredArgs(); 9175 9176 int ArgNum = 0; 9177 for (auto &ArgInfo : FI.arguments()) { 9178 bool IsFixed = ArgNum < NumFixedArgs; 9179 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9180 ArgNum++; 9181 } 9182 } 9183 9184 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9185 int &ArgGPRsLeft) const { 9186 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9187 Ty = useFirstFieldIfTransparentUnion(Ty); 9188 9189 // Structures with either a non-trivial destructor or a non-trivial 9190 // copy constructor are always passed indirectly. 9191 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9192 if (ArgGPRsLeft) 9193 ArgGPRsLeft -= 1; 9194 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9195 CGCXXABI::RAA_DirectInMemory); 9196 } 9197 9198 // Ignore empty structs/unions. 9199 if (isEmptyRecord(getContext(), Ty, true)) 9200 return ABIArgInfo::getIgnore(); 9201 9202 uint64_t Size = getContext().getTypeSize(Ty); 9203 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9204 bool MustUseStack = false; 9205 // Determine the number of GPRs needed to pass the current argument 9206 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9207 // register pairs, so may consume 3 registers. 9208 int NeededArgGPRs = 1; 9209 if (!IsFixed && NeededAlign == 2 * XLen) 9210 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9211 else if (Size > XLen && Size <= 2 * XLen) 9212 NeededArgGPRs = 2; 9213 9214 if (NeededArgGPRs > ArgGPRsLeft) { 9215 MustUseStack = true; 9216 NeededArgGPRs = ArgGPRsLeft; 9217 } 9218 9219 ArgGPRsLeft -= NeededArgGPRs; 9220 9221 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9222 // Treat an enum type as its underlying type. 9223 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9224 Ty = EnumTy->getDecl()->getIntegerType(); 9225 9226 // All integral types are promoted to XLen width, unless passed on the 9227 // stack. 9228 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9229 return extendType(Ty); 9230 } 9231 9232 return ABIArgInfo::getDirect(); 9233 } 9234 9235 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9236 // so coerce to integers. 9237 if (Size <= 2 * XLen) { 9238 unsigned Alignment = getContext().getTypeAlign(Ty); 9239 9240 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9241 // required, and a 2-element XLen array if only XLen alignment is required. 9242 if (Size <= XLen) { 9243 return ABIArgInfo::getDirect( 9244 llvm::IntegerType::get(getVMContext(), XLen)); 9245 } else if (Alignment == 2 * XLen) { 9246 return ABIArgInfo::getDirect( 9247 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9248 } else { 9249 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9250 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9251 } 9252 } 9253 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9254 } 9255 9256 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9257 if (RetTy->isVoidType()) 9258 return ABIArgInfo::getIgnore(); 9259 9260 int ArgGPRsLeft = 2; 9261 9262 // The rules for return and argument types are the same, so defer to 9263 // classifyArgumentType. 9264 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9265 } 9266 9267 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9268 QualType Ty) const { 9269 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9270 9271 // Empty records are ignored for parameter passing purposes. 9272 if (isEmptyRecord(getContext(), Ty, true)) { 9273 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9274 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9275 return Addr; 9276 } 9277 9278 std::pair<CharUnits, CharUnits> SizeAndAlign = 9279 getContext().getTypeInfoInChars(Ty); 9280 9281 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9282 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9283 9284 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9285 SlotSize, /*AllowHigherAlign=*/true); 9286 } 9287 9288 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9289 int TySize = getContext().getTypeSize(Ty); 9290 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9291 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9292 return ABIArgInfo::getSignExtend(Ty); 9293 return ABIArgInfo::getExtend(Ty); 9294 } 9295 9296 namespace { 9297 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9298 public: 9299 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9300 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9301 9302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9303 CodeGen::CodeGenModule &CGM) const override { 9304 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9305 if (!FD) return; 9306 9307 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9308 if (!Attr) 9309 return; 9310 9311 const char *Kind; 9312 switch (Attr->getInterrupt()) { 9313 case RISCVInterruptAttr::user: Kind = "user"; break; 9314 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9315 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9316 } 9317 9318 auto *Fn = cast<llvm::Function>(GV); 9319 9320 Fn->addFnAttr("interrupt", Kind); 9321 } 9322 }; 9323 } // namespace 9324 9325 //===----------------------------------------------------------------------===// 9326 // Driver code 9327 //===----------------------------------------------------------------------===// 9328 9329 bool CodeGenModule::supportsCOMDAT() const { 9330 return getTriple().supportsCOMDAT(); 9331 } 9332 9333 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9334 if (TheTargetCodeGenInfo) 9335 return *TheTargetCodeGenInfo; 9336 9337 // Helper to set the unique_ptr while still keeping the return value. 