1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
453 }
454 
455 llvm::Constant *
456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
457                                         LangAS SrcAddr, LangAS DestAddr,
458                                         llvm::Type *DestTy) const {
459   // Since target may map different address spaces in AST to the same address
460   // space, an address space conversion may end up as a bitcast.
461   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
462 }
463 
464 llvm::SyncScope::ID
465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
466                                       SyncScope Scope,
467                                       llvm::AtomicOrdering Ordering,
468                                       llvm::LLVMContext &Ctx) const {
469   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
470 }
471 
472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
473 
474 /// isEmptyField - Return true iff a the field is "empty", that is it
475 /// is an unnamed bit-field or an (array of) empty record(s).
476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
477                          bool AllowArrays) {
478   if (FD->isUnnamedBitfield())
479     return true;
480 
481   QualType FT = FD->getType();
482 
483   // Constant arrays of empty records count as empty, strip them off.
484   // Constant arrays of zero length always count as empty.
485   if (AllowArrays)
486     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
487       if (AT->getSize() == 0)
488         return true;
489       FT = AT->getElementType();
490     }
491 
492   const RecordType *RT = FT->getAs<RecordType>();
493   if (!RT)
494     return false;
495 
496   // C++ record fields are never empty, at least in the Itanium ABI.
497   //
498   // FIXME: We should use a predicate for whether this behavior is true in the
499   // current ABI.
500   if (isa<CXXRecordDecl>(RT->getDecl()))
501     return false;
502 
503   return isEmptyRecord(Context, FT, AllowArrays);
504 }
505 
506 /// isEmptyRecord - Return true iff a structure contains only empty
507 /// fields. Note that a structure with a flexible array member is not
508 /// considered empty.
509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
510   const RecordType *RT = T->getAs<RecordType>();
511   if (!RT)
512     return false;
513   const RecordDecl *RD = RT->getDecl();
514   if (RD->hasFlexibleArrayMember())
515     return false;
516 
517   // If this is a C++ record, check the bases first.
518   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
519     for (const auto &I : CXXRD->bases())
520       if (!isEmptyRecord(Context, I.getType(), true))
521         return false;
522 
523   for (const auto *I : RD->fields())
524     if (!isEmptyField(Context, I, AllowArrays))
525       return false;
526   return true;
527 }
528 
529 /// isSingleElementStruct - Determine if a structure is a "single
530 /// element struct", i.e. it has exactly one non-empty field or
531 /// exactly one field which is itself a single element
532 /// struct. Structures with flexible array members are never
533 /// considered single element structs.
534 ///
535 /// \return The field declaration for the single non-empty field, if
536 /// it exists.
537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
538   const RecordType *RT = T->getAs<RecordType>();
539   if (!RT)
540     return nullptr;
541 
542   const RecordDecl *RD = RT->getDecl();
543   if (RD->hasFlexibleArrayMember())
544     return nullptr;
545 
546   const Type *Found = nullptr;
547 
548   // If this is a C++ record, check the bases first.
549   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
550     for (const auto &I : CXXRD->bases()) {
551       // Ignore empty records.
552       if (isEmptyRecord(Context, I.getType(), true))
553         continue;
554 
555       // If we already found an element then this isn't a single-element struct.
556       if (Found)
557         return nullptr;
558 
559       // If this is non-empty and not a single element struct, the composite
560       // cannot be a single element struct.
561       Found = isSingleElementStruct(I.getType(), Context);
562       if (!Found)
563         return nullptr;
564     }
565   }
566 
567   // Check for single element.
568   for (const auto *FD : RD->fields()) {
569     QualType FT = FD->getType();
570 
571     // Ignore empty fields.
572     if (isEmptyField(Context, FD, true))
573       continue;
574 
575     // If we already found an element then this isn't a single-element
576     // struct.
577     if (Found)
578       return nullptr;
579 
580     // Treat single element arrays as the element.
581     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
582       if (AT->getSize().getZExtValue() != 1)
583         break;
584       FT = AT->getElementType();
585     }
586 
587     if (!isAggregateTypeForABI(FT)) {
588       Found = FT.getTypePtr();
589     } else {
590       Found = isSingleElementStruct(FT, Context);
591       if (!Found)
592         return nullptr;
593     }
594   }
595 
596   // We don't consider a struct a single-element struct if it has
597   // padding beyond the element type.
598   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
599     return nullptr;
600 
601   return Found;
602 }
603 
604 namespace {
605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
606                        const ABIArgInfo &AI) {
607   // This default implementation defers to the llvm backend's va_arg
608   // instruction. It can handle only passing arguments directly
609   // (typically only handled in the backend for primitive types), or
610   // aggregates passed indirectly by pointer (NOTE: if the "byval"
611   // flag has ABI impact in the callee, this implementation cannot
612   // work.)
613 
614   // Only a few cases are covered here at the moment -- those needed
615   // by the default abi.
616   llvm::Value *Val;
617 
618   if (AI.isIndirect()) {
619     assert(!AI.getPaddingType() &&
620            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
621     assert(
622         !AI.getIndirectRealign() &&
623         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
624 
625     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
626     CharUnits TyAlignForABI = TyInfo.second;
627 
628     llvm::Type *BaseTy =
629         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
630     llvm::Value *Addr =
631         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
632     return Address(Addr, TyAlignForABI);
633   } else {
634     assert((AI.isDirect() || AI.isExtend()) &&
635            "Unexpected ArgInfo Kind in generic VAArg emitter!");
636 
637     assert(!AI.getInReg() &&
638            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
639     assert(!AI.getPaddingType() &&
640            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getDirectOffset() &&
642            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getCoerceToType() &&
644            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
645 
646     Address Temp = CGF.CreateMemTemp(Ty, "varet");
647     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
648     CGF.Builder.CreateStore(Val, Temp);
649     return Temp;
650   }
651 }
652 
653 /// DefaultABIInfo - The default implementation for ABI specific
654 /// details. This implementation provides information which results in
655 /// self-consistent and sensible LLVM IR generation, but does not
656 /// conform to any particular ABI.
657 class DefaultABIInfo : public ABIInfo {
658 public:
659   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
660 
661   ABIArgInfo classifyReturnType(QualType RetTy) const;
662   ABIArgInfo classifyArgumentType(QualType RetTy) const;
663 
664   void computeInfo(CGFunctionInfo &FI) const override {
665     if (!getCXXABI().classifyReturnType(FI))
666       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
667     for (auto &I : FI.arguments())
668       I.info = classifyArgumentType(I.type);
669   }
670 
671   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
672                     QualType Ty) const override {
673     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
674   }
675 };
676 
677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
678 public:
679   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
681 };
682 
683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
684   Ty = useFirstFieldIfTransparentUnion(Ty);
685 
686   if (isAggregateTypeForABI(Ty)) {
687     // Records with non-trivial destructors/copy-constructors should not be
688     // passed by value.
689     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
690       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
691 
692     return getNaturalAlignIndirect(Ty);
693   }
694 
695   // Treat an enum type as its underlying type.
696   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
697     Ty = EnumTy->getDecl()->getIntegerType();
698 
699   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
700                                         : ABIArgInfo::getDirect());
701 }
702 
703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
704   if (RetTy->isVoidType())
705     return ABIArgInfo::getIgnore();
706 
707   if (isAggregateTypeForABI(RetTy))
708     return getNaturalAlignIndirect(RetTy);
709 
710   // Treat an enum type as its underlying type.
711   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
712     RetTy = EnumTy->getDecl()->getIntegerType();
713 
714   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
715                                            : ABIArgInfo::getDirect());
716 }
717 
718 //===----------------------------------------------------------------------===//
719 // WebAssembly ABI Implementation
720 //
721 // This is a very simple ABI that relies a lot on DefaultABIInfo.
722 //===----------------------------------------------------------------------===//
723 
724 class WebAssemblyABIInfo final : public SwiftABIInfo {
725   DefaultABIInfo defaultInfo;
726 
727 public:
728   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
729       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
730 
731 private:
732   ABIArgInfo classifyReturnType(QualType RetTy) const;
733   ABIArgInfo classifyArgumentType(QualType Ty) const;
734 
735   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
736   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
737   // overload them.
738   void computeInfo(CGFunctionInfo &FI) const override {
739     if (!getCXXABI().classifyReturnType(FI))
740       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
741     for (auto &Arg : FI.arguments())
742       Arg.info = classifyArgumentType(Arg.type);
743   }
744 
745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
746                     QualType Ty) const override;
747 
748   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
749                                     bool asReturnValue) const override {
750     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
751   }
752 
753   bool isSwiftErrorInRegister() const override {
754     return false;
755   }
756 };
757 
758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
759 public:
760   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
761       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
762 
763   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
764                            CodeGen::CodeGenModule &CGM) const override {
765     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
766     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
767       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
768         llvm::Function *Fn = cast<llvm::Function>(GV);
769         llvm::AttrBuilder B;
770         B.addAttribute("wasm-import-module", Attr->getImportModule());
771         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
772       }
773       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
774         llvm::Function *Fn = cast<llvm::Function>(GV);
775         llvm::AttrBuilder B;
776         B.addAttribute("wasm-import-name", Attr->getImportName());
777         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
778       }
779     }
780 
781     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
782       llvm::Function *Fn = cast<llvm::Function>(GV);
783       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
784         Fn->addFnAttr("no-prototype");
785     }
786   }
787 };
788 
789 /// Classify argument of given type \p Ty.
790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
791   Ty = useFirstFieldIfTransparentUnion(Ty);
792 
793   if (isAggregateTypeForABI(Ty)) {
794     // Records with non-trivial destructors/copy-constructors should not be
795     // passed by value.
796     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
797       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
798     // Ignore empty structs/unions.
799     if (isEmptyRecord(getContext(), Ty, true))
800       return ABIArgInfo::getIgnore();
801     // Lower single-element structs to just pass a regular value. TODO: We
802     // could do reasonable-size multiple-element structs too, using getExpand(),
803     // though watch out for things like bitfields.
804     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
805       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
806   }
807 
808   // Otherwise just do the default thing.
809   return defaultInfo.classifyArgumentType(Ty);
810 }
811 
812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
813   if (isAggregateTypeForABI(RetTy)) {
814     // Records with non-trivial destructors/copy-constructors should not be
815     // returned by value.
816     if (!getRecordArgABI(RetTy, getCXXABI())) {
817       // Ignore empty structs/unions.
818       if (isEmptyRecord(getContext(), RetTy, true))
819         return ABIArgInfo::getIgnore();
820       // Lower single-element structs to just return a regular value. TODO: We
821       // could do reasonable-size multiple-element structs too, using
822       // ABIArgInfo::getDirect().
823       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
824         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
825     }
826   }
827 
828   // Otherwise just do the default thing.
829   return defaultInfo.classifyReturnType(RetTy);
830 }
831 
832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
833                                       QualType Ty) const {
834   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
835                           getContext().getTypeInfoInChars(Ty),
836                           CharUnits::fromQuantity(4),
837                           /*AllowHigherAlign=*/ true);
838 }
839 
840 //===----------------------------------------------------------------------===//
841 // le32/PNaCl bitcode ABI Implementation
842 //
843 // This is a simplified version of the x86_32 ABI.  Arguments and return values
844 // are always passed on the stack.
845 //===----------------------------------------------------------------------===//
846 
847 class PNaClABIInfo : public ABIInfo {
848  public:
849   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
850 
851   ABIArgInfo classifyReturnType(QualType RetTy) const;
852   ABIArgInfo classifyArgumentType(QualType RetTy) const;
853 
854   void computeInfo(CGFunctionInfo &FI) const override;
855   Address EmitVAArg(CodeGenFunction &CGF,
856                     Address VAListAddr, QualType Ty) const override;
857 };
858 
859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
860  public:
861   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
862     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
863 };
864 
865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
866   if (!getCXXABI().classifyReturnType(FI))
867     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
868 
869   for (auto &I : FI.arguments())
870     I.info = classifyArgumentType(I.type);
871 }
872 
873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
874                                 QualType Ty) const {
875   // The PNaCL ABI is a bit odd, in that varargs don't use normal
876   // function classification. Structs get passed directly for varargs
877   // functions, through a rewriting transform in
878   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
879   // this target to actually support a va_arg instructions with an
880   // aggregate type, unlike other targets.
881   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
882 }
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
886   if (isAggregateTypeForABI(Ty)) {
887     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
888       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
889     return getNaturalAlignIndirect(Ty);
890   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
891     // Treat an enum type as its underlying type.
892     Ty = EnumTy->getDecl()->getIntegerType();
893   } else if (Ty->isFloatingType()) {
894     // Floating-point types don't go inreg.
895     return ABIArgInfo::getDirect();
896   }
897 
898   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
899                                         : ABIArgInfo::getDirect());
900 }
901 
902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
903   if (RetTy->isVoidType())
904     return ABIArgInfo::getIgnore();
905 
906   // In the PNaCl ABI we always return records/structures on the stack.
907   if (isAggregateTypeForABI(RetTy))
908     return getNaturalAlignIndirect(RetTy);
909 
910   // Treat an enum type as its underlying type.
911   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
912     RetTy = EnumTy->getDecl()->getIntegerType();
913 
914   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
915                                            : ABIArgInfo::getDirect());
916 }
917 
918 /// IsX86_MMXType - Return true if this is an MMX type.
919 bool IsX86_MMXType(llvm::Type *IRType) {
920   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
921   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
922     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
923     IRType->getScalarSizeInBits() != 64;
924 }
925 
926 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
927                                           StringRef Constraint,
928                                           llvm::Type* Ty) {
929   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
930                      .Cases("y", "&y", "^Ym", true)
931                      .Default(false);
932   if (IsMMXCons && Ty->isVectorTy()) {
933     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
934       // Invalid MMX constraint
935       return nullptr;
936     }
937 
938     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
939   }
940 
941   // No operation needed
942   return Ty;
943 }
944 
945 /// Returns true if this type can be passed in SSE registers with the
946 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
947 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
948   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
949     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
950       if (BT->getKind() == BuiltinType::LongDouble) {
951         if (&Context.getTargetInfo().getLongDoubleFormat() ==
952             &llvm::APFloat::x87DoubleExtended())
953           return false;
954       }
955       return true;
956     }
957   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
958     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
959     // registers specially.
960     unsigned VecSize = Context.getTypeSize(VT);
961     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
962       return true;
963   }
964   return false;
965 }
966 
967 /// Returns true if this aggregate is small enough to be passed in SSE registers
968 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
969 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
970   return NumMembers <= 4;
971 }
972 
973 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
974 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
975   auto AI = ABIArgInfo::getDirect(T);
976   AI.setInReg(true);
977   AI.setCanBeFlattened(false);
978   return AI;
979 }
980 
981 //===----------------------------------------------------------------------===//
982 // X86-32 ABI Implementation
983 //===----------------------------------------------------------------------===//
984 
985 /// Similar to llvm::CCState, but for Clang.
986 struct CCState {
987   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
988 
989   unsigned CC;
990   unsigned FreeRegs;
991   unsigned FreeSSERegs;
992 };
993 
994 enum {
995   // Vectorcall only allows the first 6 parameters to be passed in registers.
996   VectorcallMaxParamNumAsReg = 6
997 };
998 
999 /// X86_32ABIInfo - The X86-32 ABI information.
1000 class X86_32ABIInfo : public SwiftABIInfo {
1001   enum Class {
1002     Integer,
1003     Float
1004   };
1005 
1006   static const unsigned MinABIStackAlignInBytes = 4;
1007 
1008   bool IsDarwinVectorABI;
1009   bool IsRetSmallStructInRegABI;
1010   bool IsWin32StructABI;
1011   bool IsSoftFloatABI;
1012   bool IsMCUABI;
1013   unsigned DefaultNumRegisterParameters;
1014 
1015   static bool isRegisterSize(unsigned Size) {
1016     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1017   }
1018 
1019   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1020     // FIXME: Assumes vectorcall is in use.
1021     return isX86VectorTypeForVectorCall(getContext(), Ty);
1022   }
1023 
1024   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1025                                          uint64_t NumMembers) const override {
1026     // FIXME: Assumes vectorcall is in use.
1027     return isX86VectorCallAggregateSmallEnough(NumMembers);
1028   }
1029 
1030   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1031 
1032   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1033   /// such that the argument will be passed in memory.
1034   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1035 
1036   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1037 
1038   /// Return the alignment to use for the given type on the stack.
1039   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1040 
1041   Class classify(QualType Ty) const;
1042   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1043   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1044 
1045   /// Updates the number of available free registers, returns
1046   /// true if any registers were allocated.
1047   bool updateFreeRegs(QualType Ty, CCState &State) const;
1048 
1049   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1050                                 bool &NeedsPadding) const;
1051   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1052 
1053   bool canExpandIndirectArgument(QualType Ty) const;
1054 
1055   /// Rewrite the function info so that all memory arguments use
1056   /// inalloca.
1057   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1058 
1059   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1060                            CharUnits &StackOffset, ABIArgInfo &Info,
1061                            QualType Type) const;
1062   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1063                              bool &UsedInAlloca) const;
1064 
1065 public:
1066 
1067   void computeInfo(CGFunctionInfo &FI) const override;
1068   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1069                     QualType Ty) const override;
1070 
1071   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1072                 bool RetSmallStructInRegABI, bool Win32StructABI,
1073                 unsigned NumRegisterParameters, bool SoftFloatABI)
1074     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1075       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1076       IsWin32StructABI(Win32StructABI),
1077       IsSoftFloatABI(SoftFloatABI),
1078       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1079       DefaultNumRegisterParameters(NumRegisterParameters) {}
1080 
1081   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1082                                     bool asReturnValue) const override {
1083     // LLVM's x86-32 lowering currently only assigns up to three
1084     // integer registers and three fp registers.  Oddly, it'll use up to
1085     // four vector registers for vectors, but those can overlap with the
1086     // scalar registers.
1087     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1088   }
1089 
1090   bool isSwiftErrorInRegister() const override {
1091     // x86-32 lowering does not support passing swifterror in a register.
1092     return false;
1093   }
1094 };
1095 
1096 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1097 public:
1098   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1099                           bool RetSmallStructInRegABI, bool Win32StructABI,
1100                           unsigned NumRegisterParameters, bool SoftFloatABI)
1101       : TargetCodeGenInfo(new X86_32ABIInfo(
1102             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1103             NumRegisterParameters, SoftFloatABI)) {}
1104 
1105   static bool isStructReturnInRegABI(
1106       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1107 
1108   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1109                            CodeGen::CodeGenModule &CGM) const override;
1110 
1111   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1112     // Darwin uses different dwarf register numbers for EH.
1113     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1114     return 4;
1115   }
1116 
1117   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1118                                llvm::Value *Address) const override;
1119 
1120   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1121                                   StringRef Constraint,
1122                                   llvm::Type* Ty) const override {
1123     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1124   }
1125 
1126   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1127                                 std::string &Constraints,
1128                                 std::vector<llvm::Type *> &ResultRegTypes,
1129                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1130                                 std::vector<LValue> &ResultRegDests,
1131                                 std::string &AsmString,
1132                                 unsigned NumOutputs) const override;
1133 
1134   llvm::Constant *
1135   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1136     unsigned Sig = (0xeb << 0) |  // jmp rel8
1137                    (0x06 << 8) |  //           .+0x08
1138                    ('v' << 16) |
1139                    ('2' << 24);
1140     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1141   }
1142 
1143   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1144     return "movl\t%ebp, %ebp"
1145            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1146   }
1147 };
1148 
1149 }
1150 
1151 /// Rewrite input constraint references after adding some output constraints.
1152 /// In the case where there is one output and one input and we add one output,
1153 /// we need to replace all operand references greater than or equal to 1:
1154 ///     mov $0, $1
1155 ///     mov eax, $1
1156 /// The result will be:
1157 ///     mov $0, $2
1158 ///     mov eax, $2
1159 static void rewriteInputConstraintReferences(unsigned FirstIn,
1160                                              unsigned NumNewOuts,
1161                                              std::string &AsmString) {
1162   std::string Buf;
1163   llvm::raw_string_ostream OS(Buf);
1164   size_t Pos = 0;
1165   while (Pos < AsmString.size()) {
1166     size_t DollarStart = AsmString.find('$', Pos);
1167     if (DollarStart == std::string::npos)
1168       DollarStart = AsmString.size();
1169     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1170     if (DollarEnd == std::string::npos)
1171       DollarEnd = AsmString.size();
1172     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1173     Pos = DollarEnd;
1174     size_t NumDollars = DollarEnd - DollarStart;
1175     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1176       // We have an operand reference.
1177       size_t DigitStart = Pos;
1178       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1179       if (DigitEnd == std::string::npos)
1180         DigitEnd = AsmString.size();
1181       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1182       unsigned OperandIndex;
1183       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1184         if (OperandIndex >= FirstIn)
1185           OperandIndex += NumNewOuts;
1186         OS << OperandIndex;
1187       } else {
1188         OS << OperandStr;
1189       }
1190       Pos = DigitEnd;
1191     }
1192   }
1193   AsmString = std::move(OS.str());
1194 }
1195 
1196 /// Add output constraints for EAX:EDX because they are return registers.
1197 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1198     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1199     std::vector<llvm::Type *> &ResultRegTypes,
1200     std::vector<llvm::Type *> &ResultTruncRegTypes,
1201     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1202     unsigned NumOutputs) const {
1203   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1204 
1205   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1206   // larger.
1207   if (!Constraints.empty())
1208     Constraints += ',';
1209   if (RetWidth <= 32) {
1210     Constraints += "={eax}";
1211     ResultRegTypes.push_back(CGF.Int32Ty);
1212   } else {
1213     // Use the 'A' constraint for EAX:EDX.
1214     Constraints += "=A";
1215     ResultRegTypes.push_back(CGF.Int64Ty);
1216   }
1217 
1218   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1219   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1220   ResultTruncRegTypes.push_back(CoerceTy);
1221 
1222   // Coerce the integer by bitcasting the return slot pointer.
1223   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1224                                                   CoerceTy->getPointerTo()));
1225   ResultRegDests.push_back(ReturnSlot);
1226 
1227   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1228 }
1229 
1230 /// shouldReturnTypeInRegister - Determine if the given type should be
1231 /// returned in a register (for the Darwin and MCU ABI).
1232 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1233                                                ASTContext &Context) const {
1234   uint64_t Size = Context.getTypeSize(Ty);
1235 
1236   // For i386, type must be register sized.
1237   // For the MCU ABI, it only needs to be <= 8-byte
1238   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1239    return false;
1240 
1241   if (Ty->isVectorType()) {
1242     // 64- and 128- bit vectors inside structures are not returned in
1243     // registers.
1244     if (Size == 64 || Size == 128)
1245       return false;
1246 
1247     return true;
1248   }
1249 
1250   // If this is a builtin, pointer, enum, complex type, member pointer, or
1251   // member function pointer it is ok.
1252   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1253       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1254       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1255     return true;
1256 
1257   // Arrays are treated like records.
1258   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1259     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1260 
1261   // Otherwise, it must be a record type.
1262   const RecordType *RT = Ty->getAs<RecordType>();
1263   if (!RT) return false;
1264 
1265   // FIXME: Traverse bases here too.
1266 
1267   // Structure types are passed in register if all fields would be
1268   // passed in a register.
1269   for (const auto *FD : RT->getDecl()->fields()) {
1270     // Empty fields are ignored.
1271     if (isEmptyField(Context, FD, true))
1272       continue;
1273 
1274     // Check fields recursively.
1275     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1276       return false;
1277   }
1278   return true;
1279 }
1280 
1281 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1282   // Treat complex types as the element type.
1283   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1284     Ty = CTy->getElementType();
1285 
1286   // Check for a type which we know has a simple scalar argument-passing
1287   // convention without any padding.  (We're specifically looking for 32
1288   // and 64-bit integer and integer-equivalents, float, and double.)
1289   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1290       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1291     return false;
1292 
1293   uint64_t Size = Context.getTypeSize(Ty);
1294   return Size == 32 || Size == 64;
1295 }
1296 
1297 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1298                           uint64_t &Size) {
1299   for (const auto *FD : RD->fields()) {
1300     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1301     // argument is smaller than 32-bits, expanding the struct will create
1302     // alignment padding.
1303     if (!is32Or64BitBasicType(FD->getType(), Context))
1304       return false;
1305 
1306     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1307     // how to expand them yet, and the predicate for telling if a bitfield still
1308     // counts as "basic" is more complicated than what we were doing previously.
1309     if (FD->isBitField())
1310       return false;
1311 
1312     Size += Context.getTypeSize(FD->getType());
1313   }
1314   return true;
1315 }
1316 
1317 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1318                                  uint64_t &Size) {
1319   // Don't do this if there are any non-empty bases.
1320   for (const CXXBaseSpecifier &Base : RD->bases()) {
1321     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1322                               Size))
1323       return false;
1324   }
1325   if (!addFieldSizes(Context, RD, Size))
1326     return false;
1327   return true;
1328 }
1329 
1330 /// Test whether an argument type which is to be passed indirectly (on the
1331 /// stack) would have the equivalent layout if it was expanded into separate
1332 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1333 /// optimizations.
1334 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1335   // We can only expand structure types.
1336   const RecordType *RT = Ty->getAs<RecordType>();
1337   if (!RT)
1338     return false;
1339   const RecordDecl *RD = RT->getDecl();
1340   uint64_t Size = 0;
1341   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1342     if (!IsWin32StructABI) {
1343       // On non-Windows, we have to conservatively match our old bitcode
1344       // prototypes in order to be ABI-compatible at the bitcode level.
1345       if (!CXXRD->isCLike())
1346         return false;
1347     } else {
1348       // Don't do this for dynamic classes.
1349       if (CXXRD->isDynamicClass())
1350         return false;
1351     }
1352     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1353       return false;
1354   } else {
1355     if (!addFieldSizes(getContext(), RD, Size))
1356       return false;
1357   }
1358 
1359   // We can do this if there was no alignment padding.
1360   return Size == getContext().getTypeSize(Ty);
1361 }
1362 
1363 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1364   // If the return value is indirect, then the hidden argument is consuming one
1365   // integer register.
1366   if (State.FreeRegs) {
1367     --State.FreeRegs;
1368     if (!IsMCUABI)
1369       return getNaturalAlignIndirectInReg(RetTy);
1370   }
1371   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1372 }
1373 
1374 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1375                                              CCState &State) const {
1376   if (RetTy->isVoidType())
1377     return ABIArgInfo::getIgnore();
1378 
1379   const Type *Base = nullptr;
1380   uint64_t NumElts = 0;
1381   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1382        State.CC == llvm::CallingConv::X86_RegCall) &&
1383       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1384     // The LLVM struct type for such an aggregate should lower properly.
1385     return ABIArgInfo::getDirect();
1386   }
1387 
1388   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1389     // On Darwin, some vectors are returned in registers.
1390     if (IsDarwinVectorABI) {
1391       uint64_t Size = getContext().getTypeSize(RetTy);
1392 
1393       // 128-bit vectors are a special case; they are returned in
1394       // registers and we need to make sure to pick a type the LLVM
1395       // backend will like.
1396       if (Size == 128)
1397         return ABIArgInfo::getDirect(llvm::VectorType::get(
1398                   llvm::Type::getInt64Ty(getVMContext()), 2));
1399 
1400       // Always return in register if it fits in a general purpose
1401       // register, or if it is 64 bits and has a single element.
1402       if ((Size == 8 || Size == 16 || Size == 32) ||
1403           (Size == 64 && VT->getNumElements() == 1))
1404         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1405                                                             Size));
1406 
1407       return getIndirectReturnResult(RetTy, State);
1408     }
1409 
1410     return ABIArgInfo::getDirect();
1411   }
1412 
1413   if (isAggregateTypeForABI(RetTy)) {
1414     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1415       // Structures with flexible arrays are always indirect.
1416       if (RT->getDecl()->hasFlexibleArrayMember())
1417         return getIndirectReturnResult(RetTy, State);
1418     }
1419 
1420     // If specified, structs and unions are always indirect.
1421     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1422       return getIndirectReturnResult(RetTy, State);
1423 
1424     // Ignore empty structs/unions.
1425     if (isEmptyRecord(getContext(), RetTy, true))
1426       return ABIArgInfo::getIgnore();
1427 
1428     // Small structures which are register sized are generally returned
1429     // in a register.
1430     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1431       uint64_t Size = getContext().getTypeSize(RetTy);
1432 
1433       // As a special-case, if the struct is a "single-element" struct, and
1434       // the field is of type "float" or "double", return it in a
1435       // floating-point register. (MSVC does not apply this special case.)
1436       // We apply a similar transformation for pointer types to improve the
1437       // quality of the generated IR.
1438       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1439         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1440             || SeltTy->hasPointerRepresentation())
1441           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1442 
1443       // FIXME: We should be able to narrow this integer in cases with dead
1444       // padding.
1445       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1446     }
1447 
1448     return getIndirectReturnResult(RetTy, State);
1449   }
1450 
1451   // Treat an enum type as its underlying type.
1452   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1453     RetTy = EnumTy->getDecl()->getIntegerType();
1454 
1455   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1456                                            : ABIArgInfo::getDirect());
1457 }
1458 
1459 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1460   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1461 }
1462 
1463 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1464   const RecordType *RT = Ty->getAs<RecordType>();
1465   if (!RT)
1466     return 0;
1467   const RecordDecl *RD = RT->getDecl();
1468 
1469   // If this is a C++ record, check the bases first.
1470   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1471     for (const auto &I : CXXRD->bases())
1472       if (!isRecordWithSSEVectorType(Context, I.getType()))
1473         return false;
1474 
1475   for (const auto *i : RD->fields()) {
1476     QualType FT = i->getType();
1477 
1478     if (isSSEVectorType(Context, FT))
1479       return true;
1480 
1481     if (isRecordWithSSEVectorType(Context, FT))
1482       return true;
1483   }
1484 
1485   return false;
1486 }
1487 
1488 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1489                                                  unsigned Align) const {
1490   // Otherwise, if the alignment is less than or equal to the minimum ABI
1491   // alignment, just use the default; the backend will handle this.
1492   if (Align <= MinABIStackAlignInBytes)
1493     return 0; // Use default alignment.
1494 
1495   // On non-Darwin, the stack type alignment is always 4.
1496   if (!IsDarwinVectorABI) {
1497     // Set explicit alignment, since we may need to realign the top.
1498     return MinABIStackAlignInBytes;
1499   }
1500 
1501   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1502   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1503                       isRecordWithSSEVectorType(getContext(), Ty)))
1504     return 16;
1505 
1506   return MinABIStackAlignInBytes;
1507 }
1508 
1509 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1510                                             CCState &State) const {
1511   if (!ByVal) {
1512     if (State.FreeRegs) {
1513       --State.FreeRegs; // Non-byval indirects just use one pointer.
1514       if (!IsMCUABI)
1515         return getNaturalAlignIndirectInReg(Ty);
1516     }
1517     return getNaturalAlignIndirect(Ty, false);
1518   }
1519 
1520   // Compute the byval alignment.
1521   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1522   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1523   if (StackAlign == 0)
1524     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1525 
1526   // If the stack alignment is less than the type alignment, realign the
1527   // argument.
1528   bool Realign = TypeAlign > StackAlign;
1529   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1530                                  /*ByVal=*/true, Realign);
1531 }
1532 
1533 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1534   const Type *T = isSingleElementStruct(Ty, getContext());
1535   if (!T)
1536     T = Ty.getTypePtr();
1537 
1538   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1539     BuiltinType::Kind K = BT->getKind();
1540     if (K == BuiltinType::Float || K == BuiltinType::Double)
1541       return Float;
1542   }
1543   return Integer;
1544 }
1545 
1546 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1547   if (!IsSoftFloatABI) {
1548     Class C = classify(Ty);
1549     if (C == Float)
1550       return false;
1551   }
1552 
1553   unsigned Size = getContext().getTypeSize(Ty);
1554   unsigned SizeInRegs = (Size + 31) / 32;
1555 
1556   if (SizeInRegs == 0)
1557     return false;
1558 
1559   if (!IsMCUABI) {
1560     if (SizeInRegs > State.FreeRegs) {
1561       State.FreeRegs = 0;
1562       return false;
1563     }
1564   } else {
1565     // The MCU psABI allows passing parameters in-reg even if there are
1566     // earlier parameters that are passed on the stack. Also,
1567     // it does not allow passing >8-byte structs in-register,
1568     // even if there are 3 free registers available.
1569     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1570       return false;
1571   }
1572 
1573   State.FreeRegs -= SizeInRegs;
1574   return true;
1575 }
1576 
1577 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1578                                              bool &InReg,
1579                                              bool &NeedsPadding) const {
1580   // On Windows, aggregates other than HFAs are never passed in registers, and
1581   // they do not consume register slots. Homogenous floating-point aggregates
1582   // (HFAs) have already been dealt with at this point.
