1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> // std::sort 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 // Helper for coercing an aggregate argument or return value into an integer 36 // array of the same size (including padding) and alignment. This alternate 37 // coercion happens only for the RenderScript ABI and can be removed after 38 // runtimes that rely on it are no longer supported. 39 // 40 // RenderScript assumes that the size of the argument / return value in the IR 41 // is the same as the size of the corresponding qualified type. This helper 42 // coerces the aggregate type into an array of the same size (including 43 // padding). This coercion is used in lieu of expansion of struct members or 44 // other canonical coercions that return a coerced-type of larger size. 45 // 46 // Ty - The argument / return value type 47 // Context - The associated ASTContext 48 // LLVMContext - The associated LLVMContext 49 static ABIArgInfo coerceToIntArray(QualType Ty, 50 ASTContext &Context, 51 llvm::LLVMContext &LLVMContext) { 52 // Alignment and Size are measured in bits. 53 const uint64_t Size = Context.getTypeSize(Ty); 54 const uint64_t Alignment = Context.getTypeAlign(Ty); 55 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 56 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 57 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 58 } 59 60 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 61 llvm::Value *Array, 62 llvm::Value *Value, 63 unsigned FirstIndex, 64 unsigned LastIndex) { 65 // Alternatively, we could emit this as a loop in the source. 66 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 67 llvm::Value *Cell = 68 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 69 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 70 } 71 } 72 73 static bool isAggregateTypeForABI(QualType T) { 74 return !CodeGenFunction::hasScalarEvaluationKind(T) || 75 T->isMemberFunctionPointerType(); 76 } 77 78 ABIArgInfo 79 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 80 llvm::Type *Padding) const { 81 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 82 ByRef, Realign, Padding); 83 } 84 85 ABIArgInfo 86 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 87 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 88 /*ByRef*/ false, Realign); 89 } 90 91 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 92 QualType Ty) const { 93 return Address::invalid(); 94 } 95 96 ABIInfo::~ABIInfo() {} 97 98 /// Does the given lowering require more than the given number of 99 /// registers when expanded? 100 /// 101 /// This is intended to be the basis of a reasonable basic implementation 102 /// of should{Pass,Return}IndirectlyForSwift. 103 /// 104 /// For most targets, a limit of four total registers is reasonable; this 105 /// limits the amount of code required in order to move around the value 106 /// in case it wasn't produced immediately prior to the call by the caller 107 /// (or wasn't produced in exactly the right registers) or isn't used 108 /// immediately within the callee. But some targets may need to further 109 /// limit the register count due to an inability to support that many 110 /// return registers. 111 static bool occupiesMoreThan(CodeGenTypes &cgt, 112 ArrayRef<llvm::Type*> scalarTypes, 113 unsigned maxAllRegisters) { 114 unsigned intCount = 0, fpCount = 0; 115 for (llvm::Type *type : scalarTypes) { 116 if (type->isPointerTy()) { 117 intCount++; 118 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 119 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 120 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 121 } else { 122 assert(type->isVectorTy() || type->isFloatingPointTy()); 123 fpCount++; 124 } 125 } 126 127 return (intCount + fpCount > maxAllRegisters); 128 } 129 130 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 131 llvm::Type *eltTy, 132 unsigned numElts) const { 133 // The default implementation of this assumes that the target guarantees 134 // 128-bit SIMD support but nothing more. 135 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 136 } 137 138 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 139 CGCXXABI &CXXABI) { 140 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 141 if (!RD) 142 return CGCXXABI::RAA_Default; 143 return CXXABI.getRecordArgABI(RD); 144 } 145 146 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 147 CGCXXABI &CXXABI) { 148 const RecordType *RT = T->getAs<RecordType>(); 149 if (!RT) 150 return CGCXXABI::RAA_Default; 151 return getRecordArgABI(RT, CXXABI); 152 } 153 154 /// Pass transparent unions as if they were the type of the first element. Sema 155 /// should ensure that all elements of the union have the same "machine type". 156 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 157 if (const RecordType *UT = Ty->getAsUnionType()) { 158 const RecordDecl *UD = UT->getDecl(); 159 if (UD->hasAttr<TransparentUnionAttr>()) { 160 assert(!UD->field_empty() && "sema created an empty transparent union"); 161 return UD->field_begin()->getType(); 162 } 163 } 164 return Ty; 165 } 166 167 CGCXXABI &ABIInfo::getCXXABI() const { 168 return CGT.getCXXABI(); 169 } 170 171 ASTContext &ABIInfo::getContext() const { 172 return CGT.getContext(); 173 } 174 175 llvm::LLVMContext &ABIInfo::getVMContext() const { 176 return CGT.getLLVMContext(); 177 } 178 179 const llvm::DataLayout &ABIInfo::getDataLayout() const { 180 return CGT.getDataLayout(); 181 } 182 183 const TargetInfo &ABIInfo::getTarget() const { 184 return CGT.getTarget(); 185 } 186 187 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 188 return CGT.getCodeGenOpts(); 189 } 190 191 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 192 193 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 194 return false; 195 } 196 197 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 198 uint64_t Members) const { 199 return false; 200 } 201 202 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 203 return false; 204 } 205 206 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 207 raw_ostream &OS = llvm::errs(); 208 OS << "(ABIArgInfo Kind="; 209 switch (TheKind) { 210 case Direct: 211 OS << "Direct Type="; 212 if (llvm::Type *Ty = getCoerceToType()) 213 Ty->print(OS); 214 else 215 OS << "null"; 216 break; 217 case Extend: 218 OS << "Extend"; 219 break; 220 case Ignore: 221 OS << "Ignore"; 222 break; 223 case InAlloca: 224 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 225 break; 226 case Indirect: 227 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 228 << " ByVal=" << getIndirectByVal() 229 << " Realign=" << getIndirectRealign(); 230 break; 231 case Expand: 232 OS << "Expand"; 233 break; 234 case CoerceAndExpand: 235 OS << "CoerceAndExpand Type="; 236 getCoerceAndExpandType()->print(OS); 237 break; 238 } 239 OS << ")\n"; 240 } 241 242 // Dynamically round a pointer up to a multiple of the given alignment. 243 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 244 llvm::Value *Ptr, 245 CharUnits Align) { 246 llvm::Value *PtrAsInt = Ptr; 247 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 248 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 249 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 251 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 252 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 253 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 254 Ptr->getType(), 255 Ptr->getName() + ".aligned"); 256 return PtrAsInt; 257 } 258 259 /// Emit va_arg for a platform using the common void* representation, 260 /// where arguments are simply emitted in an array of slots on the stack. 261 /// 262 /// This version implements the core direct-value passing rules. 263 /// 264 /// \param SlotSize - The size and alignment of a stack slot. 265 /// Each argument will be allocated to a multiple of this number of 266 /// slots, and all the slots will be aligned to this value. 267 /// \param AllowHigherAlign - The slot alignment is not a cap; 268 /// an argument type with an alignment greater than the slot size 269 /// will be emitted on a higher-alignment address, potentially 270 /// leaving one or more empty slots behind as padding. If this 271 /// is false, the returned address might be less-aligned than 272 /// DirectAlign. 273 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 274 Address VAListAddr, 275 llvm::Type *DirectTy, 276 CharUnits DirectSize, 277 CharUnits DirectAlign, 278 CharUnits SlotSize, 279 bool AllowHigherAlign) { 280 // Cast the element type to i8* if necessary. Some platforms define 281 // va_list as a struct containing an i8* instead of just an i8*. 282 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 283 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 284 285 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 286 287 // If the CC aligns values higher than the slot size, do so if needed. 288 Address Addr = Address::invalid(); 289 if (AllowHigherAlign && DirectAlign > SlotSize) { 290 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 291 DirectAlign); 292 } else { 293 Addr = Address(Ptr, SlotSize); 294 } 295 296 // Advance the pointer past the argument, then store that back. 297 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 298 llvm::Value *NextPtr = 299 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 300 "argp.next"); 301 CGF.Builder.CreateStore(NextPtr, VAListAddr); 302 303 // If the argument is smaller than a slot, and this is a big-endian 304 // target, the argument will be right-adjusted in its slot. 305 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 306 !DirectTy->isStructTy()) { 307 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 308 } 309 310 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 311 return Addr; 312 } 313 314 /// Emit va_arg for a platform using the common void* representation, 315 /// where arguments are simply emitted in an array of slots on the stack. 316 /// 317 /// \param IsIndirect - Values of this type are passed indirectly. 318 /// \param ValueInfo - The size and alignment of this type, generally 319 /// computed with getContext().getTypeInfoInChars(ValueTy). 320 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 321 /// Each argument will be allocated to a multiple of this number of 322 /// slots, and all the slots will be aligned to this value. 323 /// \param AllowHigherAlign - The slot alignment is not a cap; 324 /// an argument type with an alignment greater than the slot size 325 /// will be emitted on a higher-alignment address, potentially 326 /// leaving one or more empty slots behind as padding. 327 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 328 QualType ValueTy, bool IsIndirect, 329 std::pair<CharUnits, CharUnits> ValueInfo, 330 CharUnits SlotSizeAndAlign, 331 bool AllowHigherAlign) { 332 // The size and alignment of the value that was passed directly. 333 CharUnits DirectSize, DirectAlign; 334 if (IsIndirect) { 335 DirectSize = CGF.getPointerSize(); 336 DirectAlign = CGF.getPointerAlign(); 337 } else { 338 DirectSize = ValueInfo.first; 339 DirectAlign = ValueInfo.second; 340 } 341 342 // Cast the address we've calculated to the right type. 343 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 344 if (IsIndirect) 345 DirectTy = DirectTy->getPointerTo(0); 346 347 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 348 DirectSize, DirectAlign, 349 SlotSizeAndAlign, 350 AllowHigherAlign); 351 352 if (IsIndirect) { 353 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 354 } 355 356 return Addr; 357 358 } 359 360 static Address emitMergePHI(CodeGenFunction &CGF, 361 Address Addr1, llvm::BasicBlock *Block1, 362 Address Addr2, llvm::BasicBlock *Block2, 363 const llvm::Twine &Name = "") { 364 assert(Addr1.getType() == Addr2.getType()); 365 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 366 PHI->addIncoming(Addr1.getPointer(), Block1); 367 PHI->addIncoming(Addr2.getPointer(), Block2); 368 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 369 return Address(PHI, Align); 370 } 371 372 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 373 374 // If someone can figure out a general rule for this, that would be great. 375 // It's probably just doomed to be platform-dependent, though. 376 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 377 // Verified for: 378 // x86-64 FreeBSD, Linux, Darwin 379 // x86-32 FreeBSD, Linux, Darwin 380 // PowerPC Linux, Darwin 381 // ARM Darwin (*not* EABI) 382 // AArch64 Linux 383 return 32; 384 } 385 386 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 387 const FunctionNoProtoType *fnType) const { 388 // The following conventions are known to require this to be false: 389 // x86_stdcall 390 // MIPS 391 // For everything else, we just prefer false unless we opt out. 392 return false; 393 } 394 395 void 396 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 397 llvm::SmallString<24> &Opt) const { 398 // This assumes the user is passing a library name like "rt" instead of a 399 // filename like "librt.a/so", and that they don't care whether it's static or 400 // dynamic. 401 Opt = "-l"; 402 Opt += Lib; 403 } 404 405 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 406 // OpenCL kernels are called via an explicit runtime API with arguments 407 // set with clSetKernelArg(), not as normal sub-functions. 408 // Return SPIR_KERNEL by default as the kernel calling convention to 409 // ensure the fingerprint is fixed such way that each OpenCL argument 410 // gets one matching argument in the produced kernel function argument 411 // list to enable feasible implementation of clSetKernelArg() with 412 // aggregates etc. In case we would use the default C calling conv here, 413 // clSetKernelArg() might break depending on the target-specific 414 // conventions; different targets might split structs passed as values 415 // to multiple function arguments etc. 416 return llvm::CallingConv::SPIR_KERNEL; 417 } 418 419 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 420 llvm::PointerType *T, QualType QT) const { 421 return llvm::ConstantPointerNull::get(T); 422 } 423 424 unsigned TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 425 const VarDecl *D) const { 426 assert(!CGM.getLangOpts().OpenCL && 427 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 428 "Address space agnostic languages only"); 429 return D ? D->getType().getAddressSpace() 430 : static_cast<unsigned>(LangAS::Default); 431 } 432 433 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 434 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, unsigned SrcAddr, 435 unsigned DestAddr, llvm::Type *DestTy, bool isNonNull) const { 436 // Since target may map different address spaces in AST to the same address 437 // space, an address space conversion may end up as a bitcast. 438 if (auto *C = dyn_cast<llvm::Constant>(Src)) 439 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 440 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 441 } 442 443 llvm::Constant * 444 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 445 unsigned SrcAddr, unsigned DestAddr, 446 llvm::Type *DestTy) const { 447 // Since target may map different address spaces in AST to the same address 448 // space, an address space conversion may end up as a bitcast. 449 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 450 } 451 452 llvm::SyncScope::ID 453 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 454 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 455 } 456 457 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 458 459 /// isEmptyField - Return true iff a the field is "empty", that is it 460 /// is an unnamed bit-field or an (array of) empty record(s). 461 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 462 bool AllowArrays) { 463 if (FD->isUnnamedBitfield()) 464 return true; 465 466 QualType FT = FD->getType(); 467 468 // Constant arrays of empty records count as empty, strip them off. 469 // Constant arrays of zero length always count as empty. 470 if (AllowArrays) 471 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 472 if (AT->getSize() == 0) 473 return true; 474 FT = AT->getElementType(); 475 } 476 477 const RecordType *RT = FT->getAs<RecordType>(); 478 if (!RT) 479 return false; 480 481 // C++ record fields are never empty, at least in the Itanium ABI. 482 // 483 // FIXME: We should use a predicate for whether this behavior is true in the 484 // current ABI. 485 if (isa<CXXRecordDecl>(RT->getDecl())) 486 return false; 487 488 return isEmptyRecord(Context, FT, AllowArrays); 489 } 490 491 /// isEmptyRecord - Return true iff a structure contains only empty 492 /// fields. Note that a structure with a flexible array member is not 493 /// considered empty. 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 495 const RecordType *RT = T->getAs<RecordType>(); 496 if (!RT) 497 return false; 498 const RecordDecl *RD = RT->getDecl(); 499 if (RD->hasFlexibleArrayMember()) 500 return false; 501 502 // If this is a C++ record, check the bases first. 503 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 504 for (const auto &I : CXXRD->bases()) 505 if (!isEmptyRecord(Context, I.getType(), true)) 506 return false; 507 508 for (const auto *I : RD->fields()) 509 if (!isEmptyField(Context, I, AllowArrays)) 510 return false; 511 return true; 512 } 513 514 /// isSingleElementStruct - Determine if a structure is a "single 515 /// element struct", i.e. it has exactly one non-empty field or 516 /// exactly one field which is itself a single element 517 /// struct. Structures with flexible array members are never 518 /// considered single element structs. 519 /// 520 /// \return The field declaration for the single non-empty field, if 521 /// it exists. 522 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 523 const RecordType *RT = T->getAs<RecordType>(); 524 if (!RT) 525 return nullptr; 526 527 const RecordDecl *RD = RT->getDecl(); 528 if (RD->hasFlexibleArrayMember()) 529 return nullptr; 530 531 const Type *Found = nullptr; 532 533 // If this is a C++ record, check the bases first. 534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 535 for (const auto &I : CXXRD->bases()) { 536 // Ignore empty records. 537 if (isEmptyRecord(Context, I.getType(), true)) 538 continue; 539 540 // If we already found an element then this isn't a single-element struct. 541 if (Found) 542 return nullptr; 543 544 // If this is non-empty and not a single element struct, the composite 545 // cannot be a single element struct. 546 Found = isSingleElementStruct(I.getType(), Context); 547 if (!Found) 548 return nullptr; 549 } 550 } 551 552 // Check for single element. 553 for (const auto *FD : RD->fields()) { 554 QualType FT = FD->getType(); 555 556 // Ignore empty fields. 557 if (isEmptyField(Context, FD, true)) 558 continue; 559 560 // If we already found an element then this isn't a single-element 561 // struct. 562 if (Found) 563 return nullptr; 564 565 // Treat single element arrays as the element. 566 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 567 if (AT->getSize().getZExtValue() != 1) 568 break; 569 FT = AT->getElementType(); 570 } 571 572 if (!isAggregateTypeForABI(FT)) { 573 Found = FT.getTypePtr(); 574 } else { 575 Found = isSingleElementStruct(FT, Context); 576 if (!Found) 577 return nullptr; 578 } 579 } 580 581 // We don't consider a struct a single-element struct if it has 582 // padding beyond the element type. 583 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 584 return nullptr; 585 586 return Found; 587 } 588 589 namespace { 590 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 591 const ABIArgInfo &AI) { 592 // This default implementation defers to the llvm backend's va_arg 593 // instruction. It can handle only passing arguments directly 594 // (typically only handled in the backend for primitive types), or 595 // aggregates passed indirectly by pointer (NOTE: if the "byval" 596 // flag has ABI impact in the callee, this implementation cannot 597 // work.) 598 599 // Only a few cases are covered here at the moment -- those needed 600 // by the default abi. 601 llvm::Value *Val; 602 603 if (AI.isIndirect()) { 604 assert(!AI.getPaddingType() && 605 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 606 assert( 607 !AI.getIndirectRealign() && 608 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 609 610 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 611 CharUnits TyAlignForABI = TyInfo.second; 612 613 llvm::Type *BaseTy = 614 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 615 llvm::Value *Addr = 616 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 617 return Address(Addr, TyAlignForABI); 618 } else { 619 assert((AI.isDirect() || AI.isExtend()) && 620 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 621 622 assert(!AI.getInReg() && 623 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 624 assert(!AI.getPaddingType() && 625 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 626 assert(!AI.getDirectOffset() && 627 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 628 assert(!AI.getCoerceToType() && 629 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 630 631 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 632 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 633 CGF.Builder.CreateStore(Val, Temp); 634 return Temp; 635 } 636 } 637 638 /// DefaultABIInfo - The default implementation for ABI specific 639 /// details. This implementation provides information which results in 640 /// self-consistent and sensible LLVM IR generation, but does not 641 /// conform to any particular ABI. 642 class DefaultABIInfo : public ABIInfo { 643 public: 644 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 645 646 ABIArgInfo classifyReturnType(QualType RetTy) const; 647 ABIArgInfo classifyArgumentType(QualType RetTy) const; 648 649 void computeInfo(CGFunctionInfo &FI) const override { 650 if (!getCXXABI().classifyReturnType(FI)) 651 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 652 for (auto &I : FI.arguments()) 653 I.info = classifyArgumentType(I.type); 654 } 655 656 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 657 QualType Ty) const override { 658 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 659 } 660 }; 661 662 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 663 public: 664 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 665 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 666 }; 667 668 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 669 Ty = useFirstFieldIfTransparentUnion(Ty); 670 671 if (isAggregateTypeForABI(Ty)) { 672 // Records with non-trivial destructors/copy-constructors should not be 673 // passed by value. 