9338 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9339 this->TheTargetCodeGenInfo.reset(P); 9340 return *P; 9341 }; 9342 9343 const llvm::Triple &Triple = getTarget().getTriple(); 9344 switch (Triple.getArch()) { 9345 default: 9346 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9347 9348 case llvm::Triple::le32: 9349 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9350 case llvm::Triple::mips: 9351 case llvm::Triple::mipsel: 9352 if (Triple.getOS() == llvm::Triple::NaCl) 9353 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9354 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9355 9356 case llvm::Triple::mips64: 9357 case llvm::Triple::mips64el: 9358 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9359 9360 case llvm::Triple::avr: 9361 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9362 9363 case llvm::Triple::aarch64: 9364 case llvm::Triple::aarch64_be: { 9365 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9366 if (getTarget().getABI() == "darwinpcs") 9367 Kind = AArch64ABIInfo::DarwinPCS; 9368 else if (Triple.isOSWindows()) 9369 return SetCGInfo( 9370 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9371 9372 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9373 } 9374 9375 case llvm::Triple::wasm32: 9376 case llvm::Triple::wasm64: 9377 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9378 9379 case llvm::Triple::arm: 9380 case llvm::Triple::armeb: 9381 case llvm::Triple::thumb: 9382 case llvm::Triple::thumbeb: { 9383 if (Triple.getOS() == llvm::Triple::Win32) { 9384 return SetCGInfo( 9385 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9386 } 9387 9388 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9389 StringRef ABIStr = getTarget().getABI(); 9390 if (ABIStr == "apcs-gnu") 9391 Kind = ARMABIInfo::APCS; 9392 else if (ABIStr == "aapcs16") 9393 Kind = ARMABIInfo::AAPCS16_VFP; 9394 else if (CodeGenOpts.FloatABI == "hard" || 9395 (CodeGenOpts.FloatABI != "soft" && 9396 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9397 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9398 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9399 Kind = ARMABIInfo::AAPCS_VFP; 9400 9401 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9402 } 9403 9404 case llvm::Triple::ppc: 9405 return SetCGInfo( 9406 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9407 case llvm::Triple::ppc64: 9408 if (Triple.isOSBinFormatELF()) { 9409 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9410 if (getTarget().getABI() == "elfv2") 9411 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9412 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9413 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9414 9415 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9416 IsSoftFloat)); 9417 } else 9418 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9419 case llvm::Triple::ppc64le: { 9420 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9421 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9422 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9423 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9424 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9425 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9426 9427 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9428 IsSoftFloat)); 9429 } 9430 9431 case llvm::Triple::nvptx: 9432 case llvm::Triple::nvptx64: 9433 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9434 9435 case llvm::Triple::msp430: 9436 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9437 9438 case llvm::Triple::riscv32: 9439 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9440 case llvm::Triple::riscv64: 9441 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9442 9443 case llvm::Triple::systemz: { 9444 bool HasVector = getTarget().getABI() == "vector"; 9445 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9446 } 9447 9448 case llvm::Triple::tce: 9449 case llvm::Triple::tcele: 9450 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9451 9452 case llvm::Triple::x86: { 9453 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9454 bool RetSmallStructInRegABI = 9455 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9456 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9457 9458 if (Triple.getOS() == llvm::Triple::Win32) { 9459 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9460 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9461 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9462 } else { 9463 return SetCGInfo(new X86_32TargetCodeGenInfo( 9464 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9465 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9466 CodeGenOpts.FloatABI == "soft")); 9467 } 9468 } 9469 9470 case llvm::Triple::x86_64: { 9471 StringRef ABI = getTarget().getABI(); 9472 X86AVXABILevel AVXLevel = 9473 (ABI == "avx512" 9474 ? X86AVXABILevel::AVX512 9475 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9476 9477 switch (Triple.getOS()) { 9478 case llvm::Triple::Win32: 9479 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9480 default: 9481 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9482 } 9483 } 9484 case llvm::Triple::hexagon: 9485 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9486 case llvm::Triple::lanai: 9487 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9488 case llvm::Triple::r600: 9489 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9490 case llvm::Triple::amdgcn: 9491 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9492 case llvm::Triple::sparc: 9493 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9494 case llvm::Triple::sparcv9: 9495 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9496 case llvm::Triple::xcore: 9497 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9498 case llvm::Triple::arc: 9499 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9500 case llvm::Triple::spir: 9501 case llvm::Triple::spir64: 9502 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9503 } 9504 } 9505 9506 /// Create an OpenCL kernel for an enqueued block. 