1583   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1584     return false;
1585 
1586   NeedsPadding = false;
1587   InReg = !IsMCUABI;
1588 
1589   if (!updateFreeRegs(Ty, State))
1590     return false;
1591 
1592   if (IsMCUABI)
1593     return true;
1594 
1595   if (State.CC == llvm::CallingConv::X86_FastCall ||
1596       State.CC == llvm::CallingConv::X86_VectorCall ||
1597       State.CC == llvm::CallingConv::X86_RegCall) {
1598     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1599       NeedsPadding = true;
1600 
1601     return false;
1602   }
1603 
1604   return true;
1605 }
1606 
1607 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1608   if (!updateFreeRegs(Ty, State))
1609     return false;
1610 
1611   if (IsMCUABI)
1612     return false;
1613 
1614   if (State.CC == llvm::CallingConv::X86_FastCall ||
1615       State.CC == llvm::CallingConv::X86_VectorCall ||
1616       State.CC == llvm::CallingConv::X86_RegCall) {
1617     if (getContext().getTypeSize(Ty) > 32)
1618       return false;
1619 
1620     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1621         Ty->isReferenceType());
1622   }
1623 
1624   return true;
1625 }
1626 
1627 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1628                                                CCState &State) const {
1629   // FIXME: Set alignment on indirect arguments.
1630 
1631   Ty = useFirstFieldIfTransparentUnion(Ty);
1632 
1633   // Check with the C++ ABI first.
1634   const RecordType *RT = Ty->getAs<RecordType>();
1635   if (RT) {
1636     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1637     if (RAA == CGCXXABI::RAA_Indirect) {
1638       return getIndirectResult(Ty, false, State);
1639     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1640       // The field index doesn't matter, we'll fix it up later.
1641       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1642     }
1643   }
1644 
1645   // Regcall uses the concept of a homogenous vector aggregate, similar
1646   // to other targets.
1647   const Type *Base = nullptr;
1648   uint64_t NumElts = 0;
1649   if (State.CC == llvm::CallingConv::X86_RegCall &&
1650       isHomogeneousAggregate(Ty, Base, NumElts)) {
1651 
1652     if (State.FreeSSERegs >= NumElts) {
1653       State.FreeSSERegs -= NumElts;
1654       if (Ty->isBuiltinType() || Ty->isVectorType())
1655         return ABIArgInfo::getDirect();
1656       return ABIArgInfo::getExpand();
1657     }
1658     return getIndirectResult(Ty, /*ByVal=*/false, State);
1659   }
1660 
1661   if (isAggregateTypeForABI(Ty)) {
1662     // Structures with flexible arrays are always indirect.
1663     // FIXME: This should not be byval!
1664     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1665       return getIndirectResult(Ty, true, State);
1666 
1667     // Ignore empty structs/unions on non-Windows.
1668     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1669       return ABIArgInfo::getIgnore();
1670 
1671     llvm::LLVMContext &LLVMContext = getVMContext();
1672     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1673     bool NeedsPadding = false;
1674     bool InReg;
1675     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1676       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1677       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1678       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1679       if (InReg)
1680         return ABIArgInfo::getDirectInReg(Result);
1681       else
1682         return ABIArgInfo::getDirect(Result);
1683     }
1684     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1685 
1686     // Expand small (<= 128-bit) record types when we know that the stack layout
1687     // of those arguments will match the struct. This is important because the
1688     // LLVM backend isn't smart enough to remove byval, which inhibits many
1689     // optimizations.
1690     // Don't do this for the MCU if there are still free integer registers
1691     // (see X86_64 ABI for full explanation).
1692     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1693         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1694       return ABIArgInfo::getExpandWithPadding(
1695           State.CC == llvm::CallingConv::X86_FastCall ||
1696               State.CC == llvm::CallingConv::X86_VectorCall ||
1697               State.CC == llvm::CallingConv::X86_RegCall,
1698           PaddingType);
1699 
1700     return getIndirectResult(Ty, true, State);
1701   }
1702 
1703   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1704     // On Darwin, some vectors are passed in memory, we handle this by passing
1705     // it as an i8/i16/i32/i64.
1706     if (IsDarwinVectorABI) {
1707       uint64_t Size = getContext().getTypeSize(Ty);
1708       if ((Size == 8 || Size == 16 || Size == 32) ||
1709           (Size == 64 && VT->getNumElements() == 1))
1710         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1711                                                             Size));
1712     }
1713 
1714     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1715       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1716 
1717     return ABIArgInfo::getDirect();
1718   }
1719 
1720 
1721   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1722     Ty = EnumTy->getDecl()->getIntegerType();
1723 
1724   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1725 
1726   if (Ty->isPromotableIntegerType()) {
1727     if (InReg)
1728       return ABIArgInfo::getExtendInReg(Ty);
1729     return ABIArgInfo::getExtend(Ty);
1730   }
1731 
1732   if (InReg)
1733     return ABIArgInfo::getDirectInReg();
1734   return ABIArgInfo::getDirect();
1735 }
1736 
1737 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1738                                           bool &UsedInAlloca) const {
1739   // Vectorcall x86 works subtly different than in x64, so the format is
1740   // a bit different than the x64 version.  First, all vector types (not HVAs)
1741   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1742   // This differs from the x64 implementation, where the first 6 by INDEX get
1743   // registers.
1744   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1745   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1746   // first take up the remaining YMM/XMM registers. If insufficient registers
1747   // remain but an integer register (ECX/EDX) is available, it will be passed
1748   // in that, else, on the stack.
1749   for (auto &I : FI.arguments()) {
1750     // First pass do all the vector types.
1751     const Type *Base = nullptr;
1752     uint64_t NumElts = 0;
1753     const QualType& Ty = I.type;
1754     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1755         isHomogeneousAggregate(Ty, Base, NumElts)) {
1756       if (State.FreeSSERegs >= NumElts) {
1757         State.FreeSSERegs -= NumElts;
1758         I.info = ABIArgInfo::getDirect();
1759       } else {
1760         I.info = classifyArgumentType(Ty, State);
1761       }
1762       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1763     }
1764   }
1765 
1766   for (auto &I : FI.arguments()) {
1767     // Second pass, do the rest!
1768     const Type *Base = nullptr;
1769     uint64_t NumElts = 0;
1770     const QualType& Ty = I.type;
1771     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1772 
1773     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1774       // Assign true HVAs (non vector/native FP types).
1775       if (State.FreeSSERegs >= NumElts) {
1776         State.FreeSSERegs -= NumElts;
1777         I.info = getDirectX86Hva();
1778       } else {
1779         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1780       }
1781     } else if (!IsHva) {
1782       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1783       I.info = classifyArgumentType(Ty, State);
1784       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1785     }
1786   }
1787 }
1788 
1789 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1790   CCState State(FI.getCallingConvention());
1791   if (IsMCUABI)
1792     State.FreeRegs = 3;
1793   else if (State.CC == llvm::CallingConv::X86_FastCall)
1794     State.FreeRegs = 2;
1795   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1796     State.FreeRegs = 2;
1797     State.FreeSSERegs = 6;
1798   } else if (FI.getHasRegParm())
1799     State.FreeRegs = FI.getRegParm();
1800   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1801     State.FreeRegs = 5;
1802     State.FreeSSERegs = 8;
1803   } else
1804     State.FreeRegs = DefaultNumRegisterParameters;
1805 
1806   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1807     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1808   } else if (FI.getReturnInfo().isIndirect()) {
1809     // The C++ ABI is not aware of register usage, so we have to check if the
1810     // return value was sret and put it in a register ourselves if appropriate.
1811     if (State.FreeRegs) {
1812       --State.FreeRegs;  // The sret parameter consumes a register.
1813       if (!IsMCUABI)
1814         FI.getReturnInfo().setInReg(true);
1815     }
1816   }
1817 
1818   // The chain argument effectively gives us another free register.
1819   if (FI.isChainCall())
1820     ++State.FreeRegs;
1821 
1822   bool UsedInAlloca = false;
1823   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1824     computeVectorCallArgs(FI, State, UsedInAlloca);
1825   } else {
1826     // If not vectorcall, revert to normal behavior.
1827     for (auto &I : FI.arguments()) {
1828       I.info = classifyArgumentType(I.type, State);
1829       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1830     }
1831   }
1832 
1833   // If we needed to use inalloca for any argument, do a second pass and rewrite
1834   // all the memory arguments to use inalloca.
1835   if (UsedInAlloca)
1836     rewriteWithInAlloca(FI);
1837 }
1838 
1839 void
1840 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1841                                    CharUnits &StackOffset, ABIArgInfo &Info,
1842                                    QualType Type) const {
1843   // Arguments are always 4-byte-aligned.
1844   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1845 
1846   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1847   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1848   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1849   StackOffset += getContext().getTypeSizeInChars(Type);
1850 
1851   // Insert padding bytes to respect alignment.
1852   CharUnits FieldEnd = StackOffset;
1853   StackOffset = FieldEnd.alignTo(FieldAlign);
1854   if (StackOffset != FieldEnd) {
1855     CharUnits NumBytes = StackOffset - FieldEnd;
1856     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1857     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1858     FrameFields.push_back(Ty);
1859   }
1860 }
1861 
1862 static bool isArgInAlloca(const ABIArgInfo &Info) {
1863   // Leave ignored and inreg arguments alone.
1864   switch (Info.getKind()) {
1865   case ABIArgInfo::InAlloca:
1866     return true;
1867   case ABIArgInfo::Indirect:
1868     assert(Info.getIndirectByVal());
1869     return true;
1870   case ABIArgInfo::Ignore:
1871     return false;
1872   case ABIArgInfo::Direct:
1873   case ABIArgInfo::Extend:
1874     if (Info.getInReg())
1875       return false;
1876     return true;
1877   case ABIArgInfo::Expand:
1878   case ABIArgInfo::CoerceAndExpand:
1879     // These are aggregate types which are never passed in registers when
1880     // inalloca is involved.
1881     return true;
1882   }
1883   llvm_unreachable("invalid enum");
1884 }
1885 
1886 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1887   assert(IsWin32StructABI && "inalloca only supported on win32");
1888 
1889   // Build a packed struct type for all of the arguments in memory.
1890   SmallVector<llvm::Type *, 6> FrameFields;
1891 
1892   // The stack alignment is always 4.
1893   CharUnits StackAlign = CharUnits::fromQuantity(4);
1894 
1895   CharUnits StackOffset;
1896   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1897 
1898   // Put 'this' into the struct before 'sret', if necessary.
1899   bool IsThisCall =
1900       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1901   ABIArgInfo &Ret = FI.getReturnInfo();
1902   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1903       isArgInAlloca(I->info)) {
1904     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1905     ++I;
1906   }
1907 
1908   // Put the sret parameter into the inalloca struct if it's in memory.
1909   if (Ret.isIndirect() && !Ret.getInReg()) {
1910     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1911     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1912     // On Windows, the hidden sret parameter is always returned in eax.
1913     Ret.setInAllocaSRet(IsWin32StructABI);
1914   }
1915 
1916   // Skip the 'this' parameter in ecx.
1917   if (IsThisCall)
1918     ++I;
1919 
1920   // Put arguments passed in memory into the struct.
1921   for (; I != E; ++I) {
1922     if (isArgInAlloca(I->info))
1923       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1924   }
1925 
1926   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1927                                         /*isPacked=*/true),
1928                   StackAlign);
1929 }
1930 
1931 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1932                                  Address VAListAddr, QualType Ty) const {
1933 
1934   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1935 
1936   // x86-32 changes the alignment of certain arguments on the stack.
1937   //
1938   // Just messing with TypeInfo like this works because we never pass
1939   // anything indirectly.
1940   TypeInfo.second = CharUnits::fromQuantity(
1941                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1942 
1943   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1944                           TypeInfo, CharUnits::fromQuantity(4),
1945                           /*AllowHigherAlign*/ true);
1946 }
1947 
1948 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1949     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1950   assert(Triple.getArch() == llvm::Triple::x86);
1951 
1952   switch (Opts.getStructReturnConvention()) {
1953   case CodeGenOptions::SRCK_Default:
1954     break;
1955   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1956     return false;
1957   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1958     return true;
1959   }
1960 
1961   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1962     return true;
1963 
1964   switch (Triple.getOS()) {
1965   case llvm::Triple::DragonFly:
1966   case llvm::Triple::FreeBSD:
1967   case llvm::Triple::OpenBSD:
1968   case llvm::Triple::Win32:
1969     return true;
1970   default:
1971     return false;
1972   }
1973 }
1974 
1975 void X86_32TargetCodeGenInfo::setTargetAttributes(
1976     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1977   if (GV->isDeclaration())
1978     return;
1979   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1980     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1981       llvm::Function *Fn = cast<llvm::Function>(GV);
1982       Fn->addFnAttr("stackrealign");
1983     }
1984     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1985       llvm::Function *Fn = cast<llvm::Function>(GV);
1986       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1987     }
1988   }
1989 }
1990 
1991 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1992                                                CodeGen::CodeGenFunction &CGF,
1993                                                llvm::Value *Address) const {
1994   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1995 
1996   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1997 
1998   // 0-7 are the eight integer registers;  the order is different
1999   //   on Darwin (for EH), but the range is the same.
2000   // 8 is %eip.
2001   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2002 
2003   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2004     // 12-16 are st(0..4).  Not sure why we stop at 4.
2005     // These have size 16, which is sizeof(long double) on
2006     // platforms with 8-byte alignment for that type.
2007     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2008     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2009 
2010   } else {
2011     // 9 is %eflags, which doesn't get a size on Darwin for some
2012     // reason.
2013     Builder.CreateAlignedStore(
2014         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2015                                CharUnits::One());
2016 
2017     // 11-16 are st(0..5).  Not sure why we stop at 5.
2018     // These have size 12, which is sizeof(long double) on
2019     // platforms with 4-byte alignment for that type.
2020     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2021     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2022   }
2023 
2024   return false;
2025 }
2026 
2027 //===----------------------------------------------------------------------===//
2028 // X86-64 ABI Implementation
2029 //===----------------------------------------------------------------------===//
2030 
2031 
2032 namespace {
2033 /// The AVX ABI level for X86 targets.
2034 enum class X86AVXABILevel {
2035   None,
2036   AVX,
2037   AVX512
2038 };
2039 
2040 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2041 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2042   switch (AVXLevel) {
2043   case X86AVXABILevel::AVX512:
2044     return 512;
2045   case X86AVXABILevel::AVX:
2046     return 256;
2047   case X86AVXABILevel::None:
2048     return 128;
2049   }
2050   llvm_unreachable("Unknown AVXLevel");
2051 }
2052 
2053 /// X86_64ABIInfo - The X86_64 ABI information.
2054 class X86_64ABIInfo : public SwiftABIInfo {
2055   enum Class {
2056     Integer = 0,
2057     SSE,
2058     SSEUp,
2059     X87,
2060     X87Up,
2061     ComplexX87,
2062     NoClass,
2063     Memory
2064   };
2065 
2066   /// merge - Implement the X86_64 ABI merging algorithm.
2067   ///
2068   /// Merge an accumulating classification \arg Accum with a field
2069   /// classification \arg Field.
2070   ///
2071   /// \param Accum - The accumulating classification. This should
2072   /// always be either NoClass or the result of a previous merge
2073   /// call. In addition, this should never be Memory (the caller
2074   /// should just return Memory for the aggregate).
2075   static Class merge(Class Accum, Class Field);
2076 
2077   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2078   ///
2079   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2080   /// final MEMORY or SSE classes when necessary.
2081   ///
2082   /// \param AggregateSize - The size of the current aggregate in
2083   /// the classification process.
2084   ///
2085   /// \param Lo - The classification for the parts of the type
2086   /// residing in the low word of the containing object.
2087   ///
2088   /// \param Hi - The classification for the parts of the type
2089   /// residing in the higher words of the containing object.
2090   ///
2091   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2092 
2093   /// classify - Determine the x86_64 register classes in which the
2094   /// given type T should be passed.
2095   ///
2096   /// \param Lo - The classification for the parts of the type
2097   /// residing in the low word of the containing object.
2098   ///
2099   /// \param Hi - The classification for the parts of the type
2100   /// residing in the high word of the containing object.
2101   ///
2102   /// \param OffsetBase - The bit offset of this type in the
2103   /// containing object.  Some parameters are classified different
2104   /// depending on whether they straddle an eightbyte boundary.
2105   ///
2106   /// \param isNamedArg - Whether the argument in question is a "named"
2107   /// argument, as used in AMD64-ABI 3.5.7.
2108   ///
2109   /// If a word is unused its result will be NoClass; if a type should
2110   /// be passed in Memory then at least the classification of \arg Lo
2111   /// will be Memory.
2112   ///
2113   /// The \arg Lo class will be NoClass iff the argument is ignored.
2114   ///
2115   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2116   /// also be ComplexX87.
2117   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2118                 bool isNamedArg) const;
2119 
2120   llvm::Type *GetByteVectorType(QualType Ty) const;
2121   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2122                                  unsigned IROffset, QualType SourceTy,
2123                                  unsigned SourceOffset) const;
2124   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2125                                      unsigned IROffset, QualType SourceTy,
2126                                      unsigned SourceOffset) const;
2127 
2128   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2129   /// such that the argument will be returned in memory.
2130   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2131 
2132   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2133   /// such that the argument will be passed in memory.
2134   ///
2135   /// \param freeIntRegs - The number of free integer registers remaining
2136   /// available.
2137   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2138 
2139   ABIArgInfo classifyReturnType(QualType RetTy) const;
2140 
2141   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2142                                   unsigned &neededInt, unsigned &neededSSE,
2143                                   bool isNamedArg) const;
2144 
2145   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2146                                        unsigned &NeededSSE) const;
2147 
2148   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2149                                            unsigned &NeededSSE) const;
2150 
2151   bool IsIllegalVectorType(QualType Ty) const;
2152 
2153   /// The 0.98 ABI revision clarified a lot of ambiguities,
2154   /// unfortunately in ways that were not always consistent with
2155   /// certain previous compilers.  In particular, platforms which
2156   /// required strict binary compatibility with older versions of GCC
2157   /// may need to exempt themselves.
2158   bool honorsRevision0_98() const {
2159     return !getTarget().getTriple().isOSDarwin();
2160   }
2161 
2162   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2163   /// classify it as INTEGER (for compatibility with older clang compilers).
2164   bool classifyIntegerMMXAsSSE() const {
2165     // Clang <= 3.8 did not do this.
2166     if (getContext().getLangOpts().getClangABICompat() <=
2167         LangOptions::ClangABI::Ver3_8)
2168       return false;
2169 
2170     const llvm::Triple &Triple = getTarget().getTriple();
2171     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2172       return false;
2173     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2174       return false;
2175     return true;
2176   }
2177 
2178   X86AVXABILevel AVXLevel;
2179   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2180   // 64-bit hardware.
2181   bool Has64BitPointers;
2182 
2183 public:
2184   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2185       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2186       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2187   }
2188 
2189   bool isPassedUsingAVXType(QualType type) const {
2190     unsigned neededInt, neededSSE;
2191     // The freeIntRegs argument doesn't matter here.
2192     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2193                                            /*isNamedArg*/true);
2194     if (info.isDirect()) {
2195       llvm::Type *ty = info.getCoerceToType();
2196       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2197         return (vectorTy->getBitWidth() > 128);
2198     }
2199     return false;
2200   }
2201 
2202   void computeInfo(CGFunctionInfo &FI) const override;
2203 
2204   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2205                     QualType Ty) const override;
2206   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2207                       QualType Ty) const override;
2208 
2209   bool has64BitPointers() const {
2210     return Has64BitPointers;
2211   }
2212 
2213   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2214                                     bool asReturnValue) const override {
2215     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2216   }
2217   bool isSwiftErrorInRegister() const override {
2218     return true;
2219   }
2220 };
2221 
2222 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2223 class WinX86_64ABIInfo : public SwiftABIInfo {
2224 public:
2225   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2226       : SwiftABIInfo(CGT),
2227         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2228 
2229   void computeInfo(CGFunctionInfo &FI) const override;
2230 
2231   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2232                     QualType Ty) const override;
2233 
2234   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2235     // FIXME: Assumes vectorcall is in use.
2236     return isX86VectorTypeForVectorCall(getContext(), Ty);
2237   }
2238 
2239   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2240                                          uint64_t NumMembers) const override {
2241     // FIXME: Assumes vectorcall is in use.
2242     return isX86VectorCallAggregateSmallEnough(NumMembers);
2243   }
2244 
2245   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2246                                     bool asReturnValue) const override {
2247     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2248   }
2249 
2250   bool isSwiftErrorInRegister() const override {
2251     return true;
2252   }
2253 
2254 private:
2255   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2256                       bool IsVectorCall, bool IsRegCall) const;
2257   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2258                                       const ABIArgInfo &current) const;
2259   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2260                              bool IsVectorCall, bool IsRegCall) const;
2261 
2262     bool IsMingw64;
2263 };
2264 
2265 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2266 public:
2267   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2268       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2269 
2270   const X86_64ABIInfo &getABIInfo() const {
2271     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2272   }
2273 
2274   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2275   /// the autoreleaseRV/retainRV optimization.
2276   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2277     return true;
2278   }
2279 
2280   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2281     return 7;
2282   }
2283 
2284   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2285                                llvm::Value *Address) const override {
2286     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2287 
2288     // 0-15 are the 16 integer registers.
2289     // 16 is %rip.
2290     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2291     return false;
2292   }
2293 
2294   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2295                                   StringRef Constraint,
2296                                   llvm::Type* Ty) const override {
2297     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2298   }
2299 
2300   bool isNoProtoCallVariadic(const CallArgList &args,
2301                              const FunctionNoProtoType *fnType) const override {
2302     // The default CC on x86-64 sets %al to the number of SSA
2303     // registers used, and GCC sets this when calling an unprototyped
2304     // function, so we override the default behavior.  However, don't do
2305     // that when AVX types are involved: the ABI explicitly states it is
2306     // undefined, and it doesn't work in practice because of how the ABI
2307     // defines varargs anyway.
2308     if (fnType->getCallConv() == CC_C) {
2309       bool HasAVXType = false;
2310       for (CallArgList::const_iterator
2311              it = args.begin(), ie = args.end(); it != ie; ++it) {
2312         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2313           HasAVXType = true;
2314           break;
2315         }
2316       }
2317 
2318       if (!HasAVXType)
2319         return true;
2320     }
2321 
2322     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2323   }
2324 
2325   llvm::Constant *
2326   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2327     unsigned Sig = (0xeb << 0) | // jmp rel8
2328                    (0x06 << 8) | //           .+0x08
2329                    ('v' << 16) |
2330                    ('2' << 24);
2331     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2332   }
2333 
2334   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2335                            CodeGen::CodeGenModule &CGM) const override {
2336     if (GV->isDeclaration())
2337       return;
2338     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2339       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2340         llvm::Function *Fn = cast<llvm::Function>(GV);
2341         Fn->addFnAttr("stackrealign");
2342       }
2343       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2344         llvm::Function *Fn = cast<llvm::Function>(GV);
2345         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2346       }
2347     }
2348   }
2349 };
2350 
2351 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2352   // If the argument does not end in .lib, automatically add the suffix.
2353   // If the argument contains a space, enclose it in quotes.
2354   // This matches the behavior of MSVC.
2355   bool Quote = (Lib.find(" ") != StringRef::npos);
2356   std::string ArgStr = Quote ? "\"" : "";
2357   ArgStr += Lib;
2358   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2359     ArgStr += ".lib";
2360   ArgStr += Quote ? "\"" : "";
2361   return ArgStr;
2362 }
2363 
2364 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2365 public:
2366   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2367         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2368         unsigned NumRegisterParameters)
2369     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2370         Win32StructABI, NumRegisterParameters, false) {}
2371 
2372   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2373                            CodeGen::CodeGenModule &CGM) const override;
2374 
2375   void getDependentLibraryOption(llvm::StringRef Lib,
2376                                  llvm::SmallString<24> &Opt) const override {
2377     Opt = "/DEFAULTLIB:";
2378     Opt += qualifyWindowsLibrary(Lib);
2379   }
2380 
2381   void getDetectMismatchOption(llvm::StringRef Name,
2382                                llvm::StringRef Value,
2383                                llvm::SmallString<32> &Opt) const override {
2384     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2385   }
2386 };
2387 
2388 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2389                                           CodeGen::CodeGenModule &CGM) {
2390   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2391 
2392     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2393       Fn->addFnAttr("stack-probe-size",
2394                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2395     if (CGM.getCodeGenOpts().NoStackArgProbe)
2396       Fn->addFnAttr("no-stack-arg-probe");
2397   }
2398 }
2399 
2400 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2401     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2402   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2403   if (GV->isDeclaration())
2404     return;
2405   addStackProbeTargetAttributes(D, GV, CGM);
2406 }
2407 
2408 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2409 public:
2410   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2411                              X86AVXABILevel AVXLevel)
2412       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2413 
2414   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2415                            CodeGen::CodeGenModule &CGM) const override;
2416 
2417   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2418     return 7;
2419   }
2420 
2421   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2422                                llvm::Value *Address) const override {
2423     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2424 
2425     // 0-15 are the 16 integer registers.
2426     // 16 is %rip.
2427     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2428     return false;
2429   }
2430 
2431   void getDependentLibraryOption(llvm::StringRef Lib,
2432                                  llvm::SmallString<24> &Opt) const override {
2433     Opt = "/DEFAULTLIB:";
2434     Opt += qualifyWindowsLibrary(Lib);
2435   }
2436 
2437   void getDetectMismatchOption(llvm::StringRef Name,
2438                                llvm::StringRef Value,
2439                                llvm::SmallString<32> &Opt) const override {
2440     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2441   }
2442 };
2443 
2444 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2445     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2446   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2447   if (GV->isDeclaration())
2448     return;
2449   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2450     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2451       llvm::Function *Fn = cast<llvm::Function>(GV);
2452       Fn->addFnAttr("stackrealign");
2453     }
2454     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2455       llvm::Function *Fn = cast<llvm::Function>(GV);
2456       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2457     }
2458   }
2459 
2460   addStackProbeTargetAttributes(D, GV, CGM);
2461 }
2462 }
2463 
2464 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2465                               Class &Hi) const {
2466   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2467   //
2468   // (a) If one of the classes is Memory, the whole argument is passed in
2469   //     memory.
2470   //
2471   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2472   //     memory.
2473   //
2474   // (c) If the size of the aggregate exceeds two eightbytes and the first
2475   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2476   //     argument is passed in memory. NOTE: This is necessary to keep the
2477   //     ABI working for processors that don't support the __m256 type.
2478   //
2479   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2480   //
2481   // Some of these are enforced by the merging logic.  Others can arise
2482   // only with unions; for example:
2483   //   union { _Complex double; unsigned; }
2484   //
2485   // Note that clauses (b) and (c) were added in 0.98.
2486   //
2487   if (Hi == Memory)
2488     Lo = Memory;
2489   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2490     Lo = Memory;
2491   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2492     Lo = Memory;
2493   if (Hi == SSEUp && Lo != SSE)
2494     Hi = SSE;
2495 }
2496 
2497 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2498   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2499   // classified recursively so that always two fields are
2500   // considered. The resulting class is calculated according to
2501   // the classes of the fields in the eightbyte:
2502   //
2503   // (a) If both classes are equal, this is the resulting class.
2504   //
2505   // (b) If one of the classes is NO_CLASS, the resulting class is
2506   // the other class.
2507   //
2508   // (c) If one of the classes is MEMORY, the result is the MEMORY
2509   // class.
2510   //
2511   // (d) If one of the classes is INTEGER, the result is the
2512   // INTEGER.
2513   //
2514   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2515   // MEMORY is used as class.
2516   //
2517   // (f) Otherwise class SSE is used.
2518 
2519   // Accum should never be memory (we should have returned) or
2520   // ComplexX87 (because this cannot be passed in a structure).
2521   assert((Accum != Memory && Accum != ComplexX87) &&
2522          "Invalid accumulated classification during merge.");
2523   if (Accum == Field || Field == NoClass)
2524     return Accum;
2525   if (Field == Memory)
2526     return Memory;
2527   if (Accum == NoClass)
2528     return Field;
2529   if (Accum == Integer || Field == Integer)
2530     return Integer;
2531   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2532       Accum == X87 || Accum == X87Up)
2533     return Memory;
2534   return SSE;
2535 }
2536 
2537 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2538                              Class &Lo, Class &Hi, bool isNamedArg) const {
2539   // FIXME: This code can be simplified by introducing a simple value class for
2540   // Class pairs with appropriate constructor methods for the various
2541   // situations.
2542 
2543   // FIXME: Some of the split computations are wrong; unaligned vectors
2544   // shouldn't be passed in registers for example, so there is no chance they
2545   // can straddle an eightbyte. Verify & simplify.
2546 
2547   Lo = Hi = NoClass;
2548 
2549   Class &Current = OffsetBase < 64 ? Lo : Hi;
2550   Current = Memory;
2551 
2552   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2553     BuiltinType::Kind k = BT->getKind();
2554 
2555     if (k == BuiltinType::Void) {
2556       Current = NoClass;
2557     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2558       Lo = Integer;
2559       Hi = Integer;
2560     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2561       Current = Integer;
2562     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2563       Current = SSE;
2564     } else if (k == BuiltinType::LongDouble) {
2565       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2566       if (LDF == &llvm::APFloat::IEEEquad()) {
2567         Lo = SSE;
2568         Hi = SSEUp;
2569       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2570         Lo = X87;
2571         Hi = X87Up;
2572       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2573         Current = SSE;
2574       } else
2575         llvm_unreachable("unexpected long double representation!");
2576     }
2577     // FIXME: _Decimal32 and _Decimal64 are SSE.
2578     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2579     return;
2580   }
2581 
2582   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2583     // Classify the underlying integer type.
2584     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2585     return;
2586   }
2587 
2588   if (Ty->hasPointerRepresentation()) {
2589     Current = Integer;
2590     return;
2591   }
2592 
2593   if (Ty->isMemberPointerType()) {
2594     if (Ty->isMemberFunctionPointerType()) {
2595       if (Has64BitPointers) {
2596         // If Has64BitPointers, this is an {i64, i64}, so classify both
2597         // Lo and Hi now.
2598         Lo = Hi = Integer;
2599       } else {
2600         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2601         // straddles an eightbyte boundary, Hi should be classified as well.
2602         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2603         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2604         if (EB_FuncPtr != EB_ThisAdj) {
2605           Lo = Hi = Integer;
2606         } else {
2607           Current = Integer;
2608         }
2609       }
2610     } else {
2611       Current = Integer;
2612     }
2613     return;
2614   }
2615 
2616   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2617     uint64_t Size = getContext().getTypeSize(VT);
2618     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2619       // gcc passes the following as integer:
2620       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2621       // 2 bytes - <2 x char>, <1 x short>
2622       // 1 byte  - <1 x char>
2623       Current = Integer;
2624 
2625       // If this type crosses an eightbyte boundary, it should be
2626       // split.
2627       uint64_t EB_Lo = (OffsetBase) / 64;
2628       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2629       if (EB_Lo != EB_Hi)
2630         Hi = Lo;
2631     } else if (Size == 64) {
2632       QualType ElementType = VT->getElementType();
2633 
2634       // gcc passes <1 x double> in memory. :(
2635       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2636         return;
2637 
2638       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2639       // pass them as integer.  For platforms where clang is the de facto
2640       // platform compiler, we must continue to use integer.
2641       if (!classifyIntegerMMXAsSSE() &&
2642           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2643            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2644            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2645            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2646         Current = Integer;
2647       else
2648         Current = SSE;
2649 
2650       // If this type crosses an eightbyte boundary, it should be
2651       // split.
2652       if (OffsetBase && OffsetBase != 64)
2653         Hi = Lo;
2654     } else if (Size == 128 ||
2655                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2656       // Arguments of 256-bits are split into four eightbyte chunks. The
2657       // least significant one belongs to class SSE and all the others to class
2658       // SSEUP. The original Lo and Hi design considers that types can't be
2659       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2660       // This design isn't correct for 256-bits, but since there're no cases
2661       // where the upper parts would need to be inspected, avoid adding
2662       // complexity and just consider Hi to match the 64-256 part.
2663       //
2664       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2665       // registers if they are "named", i.e. not part of the "..." of a
2666       // variadic function.
2667       //
2668       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2669       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2670       Lo = SSE;
2671       Hi = SSEUp;
2672     }
2673     return;
2674   }
2675 
2676   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2677     QualType ET = getContext().getCanonicalType(CT->getElementType());
2678 
2679     uint64_t Size = getContext().getTypeSize(Ty);
2680     if (ET->isIntegralOrEnumerationType()) {
2681       if (Size <= 64)
2682         Current = Integer;
2683       else if (Size <= 128)
2684         Lo = Hi = Integer;
2685     } else if (ET == getContext().FloatTy) {
2686       Current = SSE;
2687     } else if (ET == getContext().DoubleTy) {
2688       Lo = Hi = SSE;
2689     } else if (ET == getContext().LongDoubleTy) {
2690       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2691       if (LDF == &llvm::APFloat::IEEEquad())
2692         Current = Memory;
2693       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2694         Current = ComplexX87;
2695       else if (LDF == &llvm::APFloat::IEEEdouble())
2696         Lo = Hi = SSE;
2697       else
2698         llvm_unreachable("unexpected long double representation!");
2699     }
2700 
2701     // If this complex type crosses an eightbyte boundary then it
2702     // should be split.
2703     uint64_t EB_Real = (OffsetBase) / 64;
2704     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2705     if (Hi == NoClass && EB_Real != EB_Imag)
2706       Hi = Lo;
2707 
2708     return;
2709   }
2710 
2711   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2712     // Arrays are treated like structures.