674 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 675 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 676 677 return getNaturalAlignIndirect(Ty); 678 } 679 680 // Treat an enum type as its underlying type. 681 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 682 Ty = EnumTy->getDecl()->getIntegerType(); 683 684 return (Ty->isPromotableIntegerType() ? 685 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 686 } 687 688 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 689 if (RetTy->isVoidType()) 690 return ABIArgInfo::getIgnore(); 691 692 if (isAggregateTypeForABI(RetTy)) 693 return getNaturalAlignIndirect(RetTy); 694 695 // Treat an enum type as its underlying type. 696 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 697 RetTy = EnumTy->getDecl()->getIntegerType(); 698 699 return (RetTy->isPromotableIntegerType() ? 700 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 701 } 702 703 //===----------------------------------------------------------------------===// 704 // WebAssembly ABI Implementation 705 // 706 // This is a very simple ABI that relies a lot on DefaultABIInfo. 707 //===----------------------------------------------------------------------===// 708 709 class WebAssemblyABIInfo final : public DefaultABIInfo { 710 public: 711 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 712 : DefaultABIInfo(CGT) {} 713 714 private: 715 ABIArgInfo classifyReturnType(QualType RetTy) const; 716 ABIArgInfo classifyArgumentType(QualType Ty) const; 717 718 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 719 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 720 // overload them. 721 void computeInfo(CGFunctionInfo &FI) const override { 722 if (!getCXXABI().classifyReturnType(FI)) 723 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 724 for (auto &Arg : FI.arguments()) 725 Arg.info = classifyArgumentType(Arg.type); 726 } 727 728 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 729 QualType Ty) const override; 730 }; 731 732 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 733 public: 734 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 735 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 736 }; 737 738 /// \brief Classify argument of given type \p Ty. 739 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 740 Ty = useFirstFieldIfTransparentUnion(Ty); 741 742 if (isAggregateTypeForABI(Ty)) { 743 // Records with non-trivial destructors/copy-constructors should not be 744 // passed by value. 745 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 746 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 747 // Ignore empty structs/unions. 748 if (isEmptyRecord(getContext(), Ty, true)) 749 return ABIArgInfo::getIgnore(); 750 // Lower single-element structs to just pass a regular value. TODO: We 751 // could do reasonable-size multiple-element structs too, using getExpand(), 752 // though watch out for things like bitfields. 753 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 754 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 755 } 756 757 // Otherwise just do the default thing. 758 return DefaultABIInfo::classifyArgumentType(Ty); 759 } 760 761 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 762 if (isAggregateTypeForABI(RetTy)) { 763 // Records with non-trivial destructors/copy-constructors should not be 764 // returned by value. 765 if (!getRecordArgABI(RetTy, getCXXABI())) { 766 // Ignore empty structs/unions. 767 if (isEmptyRecord(getContext(), RetTy, true)) 768 return ABIArgInfo::getIgnore(); 769 // Lower single-element structs to just return a regular value. TODO: We 770 // could do reasonable-size multiple-element structs too, using 771 // ABIArgInfo::getDirect(). 772 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 773 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 774 } 775 } 776 777 // Otherwise just do the default thing. 778 return DefaultABIInfo::classifyReturnType(RetTy); 779 } 780 781 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 782 QualType Ty) const { 783 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 784 getContext().getTypeInfoInChars(Ty), 785 CharUnits::fromQuantity(4), 786 /*AllowHigherAlign=*/ true); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // le32/PNaCl bitcode ABI Implementation 791 // 792 // This is a simplified version of the x86_32 ABI. Arguments and return values 793 // are always passed on the stack. 794 //===----------------------------------------------------------------------===// 795 796 class PNaClABIInfo : public ABIInfo { 797 public: 798 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 799 800 ABIArgInfo classifyReturnType(QualType RetTy) const; 801 ABIArgInfo classifyArgumentType(QualType RetTy) const; 802 803 void computeInfo(CGFunctionInfo &FI) const override; 804 Address EmitVAArg(CodeGenFunction &CGF, 805 Address VAListAddr, QualType Ty) const override; 806 }; 807 808 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 809 public: 810 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 811 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 812 }; 813 814 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 815 if (!getCXXABI().classifyReturnType(FI)) 816 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 817 818 for (auto &I : FI.arguments()) 819 I.info = classifyArgumentType(I.type); 820 } 821 822 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 823 QualType Ty) const { 824 // The PNaCL ABI is a bit odd, in that varargs don't use normal 825 // function classification. Structs get passed directly for varargs 826 // functions, through a rewriting transform in 827 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 828 // this target to actually support a va_arg instructions with an 829 // aggregate type, unlike other targets. 830 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 831 } 832 833 /// \brief Classify argument of given type \p Ty. 834 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 835 if (isAggregateTypeForABI(Ty)) { 836 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 837 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 838 return getNaturalAlignIndirect(Ty); 839 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 840 // Treat an enum type as its underlying type. 841 Ty = EnumTy->getDecl()->getIntegerType(); 842 } else if (Ty->isFloatingType()) { 843 // Floating-point types don't go inreg. 844 return ABIArgInfo::getDirect(); 845 } 846 847 return (Ty->isPromotableIntegerType() ? 848 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 849 } 850 851 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 852 if (RetTy->isVoidType()) 853 return ABIArgInfo::getIgnore(); 854 855 // In the PNaCl ABI we always return records/structures on the stack. 856 if (isAggregateTypeForABI(RetTy)) 857 return getNaturalAlignIndirect(RetTy); 858 859 // Treat an enum type as its underlying type. 860 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 861 RetTy = EnumTy->getDecl()->getIntegerType(); 862 863 return (RetTy->isPromotableIntegerType() ? 864 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 865 } 866 867 /// IsX86_MMXType - Return true if this is an MMX type. 868 bool IsX86_MMXType(llvm::Type *IRType) { 869 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 870 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 871 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 872 IRType->getScalarSizeInBits() != 64; 873 } 874 875 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 876 StringRef Constraint, 877 llvm::Type* Ty) { 878 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 879 .Cases("y", "&y", "^Ym", true) 880 .Default(false); 881 if (IsMMXCons && Ty->isVectorTy()) { 882 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 883 // Invalid MMX constraint 884 return nullptr; 885 } 886 887 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 888 } 889 890 // No operation needed 891 return Ty; 892 } 893 894 /// Returns true if this type can be passed in SSE registers with the 895 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 896 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 897 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 898 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 899 if (BT->getKind() == BuiltinType::LongDouble) { 900 if (&Context.getTargetInfo().getLongDoubleFormat() == 901 &llvm::APFloat::x87DoubleExtended()) 902 return false; 903 } 904 return true; 905 } 906 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 907 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 908 // registers specially. 909 unsigned VecSize = Context.getTypeSize(VT); 910 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 911 return true; 912 } 913 return false; 914 } 915 916 /// Returns true if this aggregate is small enough to be passed in SSE registers 917 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 918 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 919 return NumMembers <= 4; 920 } 921 922 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 923 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 924 auto AI = ABIArgInfo::getDirect(T); 925 AI.setInReg(true); 926 AI.setCanBeFlattened(false); 927 return AI; 928 } 929 930 //===----------------------------------------------------------------------===// 931 // X86-32 ABI Implementation 932 //===----------------------------------------------------------------------===// 933 934 /// \brief Similar to llvm::CCState, but for Clang. 935 struct CCState { 936 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 937 938 unsigned CC; 939 unsigned FreeRegs; 940 unsigned FreeSSERegs; 941 }; 942 943 enum { 944 // Vectorcall only allows the first 6 parameters to be passed in registers. 945 VectorcallMaxParamNumAsReg = 6 946 }; 947 948 /// X86_32ABIInfo - The X86-32 ABI information. 949 class X86_32ABIInfo : public SwiftABIInfo { 950 enum Class { 951 Integer, 952 Float 953 }; 954 955 static const unsigned MinABIStackAlignInBytes = 4; 956 957 bool IsDarwinVectorABI; 958 bool IsRetSmallStructInRegABI; 959 bool IsWin32StructABI; 960 bool IsSoftFloatABI; 961 bool IsMCUABI; 962 unsigned DefaultNumRegisterParameters; 963 964 static bool isRegisterSize(unsigned Size) { 965 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 966 } 967 968 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 969 // FIXME: Assumes vectorcall is in use. 970 return isX86VectorTypeForVectorCall(getContext(), Ty); 971 } 972 973 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 974 uint64_t NumMembers) const override { 975 // FIXME: Assumes vectorcall is in use. 976 return isX86VectorCallAggregateSmallEnough(NumMembers); 977 } 978 979 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 980 981 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 982 /// such that the argument will be passed in memory. 983 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 984 985 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 986 987 /// \brief Return the alignment to use for the given type on the stack. 988 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 989 990 Class classify(QualType Ty) const; 991 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 992 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 993 994 /// \brief Updates the number of available free registers, returns 995 /// true if any registers were allocated. 996 bool updateFreeRegs(QualType Ty, CCState &State) const; 997 998 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 999 bool &NeedsPadding) const; 1000 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1001 1002 bool canExpandIndirectArgument(QualType Ty) const; 1003 1004 /// \brief Rewrite the function info so that all memory arguments use 1005 /// inalloca. 1006 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1007 1008 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1009 CharUnits &StackOffset, ABIArgInfo &Info, 1010 QualType Type) const; 1011 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1012 bool &UsedInAlloca) const; 1013 1014 public: 1015 1016 void computeInfo(CGFunctionInfo &FI) const override; 1017 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1018 QualType Ty) const override; 1019 1020 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1021 bool RetSmallStructInRegABI, bool Win32StructABI, 1022 unsigned NumRegisterParameters, bool SoftFloatABI) 1023 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1024 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1025 IsWin32StructABI(Win32StructABI), 1026 IsSoftFloatABI(SoftFloatABI), 1027 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1028 DefaultNumRegisterParameters(NumRegisterParameters) {} 1029 1030 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 1031 ArrayRef<llvm::Type*> scalars, 1032 bool asReturnValue) const override { 1033 // LLVM's x86-32 lowering currently only assigns up to three 1034 // integer registers and three fp registers. Oddly, it'll use up to 1035 // four vector registers for vectors, but those can overlap with the 1036 // scalar registers. 1037 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1038 } 1039 1040 bool isSwiftErrorInRegister() const override { 1041 // x86-32 lowering does not support passing swifterror in a register. 1042 return false; 1043 } 1044 }; 1045 1046 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1047 public: 1048 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1049 bool RetSmallStructInRegABI, bool Win32StructABI, 1050 unsigned NumRegisterParameters, bool SoftFloatABI) 1051 : TargetCodeGenInfo(new X86_32ABIInfo( 1052 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1053 NumRegisterParameters, SoftFloatABI)) {} 1054 1055 static bool isStructReturnInRegABI( 1056 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1057 1058 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1059 CodeGen::CodeGenModule &CGM, 1060 ForDefinition_t IsForDefinition) const override; 1061 1062 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1063 // Darwin uses different dwarf register numbers for EH. 1064 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1065 return 4; 1066 } 1067 1068 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1069 llvm::Value *Address) const override; 1070 1071 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1072 StringRef Constraint, 1073 llvm::Type* Ty) const override { 1074 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1075 } 1076 1077 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1078 std::string &Constraints, 1079 std::vector<llvm::Type *> &ResultRegTypes, 1080 std::vector<llvm::Type *> &ResultTruncRegTypes, 1081 std::vector<LValue> &ResultRegDests, 1082 std::string &AsmString, 1083 unsigned NumOutputs) const override; 1084 1085 llvm::Constant * 1086 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1087 unsigned Sig = (0xeb << 0) | // jmp rel8 1088 (0x06 << 8) | // .+0x08 1089 ('v' << 16) | 1090 ('2' << 24); 1091 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1092 } 1093 1094 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1095 return "movl\t%ebp, %ebp" 1096 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1097 } 1098 }; 1099 1100 } 1101 1102 /// Rewrite input constraint references after adding some output constraints. 1103 /// In the case where there is one output and one input and we add one output, 1104 /// we need to replace all operand references greater than or equal to 1: 1105 /// mov $0, $1 1106 /// mov eax, $1 1107 /// The result will be: 1108 /// mov $0, $2 1109 /// mov eax, $2 1110 static void rewriteInputConstraintReferences(unsigned FirstIn, 1111 unsigned NumNewOuts, 1112 std::string &AsmString) { 1113 std::string Buf; 1114 llvm::raw_string_ostream OS(Buf); 1115 size_t Pos = 0; 1116 while (Pos < AsmString.size()) { 1117 size_t DollarStart = AsmString.find('$', Pos); 1118 if (DollarStart == std::string::npos) 1119 DollarStart = AsmString.size(); 1120 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1121 if (DollarEnd == std::string::npos) 1122 DollarEnd = AsmString.size(); 1123 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1124 Pos = DollarEnd; 1125 size_t NumDollars = DollarEnd - DollarStart; 1126 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1127 // We have an operand reference. 1128 size_t DigitStart = Pos; 1129 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1130 if (DigitEnd == std::string::npos) 1131 DigitEnd = AsmString.size(); 1132 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1133 unsigned OperandIndex; 1134 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1135 if (OperandIndex >= FirstIn) 1136 OperandIndex += NumNewOuts; 1137 OS << OperandIndex; 1138 } else { 1139 OS << OperandStr; 1140 } 1141 Pos = DigitEnd; 1142 } 1143 } 1144 AsmString = std::move(OS.str()); 1145 } 1146 1147 /// Add output constraints for EAX:EDX because they are return registers. 1148 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1149 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1150 std::vector<llvm::Type *> &ResultRegTypes, 1151 std::vector<llvm::Type *> &ResultTruncRegTypes, 1152 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1153 unsigned NumOutputs) const { 1154 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1155 1156 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1157 // larger. 1158 if (!Constraints.empty()) 1159 Constraints += ','; 1160 if (RetWidth <= 32) { 1161 Constraints += "={eax}"; 1162 ResultRegTypes.push_back(CGF.Int32Ty); 1163 } else { 1164 // Use the 'A' constraint for EAX:EDX. 1165 Constraints += "=A"; 1166 ResultRegTypes.push_back(CGF.Int64Ty); 1167 } 1168 1169 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1170 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1171 ResultTruncRegTypes.push_back(CoerceTy); 1172 1173 // Coerce the integer by bitcasting the return slot pointer. 1174 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1175 CoerceTy->getPointerTo())); 1176 ResultRegDests.push_back(ReturnSlot); 1177 1178 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1179 } 1180 1181 /// shouldReturnTypeInRegister - Determine if the given type should be 1182 /// returned in a register (for the Darwin and MCU ABI). 1183 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1184 ASTContext &Context) const { 1185 uint64_t Size = Context.getTypeSize(Ty); 1186 1187 // For i386, type must be register sized. 1188 // For the MCU ABI, it only needs to be <= 8-byte 1189 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1190 return false; 1191 1192 if (Ty->isVectorType()) { 1193 // 64- and 128- bit vectors inside structures are not returned in 1194 // registers. 1195 if (Size == 64 || Size == 128) 1196 return false; 1197 1198 return true; 1199 } 1200 1201 // If this is a builtin, pointer, enum, complex type, member pointer, or 1202 // member function pointer it is ok. 1203 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1204 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1205 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1206 return true; 1207 1208 // Arrays are treated like records. 1209 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1210 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1211 1212 // Otherwise, it must be a record type. 1213 const RecordType *RT = Ty->getAs<RecordType>(); 1214 if (!RT) return false; 1215 1216 // FIXME: Traverse bases here too. 1217 1218 // Structure types are passed in register if all fields would be 1219 // passed in a register. 1220 for (const auto *FD : RT->getDecl()->fields()) { 1221 // Empty fields are ignored. 1222 if (isEmptyField(Context, FD, true)) 1223 continue; 1224 1225 // Check fields recursively. 1226 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1227 return false; 1228 } 1229 return true; 1230 } 1231 1232 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1233 // Treat complex types as the element type. 1234 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1235 Ty = CTy->getElementType(); 1236 1237 // Check for a type which we know has a simple scalar argument-passing 1238 // convention without any padding. (We're specifically looking for 32 1239 // and 64-bit integer and integer-equivalents, float, and double.) 