9507 /// 9508 /// The kernel has the same function type as the block invoke function. Its 9509 /// name is the name of the block invoke function postfixed with "_kernel". 9510 /// It simply calls the block invoke function then returns. 9511 llvm::Function * 9512 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9513 llvm::Function *Invoke, 9514 llvm::Value *BlockLiteral) const { 9515 auto *InvokeFT = Invoke->getFunctionType(); 9516 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9517 for (auto &P : InvokeFT->params()) 9518 ArgTys.push_back(P); 9519 auto &C = CGF.getLLVMContext(); 9520 std::string Name = Invoke->getName().str() + "_kernel"; 9521 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9522 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9523 &CGF.CGM.getModule()); 9524 auto IP = CGF.Builder.saveIP(); 9525 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9526 auto &Builder = CGF.Builder; 9527 Builder.SetInsertPoint(BB); 9528 llvm::SmallVector<llvm::Value *, 2> Args; 9529 for (auto &A : F->args()) 9530 Args.push_back(&A); 9531 Builder.CreateCall(Invoke, Args); 9532 Builder.CreateRetVoid(); 9533 Builder.restoreIP(IP); 9534 return F; 9535 } 9536 9537 /// Create an OpenCL kernel for an enqueued block. 9538 /// 9539 /// The type of the first argument (the block literal) is the struct type 9540 /// of the block literal instead of a pointer type. The first argument 9541 /// (block literal) is passed directly by value to the kernel. The kernel 9542 /// allocates the same type of struct on stack and stores the block literal 9543 /// to it and passes its pointer to the block invoke function. The kernel 9544 /// has "enqueued-block" function attribute and kernel argument metadata. 9545 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9546 CodeGenFunction &CGF, llvm::Function *Invoke, 9547 llvm::Value *BlockLiteral) const { 9548 auto &Builder = CGF.Builder; 9549 auto &C = CGF.getLLVMContext(); 9550 9551 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9552 auto *InvokeFT = Invoke->getFunctionType(); 9553 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9554 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9555 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9556 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9557 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9558 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9559 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9560 9561 ArgTys.push_back(BlockTy); 9562 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9563 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9564 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9565 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9566 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9567 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9568 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9569 ArgTys.push_back(InvokeFT->getParamType(I)); 9570 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9571 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9572 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9573 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9574 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9575 ArgNames.push_back( 9576 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9577 } 9578 std::string Name = Invoke->getName().str() + "_kernel"; 9579 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9580 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9581 &CGF.CGM.getModule()); 9582 F->addFnAttr("enqueued-block"); 9583 auto IP = CGF.Builder.saveIP(); 9584 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9585 Builder.SetInsertPoint(BB); 9586 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9587 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9588 BlockPtr->setAlignment(BlockAlign); 9589 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9590 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9591 llvm::SmallVector<llvm::Value *, 2> Args; 9592 Args.push_back(Cast); 9593 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9594 Args.push_back(I); 9595 Builder.CreateCall(Invoke, Args); 9596 Builder.CreateRetVoid(); 9597 Builder.restoreIP(IP); 9598 9599 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9600 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9601 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9602 F->setMetadata("kernel_arg_base_type", 9603 llvm::MDNode::get(C, ArgBaseTypeNames)); 9604 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9605 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9606 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9607 9608 return F; 9609 } 9610