2713 
2714     uint64_t Size = getContext().getTypeSize(Ty);
2715 
2716     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2717     // than eight eightbytes, ..., it has class MEMORY.
2718     if (Size > 512)
2719       return;
2720 
2721     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2722     // fields, it has class MEMORY.
2723     //
2724     // Only need to check alignment of array base.
2725     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2726       return;
2727 
2728     // Otherwise implement simplified merge. We could be smarter about
2729     // this, but it isn't worth it and would be harder to verify.
2730     Current = NoClass;
2731     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2732     uint64_t ArraySize = AT->getSize().getZExtValue();
2733 
2734     // The only case a 256-bit wide vector could be used is when the array
2735     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2736     // to work for sizes wider than 128, early check and fallback to memory.
2737     //
2738     if (Size > 128 &&
2739         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2740       return;
2741 
2742     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2743       Class FieldLo, FieldHi;
2744       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2745       Lo = merge(Lo, FieldLo);
2746       Hi = merge(Hi, FieldHi);
2747       if (Lo == Memory || Hi == Memory)
2748         break;
2749     }
2750 
2751     postMerge(Size, Lo, Hi);
2752     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2753     return;
2754   }
2755 
2756   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2757     uint64_t Size = getContext().getTypeSize(Ty);
2758 
2759     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2760     // than eight eightbytes, ..., it has class MEMORY.
2761     if (Size > 512)
2762       return;
2763 
2764     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2765     // copy constructor or a non-trivial destructor, it is passed by invisible
2766     // reference.
2767     if (getRecordArgABI(RT, getCXXABI()))
2768       return;
2769 
2770     const RecordDecl *RD = RT->getDecl();
2771 
2772     // Assume variable sized types are passed in memory.
2773     if (RD->hasFlexibleArrayMember())
2774       return;
2775 
2776     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2777 
2778     // Reset Lo class, this will be recomputed.
2779     Current = NoClass;
2780 
2781     // If this is a C++ record, classify the bases first.
2782     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2783       for (const auto &I : CXXRD->bases()) {
2784         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2785                "Unexpected base class!");
2786         const CXXRecordDecl *Base =
2787           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2788 
2789         // Classify this field.
2790         //
2791         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2792         // single eightbyte, each is classified separately. Each eightbyte gets
2793         // initialized to class NO_CLASS.
2794         Class FieldLo, FieldHi;
2795         uint64_t Offset =
2796           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2797         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2798         Lo = merge(Lo, FieldLo);
2799         Hi = merge(Hi, FieldHi);
2800         if (Lo == Memory || Hi == Memory) {
2801           postMerge(Size, Lo, Hi);
2802           return;
2803         }
2804       }
2805     }
2806 
2807     // Classify the fields one at a time, merging the results.
2808     unsigned idx = 0;
2809     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2810            i != e; ++i, ++idx) {
2811       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2812       bool BitField = i->isBitField();
2813 
2814       // Ignore padding bit-fields.
2815       if (BitField && i->isUnnamedBitfield())
2816         continue;
2817 
2818       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2819       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2820       //
2821       // The only case a 256-bit wide vector could be used is when the struct
2822       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2823       // to work for sizes wider than 128, early check and fallback to memory.
2824       //
2825       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2826                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2827         Lo = Memory;
2828         postMerge(Size, Lo, Hi);
2829         return;
2830       }
2831       // Note, skip this test for bit-fields, see below.
2832       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2833         Lo = Memory;
2834         postMerge(Size, Lo, Hi);
2835         return;
2836       }
2837 
2838       // Classify this field.
2839       //
2840       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2841       // exceeds a single eightbyte, each is classified
2842       // separately. Each eightbyte gets initialized to class
2843       // NO_CLASS.
2844       Class FieldLo, FieldHi;
2845 
2846       // Bit-fields require special handling, they do not force the
2847       // structure to be passed in memory even if unaligned, and
2848       // therefore they can straddle an eightbyte.
2849       if (BitField) {
2850         assert(!i->isUnnamedBitfield());
2851         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2852         uint64_t Size = i->getBitWidthValue(getContext());
2853 
2854         uint64_t EB_Lo = Offset / 64;
2855         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2856 
2857         if (EB_Lo) {
2858           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2859           FieldLo = NoClass;
2860           FieldHi = Integer;
2861         } else {
2862           FieldLo = Integer;
2863           FieldHi = EB_Hi ? Integer : NoClass;
2864         }
2865       } else
2866         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2867       Lo = merge(Lo, FieldLo);
2868       Hi = merge(Hi, FieldHi);
2869       if (Lo == Memory || Hi == Memory)
2870         break;
2871     }
2872 
2873     postMerge(Size, Lo, Hi);
2874   }
2875 }
2876 
2877 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2878   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2879   // place naturally.
2880   if (!isAggregateTypeForABI(Ty)) {
2881     // Treat an enum type as its underlying type.
2882     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2883       Ty = EnumTy->getDecl()->getIntegerType();
2884 
2885     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2886                                           : ABIArgInfo::getDirect());
2887   }
2888 
2889   return getNaturalAlignIndirect(Ty);
2890 }
2891 
2892 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2893   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2894     uint64_t Size = getContext().getTypeSize(VecTy);
2895     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2896     if (Size <= 64 || Size > LargestVector)
2897       return true;
2898   }
2899 
2900   return false;
2901 }
2902 
2903 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2904                                             unsigned freeIntRegs) const {
2905   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2906   // place naturally.
2907   //
2908   // This assumption is optimistic, as there could be free registers available
2909   // when we need to pass this argument in memory, and LLVM could try to pass
2910   // the argument in the free register. This does not seem to happen currently,
2911   // but this code would be much safer if we could mark the argument with
2912   // 'onstack'. See PR12193.
2913   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2914     // Treat an enum type as its underlying type.
2915     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2916       Ty = EnumTy->getDecl()->getIntegerType();
2917 
2918     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2919                                           : ABIArgInfo::getDirect());
2920   }
2921 
2922   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2923     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2924 
2925   // Compute the byval alignment. We specify the alignment of the byval in all
2926   // cases so that the mid-level optimizer knows the alignment of the byval.
2927   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2928 
2929   // Attempt to avoid passing indirect results using byval when possible. This
2930   // is important for good codegen.
2931   //
2932   // We do this by coercing the value into a scalar type which the backend can
2933   // handle naturally (i.e., without using byval).
2934   //
2935   // For simplicity, we currently only do this when we have exhausted all of the
2936   // free integer registers. Doing this when there are free integer registers
2937   // would require more care, as we would have to ensure that the coerced value
2938   // did not claim the unused register. That would require either reording the
2939   // arguments to the function (so that any subsequent inreg values came first),
2940   // or only doing this optimization when there were no following arguments that
2941   // might be inreg.
2942   //
2943   // We currently expect it to be rare (particularly in well written code) for
2944   // arguments to be passed on the stack when there are still free integer
2945   // registers available (this would typically imply large structs being passed
2946   // by value), so this seems like a fair tradeoff for now.
2947   //
2948   // We can revisit this if the backend grows support for 'onstack' parameter
2949   // attributes. See PR12193.
2950   if (freeIntRegs == 0) {
2951     uint64_t Size = getContext().getTypeSize(Ty);
2952 
2953     // If this type fits in an eightbyte, coerce it into the matching integral
2954     // type, which will end up on the stack (with alignment 8).
2955     if (Align == 8 && Size <= 64)
2956       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2957                                                           Size));
2958   }
2959 
2960   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2961 }
2962 
2963 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2964 /// register. Pick an LLVM IR type that will be passed as a vector register.
2965 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2966   // Wrapper structs/arrays that only contain vectors are passed just like
2967   // vectors; strip them off if present.
2968   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2969     Ty = QualType(InnerTy, 0);
2970 
2971   llvm::Type *IRType = CGT.ConvertType(Ty);
2972   if (isa<llvm::VectorType>(IRType) ||
2973       IRType->getTypeID() == llvm::Type::FP128TyID)
2974     return IRType;
2975 
2976   // We couldn't find the preferred IR vector type for 'Ty'.
2977   uint64_t Size = getContext().getTypeSize(Ty);
2978   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2979 
2980   // Return a LLVM IR vector type based on the size of 'Ty'.
2981   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2982                                Size / 64);
2983 }
2984 
2985 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2986 /// is known to either be off the end of the specified type or being in
2987 /// alignment padding.  The user type specified is known to be at most 128 bits
2988 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2989 /// classification that put one of the two halves in the INTEGER class.
2990 ///
2991 /// It is conservatively correct to return false.
2992 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2993                                   unsigned EndBit, ASTContext &Context) {
2994   // If the bytes being queried are off the end of the type, there is no user
2995   // data hiding here.  This handles analysis of builtins, vectors and other
2996   // types that don't contain interesting padding.
2997   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2998   if (TySize <= StartBit)
2999     return true;
3000 
3001   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3002     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3003     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3004 
3005     // Check each element to see if the element overlaps with the queried range.
3006     for (unsigned i = 0; i != NumElts; ++i) {
3007       // If the element is after the span we care about, then we're done..
3008       unsigned EltOffset = i*EltSize;
3009       if (EltOffset >= EndBit) break;
3010 
3011       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3012       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3013                                  EndBit-EltOffset, Context))
3014         return false;
3015     }
3016     // If it overlaps no elements, then it is safe to process as padding.
3017     return true;
3018   }
3019 
3020   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3021     const RecordDecl *RD = RT->getDecl();
3022     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3023 
3024     // If this is a C++ record, check the bases first.
3025     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3026       for (const auto &I : CXXRD->bases()) {
3027         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3028                "Unexpected base class!");
3029         const CXXRecordDecl *Base =
3030           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3031 
3032         // If the base is after the span we care about, ignore it.
3033         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3034         if (BaseOffset >= EndBit) continue;
3035 
3036         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3037         if (!BitsContainNoUserData(I.getType(), BaseStart,
3038                                    EndBit-BaseOffset, Context))
3039           return false;
3040       }
3041     }
3042 
3043     // Verify that no field has data that overlaps the region of interest.  Yes
3044     // this could be sped up a lot by being smarter about queried fields,
3045     // however we're only looking at structs up to 16 bytes, so we don't care
3046     // much.
3047     unsigned idx = 0;
3048     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3049          i != e; ++i, ++idx) {
3050       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3051 
3052       // If we found a field after the region we care about, then we're done.
3053       if (FieldOffset >= EndBit) break;
3054 
3055       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3056       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3057                                  Context))
3058         return false;
3059     }
3060 
3061     // If nothing in this record overlapped the area of interest, then we're
3062     // clean.
3063     return true;
3064   }
3065 
3066   return false;
3067 }
3068 
3069 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3070 /// float member at the specified offset.  For example, {int,{float}} has a
3071 /// float at offset 4.  It is conservatively correct for this routine to return
3072 /// false.
3073 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3074                                   const llvm::DataLayout &TD) {
3075   // Base case if we find a float.
3076   if (IROffset == 0 && IRType->isFloatTy())
3077     return true;
3078 
3079   // If this is a struct, recurse into the field at the specified offset.
3080   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3081     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3082     unsigned Elt = SL->getElementContainingOffset(IROffset);
3083     IROffset -= SL->getElementOffset(Elt);
3084     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3085   }
3086 
3087   // If this is an array, recurse into the field at the specified offset.
3088   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3089     llvm::Type *EltTy = ATy->getElementType();
3090     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3091     IROffset -= IROffset/EltSize*EltSize;
3092     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3093   }
3094 
3095   return false;
3096 }
3097 
3098 
3099 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3100 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3101 llvm::Type *X86_64ABIInfo::
3102 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3103                    QualType SourceTy, unsigned SourceOffset) const {
3104   // The only three choices we have are either double, <2 x float>, or float. We
3105   // pass as float if the last 4 bytes is just padding.  This happens for
3106   // structs that contain 3 floats.
3107   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3108                             SourceOffset*8+64, getContext()))
3109     return llvm::Type::getFloatTy(getVMContext());
3110 
3111   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3112   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3113   // case.
3114   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3115       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3116     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3117 
3118   return llvm::Type::getDoubleTy(getVMContext());
3119 }
3120 
3121 
3122 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3123 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3124 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3125 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3126 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3127 /// etc).
3128 ///
3129 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3130 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3131 /// the 8-byte value references.  PrefType may be null.
3132 ///
3133 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3134 /// an offset into this that we're processing (which is always either 0 or 8).
3135 ///
3136 llvm::Type *X86_64ABIInfo::
3137 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3138                        QualType SourceTy, unsigned SourceOffset) const {
3139   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3140   // returning an 8-byte unit starting with it.  See if we can safely use it.
3141   if (IROffset == 0) {
3142     // Pointers and int64's always fill the 8-byte unit.
3143     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3144         IRType->isIntegerTy(64))
3145       return IRType;
3146 
3147     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3148     // goodness in the source type is just tail padding.  This is allowed to
3149     // kick in for struct {double,int} on the int, but not on
3150     // struct{double,int,int} because we wouldn't return the second int.  We
3151     // have to do this analysis on the source type because we can't depend on
3152     // unions being lowered a specific way etc.
3153     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3154         IRType->isIntegerTy(32) ||
3155         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3156       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3157           cast<llvm::IntegerType>(IRType)->getBitWidth();
3158 
3159       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3160                                 SourceOffset*8+64, getContext()))
3161         return IRType;
3162     }
3163   }
3164 
3165   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3166     // If this is a struct, recurse into the field at the specified offset.
3167     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3168     if (IROffset < SL->getSizeInBytes()) {
3169       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3170       IROffset -= SL->getElementOffset(FieldIdx);
3171 
3172       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3173                                     SourceTy, SourceOffset);
3174     }
3175   }
3176 
3177   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3178     llvm::Type *EltTy = ATy->getElementType();
3179     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3180     unsigned EltOffset = IROffset/EltSize*EltSize;
3181     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3182                                   SourceOffset);
3183   }
3184 
3185   // Okay, we don't have any better idea of what to pass, so we pass this in an
3186   // integer register that isn't too big to fit the rest of the struct.
3187   unsigned TySizeInBytes =
3188     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3189 
3190   assert(TySizeInBytes != SourceOffset && "Empty field?");
3191 
3192   // It is always safe to classify this as an integer type up to i64 that
3193   // isn't larger than the structure.
3194   return llvm::IntegerType::get(getVMContext(),
3195                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3196 }
3197 
3198 
3199 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3200 /// be used as elements of a two register pair to pass or return, return a
3201 /// first class aggregate to represent them.  For example, if the low part of
3202 /// a by-value argument should be passed as i32* and the high part as float,
3203 /// return {i32*, float}.
3204 static llvm::Type *
3205 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3206                            const llvm::DataLayout &TD) {
3207   // In order to correctly satisfy the ABI, we need to the high part to start
3208   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3209   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3210   // the second element at offset 8.  Check for this:
3211   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3212   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3213   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3214   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3215 
3216   // To handle this, we have to increase the size of the low part so that the
3217   // second element will start at an 8 byte offset.  We can't increase the size
3218   // of the second element because it might make us access off the end of the
3219   // struct.
3220   if (HiStart != 8) {
3221     // There are usually two sorts of types the ABI generation code can produce
3222     // for the low part of a pair that aren't 8 bytes in size: float or
3223     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3224     // NaCl).
3225     // Promote these to a larger type.
3226     if (Lo->isFloatTy())
3227       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3228     else {
3229       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3230              && "Invalid/unknown lo type");
3231       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3232     }
3233   }
3234 
3235   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3236 
3237   // Verify that the second element is at an 8-byte offset.
3238   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3239          "Invalid x86-64 argument pair!");
3240   return Result;
3241 }
3242 
3243 ABIArgInfo X86_64ABIInfo::
3244 classifyReturnType(QualType RetTy) const {
3245   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3246   // classification algorithm.
3247   X86_64ABIInfo::Class Lo, Hi;
3248   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3249 
3250   // Check some invariants.
3251   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3252   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3253 
3254   llvm::Type *ResType = nullptr;
3255   switch (Lo) {
3256   case NoClass:
3257     if (Hi == NoClass)
3258       return ABIArgInfo::getIgnore();
3259     // If the low part is just padding, it takes no register, leave ResType
3260     // null.
3261     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3262            "Unknown missing lo part");
3263     break;
3264 
3265   case SSEUp:
3266   case X87Up:
3267     llvm_unreachable("Invalid classification for lo word.");
3268 
3269     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3270     // hidden argument.
3271   case Memory:
3272     return getIndirectReturnResult(RetTy);
3273 
3274     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3275     // available register of the sequence %rax, %rdx is used.
3276   case Integer:
3277     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3278 
3279     // If we have a sign or zero extended integer, make sure to return Extend
3280     // so that the parameter gets the right LLVM IR attributes.
3281     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3282       // Treat an enum type as its underlying type.
3283       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3284         RetTy = EnumTy->getDecl()->getIntegerType();
3285 
3286       if (RetTy->isIntegralOrEnumerationType() &&
3287           RetTy->isPromotableIntegerType())
3288         return ABIArgInfo::getExtend(RetTy);
3289     }
3290     break;
3291 
3292     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3293     // available SSE register of the sequence %xmm0, %xmm1 is used.
3294   case SSE:
3295     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3296     break;
3297 
3298     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3299     // returned on the X87 stack in %st0 as 80-bit x87 number.
3300   case X87:
3301     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3302     break;
3303 
3304     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3305     // part of the value is returned in %st0 and the imaginary part in
3306     // %st1.
3307   case ComplexX87:
3308     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3309     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3310                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3311     break;
3312   }
3313 
3314   llvm::Type *HighPart = nullptr;
3315   switch (Hi) {
3316     // Memory was handled previously and X87 should
3317     // never occur as a hi class.
3318   case Memory:
3319   case X87:
3320     llvm_unreachable("Invalid classification for hi word.");
3321 
3322   case ComplexX87: // Previously handled.
3323   case NoClass:
3324     break;
3325 
3326   case Integer:
3327     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3328     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3329       return ABIArgInfo::getDirect(HighPart, 8);
3330     break;
3331   case SSE:
3332     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3333     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3334       return ABIArgInfo::getDirect(HighPart, 8);
3335     break;
3336 
3337     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3338     // is passed in the next available eightbyte chunk if the last used
3339     // vector register.
3340     //
3341     // SSEUP should always be preceded by SSE, just widen.
3342   case SSEUp:
3343     assert(Lo == SSE && "Unexpected SSEUp classification.");
3344     ResType = GetByteVectorType(RetTy);
3345     break;
3346 
3347     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3348     // returned together with the previous X87 value in %st0.
3349   case X87Up:
3350     // If X87Up is preceded by X87, we don't need to do
3351     // anything. However, in some cases with unions it may not be
3352     // preceded by X87. In such situations we follow gcc and pass the
3353     // extra bits in an SSE reg.
3354     if (Lo != X87) {
3355       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3356       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3357         return ABIArgInfo::getDirect(HighPart, 8);
3358     }
3359     break;
3360   }
3361 
3362   // If a high part was specified, merge it together with the low part.  It is
3363   // known to pass in the high eightbyte of the result.  We do this by forming a
3364   // first class struct aggregate with the high and low part: {low, high}
3365   if (HighPart)
3366     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3367 
3368   return ABIArgInfo::getDirect(ResType);
3369 }
3370 
3371 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3372   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3373   bool isNamedArg)
3374   const
3375 {
3376   Ty = useFirstFieldIfTransparentUnion(Ty);
3377 
3378   X86_64ABIInfo::Class Lo, Hi;
3379   classify(Ty, 0, Lo, Hi, isNamedArg);
3380 
3381   // Check some invariants.
3382   // FIXME: Enforce these by construction.
3383   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3384   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3385 
3386   neededInt = 0;
3387   neededSSE = 0;
3388   llvm::Type *ResType = nullptr;
3389   switch (Lo) {
3390   case NoClass:
3391     if (Hi == NoClass)
3392       return ABIArgInfo::getIgnore();
3393     // If the low part is just padding, it takes no register, leave ResType
3394     // null.
3395     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3396            "Unknown missing lo part");
3397     break;
3398 
3399     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3400     // on the stack.
3401   case Memory:
3402 
3403     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3404     // COMPLEX_X87, it is passed in memory.
3405   case X87:
3406   case ComplexX87:
3407     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3408       ++neededInt;
3409     return getIndirectResult(Ty, freeIntRegs);
3410 
3411   case SSEUp:
3412   case X87Up:
3413     llvm_unreachable("Invalid classification for lo word.");
3414 
3415     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3416     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3417     // and %r9 is used.
3418   case Integer:
3419     ++neededInt;
3420 
3421     // Pick an 8-byte type based on the preferred type.
3422     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3423 
3424     // If we have a sign or zero extended integer, make sure to return Extend
3425     // so that the parameter gets the right LLVM IR attributes.
3426     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3427       // Treat an enum type as its underlying type.
3428       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3429         Ty = EnumTy->getDecl()->getIntegerType();
3430 
3431       if (Ty->isIntegralOrEnumerationType() &&
3432           Ty->isPromotableIntegerType())
3433         return ABIArgInfo::getExtend(Ty);
3434     }
3435 
3436     break;
3437 
3438     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3439     // available SSE register is used, the registers are taken in the
3440     // order from %xmm0 to %xmm7.
3441   case SSE: {
3442     llvm::Type *IRType = CGT.ConvertType(Ty);
3443     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3444     ++neededSSE;
3445     break;
3446   }
3447   }
3448 
3449   llvm::Type *HighPart = nullptr;
3450   switch (Hi) {
3451     // Memory was handled previously, ComplexX87 and X87 should
3452     // never occur as hi classes, and X87Up must be preceded by X87,
3453     // which is passed in memory.
3454   case Memory:
3455   case X87:
3456   case ComplexX87:
3457     llvm_unreachable("Invalid classification for hi word.");
3458 
3459   case NoClass: break;
3460 
3461   case Integer:
3462     ++neededInt;
3463     // Pick an 8-byte type based on the preferred type.
3464     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3465 
3466     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3467       return ABIArgInfo::getDirect(HighPart, 8);
3468     break;
3469 
3470     // X87Up generally doesn't occur here (long double is passed in
3471     // memory), except in situations involving unions.
3472   case X87Up:
3473   case SSE:
3474     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3475 
3476     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3477       return ABIArgInfo::getDirect(HighPart, 8);
3478 
3479     ++neededSSE;
3480     break;
3481 
3482     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3483     // eightbyte is passed in the upper half of the last used SSE
3484     // register.  This only happens when 128-bit vectors are passed.
3485   case SSEUp:
3486     assert(Lo == SSE && "Unexpected SSEUp classification");
3487     ResType = GetByteVectorType(Ty);
3488     break;
3489   }
3490 
3491   // If a high part was specified, merge it together with the low part.  It is
3492   // known to pass in the high eightbyte of the result.  We do this by forming a
3493   // first class struct aggregate with the high and low part: {low, high}
3494   if (HighPart)
3495     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3496 
3497   return ABIArgInfo::getDirect(ResType);
3498 }
3499 
3500 ABIArgInfo
3501 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3502                                              unsigned &NeededSSE) const {
3503   auto RT = Ty->getAs<RecordType>();
3504   assert(RT && "classifyRegCallStructType only valid with struct types");
3505 
3506   if (RT->getDecl()->hasFlexibleArrayMember())
3507     return getIndirectReturnResult(Ty);
3508 
3509   // Sum up bases
3510   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3511     if (CXXRD->isDynamicClass()) {
3512       NeededInt = NeededSSE = 0;
3513       return getIndirectReturnResult(Ty);
3514     }
3515 
3516     for (const auto &I : CXXRD->bases())
3517       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3518               .isIndirect()) {
3519         NeededInt = NeededSSE = 0;
3520         return getIndirectReturnResult(Ty);
3521       }
3522   }
3523 
3524   // Sum up members
3525   for (const auto *FD : RT->getDecl()->fields()) {
3526     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3527       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3528               .isIndirect()) {
3529         NeededInt = NeededSSE = 0;
3530         return getIndirectReturnResult(Ty);
3531       }
3532     } else {
3533       unsigned LocalNeededInt, LocalNeededSSE;
3534       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3535                                LocalNeededSSE, true)
3536               .isIndirect()) {
3537         NeededInt = NeededSSE = 0;
3538         return getIndirectReturnResult(Ty);
3539       }
3540       NeededInt += LocalNeededInt;
3541       NeededSSE += LocalNeededSSE;
3542     }
3543   }
3544 
3545   return ABIArgInfo::getDirect();
3546 }
3547 
3548 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3549                                                     unsigned &NeededInt,
3550                                                     unsigned &NeededSSE) const {
3551 
3552   NeededInt = 0;
3553   NeededSSE = 0;
3554 
3555   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3556 }
3557 
3558 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3559 
3560   const unsigned CallingConv = FI.getCallingConvention();
3561   // It is possible to force Win64 calling convention on any x86_64 target by
3562   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3563   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3564   if (CallingConv == llvm::CallingConv::Win64) {
3565     WinX86_64ABIInfo Win64ABIInfo(CGT);
3566     Win64ABIInfo.computeInfo(FI);
3567     return;
3568   }
3569 
3570   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3571 
3572   // Keep track of the number of assigned registers.
3573   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3574   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3575   unsigned NeededInt, NeededSSE;
3576 
3577   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3578     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3579         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3580       FI.getReturnInfo() =
3581           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3582       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3583         FreeIntRegs -= NeededInt;
3584         FreeSSERegs -= NeededSSE;
3585       } else {
3586         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3587       }
3588     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3589       // Complex Long Double Type is passed in Memory when Regcall
3590       // calling convention is used.
3591       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3592       if (getContext().getCanonicalType(CT->getElementType()) ==
3593           getContext().LongDoubleTy)
3594         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3595     } else
3596       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3597   }
3598 
3599   // If the return value is indirect, then the hidden argument is consuming one
3600   // integer register.
3601   if (FI.getReturnInfo().isIndirect())
3602     --FreeIntRegs;
3603 
3604   // The chain argument effectively gives us another free register.
3605   if (FI.isChainCall())
3606     ++FreeIntRegs;
3607 
3608   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3609   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3610   // get assigned (in left-to-right order) for passing as follows...
3611   unsigned ArgNo = 0;
3612   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3613        it != ie; ++it, ++ArgNo) {
3614     bool IsNamedArg = ArgNo < NumRequiredArgs;
3615 
3616     if (IsRegCall && it->type->isStructureOrClassType())
3617       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3618     else
3619       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3620                                       NeededSSE, IsNamedArg);
3621 
3622     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3623     // eightbyte of an argument, the whole argument is passed on the
3624     // stack. If registers have already been assigned for some
3625     // eightbytes of such an argument, the assignments get reverted.
3626     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3627       FreeIntRegs -= NeededInt;
3628       FreeSSERegs -= NeededSSE;
3629     } else {
3630       it->info = getIndirectResult(it->type, FreeIntRegs);
3631     }
3632   }
3633 }
3634 
3635 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3636                                          Address VAListAddr, QualType Ty) {
3637   Address overflow_arg_area_p =
3638       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3639   llvm::Value *overflow_arg_area =
3640     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3641 
3642   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3643   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3644   // It isn't stated explicitly in the standard, but in practice we use
3645   // alignment greater than 16 where necessary.
3646   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3647   if (Align > CharUnits::fromQuantity(8)) {
3648     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3649                                                       Align);
3650   }
3651 
3652   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3653   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3654   llvm::Value *Res =
3655     CGF.Builder.CreateBitCast(overflow_arg_area,
3656                               llvm::PointerType::getUnqual(LTy));
3657 
3658   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3659   // l->overflow_arg_area + sizeof(type).
3660   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3661   // an 8 byte boundary.
3662 
3663   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3664   llvm::Value *Offset =
3665       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3666   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3667                                             "overflow_arg_area.next");
3668   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3669 
3670   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3671   return Address(Res, Align);
3672 }
3673 
3674 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3675                                  QualType Ty) const {
3676   // Assume that va_list type is correct; should be pointer to LLVM type:
3677   // struct {
3678   //   i32 gp_offset;
3679   //   i32 fp_offset;
3680   //   i8* overflow_arg_area;
3681   //   i8* reg_save_area;
3682   // };
3683   unsigned neededInt, neededSSE;
3684 
3685   Ty = getContext().getCanonicalType(Ty);
3686   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3687                                        /*isNamedArg*/false);
3688 
3689   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3690   // in the registers. If not go to step 7.
3691   if (!neededInt && !neededSSE)
3692     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3693 
3694   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3695   // general purpose registers needed to pass type and num_fp to hold
3696   // the number of floating point registers needed.
3697 
3698   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3699   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3700   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3701   //
3702   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3703   // register save space).
3704 
3705   llvm::Value *InRegs = nullptr;
3706   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3707   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3708   if (neededInt) {
3709     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3710     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3711     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3712     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3713   }
3714 
3715   if (neededSSE) {
3716     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3717     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3718     llvm::Value *FitsInFP =
3719       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3720     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3721     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3722   }
3723 
3724   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3725   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3726   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3727   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3728 
3729   // Emit code to load the value if it was passed in registers.
3730 
3731   CGF.EmitBlock(InRegBlock);
3732 
3733   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3734   // an offset of l->gp_offset and/or l->fp_offset. This may require
3735   // copying to a temporary location in case the parameter is passed
3736   // in different register classes or requires an alignment greater
3737   // than 8 for general purpose registers and 16 for XMM registers.
3738   //
3739   // FIXME: This really results in shameful code when we end up needing to
3740   // collect arguments from different places; often what should result in a
3741   // simple assembling of a structure from scattered addresses has many more
3742   // loads than necessary. Can we clean this up?
3743   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3744   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3745       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3746 
3747   Address RegAddr = Address::invalid();
3748   if (neededInt && neededSSE) {
3749     // FIXME: Cleanup.
3750     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3751     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3752     Address Tmp = CGF.CreateMemTemp(Ty);
3753     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3754     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3755     llvm::Type *TyLo = ST->getElementType(0);
3756     llvm::Type *TyHi = ST->getElementType(1);
3757     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3758            "Unexpected ABI info for mixed regs");
3759     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3760     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3761     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3762     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3763     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3764     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3765 
3766     // Copy the first element.
3767     // FIXME: Our choice of alignment here and below is probably pessimistic.
3768     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3769         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3770         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3771     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3772 
3773     // Copy the second element.
3774     V = CGF.Builder.CreateAlignedLoad(
3775         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3776         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3777     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3778 
3779     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3780   } else if (neededInt) {
3781     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3782                       CharUnits::fromQuantity(8));
3783     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3784 
3785     // Copy to a temporary if necessary to ensure the appropriate alignment.
3786     std::pair<CharUnits, CharUnits> SizeAlign =
3787         getContext().getTypeInfoInChars(Ty);
3788     uint64_t TySize = SizeAlign.first.getQuantity();
3789     CharUnits TyAlign = SizeAlign.second;
3790 
3791     // Copy into a temporary if the type is more aligned than the
3792     // register save area.
3793     if (TyAlign.getQuantity() > 8) {
3794       Address Tmp = CGF.CreateMemTemp(Ty);
3795       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3796       RegAddr = Tmp;
3797     }
3798 
3799   } else if (neededSSE == 1) {
3800     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3801                       CharUnits::fromQuantity(16));
3802     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3803   } else {
3804     assert(neededSSE == 2 && "Invalid number of needed registers!");
3805     // SSE registers are spaced 16 bytes apart in the register save
3806     // area, we need to collect the two eightbytes together.
3807     // The ABI isn't explicit about this, but it seems reasonable
3808     // to assume that the slots are 16-byte aligned, since the stack is
3809     // naturally 16-byte aligned and the prologue is expected to store
3810     // all the SSE registers to the RSA.
3811     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3812                                 CharUnits::fromQuantity(16));
3813     Address RegAddrHi =
3814       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3815                                              CharUnits::fromQuantity(16));
3816     llvm::Type *ST = AI.canHaveCoerceToType()
3817                          ? AI.getCoerceToType()
3818                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3819     llvm::Value *V;
3820     Address Tmp = CGF.CreateMemTemp(Ty);
3821     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3822     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3823         RegAddrLo, ST->getStructElementType(0)));
3824     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3825     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3826         RegAddrHi, ST->getStructElementType(1)));
3827     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3828 
3829     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3830   }
3831 
3832   // AMD64-ABI 3.5.7p5: Step 5. Set:
3833   // l->gp_offset = l->gp_offset + num_gp * 8
3834   // l->fp_offset = l->fp_offset + num_fp * 16.
3835   if (neededInt) {
3836     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3837     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3838                             gp_offset_p);
3839   }
3840   if (neededSSE) {
3841     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3842     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3843                             fp_offset_p);
3844   }
3845   CGF.EmitBranch(ContBlock);
3846 
3847   // Emit code to load the value if it was passed in memory.
3848 
3849   CGF.EmitBlock(InMemBlock);
3850   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3851 
3852   // Return the appropriate result.
3853 
3854   CGF.EmitBlock(ContBlock);
3855   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3856                                  "vaarg.addr");
3857   return ResAddr;
3858 }
3859 
3860 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3861                                    QualType Ty) const {
3862   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3863                           CGF.getContext().getTypeInfoInChars(Ty),
3864                           CharUnits::fromQuantity(8),
3865                           /*allowHigherAlign*/ false);
3866 }
3867 
3868 ABIArgInfo
3869 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3870                                     const ABIArgInfo &current) const {
3871   // Assumes vectorCall calling convention.