1240 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1241 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1242 return false; 1243 1244 uint64_t Size = Context.getTypeSize(Ty); 1245 return Size == 32 || Size == 64; 1246 } 1247 1248 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1249 uint64_t &Size) { 1250 for (const auto *FD : RD->fields()) { 1251 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1252 // argument is smaller than 32-bits, expanding the struct will create 1253 // alignment padding. 1254 if (!is32Or64BitBasicType(FD->getType(), Context)) 1255 return false; 1256 1257 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1258 // how to expand them yet, and the predicate for telling if a bitfield still 1259 // counts as "basic" is more complicated than what we were doing previously. 1260 if (FD->isBitField()) 1261 return false; 1262 1263 Size += Context.getTypeSize(FD->getType()); 1264 } 1265 return true; 1266 } 1267 1268 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1269 uint64_t &Size) { 1270 // Don't do this if there are any non-empty bases. 1271 for (const CXXBaseSpecifier &Base : RD->bases()) { 1272 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1273 Size)) 1274 return false; 1275 } 1276 if (!addFieldSizes(Context, RD, Size)) 1277 return false; 1278 return true; 1279 } 1280 1281 /// Test whether an argument type which is to be passed indirectly (on the 1282 /// stack) would have the equivalent layout if it was expanded into separate 1283 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1284 /// optimizations. 1285 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1286 // We can only expand structure types. 1287 const RecordType *RT = Ty->getAs<RecordType>(); 1288 if (!RT) 1289 return false; 1290 const RecordDecl *RD = RT->getDecl(); 1291 uint64_t Size = 0; 1292 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1293 if (!IsWin32StructABI) { 1294 // On non-Windows, we have to conservatively match our old bitcode 1295 // prototypes in order to be ABI-compatible at the bitcode level. 1296 if (!CXXRD->isCLike()) 1297 return false; 1298 } else { 1299 // Don't do this for dynamic classes. 1300 if (CXXRD->isDynamicClass()) 1301 return false; 1302 } 1303 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1304 return false; 1305 } else { 1306 if (!addFieldSizes(getContext(), RD, Size)) 1307 return false; 1308 } 1309 1310 // We can do this if there was no alignment padding. 1311 return Size == getContext().getTypeSize(Ty); 1312 } 1313 1314 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1315 // If the return value is indirect, then the hidden argument is consuming one 1316 // integer register. 1317 if (State.FreeRegs) { 1318 --State.FreeRegs; 1319 if (!IsMCUABI) 1320 return getNaturalAlignIndirectInReg(RetTy); 1321 } 1322 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1323 } 1324 1325 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1326 CCState &State) const { 1327 if (RetTy->isVoidType()) 1328 return ABIArgInfo::getIgnore(); 1329 1330 const Type *Base = nullptr; 1331 uint64_t NumElts = 0; 1332 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1333 State.CC == llvm::CallingConv::X86_RegCall) && 1334 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1335 // The LLVM struct type for such an aggregate should lower properly. 1336 return ABIArgInfo::getDirect(); 1337 } 1338 1339 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1340 // On Darwin, some vectors are returned in registers. 1341 if (IsDarwinVectorABI) { 1342 uint64_t Size = getContext().getTypeSize(RetTy); 1343 1344 // 128-bit vectors are a special case; they are returned in 1345 // registers and we need to make sure to pick a type the LLVM 1346 // backend will like. 1347 if (Size == 128) 1348 return ABIArgInfo::getDirect(llvm::VectorType::get( 1349 llvm::Type::getInt64Ty(getVMContext()), 2)); 1350 1351 // Always return in register if it fits in a general purpose 1352 // register, or if it is 64 bits and has a single element. 1353 if ((Size == 8 || Size == 16 || Size == 32) || 1354 (Size == 64 && VT->getNumElements() == 1)) 1355 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1356 Size)); 1357 1358 return getIndirectReturnResult(RetTy, State); 1359 } 1360 1361 return ABIArgInfo::getDirect(); 1362 } 1363 1364 if (isAggregateTypeForABI(RetTy)) { 1365 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1366 // Structures with flexible arrays are always indirect. 1367 if (RT->getDecl()->hasFlexibleArrayMember()) 1368 return getIndirectReturnResult(RetTy, State); 1369 } 1370 1371 // If specified, structs and unions are always indirect. 1372 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1373 return getIndirectReturnResult(RetTy, State); 1374 1375 // Ignore empty structs/unions. 1376 if (isEmptyRecord(getContext(), RetTy, true)) 1377 return ABIArgInfo::getIgnore(); 1378 1379 // Small structures which are register sized are generally returned 1380 // in a register. 1381 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1382 uint64_t Size = getContext().getTypeSize(RetTy); 1383 1384 // As a special-case, if the struct is a "single-element" struct, and 1385 // the field is of type "float" or "double", return it in a 1386 // floating-point register. (MSVC does not apply this special case.) 1387 // We apply a similar transformation for pointer types to improve the 1388 // quality of the generated IR. 1389 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1390 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1391 || SeltTy->hasPointerRepresentation()) 1392 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1393 1394 // FIXME: We should be able to narrow this integer in cases with dead 1395 // padding. 1396 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1397 } 1398 1399 return getIndirectReturnResult(RetTy, State); 1400 } 1401 1402 // Treat an enum type as its underlying type. 1403 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1404 RetTy = EnumTy->getDecl()->getIntegerType(); 1405 1406 return (RetTy->isPromotableIntegerType() ? 1407 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1408 } 1409 1410 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1411 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1412 } 1413 1414 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1415 const RecordType *RT = Ty->getAs<RecordType>(); 1416 if (!RT) 1417 return 0; 1418 const RecordDecl *RD = RT->getDecl(); 1419 1420 // If this is a C++ record, check the bases first. 1421 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1422 for (const auto &I : CXXRD->bases()) 1423 if (!isRecordWithSSEVectorType(Context, I.getType())) 1424 return false; 1425 1426 for (const auto *i : RD->fields()) { 1427 QualType FT = i->getType(); 1428 1429 if (isSSEVectorType(Context, FT)) 1430 return true; 1431 1432 if (isRecordWithSSEVectorType(Context, FT)) 1433 return true; 1434 } 1435 1436 return false; 1437 } 1438 1439 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1440 unsigned Align) const { 1441 // Otherwise, if the alignment is less than or equal to the minimum ABI 1442 // alignment, just use the default; the backend will handle this. 1443 if (Align <= MinABIStackAlignInBytes) 1444 return 0; // Use default alignment. 1445 1446 // On non-Darwin, the stack type alignment is always 4. 1447 if (!IsDarwinVectorABI) { 1448 // Set explicit alignment, since we may need to realign the top. 1449 return MinABIStackAlignInBytes; 1450 } 1451 1452 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1453 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1454 isRecordWithSSEVectorType(getContext(), Ty))) 1455 return 16; 1456 1457 return MinABIStackAlignInBytes; 1458 } 1459 1460 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1461 CCState &State) const { 1462 if (!ByVal) { 1463 if (State.FreeRegs) { 1464 --State.FreeRegs; // Non-byval indirects just use one pointer. 1465 if (!IsMCUABI) 1466 return getNaturalAlignIndirectInReg(Ty); 1467 } 1468 return getNaturalAlignIndirect(Ty, false); 1469 } 1470 1471 // Compute the byval alignment. 1472 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1473 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1474 if (StackAlign == 0) 1475 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1476 1477 // If the stack alignment is less than the type alignment, realign the 1478 // argument. 1479 bool Realign = TypeAlign > StackAlign; 1480 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1481 /*ByVal=*/true, Realign); 1482 } 1483 1484 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1485 const Type *T = isSingleElementStruct(Ty, getContext()); 1486 if (!T) 1487 T = Ty.getTypePtr(); 1488 1489 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1490 BuiltinType::Kind K = BT->getKind(); 1491 if (K == BuiltinType::Float || K == BuiltinType::Double) 1492 return Float; 1493 } 1494 return Integer; 1495 } 1496 1497 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1498 if (!IsSoftFloatABI) { 1499 Class C = classify(Ty); 1500 if (C == Float) 1501 return false; 1502 } 1503 1504 unsigned Size = getContext().getTypeSize(Ty); 1505 unsigned SizeInRegs = (Size + 31) / 32; 1506 1507 if (SizeInRegs == 0) 1508 return false; 1509 1510 if (!IsMCUABI) { 1511 if (SizeInRegs > State.FreeRegs) { 1512 State.FreeRegs = 0; 1513 return false; 1514 } 1515 } else { 1516 // The MCU psABI allows passing parameters in-reg even if there are 1517 // earlier parameters that are passed on the stack. Also, 1518 // it does not allow passing >8-byte structs in-register, 1519 // even if there are 3 free registers available. 1520 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1521 return false; 1522 } 1523 1524 State.FreeRegs -= SizeInRegs; 1525 return true; 1526 } 1527 1528 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1529 bool &InReg, 1530 bool &NeedsPadding) const { 1531 // On Windows, aggregates other than HFAs are never passed in registers, and 1532 // they do not consume register slots. Homogenous floating-point aggregates 1533 // (HFAs) have already been dealt with at this point. 1534 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1535 return false; 1536 1537 NeedsPadding = false; 1538 InReg = !IsMCUABI; 1539 1540 if (!updateFreeRegs(Ty, State)) 1541 return false; 1542 1543 if (IsMCUABI) 1544 return true; 1545 1546 if (State.CC == llvm::CallingConv::X86_FastCall || 1547 State.CC == llvm::CallingConv::X86_VectorCall || 1548 State.CC == llvm::CallingConv::X86_RegCall) { 1549 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1550 NeedsPadding = true; 1551 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1559 if (!updateFreeRegs(Ty, State)) 1560 return false; 1561 1562 if (IsMCUABI) 1563 return false; 1564 1565 if (State.CC == llvm::CallingConv::X86_FastCall || 1566 State.CC == llvm::CallingConv::X86_VectorCall || 1567 State.CC == llvm::CallingConv::X86_RegCall) { 1568 if (getContext().getTypeSize(Ty) > 32) 1569 return false; 1570 1571 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1572 Ty->isReferenceType()); 1573 } 1574 1575 return true; 1576 } 1577 1578 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1579 CCState &State) const { 1580 // FIXME: Set alignment on indirect arguments. 1581 1582 Ty = useFirstFieldIfTransparentUnion(Ty); 1583 1584 // Check with the C++ ABI first. 1585 const RecordType *RT = Ty->getAs<RecordType>(); 1586 if (RT) { 1587 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1588 if (RAA == CGCXXABI::RAA_Indirect) { 1589 return getIndirectResult(Ty, false, State); 1590 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1591 // The field index doesn't matter, we'll fix it up later. 1592 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1593 } 1594 } 1595 1596 // Regcall uses the concept of a homogenous vector aggregate, similar 1597 // to other targets. 1598 const Type *Base = nullptr; 1599 uint64_t NumElts = 0; 1600 if (State.CC == llvm::CallingConv::X86_RegCall && 1601 isHomogeneousAggregate(Ty, Base, NumElts)) { 1602 1603 if (State.FreeSSERegs >= NumElts) { 1604 State.FreeSSERegs -= NumElts; 1605 if (Ty->isBuiltinType() || Ty->isVectorType()) 1606 return ABIArgInfo::getDirect(); 1607 return ABIArgInfo::getExpand(); 1608 } 1609 return getIndirectResult(Ty, /*ByVal=*/false, State); 1610 } 1611 1612 if (isAggregateTypeForABI(Ty)) { 1613 // Structures with flexible arrays are always indirect. 1614 // FIXME: This should not be byval! 1615 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1616 return getIndirectResult(Ty, true, State); 1617 1618 // Ignore empty structs/unions on non-Windows. 1619 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1620 return ABIArgInfo::getIgnore(); 1621 1622 llvm::LLVMContext &LLVMContext = getVMContext(); 1623 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1624 bool NeedsPadding = false; 1625 bool InReg; 1626 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1627 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1628 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1629 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1630 if (InReg) 1631 return ABIArgInfo::getDirectInReg(Result); 1632 else 1633 return ABIArgInfo::getDirect(Result); 1634 } 1635 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1636 1637 // Expand small (<= 128-bit) record types when we know that the stack layout 1638 // of those arguments will match the struct. This is important because the 1639 // LLVM backend isn't smart enough to remove byval, which inhibits many 1640 // optimizations. 1641 // Don't do this for the MCU if there are still free integer registers 1642 // (see X86_64 ABI for full explanation). 1643 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1644 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1645 return ABIArgInfo::getExpandWithPadding( 1646 State.CC == llvm::CallingConv::X86_FastCall || 1647 State.CC == llvm::CallingConv::X86_VectorCall || 1648 State.CC == llvm::CallingConv::X86_RegCall, 1649 PaddingType); 1650 1651 return getIndirectResult(Ty, true, State); 1652 } 1653 1654 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1655 // On Darwin, some vectors are passed in memory, we handle this by passing 1656 // it as an i8/i16/i32/i64. 1657 if (IsDarwinVectorABI) { 1658 uint64_t Size = getContext().getTypeSize(Ty); 1659 if ((Size == 8 || Size == 16 || Size == 32) || 1660 (Size == 64 && VT->getNumElements() == 1)) 1661 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1662 Size)); 1663 } 1664 1665 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1666 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1667 1668 return ABIArgInfo::getDirect(); 1669 } 1670 1671 1672 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1673 Ty = EnumTy->getDecl()->getIntegerType(); 1674 1675 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1676 1677 if (Ty->isPromotableIntegerType()) { 1678 if (InReg) 1679 return ABIArgInfo::getExtendInReg(); 1680 return ABIArgInfo::getExtend(); 1681 } 1682 1683 if (InReg) 1684 return ABIArgInfo::getDirectInReg(); 1685 return ABIArgInfo::getDirect(); 1686 } 1687 1688 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1689 bool &UsedInAlloca) const { 1690 // Vectorcall x86 works subtly different than in x64, so the format is 1691 // a bit different than the x64 version. First, all vector types (not HVAs) 1692 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1693 // This differs from the x64 implementation, where the first 6 by INDEX get 1694 // registers. 1695 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1696 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1697 // first take up the remaining YMM/XMM registers. If insufficient registers 1698 // remain but an integer register (ECX/EDX) is available, it will be passed 1699 // in that, else, on the stack. 1700 for (auto &I : FI.arguments()) { 1701 // First pass do all the vector types. 1702 const Type *Base = nullptr; 1703 uint64_t NumElts = 0; 1704 const QualType& Ty = I.type; 1705 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1706 isHomogeneousAggregate(Ty, Base, NumElts)) { 1707 if (State.FreeSSERegs >= NumElts) { 1708 State.FreeSSERegs -= NumElts; 1709 I.info = ABIArgInfo::getDirect(); 1710 } else { 1711 I.info = classifyArgumentType(Ty, State); 1712 } 1713 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1714 } 1715 } 1716 1717 for (auto &I : FI.arguments()) { 1718 // Second pass, do the rest! 1719 const Type *Base = nullptr; 1720 uint64_t NumElts = 0; 1721 const QualType& Ty = I.type; 1722 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1723 1724 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1725 // Assign true HVAs (non vector/native FP types). 1726 if (State.FreeSSERegs >= NumElts) { 1727 State.FreeSSERegs -= NumElts; 1728 I.info = getDirectX86Hva(); 1729 } else { 1730 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1731 } 1732 } else if (!IsHva) { 1733 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1734 I.info = classifyArgumentType(Ty, State); 1735 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1736 } 1737 } 1738 } 1739 1740 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1741 CCState State(FI.getCallingConvention()); 1742 if (IsMCUABI) 1743 State.FreeRegs = 3; 1744 else if (State.CC == llvm::CallingConv::X86_FastCall) 1745 State.FreeRegs = 2; 1746 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1747 State.FreeRegs = 2; 1748 State.FreeSSERegs = 6; 1749 } else if (FI.getHasRegParm()) 1750 State.FreeRegs = FI.getRegParm(); 1751 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1752 State.FreeRegs = 5; 1753 State.FreeSSERegs = 8; 1754 } else 1755 State.FreeRegs = DefaultNumRegisterParameters; 1756 1757 if (!getCXXABI().classifyReturnType(FI)) { 1758 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1759 } else if (FI.getReturnInfo().isIndirect()) { 1760 // The C++ ABI is not aware of register usage, so we have to check if the 1761 // return value was sret and put it in a register ourselves if appropriate. 1762 if (State.FreeRegs) { 1763 --State.FreeRegs; // The sret parameter consumes a register. 1764 if (!IsMCUABI) 1765 FI.getReturnInfo().setInReg(true); 1766 } 1767 } 1768 1769 // The chain argument effectively gives us another free register. 1770 if (FI.isChainCall()) 1771 ++State.FreeRegs; 1772 1773 bool UsedInAlloca = false; 1774 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1775 computeVectorCallArgs(FI, State, UsedInAlloca); 1776 } else { 1777 // If not vectorcall, revert to normal behavior. 1778 for (auto &I : FI.arguments()) { 1779 I.info = classifyArgumentType(I.type, State); 1780 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1781 } 1782 } 1783 1784 // If we needed to use inalloca for any argument, do a second pass and rewrite 1785 // all the memory arguments to use inalloca. 1786 if (UsedInAlloca) 1787 rewriteWithInAlloca(FI); 1788 } 1789 1790 void 1791 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1792 CharUnits &StackOffset, ABIArgInfo &Info, 1793 QualType Type) const { 1794 // Arguments are always 4-byte-aligned. 1795 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1796 1797 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1798 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1799 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1800 StackOffset += getContext().getTypeSizeInChars(Type); 1801 1802 // Insert padding bytes to respect alignment. 1803 CharUnits FieldEnd = StackOffset; 1804 StackOffset = FieldEnd.alignTo(FieldAlign); 1805 if (StackOffset != FieldEnd) { 1806 CharUnits NumBytes = StackOffset - FieldEnd; 1807 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1808 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1809 FrameFields.push_back(Ty); 1810 } 1811 } 1812 1813 static bool isArgInAlloca(const ABIArgInfo &Info) { 1814 // Leave ignored and inreg arguments alone. 1815 switch (Info.getKind()) { 1816 case ABIArgInfo::InAlloca: 1817 return true; 1818 case ABIArgInfo::Indirect: 1819 assert(Info.getIndirectByVal()); 1820 return true; 1821 case ABIArgInfo::Ignore: 1822 return false; 1823 case ABIArgInfo::Direct: 1824 case ABIArgInfo::Extend: 1825 if (Info.getInReg()) 1826 return false; 1827 return true; 1828 case ABIArgInfo::Expand: 1829 case ABIArgInfo::CoerceAndExpand: 1830 // These are aggregate types which are never passed in registers when 1831 // inalloca is involved. 1832 return true; 1833 } 1834 llvm_unreachable("invalid enum"); 1835 } 1836 1837 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1838 assert(IsWin32StructABI && "inalloca only supported on win32"); 1839 1840 // Build a packed struct type for all of the arguments in memory. 1841 SmallVector<llvm::Type *, 6> FrameFields; 1842 1843 // The stack alignment is always 4. 1844 CharUnits StackAlign = CharUnits::fromQuantity(4); 1845 1846 CharUnits StackOffset; 1847 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1848 1849 // Put 'this' into the struct before 'sret', if necessary. 1850 bool IsThisCall = 1851 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1852 ABIArgInfo &Ret = FI.getReturnInfo(); 1853 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1854 isArgInAlloca(I->info)) { 1855 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1856 ++I; 1857 } 1858 1859 // Put the sret parameter into the inalloca struct if it's in memory. 1860 if (Ret.isIndirect() && !Ret.getInReg()) { 1861 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1862 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1863 // On Windows, the hidden sret parameter is always returned in eax. 1864 Ret.setInAllocaSRet(IsWin32StructABI); 1865 } 1866 1867 // Skip the 'this' parameter in ecx. 1868 if (IsThisCall) 1869 ++I; 1870 1871 // Put arguments passed in memory into the struct. 1872 for (; I != E; ++I) { 1873 if (isArgInAlloca(I->info)) 1874 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1875 } 1876 1877 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1878 /*isPacked=*/true), 1879 StackAlign); 1880 } 1881 1882 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1883 Address VAListAddr, QualType Ty) const { 1884 1885 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1886 1887 // x86-32 changes the alignment of certain arguments on the stack. 1888 // 1889 // Just messing with TypeInfo like this works because we never pass 1890 // anything indirectly. 1891 TypeInfo.second = CharUnits::fromQuantity( 1892 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1893 1894 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1895 TypeInfo, CharUnits::fromQuantity(4), 1896 /*AllowHigherAlign*/ true); 1897 } 1898 1899 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1900 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1901 assert(Triple.getArch() == llvm::Triple::x86); 1902 1903 switch (Opts.getStructReturnConvention()) { 1904 case CodeGenOptions::SRCK_Default: 1905 break; 1906 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1907 return false; 1908 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1909 return true; 1910 } 1911 1912 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1913 return true; 1914 1915 switch (Triple.getOS()) { 1916 case llvm::Triple::DragonFly: 1917 case llvm::Triple::FreeBSD: 1918 case llvm::Triple::OpenBSD: 1919 case llvm::Triple::Win32: 1920 return true; 1921 default: 1922 return false; 1923 } 1924 } 1925 1926 void X86_32TargetCodeGenInfo::setTargetAttributes( 1927 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 1928 ForDefinition_t IsForDefinition) const { 1929 if (!IsForDefinition) 1930 return; 1931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1932 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1933 // Get the LLVM function. 1934 llvm::Function *Fn = cast<llvm::Function>(GV); 1935 1936 // Now add the 'alignstack' attribute with a value of 16. 1937 llvm::AttrBuilder B; 1938 B.addStackAlignmentAttr(16); 1939 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1940 } 1941 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1942 llvm::Function *Fn = cast<llvm::Function>(GV); 1943 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1944 } 1945 } 1946 } 1947 1948 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1949 CodeGen::CodeGenFunction &CGF, 1950 llvm::Value *Address) const { 1951 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1952 1953 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1954 1955 // 0-7 are the eight integer registers; the order is different 1956 // on Darwin (for EH), but the range is the same. 1957 // 8 is %eip. 1958 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1959 1960 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1961 // 12-16 are st(0..4). Not sure why we stop at 4. 1962 // These have size 16, which is sizeof(long double) on 1963 // platforms with 8-byte alignment for that type. 1964 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1965 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1966 1967 } else { 1968 // 9 is %eflags, which doesn't get a size on Darwin for some 1969 // reason. 1970 Builder.CreateAlignedStore( 1971 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1972 CharUnits::One()); 1973 1974 // 11-16 are st(0..5). Not sure why we stop at 5. 1975 // These have size 12, which is sizeof(long double) on 1976 // platforms with 4-byte alignment for that type. 1977 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1978 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1979 } 1980 1981 return false; 1982 } 1983 1984 //===----------------------------------------------------------------------===// 1985 // X86-64 ABI Implementation 1986 //===----------------------------------------------------------------------===// 1987 1988 1989 namespace { 1990 /// The AVX ABI level for X86 targets. 1991 enum class X86AVXABILevel { 1992 None, 1993 AVX, 1994 AVX512 1995 }; 1996 1997 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1998 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1999 switch (AVXLevel) { 2000 case X86AVXABILevel::AVX512: 2001 return 512; 2002 case X86AVXABILevel::AVX: 2003 return 256; 2004 case X86AVXABILevel::None: 2005 return 128; 2006 } 2007 llvm_unreachable("Unknown AVXLevel"); 2008 } 2009 2010 /// X86_64ABIInfo - The X86_64 ABI information. 2011 class X86_64ABIInfo : public SwiftABIInfo { 2012 enum Class { 2013 Integer = 0, 2014 SSE, 2015 SSEUp, 2016 X87, 2017 X87Up, 2018 ComplexX87, 2019 NoClass, 2020 Memory 2021 }; 2022 2023 /// merge - Implement the X86_64 ABI merging algorithm. 2024 /// 2025 /// Merge an accumulating classification \arg Accum with a field 2026 /// classification \arg Field. 2027 /// 2028 /// \param Accum - The accumulating classification. This should 2029 /// always be either NoClass or the result of a previous merge 2030 /// call. In addition, this should never be Memory (the caller 2031 /// should just return Memory for the aggregate). 2032 static Class merge(Class Accum, Class Field); 2033 2034 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2035 /// 2036 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2037 /// final MEMORY or SSE classes when necessary. 2038 /// 2039 /// \param AggregateSize - The size of the current aggregate in 2040 /// the classification process. 2041 /// 2042 /// \param Lo - The classification for the parts of the type 2043 /// residing in the low word of the containing object. 2044 /// 2045 /// \param Hi - The classification for the parts of the type 2046 /// residing in the higher words of the containing object. 2047 /// 2048 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2049 2050 /// classify - Determine the x86_64 register classes in which the 2051 /// given type T should be passed. 2052 /// 2053 /// \param Lo - The classification for the parts of the type 2054 /// residing in the low word of the containing object. 2055 /// 2056 /// \param Hi - The classification for the parts of the type 2057 /// residing in the high word of the containing object. 2058 /// 2059 /// \param OffsetBase - The bit offset of this type in the 2060 /// containing object. Some parameters are classified different 2061 /// depending on whether they straddle an eightbyte boundary. 2062 /// 2063 /// \param isNamedArg - Whether the argument in question is a "named" 2064 /// argument, as used in AMD64-ABI 3.5.7. 2065 /// 2066 /// If a word is unused its result will be NoClass; if a type should 2067 /// be passed in Memory then at least the classification of \arg Lo 2068 /// will be Memory. 2069 /// 2070 /// The \arg Lo class will be NoClass iff the argument is ignored. 2071 /// 2072 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2073 /// also be ComplexX87. 2074 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2075 bool isNamedArg) const; 2076 2077 llvm::Type *GetByteVectorType(QualType Ty) const; 2078 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2079 unsigned IROffset, QualType SourceTy, 2080 unsigned SourceOffset) const; 2081 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2082 unsigned IROffset, QualType SourceTy, 2083 unsigned SourceOffset) const; 2084 2085 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2086 /// such that the argument will be returned in memory. 2087 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2088 2089 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2090 /// such that the argument will be passed in memory. 2091 /// 2092 /// \param freeIntRegs - The number of free integer registers remaining 2093 /// available. 2094 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2095 2096 ABIArgInfo classifyReturnType(QualType RetTy) const; 2097 2098 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2099 unsigned &neededInt, unsigned &neededSSE, 2100 bool isNamedArg) const; 2101 2102 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2103 unsigned &NeededSSE) const; 2104 2105 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2106 unsigned &NeededSSE) const; 2107 2108 bool IsIllegalVectorType(QualType Ty) const; 2109 2110 /// The 0.98 ABI revision clarified a lot of ambiguities, 2111 /// unfortunately in ways that were not always consistent with 2112 /// certain previous compilers. In particular, platforms which 2113 /// required strict binary compatibility with older versions of GCC 2114 /// may need to exempt themselves. 2115 bool honorsRevision0_98() const { 2116 return !getTarget().getTriple().isOSDarwin(); 2117 } 2118 2119 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2120 /// classify it as INTEGER (for compatibility with older clang compilers). 2121 bool classifyIntegerMMXAsSSE() const { 2122 // Clang <= 3.8 did not do this. 2123 if (getCodeGenOpts().getClangABICompat() <= 2124 CodeGenOptions::ClangABI::Ver3_8) 2125 return false; 2126 2127 const llvm::Triple &Triple = getTarget().getTriple(); 2128 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2129 return false; 2130 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2131 return false; 2132 return true; 2133 } 2134 2135 X86AVXABILevel AVXLevel; 2136 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2137 // 64-bit hardware. 2138 bool Has64BitPointers; 2139 2140 public: 2141 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2142 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2143 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2144 } 2145 2146 bool isPassedUsingAVXType(QualType type) const { 2147 unsigned neededInt, neededSSE; 2148 // The freeIntRegs argument doesn't matter here. 2149 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2150 /*isNamedArg*/true); 2151 if (info.isDirect()) { 2152 llvm::Type *ty = info.getCoerceToType(); 2153 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2154 return (vectorTy->getBitWidth() > 128); 2155 } 2156 return false; 2157 } 2158 2159 void computeInfo(CGFunctionInfo &FI) const override; 2160 2161 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2162 QualType Ty) const override; 2163 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2164 QualType Ty) const override; 2165 2166 bool has64BitPointers() const { 2167 return Has64BitPointers; 2168 } 2169 2170 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2171 ArrayRef<llvm::Type*> scalars, 2172 bool asReturnValue) const override { 2173 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2174 } 2175 bool isSwiftErrorInRegister() const override { 2176 return true; 2177 } 2178 }; 2179 2180 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2181 class WinX86_64ABIInfo : public SwiftABIInfo { 2182 public: 2183 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2184 : SwiftABIInfo(CGT), 2185 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2186 2187 void computeInfo(CGFunctionInfo &FI) const override; 2188 2189 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2190 QualType Ty) const override; 2191 2192 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2193 // FIXME: Assumes vectorcall is in use. 2194 return isX86VectorTypeForVectorCall(getContext(), Ty); 2195 } 2196 2197 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2198 uint64_t NumMembers) const override { 2199 // FIXME: Assumes vectorcall is in use. 2200 return isX86VectorCallAggregateSmallEnough(NumMembers); 2201 } 2202 2203 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2204 ArrayRef<llvm::Type *> scalars, 2205 bool asReturnValue) const override { 2206 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2207 } 2208 2209 bool isSwiftErrorInRegister() const override { 2210 return true; 2211 } 2212 2213 private: 2214 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2215 bool IsVectorCall, bool IsRegCall) const; 2216 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2217 const ABIArgInfo ¤t) const; 2218 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2219 bool IsVectorCall, bool IsRegCall) const; 2220 2221 bool IsMingw64; 2222 }; 2223 2224 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2225 public: 2226 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2227 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2228 2229 const X86_64ABIInfo &getABIInfo() const { 2230 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2231 } 2232 2233 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2234 return 7; 2235 } 2236 2237 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2238 llvm::Value *Address) const override { 2239 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2240 2241 // 0-15 are the 16 integer registers. 2242 // 16 is %rip. 2243 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2244 return false; 2245 } 2246 2247 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2248 StringRef Constraint, 2249 llvm::Type* Ty) const override { 2250 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2251 } 2252 2253 bool isNoProtoCallVariadic(const CallArgList &args, 2254 const FunctionNoProtoType *fnType) const override { 2255 // The default CC on x86-64 sets %al to the number of SSA 2256 // registers used, and GCC sets this when calling an unprototyped 2257 // function, so we override the default behavior. However, don't do 2258 // that when AVX types are involved: the ABI explicitly states it is 2259 // undefined, and it doesn't work in practice because of how the ABI 2260 // defines varargs anyway. 2261 if (fnType->getCallConv() == CC_C) { 2262 bool HasAVXType = false; 2263 for (CallArgList::const_iterator 2264 it = args.begin(), ie = args.end(); it != ie; ++it) { 2265 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2266 HasAVXType = true; 2267 break; 2268 } 2269 } 2270 2271 if (!HasAVXType) 2272 return true; 2273 } 2274 2275 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2276 } 2277 2278 llvm::Constant * 2279 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2280 unsigned Sig = (0xeb << 0) | // jmp rel8 2281 (0x06 << 8) | // .+0x08 2282 ('v' << 16) | 2283 ('2' << 24); 2284 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2285 } 2286 2287 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2288 CodeGen::CodeGenModule &CGM, 2289 ForDefinition_t IsForDefinition) const override { 2290 if (!IsForDefinition) 2291 return; 2292 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2293 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2294 // Get the LLVM function. 2295 auto *Fn = cast<llvm::Function>(GV); 2296 2297 // Now add the 'alignstack' attribute with a value of 16. 2298 llvm::AttrBuilder B; 2299 B.addStackAlignmentAttr(16); 2300 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2301 } 2302 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2303 llvm::Function *Fn = cast<llvm::Function>(GV); 2304 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2305 } 2306 } 2307 } 2308 }; 2309 2310 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2311 public: 2312 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2313 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2314 2315 void getDependentLibraryOption(llvm::StringRef Lib, 2316 llvm::SmallString<24> &Opt) const override { 2317 Opt = "\01"; 2318 // If the argument contains a space, enclose it in quotes. 2319 if (Lib.find(" ") != StringRef::npos) 2320 Opt += "\"" + Lib.str() + "\""; 2321 else 2322 Opt += Lib; 2323 } 2324 }; 2325 2326 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2327 // If the argument does not end in .lib, automatically add the suffix. 2328 // If the argument contains a space, enclose it in quotes. 2329 // This matches the behavior of MSVC. 2330 bool Quote = (Lib.find(" ") != StringRef::npos); 2331 std::string ArgStr = Quote ? "\"" : ""; 2332 ArgStr += Lib; 2333 if (!Lib.endswith_lower(".lib")) 2334 ArgStr += ".lib"; 2335 ArgStr += Quote ? "\"" : ""; 2336 return ArgStr; 2337 } 2338 2339 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2340 public: 2341 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2342 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2343 unsigned NumRegisterParameters) 2344 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2345 Win32StructABI, NumRegisterParameters, false) {} 2346 2347 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2348 CodeGen::CodeGenModule &CGM, 2349 ForDefinition_t IsForDefinition) const override; 2350 2351 void getDependentLibraryOption(llvm::StringRef Lib, 2352 llvm::SmallString<24> &Opt) const override { 2353 Opt = "/DEFAULTLIB:"; 2354 Opt += qualifyWindowsLibrary(Lib); 2355 } 2356 2357 void getDetectMismatchOption(llvm::StringRef Name, 2358 llvm::StringRef Value, 2359 llvm::SmallString<32> &Opt) const override { 2360 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2361 } 2362 }; 2363 2364 static void addStackProbeSizeTargetAttribute(const Decl *D, 2365 llvm::GlobalValue *GV, 2366 CodeGen::CodeGenModule &CGM) { 2367 if (D && isa<FunctionDecl>(D)) { 2368 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2369 llvm::Function *Fn = cast<llvm::Function>(GV); 2370 2371 Fn->addFnAttr("stack-probe-size", 2372 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2373 } 2374 } 2375 } 2376 2377 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2378 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2379 ForDefinition_t IsForDefinition) const { 2380 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2381 if (!IsForDefinition) 2382 return; 2383 addStackProbeSizeTargetAttribute(D, GV, CGM); 2384 } 2385 2386 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2387 public: 2388 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2389 X86AVXABILevel AVXLevel) 2390 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2391 2392 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2393 CodeGen::CodeGenModule &CGM, 2394 ForDefinition_t IsForDefinition) const override; 2395 2396 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2397 return 7; 2398 } 2399 2400 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2401 llvm::Value *Address) const override { 2402 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2403 2404 // 0-15 are the 16 integer registers. 2405 // 16 is %rip. 2406 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2407 return false; 2408 } 2409 2410 void getDependentLibraryOption(llvm::StringRef Lib, 2411 llvm::SmallString<24> &Opt) const override { 2412 Opt = "/DEFAULTLIB:"; 2413 Opt += qualifyWindowsLibrary(Lib); 2414 } 2415 2416 void getDetectMismatchOption(llvm::StringRef Name, 2417 llvm::StringRef Value, 2418 llvm::SmallString<32> &Opt) const override { 2419 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2420 } 2421 }; 2422 2423 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2424 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2425 ForDefinition_t IsForDefinition) const { 2426 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2427 if (!IsForDefinition) 2428 return; 2429 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2430 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2431 // Get the LLVM function. 2432 auto *Fn = cast<llvm::Function>(GV); 2433 2434 // Now add the 'alignstack' attribute with a value of 16. 2435 llvm::AttrBuilder B; 2436 B.addStackAlignmentAttr(16); 2437 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2438 } 2439 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2440 llvm::Function *Fn = cast<llvm::Function>(GV); 2441 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2442 } 2443 } 2444 2445 addStackProbeSizeTargetAttribute(D, GV, CGM); 2446 } 2447 } 2448 2449 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2450 Class &Hi) const { 2451 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2452 // 2453 // (a) If one of the classes is Memory, the whole argument is passed in 2454 // memory. 2455 // 2456 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2457 // memory. 2458 // 2459 // (c) If the size of the aggregate exceeds two eightbytes and the first 2460 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2461 // argument is passed in memory. NOTE: This is necessary to keep the 2462 // ABI working for processors that don't support the __m256 type. 2463 // 2464 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2465 // 2466 // Some of these are enforced by the merging logic. Others can arise 2467 // only with unions; for example: 2468 // union { _Complex double; unsigned; } 2469 // 2470 // Note that clauses (b) and (c) were added in 0.98. 2471 // 2472 if (Hi == Memory) 2473 Lo = Memory; 2474 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2475 Lo = Memory; 2476 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2477 Lo = Memory; 2478 if (Hi == SSEUp && Lo != SSE) 2479 Hi = SSE; 2480 } 2481 2482 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2483 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2484 // classified recursively so that always two fields are 2485 // considered. The resulting class is calculated according to 2486 // the classes of the fields in the eightbyte: 2487 // 2488 // (a) If both classes are equal, this is the resulting class. 2489 // 2490 // (b) If one of the classes is NO_CLASS, the resulting class is 2491 // the other class. 2492 // 2493 // (c) If one of the classes is MEMORY, the result is the MEMORY 2494 // class. 2495 // 2496 // (d) If one of the classes is INTEGER, the result is the 2497 // INTEGER. 2498 // 2499 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2500 // MEMORY is used as class. 