3872   const Type *Base = nullptr;
3873   uint64_t NumElts = 0;
3874 
3875   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3876       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3877     FreeSSERegs -= NumElts;
3878     return getDirectX86Hva();
3879   }
3880   return current;
3881 }
3882 
3883 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3884                                       bool IsReturnType, bool IsVectorCall,
3885                                       bool IsRegCall) const {
3886 
3887   if (Ty->isVoidType())
3888     return ABIArgInfo::getIgnore();
3889 
3890   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3891     Ty = EnumTy->getDecl()->getIntegerType();
3892 
3893   TypeInfo Info = getContext().getTypeInfo(Ty);
3894   uint64_t Width = Info.Width;
3895   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3896 
3897   const RecordType *RT = Ty->getAs<RecordType>();
3898   if (RT) {
3899     if (!IsReturnType) {
3900       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3901         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3902     }
3903 
3904     if (RT->getDecl()->hasFlexibleArrayMember())
3905       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3906 
3907   }
3908 
3909   const Type *Base = nullptr;
3910   uint64_t NumElts = 0;
3911   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3912   // other targets.
3913   if ((IsVectorCall || IsRegCall) &&
3914       isHomogeneousAggregate(Ty, Base, NumElts)) {
3915     if (IsRegCall) {
3916       if (FreeSSERegs >= NumElts) {
3917         FreeSSERegs -= NumElts;
3918         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3919           return ABIArgInfo::getDirect();
3920         return ABIArgInfo::getExpand();
3921       }
3922       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3923     } else if (IsVectorCall) {
3924       if (FreeSSERegs >= NumElts &&
3925           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3926         FreeSSERegs -= NumElts;
3927         return ABIArgInfo::getDirect();
3928       } else if (IsReturnType) {
3929         return ABIArgInfo::getExpand();
3930       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3931         // HVAs are delayed and reclassified in the 2nd step.
3932         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3933       }
3934     }
3935   }
3936 
3937   if (Ty->isMemberPointerType()) {
3938     // If the member pointer is represented by an LLVM int or ptr, pass it
3939     // directly.
3940     llvm::Type *LLTy = CGT.ConvertType(Ty);
3941     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3942       return ABIArgInfo::getDirect();
3943   }
3944 
3945   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3946     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3947     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3948     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3949       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3950 
3951     // Otherwise, coerce it to a small integer.
3952     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3953   }
3954 
3955   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3956     switch (BT->getKind()) {
3957     case BuiltinType::Bool:
3958       // Bool type is always extended to the ABI, other builtin types are not
3959       // extended.
3960       return ABIArgInfo::getExtend(Ty);
3961 
3962     case BuiltinType::LongDouble:
3963       // Mingw64 GCC uses the old 80 bit extended precision floating point
3964       // unit. It passes them indirectly through memory.
3965       if (IsMingw64) {
3966         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3967         if (LDF == &llvm::APFloat::x87DoubleExtended())
3968           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3969       }
3970       break;
3971 
3972     case BuiltinType::Int128:
3973     case BuiltinType::UInt128:
3974       // If it's a parameter type, the normal ABI rule is that arguments larger
3975       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3976       // even though it isn't particularly efficient.
3977       if (!IsReturnType)
3978         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3979 
3980       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3981       // Clang matches them for compatibility.
3982       return ABIArgInfo::getDirect(
3983           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3984 
3985     default:
3986       break;
3987     }
3988   }
3989 
3990   return ABIArgInfo::getDirect();
3991 }
3992 
3993 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3994                                              unsigned FreeSSERegs,
3995                                              bool IsVectorCall,
3996                                              bool IsRegCall) const {
3997   unsigned Count = 0;
3998   for (auto &I : FI.arguments()) {
3999     // Vectorcall in x64 only permits the first 6 arguments to be passed
4000     // as XMM/YMM registers.
4001     if (Count < VectorcallMaxParamNumAsReg)
4002       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4003     else {
4004       // Since these cannot be passed in registers, pretend no registers
4005       // are left.
4006       unsigned ZeroSSERegsAvail = 0;
4007       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4008                         IsVectorCall, IsRegCall);
4009     }
4010     ++Count;
4011   }
4012 
4013   for (auto &I : FI.arguments()) {
4014     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4015   }
4016 }
4017 
4018 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4019   bool IsVectorCall =
4020       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4021   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4022 
4023   unsigned FreeSSERegs = 0;
4024   if (IsVectorCall) {
4025     // We can use up to 4 SSE return registers with vectorcall.
4026     FreeSSERegs = 4;
4027   } else if (IsRegCall) {
4028     // RegCall gives us 16 SSE registers.
4029     FreeSSERegs = 16;
4030   }
4031 
4032   if (!getCXXABI().classifyReturnType(FI))
4033     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4034                                   IsVectorCall, IsRegCall);
4035 
4036   if (IsVectorCall) {
4037     // We can use up to 6 SSE register parameters with vectorcall.
4038     FreeSSERegs = 6;
4039   } else if (IsRegCall) {
4040     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4041     FreeSSERegs = 16;
4042   }
4043 
4044   if (IsVectorCall) {
4045     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4046   } else {
4047     for (auto &I : FI.arguments())
4048       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4049   }
4050 
4051 }
4052 
4053 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4054                                     QualType Ty) const {
4055 
4056   bool IsIndirect = false;
4057 
4058   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4059   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4060   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4061     uint64_t Width = getContext().getTypeSize(Ty);
4062     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4063   }
4064 
4065   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4066                           CGF.getContext().getTypeInfoInChars(Ty),
4067                           CharUnits::fromQuantity(8),
4068                           /*allowHigherAlign*/ false);
4069 }
4070 
4071 // PowerPC-32
4072 namespace {
4073 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4074 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4075   bool IsSoftFloatABI;
4076 
4077   CharUnits getParamTypeAlignment(QualType Ty) const;
4078 
4079 public:
4080   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4081       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4082 
4083   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4084                     QualType Ty) const override;
4085 };
4086 
4087 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4088 public:
4089   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4090       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4091 
4092   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4093     // This is recovered from gcc output.
4094     return 1; // r1 is the dedicated stack pointer
4095   }
4096 
4097   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4098                                llvm::Value *Address) const override;
4099 };
4100 }
4101 
4102 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4103   // Complex types are passed just like their elements
4104   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4105     Ty = CTy->getElementType();
4106 
4107   if (Ty->isVectorType())
4108     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4109                                                                        : 4);
4110 
4111   // For single-element float/vector structs, we consider the whole type
4112   // to have the same alignment requirements as its single element.
4113   const Type *AlignTy = nullptr;
4114   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4115     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4116     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4117         (BT && BT->isFloatingPoint()))
4118       AlignTy = EltType;
4119   }
4120 
4121   if (AlignTy)
4122     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4123   return CharUnits::fromQuantity(4);
4124 }
4125 
4126 // TODO: this implementation is now likely redundant with
4127 // DefaultABIInfo::EmitVAArg.
4128 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4129                                       QualType Ty) const {
4130   if (getTarget().getTriple().isOSDarwin()) {
4131     auto TI = getContext().getTypeInfoInChars(Ty);
4132     TI.second = getParamTypeAlignment(Ty);
4133 
4134     CharUnits SlotSize = CharUnits::fromQuantity(4);
4135     return emitVoidPtrVAArg(CGF, VAList, Ty,
4136                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4137                             /*AllowHigherAlign=*/true);
4138   }
4139 
4140   const unsigned OverflowLimit = 8;
4141   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4142     // TODO: Implement this. For now ignore.
4143     (void)CTy;
4144     return Address::invalid(); // FIXME?
4145   }
4146 
4147   // struct __va_list_tag {
4148   //   unsigned char gpr;
4149   //   unsigned char fpr;
4150   //   unsigned short reserved;
4151   //   void *overflow_arg_area;
4152   //   void *reg_save_area;
4153   // };
4154 
4155   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4156   bool isInt =
4157       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4158   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4159 
4160   // All aggregates are passed indirectly?  That doesn't seem consistent
4161   // with the argument-lowering code.
4162   bool isIndirect = Ty->isAggregateType();
4163 
4164   CGBuilderTy &Builder = CGF.Builder;
4165 
4166   // The calling convention either uses 1-2 GPRs or 1 FPR.
4167   Address NumRegsAddr = Address::invalid();
4168   if (isInt || IsSoftFloatABI) {
4169     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4170   } else {
4171     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4172   }
4173 
4174   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4175 
4176   // "Align" the register count when TY is i64.
4177   if (isI64 || (isF64 && IsSoftFloatABI)) {
4178     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4179     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4180   }
4181 
4182   llvm::Value *CC =
4183       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4184 
4185   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4186   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4187   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4188 
4189   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4190 
4191   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4192   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4193 
4194   // Case 1: consume registers.
4195   Address RegAddr = Address::invalid();
4196   {
4197     CGF.EmitBlock(UsingRegs);
4198 
4199     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4200     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4201                       CharUnits::fromQuantity(8));
4202     assert(RegAddr.getElementType() == CGF.Int8Ty);
4203 
4204     // Floating-point registers start after the general-purpose registers.
4205     if (!(isInt || IsSoftFloatABI)) {
4206       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4207                                                    CharUnits::fromQuantity(32));
4208     }
4209 
4210     // Get the address of the saved value by scaling the number of
4211     // registers we've used by the number of
4212     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4213     llvm::Value *RegOffset =
4214       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4215     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4216                                             RegAddr.getPointer(), RegOffset),
4217                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4218     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4219 
4220     // Increase the used-register count.
4221     NumRegs =
4222       Builder.CreateAdd(NumRegs,
4223                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4224     Builder.CreateStore(NumRegs, NumRegsAddr);
4225 
4226     CGF.EmitBranch(Cont);
4227   }
4228 
4229   // Case 2: consume space in the overflow area.
4230   Address MemAddr = Address::invalid();
4231   {
4232     CGF.EmitBlock(UsingOverflow);
4233 
4234     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4235 
4236     // Everything in the overflow area is rounded up to a size of at least 4.
4237     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4238 
4239     CharUnits Size;
4240     if (!isIndirect) {
4241       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4242       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4243     } else {
4244       Size = CGF.getPointerSize();
4245     }
4246 
4247     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4248     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4249                          OverflowAreaAlign);
4250     // Round up address of argument to alignment
4251     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4252     if (Align > OverflowAreaAlign) {
4253       llvm::Value *Ptr = OverflowArea.getPointer();
4254       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4255                                                            Align);
4256     }
4257 
4258     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4259 
4260     // Increase the overflow area.
4261     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4262     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4263     CGF.EmitBranch(Cont);
4264   }
4265 
4266   CGF.EmitBlock(Cont);
4267 
4268   // Merge the cases with a phi.
4269   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4270                                 "vaarg.addr");
4271 
4272   // Load the pointer if the argument was passed indirectly.
4273   if (isIndirect) {
4274     Result = Address(Builder.CreateLoad(Result, "aggr"),
4275                      getContext().getTypeAlignInChars(Ty));
4276   }
4277 
4278   return Result;
4279 }
4280 
4281 bool
4282 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4283                                                 llvm::Value *Address) const {
4284   // This is calculated from the LLVM and GCC tables and verified
4285   // against gcc output.  AFAIK all ABIs use the same encoding.
4286 
4287   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4288 
4289   llvm::IntegerType *i8 = CGF.Int8Ty;
4290   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4291   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4292   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4293 
4294   // 0-31: r0-31, the 4-byte general-purpose registers
4295   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4296 
4297   // 32-63: fp0-31, the 8-byte floating-point registers
4298   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4299 
4300   // 64-76 are various 4-byte special-purpose registers:
4301   // 64: mq
4302   // 65: lr
4303   // 66: ctr
4304   // 67: ap
4305   // 68-75 cr0-7
4306   // 76: xer
4307   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4308 
4309   // 77-108: v0-31, the 16-byte vector registers
4310   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4311 
4312   // 109: vrsave
4313   // 110: vscr
4314   // 111: spe_acc
4315   // 112: spefscr
4316   // 113: sfp
4317   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4318 
4319   return false;
4320 }
4321 
4322 // PowerPC-64
4323 
4324 namespace {
4325 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4326 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4327 public:
4328   enum ABIKind {
4329     ELFv1 = 0,
4330     ELFv2
4331   };
4332 
4333 private:
4334   static const unsigned GPRBits = 64;
4335   ABIKind Kind;
4336   bool HasQPX;
4337   bool IsSoftFloatABI;
4338 
4339   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4340   // will be passed in a QPX register.
4341   bool IsQPXVectorTy(const Type *Ty) const {
4342     if (!HasQPX)
4343       return false;
4344 
4345     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4346       unsigned NumElements = VT->getNumElements();
4347       if (NumElements == 1)
4348         return false;
4349 
4350       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4351         if (getContext().getTypeSize(Ty) <= 256)
4352           return true;
4353       } else if (VT->getElementType()->
4354                    isSpecificBuiltinType(BuiltinType::Float)) {
4355         if (getContext().getTypeSize(Ty) <= 128)
4356           return true;
4357       }
4358     }
4359 
4360     return false;
4361   }
4362 
4363   bool IsQPXVectorTy(QualType Ty) const {
4364     return IsQPXVectorTy(Ty.getTypePtr());
4365   }
4366 
4367 public:
4368   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4369                      bool SoftFloatABI)
4370       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4371         IsSoftFloatABI(SoftFloatABI) {}
4372 
4373   bool isPromotableTypeForABI(QualType Ty) const;
4374   CharUnits getParamTypeAlignment(QualType Ty) const;
4375 
4376   ABIArgInfo classifyReturnType(QualType RetTy) const;
4377   ABIArgInfo classifyArgumentType(QualType Ty) const;
4378 
4379   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4380   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4381                                          uint64_t Members) const override;
4382 
4383   // TODO: We can add more logic to computeInfo to improve performance.
4384   // Example: For aggregate arguments that fit in a register, we could
4385   // use getDirectInReg (as is done below for structs containing a single
4386   // floating-point value) to avoid pushing them to memory on function
4387   // entry.  This would require changing the logic in PPCISelLowering
4388   // when lowering the parameters in the caller and args in the callee.
4389   void computeInfo(CGFunctionInfo &FI) const override {
4390     if (!getCXXABI().classifyReturnType(FI))
4391       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4392     for (auto &I : FI.arguments()) {
4393       // We rely on the default argument classification for the most part.
4394       // One exception:  An aggregate containing a single floating-point
4395       // or vector item must be passed in a register if one is available.
4396       const Type *T = isSingleElementStruct(I.type, getContext());
4397       if (T) {
4398         const BuiltinType *BT = T->getAs<BuiltinType>();
4399         if (IsQPXVectorTy(T) ||
4400             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4401             (BT && BT->isFloatingPoint())) {
4402           QualType QT(T, 0);
4403           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4404           continue;
4405         }
4406       }
4407       I.info = classifyArgumentType(I.type);
4408     }
4409   }
4410 
4411   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4412                     QualType Ty) const override;
4413 
4414   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4415                                     bool asReturnValue) const override {
4416     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4417   }
4418 
4419   bool isSwiftErrorInRegister() const override {
4420     return false;
4421   }
4422 };
4423 
4424 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4425 
4426 public:
4427   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4428                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4429                                bool SoftFloatABI)
4430       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4431                                                  SoftFloatABI)) {}
4432 
4433   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4434     // This is recovered from gcc output.
4435     return 1; // r1 is the dedicated stack pointer
4436   }
4437 
4438   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4439                                llvm::Value *Address) const override;
4440 };
4441 
4442 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4443 public:
4444   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4445 
4446   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4447     // This is recovered from gcc output.
4448     return 1; // r1 is the dedicated stack pointer
4449   }
4450 
4451   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4452                                llvm::Value *Address) const override;
4453 };
4454 
4455 }
4456 
4457 // Return true if the ABI requires Ty to be passed sign- or zero-
4458 // extended to 64 bits.
4459 bool
4460 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4461   // Treat an enum type as its underlying type.
4462   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4463     Ty = EnumTy->getDecl()->getIntegerType();
4464 
4465   // Promotable integer types are required to be promoted by the ABI.
4466   if (Ty->isPromotableIntegerType())
4467     return true;
4468 
4469   // In addition to the usual promotable integer types, we also need to
4470   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4471   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4472     switch (BT->getKind()) {
4473     case BuiltinType::Int:
4474     case BuiltinType::UInt:
4475       return true;
4476     default:
4477       break;
4478     }
4479 
4480   return false;
4481 }
4482 
4483 /// isAlignedParamType - Determine whether a type requires 16-byte or
4484 /// higher alignment in the parameter area.  Always returns at least 8.
4485 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4486   // Complex types are passed just like their elements.
4487   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4488     Ty = CTy->getElementType();
4489 
4490   // Only vector types of size 16 bytes need alignment (larger types are
4491   // passed via reference, smaller types are not aligned).
4492   if (IsQPXVectorTy(Ty)) {
4493     if (getContext().getTypeSize(Ty) > 128)
4494       return CharUnits::fromQuantity(32);
4495 
4496     return CharUnits::fromQuantity(16);
4497   } else if (Ty->isVectorType()) {
4498     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4499   }
4500 
4501   // For single-element float/vector structs, we consider the whole type
4502   // to have the same alignment requirements as its single element.
4503   const Type *AlignAsType = nullptr;
4504   const Type *EltType = isSingleElementStruct(Ty, getContext());
4505   if (EltType) {
4506     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4507     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4508          getContext().getTypeSize(EltType) == 128) ||
4509         (BT && BT->isFloatingPoint()))
4510       AlignAsType = EltType;
4511   }
4512 
4513   // Likewise for ELFv2 homogeneous aggregates.
4514   const Type *Base = nullptr;
4515   uint64_t Members = 0;
4516   if (!AlignAsType && Kind == ELFv2 &&
4517       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4518     AlignAsType = Base;
4519 
4520   // With special case aggregates, only vector base types need alignment.
4521   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4522     if (getContext().getTypeSize(AlignAsType) > 128)
4523       return CharUnits::fromQuantity(32);
4524 
4525     return CharUnits::fromQuantity(16);
4526   } else if (AlignAsType) {
4527     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4528   }
4529 
4530   // Otherwise, we only need alignment for any aggregate type that
4531   // has an alignment requirement of >= 16 bytes.
4532   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4533     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4534       return CharUnits::fromQuantity(32);
4535     return CharUnits::fromQuantity(16);
4536   }
4537 
4538   return CharUnits::fromQuantity(8);
4539 }
4540 
4541 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4542 /// aggregate.  Base is set to the base element type, and Members is set
4543 /// to the number of base elements.
4544 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4545                                      uint64_t &Members) const {
4546   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4547     uint64_t NElements = AT->getSize().getZExtValue();
4548     if (NElements == 0)
4549       return false;
4550     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4551       return false;
4552     Members *= NElements;
4553   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4554     const RecordDecl *RD = RT->getDecl();
4555     if (RD->hasFlexibleArrayMember())
4556       return false;
4557 
4558     Members = 0;
4559 
4560     // If this is a C++ record, check the bases first.
4561     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4562       for (const auto &I : CXXRD->bases()) {
4563         // Ignore empty records.
4564         if (isEmptyRecord(getContext(), I.getType(), true))
4565           continue;
4566 
4567         uint64_t FldMembers;
4568         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4569           return false;
4570 
4571         Members += FldMembers;
4572       }
4573     }
4574 
4575     for (const auto *FD : RD->fields()) {
4576       // Ignore (non-zero arrays of) empty records.
4577       QualType FT = FD->getType();
4578       while (const ConstantArrayType *AT =
4579              getContext().getAsConstantArrayType(FT)) {
4580         if (AT->getSize().getZExtValue() == 0)
4581           return false;
4582         FT = AT->getElementType();
4583       }
4584       if (isEmptyRecord(getContext(), FT, true))
4585         continue;
4586 
4587       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4588       if (getContext().getLangOpts().CPlusPlus &&
4589           FD->isZeroLengthBitField(getContext()))
4590         continue;
4591 
4592       uint64_t FldMembers;
4593       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4594         return false;
4595 
4596       Members = (RD->isUnion() ?
4597                  std::max(Members, FldMembers) : Members + FldMembers);
4598     }
4599 
4600     if (!Base)
4601       return false;
4602 
4603     // Ensure there is no padding.
4604     if (getContext().getTypeSize(Base) * Members !=
4605         getContext().getTypeSize(Ty))
4606       return false;
4607   } else {
4608     Members = 1;
4609     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4610       Members = 2;
4611       Ty = CT->getElementType();
4612     }
4613 
4614     // Most ABIs only support float, double, and some vector type widths.
4615     if (!isHomogeneousAggregateBaseType(Ty))
4616       return false;
4617 
4618     // The base type must be the same for all members.  Types that
4619     // agree in both total size and mode (float vs. vector) are
4620     // treated as being equivalent here.
4621     const Type *TyPtr = Ty.getTypePtr();
4622     if (!Base) {
4623       Base = TyPtr;
4624       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4625       // so make sure to widen it explicitly.
4626       if (const VectorType *VT = Base->getAs<VectorType>()) {
4627         QualType EltTy = VT->getElementType();
4628         unsigned NumElements =
4629             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4630         Base = getContext()
4631                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4632                    .getTypePtr();
4633       }
4634     }
4635 
4636     if (Base->isVectorType() != TyPtr->isVectorType() ||
4637         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4638       return false;
4639   }
4640   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4641 }
4642 
4643 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4644   // Homogeneous aggregates for ELFv2 must have base types of float,
4645   // double, long double, or 128-bit vectors.
4646   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4647     if (BT->getKind() == BuiltinType::Float ||
4648         BT->getKind() == BuiltinType::Double ||
4649         BT->getKind() == BuiltinType::LongDouble ||
4650         (getContext().getTargetInfo().hasFloat128Type() &&
4651           (BT->getKind() == BuiltinType::Float128))) {
4652       if (IsSoftFloatABI)
4653         return false;
4654       return true;
4655     }
4656   }
4657   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4658     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4659       return true;
4660   }
4661   return false;
4662 }
4663 
4664 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4665     const Type *Base, uint64_t Members) const {
4666   // Vector and fp128 types require one register, other floating point types
4667   // require one or two registers depending on their size.
4668   uint32_t NumRegs =
4669       ((getContext().getTargetInfo().hasFloat128Type() &&
4670           Base->isFloat128Type()) ||
4671         Base->isVectorType()) ? 1
4672                               : (getContext().getTypeSize(Base) + 63) / 64;
4673 
4674   // Homogeneous Aggregates may occupy at most 8 registers.
4675   return Members * NumRegs <= 8;
4676 }
4677 
4678 ABIArgInfo
4679 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4680   Ty = useFirstFieldIfTransparentUnion(Ty);
4681 
4682   if (Ty->isAnyComplexType())
4683     return ABIArgInfo::getDirect();
4684 
4685   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4686   // or via reference (larger than 16 bytes).
4687   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4688     uint64_t Size = getContext().getTypeSize(Ty);
4689     if (Size > 128)
4690       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4691     else if (Size < 128) {
4692       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4693       return ABIArgInfo::getDirect(CoerceTy);
4694     }
4695   }
4696 
4697   if (isAggregateTypeForABI(Ty)) {
4698     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4699       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4700 
4701     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4702     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4703 
4704     // ELFv2 homogeneous aggregates are passed as array types.
4705     const Type *Base = nullptr;
4706     uint64_t Members = 0;
4707     if (Kind == ELFv2 &&
4708         isHomogeneousAggregate(Ty, Base, Members)) {
4709       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4710       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4711       return ABIArgInfo::getDirect(CoerceTy);
4712     }
4713 
4714     // If an aggregate may end up fully in registers, we do not
4715     // use the ByVal method, but pass the aggregate as array.
4716     // This is usually beneficial since we avoid forcing the
4717     // back-end to store the argument to memory.
4718     uint64_t Bits = getContext().getTypeSize(Ty);
4719     if (Bits > 0 && Bits <= 8 * GPRBits) {
4720       llvm::Type *CoerceTy;
4721 
4722       // Types up to 8 bytes are passed as integer type (which will be
4723       // properly aligned in the argument save area doubleword).
4724       if (Bits <= GPRBits)
4725         CoerceTy =
4726             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4727       // Larger types are passed as arrays, with the base type selected
4728       // according to the required alignment in the save area.
4729       else {
4730         uint64_t RegBits = ABIAlign * 8;
4731         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4732         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4733         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4734       }
4735 
4736       return ABIArgInfo::getDirect(CoerceTy);
4737     }
4738 
4739     // All other aggregates are passed ByVal.
4740     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4741                                    /*ByVal=*/true,
4742                                    /*Realign=*/TyAlign > ABIAlign);
4743   }
4744 
4745   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4746                                      : ABIArgInfo::getDirect());
4747 }
4748 
4749 ABIArgInfo
4750 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4751   if (RetTy->isVoidType())
4752     return ABIArgInfo::getIgnore();
4753 
4754   if (RetTy->isAnyComplexType())
4755     return ABIArgInfo::getDirect();
4756 
4757   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4758   // or via reference (larger than 16 bytes).
4759   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4760     uint64_t Size = getContext().getTypeSize(RetTy);
4761     if (Size > 128)
4762       return getNaturalAlignIndirect(RetTy);
4763     else if (Size < 128) {
4764       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4765       return ABIArgInfo::getDirect(CoerceTy);
4766     }
4767   }
4768 
4769   if (isAggregateTypeForABI(RetTy)) {
4770     // ELFv2 homogeneous aggregates are returned as array types.
4771     const Type *Base = nullptr;
4772     uint64_t Members = 0;
4773     if (Kind == ELFv2 &&
4774         isHomogeneousAggregate(RetTy, Base, Members)) {
4775       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4776       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4777       return ABIArgInfo::getDirect(CoerceTy);
4778     }
4779 
4780     // ELFv2 small aggregates are returned in up to two registers.
4781     uint64_t Bits = getContext().getTypeSize(RetTy);
4782     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4783       if (Bits == 0)
4784         return ABIArgInfo::getIgnore();
4785 
4786       llvm::Type *CoerceTy;
4787       if (Bits > GPRBits) {
4788         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4789         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4790       } else
4791         CoerceTy =
4792             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4793       return ABIArgInfo::getDirect(CoerceTy);
4794     }
4795 
4796     // All other aggregates are returned indirectly.
4797     return getNaturalAlignIndirect(RetTy);
4798   }
4799 
4800   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4801                                         : ABIArgInfo::getDirect());
4802 }
4803 
4804 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4805 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4806                                       QualType Ty) const {
4807   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4808   TypeInfo.second = getParamTypeAlignment(Ty);
4809 
4810   CharUnits SlotSize = CharUnits::fromQuantity(8);
4811 
4812   // If we have a complex type and the base type is smaller than 8 bytes,
4813   // the ABI calls for the real and imaginary parts to be right-adjusted
4814   // in separate doublewords.  However, Clang expects us to produce a
4815   // pointer to a structure with the two parts packed tightly.  So generate
4816   // loads of the real and imaginary parts relative to the va_list pointer,
4817   // and store them to a temporary structure.
4818   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4819     CharUnits EltSize = TypeInfo.first / 2;
4820     if (EltSize < SlotSize) {
4821       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4822                                             SlotSize * 2, SlotSize,
4823                                             SlotSize, /*AllowHigher*/ true);
4824 
4825       Address RealAddr = Addr;
4826       Address ImagAddr = RealAddr;
4827       if (CGF.CGM.getDataLayout().isBigEndian()) {
4828         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4829                                                           SlotSize - EltSize);
4830         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4831                                                       2 * SlotSize - EltSize);
4832       } else {
4833         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4834       }
4835 
4836       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4837       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4838       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4839       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4840       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4841 
4842       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4843       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4844                              /*init*/ true);
4845       return Temp;
4846     }
4847   }
4848 
4849   // Otherwise, just use the general rule.
4850   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4851                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4852 }
4853 
4854 static bool
4855 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4856                               llvm::Value *Address) {
4857   // This is calculated from the LLVM and GCC tables and verified
4858   // against gcc output.  AFAIK all ABIs use the same encoding.
4859 
4860   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4861 
4862   llvm::IntegerType *i8 = CGF.Int8Ty;
4863   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4864   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4865   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4866 
4867   // 0-31: r0-31, the 8-byte general-purpose registers
4868   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4869 
4870   // 32-63: fp0-31, the 8-byte floating-point registers
4871   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4872 
4873   // 64-67 are various 8-byte special-purpose registers:
4874   // 64: mq
4875   // 65: lr
4876   // 66: ctr
4877   // 67: ap
4878   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4879 
4880   // 68-76 are various 4-byte special-purpose registers:
4881   // 68-75 cr0-7
4882   // 76: xer
4883   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4884 
4885   // 77-108: v0-31, the 16-byte vector registers
4886   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4887 
4888   // 109: vrsave
4889   // 110: vscr
4890   // 111: spe_acc
4891   // 112: spefscr
4892   // 113: sfp
4893   // 114: tfhar
4894   // 115: tfiar
4895   // 116: texasr
4896   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4897 
4898   return false;
4899 }
4900 
4901 bool
4902 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4903   CodeGen::CodeGenFunction &CGF,
4904   llvm::Value *Address) const {
4905 
4906   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4907 }
4908 
4909 bool
4910 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4911                                                 llvm::Value *Address) const {
4912 
4913   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4914 }
4915 
4916 //===----------------------------------------------------------------------===//
4917 // AArch64 ABI Implementation
4918 //===----------------------------------------------------------------------===//
4919 
4920 namespace {
4921 
4922 class AArch64ABIInfo : public SwiftABIInfo {
4923 public:
4924   enum ABIKind {
4925     AAPCS = 0,
4926     DarwinPCS,
4927     Win64
4928   };
4929 
4930 private:
4931   ABIKind Kind;
4932 
4933 public:
4934   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4935     : SwiftABIInfo(CGT), Kind(Kind) {}
4936 
4937 private:
4938   ABIKind getABIKind() const { return Kind; }
4939   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4940 
4941   ABIArgInfo classifyReturnType(QualType RetTy) const;
4942   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4943   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4944   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4945                                          uint64_t Members) const override;
4946 
4947   bool isIllegalVectorType(QualType Ty) const;
4948 
4949   void computeInfo(CGFunctionInfo &FI) const override {
4950     if (!::classifyReturnType(getCXXABI(), FI, *this))
4951       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4952 
4953     for (auto &it : FI.arguments())
4954       it.info = classifyArgumentType(it.type);
4955   }
4956 
4957   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4958                           CodeGenFunction &CGF) const;
4959 
4960   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4961                          CodeGenFunction &CGF) const;
4962 
4963   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4964                     QualType Ty) const override {
4965     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4966                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4967                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4968   }
4969 
4970   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4971                       QualType Ty) const override;
4972 
4973   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4974                                     bool asReturnValue) const override {
4975     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4976   }
4977   bool isSwiftErrorInRegister() const override {
4978     return true;
4979   }
4980 
4981   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4982                                  unsigned elts) const override;
4983 };
4984 
4985 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4986 public:
4987   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4988       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4989 
4990   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4991     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4992   }
4993 
4994   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4995     return 31;
4996   }
4997 
4998   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4999 
5000   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5001                            CodeGen::CodeGenModule &CGM) const override {
5002     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5003     if (!FD)
5004       return;
5005     llvm::Function *Fn = cast<llvm::Function>(GV);
5006 
5007     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5008     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5009       Fn->addFnAttr("sign-return-address",
5010                     Kind == CodeGenOptions::SignReturnAddressScope::All
5011                         ? "all"
5012                         : "non-leaf");
5013 
5014       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5015       Fn->addFnAttr("sign-return-address-key",
5016                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5017                         ? "a_key"
5018                         : "b_key");
5019     }
5020 
5021     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5022       Fn->addFnAttr("branch-target-enforcement");
5023   }
5024 };
5025 
5026 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5027 public:
5028   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5029       : AArch64TargetCodeGenInfo(CGT, K) {}
5030 
5031   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5032                            CodeGen::CodeGenModule &CGM) const override;
5033 
5034   void getDependentLibraryOption(llvm::StringRef Lib,
5035                                  llvm::SmallString<24> &Opt) const override {
5036     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5037   }
5038 
5039   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5040                                llvm::SmallString<32> &Opt) const override {
5041     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5042   }
5043 };
5044 
5045 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5046     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5047   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5048   if (GV->isDeclaration())
5049     return;
5050   addStackProbeTargetAttributes(D, GV, CGM);
5051 }
5052 }
5053 
5054 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5055   Ty = useFirstFieldIfTransparentUnion(Ty);
5056 
5057   // Handle illegal vector types here.
5058   if (isIllegalVectorType(Ty)) {
5059     uint64_t Size = getContext().getTypeSize(Ty);
5060     // Android promotes <2 x i8> to i16, not i32
5061     if (isAndroid() && (Size <= 16)) {
5062       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5063       return ABIArgInfo::getDirect(ResType);
5064     }
5065     if (Size <= 32) {
5066       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5067       return ABIArgInfo::getDirect(ResType);
5068     }
5069     if (Size == 64) {
5070       llvm::Type *ResType =
5071           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5072       return ABIArgInfo::getDirect(ResType);
5073     }
5074     if (Size == 128) {
5075       llvm::Type *ResType =
5076           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5077       return ABIArgInfo::getDirect(ResType);
5078     }
5079     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5080   }
5081 
5082   if (!isAggregateTypeForABI(Ty)) {
5083     // Treat an enum type as its underlying type.