2501 // 2502 // (f) Otherwise class SSE is used. 2503 2504 // Accum should never be memory (we should have returned) or 2505 // ComplexX87 (because this cannot be passed in a structure). 2506 assert((Accum != Memory && Accum != ComplexX87) && 2507 "Invalid accumulated classification during merge."); 2508 if (Accum == Field || Field == NoClass) 2509 return Accum; 2510 if (Field == Memory) 2511 return Memory; 2512 if (Accum == NoClass) 2513 return Field; 2514 if (Accum == Integer || Field == Integer) 2515 return Integer; 2516 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2517 Accum == X87 || Accum == X87Up) 2518 return Memory; 2519 return SSE; 2520 } 2521 2522 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2523 Class &Lo, Class &Hi, bool isNamedArg) const { 2524 // FIXME: This code can be simplified by introducing a simple value class for 2525 // Class pairs with appropriate constructor methods for the various 2526 // situations. 2527 2528 // FIXME: Some of the split computations are wrong; unaligned vectors 2529 // shouldn't be passed in registers for example, so there is no chance they 2530 // can straddle an eightbyte. Verify & simplify. 2531 2532 Lo = Hi = NoClass; 2533 2534 Class &Current = OffsetBase < 64 ? Lo : Hi; 2535 Current = Memory; 2536 2537 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2538 BuiltinType::Kind k = BT->getKind(); 2539 2540 if (k == BuiltinType::Void) { 2541 Current = NoClass; 2542 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2543 Lo = Integer; 2544 Hi = Integer; 2545 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2546 Current = Integer; 2547 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2548 Current = SSE; 2549 } else if (k == BuiltinType::LongDouble) { 2550 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2551 if (LDF == &llvm::APFloat::IEEEquad()) { 2552 Lo = SSE; 2553 Hi = SSEUp; 2554 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2555 Lo = X87; 2556 Hi = X87Up; 2557 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2558 Current = SSE; 2559 } else 2560 llvm_unreachable("unexpected long double representation!"); 2561 } 2562 // FIXME: _Decimal32 and _Decimal64 are SSE. 2563 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2564 return; 2565 } 2566 2567 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2568 // Classify the underlying integer type. 2569 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2570 return; 2571 } 2572 2573 if (Ty->hasPointerRepresentation()) { 2574 Current = Integer; 2575 return; 2576 } 2577 2578 if (Ty->isMemberPointerType()) { 2579 if (Ty->isMemberFunctionPointerType()) { 2580 if (Has64BitPointers) { 2581 // If Has64BitPointers, this is an {i64, i64}, so classify both 2582 // Lo and Hi now. 2583 Lo = Hi = Integer; 2584 } else { 2585 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2586 // straddles an eightbyte boundary, Hi should be classified as well. 2587 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2588 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2589 if (EB_FuncPtr != EB_ThisAdj) { 2590 Lo = Hi = Integer; 2591 } else { 2592 Current = Integer; 2593 } 2594 } 2595 } else { 2596 Current = Integer; 2597 } 2598 return; 2599 } 2600 2601 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2602 uint64_t Size = getContext().getTypeSize(VT); 2603 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2604 // gcc passes the following as integer: 2605 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2606 // 2 bytes - <2 x char>, <1 x short> 2607 // 1 byte - <1 x char> 2608 Current = Integer; 2609 2610 // If this type crosses an eightbyte boundary, it should be 2611 // split. 2612 uint64_t EB_Lo = (OffsetBase) / 64; 2613 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2614 if (EB_Lo != EB_Hi) 2615 Hi = Lo; 2616 } else if (Size == 64) { 2617 QualType ElementType = VT->getElementType(); 2618 2619 // gcc passes <1 x double> in memory. :( 2620 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2621 return; 2622 2623 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2624 // pass them as integer. For platforms where clang is the de facto 2625 // platform compiler, we must continue to use integer. 2626 if (!classifyIntegerMMXAsSSE() && 2627 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2628 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2629 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2630 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2631 Current = Integer; 2632 else 2633 Current = SSE; 2634 2635 // If this type crosses an eightbyte boundary, it should be 2636 // split. 2637 if (OffsetBase && OffsetBase != 64) 2638 Hi = Lo; 2639 } else if (Size == 128 || 2640 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2641 // Arguments of 256-bits are split into four eightbyte chunks. The 2642 // least significant one belongs to class SSE and all the others to class 2643 // SSEUP. The original Lo and Hi design considers that types can't be 2644 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2645 // This design isn't correct for 256-bits, but since there're no cases 2646 // where the upper parts would need to be inspected, avoid adding 2647 // complexity and just consider Hi to match the 64-256 part. 2648 // 2649 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2650 // registers if they are "named", i.e. not part of the "..." of a 2651 // variadic function. 2652 // 2653 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2654 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2655 Lo = SSE; 2656 Hi = SSEUp; 2657 } 2658 return; 2659 } 2660 2661 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2662 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2663 2664 uint64_t Size = getContext().getTypeSize(Ty); 2665 if (ET->isIntegralOrEnumerationType()) { 2666 if (Size <= 64) 2667 Current = Integer; 2668 else if (Size <= 128) 2669 Lo = Hi = Integer; 2670 } else if (ET == getContext().FloatTy) { 2671 Current = SSE; 2672 } else if (ET == getContext().DoubleTy) { 2673 Lo = Hi = SSE; 2674 } else if (ET == getContext().LongDoubleTy) { 2675 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2676 if (LDF == &llvm::APFloat::IEEEquad()) 2677 Current = Memory; 2678 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2679 Current = ComplexX87; 2680 else if (LDF == &llvm::APFloat::IEEEdouble()) 2681 Lo = Hi = SSE; 2682 else 2683 llvm_unreachable("unexpected long double representation!"); 2684 } 2685 2686 // If this complex type crosses an eightbyte boundary then it 2687 // should be split. 2688 uint64_t EB_Real = (OffsetBase) / 64; 2689 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2690 if (Hi == NoClass && EB_Real != EB_Imag) 2691 Hi = Lo; 2692 2693 return; 2694 } 2695 2696 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2697 // Arrays are treated like structures. 2698 2699 uint64_t Size = getContext().getTypeSize(Ty); 2700 2701 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2702 // than eight eightbytes, ..., it has class MEMORY. 2703 if (Size > 512) 2704 return; 2705 2706 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2707 // fields, it has class MEMORY. 2708 // 2709 // Only need to check alignment of array base. 2710 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2711 return; 2712 2713 // Otherwise implement simplified merge. We could be smarter about 2714 // this, but it isn't worth it and would be harder to verify. 2715 Current = NoClass; 2716 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2717 uint64_t ArraySize = AT->getSize().getZExtValue(); 2718 2719 // The only case a 256-bit wide vector could be used is when the array 2720 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2721 // to work for sizes wider than 128, early check and fallback to memory. 2722 // 2723 if (Size > 128 && 2724 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2725 return; 2726 2727 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2728 Class FieldLo, FieldHi; 2729 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2730 Lo = merge(Lo, FieldLo); 2731 Hi = merge(Hi, FieldHi); 2732 if (Lo == Memory || Hi == Memory) 2733 break; 2734 } 2735 2736 postMerge(Size, Lo, Hi); 2737 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2738 return; 2739 } 2740 2741 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2742 uint64_t Size = getContext().getTypeSize(Ty); 2743 2744 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2745 // than eight eightbytes, ..., it has class MEMORY. 2746 if (Size > 512) 2747 return; 2748 2749 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2750 // copy constructor or a non-trivial destructor, it is passed by invisible 2751 // reference. 2752 if (getRecordArgABI(RT, getCXXABI())) 2753 return; 2754 2755 const RecordDecl *RD = RT->getDecl(); 2756 2757 // Assume variable sized types are passed in memory. 2758 if (RD->hasFlexibleArrayMember()) 2759 return; 2760 2761 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2762 2763 // Reset Lo class, this will be recomputed. 2764 Current = NoClass; 2765 2766 // If this is a C++ record, classify the bases first. 2767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2768 for (const auto &I : CXXRD->bases()) { 2769 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2770 "Unexpected base class!"); 2771 const CXXRecordDecl *Base = 2772 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2773 2774 // Classify this field. 2775 // 2776 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2777 // single eightbyte, each is classified separately. Each eightbyte gets 2778 // initialized to class NO_CLASS. 2779 Class FieldLo, FieldHi; 2780 uint64_t Offset = 2781 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2782 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2783 Lo = merge(Lo, FieldLo); 2784 Hi = merge(Hi, FieldHi); 2785 if (Lo == Memory || Hi == Memory) { 2786 postMerge(Size, Lo, Hi); 2787 return; 2788 } 2789 } 2790 } 2791 2792 // Classify the fields one at a time, merging the results. 2793 unsigned idx = 0; 2794 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2795 i != e; ++i, ++idx) { 2796 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2797 bool BitField = i->isBitField(); 2798 2799 // Ignore padding bit-fields. 2800 if (BitField && i->isUnnamedBitfield()) 2801 continue; 2802 2803 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2804 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2805 // 2806 // The only case a 256-bit wide vector could be used is when the struct 2807 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2808 // to work for sizes wider than 128, early check and fallback to memory. 2809 // 2810 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2811 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2812 Lo = Memory; 2813 postMerge(Size, Lo, Hi); 2814 return; 2815 } 2816 // Note, skip this test for bit-fields, see below. 2817 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2818 Lo = Memory; 2819 postMerge(Size, Lo, Hi); 2820 return; 2821 } 2822 2823 // Classify this field. 2824 // 2825 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2826 // exceeds a single eightbyte, each is classified 2827 // separately. Each eightbyte gets initialized to class 2828 // NO_CLASS. 2829 Class FieldLo, FieldHi; 2830 2831 // Bit-fields require special handling, they do not force the 2832 // structure to be passed in memory even if unaligned, and 2833 // therefore they can straddle an eightbyte. 2834 if (BitField) { 2835 assert(!i->isUnnamedBitfield()); 2836 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2837 uint64_t Size = i->getBitWidthValue(getContext()); 2838 2839 uint64_t EB_Lo = Offset / 64; 2840 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2841 2842 if (EB_Lo) { 2843 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2844 FieldLo = NoClass; 2845 FieldHi = Integer; 2846 } else { 2847 FieldLo = Integer; 2848 FieldHi = EB_Hi ? Integer : NoClass; 2849 } 2850 } else 2851 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2852 Lo = merge(Lo, FieldLo); 2853 Hi = merge(Hi, FieldHi); 2854 if (Lo == Memory || Hi == Memory) 2855 break; 2856 } 2857 2858 postMerge(Size, Lo, Hi); 2859 } 2860 } 2861 2862 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2863 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2864 // place naturally. 2865 if (!isAggregateTypeForABI(Ty)) { 2866 // Treat an enum type as its underlying type. 2867 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2868 Ty = EnumTy->getDecl()->getIntegerType(); 2869 2870 return (Ty->isPromotableIntegerType() ? 2871 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2872 } 2873 2874 return getNaturalAlignIndirect(Ty); 2875 } 2876 2877 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2878 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2879 uint64_t Size = getContext().getTypeSize(VecTy); 2880 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2881 if (Size <= 64 || Size > LargestVector) 2882 return true; 2883 } 2884 2885 return false; 2886 } 2887 2888 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2889 unsigned freeIntRegs) const { 2890 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2891 // place naturally. 2892 // 2893 // This assumption is optimistic, as there could be free registers available 2894 // when we need to pass this argument in memory, and LLVM could try to pass 2895 // the argument in the free register. This does not seem to happen currently, 2896 // but this code would be much safer if we could mark the argument with 2897 // 'onstack'. See PR12193. 2898 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2899 // Treat an enum type as its underlying type. 2900 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2901 Ty = EnumTy->getDecl()->getIntegerType(); 2902 2903 return (Ty->isPromotableIntegerType() ? 2904 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2905 } 2906 2907 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2908 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2909 2910 // Compute the byval alignment. We specify the alignment of the byval in all 2911 // cases so that the mid-level optimizer knows the alignment of the byval. 2912 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2913 2914 // Attempt to avoid passing indirect results using byval when possible. This 2915 // is important for good codegen. 2916 // 2917 // We do this by coercing the value into a scalar type which the backend can 2918 // handle naturally (i.e., without using byval). 2919 // 2920 // For simplicity, we currently only do this when we have exhausted all of the 2921 // free integer registers. Doing this when there are free integer registers 2922 // would require more care, as we would have to ensure that the coerced value 2923 // did not claim the unused register. That would require either reording the 2924 // arguments to the function (so that any subsequent inreg values came first), 2925 // or only doing this optimization when there were no following arguments that 2926 // might be inreg. 2927 // 2928 // We currently expect it to be rare (particularly in well written code) for 2929 // arguments to be passed on the stack when there are still free integer 2930 // registers available (this would typically imply large structs being passed 2931 // by value), so this seems like a fair tradeoff for now. 2932 // 2933 // We can revisit this if the backend grows support for 'onstack' parameter 2934 // attributes. See PR12193. 2935 if (freeIntRegs == 0) { 2936 uint64_t Size = getContext().getTypeSize(Ty); 2937 2938 // If this type fits in an eightbyte, coerce it into the matching integral 2939 // type, which will end up on the stack (with alignment 8). 2940 if (Align == 8 && Size <= 64) 2941 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2942 Size)); 2943 } 2944 2945 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2946 } 2947 2948 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2949 /// register. Pick an LLVM IR type that will be passed as a vector register. 2950 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2951 // Wrapper structs/arrays that only contain vectors are passed just like 2952 // vectors; strip them off if present. 2953 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2954 Ty = QualType(InnerTy, 0); 2955 2956 llvm::Type *IRType = CGT.ConvertType(Ty); 2957 if (isa<llvm::VectorType>(IRType) || 2958 IRType->getTypeID() == llvm::Type::FP128TyID) 2959 return IRType; 2960 2961 // We couldn't find the preferred IR vector type for 'Ty'. 2962 uint64_t Size = getContext().getTypeSize(Ty); 2963 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2964 2965 // Return a LLVM IR vector type based on the size of 'Ty'. 2966 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2967 Size / 64); 2968 } 2969 2970 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2971 /// is known to either be off the end of the specified type or being in 2972 /// alignment padding. The user type specified is known to be at most 128 bits 2973 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2974 /// classification that put one of the two halves in the INTEGER class. 2975 /// 2976 /// It is conservatively correct to return false. 2977 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2978 unsigned EndBit, ASTContext &Context) { 2979 // If the bytes being queried are off the end of the type, there is no user 2980 // data hiding here. This handles analysis of builtins, vectors and other 2981 // types that don't contain interesting padding. 2982 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2983 if (TySize <= StartBit) 2984 return true; 2985 2986 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2987 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2988 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2989 2990 // Check each element to see if the element overlaps with the queried range. 2991 for (unsigned i = 0; i != NumElts; ++i) { 2992 // If the element is after the span we care about, then we're done.. 2993 unsigned EltOffset = i*EltSize; 2994 if (EltOffset >= EndBit) break; 2995 2996 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2997 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2998 EndBit-EltOffset, Context)) 2999 return false; 3000 } 3001 // If it overlaps no elements, then it is safe to process as padding. 3002 return true; 3003 } 3004 3005 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3006 const RecordDecl *RD = RT->getDecl(); 3007 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3008 3009 // If this is a C++ record, check the bases first. 3010 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3011 for (const auto &I : CXXRD->bases()) { 3012 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3013 "Unexpected base class!"); 3014 const CXXRecordDecl *Base = 3015 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3016 3017 // If the base is after the span we care about, ignore it. 3018 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3019 if (BaseOffset >= EndBit) continue; 3020 3021 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3022 if (!BitsContainNoUserData(I.getType(), BaseStart, 3023 EndBit-BaseOffset, Context)) 3024 return false; 3025 } 3026 } 3027 3028 // Verify that no field has data that overlaps the region of interest. Yes 3029 // this could be sped up a lot by being smarter about queried fields, 3030 // however we're only looking at structs up to 16 bytes, so we don't care 3031 // much. 3032 unsigned idx = 0; 3033 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3034 i != e; ++i, ++idx) { 3035 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3036 3037 // If we found a field after the region we care about, then we're done. 3038 if (FieldOffset >= EndBit) break; 3039 3040 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3041 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3042 Context)) 3043 return false; 3044 } 3045 3046 // If nothing in this record overlapped the area of interest, then we're 3047 // clean. 3048 return true; 3049 } 3050 3051 return false; 3052 } 3053 3054 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3055 /// float member at the specified offset. For example, {int,{float}} has a 3056 /// float at offset 4. It is conservatively correct for this routine to return 3057 /// false. 3058 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3059 const llvm::DataLayout &TD) { 3060 // Base case if we find a float. 3061 if (IROffset == 0 && IRType->isFloatTy()) 3062 return true; 3063 3064 // If this is a struct, recurse into the field at the specified offset. 3065 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3066 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3067 unsigned Elt = SL->getElementContainingOffset(IROffset); 3068 IROffset -= SL->getElementOffset(Elt); 3069 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3070 } 3071 3072 // If this is an array, recurse into the field at the specified offset. 3073 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3074 llvm::Type *EltTy = ATy->getElementType(); 3075 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3076 IROffset -= IROffset/EltSize*EltSize; 3077 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3078 } 3079 3080 return false; 3081 } 3082 3083 3084 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3085 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3086 llvm::Type *X86_64ABIInfo:: 3087 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3088 QualType SourceTy, unsigned SourceOffset) const { 3089 // The only three choices we have are either double, <2 x float>, or float. We 3090 // pass as float if the last 4 bytes is just padding. This happens for 3091 // structs that contain 3 floats. 3092 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3093 SourceOffset*8+64, getContext())) 3094 return llvm::Type::getFloatTy(getVMContext()); 3095 3096 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3097 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3098 // case. 3099 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3100 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3101 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3102 3103 return llvm::Type::getDoubleTy(getVMContext()); 3104 } 3105 3106 3107 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3108 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3109 /// about the high or low part of an up-to-16-byte struct. This routine picks 3110 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3111 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3112 /// etc). 3113 /// 3114 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3115 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3116 /// the 8-byte value references. PrefType may be null. 3117 /// 3118 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3119 /// an offset into this that we're processing (which is always either 0 or 8). 3120 /// 3121 llvm::Type *X86_64ABIInfo:: 3122 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3123 QualType SourceTy, unsigned SourceOffset) const { 3124 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3125 // returning an 8-byte unit starting with it. See if we can safely use it. 3126 if (IROffset == 0) { 3127 // Pointers and int64's always fill the 8-byte unit. 3128 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3129 IRType->isIntegerTy(64)) 3130 return IRType; 3131 3132 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3133 // goodness in the source type is just tail padding. This is allowed to 3134 // kick in for struct {double,int} on the int, but not on 3135 // struct{double,int,int} because we wouldn't return the second int. We 3136 // have to do this analysis on the source type because we can't depend on 3137 // unions being lowered a specific way etc. 3138 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3139 IRType->isIntegerTy(32) || 3140 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3141 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3142 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3143 3144 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3145 SourceOffset*8+64, getContext())) 3146 return IRType; 3147 } 3148 } 3149 3150 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3151 // If this is a struct, recurse into the field at the specified offset. 3152 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3153 if (IROffset < SL->getSizeInBytes()) { 3154 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3155 IROffset -= SL->getElementOffset(FieldIdx); 3156 3157 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3158 SourceTy, SourceOffset); 3159 } 3160 } 3161 3162 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3163 llvm::Type *EltTy = ATy->getElementType(); 3164 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3165 unsigned EltOffset = IROffset/EltSize*EltSize; 3166 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3167 SourceOffset); 3168 } 3169 3170 // Okay, we don't have any better idea of what to pass, so we pass this in an 3171 // integer register that isn't too big to fit the rest of the struct. 3172 unsigned TySizeInBytes = 3173 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3174 3175 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3176 3177 // It is always safe to classify this as an integer type up to i64 that 3178 // isn't larger than the structure. 3179 return llvm::IntegerType::get(getVMContext(), 3180 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3181 } 3182 3183 3184 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3185 /// be used as elements of a two register pair to pass or return, return a 3186 /// first class aggregate to represent them. For example, if the low part of 3187 /// a by-value argument should be passed as i32* and the high part as float, 3188 /// return {i32*, float}. 3189 static llvm::Type * 3190 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3191 const llvm::DataLayout &TD) { 3192 // In order to correctly satisfy the ABI, we need to the high part to start 3193 // at offset 8. If the high and low parts we inferred are both 4-byte types 3194 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3195 // the second element at offset 8. Check for this: 3196 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3197 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3198 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3199 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3200 3201 // To handle this, we have to increase the size of the low part so that the 3202 // second element will start at an 8 byte offset. We can't increase the size 3203 // of the second element because it might make us access off the end of the 3204 // struct. 3205 if (HiStart != 8) { 3206 // There are usually two sorts of types the ABI generation code can produce 3207 // for the low part of a pair that aren't 8 bytes in size: float or 3208 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3209 // NaCl). 3210 // Promote these to a larger type. 3211 if (Lo->isFloatTy()) 3212 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3213 else { 3214 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3215 && "Invalid/unknown lo type"); 3216 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3217 } 3218 } 3219 3220 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3221 3222 // Verify that the second element is at an 8-byte offset. 3223 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3224 "Invalid x86-64 argument pair!"); 3225 return Result; 3226 } 3227 3228 ABIArgInfo X86_64ABIInfo:: 3229 classifyReturnType(QualType RetTy) const { 3230 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3231 // classification algorithm. 3232 X86_64ABIInfo::Class Lo, Hi; 3233 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3234 3235 // Check some invariants. 3236 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3237 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3238 3239 llvm::Type *ResType = nullptr; 3240 switch (Lo) { 3241 case NoClass: 3242 if (Hi == NoClass) 3243 return ABIArgInfo::getIgnore(); 3244 // If the low part is just padding, it takes no register, leave ResType 3245 // null. 3246 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3247 "Unknown missing lo part"); 3248 break; 3249 3250 case SSEUp: 3251 case X87Up: 3252 llvm_unreachable("Invalid classification for lo word."); 3253 3254 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3255 // hidden argument. 3256 case Memory: 3257 return getIndirectReturnResult(RetTy); 3258 3259 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3260 // available register of the sequence %rax, %rdx is used. 3261 case Integer: 3262 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3263 3264 // If we have a sign or zero extended integer, make sure to return Extend 3265 // so that the parameter gets the right LLVM IR attributes. 3266 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3267 // Treat an enum type as its underlying type. 3268 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3269 RetTy = EnumTy->getDecl()->getIntegerType(); 3270 3271 if (RetTy->isIntegralOrEnumerationType() && 3272 RetTy->isPromotableIntegerType()) 3273 return ABIArgInfo::getExtend(); 3274 } 3275 break; 3276 3277 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3278 // available SSE register of the sequence %xmm0, %xmm1 is used. 3279 case SSE: 3280 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3281 break; 3282 3283 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3284 // returned on the X87 stack in %st0 as 80-bit x87 number. 3285 case X87: 3286 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3287 break; 3288 3289 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3290 // part of the value is returned in %st0 and the imaginary part in 3291 // %st1. 3292 case ComplexX87: 3293 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3294 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3295 llvm::Type::getX86_FP80Ty(getVMContext())); 3296 break; 3297 } 3298 3299 llvm::Type *HighPart = nullptr; 3300 switch (Hi) { 3301 // Memory was handled previously and X87 should 3302 // never occur as a hi class. 3303 case Memory: 3304 case X87: 3305 llvm_unreachable("Invalid classification for hi word."); 3306 3307 case ComplexX87: // Previously handled. 3308 case NoClass: 3309 break; 3310 3311 case Integer: 3312 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3313 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3314 return ABIArgInfo::getDirect(HighPart, 8); 3315 break; 3316 case SSE: 3317 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3318 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3319 return ABIArgInfo::getDirect(HighPart, 8); 3320 break; 3321 3322 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3323 // is passed in the next available eightbyte chunk if the last used 3324 // vector register. 3325 // 3326 // SSEUP should always be preceded by SSE, just widen. 3327 case SSEUp: 3328 assert(Lo == SSE && "Unexpected SSEUp classification."); 3329 ResType = GetByteVectorType(RetTy); 3330 break; 3331 3332 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3333 // returned together with the previous X87 value in %st0. 3334 case X87Up: 3335 // If X87Up is preceded by X87, we don't need to do 3336 // anything. However, in some cases with unions it may not be 3337 // preceded by X87. In such situations we follow gcc and pass the 3338 // extra bits in an SSE reg. 3339 if (Lo != X87) { 3340 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3341 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3342 return ABIArgInfo::getDirect(HighPart, 8); 3343 } 3344 break; 3345 } 3346 3347 // If a high part was specified, merge it together with the low part. It is 3348 // known to pass in the high eightbyte of the result. We do this by forming a 3349 // first class struct aggregate with the high and low part: {low, high} 3350 if (HighPart) 3351 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3352 3353 return ABIArgInfo::getDirect(ResType); 3354 } 3355 3356 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3357 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3358 bool isNamedArg) 3359 const 3360 { 3361 Ty = useFirstFieldIfTransparentUnion(Ty); 3362 3363 X86_64ABIInfo::Class Lo, Hi; 3364 classify(Ty, 0, Lo, Hi, isNamedArg); 3365 3366 // Check some invariants. 3367 // FIXME: Enforce these by construction. 3368 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3369 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3370 3371 neededInt = 0; 3372 neededSSE = 0; 3373 llvm::Type *ResType = nullptr; 3374 switch (Lo) { 3375 case NoClass: 3376 if (Hi == NoClass) 3377 return ABIArgInfo::getIgnore(); 3378 // If the low part is just padding, it takes no register, leave ResType 3379 // null. 3380 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3381 "Unknown missing lo part"); 3382 break; 3383 3384 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3385 // on the stack. 3386 case Memory: 3387 3388 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3389 // COMPLEX_X87, it is passed in memory. 3390 case X87: 3391 case ComplexX87: 3392 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3393 ++neededInt; 3394 return getIndirectResult(Ty, freeIntRegs); 3395 3396 case SSEUp: 3397 case X87Up: 3398 llvm_unreachable("Invalid classification for lo word."); 3399 3400 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3401 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3402 // and %r9 is used. 3403 case Integer: 3404 ++neededInt; 3405 3406 // Pick an 8-byte type based on the preferred type. 3407 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3408 3409 // If we have a sign or zero extended integer, make sure to return Extend 3410 // so that the parameter gets the right LLVM IR attributes. 3411 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3412 // Treat an enum type as its underlying type. 3413 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3414 Ty = EnumTy->getDecl()->getIntegerType(); 3415 3416 if (Ty->isIntegralOrEnumerationType() && 3417 Ty->isPromotableIntegerType()) 3418 return ABIArgInfo::getExtend(); 3419 } 3420 3421 break; 3422 3423 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3424 // available SSE register is used, the registers are taken in the 3425 // order from %xmm0 to %xmm7. 3426 case SSE: { 3427 llvm::Type *IRType = CGT.ConvertType(Ty); 3428 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3429 ++neededSSE; 3430 break; 3431 } 3432 } 3433 3434 llvm::Type *HighPart = nullptr; 3435 switch (Hi) { 3436 // Memory was handled previously, ComplexX87 and X87 should 3437 // never occur as hi classes, and X87Up must be preceded by X87, 3438 // which is passed in memory. 3439 case Memory: 3440 case X87: 3441 case ComplexX87: 3442 llvm_unreachable("Invalid classification for hi word."); 3443 3444 case NoClass: break; 3445 3446 case Integer: 3447 ++neededInt; 3448 // Pick an 8-byte type based on the preferred type. 3449 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3450 3451 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3452 return ABIArgInfo::getDirect(HighPart, 8); 3453 break; 3454 3455 // X87Up generally doesn't occur here (long double is passed in 3456 // memory), except in situations involving unions. 3457 case X87Up: 3458 case SSE: 3459 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3460 3461 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3462 return ABIArgInfo::getDirect(HighPart, 8); 3463 3464 ++neededSSE; 3465 break; 3466 3467 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3468 // eightbyte is passed in the upper half of the last used SSE 3469 // register. This only happens when 128-bit vectors are passed. 3470 case SSEUp: 3471 assert(Lo == SSE && "Unexpected SSEUp classification"); 3472 ResType = GetByteVectorType(Ty); 3473 break; 3474 } 3475 3476 // If a high part was specified, merge it together with the low part. It is 3477 // known to pass in the high eightbyte of the result. We do this by forming a 3478 // first class struct aggregate with the high and low part: {low, high} 3479 if (HighPart) 3480 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3481 3482 return ABIArgInfo::getDirect(ResType); 3483 } 3484 3485 ABIArgInfo 3486 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3487 unsigned &NeededSSE) const { 3488 auto RT = Ty->getAs<RecordType>(); 3489 assert(RT && "classifyRegCallStructType only valid with struct types"); 3490 3491 if (RT->getDecl()->hasFlexibleArrayMember()) 3492 return getIndirectReturnResult(Ty); 3493 3494 // Sum up bases 3495 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3496 if (CXXRD->isDynamicClass()) { 3497 NeededInt = NeededSSE = 0; 3498 return getIndirectReturnResult(Ty); 3499 } 3500 3501 for (const auto &I : CXXRD->bases()) 3502 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3503 .isIndirect()) { 3504 NeededInt = NeededSSE = 0; 3505 return getIndirectReturnResult(Ty); 3506 } 3507 } 3508 3509 // Sum up members 3510 for (const auto *FD : RT->getDecl()->fields()) { 3511 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3512 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3513 .isIndirect()) { 3514 NeededInt = NeededSSE = 0; 3515 return getIndirectReturnResult(Ty); 3516 } 3517 } else { 3518 unsigned LocalNeededInt, LocalNeededSSE; 3519 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3520 LocalNeededSSE, true) 3521 .isIndirect()) { 3522 NeededInt = NeededSSE = 0; 3523 return getIndirectReturnResult(Ty); 3524 } 3525 NeededInt += LocalNeededInt; 3526 NeededSSE += LocalNeededSSE; 3527 } 3528 } 3529 3530 return ABIArgInfo::getDirect(); 3531 } 3532 3533 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3534 unsigned &NeededInt, 3535 unsigned &NeededSSE) const { 3536 3537 NeededInt = 0; 3538 NeededSSE = 0; 3539 3540 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3541 } 3542 3543 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3544 3545 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3546 3547 // Keep track of the number of assigned registers. 3548 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3549 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3550 unsigned NeededInt, NeededSSE; 3551 3552 if (!getCXXABI().classifyReturnType(FI)) { 3553 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3554 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3555 FI.getReturnInfo() = 3556 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3557 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3558 FreeIntRegs -= NeededInt; 3559 FreeSSERegs -= NeededSSE; 3560 } else { 3561 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3562 } 3563 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3564 // Complex Long Double Type is passed in Memory when Regcall 3565 // calling convention is used. 3566 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3567 if (getContext().getCanonicalType(CT->getElementType()) == 3568 getContext().LongDoubleTy) 3569 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3570 } else 3571 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3572 } 3573 3574 // If the return value is indirect, then the hidden argument is consuming one 3575 // integer register. 3576 if (FI.getReturnInfo().isIndirect()) 3577 --FreeIntRegs; 3578 3579 // The chain argument effectively gives us another free register. 3580 if (FI.isChainCall()) 3581 ++FreeIntRegs; 3582 3583 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3584 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3585 // get assigned (in left-to-right order) for passing as follows... 3586 unsigned ArgNo = 0; 3587 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3588 it != ie; ++it, ++ArgNo) { 3589 bool IsNamedArg = ArgNo < NumRequiredArgs; 3590 3591 if (IsRegCall && it->type->isStructureOrClassType()) 3592 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3593 else 3594 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3595 NeededSSE, IsNamedArg); 3596 3597 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3598 // eightbyte of an argument, the whole argument is passed on the 3599 // stack. If registers have already been assigned for some 3600 // eightbytes of such an argument, the assignments get reverted. 3601 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3602 FreeIntRegs -= NeededInt; 3603 FreeSSERegs -= NeededSSE; 3604 } else { 3605 it->info = getIndirectResult(it->type, FreeIntRegs); 3606 } 3607 } 3608 } 3609 3610 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3611 Address VAListAddr, QualType Ty) { 3612 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3613 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3614 llvm::Value *overflow_arg_area = 3615 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3616 3617 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3618 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3619 // It isn't stated explicitly in the standard, but in practice we use 3620 // alignment greater than 16 where necessary. 3621 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3622 if (Align > CharUnits::fromQuantity(8)) { 3623 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3624 Align); 3625 } 3626 3627 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3628 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3629 llvm::Value *Res = 3630 CGF.Builder.CreateBitCast(overflow_arg_area, 3631 llvm::PointerType::getUnqual(LTy)); 3632 3633 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3634 // l->overflow_arg_area + sizeof(type). 3635 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3636 // an 8 byte boundary. 3637 3638 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3639 llvm::Value *Offset = 3640 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3641 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3642 "overflow_arg_area.next"); 3643 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3644 3645 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3646 return Address(Res, Align); 3647 } 3648 3649 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3650 QualType Ty) const { 3651 // Assume that va_list type is correct; should be pointer to LLVM type: 3652 // struct { 3653 // i32 gp_offset; 3654 // i32 fp_offset; 3655 // i8* overflow_arg_area; 3656 // i8* reg_save_area; 3657 // }; 3658 unsigned neededInt, neededSSE; 3659 3660 Ty = getContext().getCanonicalType(Ty); 3661 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3662 /*isNamedArg*/false); 3663 3664 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3665 // in the registers. If not go to step 7. 3666 if (!neededInt && !neededSSE) 3667 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3668 3669 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3670 // general purpose registers needed to pass type and num_fp to hold 3671 // the number of floating point registers needed. 