5084     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5085       Ty = EnumTy->getDecl()->getIntegerType();
5086 
5087     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5088                 ? ABIArgInfo::getExtend(Ty)
5089                 : ABIArgInfo::getDirect());
5090   }
5091 
5092   // Structures with either a non-trivial destructor or a non-trivial
5093   // copy constructor are always indirect.
5094   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5095     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5096                                      CGCXXABI::RAA_DirectInMemory);
5097   }
5098 
5099   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5100   // elsewhere for GNU compatibility.
5101   uint64_t Size = getContext().getTypeSize(Ty);
5102   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5103   if (IsEmpty || Size == 0) {
5104     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5105       return ABIArgInfo::getIgnore();
5106 
5107     // GNU C mode. The only argument that gets ignored is an empty one with size
5108     // 0.
5109     if (IsEmpty && Size == 0)
5110       return ABIArgInfo::getIgnore();
5111     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5112   }
5113 
5114   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5115   const Type *Base = nullptr;
5116   uint64_t Members = 0;
5117   if (isHomogeneousAggregate(Ty, Base, Members)) {
5118     return ABIArgInfo::getDirect(
5119         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5120   }
5121 
5122   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5123   if (Size <= 128) {
5124     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5125     // same size and alignment.
5126     if (getTarget().isRenderScriptTarget()) {
5127       return coerceToIntArray(Ty, getContext(), getVMContext());
5128     }
5129     unsigned Alignment;
5130     if (Kind == AArch64ABIInfo::AAPCS) {
5131       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5132       Alignment = Alignment < 128 ? 64 : 128;
5133     } else {
5134       Alignment = getContext().getTypeAlign(Ty);
5135     }
5136     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5137 
5138     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5139     // For aggregates with 16-byte alignment, we use i128.
5140     if (Alignment < 128 && Size == 128) {
5141       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5142       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5143     }
5144     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5145   }
5146 
5147   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5148 }
5149 
5150 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5151   if (RetTy->isVoidType())
5152     return ABIArgInfo::getIgnore();
5153 
5154   // Large vector types should be returned via memory.
5155   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5156     return getNaturalAlignIndirect(RetTy);
5157 
5158   if (!isAggregateTypeForABI(RetTy)) {
5159     // Treat an enum type as its underlying type.
5160     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5161       RetTy = EnumTy->getDecl()->getIntegerType();
5162 
5163     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5164                 ? ABIArgInfo::getExtend(RetTy)
5165                 : ABIArgInfo::getDirect());
5166   }
5167 
5168   uint64_t Size = getContext().getTypeSize(RetTy);
5169   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5170     return ABIArgInfo::getIgnore();
5171 
5172   const Type *Base = nullptr;
5173   uint64_t Members = 0;
5174   if (isHomogeneousAggregate(RetTy, Base, Members))
5175     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5176     return ABIArgInfo::getDirect();
5177 
5178   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5179   if (Size <= 128) {
5180     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5181     // same size and alignment.
5182     if (getTarget().isRenderScriptTarget()) {
5183       return coerceToIntArray(RetTy, getContext(), getVMContext());
5184     }
5185     unsigned Alignment = getContext().getTypeAlign(RetTy);
5186     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5187 
5188     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5189     // For aggregates with 16-byte alignment, we use i128.
5190     if (Alignment < 128 && Size == 128) {
5191       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5192       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5193     }
5194     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5195   }
5196 
5197   return getNaturalAlignIndirect(RetTy);
5198 }
5199 
5200 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5201 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5202   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5203     // Check whether VT is legal.
5204     unsigned NumElements = VT->getNumElements();
5205     uint64_t Size = getContext().getTypeSize(VT);
5206     // NumElements should be power of 2.
5207     if (!llvm::isPowerOf2_32(NumElements))
5208       return true;
5209     return Size != 64 && (Size != 128 || NumElements == 1);
5210   }
5211   return false;
5212 }
5213 
5214 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5215                                                llvm::Type *eltTy,
5216                                                unsigned elts) const {
5217   if (!llvm::isPowerOf2_32(elts))
5218     return false;
5219   if (totalSize.getQuantity() != 8 &&
5220       (totalSize.getQuantity() != 16 || elts == 1))
5221     return false;
5222   return true;
5223 }
5224 
5225 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5226   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5227   // point type or a short-vector type. This is the same as the 32-bit ABI,
5228   // but with the difference that any floating-point type is allowed,
5229   // including __fp16.
5230   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5231     if (BT->isFloatingPoint())
5232       return true;
5233   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5234     unsigned VecSize = getContext().getTypeSize(VT);
5235     if (VecSize == 64 || VecSize == 128)
5236       return true;
5237   }
5238   return false;
5239 }
5240 
5241 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5242                                                        uint64_t Members) const {
5243   return Members <= 4;
5244 }
5245 
5246 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5247                                             QualType Ty,
5248                                             CodeGenFunction &CGF) const {
5249   ABIArgInfo AI = classifyArgumentType(Ty);
5250   bool IsIndirect = AI.isIndirect();
5251 
5252   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5253   if (IsIndirect)
5254     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5255   else if (AI.getCoerceToType())
5256     BaseTy = AI.getCoerceToType();
5257 
5258   unsigned NumRegs = 1;
5259   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5260     BaseTy = ArrTy->getElementType();
5261     NumRegs = ArrTy->getNumElements();
5262   }
5263   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5264 
5265   // The AArch64 va_list type and handling is specified in the Procedure Call
5266   // Standard, section B.4:
5267   //
5268   // struct {
5269   //   void *__stack;
5270   //   void *__gr_top;
5271   //   void *__vr_top;
5272   //   int __gr_offs;
5273   //   int __vr_offs;
5274   // };
5275 
5276   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5277   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5278   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5279   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5280 
5281   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5282   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5283 
5284   Address reg_offs_p = Address::invalid();
5285   llvm::Value *reg_offs = nullptr;
5286   int reg_top_index;
5287   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5288   if (!IsFPR) {
5289     // 3 is the field number of __gr_offs
5290     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5291     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5292     reg_top_index = 1; // field number for __gr_top
5293     RegSize = llvm::alignTo(RegSize, 8);
5294   } else {
5295     // 4 is the field number of __vr_offs.
5296     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5297     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5298     reg_top_index = 2; // field number for __vr_top
5299     RegSize = 16 * NumRegs;
5300   }
5301 
5302   //=======================================
5303   // Find out where argument was passed
5304   //=======================================
5305 
5306   // If reg_offs >= 0 we're already using the stack for this type of
5307   // argument. We don't want to keep updating reg_offs (in case it overflows,
5308   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5309   // whatever they get).
5310   llvm::Value *UsingStack = nullptr;
5311   UsingStack = CGF.Builder.CreateICmpSGE(
5312       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5313 
5314   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5315 
5316   // Otherwise, at least some kind of argument could go in these registers, the
5317   // question is whether this particular type is too big.
5318   CGF.EmitBlock(MaybeRegBlock);
5319 
5320   // Integer arguments may need to correct register alignment (for example a
5321   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5322   // align __gr_offs to calculate the potential address.
5323   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5324     int Align = TyAlign.getQuantity();
5325 
5326     reg_offs = CGF.Builder.CreateAdd(
5327         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5328         "align_regoffs");
5329     reg_offs = CGF.Builder.CreateAnd(
5330         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5331         "aligned_regoffs");
5332   }
5333 
5334   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5335   // The fact that this is done unconditionally reflects the fact that
5336   // allocating an argument to the stack also uses up all the remaining
5337   // registers of the appropriate kind.
5338   llvm::Value *NewOffset = nullptr;
5339   NewOffset = CGF.Builder.CreateAdd(
5340       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5341   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5342 
5343   // Now we're in a position to decide whether this argument really was in
5344   // registers or not.
5345   llvm::Value *InRegs = nullptr;
5346   InRegs = CGF.Builder.CreateICmpSLE(
5347       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5348 
5349   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5350 
5351   //=======================================
5352   // Argument was in registers
5353   //=======================================
5354 
5355   // Now we emit the code for if the argument was originally passed in
5356   // registers. First start the appropriate block:
5357   CGF.EmitBlock(InRegBlock);
5358 
5359   llvm::Value *reg_top = nullptr;
5360   Address reg_top_p =
5361       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5362   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5363   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5364                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5365   Address RegAddr = Address::invalid();
5366   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5367 
5368   if (IsIndirect) {
5369     // If it's been passed indirectly (actually a struct), whatever we find from
5370     // stored registers or on the stack will actually be a struct **.
5371     MemTy = llvm::PointerType::getUnqual(MemTy);
5372   }
5373 
5374   const Type *Base = nullptr;
5375   uint64_t NumMembers = 0;
5376   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5377   if (IsHFA && NumMembers > 1) {
5378     // Homogeneous aggregates passed in registers will have their elements split
5379     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5380     // qN+1, ...). We reload and store into a temporary local variable
5381     // contiguously.
5382     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5383     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5384     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5385     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5386     Address Tmp = CGF.CreateTempAlloca(HFATy,
5387                                        std::max(TyAlign, BaseTyInfo.second));
5388 
5389     // On big-endian platforms, the value will be right-aligned in its slot.
5390     int Offset = 0;
5391     if (CGF.CGM.getDataLayout().isBigEndian() &&
5392         BaseTyInfo.first.getQuantity() < 16)
5393       Offset = 16 - BaseTyInfo.first.getQuantity();
5394 
5395     for (unsigned i = 0; i < NumMembers; ++i) {
5396       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5397       Address LoadAddr =
5398         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5399       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5400 
5401       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5402 
5403       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5404       CGF.Builder.CreateStore(Elem, StoreAddr);
5405     }
5406 
5407     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5408   } else {
5409     // Otherwise the object is contiguous in memory.
5410 
5411     // It might be right-aligned in its slot.
5412     CharUnits SlotSize = BaseAddr.getAlignment();
5413     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5414         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5415         TySize < SlotSize) {
5416       CharUnits Offset = SlotSize - TySize;
5417       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5418     }
5419 
5420     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5421   }
5422 
5423   CGF.EmitBranch(ContBlock);
5424 
5425   //=======================================
5426   // Argument was on the stack
5427   //=======================================
5428   CGF.EmitBlock(OnStackBlock);
5429 
5430   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5431   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5432 
5433   // Again, stack arguments may need realignment. In this case both integer and
5434   // floating-point ones might be affected.
5435   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5436     int Align = TyAlign.getQuantity();
5437 
5438     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5439 
5440     OnStackPtr = CGF.Builder.CreateAdd(
5441         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5442         "align_stack");
5443     OnStackPtr = CGF.Builder.CreateAnd(
5444         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5445         "align_stack");
5446 
5447     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5448   }
5449   Address OnStackAddr(OnStackPtr,
5450                       std::max(CharUnits::fromQuantity(8), TyAlign));
5451 
5452   // All stack slots are multiples of 8 bytes.
5453   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5454   CharUnits StackSize;
5455   if (IsIndirect)
5456     StackSize = StackSlotSize;
5457   else
5458     StackSize = TySize.alignTo(StackSlotSize);
5459 
5460   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5461   llvm::Value *NewStack =
5462       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5463 
5464   // Write the new value of __stack for the next call to va_arg
5465   CGF.Builder.CreateStore(NewStack, stack_p);
5466 
5467   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5468       TySize < StackSlotSize) {
5469     CharUnits Offset = StackSlotSize - TySize;
5470     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5471   }
5472 
5473   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5474 
5475   CGF.EmitBranch(ContBlock);
5476 
5477   //=======================================
5478   // Tidy up
5479   //=======================================
5480   CGF.EmitBlock(ContBlock);
5481 
5482   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5483                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5484 
5485   if (IsIndirect)
5486     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5487                    TyAlign);
5488 
5489   return ResAddr;
5490 }
5491 
5492 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5493                                         CodeGenFunction &CGF) const {
5494   // The backend's lowering doesn't support va_arg for aggregates or
5495   // illegal vector types.  Lower VAArg here for these cases and use
5496   // the LLVM va_arg instruction for everything else.
5497   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5498     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5499 
5500   CharUnits SlotSize = CharUnits::fromQuantity(8);
5501 
5502   // Empty records are ignored for parameter passing purposes.
5503   if (isEmptyRecord(getContext(), Ty, true)) {
5504     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5505     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5506     return Addr;
5507   }
5508 
5509   // The size of the actual thing passed, which might end up just
5510   // being a pointer for indirect types.
5511   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5512 
5513   // Arguments bigger than 16 bytes which aren't homogeneous
5514   // aggregates should be passed indirectly.
5515   bool IsIndirect = false;
5516   if (TyInfo.first.getQuantity() > 16) {
5517     const Type *Base = nullptr;
5518     uint64_t Members = 0;
5519     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5520   }
5521 
5522   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5523                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5524 }
5525 
5526 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5527                                     QualType Ty) const {
5528   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5529                           CGF.getContext().getTypeInfoInChars(Ty),
5530                           CharUnits::fromQuantity(8),
5531                           /*allowHigherAlign*/ false);
5532 }
5533 
5534 //===----------------------------------------------------------------------===//
5535 // ARM ABI Implementation
5536 //===----------------------------------------------------------------------===//
5537 
5538 namespace {
5539 
5540 class ARMABIInfo : public SwiftABIInfo {
5541 public:
5542   enum ABIKind {
5543     APCS = 0,
5544     AAPCS = 1,
5545     AAPCS_VFP = 2,
5546     AAPCS16_VFP = 3,
5547   };
5548 
5549 private:
5550   ABIKind Kind;
5551 
5552 public:
5553   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5554       : SwiftABIInfo(CGT), Kind(_Kind) {
5555     setCCs();
5556   }
5557 
5558   bool isEABI() const {
5559     switch (getTarget().getTriple().getEnvironment()) {
5560     case llvm::Triple::Android:
5561     case llvm::Triple::EABI:
5562     case llvm::Triple::EABIHF:
5563     case llvm::Triple::GNUEABI:
5564     case llvm::Triple::GNUEABIHF:
5565     case llvm::Triple::MuslEABI:
5566     case llvm::Triple::MuslEABIHF:
5567       return true;
5568     default:
5569       return false;
5570     }
5571   }
5572 
5573   bool isEABIHF() const {
5574     switch (getTarget().getTriple().getEnvironment()) {
5575     case llvm::Triple::EABIHF:
5576     case llvm::Triple::GNUEABIHF:
5577     case llvm::Triple::MuslEABIHF:
5578       return true;
5579     default:
5580       return false;
5581     }
5582   }
5583 
5584   ABIKind getABIKind() const { return Kind; }
5585 
5586 private:
5587   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5588                                 unsigned functionCallConv) const;
5589   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5590                                   unsigned functionCallConv) const;
5591   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5592                                           uint64_t Members) const;
5593   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5594   bool isIllegalVectorType(QualType Ty) const;
5595 
5596   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5597   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5598                                          uint64_t Members) const override;
5599 
5600   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5601 
5602   void computeInfo(CGFunctionInfo &FI) const override;
5603 
5604   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5605                     QualType Ty) const override;
5606 
5607   llvm::CallingConv::ID getLLVMDefaultCC() const;
5608   llvm::CallingConv::ID getABIDefaultCC() const;
5609   void setCCs();
5610 
5611   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5612                                     bool asReturnValue) const override {
5613     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5614   }
5615   bool isSwiftErrorInRegister() const override {
5616     return true;
5617   }
5618   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5619                                  unsigned elts) const override;
5620 };
5621 
5622 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5623 public:
5624   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5625     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5626 
5627   const ARMABIInfo &getABIInfo() const {
5628     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5629   }
5630 
5631   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5632     return 13;
5633   }
5634 
5635   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5636     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5637   }
5638 
5639   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5640                                llvm::Value *Address) const override {
5641     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5642 
5643     // 0-15 are the 16 integer registers.
5644     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5645     return false;
5646   }
5647 
5648   unsigned getSizeOfUnwindException() const override {
5649     if (getABIInfo().isEABI()) return 88;
5650     return TargetCodeGenInfo::getSizeOfUnwindException();
5651   }
5652 
5653   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5654                            CodeGen::CodeGenModule &CGM) const override {
5655     if (GV->isDeclaration())
5656       return;
5657     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5658     if (!FD)
5659       return;
5660 
5661     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5662     if (!Attr)
5663       return;
5664 
5665     const char *Kind;
5666     switch (Attr->getInterrupt()) {
5667     case ARMInterruptAttr::Generic: Kind = ""; break;
5668     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5669     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5670     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5671     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5672     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5673     }
5674 
5675     llvm::Function *Fn = cast<llvm::Function>(GV);
5676 
5677     Fn->addFnAttr("interrupt", Kind);
5678 
5679     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5680     if (ABI == ARMABIInfo::APCS)
5681       return;
5682 
5683     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5684     // however this is not necessarily true on taking any interrupt. Instruct
5685     // the backend to perform a realignment as part of the function prologue.
5686     llvm::AttrBuilder B;
5687     B.addStackAlignmentAttr(8);
5688     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5689   }
5690 };
5691 
5692 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5693 public:
5694   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5695       : ARMTargetCodeGenInfo(CGT, K) {}
5696 
5697   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5698                            CodeGen::CodeGenModule &CGM) const override;
5699 
5700   void getDependentLibraryOption(llvm::StringRef Lib,
5701                                  llvm::SmallString<24> &Opt) const override {
5702     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5703   }
5704 
5705   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5706                                llvm::SmallString<32> &Opt) const override {
5707     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5708   }
5709 };
5710 
5711 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5712     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5713   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5714   if (GV->isDeclaration())
5715     return;
5716   addStackProbeTargetAttributes(D, GV, CGM);
5717 }
5718 }
5719 
5720 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5721   if (!::classifyReturnType(getCXXABI(), FI, *this))
5722     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5723                                             FI.getCallingConvention());
5724 
5725   for (auto &I : FI.arguments())
5726     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5727                                   FI.getCallingConvention());
5728 
5729 
5730   // Always honor user-specified calling convention.
5731   if (FI.getCallingConvention() != llvm::CallingConv::C)
5732     return;
5733 
5734   llvm::CallingConv::ID cc = getRuntimeCC();
5735   if (cc != llvm::CallingConv::C)
5736     FI.setEffectiveCallingConvention(cc);
5737 }
5738 
5739 /// Return the default calling convention that LLVM will use.
5740 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5741   // The default calling convention that LLVM will infer.
5742   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5743     return llvm::CallingConv::ARM_AAPCS_VFP;
5744   else if (isEABI())
5745     return llvm::CallingConv::ARM_AAPCS;
5746   else
5747     return llvm::CallingConv::ARM_APCS;
5748 }
5749 
5750 /// Return the calling convention that our ABI would like us to use
5751 /// as the C calling convention.
5752 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5753   switch (getABIKind()) {
5754   case APCS: return llvm::CallingConv::ARM_APCS;
5755   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5756   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5757   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5758   }
5759   llvm_unreachable("bad ABI kind");
5760 }
5761 
5762 void ARMABIInfo::setCCs() {
5763   assert(getRuntimeCC() == llvm::CallingConv::C);
5764 
5765   // Don't muddy up the IR with a ton of explicit annotations if
5766   // they'd just match what LLVM will infer from the triple.
5767   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5768   if (abiCC != getLLVMDefaultCC())
5769     RuntimeCC = abiCC;
5770 }
5771 
5772 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5773   uint64_t Size = getContext().getTypeSize(Ty);
5774   if (Size <= 32) {
5775     llvm::Type *ResType =
5776         llvm::Type::getInt32Ty(getVMContext());
5777     return ABIArgInfo::getDirect(ResType);
5778   }
5779   if (Size == 64 || Size == 128) {
5780     llvm::Type *ResType = llvm::VectorType::get(
5781         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5782     return ABIArgInfo::getDirect(ResType);
5783   }
5784   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5785 }
5786 
5787 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5788                                                     const Type *Base,
5789                                                     uint64_t Members) const {
5790   assert(Base && "Base class should be set for homogeneous aggregate");
5791   // Base can be a floating-point or a vector.
5792   if (const VectorType *VT = Base->getAs<VectorType>()) {
5793     // FP16 vectors should be converted to integer vectors
5794     if (!getTarget().hasLegalHalfType() &&
5795         (VT->getElementType()->isFloat16Type() ||
5796           VT->getElementType()->isHalfType())) {
5797       uint64_t Size = getContext().getTypeSize(VT);
5798       llvm::Type *NewVecTy = llvm::VectorType::get(
5799           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5800       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5801       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5802     }
5803   }
5804   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5805 }
5806 
5807 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5808                                             unsigned functionCallConv) const {
5809   // 6.1.2.1 The following argument types are VFP CPRCs:
5810   //   A single-precision floating-point type (including promoted
5811   //   half-precision types); A double-precision floating-point type;
5812   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5813   //   with a Base Type of a single- or double-precision floating-point type,
5814   //   64-bit containerized vectors or 128-bit containerized vectors with one
5815   //   to four Elements.
5816   // Variadic functions should always marshal to the base standard.
5817   bool IsAAPCS_VFP =
5818       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5819 
5820   Ty = useFirstFieldIfTransparentUnion(Ty);
5821 
5822   // Handle illegal vector types here.
5823   if (isIllegalVectorType(Ty))
5824     return coerceIllegalVector(Ty);
5825 
5826   // _Float16 and __fp16 get passed as if it were an int or float, but with
5827   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5828   // half type natively, and does not need to interwork with AAPCS code.
5829   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5830       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5831     llvm::Type *ResType = IsAAPCS_VFP ?
5832       llvm::Type::getFloatTy(getVMContext()) :
5833       llvm::Type::getInt32Ty(getVMContext());
5834     return ABIArgInfo::getDirect(ResType);
5835   }
5836 
5837   if (!isAggregateTypeForABI(Ty)) {
5838     // Treat an enum type as its underlying type.
5839     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5840       Ty = EnumTy->getDecl()->getIntegerType();
5841     }
5842 
5843     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5844                                           : ABIArgInfo::getDirect());
5845   }
5846 
5847   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5848     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5849   }
5850 
5851   // Ignore empty records.
5852   if (isEmptyRecord(getContext(), Ty, true))
5853     return ABIArgInfo::getIgnore();
5854 
5855   if (IsAAPCS_VFP) {
5856     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5857     // into VFP registers.
5858     const Type *Base = nullptr;
5859     uint64_t Members = 0;
5860     if (isHomogeneousAggregate(Ty, Base, Members))
5861       return classifyHomogeneousAggregate(Ty, Base, Members);
5862   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5863     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5864     // this convention even for a variadic function: the backend will use GPRs
5865     // if needed.
5866     const Type *Base = nullptr;
5867     uint64_t Members = 0;
5868     if (isHomogeneousAggregate(Ty, Base, Members)) {
5869       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5870       llvm::Type *Ty =
5871         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5872       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5873     }
5874   }
5875 
5876   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5877       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5878     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5879     // bigger than 128-bits, they get placed in space allocated by the caller,
5880     // and a pointer is passed.
5881     return ABIArgInfo::getIndirect(
5882         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5883   }
5884 
5885   // Support byval for ARM.
5886   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5887   // most 8-byte. We realign the indirect argument if type alignment is bigger
5888   // than ABI alignment.
5889   uint64_t ABIAlign = 4;
5890   uint64_t TyAlign;
5891   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5892       getABIKind() == ARMABIInfo::AAPCS) {
5893     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5894     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5895   } else {
5896     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5897   }
5898   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5899     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5900     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5901                                    /*ByVal=*/true,
5902                                    /*Realign=*/TyAlign > ABIAlign);
5903   }
5904 
5905   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5906   // same size and alignment.
5907   if (getTarget().isRenderScriptTarget()) {
5908     return coerceToIntArray(Ty, getContext(), getVMContext());
5909   }
5910 
5911   // Otherwise, pass by coercing to a structure of the appropriate size.
5912   llvm::Type* ElemTy;
5913   unsigned SizeRegs;
5914   // FIXME: Try to match the types of the arguments more accurately where
5915   // we can.
5916   if (TyAlign <= 4) {
5917     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5918     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5919   } else {
5920     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5921     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5922   }
5923 
5924   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5925 }
5926 
5927 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5928                               llvm::LLVMContext &VMContext) {
5929   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5930   // is called integer-like if its size is less than or equal to one word, and
5931   // the offset of each of its addressable sub-fields is zero.
5932 
5933   uint64_t Size = Context.getTypeSize(Ty);
5934 
5935   // Check that the type fits in a word.
5936   if (Size > 32)
5937     return false;
5938 
5939   // FIXME: Handle vector types!
5940   if (Ty->isVectorType())
5941     return false;
5942 
5943   // Float types are never treated as "integer like".
5944   if (Ty->isRealFloatingType())
5945     return false;
5946 
5947   // If this is a builtin or pointer type then it is ok.
5948   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5949     return true;
5950 
5951   // Small complex integer types are "integer like".
5952   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5953     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5954 
5955   // Single element and zero sized arrays should be allowed, by the definition
5956   // above, but they are not.
5957 
5958   // Otherwise, it must be a record type.
5959   const RecordType *RT = Ty->getAs<RecordType>();
5960   if (!RT) return false;
5961 
5962   // Ignore records with flexible arrays.
5963   const RecordDecl *RD = RT->getDecl();
5964   if (RD->hasFlexibleArrayMember())
5965     return false;
5966 
5967   // Check that all sub-fields are at offset 0, and are themselves "integer
5968   // like".
5969   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5970 
5971   bool HadField = false;
5972   unsigned idx = 0;
5973   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5974        i != e; ++i, ++idx) {
5975     const FieldDecl *FD = *i;
5976 
5977     // Bit-fields are not addressable, we only need to verify they are "integer
5978     // like". We still have to disallow a subsequent non-bitfield, for example:
5979     //   struct { int : 0; int x }
5980     // is non-integer like according to gcc.
5981     if (FD->isBitField()) {
5982       if (!RD->isUnion())
5983         HadField = true;
5984 
5985       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5986         return false;
5987 
5988       continue;
5989     }
5990 
5991     // Check if this field is at offset 0.
5992     if (Layout.getFieldOffset(idx) != 0)
5993       return false;
5994 
5995     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5996       return false;
5997 
5998     // Only allow at most one field in a structure. This doesn't match the
5999     // wording above, but follows gcc in situations with a field following an
6000     // empty structure.
6001     if (!RD->isUnion()) {
6002       if (HadField)
6003         return false;
6004 
6005       HadField = true;
6006     }
6007   }
6008 
6009   return true;
6010 }
6011 
6012 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6013                                           unsigned functionCallConv) const {
6014 
6015   // Variadic functions should always marshal to the base standard.
6016   bool IsAAPCS_VFP =
6017       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6018 
6019   if (RetTy->isVoidType())
6020     return ABIArgInfo::getIgnore();
6021 
6022   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6023     // Large vector types should be returned via memory.
6024     if (getContext().getTypeSize(RetTy) > 128)
6025       return getNaturalAlignIndirect(RetTy);
6026     // FP16 vectors should be converted to integer vectors
6027     if (!getTarget().hasLegalHalfType() &&
6028         (VT->getElementType()->isFloat16Type() ||
6029          VT->getElementType()->isHalfType()))
6030       return coerceIllegalVector(RetTy);
6031   }
6032 
6033   // _Float16 and __fp16 get returned as if it were an int or float, but with
6034   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6035   // half type natively, and does not need to interwork with AAPCS code.
6036   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6037       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6038     llvm::Type *ResType = IsAAPCS_VFP ?
6039       llvm::Type::getFloatTy(getVMContext()) :
6040       llvm::Type::getInt32Ty(getVMContext());
6041     return ABIArgInfo::getDirect(ResType);
6042   }
6043 
6044   if (!isAggregateTypeForABI(RetTy)) {
6045     // Treat an enum type as its underlying type.
6046     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6047       RetTy = EnumTy->getDecl()->getIntegerType();
6048 
6049     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6050                                             : ABIArgInfo::getDirect();
6051   }
6052 
6053   // Are we following APCS?
6054   if (getABIKind() == APCS) {
6055     if (isEmptyRecord(getContext(), RetTy, false))
6056       return ABIArgInfo::getIgnore();
6057 
6058     // Complex types are all returned as packed integers.
6059     //
6060     // FIXME: Consider using 2 x vector types if the back end handles them
6061     // correctly.
6062     if (RetTy->isAnyComplexType())
6063       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6064           getVMContext(), getContext().getTypeSize(RetTy)));
6065 
6066     // Integer like structures are returned in r0.
6067     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6068       // Return in the smallest viable integer type.
6069       uint64_t Size = getContext().getTypeSize(RetTy);
6070       if (Size <= 8)
6071         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6072       if (Size <= 16)
6073         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6074       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6075     }
6076 
6077     // Otherwise return in memory.
6078     return getNaturalAlignIndirect(RetTy);
6079   }
6080 
6081   // Otherwise this is an AAPCS variant.
6082 
6083   if (isEmptyRecord(getContext(), RetTy, true))
6084     return ABIArgInfo::getIgnore();
6085 
6086   // Check for homogeneous aggregates with AAPCS-VFP.
6087   if (IsAAPCS_VFP) {
6088     const Type *Base = nullptr;
6089     uint64_t Members = 0;
6090     if (isHomogeneousAggregate(RetTy, Base, Members))
6091       return classifyHomogeneousAggregate(RetTy, Base, Members);
6092   }
6093 
6094   // Aggregates <= 4 bytes are returned in r0; other aggregates
6095   // are returned indirectly.
6096   uint64_t Size = getContext().getTypeSize(RetTy);
6097   if (Size <= 32) {
6098     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6099     // same size and alignment.
6100     if (getTarget().isRenderScriptTarget()) {
6101       return coerceToIntArray(RetTy, getContext(), getVMContext());
6102     }
6103     if (getDataLayout().isBigEndian())
6104       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6105       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6106 
6107     // Return in the smallest viable integer type.
6108     if (Size <= 8)
6109       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6110     if (Size <= 16)
6111       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6112     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6113   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6114     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6115     llvm::Type *CoerceTy =
6116         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6117     return ABIArgInfo::getDirect(CoerceTy);
6118   }
6119 
6120   return getNaturalAlignIndirect(RetTy);
6121 }
6122 
6123 /// isIllegalVector - check whether Ty is an illegal vector type.
6124 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6125   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6126     // On targets that don't support FP16, FP16 is expanded into float, and we
6127     // don't want the ABI to depend on whether or not FP16 is supported in
6128     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6129     if (!getTarget().hasLegalHalfType() &&
6130         (VT->getElementType()->isFloat16Type() ||
6131          VT->getElementType()->isHalfType()))
6132       return true;
6133     if (isAndroid()) {
6134       // Android shipped using Clang 3.1, which supported a slightly different
6135       // vector ABI. The primary differences were that 3-element vector types
6136       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6137       // accepts that legacy behavior for Android only.
6138       // Check whether VT is legal.
6139       unsigned NumElements = VT->getNumElements();
6140       // NumElements should be power of 2 or equal to 3.
6141       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6142         return true;
6143     } else {
6144       // Check whether VT is legal.
6145       unsigned NumElements = VT->getNumElements();
6146       uint64_t Size = getContext().getTypeSize(VT);
6147       // NumElements should be power of 2.
6148       if (!llvm::isPowerOf2_32(NumElements))
6149         return true;
6150       // Size should be greater than 32 bits.
6151       return Size <= 32;
6152     }
6153   }
6154   return false;
6155 }
6156 
6157 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6158                                            llvm::Type *eltTy,
6159                                            unsigned numElts) const {
6160   if (!llvm::isPowerOf2_32(numElts))
6161     return false;
6162   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6163   if (size > 64)
6164     return false;
6165   if (vectorSize.getQuantity() != 8 &&
6166       (vectorSize.getQuantity() != 16 || numElts == 1))
6167     return false;
6168   return true;
6169 }
6170 
6171 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6172   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6173   // double, or 64-bit or 128-bit vectors.
6174   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6175     if (BT->getKind() == BuiltinType::Float ||
6176         BT->getKind() == BuiltinType::Double ||
6177         BT->getKind() == BuiltinType::LongDouble)
6178       return true;
6179   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6180     unsigned VecSize = getContext().getTypeSize(VT);
6181     if (VecSize == 64 || VecSize == 128)
6182       return true;
6183   }
6184   return false;
6185 }
6186 
6187 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6188                                                    uint64_t Members) const {
6189   return Members <= 4;
6190 }
6191 
6192 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6193                                         bool acceptHalf) const {
6194   // Give precedence to user-specified calling conventions.
6195   if (callConvention != llvm::CallingConv::C)
6196     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6197   else
6198     return (getABIKind() == AAPCS_VFP) ||
6199            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6200 }
6201 
6202 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6203                               QualType Ty) const {
6204   CharUnits SlotSize = CharUnits::fromQuantity(4);
6205 
6206   // Empty records are ignored for parameter passing purposes.
6207   if (isEmptyRecord(getContext(), Ty, true)) {
6208     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6209     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6210     return Addr;
6211   }
6212 
6213   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6214   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6215 
6216   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6217   bool IsIndirect = false;
6218   const Type *Base = nullptr;
6219   uint64_t Members = 0;
6220   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6221     IsIndirect = true;
6222 
6223   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6224   // allocated by the caller.
6225   } else if (TySize > CharUnits::fromQuantity(16) &&
6226              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6227              !isHomogeneousAggregate(Ty, Base, Members)) {
6228     IsIndirect = true;
6229 
6230   // Otherwise, bound the type's ABI alignment.
6231   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6232   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6233   // Our callers should be prepared to handle an under-aligned address.
6234   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6235              getABIKind() == ARMABIInfo::AAPCS) {
6236     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6237     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6238   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6239     // ARMv7k allows type alignment up to 16 bytes.
6240     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6241     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6242   } else {
6243     TyAlignForABI = CharUnits::fromQuantity(4);
6244   }
6245 
6246   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6247   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6248                           SlotSize, /*AllowHigherAlign*/ true);
6249 }
6250 
6251 //===----------------------------------------------------------------------===//
6252 // NVPTX ABI Implementation
6253 //===----------------------------------------------------------------------===//
6254 
6255 namespace {
6256 
6257 class NVPTXABIInfo : public ABIInfo {
6258 public:
6259   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6260 
6261   ABIArgInfo classifyReturnType(QualType RetTy) const;
6262   ABIArgInfo classifyArgumentType(QualType Ty) const;
6263 
6264   void computeInfo(CGFunctionInfo &FI) const override;
6265   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6266                     QualType Ty) const override;
6267 };
6268 
6269 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6270 public:
6271   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6272     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6273 
6274   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6275                            CodeGen::CodeGenModule &M) const override;
6276   bool shouldEmitStaticExternCAliases() const override;
6277 
6278 private:
6279   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6280   // resulting MDNode to the nvvm.annotations MDNode.
6281   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6282 };
6283 
6284 /// Checks if the type is unsupported directly by the current target.
6285 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6286   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6287     return true;
6288   if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type())
6289     return true;
6290   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6291       Context.getTypeSize(T) > 64)
6292     return true;
6293   if (const auto *AT = T->getAsArrayTypeUnsafe())
6294     return isUnsupportedType(Context, AT->getElementType());
6295   const auto *RT = T->getAs<RecordType>();
6296   if (!RT)
6297     return false;
6298   const RecordDecl *RD = RT->getDecl();
6299 
6300   // If this is a C++ record, check the bases first.
6301   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6302     for (const CXXBaseSpecifier &I : CXXRD->bases())
6303       if (isUnsupportedType(Context, I.getType()))
6304         return true;
6305 
6306   for (const FieldDecl *I : RD->fields())
6307     if (isUnsupportedType(Context, I->getType()))
6308       return true;
6309   return false;
6310 }
6311 
6312 /// Coerce the given type into an array with maximum allowed size of elements.
6313 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6314                                             llvm::LLVMContext &LLVMContext,
6315                                             unsigned MaxSize) {
6316   // Alignment and Size are measured in bits.
6317   const uint64_t Size = Context.getTypeSize(Ty);
6318   const uint64_t Alignment = Context.getTypeAlign(Ty);
6319   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6320   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6321   const uint64_t NumElements = (Size + Div - 1) / Div;
6322   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6323 }
6324 
6325 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6326   if (RetTy->isVoidType())
6327     return ABIArgInfo::getIgnore();
6328 
6329   if (getContext().getLangOpts().OpenMP &&
6330       getContext().getLangOpts().OpenMPIsDevice &&
6331       isUnsupportedType(getContext(), RetTy))
6332     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6333 
6334   // note: this is different from default ABI
6335   if (!RetTy->isScalarType())
6336     return ABIArgInfo::getDirect();
6337 
6338   // Treat an enum type as its underlying type.
6339   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6340     RetTy = EnumTy->getDecl()->getIntegerType();
6341 
6342   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6343                                            : ABIArgInfo::getDirect());
6344 }
6345 
6346 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6347   // Treat an enum type as its underlying type.
6348   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6349     Ty = EnumTy->getDecl()->getIntegerType();
6350 
6351   // Return aggregates type as indirect by value
6352   if (isAggregateTypeForABI(Ty))
6353     return getNaturalAlignIndirect(Ty, /* byval */ true);
6354 
6355   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6356                                         : ABIArgInfo::getDirect());
6357 }
6358 
6359 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6360   if (!getCXXABI().classifyReturnType(FI))
6361     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6362   for (auto &I : FI.arguments())
6363     I.info = classifyArgumentType(I.type);
6364 
6365   // Always honor user-specified calling convention.
6366   if (FI.getCallingConvention() != llvm::CallingConv::C)
6367     return;
6368 
6369   FI.setEffectiveCallingConvention(getRuntimeCC());
6370 }
6371 
6372 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6373                                 QualType Ty) const {
6374   llvm_unreachable("NVPTX does not support varargs");
6375 }
6376 
6377 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6378     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6379   if (GV->isDeclaration())
6380     return;
6381   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6382   if (!FD) return;
6383 
6384   llvm::Function *F = cast<llvm::Function>(GV);
6385 
6386   // Perform special handling in OpenCL mode
6387   if (M.getLangOpts().OpenCL) {
6388     // Use OpenCL function attributes to check for kernel functions
6389     // By default, all functions are device functions
6390     if (FD->hasAttr<OpenCLKernelAttr>()) {
6391       // OpenCL __kernel functions get kernel metadata
6392       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6393       addNVVMMetadata(F, "kernel", 1);
6394       // And kernel functions are not subject to inlining
6395       F->addFnAttr(llvm::Attribute::NoInline);
6396     }
6397   }
6398 
6399   // Perform special handling in CUDA mode.
6400   if (M.getLangOpts().CUDA) {
6401     // CUDA __global__ functions get a kernel metadata entry.  Since
6402     // __global__ functions cannot be called from the device, we do not
6403     // need to set the noinline attribute.
6404     if (FD->hasAttr<CUDAGlobalAttr>()) {
6405       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6406       addNVVMMetadata(F, "kernel", 1);
6407     }
6408     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6409       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6410       llvm::APSInt MaxThreads(32);
6411       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6412       if (MaxThreads > 0)
6413         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6414 
6415       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6416       // not specified in __launch_bounds__ or if the user specified a 0 value,
6417       // we don't have to add a PTX directive.
6418       if (Attr->getMinBlocks()) {
6419         llvm::APSInt MinBlocks(32);
6420         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6421         if (MinBlocks > 0)
6422           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6423           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6424       }
6425     }
6426   }
6427 }
6428 
6429 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6430                                              int Operand) {
6431   llvm::Module *M = F->getParent();
6432   llvm::LLVMContext &Ctx = M->getContext();
6433 
6434   // Get "nvvm.annotations" metadata node
6435   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6436 
6437   llvm::Metadata *MDVals[] = {
6438       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6439       llvm::ConstantAsMetadata::get(
6440           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6441   // Append metadata to nvvm.annotations
6442   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6443 }
6444 
6445 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6446   return false;
6447 }
6448 }
6449 
6450 //===----------------------------------------------------------------------===//
6451 // SystemZ ABI Implementation
6452 //===----------------------------------------------------------------------===//
6453 
6454 namespace {
6455 
6456 class SystemZABIInfo : public SwiftABIInfo {
6457   bool HasVector;
6458 
6459 public:
6460   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6461     : SwiftABIInfo(CGT), HasVector(HV) {}
6462 
6463   bool isPromotableIntegerType(QualType Ty) const;
6464   bool isCompoundType(QualType Ty) const;
6465   bool isVectorArgumentType(QualType Ty) const;
6466   bool isFPArgumentType(QualType Ty) const;
6467   QualType GetSingleElementType(QualType Ty) const;
6468 
6469   ABIArgInfo classifyReturnType(QualType RetTy) const;
6470   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6471 
6472   void computeInfo(CGFunctionInfo &FI) const override {
6473     if (!getCXXABI().classifyReturnType(FI))
6474       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6475     for (auto &I : FI.arguments())
6476       I.info = classifyArgumentType(I.type);
6477   }
6478 
6479   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6480                     QualType Ty) const override;
6481 
6482   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6483                                     bool asReturnValue) const override {
6484     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6485   }
6486   bool isSwiftErrorInRegister() const override {
6487     return false;
6488   }
6489 };
6490 
6491 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6492 public:
6493   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6494     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6495 };
6496 
6497 }
6498 
6499 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6500   // Treat an enum type as its underlying type.
6501   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6502     Ty = EnumTy->getDecl()->getIntegerType();
6503 
6504   // Promotable integer types are required to be promoted by the ABI.
6505   if (Ty->isPromotableIntegerType())
6506     return true;
6507 
6508   // 32-bit values must also be promoted.
6509   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6510     switch (BT->getKind()) {
6511     case BuiltinType::Int:
6512     case BuiltinType::UInt:
6513       return true;
6514     default:
6515       return false;
6516     }
6517   return false;
6518 }
6519 
6520 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6521   return (Ty->isAnyComplexType() ||
6522           Ty->isVectorType() ||
6523           isAggregateTypeForABI(Ty));
6524 }
6525 
6526 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6527   return (HasVector &&
6528           Ty->isVectorType() &&
6529           getContext().getTypeSize(Ty) <= 128);
6530 }
6531 
6532 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6533   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6534     switch (BT->getKind()) {
6535     case BuiltinType::Float:
6536     case BuiltinType::Double:
6537       return true;
6538     default:
6539       return false;
6540     }
6541 
6542   return false;
6543 }
6544 
6545 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6546   if (const RecordType *RT = Ty->getAsStructureType()) {
6547     const RecordDecl *RD = RT->getDecl();
6548     QualType Found;
6549 
6550     // If this is a C++ record, check the bases first.
6551     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6552       for (const auto &I : CXXRD->bases()) {
6553         QualType Base = I.getType();
6554 
6555         // Empty bases don't affect things either way.
6556         if (isEmptyRecord(getContext(), Base, true))
6557           continue;
6558 
6559         if (!Found.isNull())
6560           return Ty;
6561         Found = GetSingleElementType(Base);
6562       }
6563 
6564     // Check the fields.
6565     for (const auto *FD : RD->fields()) {
6566       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6567       // Unlike isSingleElementStruct(), empty structure and array fields
6568       // do count.  So do anonymous bitfields that aren't zero-sized.
6569       if (getContext().getLangOpts().CPlusPlus &&
6570           FD->isZeroLengthBitField(getContext()))
6571         continue;
6572 
6573       // Unlike isSingleElementStruct(), arrays do not count.
6574       // Nested structures still do though.
6575       if (!Found.isNull())
6576         return Ty;
6577       Found = GetSingleElementType(FD->getType());
6578     }
6579 
6580     // Unlike isSingleElementStruct(), trailing padding is allowed.
6581     // An 8-byte aligned struct s { float f; } is passed as a double.
6582     if (!Found.isNull())
6583       return Found;
6584   }
6585 
6586   return Ty;
6587 }
6588 
6589 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6590                                   QualType Ty) const {
6591   // Assume that va_list type is correct; should be pointer to LLVM type:
6592   // struct {
6593   //   i64 __gpr;
6594   //   i64 __fpr;
6595   //   i8 *__overflow_arg_area;
6596   //   i8 *__reg_save_area;
6597   // };
6598 
6599   // Every non-vector argument occupies 8 bytes and is passed by preference
6600   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6601   // always passed on the stack.
6602   Ty = getContext().getCanonicalType(Ty);
6603   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6604   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6605   llvm::Type *DirectTy = ArgTy;
6606   ABIArgInfo AI = classifyArgumentType(Ty);
6607   bool IsIndirect = AI.isIndirect();
6608   bool InFPRs = false;
6609   bool IsVector = false;
6610   CharUnits UnpaddedSize;
6611   CharUnits DirectAlign;
6612   if (IsIndirect) {
6613     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6614     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6615   } else {
6616     if (AI.getCoerceToType())
6617       ArgTy = AI.getCoerceToType();
6618     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6619     IsVector = ArgTy->isVectorTy();
6620     UnpaddedSize = TyInfo.first;
6621     DirectAlign = TyInfo.second;
6622   }
6623   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6624   if (IsVector && UnpaddedSize > PaddedSize)
6625     PaddedSize = CharUnits::fromQuantity(16);
6626   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6627 
6628   CharUnits Padding = (PaddedSize - UnpaddedSize);
6629 
6630   llvm::Type *IndexTy = CGF.Int64Ty;
6631   llvm::Value *PaddedSizeV =
6632     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6633 
6634   if (IsVector) {
6635     // Work out the address of a vector argument on the stack.
6636     // Vector arguments are always passed in the high bits of a
6637     // single (8 byte) or double (16 byte) stack slot.
6638     Address OverflowArgAreaPtr =
6639         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6640     Address OverflowArgArea =
6641       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6642               TyInfo.second);
6643     Address MemAddr =
6644       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6645 
6646     // Update overflow_arg_area_ptr pointer
6647     llvm::Value *NewOverflowArgArea =
6648       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6649                             "overflow_arg_area");
6650     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6651 
6652     return MemAddr;
6653   }
6654 
6655   assert(PaddedSize.getQuantity() == 8);
6656 
6657   unsigned MaxRegs, RegCountField, RegSaveIndex;
6658   CharUnits RegPadding;
6659   if (InFPRs) {
6660     MaxRegs = 4; // Maximum of 4 FPR arguments
6661     RegCountField = 1; // __fpr
6662     RegSaveIndex = 16; // save offset for f0
6663     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6664   } else {
6665     MaxRegs = 5; // Maximum of 5 GPR arguments
6666     RegCountField = 0; // __gpr
6667     RegSaveIndex = 2; // save offset for r2
6668     RegPadding = Padding; // values are passed in the low bits of a GPR
6669   }
6670 
6671   Address RegCountPtr =
6672       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6673   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6674   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6675   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6676                                                  "fits_in_regs");
6677 
6678   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6679   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6680   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6681   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6682 
6683   // Emit code to load the value if it was passed in registers.
6684   CGF.EmitBlock(InRegBlock);
6685 
6686   // Work out the address of an argument register.
6687   llvm::Value *ScaledRegCount =
6688     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6689   llvm::Value *RegBase =
6690     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6691                                       + RegPadding.getQuantity());
6692   llvm::Value *RegOffset =
6693     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6694   Address RegSaveAreaPtr =
6695       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6696   llvm::Value *RegSaveArea =
6697     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6698   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6699                                            "raw_reg_addr"),
6700                      PaddedSize);
6701   Address RegAddr =
6702     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6703 
6704   // Update the register count
6705   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6706   llvm::Value *NewRegCount =
6707     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6708   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6709   CGF.EmitBranch(ContBlock);
6710 
6711   // Emit code to load the value if it was passed in memory.
6712   CGF.EmitBlock(InMemBlock);
6713 
6714   // Work out the address of a stack argument.
6715   Address OverflowArgAreaPtr =
6716       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6717   Address OverflowArgArea =
6718     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6719             PaddedSize);
6720   Address RawMemAddr =
6721     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6722   Address MemAddr =
6723     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6724 
6725   // Update overflow_arg_area_ptr pointer
6726   llvm::Value *NewOverflowArgArea =
6727     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6728                           "overflow_arg_area");
6729   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6730   CGF.EmitBranch(ContBlock);
6731 
6732   // Return the appropriate result.
6733   CGF.EmitBlock(ContBlock);
6734   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6735                                  MemAddr, InMemBlock, "va_arg.addr");
6736 
6737   if (IsIndirect)
6738     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6739                       TyInfo.second);
6740 
6741   return ResAddr;
6742 }
6743 
6744 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6745   if (RetTy->isVoidType())
6746     return ABIArgInfo::getIgnore();
6747   if (isVectorArgumentType(RetTy))
6748     return ABIArgInfo::getDirect();
6749   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6750     return getNaturalAlignIndirect(RetTy);
6751   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6752                                          : ABIArgInfo::getDirect());
6753 }
6754 
6755 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6756   // Handle the generic C++ ABI.
6757   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6758     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6759 
6760   // Integers and enums are extended to full register width.
6761   if (isPromotableIntegerType(Ty))
6762     return ABIArgInfo::getExtend(Ty);
6763 
6764   // Handle vector types and vector-like structure types.  Note that
6765   // as opposed to float-like structure types, we do not allow any
6766   // padding for vector-like structures, so verify the sizes match.
6767   uint64_t Size = getContext().getTypeSize(Ty);
6768   QualType SingleElementTy = GetSingleElementType(Ty);
6769   if (isVectorArgumentType(SingleElementTy) &&
6770       getContext().getTypeSize(SingleElementTy) == Size)
6771     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6772 
6773   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6774   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6775     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6776 
6777   // Handle small structures.
6778   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6779     // Structures with flexible arrays have variable length, so really
6780     // fail the size test above.
6781     const RecordDecl *RD = RT->getDecl();
6782     if (RD->hasFlexibleArrayMember())
6783       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6784 
6785     // The structure is passed as an unextended integer, a float, or a double.
6786     llvm::Type *PassTy;
6787     if (isFPArgumentType(SingleElementTy)) {
6788       assert(Size == 32 || Size == 64);
6789       if (Size == 32)
6790         PassTy = llvm::Type::getFloatTy(getVMContext());
6791       else
6792         PassTy = llvm::Type::getDoubleTy(getVMContext());
6793     } else
6794       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6795     return ABIArgInfo::getDirect(PassTy);
6796   }
6797 
6798   // Non-structure compounds are passed indirectly.
6799   if (isCompoundType(Ty))
6800     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6801 
6802   return ABIArgInfo::getDirect(nullptr);
6803 }
6804 
6805 //===----------------------------------------------------------------------===//
6806 // MSP430 ABI Implementation
6807 //===----------------------------------------------------------------------===//
6808 
6809 namespace {
6810 
6811 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6812 public:
6813   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6814     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6815   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6816                            CodeGen::CodeGenModule &M) const override;
6817 };
6818 
6819 }
6820 
6821 void MSP430TargetCodeGenInfo::setTargetAttributes(
6822     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6823   if (GV->isDeclaration())
6824     return;
6825   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6826     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6827     if (!InterruptAttr)
6828       return;
6829 
6830     // Handle 'interrupt' attribute:
6831     llvm::Function *F = cast<llvm::Function>(GV);
6832 
6833     // Step 1: Set ISR calling convention.
6834     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6835 
6836     // Step 2: Add attributes goodness.
6837     F->addFnAttr(llvm::Attribute::NoInline);
6838     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6839   }
6840 }
6841 
6842 //===----------------------------------------------------------------------===//
6843 // MIPS ABI Implementation.  This works for both little-endian and
6844 // big-endian variants.
6845 //===----------------------------------------------------------------------===//
6846 
6847 namespace {
6848 class MipsABIInfo : public ABIInfo {
6849   bool IsO32;
6850   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6851   void CoerceToIntArgs(uint64_t TySize,
6852                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6853   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6854   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6855   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6856 public:
6857   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6858     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6859     StackAlignInBytes(IsO32 ? 8 : 16) {}
6860 
6861   ABIArgInfo classifyReturnType(QualType RetTy) const;
6862   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6863   void computeInfo(CGFunctionInfo &FI) const override;
6864   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6865                     QualType Ty) const override;
6866   ABIArgInfo extendType(QualType Ty) const;
6867 };
6868 
6869 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6870   unsigned SizeOfUnwindException;
6871 public:
6872   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6873     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6874       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6875 
6876   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6877     return 29;
6878   }
6879 
6880   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6881                            CodeGen::CodeGenModule &CGM) const override {
6882     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6883     if (!FD) return;
6884     llvm::Function *Fn = cast<llvm::Function>(GV);
6885 
6886     if (FD->hasAttr<MipsLongCallAttr>())
6887       Fn->addFnAttr("long-call");
6888     else if (FD->hasAttr<MipsShortCallAttr>())
6889       Fn->addFnAttr("short-call");
6890 
6891     // Other attributes do not have a meaning for declarations.
6892     if (GV->isDeclaration())
6893       return;
6894 
6895     if (FD->hasAttr<Mips16Attr>()) {
6896       Fn->addFnAttr("mips16");
6897     }
6898     else if (FD->hasAttr<NoMips16Attr>()) {
6899       Fn->addFnAttr("nomips16");
6900     }
6901 
6902     if (FD->hasAttr<MicroMipsAttr>())
6903       Fn->addFnAttr("micromips");
6904     else if (FD->hasAttr<NoMicroMipsAttr>())
6905       Fn->addFnAttr("nomicromips");
6906 
6907     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6908     if (!Attr)
6909       return;
6910 
6911     const char *Kind;
6912     switch (Attr->getInterrupt()) {
6913     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6914     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6915     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6916     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6917     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6918     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6919     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6920     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6921     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6922     }
6923 
6924     Fn->addFnAttr("interrupt", Kind);
6925 
6926   }
6927 
6928   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6929                                llvm::Value *Address) const override;
6930 
6931   unsigned getSizeOfUnwindException() const override {
6932     return SizeOfUnwindException;
6933   }
6934 };
6935 }
6936 
6937 void MipsABIInfo::CoerceToIntArgs(
6938     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6939   llvm::IntegerType *IntTy =
6940     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6941 
6942   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6943   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6944     ArgList.push_back(IntTy);
6945 
6946   // If necessary, add one more integer type to ArgList.
6947   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6948 
6949   if (R)
6950     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6951 }
6952 
6953 // In N32/64, an aligned double precision floating point field is passed in
6954 // a register.
6955 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6956   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6957 
6958   if (IsO32) {
6959     CoerceToIntArgs(TySize, ArgList);
6960     return llvm::StructType::get(getVMContext(), ArgList);
6961   }
6962 
6963   if (Ty->isComplexType())
6964     return CGT.ConvertType(Ty);
6965 
6966   const RecordType *RT = Ty->getAs<RecordType>();
6967 
6968   // Unions/vectors are passed in integer registers.
6969   if (!RT || !RT->isStructureOrClassType()) {
6970     CoerceToIntArgs(TySize, ArgList);
6971     return llvm::StructType::get(getVMContext(), ArgList);
6972   }
6973 
6974   const RecordDecl *RD = RT->getDecl();
6975   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6976   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6977 
6978   uint64_t LastOffset = 0;
6979   unsigned idx = 0;
6980   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6981 
6982   // Iterate over fields in the struct/class and check if there are any aligned
6983   // double fields.
6984   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6985        i != e; ++i, ++idx) {
6986     const QualType Ty = i->getType();
6987     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6988 
6989     if (!BT || BT->getKind() != BuiltinType::Double)
6990       continue;
6991 
6992     uint64_t Offset = Layout.getFieldOffset(idx);
6993     if (Offset % 64) // Ignore doubles that are not aligned.
6994       continue;
6995 
6996     // Add ((Offset - LastOffset) / 64) args of type i64.
6997     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6998       ArgList.push_back(I64);
6999 
7000     // Add double type.
7001     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7002     LastOffset = Offset + 64;
7003   }
7004 
7005   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7006   ArgList.append(IntArgList.begin(), IntArgList.end());
7007 
7008   return llvm::StructType::get(getVMContext(), ArgList);
7009 }
7010 
7011 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7012                                         uint64_t Offset) const {
7013   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7014     return nullptr;
7015 
7016   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7017 }
7018 
7019 ABIArgInfo
7020 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7021   Ty = useFirstFieldIfTransparentUnion(Ty);
7022 
7023   uint64_t OrigOffset = Offset;
7024   uint64_t TySize = getContext().getTypeSize(Ty);
7025   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7026 
7027   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7028                    (uint64_t)StackAlignInBytes);
7029   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7030   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7031 
7032   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7033     // Ignore empty aggregates.
7034     if (TySize == 0)
7035       return ABIArgInfo::getIgnore();
7036 
7037     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7038       Offset = OrigOffset + MinABIStackAlignInBytes;
7039       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7040     }
7041 
7042     // If we have reached here, aggregates are passed directly by coercing to
7043     // another structure type. Padding is inserted if the offset of the
7044     // aggregate is unaligned.
7045     ABIArgInfo ArgInfo =
7046         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7047                               getPaddingType(OrigOffset, CurrOffset));
7048     ArgInfo.setInReg(true);
7049     return ArgInfo;
7050   }
7051 
7052   // Treat an enum type as its underlying type.
7053   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7054     Ty = EnumTy->getDecl()->getIntegerType();
7055 
7056   // All integral types are promoted to the GPR width.
7057   if (Ty->isIntegralOrEnumerationType())
7058     return extendType(Ty);
7059 
7060   return ABIArgInfo::getDirect(
7061       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7062 }
7063 
7064 llvm::Type*
7065 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7066   const RecordType *RT = RetTy->getAs<RecordType>();
7067   SmallVector<llvm::Type*, 8> RTList;
7068 
7069   if (RT && RT->isStructureOrClassType()) {
7070     const RecordDecl *RD = RT->getDecl();
7071     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7072     unsigned FieldCnt = Layout.getFieldCount();
7073 
7074     // N32/64 returns struct/classes in floating point registers if the
7075     // following conditions are met:
7076     // 1. The size of the struct/class is no larger than 128-bit.
7077     // 2. The struct/class has one or two fields all of which are floating
7078     //    point types.
7079     // 3. The offset of the first field is zero (this follows what gcc does).
7080     //
7081     // Any other composite results are returned in integer registers.
7082     //
7083     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7084       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7085       for (; b != e; ++b) {
7086         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7087 
7088         if (!BT || !BT->isFloatingPoint())
7089           break;
7090 
7091         RTList.push_back(CGT.ConvertType(b->getType()));
7092       }
7093 
7094       if (b == e)
7095         return llvm::StructType::get(getVMContext(), RTList,
7096                                      RD->hasAttr<PackedAttr>());
7097 
7098       RTList.clear();
7099     }
7100   }
7101 
7102   CoerceToIntArgs(Size, RTList);
7103   return llvm::StructType::get(getVMContext(), RTList);
7104 }
7105 
7106 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7107   uint64_t Size = getContext().getTypeSize(RetTy);
7108 
7109   if (RetTy->isVoidType())
7110     return ABIArgInfo::getIgnore();
7111 
7112   // O32 doesn't treat zero-sized structs differently from other structs.
7113   // However, N32/N64 ignores zero sized return values.
7114   if (!IsO32 && Size == 0)
7115     return ABIArgInfo::getIgnore();
7116 
7117   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7118     if (Size <= 128) {
7119       if (RetTy->isAnyComplexType())
7120         return ABIArgInfo::getDirect();
7121 
7122       // O32 returns integer vectors in registers and N32/N64 returns all small
7123       // aggregates in registers.
7124       if (!IsO32 ||
7125           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7126         ABIArgInfo ArgInfo =
7127             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7128         ArgInfo.setInReg(true);
7129         return ArgInfo;
7130       }
7131     }
7132 
7133     return getNaturalAlignIndirect(RetTy);
7134   }
7135 
7136   // Treat an enum type as its underlying type.
7137   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7138     RetTy = EnumTy->getDecl()->getIntegerType();
7139 
7140   if (RetTy->isPromotableIntegerType())
7141     return ABIArgInfo::getExtend(RetTy);
7142 
7143   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7144       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7145     return ABIArgInfo::getSignExtend(RetTy);
7146 
7147   return ABIArgInfo::getDirect();
7148 }
7149 
7150 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7151   ABIArgInfo &RetInfo = FI.getReturnInfo();
7152   if (!getCXXABI().classifyReturnType(FI))
7153     RetInfo = classifyReturnType(FI.getReturnType());
7154 
7155   // Check if a pointer to an aggregate is passed as a hidden argument.
7156   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7157 
7158   for (auto &I : FI.arguments())
7159     I.info = classifyArgumentType(I.type, Offset);
7160 }
7161 
7162 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7163                                QualType OrigTy) const {
7164   QualType Ty = OrigTy;
7165 
7166   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7167   // Pointers are also promoted in the same way but this only matters for N32.
7168   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7169   unsigned PtrWidth = getTarget().getPointerWidth(0);
7170   bool DidPromote = false;
7171   if ((Ty->isIntegerType() &&
7172           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7173       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7174     DidPromote = true;
7175     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7176                                             Ty->isSignedIntegerType());
7177   }
7178 
7179   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7180 
7181   // The alignment of things in the argument area is never larger than
7182   // StackAlignInBytes.
7183   TyInfo.second =
7184     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7185 
7186   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7187   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7188 
7189   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7190                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7191 
7192 
7193   // If there was a promotion, "unpromote" into a temporary.
7194   // TODO: can we just use a pointer into a subset of the original slot?
7195   if (DidPromote) {
7196     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7197     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7198 
7199     // Truncate down to the right width.
7200     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7201                                                  : CGF.IntPtrTy);
7202     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7203     if (OrigTy->isPointerType())
7204       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7205 
7206     CGF.Builder.CreateStore(V, Temp);
7207     Addr = Temp;
7208   }
7209 
7210   return Addr;
7211 }
7212 
7213 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7214   int TySize = getContext().getTypeSize(Ty);
7215 
7216   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7217   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7218     return ABIArgInfo::getSignExtend(Ty);
7219 
7220   return ABIArgInfo::getExtend(Ty);
7221 }
7222 
7223 bool
7224 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7225                                                llvm::Value *Address) const {
7226   // This information comes from gcc's implementation, which seems to
7227   // as canonical as it gets.
7228 
7229   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7230   // are aliased to pairs of single-precision FP registers.
7231   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7232 
7233   // 0-31 are the general purpose registers, $0 - $31.
7234   // 32-63 are the floating-point registers, $f0 - $f31.
7235   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7236   // 66 is the (notional, I think) register for signal-handler return.
7237   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7238 
7239   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7240   // They are one bit wide and ignored here.
7241 
7242   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7243   // (coprocessor 1 is the FP unit)
7244   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7245   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7246   // 176-181 are the DSP accumulator registers.
7247   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7248   return false;
7249 }
7250 
7251 //===----------------------------------------------------------------------===//
7252 // AVR ABI Implementation.
7253 //===----------------------------------------------------------------------===//
7254 
7255 namespace {
7256 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7257 public:
7258   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7259     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7260 
7261   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7262                            CodeGen::CodeGenModule &CGM) const override {
7263     if (GV->isDeclaration())
7264       return;
7265     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7266     if (!FD) return;
7267     auto *Fn = cast<llvm::Function>(GV);
7268 
7269     if (FD->getAttr<AVRInterruptAttr>())
7270       Fn->addFnAttr("interrupt");
7271 
7272     if (FD->getAttr<AVRSignalAttr>())
7273       Fn->addFnAttr("signal");
7274   }
7275 };
7276 }
7277 
7278 //===----------------------------------------------------------------------===//
7279 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7280 // Currently subclassed only to implement custom OpenCL C function attribute
7281 // handling.
7282 //===----------------------------------------------------------------------===//
7283 
7284 namespace {
7285 
7286 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7287 public:
7288   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7289     : DefaultTargetCodeGenInfo(CGT) {}
7290 
7291   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7292                            CodeGen::CodeGenModule &M) const override;
7293 };
7294 
7295 void TCETargetCodeGenInfo::setTargetAttributes(
7296     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7297   if (GV->isDeclaration())
7298     return;
7299   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7300   if (!FD) return;
7301 
7302   llvm::Function *F = cast<llvm::Function>(GV);
7303 
7304   if (M.getLangOpts().OpenCL) {
7305     if (FD->hasAttr<OpenCLKernelAttr>()) {
7306       // OpenCL C Kernel functions are not subject to inlining
7307       F->addFnAttr(llvm::Attribute::NoInline);
7308       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7309       if (Attr) {
7310         // Convert the reqd_work_group_size() attributes to metadata.
7311         llvm::LLVMContext &Context = F->getContext();
7312         llvm::NamedMDNode *OpenCLMetadata =
7313             M.getModule().getOrInsertNamedMetadata(
7314                 "opencl.kernel_wg_size_info");
7315 
7316         SmallVector<llvm::Metadata *, 5> Operands;
7317         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7318 
7319         Operands.push_back(
7320             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7321                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7322         Operands.push_back(
7323             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7324                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7325         Operands.push_back(
7326             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7327                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7328 
7329         // Add a boolean constant operand for "required" (true) or "hint"
7330         // (false) for implementing the work_group_size_hint attr later.
7331         // Currently always true as the hint is not yet implemented.
7332         Operands.push_back(
7333             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7334         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7335       }
7336     }
7337   }
7338 }
7339 
7340 }
7341 
7342 //===----------------------------------------------------------------------===//
7343 // Hexagon ABI Implementation
7344 //===----------------------------------------------------------------------===//
7345 
7346 namespace {
7347 
7348 class HexagonABIInfo : public ABIInfo {
7349 
7350 
7351 public:
7352   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7353 
7354 private:
7355 
7356   ABIArgInfo classifyReturnType(QualType RetTy) const;
7357   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7358 
7359   void computeInfo(CGFunctionInfo &FI) const override;
7360 
7361   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7362                     QualType Ty) const override;
7363 };
7364 
7365 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7366 public:
7367   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7368     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7369 
7370   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7371     return 29;
7372   }
7373 };
7374 
7375 }
7376 
7377 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7378   if (!getCXXABI().classifyReturnType(FI))
7379     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7380   for (auto &I : FI.arguments())
7381     I.info = classifyArgumentType(I.type);
7382 }
7383 
7384 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7385   if (!isAggregateTypeForABI(Ty)) {
7386     // Treat an enum type as its underlying type.