3672 3673 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3674 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3675 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3676 // 3677 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3678 // register save space). 3679 3680 llvm::Value *InRegs = nullptr; 3681 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3682 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3683 if (neededInt) { 3684 gp_offset_p = 3685 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3686 "gp_offset_p"); 3687 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3688 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3689 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3690 } 3691 3692 if (neededSSE) { 3693 fp_offset_p = 3694 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3695 "fp_offset_p"); 3696 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3697 llvm::Value *FitsInFP = 3698 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3699 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3700 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3701 } 3702 3703 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3704 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3705 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3706 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3707 3708 // Emit code to load the value if it was passed in registers. 3709 3710 CGF.EmitBlock(InRegBlock); 3711 3712 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3713 // an offset of l->gp_offset and/or l->fp_offset. This may require 3714 // copying to a temporary location in case the parameter is passed 3715 // in different register classes or requires an alignment greater 3716 // than 8 for general purpose registers and 16 for XMM registers. 3717 // 3718 // FIXME: This really results in shameful code when we end up needing to 3719 // collect arguments from different places; often what should result in a 3720 // simple assembling of a structure from scattered addresses has many more 3721 // loads than necessary. Can we clean this up? 3722 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3723 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3724 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3725 "reg_save_area"); 3726 3727 Address RegAddr = Address::invalid(); 3728 if (neededInt && neededSSE) { 3729 // FIXME: Cleanup. 3730 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3731 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3732 Address Tmp = CGF.CreateMemTemp(Ty); 3733 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3734 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3735 llvm::Type *TyLo = ST->getElementType(0); 3736 llvm::Type *TyHi = ST->getElementType(1); 3737 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3738 "Unexpected ABI info for mixed regs"); 3739 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3740 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3741 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3742 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3743 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3744 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3745 3746 // Copy the first element. 3747 // FIXME: Our choice of alignment here and below is probably pessimistic. 3748 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3749 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3750 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3751 CGF.Builder.CreateStore(V, 3752 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3753 3754 // Copy the second element. 3755 V = CGF.Builder.CreateAlignedLoad( 3756 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3757 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3758 CharUnits Offset = CharUnits::fromQuantity( 3759 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3760 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3761 3762 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3763 } else if (neededInt) { 3764 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3765 CharUnits::fromQuantity(8)); 3766 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3767 3768 // Copy to a temporary if necessary to ensure the appropriate alignment. 3769 std::pair<CharUnits, CharUnits> SizeAlign = 3770 getContext().getTypeInfoInChars(Ty); 3771 uint64_t TySize = SizeAlign.first.getQuantity(); 3772 CharUnits TyAlign = SizeAlign.second; 3773 3774 // Copy into a temporary if the type is more aligned than the 3775 // register save area. 3776 if (TyAlign.getQuantity() > 8) { 3777 Address Tmp = CGF.CreateMemTemp(Ty); 3778 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3779 RegAddr = Tmp; 3780 } 3781 3782 } else if (neededSSE == 1) { 3783 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3784 CharUnits::fromQuantity(16)); 3785 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3786 } else { 3787 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3788 // SSE registers are spaced 16 bytes apart in the register save 3789 // area, we need to collect the two eightbytes together. 3790 // The ABI isn't explicit about this, but it seems reasonable 3791 // to assume that the slots are 16-byte aligned, since the stack is 3792 // naturally 16-byte aligned and the prologue is expected to store 3793 // all the SSE registers to the RSA. 3794 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3795 CharUnits::fromQuantity(16)); 3796 Address RegAddrHi = 3797 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3798 CharUnits::fromQuantity(16)); 3799 llvm::Type *DoubleTy = CGF.DoubleTy; 3800 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy); 3801 llvm::Value *V; 3802 Address Tmp = CGF.CreateMemTemp(Ty); 3803 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3804 V = CGF.Builder.CreateLoad( 3805 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3806 CGF.Builder.CreateStore(V, 3807 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3808 V = CGF.Builder.CreateLoad( 3809 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3810 CGF.Builder.CreateStore(V, 3811 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3812 3813 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3814 } 3815 3816 // AMD64-ABI 3.5.7p5: Step 5. Set: 3817 // l->gp_offset = l->gp_offset + num_gp * 8 3818 // l->fp_offset = l->fp_offset + num_fp * 16. 3819 if (neededInt) { 3820 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3821 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3822 gp_offset_p); 3823 } 3824 if (neededSSE) { 3825 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3826 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3827 fp_offset_p); 3828 } 3829 CGF.EmitBranch(ContBlock); 3830 3831 // Emit code to load the value if it was passed in memory. 3832 3833 CGF.EmitBlock(InMemBlock); 3834 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3835 3836 // Return the appropriate result. 3837 3838 CGF.EmitBlock(ContBlock); 3839 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3840 "vaarg.addr"); 3841 return ResAddr; 3842 } 3843 3844 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3845 QualType Ty) const { 3846 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3847 CGF.getContext().getTypeInfoInChars(Ty), 3848 CharUnits::fromQuantity(8), 3849 /*allowHigherAlign*/ false); 3850 } 3851 3852 ABIArgInfo 3853 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3854 const ABIArgInfo ¤t) const { 3855 // Assumes vectorCall calling convention. 3856 const Type *Base = nullptr; 3857 uint64_t NumElts = 0; 3858 3859 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3860 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3861 FreeSSERegs -= NumElts; 3862 return getDirectX86Hva(); 3863 } 3864 return current; 3865 } 3866 3867 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3868 bool IsReturnType, bool IsVectorCall, 3869 bool IsRegCall) const { 3870 3871 if (Ty->isVoidType()) 3872 return ABIArgInfo::getIgnore(); 3873 3874 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3875 Ty = EnumTy->getDecl()->getIntegerType(); 3876 3877 TypeInfo Info = getContext().getTypeInfo(Ty); 3878 uint64_t Width = Info.Width; 3879 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3880 3881 const RecordType *RT = Ty->getAs<RecordType>(); 3882 if (RT) { 3883 if (!IsReturnType) { 3884 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3885 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3886 } 3887 3888 if (RT->getDecl()->hasFlexibleArrayMember()) 3889 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3890 3891 } 3892 3893 const Type *Base = nullptr; 3894 uint64_t NumElts = 0; 3895 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3896 // other targets. 3897 if ((IsVectorCall || IsRegCall) && 3898 isHomogeneousAggregate(Ty, Base, NumElts)) { 3899 if (IsRegCall) { 3900 if (FreeSSERegs >= NumElts) { 3901 FreeSSERegs -= NumElts; 3902 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3903 return ABIArgInfo::getDirect(); 3904 return ABIArgInfo::getExpand(); 3905 } 3906 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3907 } else if (IsVectorCall) { 3908 if (FreeSSERegs >= NumElts && 3909 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3910 FreeSSERegs -= NumElts; 3911 return ABIArgInfo::getDirect(); 3912 } else if (IsReturnType) { 3913 return ABIArgInfo::getExpand(); 3914 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3915 // HVAs are delayed and reclassified in the 2nd step. 3916 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3917 } 3918 } 3919 } 3920 3921 if (Ty->isMemberPointerType()) { 3922 // If the member pointer is represented by an LLVM int or ptr, pass it 3923 // directly. 3924 llvm::Type *LLTy = CGT.ConvertType(Ty); 3925 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3926 return ABIArgInfo::getDirect(); 3927 } 3928 3929 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3930 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3931 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3932 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3933 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3934 3935 // Otherwise, coerce it to a small integer. 3936 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3937 } 3938 3939 // Bool type is always extended to the ABI, other builtin types are not 3940 // extended. 3941 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3942 if (BT && BT->getKind() == BuiltinType::Bool) 3943 return ABIArgInfo::getExtend(); 3944 3945 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3946 // passes them indirectly through memory. 3947 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3948 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3949 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3950 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3951 } 3952 3953 return ABIArgInfo::getDirect(); 3954 } 3955 3956 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3957 unsigned FreeSSERegs, 3958 bool IsVectorCall, 3959 bool IsRegCall) const { 3960 unsigned Count = 0; 3961 for (auto &I : FI.arguments()) { 3962 // Vectorcall in x64 only permits the first 6 arguments to be passed 3963 // as XMM/YMM registers. 3964 if (Count < VectorcallMaxParamNumAsReg) 3965 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3966 else { 3967 // Since these cannot be passed in registers, pretend no registers 3968 // are left. 3969 unsigned ZeroSSERegsAvail = 0; 3970 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3971 IsVectorCall, IsRegCall); 3972 } 3973 ++Count; 3974 } 3975 3976 for (auto &I : FI.arguments()) { 3977 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3978 } 3979 } 3980 3981 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3982 bool IsVectorCall = 3983 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3984 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3985 3986 unsigned FreeSSERegs = 0; 3987 if (IsVectorCall) { 3988 // We can use up to 4 SSE return registers with vectorcall. 3989 FreeSSERegs = 4; 3990 } else if (IsRegCall) { 3991 // RegCall gives us 16 SSE registers. 3992 FreeSSERegs = 16; 3993 } 3994 3995 if (!getCXXABI().classifyReturnType(FI)) 3996 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3997 IsVectorCall, IsRegCall); 3998 3999 if (IsVectorCall) { 4000 // We can use up to 6 SSE register parameters with vectorcall. 4001 FreeSSERegs = 6; 4002 } else if (IsRegCall) { 4003 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4004 FreeSSERegs = 16; 4005 } 4006 4007 if (IsVectorCall) { 4008 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4009 } else { 4010 for (auto &I : FI.arguments()) 4011 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4012 } 4013 4014 } 4015 4016 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4017 QualType Ty) const { 4018 4019 bool IsIndirect = false; 4020 4021 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4022 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4023 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4024 uint64_t Width = getContext().getTypeSize(Ty); 4025 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4026 } 4027 4028 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4029 CGF.getContext().getTypeInfoInChars(Ty), 4030 CharUnits::fromQuantity(8), 4031 /*allowHigherAlign*/ false); 4032 } 4033 4034 // PowerPC-32 4035 namespace { 4036 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4037 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4038 bool IsSoftFloatABI; 4039 public: 4040 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4041 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4042 4043 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4044 QualType Ty) const override; 4045 }; 4046 4047 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4048 public: 4049 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4050 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4051 4052 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4053 // This is recovered from gcc output. 4054 return 1; // r1 is the dedicated stack pointer 4055 } 4056 4057 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4058 llvm::Value *Address) const override; 4059 }; 4060 4061 } 4062 4063 // TODO: this implementation is now likely redundant with 4064 // DefaultABIInfo::EmitVAArg. 4065 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4066 QualType Ty) const { 4067 const unsigned OverflowLimit = 8; 4068 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4069 // TODO: Implement this. For now ignore. 4070 (void)CTy; 4071 return Address::invalid(); // FIXME? 4072 } 4073 4074 // struct __va_list_tag { 4075 // unsigned char gpr; 4076 // unsigned char fpr; 4077 // unsigned short reserved; 4078 // void *overflow_arg_area; 4079 // void *reg_save_area; 4080 // }; 4081 4082 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4083 bool isInt = 4084 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4085 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4086 4087 // All aggregates are passed indirectly? That doesn't seem consistent 4088 // with the argument-lowering code. 4089 bool isIndirect = Ty->isAggregateType(); 4090 4091 CGBuilderTy &Builder = CGF.Builder; 4092 4093 // The calling convention either uses 1-2 GPRs or 1 FPR. 4094 Address NumRegsAddr = Address::invalid(); 4095 if (isInt || IsSoftFloatABI) { 4096 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4097 } else { 4098 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4099 } 4100 4101 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4102 4103 // "Align" the register count when TY is i64. 4104 if (isI64 || (isF64 && IsSoftFloatABI)) { 4105 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4106 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4107 } 4108 4109 llvm::Value *CC = 4110 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4111 4112 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4113 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4114 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4115 4116 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4117 4118 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4119 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4120 4121 // Case 1: consume registers. 4122 Address RegAddr = Address::invalid(); 4123 { 4124 CGF.EmitBlock(UsingRegs); 4125 4126 Address RegSaveAreaPtr = 4127 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4128 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4129 CharUnits::fromQuantity(8)); 4130 assert(RegAddr.getElementType() == CGF.Int8Ty); 4131 4132 // Floating-point registers start after the general-purpose registers. 4133 if (!(isInt || IsSoftFloatABI)) { 4134 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4135 CharUnits::fromQuantity(32)); 4136 } 4137 4138 // Get the address of the saved value by scaling the number of 4139 // registers we've used by the number of 4140 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4141 llvm::Value *RegOffset = 4142 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4143 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4144 RegAddr.getPointer(), RegOffset), 4145 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4146 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4147 4148 // Increase the used-register count. 4149 NumRegs = 4150 Builder.CreateAdd(NumRegs, 4151 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4152 Builder.CreateStore(NumRegs, NumRegsAddr); 4153 4154 CGF.EmitBranch(Cont); 4155 } 4156 4157 // Case 2: consume space in the overflow area. 4158 Address MemAddr = Address::invalid(); 4159 { 4160 CGF.EmitBlock(UsingOverflow); 4161 4162 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4163 4164 // Everything in the overflow area is rounded up to a size of at least 4. 4165 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4166 4167 CharUnits Size; 4168 if (!isIndirect) { 4169 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4170 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4171 } else { 4172 Size = CGF.getPointerSize(); 4173 } 4174 4175 Address OverflowAreaAddr = 4176 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4177 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4178 OverflowAreaAlign); 4179 // Round up address of argument to alignment 4180 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4181 if (Align > OverflowAreaAlign) { 4182 llvm::Value *Ptr = OverflowArea.getPointer(); 4183 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4184 Align); 4185 } 4186 4187 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4188 4189 // Increase the overflow area. 4190 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4191 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4192 CGF.EmitBranch(Cont); 4193 } 4194 4195 CGF.EmitBlock(Cont); 4196 4197 // Merge the cases with a phi. 4198 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4199 "vaarg.addr"); 4200 4201 // Load the pointer if the argument was passed indirectly. 4202 if (isIndirect) { 4203 Result = Address(Builder.CreateLoad(Result, "aggr"), 4204 getContext().getTypeAlignInChars(Ty)); 4205 } 4206 4207 return Result; 4208 } 4209 4210 bool 4211 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4212 llvm::Value *Address) const { 4213 // This is calculated from the LLVM and GCC tables and verified 4214 // against gcc output. AFAIK all ABIs use the same encoding. 4215 4216 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4217 4218 llvm::IntegerType *i8 = CGF.Int8Ty; 4219 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4220 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4221 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4222 4223 // 0-31: r0-31, the 4-byte general-purpose registers 4224 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4225 4226 // 32-63: fp0-31, the 8-byte floating-point registers 4227 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4228 4229 // 64-76 are various 4-byte special-purpose registers: 4230 // 64: mq 4231 // 65: lr 4232 // 66: ctr 4233 // 67: ap 4234 // 68-75 cr0-7 4235 // 76: xer 4236 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4237 4238 // 77-108: v0-31, the 16-byte vector registers 4239 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4240 4241 // 109: vrsave 4242 // 110: vscr 4243 // 111: spe_acc 4244 // 112: spefscr 4245 // 113: sfp 4246 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4247 4248 return false; 4249 } 4250 4251 // PowerPC-64 4252 4253 namespace { 4254 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4255 class PPC64_SVR4_ABIInfo : public ABIInfo { 4256 public: 4257 enum ABIKind { 4258 ELFv1 = 0, 4259 ELFv2 4260 }; 4261 4262 private: 4263 static const unsigned GPRBits = 64; 4264 ABIKind Kind; 4265 bool HasQPX; 4266 bool IsSoftFloatABI; 4267 4268 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4269 // will be passed in a QPX register. 4270 bool IsQPXVectorTy(const Type *Ty) const { 4271 if (!HasQPX) 4272 return false; 4273 4274 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4275 unsigned NumElements = VT->getNumElements(); 4276 if (NumElements == 1) 4277 return false; 4278 4279 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4280 if (getContext().getTypeSize(Ty) <= 256) 4281 return true; 4282 } else if (VT->getElementType()-> 4283 isSpecificBuiltinType(BuiltinType::Float)) { 4284 if (getContext().getTypeSize(Ty) <= 128) 4285 return true; 4286 } 4287 } 4288 4289 return false; 4290 } 4291 4292 bool IsQPXVectorTy(QualType Ty) const { 4293 return IsQPXVectorTy(Ty.getTypePtr()); 4294 } 4295 4296 public: 4297 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4298 bool SoftFloatABI) 4299 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4300 IsSoftFloatABI(SoftFloatABI) {} 4301 4302 bool isPromotableTypeForABI(QualType Ty) const; 4303 CharUnits getParamTypeAlignment(QualType Ty) const; 4304 4305 ABIArgInfo classifyReturnType(QualType RetTy) const; 4306 ABIArgInfo classifyArgumentType(QualType Ty) const; 4307 4308 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4309 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4310 uint64_t Members) const override; 4311 4312 // TODO: We can add more logic to computeInfo to improve performance. 