7387     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7388       Ty = EnumTy->getDecl()->getIntegerType();
7389 
7390     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7391                                           : ABIArgInfo::getDirect());
7392   }
7393 
7394   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7395     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7396 
7397   // Ignore empty records.
7398   if (isEmptyRecord(getContext(), Ty, true))
7399     return ABIArgInfo::getIgnore();
7400 
7401   uint64_t Size = getContext().getTypeSize(Ty);
7402   if (Size > 64)
7403     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7404     // Pass in the smallest viable integer type.
7405   else if (Size > 32)
7406       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7407   else if (Size > 16)
7408       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7409   else if (Size > 8)
7410       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7411   else
7412       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7413 }
7414 
7415 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7416   if (RetTy->isVoidType())
7417     return ABIArgInfo::getIgnore();
7418 
7419   // Large vector types should be returned via memory.
7420   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7421     return getNaturalAlignIndirect(RetTy);
7422 
7423   if (!isAggregateTypeForABI(RetTy)) {
7424     // Treat an enum type as its underlying type.
7425     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7426       RetTy = EnumTy->getDecl()->getIntegerType();
7427 
7428     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7429                                              : ABIArgInfo::getDirect());
7430   }
7431 
7432   if (isEmptyRecord(getContext(), RetTy, true))
7433     return ABIArgInfo::getIgnore();
7434 
7435   // Aggregates <= 8 bytes are returned in r0; other aggregates
7436   // are returned indirectly.
7437   uint64_t Size = getContext().getTypeSize(RetTy);
7438   if (Size <= 64) {
7439     // Return in the smallest viable integer type.
7440     if (Size <= 8)
7441       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7442     if (Size <= 16)
7443       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7444     if (Size <= 32)
7445       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7446     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7447   }
7448 
7449   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7450 }
7451 
7452 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7453                                   QualType Ty) const {
7454   // FIXME: Someone needs to audit that this handle alignment correctly.
7455   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7456                           getContext().getTypeInfoInChars(Ty),
7457                           CharUnits::fromQuantity(4),
7458                           /*AllowHigherAlign*/ true);
7459 }
7460 
7461 //===----------------------------------------------------------------------===//
7462 // Lanai ABI Implementation
7463 //===----------------------------------------------------------------------===//
7464 
7465 namespace {
7466 class LanaiABIInfo : public DefaultABIInfo {
7467 public:
7468   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7469 
7470   bool shouldUseInReg(QualType Ty, CCState &State) const;
7471 
7472   void computeInfo(CGFunctionInfo &FI) const override {
7473     CCState State(FI.getCallingConvention());
7474     // Lanai uses 4 registers to pass arguments unless the function has the
7475     // regparm attribute set.
7476     if (FI.getHasRegParm()) {
7477       State.FreeRegs = FI.getRegParm();
7478     } else {
7479       State.FreeRegs = 4;
7480     }
7481 
7482     if (!getCXXABI().classifyReturnType(FI))
7483       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7484     for (auto &I : FI.arguments())
7485       I.info = classifyArgumentType(I.type, State);
7486   }
7487 
7488   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7489   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7490 };
7491 } // end anonymous namespace
7492 
7493 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7494   unsigned Size = getContext().getTypeSize(Ty);
7495   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7496 
7497   if (SizeInRegs == 0)
7498     return false;
7499 
7500   if (SizeInRegs > State.FreeRegs) {
7501     State.FreeRegs = 0;
7502     return false;
7503   }
7504 
7505   State.FreeRegs -= SizeInRegs;
7506 
7507   return true;
7508 }
7509 
7510 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7511                                            CCState &State) const {
7512   if (!ByVal) {
7513     if (State.FreeRegs) {
7514       --State.FreeRegs; // Non-byval indirects just use one pointer.
7515       return getNaturalAlignIndirectInReg(Ty);
7516     }
7517     return getNaturalAlignIndirect(Ty, false);
7518   }
7519 
7520   // Compute the byval alignment.
7521   const unsigned MinABIStackAlignInBytes = 4;
7522   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7523   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7524                                  /*Realign=*/TypeAlign >
7525                                      MinABIStackAlignInBytes);
7526 }
7527 
7528 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7529                                               CCState &State) const {
7530   // Check with the C++ ABI first.
7531   const RecordType *RT = Ty->getAs<RecordType>();
7532   if (RT) {
7533     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7534     if (RAA == CGCXXABI::RAA_Indirect) {
7535       return getIndirectResult(Ty, /*ByVal=*/false, State);
7536     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7537       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7538     }
7539   }
7540 
7541   if (isAggregateTypeForABI(Ty)) {
7542     // Structures with flexible arrays are always indirect.
7543     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7544       return getIndirectResult(Ty, /*ByVal=*/true, State);
7545 
7546     // Ignore empty structs/unions.
7547     if (isEmptyRecord(getContext(), Ty, true))
7548       return ABIArgInfo::getIgnore();
7549 
7550     llvm::LLVMContext &LLVMContext = getVMContext();
7551     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7552     if (SizeInRegs <= State.FreeRegs) {
7553       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7554       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7555       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7556       State.FreeRegs -= SizeInRegs;
7557       return ABIArgInfo::getDirectInReg(Result);
7558     } else {
7559       State.FreeRegs = 0;
7560     }
7561     return getIndirectResult(Ty, true, State);
7562   }
7563 
7564   // Treat an enum type as its underlying type.
7565   if (const auto *EnumTy = Ty->getAs<EnumType>())
7566     Ty = EnumTy->getDecl()->getIntegerType();
7567 
7568   bool InReg = shouldUseInReg(Ty, State);
7569   if (Ty->isPromotableIntegerType()) {
7570     if (InReg)
7571       return ABIArgInfo::getDirectInReg();
7572     return ABIArgInfo::getExtend(Ty);
7573   }
7574   if (InReg)
7575     return ABIArgInfo::getDirectInReg();
7576   return ABIArgInfo::getDirect();
7577 }
7578 
7579 namespace {
7580 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7581 public:
7582   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7583       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7584 };
7585 }
7586 
7587 //===----------------------------------------------------------------------===//
7588 // AMDGPU ABI Implementation
7589 //===----------------------------------------------------------------------===//
7590 
7591 namespace {
7592 
7593 class AMDGPUABIInfo final : public DefaultABIInfo {
7594 private:
7595   static const unsigned MaxNumRegsForArgsRet = 16;
7596 
7597   unsigned numRegsForType(QualType Ty) const;
7598 
7599   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7600   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7601                                          uint64_t Members) const override;
7602 
7603 public:
7604   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7605     DefaultABIInfo(CGT) {}
7606 
7607   ABIArgInfo classifyReturnType(QualType RetTy) const;
7608   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7609   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7610 
7611   void computeInfo(CGFunctionInfo &FI) const override;
7612 };
7613 
7614 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7615   return true;
7616 }
7617 
7618 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7619   const Type *Base, uint64_t Members) const {
7620   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7621 
7622   // Homogeneous Aggregates may occupy at most 16 registers.
7623   return Members * NumRegs <= MaxNumRegsForArgsRet;
7624 }
7625 
7626 /// Estimate number of registers the type will use when passed in registers.
7627 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7628   unsigned NumRegs = 0;
7629 
7630   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7631     // Compute from the number of elements. The reported size is based on the
7632     // in-memory size, which includes the padding 4th element for 3-vectors.
7633     QualType EltTy = VT->getElementType();
7634     unsigned EltSize = getContext().getTypeSize(EltTy);
7635 
7636     // 16-bit element vectors should be passed as packed.
7637     if (EltSize == 16)
7638       return (VT->getNumElements() + 1) / 2;
7639 
7640     unsigned EltNumRegs = (EltSize + 31) / 32;
7641     return EltNumRegs * VT->getNumElements();
7642   }
7643 
7644   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7645     const RecordDecl *RD = RT->getDecl();
7646     assert(!RD->hasFlexibleArrayMember());
7647 
7648     for (const FieldDecl *Field : RD->fields()) {
7649       QualType FieldTy = Field->getType();
7650       NumRegs += numRegsForType(FieldTy);
7651     }
7652 
7653     return NumRegs;
7654   }
7655 
7656   return (getContext().getTypeSize(Ty) + 31) / 32;
7657 }
7658 
7659 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7660   llvm::CallingConv::ID CC = FI.getCallingConvention();
7661 
7662   if (!getCXXABI().classifyReturnType(FI))
7663     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7664 
7665   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7666   for (auto &Arg : FI.arguments()) {
7667     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7668       Arg.info = classifyKernelArgumentType(Arg.type);
7669     } else {
7670       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7671     }
7672   }
7673 }
7674 
7675 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7676   if (isAggregateTypeForABI(RetTy)) {
7677     // Records with non-trivial destructors/copy-constructors should not be
7678     // returned by value.
7679     if (!getRecordArgABI(RetTy, getCXXABI())) {
7680       // Ignore empty structs/unions.
7681       if (isEmptyRecord(getContext(), RetTy, true))
7682         return ABIArgInfo::getIgnore();
7683 
7684       // Lower single-element structs to just return a regular value.
7685       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7686         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7687 
7688       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7689         const RecordDecl *RD = RT->getDecl();
7690         if (RD->hasFlexibleArrayMember())
7691           return DefaultABIInfo::classifyReturnType(RetTy);
7692       }
7693 
7694       // Pack aggregates <= 4 bytes into single VGPR or pair.
7695       uint64_t Size = getContext().getTypeSize(RetTy);
7696       if (Size <= 16)
7697         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7698 
7699       if (Size <= 32)
7700         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7701 
7702       if (Size <= 64) {
7703         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7704         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7705       }
7706 
7707       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7708         return ABIArgInfo::getDirect();
7709     }
7710   }
7711 
7712   // Otherwise just do the default thing.
7713   return DefaultABIInfo::classifyReturnType(RetTy);
7714 }
7715 
7716 /// For kernels all parameters are really passed in a special buffer. It doesn't
7717 /// make sense to pass anything byval, so everything must be direct.
7718 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7719   Ty = useFirstFieldIfTransparentUnion(Ty);
7720 
7721   // TODO: Can we omit empty structs?
7722 
7723   // Coerce single element structs to its element.
7724   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7725     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7726 
7727   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7728   // individual elements, which confuses the Clover OpenCL backend; therefore we
7729   // have to set it to false here. Other args of getDirect() are just defaults.
7730   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7731 }
7732 
7733 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7734                                                unsigned &NumRegsLeft) const {
7735   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7736 
7737   Ty = useFirstFieldIfTransparentUnion(Ty);
7738 
7739   if (isAggregateTypeForABI(Ty)) {
7740     // Records with non-trivial destructors/copy-constructors should not be
7741     // passed by value.
7742     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7743       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7744 
7745     // Ignore empty structs/unions.
7746     if (isEmptyRecord(getContext(), Ty, true))
7747       return ABIArgInfo::getIgnore();
7748 
7749     // Lower single-element structs to just pass a regular value. TODO: We
7750     // could do reasonable-size multiple-element structs too, using getExpand(),
7751     // though watch out for things like bitfields.
7752     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7753       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7754 
7755     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7756       const RecordDecl *RD = RT->getDecl();
7757       if (RD->hasFlexibleArrayMember())
7758         return DefaultABIInfo::classifyArgumentType(Ty);
7759     }
7760 
7761     // Pack aggregates <= 8 bytes into single VGPR or pair.
7762     uint64_t Size = getContext().getTypeSize(Ty);
7763     if (Size <= 64) {
7764       unsigned NumRegs = (Size + 31) / 32;
7765       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7766 
7767       if (Size <= 16)
7768         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7769 
7770       if (Size <= 32)
7771         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7772 
7773       // XXX: Should this be i64 instead, and should the limit increase?
7774       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7775       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7776     }
7777 
7778     if (NumRegsLeft > 0) {
7779       unsigned NumRegs = numRegsForType(Ty);
7780       if (NumRegsLeft >= NumRegs) {
7781         NumRegsLeft -= NumRegs;
7782         return ABIArgInfo::getDirect();
7783       }
7784     }
7785   }
7786 
7787   // Otherwise just do the default thing.
7788   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7789   if (!ArgInfo.isIndirect()) {
7790     unsigned NumRegs = numRegsForType(Ty);
7791     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7792   }
7793 
7794   return ArgInfo;
7795 }
7796 
7797 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7798 public:
7799   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7800     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7801   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7802                            CodeGen::CodeGenModule &M) const override;
7803   unsigned getOpenCLKernelCallingConv() const override;
7804 
7805   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7806       llvm::PointerType *T, QualType QT) const override;
7807 
7808   LangAS getASTAllocaAddressSpace() const override {
7809     return getLangASFromTargetAS(
7810         getABIInfo().getDataLayout().getAllocaAddrSpace());
7811   }
7812   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7813                                   const VarDecl *D) const override;
7814   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7815                                          SyncScope Scope,
7816                                          llvm::AtomicOrdering Ordering,
7817                                          llvm::LLVMContext &Ctx) const override;
7818   llvm::Function *
7819   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7820                             llvm::Function *BlockInvokeFunc,
7821                             llvm::Value *BlockLiteral) const override;
7822   bool shouldEmitStaticExternCAliases() const override;
7823   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7824 };
7825 }
7826 
7827 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7828                                               llvm::GlobalValue *GV) {
7829   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7830     return false;
7831 
7832   return D->hasAttr<OpenCLKernelAttr>() ||
7833          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7834          (isa<VarDecl>(D) &&
7835           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()));
7836 }
7837 
7838 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7839     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7840   if (requiresAMDGPUProtectedVisibility(D, GV)) {
7841     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7842     GV->setDSOLocal(true);
7843   }
7844 
7845   if (GV->isDeclaration())
7846     return;
7847   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7848   if (!FD)
7849     return;
7850 
7851   llvm::Function *F = cast<llvm::Function>(GV);
7852 
7853   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7854     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7855 
7856   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7857       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7858     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7859 
7860   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7861   if (ReqdWGS || FlatWGS) {
7862     unsigned Min = 0;
7863     unsigned Max = 0;
7864     if (FlatWGS) {
7865       Min = FlatWGS->getMin()
7866                 ->EvaluateKnownConstInt(M.getContext())
7867                 .getExtValue();
7868       Max = FlatWGS->getMax()
7869                 ->EvaluateKnownConstInt(M.getContext())
7870                 .getExtValue();
7871     }
7872     if (ReqdWGS && Min == 0 && Max == 0)
7873       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7874 
7875     if (Min != 0) {
7876       assert(Min <= Max && "Min must be less than or equal Max");
7877 
7878       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7879       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7880     } else
7881       assert(Max == 0 && "Max must be zero");
7882   }
7883 
7884   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7885     unsigned Min =
7886         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
7887     unsigned Max = Attr->getMax() ? Attr->getMax()
7888                                         ->EvaluateKnownConstInt(M.getContext())
7889                                         .getExtValue()
7890                                   : 0;
7891 
7892     if (Min != 0) {
7893       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7894 
7895       std::string AttrVal = llvm::utostr(Min);
7896       if (Max != 0)
7897         AttrVal = AttrVal + "," + llvm::utostr(Max);
7898       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7899     } else
7900       assert(Max == 0 && "Max must be zero");
7901   }
7902 
7903   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7904     unsigned NumSGPR = Attr->getNumSGPR();
7905 
7906     if (NumSGPR != 0)
7907       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7908   }
7909 
7910   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7911     uint32_t NumVGPR = Attr->getNumVGPR();
7912 
7913     if (NumVGPR != 0)
7914       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7915   }
7916 }
7917 
7918 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7919   return llvm::CallingConv::AMDGPU_KERNEL;
7920 }
7921 
7922 // Currently LLVM assumes null pointers always have value 0,
7923 // which results in incorrectly transformed IR. Therefore, instead of
7924 // emitting null pointers in private and local address spaces, a null
7925 // pointer in generic address space is emitted which is casted to a
7926 // pointer in local or private address space.
7927 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7928     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7929     QualType QT) const {
7930   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7931     return llvm::ConstantPointerNull::get(PT);
7932 
7933   auto &Ctx = CGM.getContext();
7934   auto NPT = llvm::PointerType::get(PT->getElementType(),
7935       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7936   return llvm::ConstantExpr::getAddrSpaceCast(
7937       llvm::ConstantPointerNull::get(NPT), PT);
7938 }
7939 
7940 LangAS
7941 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7942                                                   const VarDecl *D) const {
7943   assert(!CGM.getLangOpts().OpenCL &&
7944          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7945          "Address space agnostic languages only");
7946   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7947       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7948   if (!D)
7949     return DefaultGlobalAS;
7950 
7951   LangAS AddrSpace = D->getType().getAddressSpace();
7952   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7953   if (AddrSpace != LangAS::Default)
7954     return AddrSpace;
7955 
7956   if (CGM.isTypeConstant(D->getType(), false)) {
7957     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7958       return ConstAS.getValue();
7959   }
7960   return DefaultGlobalAS;
7961 }
7962 
7963 llvm::SyncScope::ID
7964 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
7965                                             SyncScope Scope,
7966                                             llvm::AtomicOrdering Ordering,
7967                                             llvm::LLVMContext &Ctx) const {
7968   std::string Name;
7969   switch (Scope) {
7970   case SyncScope::OpenCLWorkGroup:
7971     Name = "workgroup";
7972     break;
7973   case SyncScope::OpenCLDevice:
7974     Name = "agent";
7975     break;
7976   case SyncScope::OpenCLAllSVMDevices:
7977     Name = "";
7978     break;
7979   case SyncScope::OpenCLSubGroup:
7980     Name = "wavefront";
7981   }
7982 
7983   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
7984     if (!Name.empty())
7985       Name = Twine(Twine(Name) + Twine("-")).str();
7986 
7987     Name = Twine(Twine(Name) + Twine("one-as")).str();
7988   }
7989 
7990   return Ctx.getOrInsertSyncScopeID(Name);
7991 }
7992 
7993 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7994   return false;
7995 }
7996 
7997 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7998     const FunctionType *&FT) const {
7999   FT = getABIInfo().getContext().adjustFunctionType(
8000       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8001 }
8002 
8003 //===----------------------------------------------------------------------===//
8004 // SPARC v8 ABI Implementation.
8005 // Based on the SPARC Compliance Definition version 2.4.1.
8006 //
8007 // Ensures that complex values are passed in registers.
8008 //
8009 namespace {
8010 class SparcV8ABIInfo : public DefaultABIInfo {
8011 public:
8012   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8013 
8014 private:
8015   ABIArgInfo classifyReturnType(QualType RetTy) const;
8016   void computeInfo(CGFunctionInfo &FI) const override;
8017 };
8018 } // end anonymous namespace
8019 
8020 
8021 ABIArgInfo
8022 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8023   if (Ty->isAnyComplexType()) {
8024     return ABIArgInfo::getDirect();
8025   }
8026   else {
8027     return DefaultABIInfo::classifyReturnType(Ty);
8028   }
8029 }
8030 
8031 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8032 
8033   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8034   for (auto &Arg : FI.arguments())
8035     Arg.info = classifyArgumentType(Arg.type);
8036 }
8037 
8038 namespace {
8039 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8040 public:
8041   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8042     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8043 };
8044 } // end anonymous namespace
8045 
8046 //===----------------------------------------------------------------------===//
8047 // SPARC v9 ABI Implementation.
8048 // Based on the SPARC Compliance Definition version 2.4.1.
8049 //
8050 // Function arguments a mapped to a nominal "parameter array" and promoted to
8051 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8052 // the array, structs larger than 16 bytes are passed indirectly.
8053 //
8054 // One case requires special care:
8055 //
8056 //   struct mixed {
8057 //     int i;
8058 //     float f;
8059 //   };
8060 //
8061 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8062 // parameter array, but the int is passed in an integer register, and the float
8063 // is passed in a floating point register. This is represented as two arguments
8064 // with the LLVM IR inreg attribute:
8065 //
8066 //   declare void f(i32 inreg %i, float inreg %f)
8067 //
8068 // The code generator will only allocate 4 bytes from the parameter array for
8069 // the inreg arguments. All other arguments are allocated a multiple of 8
8070 // bytes.
8071 //
8072 namespace {
8073 class SparcV9ABIInfo : public ABIInfo {
8074 public:
8075   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8076 
8077 private:
8078   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8079   void computeInfo(CGFunctionInfo &FI) const override;
8080   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8081                     QualType Ty) const override;
8082 
8083   // Coercion type builder for structs passed in registers. The coercion type
8084   // serves two purposes:
8085   //
8086   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8087   //    in registers.
8088   // 2. Expose aligned floating point elements as first-level elements, so the
8089   //    code generator knows to pass them in floating point registers.
8090   //
8091   // We also compute the InReg flag which indicates that the struct contains
8092   // aligned 32-bit floats.
8093   //
8094   struct CoerceBuilder {
8095     llvm::LLVMContext &Context;
8096     const llvm::DataLayout &DL;
8097     SmallVector<llvm::Type*, 8> Elems;
8098     uint64_t Size;
8099     bool InReg;
8100 
8101     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8102       : Context(c), DL(dl), Size(0), InReg(false) {}
8103 
8104     // Pad Elems with integers until Size is ToSize.
8105     void pad(uint64_t ToSize) {
8106       assert(ToSize >= Size && "Cannot remove elements");
8107       if (ToSize == Size)
8108         return;
8109 
8110       // Finish the current 64-bit word.
8111       uint64_t Aligned = llvm::alignTo(Size, 64);
8112       if (Aligned > Size && Aligned <= ToSize) {
8113         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8114         Size = Aligned;
8115       }
8116 
8117       // Add whole 64-bit words.
8118       while (Size + 64 <= ToSize) {
8119         Elems.push_back(llvm::Type::getInt64Ty(Context));
8120         Size += 64;
8121       }
8122 
8123       // Final in-word padding.
8124       if (Size < ToSize) {
8125         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8126         Size = ToSize;
8127       }
8128     }
8129 
8130     // Add a floating point element at Offset.
8131     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8132       // Unaligned floats are treated as integers.
8133       if (Offset % Bits)
8134         return;
8135       // The InReg flag is only required if there are any floats < 64 bits.
8136       if (Bits < 64)
8137         InReg = true;
8138       pad(Offset);
8139       Elems.push_back(Ty);
8140       Size = Offset + Bits;
8141     }
8142 
8143     // Add a struct type to the coercion type, starting at Offset (in bits).
8144     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8145       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8146       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8147         llvm::Type *ElemTy = StrTy->getElementType(i);
8148         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8149         switch (ElemTy->getTypeID()) {
8150         case llvm::Type::StructTyID:
8151           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8152           break;
8153         case llvm::Type::FloatTyID:
8154           addFloat(ElemOffset, ElemTy, 32);
8155           break;
8156         case llvm::Type::DoubleTyID:
8157           addFloat(ElemOffset, ElemTy, 64);
8158           break;
8159         case llvm::Type::FP128TyID:
8160           addFloat(ElemOffset, ElemTy, 128);
8161           break;
8162         case llvm::Type::PointerTyID:
8163           if (ElemOffset % 64 == 0) {
8164             pad(ElemOffset);
8165             Elems.push_back(ElemTy);
8166             Size += 64;
8167           }
8168           break;
8169         default:
8170           break;
8171         }
8172       }
8173     }
8174 
8175     // Check if Ty is a usable substitute for the coercion type.
8176     bool isUsableType(llvm::StructType *Ty) const {
8177       return llvm::makeArrayRef(Elems) == Ty->elements();
8178     }
8179 
8180     // Get the coercion type as a literal struct type.
8181     llvm::Type *getType() const {
8182       if (Elems.size() == 1)
8183         return Elems.front();
8184       else
8185         return llvm::StructType::get(Context, Elems);
8186     }
8187   };
8188 };
8189 } // end anonymous namespace
8190 
8191 ABIArgInfo
8192 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8193   if (Ty->isVoidType())
8194     return ABIArgInfo::getIgnore();
8195 
8196   uint64_t Size = getContext().getTypeSize(Ty);
8197 
8198   // Anything too big to fit in registers is passed with an explicit indirect
8199   // pointer / sret pointer.
8200   if (Size > SizeLimit)
8201     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8202 
8203   // Treat an enum type as its underlying type.
8204   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8205     Ty = EnumTy->getDecl()->getIntegerType();
8206 
8207   // Integer types smaller than a register are extended.
8208   if (Size < 64 && Ty->isIntegerType())
8209     return ABIArgInfo::getExtend(Ty);
8210 
8211   // Other non-aggregates go in registers.
8212   if (!isAggregateTypeForABI(Ty))
8213     return ABIArgInfo::getDirect();
8214 
8215   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8216   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8217   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8218     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8219 
8220   // This is a small aggregate type that should be passed in registers.
8221   // Build a coercion type from the LLVM struct type.
8222   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8223   if (!StrTy)
8224     return ABIArgInfo::getDirect();
8225 
8226   CoerceBuilder CB(getVMContext(), getDataLayout());
8227   CB.addStruct(0, StrTy);
8228   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8229 
8230   // Try to use the original type for coercion.
8231   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8232 
8233   if (CB.InReg)
8234     return ABIArgInfo::getDirectInReg(CoerceTy);
8235   else
8236     return ABIArgInfo::getDirect(CoerceTy);
8237 }
8238 
8239 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8240                                   QualType Ty) const {
8241   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8242   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8243   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8244     AI.setCoerceToType(ArgTy);
8245 
8246   CharUnits SlotSize = CharUnits::fromQuantity(8);
8247 
8248   CGBuilderTy &Builder = CGF.Builder;
8249   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8250   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8251 
8252   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8253 
8254   Address ArgAddr = Address::invalid();
8255   CharUnits Stride;
8256   switch (AI.getKind()) {
8257   case ABIArgInfo::Expand:
8258   case ABIArgInfo::CoerceAndExpand:
8259   case ABIArgInfo::InAlloca:
8260     llvm_unreachable("Unsupported ABI kind for va_arg");
8261 
8262   case ABIArgInfo::Extend: {
8263     Stride = SlotSize;
8264     CharUnits Offset = SlotSize - TypeInfo.first;
8265     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8266     break;
8267   }
8268 
8269   case ABIArgInfo::Direct: {
8270     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8271     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8272     ArgAddr = Addr;
8273     break;
8274   }
8275 
8276   case ABIArgInfo::Indirect:
8277     Stride = SlotSize;
8278     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8279     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8280                       TypeInfo.second);
8281     break;
8282 
8283   case ABIArgInfo::Ignore:
8284     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8285   }
8286 
8287   // Update VAList.
8288   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8289   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8290 
8291   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8292 }
8293 
8294 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8295   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8296   for (auto &I : FI.arguments())
8297     I.info = classifyType(I.type, 16 * 8);
8298 }
8299 
8300 namespace {
8301 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8302 public:
8303   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8304     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8305 
8306   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8307     return 14;
8308   }
8309 
8310   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8311                                llvm::Value *Address) const override;
8312 };
8313 } // end anonymous namespace
8314 
8315 bool
8316 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8317                                                 llvm::Value *Address) const {
8318   // This is calculated from the LLVM and GCC tables and verified
8319   // against gcc output.  AFAIK all ABIs use the same encoding.
8320 
8321   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8322 
8323   llvm::IntegerType *i8 = CGF.Int8Ty;
8324   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8325   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8326 
8327   // 0-31: the 8-byte general-purpose registers
8328   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8329 
8330   // 32-63: f0-31, the 4-byte floating-point registers
8331   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8332 
8333   //   Y   = 64
8334   //   PSR = 65
8335   //   WIM = 66
8336   //   TBR = 67
8337   //   PC  = 68
8338   //   NPC = 69
8339   //   FSR = 70
8340   //   CSR = 71
8341   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8342 
8343   // 72-87: d0-15, the 8-byte floating-point registers
8344   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8345 
8346   return false;
8347 }
8348 
8349 // ARC ABI implementation.
8350 namespace {
8351 
8352 class ARCABIInfo : public DefaultABIInfo {
8353 public:
8354   using DefaultABIInfo::DefaultABIInfo;
8355 
8356 private:
8357   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8358                     QualType Ty) const override;
8359 
8360   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8361     if (!State.FreeRegs)
8362       return;
8363     if (Info.isIndirect() && Info.getInReg())
8364       State.FreeRegs--;
8365     else if (Info.isDirect() && Info.getInReg()) {
8366       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8367       if (sz < State.FreeRegs)
8368         State.FreeRegs -= sz;
8369       else
8370         State.FreeRegs = 0;
8371     }
8372   }
8373 
8374   void computeInfo(CGFunctionInfo &FI) const override {
8375     CCState State(FI.getCallingConvention());
8376     // ARC uses 8 registers to pass arguments.
8377     State.FreeRegs = 8;
8378 
8379     if (!getCXXABI().classifyReturnType(FI))
8380       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8381     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8382     for (auto &I : FI.arguments()) {
8383       I.info = classifyArgumentType(I.type, State.FreeRegs);
8384       updateState(I.info, I.type, State);
8385     }
8386   }
8387 
8388   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8389   ABIArgInfo getIndirectByValue(QualType Ty) const;
8390   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8391   ABIArgInfo classifyReturnType(QualType RetTy) const;
8392 };
8393 
8394 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8395 public:
8396   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8397       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8398 };
8399 
8400 
8401 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8402   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8403                        getNaturalAlignIndirect(Ty, false);
8404 }
8405 
8406 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8407   // Compute the byval alignment.
8408   const unsigned MinABIStackAlignInBytes = 4;
8409   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8410   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8411                                  TypeAlign > MinABIStackAlignInBytes);
8412 }
8413 
8414 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8415                               QualType Ty) const {
8416   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8417                           getContext().getTypeInfoInChars(Ty),
8418                           CharUnits::fromQuantity(4), true);
8419 }
8420 
8421 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8422                                             uint8_t FreeRegs) const {
8423   // Handle the generic C++ ABI.
8424   const RecordType *RT = Ty->getAs<RecordType>();
8425   if (RT) {
8426     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8427     if (RAA == CGCXXABI::RAA_Indirect)
8428       return getIndirectByRef(Ty, FreeRegs > 0);
8429 
8430     if (RAA == CGCXXABI::RAA_DirectInMemory)
8431       return getIndirectByValue(Ty);
8432   }
8433 
8434   // Treat an enum type as its underlying type.
8435   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8436     Ty = EnumTy->getDecl()->getIntegerType();
8437 
8438   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8439 
8440   if (isAggregateTypeForABI(Ty)) {
8441     // Structures with flexible arrays are always indirect.
8442     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8443       return getIndirectByValue(Ty);
8444 
8445     // Ignore empty structs/unions.
8446     if (isEmptyRecord(getContext(), Ty, true))
8447       return ABIArgInfo::getIgnore();
8448 
8449     llvm::LLVMContext &LLVMContext = getVMContext();
8450 
8451     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8452     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8453     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8454 
8455     return FreeRegs >= SizeInRegs ?
8456         ABIArgInfo::getDirectInReg(Result) :
8457         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8458   }
8459 
8460   return Ty->isPromotableIntegerType() ?
8461       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8462                                 ABIArgInfo::getExtend(Ty)) :
8463       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8464                                 ABIArgInfo::getDirect());
8465 }
8466 
8467 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8468   if (RetTy->isAnyComplexType())
8469     return ABIArgInfo::getDirectInReg();
8470 
8471   // Arguments of size > 4 registers are indirect.
8472   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8473   if (RetSize > 4)
8474     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8475 
8476   return DefaultABIInfo::classifyReturnType(RetTy);
8477 }
8478 
8479 } // End anonymous namespace.
8480 
8481 //===----------------------------------------------------------------------===//
8482 // XCore ABI Implementation
8483 //===----------------------------------------------------------------------===//
8484 
8485 namespace {
8486 
8487 /// A SmallStringEnc instance is used to build up the TypeString by passing
8488 /// it by reference between functions that append to it.
8489 typedef llvm::SmallString<128> SmallStringEnc;
8490 
8491 /// TypeStringCache caches the meta encodings of Types.
8492 ///
8493 /// The reason for caching TypeStrings is two fold:
8494 ///   1. To cache a type's encoding for later uses;
8495 ///   2. As a means to break recursive member type inclusion.
8496 ///
8497 /// A cache Entry can have a Status of:
8498 ///   NonRecursive:   The type encoding is not recursive;
8499 ///   Recursive:      The type encoding is recursive;
8500 ///   Incomplete:     An incomplete TypeString;
8501 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8502 ///                   Recursive type encoding.
8503 ///
8504 /// A NonRecursive entry will have all of its sub-members expanded as fully
8505 /// as possible. Whilst it may contain types which are recursive, the type
8506 /// itself is not recursive and thus its encoding may be safely used whenever
8507 /// the type is encountered.
8508 ///
8509 /// A Recursive entry will have all of its sub-members expanded as fully as
8510 /// possible. The type itself is recursive and it may contain other types which
8511 /// are recursive. The Recursive encoding must not be used during the expansion
8512 /// of a recursive type's recursive branch. For simplicity the code uses
8513 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8514 ///
8515 /// An Incomplete entry is always a RecordType and only encodes its
8516 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8517 /// are placed into the cache during type expansion as a means to identify and
8518 /// handle recursive inclusion of types as sub-members. If there is recursion
8519 /// the entry becomes IncompleteUsed.
8520 ///
8521 /// During the expansion of a RecordType's members:
8522 ///
8523 ///   If the cache contains a NonRecursive encoding for the member type, the
8524 ///   cached encoding is used;
8525 ///
8526 ///   If the cache contains a Recursive encoding for the member type, the
8527 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8528 ///
8529 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8530 ///   cache to break potential recursive inclusion of itself as a sub-member;
8531 ///
8532 ///   Once a member RecordType has been expanded, its temporary incomplete
8533 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8534 ///   it is swapped back in;
8535 ///
8536 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8537 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8538 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8539 ///
8540 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8541 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8542 ///   Else the member is part of a recursive type and thus the recursion has
8543 ///   been exited too soon for the encoding to be correct for the member.
8544 ///
8545 class TypeStringCache {
8546   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8547   struct Entry {
8548     std::string Str;     // The encoded TypeString for the type.
8549     enum Status State;   // Information about the encoding in 'Str'.
8550     std::string Swapped; // A temporary place holder for a Recursive encoding
8551                          // during the expansion of RecordType's members.
8552   };
8553   std::map<const IdentifierInfo *, struct Entry> Map;
8554   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8555   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8556 public:
8557   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8558   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8559   bool removeIncomplete(const IdentifierInfo *ID);
8560   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8561                      bool IsRecursive);
8562   StringRef lookupStr(const IdentifierInfo *ID);
8563 };
8564 
8565 /// TypeString encodings for enum & union fields must be order.
8566 /// FieldEncoding is a helper for this ordering process.
8567 class FieldEncoding {
8568   bool HasName;
8569   std::string Enc;
8570 public:
8571   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8572   StringRef str() { return Enc; }
8573   bool operator<(const FieldEncoding &rhs) const {
8574     if (HasName != rhs.HasName) return HasName;
8575     return Enc < rhs.Enc;
8576   }
8577 };
8578 
8579 class XCoreABIInfo : public DefaultABIInfo {
8580 public:
8581   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8582   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8583                     QualType Ty) const override;
8584 };
8585 
8586 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8587   mutable TypeStringCache TSC;
8588 public:
8589   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8590     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8591   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8592                     CodeGen::CodeGenModule &M) const override;
8593 };
8594 
8595 } // End anonymous namespace.
8596 
8597 // TODO: this implementation is likely now redundant with the default
8598 // EmitVAArg.
8599 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8600                                 QualType Ty) const {
8601   CGBuilderTy &Builder = CGF.Builder;
8602 
8603   // Get the VAList.
8604   CharUnits SlotSize = CharUnits::fromQuantity(4);
8605   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8606 
8607   // Handle the argument.
8608   ABIArgInfo AI = classifyArgumentType(Ty);
8609   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8610   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8611   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8612     AI.setCoerceToType(ArgTy);
8613   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8614 
8615   Address Val = Address::invalid();
8616   CharUnits ArgSize = CharUnits::Zero();
8617   switch (AI.getKind()) {
8618   case ABIArgInfo::Expand:
8619   case ABIArgInfo::CoerceAndExpand:
8620   case ABIArgInfo::InAlloca:
8621     llvm_unreachable("Unsupported ABI kind for va_arg");
8622   case ABIArgInfo::Ignore:
8623     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8624     ArgSize = CharUnits::Zero();
8625     break;
8626   case ABIArgInfo::Extend:
8627   case ABIArgInfo::Direct:
8628     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8629     ArgSize = CharUnits::fromQuantity(
8630                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8631     ArgSize = ArgSize.alignTo(SlotSize);
8632     break;
8633   case ABIArgInfo::Indirect:
8634     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8635     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8636     ArgSize = SlotSize;
8637     break;
8638   }
8639 
8640   // Increment the VAList.
8641   if (!ArgSize.isZero()) {
8642     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8643     Builder.CreateStore(APN.getPointer(), VAListAddr);
8644   }
8645 
8646   return Val;
8647 }
8648 
8649 /// During the expansion of a RecordType, an incomplete TypeString is placed
8650 /// into the cache as a means to identify and break recursion.
8651 /// If there is a Recursive encoding in the cache, it is swapped out and will
8652 /// be reinserted by removeIncomplete().
8653 /// All other types of encoding should have been used rather than arriving here.
8654 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8655                                     std::string StubEnc) {
8656   if (!ID)
8657     return;
8658   Entry &E = Map[ID];
8659   assert( (E.Str.empty() || E.State == Recursive) &&
8660          "Incorrectly use of addIncomplete");
8661   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8662   E.Swapped.swap(E.Str); // swap out the Recursive
8663   E.Str.swap(StubEnc);
8664   E.State = Incomplete;
8665   ++IncompleteCount;
8666 }
8667 
8668 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8669 /// must be removed from the cache.
8670 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8671 /// Returns true if the RecordType was defined recursively.
8672 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8673   if (!ID)
8674     return false;
8675   auto I = Map.find(ID);
8676   assert(I != Map.end() && "Entry not present");
8677   Entry &E = I->second;
8678   assert( (E.State == Incomplete ||
8679            E.State == IncompleteUsed) &&
8680          "Entry must be an incomplete type");
8681   bool IsRecursive = false;
8682   if (E.State == IncompleteUsed) {
8683     // We made use of our Incomplete encoding, thus we are recursive.
8684     IsRecursive = true;
8685     --IncompleteUsedCount;
8686   }
8687   if (E.Swapped.empty())
8688     Map.erase(I);
8689   else {
8690     // Swap the Recursive back.
8691     E.Swapped.swap(E.Str);
8692     E.Swapped.clear();
8693     E.State = Recursive;
8694   }
8695   --IncompleteCount;
8696   return IsRecursive;
8697 }
8698 
8699 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8700 /// Recursive (viz: all sub-members were expanded as fully as possible).
8701 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8702                                     bool IsRecursive) {
8703   if (!ID || IncompleteUsedCount)
8704     return; // No key or it is is an incomplete sub-type so don't add.
8705   Entry &E = Map[ID];
8706   if (IsRecursive && !E.Str.empty()) {
8707     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8708            "This is not the same Recursive entry");
8709     // The parent container was not recursive after all, so we could have used
8710     // this Recursive sub-member entry after all, but we assumed the worse when
8711     // we started viz: IncompleteCount!=0.
8712     return;
8713   }
8714   assert(E.Str.empty() && "Entry already present");
8715   E.Str = Str.str();
8716   E.State = IsRecursive? Recursive : NonRecursive;
8717 }
8718 
8719 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8720 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8721 /// encoding is Recursive, return an empty StringRef.
8722 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8723   if (!ID)
8724     return StringRef();   // We have no key.
8725   auto I = Map.find(ID);
8726   if (I == Map.end())
8727     return StringRef();   // We have no encoding.
8728   Entry &E = I->second;
8729   if (E.State == Recursive && IncompleteCount)
8730     return StringRef();   // We don't use Recursive encodings for member types.
8731 
8732   if (E.State == Incomplete) {
8733     // The incomplete type is being used to break out of recursion.
8734     E.State = IncompleteUsed;
8735     ++IncompleteUsedCount;
8736   }
8737   return E.Str;
8738 }
8739 
8740 /// The XCore ABI includes a type information section that communicates symbol
8741 /// type information to the linker. The linker uses this information to verify
8742 /// safety/correctness of things such as array bound and pointers et al.
8743 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8744 /// This type information (TypeString) is emitted into meta data for all global
8745 /// symbols: definitions, declarations, functions & variables.
8746 ///
8747 /// The TypeString carries type, qualifier, name, size & value details.
8748 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8749 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8750 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8751 ///
8752 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8753                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8754 
8755 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8756 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8757                                           CodeGen::CodeGenModule &CGM) const {
8758   SmallStringEnc Enc;
8759   if (getTypeString(Enc, D, CGM, TSC)) {
8760     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8761     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8762                                 llvm::MDString::get(Ctx, Enc.str())};
8763     llvm::NamedMDNode *MD =
8764       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8765     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8766   }
8767 }
8768 
8769 //===----------------------------------------------------------------------===//
8770 // SPIR ABI Implementation
8771 //===----------------------------------------------------------------------===//
8772 
8773 namespace {
8774 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8775 public:
8776   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8777     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8778   unsigned getOpenCLKernelCallingConv() const override;
8779 };
8780 
8781 } // End anonymous namespace.
8782 
8783 namespace clang {
8784 namespace CodeGen {
8785 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8786   DefaultABIInfo SPIRABI(CGM.getTypes());
8787   SPIRABI.computeInfo(FI);
8788 }
8789 }
8790 }
8791 
8792 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8793   return llvm::CallingConv::SPIR_KERNEL;
8794 }
8795 
8796 static bool appendType(SmallStringEnc &Enc, QualType QType,
8797                        const CodeGen::CodeGenModule &CGM,
8798                        TypeStringCache &TSC);
8799 
8800 /// Helper function for appendRecordType().
8801 /// Builds a SmallVector containing the encoded field types in declaration
8802 /// order.
8803 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8804                              const RecordDecl *RD,
8805                              const CodeGen::CodeGenModule &CGM,
8806                              TypeStringCache &TSC) {
8807   for (const auto *Field : RD->fields()) {
8808     SmallStringEnc Enc;
8809     Enc += "m(";
8810     Enc += Field->getName();
8811     Enc += "){";
8812     if (Field->isBitField()) {
8813       Enc += "b(";
8814       llvm::raw_svector_ostream OS(Enc);
8815       OS << Field->getBitWidthValue(CGM.getContext());
8816       Enc += ':';
8817     }
8818     if (!appendType(Enc, Field->getType(), CGM, TSC))
8819       return false;
8820     if (Field->isBitField())
8821       Enc += ')';
8822     Enc += '}';
8823     FE.emplace_back(!Field->getName().empty(), Enc);
8824   }
8825   return true;
8826 }
8827 
8828 /// Appends structure and union types to Enc and adds encoding to cache.
8829 /// Recursively calls appendType (via extractFieldType) for each field.
8830 /// Union types have their fields ordered according to the ABI.
8831 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8832                              const CodeGen::CodeGenModule &CGM,
8833                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8834   // Append the cached TypeString if we have one.
8835   StringRef TypeString = TSC.lookupStr(ID);
8836   if (!TypeString.empty()) {
8837     Enc += TypeString;
8838     return true;
8839   }
8840 
8841   // Start to emit an incomplete TypeString.
8842   size_t Start = Enc.size();
8843   Enc += (RT->isUnionType()? 'u' : 's');
8844   Enc += '(';
8845   if (ID)
8846     Enc += ID->getName();
8847   Enc += "){";
8848 
8849   // We collect all encoded fields and order as necessary.
8850   bool IsRecursive = false;
8851   const RecordDecl *RD = RT->getDecl()->getDefinition();
8852   if (RD && !RD->field_empty()) {
8853     // An incomplete TypeString stub is placed in the cache for this RecordType
8854     // so that recursive calls to this RecordType will use it whilst building a
8855     // complete TypeString for this RecordType.
8856     SmallVector<FieldEncoding, 16> FE;
8857     std::string StubEnc(Enc.substr(Start).str());
8858     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8859     TSC.addIncomplete(ID, std::move(StubEnc));
8860     if (!extractFieldType(FE, RD, CGM, TSC)) {
8861       (void) TSC.removeIncomplete(ID);
8862       return false;
8863     }
8864     IsRecursive = TSC.removeIncomplete(ID);
8865     // The ABI requires unions to be sorted but not structures.
8866     // See FieldEncoding::operator< for sort algorithm.
8867     if (RT->isUnionType())
8868       llvm::sort(FE);
8869     // We can now complete the TypeString.
8870     unsigned E = FE.size();
8871     for (unsigned I = 0; I != E; ++I) {
8872       if (I)
8873         Enc += ',';
8874       Enc += FE[I].str();
8875     }
8876   }
8877   Enc += '}';
8878   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8879   return true;
8880 }
8881 
8882 /// Appends enum types to Enc and adds the encoding to the cache.
8883 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8884                            TypeStringCache &TSC,
8885                            const IdentifierInfo *ID) {
8886   // Append the cached TypeString if we have one.
8887   StringRef TypeString = TSC.lookupStr(ID);
8888   if (!TypeString.empty()) {
8889     Enc += TypeString;
8890     return true;
8891   }
8892 
8893   size_t Start = Enc.size();
8894   Enc += "e(";
8895   if (ID)
8896     Enc += ID->getName();
8897   Enc += "){";
8898 
8899   // We collect all encoded enumerations and order them alphanumerically.
8900   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8901     SmallVector<FieldEncoding, 16> FE;
8902     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8903          ++I) {
8904       SmallStringEnc EnumEnc;
8905       EnumEnc += "m(";
8906       EnumEnc += I->getName();
8907       EnumEnc += "){";
8908       I->getInitVal().toString(EnumEnc);
8909       EnumEnc += '}';
8910       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8911     }
8912     llvm::sort(FE);
8913     unsigned E = FE.size();
8914     for (unsigned I = 0; I != E; ++I) {
8915       if (I)
8916         Enc += ',';
8917       Enc += FE[I].str();
8918     }
8919   }
8920   Enc += '}';
8921   TSC.addIfComplete(ID, Enc.substr(Start), false);
8922   return true;
8923 }
8924 
8925 /// Appends type's qualifier to Enc.
8926 /// This is done prior to appending the type's encoding.
8927 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8928   // Qualifiers are emitted in alphabetical order.
8929   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8930   int Lookup = 0;
8931   if (QT.isConstQualified())
8932     Lookup += 1<<0;
8933   if (QT.isRestrictQualified())
8934     Lookup += 1<<1;
8935   if (QT.isVolatileQualified())
8936     Lookup += 1<<2;
8937   Enc += Table[Lookup];
8938 }
8939 
8940 /// Appends built-in types to Enc.
8941 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8942   const char *EncType;
8943   switch (BT->getKind()) {
8944     case BuiltinType::Void:
8945       EncType = "0";
8946       break;
8947     case BuiltinType::Bool:
8948       EncType = "b";
8949       break;
8950     case BuiltinType::Char_U:
8951       EncType = "uc";
8952       break;
8953     case BuiltinType::UChar:
8954       EncType = "uc";
8955       break;
8956     case BuiltinType::SChar:
8957       EncType = "sc";
8958       break;
8959     case BuiltinType::UShort:
8960       EncType = "us";
8961       break;
8962     case BuiltinType::Short:
8963       EncType = "ss";
8964       break;
8965     case BuiltinType::UInt:
8966       EncType = "ui";
8967       break;
8968     case BuiltinType::Int:
8969       EncType = "si";
8970       break;
8971     case BuiltinType::ULong:
8972       EncType = "ul";
8973       break;
8974     case BuiltinType::Long:
8975       EncType = "sl";
8976       break;
8977     case BuiltinType::ULongLong:
8978       EncType = "ull";
8979       break;
8980     case BuiltinType::LongLong:
8981       EncType = "sll";
8982       break;
8983     case BuiltinType::Float:
8984       EncType = "ft";
8985       break;
8986     case BuiltinType::Double:
8987       EncType = "d";
8988       break;
8989     case BuiltinType::LongDouble:
8990       EncType = "ld";
8991       break;
8992     default:
8993       return false;
8994   }
8995   Enc += EncType;
8996   return true;
8997 }
8998 
8999 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9000 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9001                               const CodeGen::CodeGenModule &CGM,
9002                               TypeStringCache &TSC) {
9003   Enc += "p(";
9004   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9005     return false;
9006   Enc += ')';
9007   return true;
9008 }
9009 
9010 /// Appends array encoding to Enc before calling appendType for the element.
9011 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9012                             const ArrayType *AT,
9013                             const CodeGen::CodeGenModule &CGM,
9014                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9015   if (AT->getSizeModifier() != ArrayType::Normal)
9016     return false;
9017   Enc += "a(";
9018   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9019     CAT->getSize().toStringUnsigned(Enc);
9020   else
9021     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9022   Enc += ':';
9023   // The Qualifiers should be attached to the type rather than the array.
9024   appendQualifier(Enc, QT);
9025   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9026     return false;
9027   Enc += ')';
9028   return true;
9029 }
9030 
9031 /// Appends a function encoding to Enc, calling appendType for the return type
9032 /// and the arguments.
9033 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9034                              const CodeGen::CodeGenModule &CGM,
9035                              TypeStringCache &TSC) {
9036   Enc += "f{";
9037   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9038     return false;
9039   Enc += "}(";
9040   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9041     // N.B. we are only interested in the adjusted param types.
9042     auto I = FPT->param_type_begin();
9043     auto E = FPT->param_type_end();
9044     if (I != E) {
9045       do {
9046         if (!appendType(Enc, *I, CGM, TSC))
9047           return false;
9048         ++I;
9049         if (I != E)
9050           Enc += ',';
9051       } while (I != E);
9052       if (FPT->isVariadic())
9053         Enc += ",va";
9054     } else {
9055       if (FPT->isVariadic())
9056         Enc += "va";
9057       else
9058         Enc += '0';
9059     }
9060   }
9061   Enc += ')';
9062   return true;
9063 }
9064 
9065 /// Handles the type's qualifier before dispatching a call to handle specific
9066 /// type encodings.
9067 static bool appendType(SmallStringEnc &Enc, QualType QType,
9068                        const CodeGen::CodeGenModule &CGM,
9069                        TypeStringCache &TSC) {
9070 
9071   QualType QT = QType.getCanonicalType();
9072 
9073   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9074     // The Qualifiers should be attached to the type rather than the array.
9075     // Thus we don't call appendQualifier() here.
9076     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9077 
9078   appendQualifier(Enc, QT);
9079 
9080   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9081     return appendBuiltinType(Enc, BT);
9082 
9083   if (const PointerType *PT = QT->getAs<PointerType>())
9084     return appendPointerType(Enc, PT, CGM, TSC);
9085 
9086   if (const EnumType *ET = QT->getAs<EnumType>())
9087     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9088 
9089   if (const RecordType *RT = QT->getAsStructureType())
9090     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9091 
9092   if (const RecordType *RT = QT->getAsUnionType())
9093     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9094 
9095   if (const FunctionType *FT = QT->getAs<FunctionType>())
9096     return appendFunctionType(Enc, FT, CGM, TSC);
9097 
9098   return false;
9099 }
9100 
9101 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9102                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9103   if (!D)
9104     return false;
9105 
9106   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9107     if (FD->getLanguageLinkage() != CLanguageLinkage)
9108       return false;
9109     return appendType(Enc, FD->getType(), CGM, TSC);
9110   }
9111 
9112   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9113     if (VD->getLanguageLinkage() != CLanguageLinkage)
9114       return false;
9115     QualType QT = VD->getType().getCanonicalType();
9116     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9117       // Global ArrayTypes are given a size of '*' if the size is unknown.
9118       // The Qualifiers should be attached to the type rather than the array.
9119       // Thus we don't call appendQualifier() here.
9120       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9121     }
9122     return appendType(Enc, QT, CGM, TSC);
9123   }
9124   return false;
9125 }
9126 
9127 //===----------------------------------------------------------------------===//
9128 // RISCV ABI Implementation
9129 //===----------------------------------------------------------------------===//
9130 
9131 namespace {
9132 class RISCVABIInfo : public DefaultABIInfo {
9133 private:
9134   unsigned XLen; // Size of the integer ('x') registers in bits.
9135   static const int NumArgGPRs = 8;
9136 
9137 public:
9138   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9139       : DefaultABIInfo(CGT), XLen(XLen) {}
9140 
9141   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9142   // non-virtual, but computeInfo is virtual, so we overload it.
9143   void computeInfo(CGFunctionInfo &FI) const override;
9144 
9145   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9146                                   int &ArgGPRsLeft) const;
9147   ABIArgInfo classifyReturnType(QualType RetTy) const;
9148 
9149   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9150                     QualType Ty) const override;
9151 
9152   ABIArgInfo extendType(QualType Ty) const;
9153 };
9154 } // end anonymous namespace
9155 
9156 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9157   QualType RetTy = FI.getReturnType();
9158   if (!getCXXABI().classifyReturnType(FI))
9159     FI.getReturnInfo() = classifyReturnType(RetTy);
9160 
9161   // IsRetIndirect is true if classifyArgumentType indicated the value should
9162   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9163   // is passed direct in LLVM IR, relying on the backend lowering code to
9164   // rewrite the argument list and pass indirectly on RV32.
9165   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9166                        getContext().getTypeSize(RetTy) > (2 * XLen);
9167 
9168   // We must track the number of GPRs used in order to conform to the RISC-V
9169   // ABI, as integer scalars passed in registers should have signext/zeroext
9170   // when promoted, but are anyext if passed on the stack. As GPR usage is
9171   // different for variadic arguments, we must also track whether we are
9172   // examining a vararg or not.
9173   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9174   int NumFixedArgs = FI.getNumRequiredArgs();
9175 
9176   int ArgNum = 0;
9177   for (auto &ArgInfo : FI.arguments()) {
9178     bool IsFixed = ArgNum < NumFixedArgs;
9179     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9180     ArgNum++;
9181   }
9182 }
9183 
9184 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9185                                               int &ArgGPRsLeft) const {
9186   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9187   Ty = useFirstFieldIfTransparentUnion(Ty);
9188 
9189   // Structures with either a non-trivial destructor or a non-trivial
9190   // copy constructor are always passed indirectly.
9191   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9192     if (ArgGPRsLeft)
9193       ArgGPRsLeft -= 1;
9194     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9195                                            CGCXXABI::RAA_DirectInMemory);
9196   }
9197 
9198   // Ignore empty structs/unions.
9199   if (isEmptyRecord(getContext(), Ty, true))
9200     return ABIArgInfo::getIgnore();
9201 
9202   uint64_t Size = getContext().getTypeSize(Ty);
9203   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9204   bool MustUseStack = false;
9205   // Determine the number of GPRs needed to pass the current argument
9206   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9207   // register pairs, so may consume 3 registers.
9208   int NeededArgGPRs = 1;
9209   if (!IsFixed && NeededAlign == 2 * XLen)
9210     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9211   else if (Size > XLen && Size <= 2 * XLen)
9212     NeededArgGPRs = 2;
9213 
9214   if (NeededArgGPRs > ArgGPRsLeft) {
9215     MustUseStack = true;
9216     NeededArgGPRs = ArgGPRsLeft;
9217   }
9218 
9219   ArgGPRsLeft -= NeededArgGPRs;
9220 
9221   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9222     // Treat an enum type as its underlying type.
9223     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9224       Ty = EnumTy->getDecl()->getIntegerType();
9225 
9226     // All integral types are promoted to XLen width, unless passed on the
9227     // stack.
9228     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9229       return extendType(Ty);
9230     }
9231 
9232     return ABIArgInfo::getDirect();
9233   }
9234 
9235   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9236   // so coerce to integers.
9237   if (Size <= 2 * XLen) {
9238     unsigned Alignment = getContext().getTypeAlign(Ty);
9239 
9240     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9241     // required, and a 2-element XLen array if only XLen alignment is required.
9242     if (Size <= XLen) {
9243       return ABIArgInfo::getDirect(
9244           llvm::IntegerType::get(getVMContext(), XLen));
9245     } else if (Alignment == 2 * XLen) {
9246       return ABIArgInfo::getDirect(
9247           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9248     } else {
9249       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9250           llvm::IntegerType::get(getVMContext(), XLen), 2));
9251     }
9252   }
9253   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9254 }
9255 
9256 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9257   if (RetTy->isVoidType())
9258     return ABIArgInfo::getIgnore();
9259 
9260   int ArgGPRsLeft = 2;
9261 
9262   // The rules for return and argument types are the same, so defer to
9263   // classifyArgumentType.
9264   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9265 }
9266 
9267 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9268                                 QualType Ty) const {
9269   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9270 
9271   // Empty records are ignored for parameter passing purposes.
9272   if (isEmptyRecord(getContext(), Ty, true)) {
9273     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9274     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9275     return Addr;
9276   }
9277 
9278   std::pair<CharUnits, CharUnits> SizeAndAlign =
9279       getContext().getTypeInfoInChars(Ty);
9280 
9281   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9282   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9283 
9284   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9285                           SlotSize, /*AllowHigherAlign=*/true);
9286 }
9287 
9288 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9289   int TySize = getContext().getTypeSize(Ty);
9290   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9291   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9292     return ABIArgInfo::getSignExtend(Ty);
9293   return ABIArgInfo::getExtend(Ty);
9294 }
9295 
9296 namespace {
9297 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9298 public:
9299   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9300       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9301 
9302   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9303                            CodeGen::CodeGenModule &CGM) const override {
9304     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9305     if (!FD) return;
9306 
9307     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9308     if (!Attr)
9309       return;
9310 
9311     const char *Kind;
9312     switch (Attr->getInterrupt()) {
9313     case RISCVInterruptAttr::user: Kind = "user"; break;
9314     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9315     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9316     }
9317 
9318     auto *Fn = cast<llvm::Function>(GV);
9319 
9320     Fn->addFnAttr("interrupt", Kind);
9321   }
9322 };
9323 } // namespace
9324 
9325 //===----------------------------------------------------------------------===//
9326 // Driver code
9327 //===----------------------------------------------------------------------===//
9328 
9329 bool CodeGenModule::supportsCOMDAT() const {
9330   return getTriple().supportsCOMDAT();
9331 }
9332 
9333 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9334   if (TheTargetCodeGenInfo)
9335     return *TheTargetCodeGenInfo;
9336 
9337   // Helper to set the unique_ptr while still keeping the return value.
9338   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9339     this->TheTargetCodeGenInfo.reset(P);
9340     return *P;
9341   };
9342 
9343   const llvm::Triple &Triple = getTarget().getTriple();
9344   switch (Triple.getArch()) {
9345   default:
9346     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9347 
9348   case llvm::Triple::le32:
9349     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9350   case llvm::Triple::mips:
9351   case llvm::Triple::mipsel:
9352     if (Triple.getOS() == llvm::Triple::NaCl)
9353       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9354     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9355 
9356   case llvm::Triple::mips64:
9357   case llvm::Triple::mips64el:
9358     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9359 
9360   case llvm::Triple::avr:
9361     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9362 
9363   case llvm::Triple::aarch64:
9364   case llvm::Triple::aarch64_be: {
9365     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9366     if (getTarget().getABI() == "darwinpcs")
9367       Kind = AArch64ABIInfo::DarwinPCS;
9368     else if (Triple.isOSWindows())
9369       return SetCGInfo(
9370           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9371 
9372     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9373   }
9374 
9375   case llvm::Triple::wasm32:
9376   case llvm::Triple::wasm64:
9377     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9378 
9379   case llvm::Triple::arm:
9380   case llvm::Triple::armeb:
9381   case llvm::Triple::thumb:
9382   case llvm::Triple::thumbeb: {
9383     if (Triple.getOS() == llvm::Triple::Win32) {
9384       return SetCGInfo(
9385           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9386     }
9387 
9388     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9389     StringRef ABIStr = getTarget().getABI();
9390     if (ABIStr == "apcs-gnu")
9391       Kind = ARMABIInfo::APCS;
9392     else if (ABIStr == "aapcs16")
9393       Kind = ARMABIInfo::AAPCS16_VFP;
9394     else if (CodeGenOpts.FloatABI == "hard" ||
9395              (CodeGenOpts.FloatABI != "soft" &&
9396               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9397                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9398                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9399       Kind = ARMABIInfo::AAPCS_VFP;
9400 
9401     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9402   }
9403 
9404   case llvm::Triple::ppc:
9405     return SetCGInfo(
9406         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9407   case llvm::Triple::ppc64:
9408     if (Triple.isOSBinFormatELF()) {
9409       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9410       if (getTarget().getABI() == "elfv2")
9411         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9412       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9413       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9414 
9415       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9416                                                         IsSoftFloat));
9417     } else
9418       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9419   case llvm::Triple::ppc64le: {
9420     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9421     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9422     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9423       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9424     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9425     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9426 
9427     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9428                                                       IsSoftFloat));
9429   }
9430 
9431   case llvm::Triple::nvptx:
9432   case llvm::Triple::nvptx64:
9433     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9434 
9435   case llvm::Triple::msp430:
9436     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9437 
9438   case llvm::Triple::riscv32:
9439     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9440   case llvm::Triple::riscv64:
9441     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9442 
9443   case llvm::Triple::systemz: {
9444     bool HasVector = getTarget().getABI() == "vector";
9445     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9446   }
9447 
9448   case llvm::Triple::tce:
9449   case llvm::Triple::tcele:
9450     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9451 
9452   case llvm::Triple::x86: {
9453     bool IsDarwinVectorABI = Triple.isOSDarwin();
9454     bool RetSmallStructInRegABI =
9455         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9456     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9457 
9458     if (Triple.getOS() == llvm::Triple::Win32) {
9459       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9460           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9461           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9462     } else {
9463       return SetCGInfo(new X86_32TargetCodeGenInfo(
9464           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9465           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9466           CodeGenOpts.FloatABI == "soft"));
9467     }
9468   }
9469 
9470   case llvm::Triple::x86_64: {
9471     StringRef ABI = getTarget().getABI();
9472     X86AVXABILevel AVXLevel =
9473         (ABI == "avx512"
9474              ? X86AVXABILevel::AVX512
9475              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9476 
9477     switch (Triple.getOS()) {
9478     case llvm::Triple::Win32:
9479       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9480     default:
9481       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9482     }
9483   }
9484   case llvm::Triple::hexagon:
9485     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9486   case llvm::Triple::lanai:
9487     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9488   case llvm::Triple::r600:
9489     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9490   case llvm::Triple::amdgcn:
9491     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9492   case llvm::Triple::sparc:
9493     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9494   case llvm::Triple::sparcv9:
9495     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9496   case llvm::Triple::xcore:
9497     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9498   case llvm::Triple::arc:
9499     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9500   case llvm::Triple::spir:
9501   case llvm::Triple::spir64:
9502     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9503   }
9504 }
9505 
9506 /// Create an OpenCL kernel for an enqueued block.
9507 ///
9508 /// The kernel has the same function type as the block invoke function. Its
9509 /// name is the name of the block invoke function postfixed with "_kernel".
9510 /// It simply calls the block invoke function then returns.
9511 llvm::Function *
9512 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9513                                              llvm::Function *Invoke,
9514                                              llvm::Value *BlockLiteral) const {
9515   auto *InvokeFT = Invoke->getFunctionType();
9516   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9517   for (auto &P : InvokeFT->params())
9518     ArgTys.push_back(P);
9519   auto &C = CGF.getLLVMContext();
9520   std::string Name = Invoke->getName().str() + "_kernel";
9521   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9522   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9523                                    &CGF.CGM.getModule());
9524   auto IP = CGF.Builder.saveIP();
9525   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9526   auto &Builder = CGF.Builder;
9527   Builder.SetInsertPoint(BB);
9528   llvm::SmallVector<llvm::Value *, 2> Args;
9529   for (auto &A : F->args())
9530     Args.push_back(&A);
9531   Builder.CreateCall(Invoke, Args);
9532   Builder.CreateRetVoid();
9533   Builder.restoreIP(IP);
9534   return F;
9535 }
9536 
9537 /// Create an OpenCL kernel for an enqueued block.
9538 ///
9539 /// The type of the first argument (the block literal) is the struct type
9540 /// of the block literal instead of a pointer type. The first argument
9541 /// (block literal) is passed directly by value to the kernel. The kernel
9542 /// allocates the same type of struct on stack and stores the block literal
9543 /// to it and passes its pointer to the block invoke function. The kernel
9544 /// has "enqueued-block" function attribute and kernel argument metadata.
9545 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9546     CodeGenFunction &CGF, llvm::Function *Invoke,
9547     llvm::Value *BlockLiteral) const {
9548   auto &Builder = CGF.Builder;
9549   auto &C = CGF.getLLVMContext();
9550 
9551   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9552   auto *InvokeFT = Invoke->getFunctionType();
9553   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9554   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9555   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9556   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9557   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9558   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9559   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9560 
9561   ArgTys.push_back(BlockTy);
9562   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9563   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9564   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9565   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9566   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9567   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9568   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9569     ArgTys.push_back(InvokeFT->getParamType(I));
9570     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9571     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9572     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9573     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9574     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9575     ArgNames.push_back(
9576         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9577   }
9578   std::string Name = Invoke->getName().str() + "_kernel";
9579   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9580   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9581                                    &CGF.CGM.getModule());
9582   F->addFnAttr("enqueued-block");
9583   auto IP = CGF.Builder.saveIP();
9584   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9585   Builder.SetInsertPoint(BB);
9586   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9587   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9588   BlockPtr->setAlignment(BlockAlign);
9589   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9590   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9591   llvm::SmallVector<llvm::Value *, 2> Args;
9592   Args.push_back(Cast);
9593   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9594     Args.push_back(I);
9595   Builder.CreateCall(Invoke, Args);
9596   Builder.CreateRetVoid();
9597   Builder.restoreIP(IP);
9598 
9599   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9600   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9601   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9602   F->setMetadata("kernel_arg_base_type",
9603                  llvm::MDNode::get(C, ArgBaseTypeNames));
9604   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9605   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9606     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9607 
9608   return F;
9609 }
9610