4313 // Example: For aggregate arguments that fit in a register, we could 4314 // use getDirectInReg (as is done below for structs containing a single 4315 // floating-point value) to avoid pushing them to memory on function 4316 // entry. This would require changing the logic in PPCISelLowering 4317 // when lowering the parameters in the caller and args in the callee. 4318 void computeInfo(CGFunctionInfo &FI) const override { 4319 if (!getCXXABI().classifyReturnType(FI)) 4320 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4321 for (auto &I : FI.arguments()) { 4322 // We rely on the default argument classification for the most part. 4323 // One exception: An aggregate containing a single floating-point 4324 // or vector item must be passed in a register if one is available. 4325 const Type *T = isSingleElementStruct(I.type, getContext()); 4326 if (T) { 4327 const BuiltinType *BT = T->getAs<BuiltinType>(); 4328 if (IsQPXVectorTy(T) || 4329 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4330 (BT && BT->isFloatingPoint())) { 4331 QualType QT(T, 0); 4332 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4333 continue; 4334 } 4335 } 4336 I.info = classifyArgumentType(I.type); 4337 } 4338 } 4339 4340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4341 QualType Ty) const override; 4342 }; 4343 4344 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4345 4346 public: 4347 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4348 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4349 bool SoftFloatABI) 4350 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4351 SoftFloatABI)) {} 4352 4353 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4354 // This is recovered from gcc output. 4355 return 1; // r1 is the dedicated stack pointer 4356 } 4357 4358 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4359 llvm::Value *Address) const override; 4360 }; 4361 4362 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4363 public: 4364 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4365 4366 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4367 // This is recovered from gcc output. 4368 return 1; // r1 is the dedicated stack pointer 4369 } 4370 4371 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4372 llvm::Value *Address) const override; 4373 }; 4374 4375 } 4376 4377 // Return true if the ABI requires Ty to be passed sign- or zero- 4378 // extended to 64 bits. 4379 bool 4380 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4381 // Treat an enum type as its underlying type. 4382 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4383 Ty = EnumTy->getDecl()->getIntegerType(); 4384 4385 // Promotable integer types are required to be promoted by the ABI. 4386 if (Ty->isPromotableIntegerType()) 4387 return true; 4388 4389 // In addition to the usual promotable integer types, we also need to 4390 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4391 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4392 switch (BT->getKind()) { 4393 case BuiltinType::Int: 4394 case BuiltinType::UInt: 4395 return true; 4396 default: 4397 break; 4398 } 4399 4400 return false; 4401 } 4402 4403 /// isAlignedParamType - Determine whether a type requires 16-byte or 4404 /// higher alignment in the parameter area. Always returns at least 8. 4405 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4406 // Complex types are passed just like their elements. 4407 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4408 Ty = CTy->getElementType(); 4409 4410 // Only vector types of size 16 bytes need alignment (larger types are 4411 // passed via reference, smaller types are not aligned). 4412 if (IsQPXVectorTy(Ty)) { 4413 if (getContext().getTypeSize(Ty) > 128) 4414 return CharUnits::fromQuantity(32); 4415 4416 return CharUnits::fromQuantity(16); 4417 } else if (Ty->isVectorType()) { 4418 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4419 } 4420 4421 // For single-element float/vector structs, we consider the whole type 4422 // to have the same alignment requirements as its single element. 4423 const Type *AlignAsType = nullptr; 4424 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4425 if (EltType) { 4426 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4427 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4428 getContext().getTypeSize(EltType) == 128) || 4429 (BT && BT->isFloatingPoint())) 4430 AlignAsType = EltType; 4431 } 4432 4433 // Likewise for ELFv2 homogeneous aggregates. 4434 const Type *Base = nullptr; 4435 uint64_t Members = 0; 4436 if (!AlignAsType && Kind == ELFv2 && 4437 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4438 AlignAsType = Base; 4439 4440 // With special case aggregates, only vector base types need alignment. 4441 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4442 if (getContext().getTypeSize(AlignAsType) > 128) 4443 return CharUnits::fromQuantity(32); 4444 4445 return CharUnits::fromQuantity(16); 4446 } else if (AlignAsType) { 4447 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4448 } 4449 4450 // Otherwise, we only need alignment for any aggregate type that 4451 // has an alignment requirement of >= 16 bytes. 4452 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4453 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4454 return CharUnits::fromQuantity(32); 4455 return CharUnits::fromQuantity(16); 4456 } 4457 4458 return CharUnits::fromQuantity(8); 4459 } 4460 4461 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4462 /// aggregate. Base is set to the base element type, and Members is set 4463 /// to the number of base elements. 4464 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4465 uint64_t &Members) const { 4466 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4467 uint64_t NElements = AT->getSize().getZExtValue(); 4468 if (NElements == 0) 4469 return false; 4470 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4471 return false; 4472 Members *= NElements; 4473 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4474 const RecordDecl *RD = RT->getDecl(); 4475 if (RD->hasFlexibleArrayMember()) 4476 return false; 4477 4478 Members = 0; 4479 4480 // If this is a C++ record, check the bases first. 4481 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4482 for (const auto &I : CXXRD->bases()) { 4483 // Ignore empty records. 4484 if (isEmptyRecord(getContext(), I.getType(), true)) 4485 continue; 4486 4487 uint64_t FldMembers; 4488 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4489 return false; 4490 4491 Members += FldMembers; 4492 } 4493 } 4494 4495 for (const auto *FD : RD->fields()) { 4496 // Ignore (non-zero arrays of) empty records. 4497 QualType FT = FD->getType(); 4498 while (const ConstantArrayType *AT = 4499 getContext().getAsConstantArrayType(FT)) { 4500 if (AT->getSize().getZExtValue() == 0) 4501 return false; 4502 FT = AT->getElementType(); 4503 } 4504 if (isEmptyRecord(getContext(), FT, true)) 4505 continue; 4506 4507 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4508 if (getContext().getLangOpts().CPlusPlus && 4509 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4510 continue; 4511 4512 uint64_t FldMembers; 4513 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4514 return false; 4515 4516 Members = (RD->isUnion() ? 4517 std::max(Members, FldMembers) : Members + FldMembers); 4518 } 4519 4520 if (!Base) 4521 return false; 4522 4523 // Ensure there is no padding. 4524 if (getContext().getTypeSize(Base) * Members != 4525 getContext().getTypeSize(Ty)) 4526 return false; 4527 } else { 4528 Members = 1; 4529 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4530 Members = 2; 4531 Ty = CT->getElementType(); 4532 } 4533 4534 // Most ABIs only support float, double, and some vector type widths. 4535 if (!isHomogeneousAggregateBaseType(Ty)) 4536 return false; 4537 4538 // The base type must be the same for all members. Types that 4539 // agree in both total size and mode (float vs. vector) are 4540 // treated as being equivalent here. 4541 const Type *TyPtr = Ty.getTypePtr(); 4542 if (!Base) { 4543 Base = TyPtr; 4544 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4545 // so make sure to widen it explicitly. 4546 if (const VectorType *VT = Base->getAs<VectorType>()) { 4547 QualType EltTy = VT->getElementType(); 4548 unsigned NumElements = 4549 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4550 Base = getContext() 4551 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4552 .getTypePtr(); 4553 } 4554 } 4555 4556 if (Base->isVectorType() != TyPtr->isVectorType() || 4557 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4558 return false; 4559 } 4560 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4561 } 4562 4563 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4564 // Homogeneous aggregates for ELFv2 must have base types of float, 4565 // double, long double, or 128-bit vectors. 4566 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4567 if (BT->getKind() == BuiltinType::Float || 4568 BT->getKind() == BuiltinType::Double || 4569 BT->getKind() == BuiltinType::LongDouble) { 4570 if (IsSoftFloatABI) 4571 return false; 4572 return true; 4573 } 4574 } 4575 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4576 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4577 return true; 4578 } 4579 return false; 4580 } 4581 4582 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4583 const Type *Base, uint64_t Members) const { 4584 // Vector types require one register, floating point types require one 4585 // or two registers depending on their size. 4586 uint32_t NumRegs = 4587 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4588 4589 // Homogeneous Aggregates may occupy at most 8 registers. 4590 return Members * NumRegs <= 8; 4591 } 4592 4593 ABIArgInfo 4594 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4595 Ty = useFirstFieldIfTransparentUnion(Ty); 4596 4597 if (Ty->isAnyComplexType()) 4598 return ABIArgInfo::getDirect(); 4599 4600 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4601 // or via reference (larger than 16 bytes). 4602 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4603 uint64_t Size = getContext().getTypeSize(Ty); 4604 if (Size > 128) 4605 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4606 else if (Size < 128) { 4607 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4608 return ABIArgInfo::getDirect(CoerceTy); 4609 } 4610 } 4611 4612 if (isAggregateTypeForABI(Ty)) { 4613 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4614 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4615 4616 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4617 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4618 4619 // ELFv2 homogeneous aggregates are passed as array types. 4620 const Type *Base = nullptr; 4621 uint64_t Members = 0; 4622 if (Kind == ELFv2 && 4623 isHomogeneousAggregate(Ty, Base, Members)) { 4624 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4625 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4626 return ABIArgInfo::getDirect(CoerceTy); 4627 } 4628 4629 // If an aggregate may end up fully in registers, we do not 4630 // use the ByVal method, but pass the aggregate as array. 4631 // This is usually beneficial since we avoid forcing the 4632 // back-end to store the argument to memory. 4633 uint64_t Bits = getContext().getTypeSize(Ty); 4634 if (Bits > 0 && Bits <= 8 * GPRBits) { 4635 llvm::Type *CoerceTy; 4636 4637 // Types up to 8 bytes are passed as integer type (which will be 4638 // properly aligned in the argument save area doubleword). 4639 if (Bits <= GPRBits) 4640 CoerceTy = 4641 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4642 // Larger types are passed as arrays, with the base type selected 4643 // according to the required alignment in the save area. 4644 else { 4645 uint64_t RegBits = ABIAlign * 8; 4646 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4647 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4648 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4649 } 4650 4651 return ABIArgInfo::getDirect(CoerceTy); 4652 } 4653 4654 // All other aggregates are passed ByVal. 4655 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4656 /*ByVal=*/true, 4657 /*Realign=*/TyAlign > ABIAlign); 4658 } 4659 4660 return (isPromotableTypeForABI(Ty) ? 4661 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4662 } 4663 4664 ABIArgInfo 4665 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4666 if (RetTy->isVoidType()) 4667 return ABIArgInfo::getIgnore(); 4668 4669 if (RetTy->isAnyComplexType()) 4670 return ABIArgInfo::getDirect(); 4671 4672 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4673 // or via reference (larger than 16 bytes). 4674 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4675 uint64_t Size = getContext().getTypeSize(RetTy); 4676 if (Size > 128) 4677 return getNaturalAlignIndirect(RetTy); 4678 else if (Size < 128) { 4679 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4680 return ABIArgInfo::getDirect(CoerceTy); 4681 } 4682 } 4683 4684 if (isAggregateTypeForABI(RetTy)) { 4685 // ELFv2 homogeneous aggregates are returned as array types. 4686 const Type *Base = nullptr; 4687 uint64_t Members = 0; 4688 if (Kind == ELFv2 && 4689 isHomogeneousAggregate(RetTy, Base, Members)) { 4690 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4691 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4692 return ABIArgInfo::getDirect(CoerceTy); 4693 } 4694 4695 // ELFv2 small aggregates are returned in up to two registers. 4696 uint64_t Bits = getContext().getTypeSize(RetTy); 4697 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4698 if (Bits == 0) 4699 return ABIArgInfo::getIgnore(); 4700 4701 llvm::Type *CoerceTy; 4702 if (Bits > GPRBits) { 4703 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4704 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4705 } else 4706 CoerceTy = 4707 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4708 return ABIArgInfo::getDirect(CoerceTy); 4709 } 4710 4711 // All other aggregates are returned indirectly. 4712 return getNaturalAlignIndirect(RetTy); 4713 } 4714 4715 return (isPromotableTypeForABI(RetTy) ? 4716 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4717 } 4718 4719 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4720 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4721 QualType Ty) const { 4722 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4723 TypeInfo.second = getParamTypeAlignment(Ty); 4724 4725 CharUnits SlotSize = CharUnits::fromQuantity(8); 4726 4727 // If we have a complex type and the base type is smaller than 8 bytes, 4728 // the ABI calls for the real and imaginary parts to be right-adjusted 4729 // in separate doublewords. However, Clang expects us to produce a 4730 // pointer to a structure with the two parts packed tightly. So generate 4731 // loads of the real and imaginary parts relative to the va_list pointer, 4732 // and store them to a temporary structure. 4733 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4734 CharUnits EltSize = TypeInfo.first / 2; 4735 if (EltSize < SlotSize) { 4736 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4737 SlotSize * 2, SlotSize, 4738 SlotSize, /*AllowHigher*/ true); 4739 4740 Address RealAddr = Addr; 4741 Address ImagAddr = RealAddr; 4742 if (CGF.CGM.getDataLayout().isBigEndian()) { 4743 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4744 SlotSize - EltSize); 4745 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4746 2 * SlotSize - EltSize); 4747 } else { 4748 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4749 } 4750 4751 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4752 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4753 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4754 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4755 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4756 4757 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4758 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4759 /*init*/ true); 4760 return Temp; 4761 } 4762 } 4763 4764 // Otherwise, just use the general rule. 4765 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4766 TypeInfo, SlotSize, /*AllowHigher*/ true); 4767 } 4768 4769 static bool 4770 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4771 llvm::Value *Address) { 4772 // This is calculated from the LLVM and GCC tables and verified 4773 // against gcc output. AFAIK all ABIs use the same encoding. 4774 4775 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4776 4777 llvm::IntegerType *i8 = CGF.Int8Ty; 4778 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4779 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4780 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4781 4782 // 0-31: r0-31, the 8-byte general-purpose registers 4783 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4784 4785 // 32-63: fp0-31, the 8-byte floating-point registers 4786 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4787 4788 // 64-67 are various 8-byte special-purpose registers: 4789 // 64: mq 4790 // 65: lr 4791 // 66: ctr 4792 // 67: ap 4793 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4794 4795 // 68-76 are various 4-byte special-purpose registers: 4796 // 68-75 cr0-7 4797 // 76: xer 4798 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4799 4800 // 77-108: v0-31, the 16-byte vector registers 4801 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4802 4803 // 109: vrsave 4804 // 110: vscr 4805 // 111: spe_acc 4806 // 112: spefscr 4807 // 113: sfp 4808 // 114: tfhar 4809 // 115: tfiar 4810 // 116: texasr 4811 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4812 4813 return false; 4814 } 4815 4816 bool 4817 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4818 CodeGen::CodeGenFunction &CGF, 4819 llvm::Value *Address) const { 4820 4821 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4822 } 4823 4824 bool 4825 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4826 llvm::Value *Address) const { 4827 4828 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4829 } 4830 4831 //===----------------------------------------------------------------------===// 4832 // AArch64 ABI Implementation 4833 //===----------------------------------------------------------------------===// 4834 4835 namespace { 4836 4837 class AArch64ABIInfo : public SwiftABIInfo { 4838 public: 4839 enum ABIKind { 4840 AAPCS = 0, 4841 DarwinPCS, 4842 Win64 4843 }; 4844 4845 private: 4846 ABIKind Kind; 4847 4848 public: 4849 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4850 : SwiftABIInfo(CGT), Kind(Kind) {} 4851 4852 private: 4853 ABIKind getABIKind() const { return Kind; } 4854 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4855 4856 ABIArgInfo classifyReturnType(QualType RetTy) const; 4857 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4858 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4859 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4860 uint64_t Members) const override; 4861 4862 bool isIllegalVectorType(QualType Ty) const; 4863 4864 void computeInfo(CGFunctionInfo &FI) const override { 4865 if (!getCXXABI().classifyReturnType(FI)) 4866 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4867 4868 for (auto &it : FI.arguments()) 4869 it.info = classifyArgumentType(it.type); 4870 } 4871 4872 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4873 CodeGenFunction &CGF) const; 4874 4875 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4876 CodeGenFunction &CGF) const; 4877 4878 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4879 QualType Ty) const override { 4880 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4881 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4882 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4883 } 4884 4885 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4886 QualType Ty) const override; 4887 4888 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4889 ArrayRef<llvm::Type*> scalars, 4890 bool asReturnValue) const override { 4891 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4892 } 4893 bool isSwiftErrorInRegister() const override { 4894 return true; 4895 } 4896 4897 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4898 unsigned elts) const override; 4899 }; 4900 4901 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4902 public: 4903 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4904 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4905 4906 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4907 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4908 } 4909 4910 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4911 return 31; 4912 } 4913 4914 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4915 }; 4916 4917 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4918 public: 4919 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4920 : AArch64TargetCodeGenInfo(CGT, K) {} 4921 4922 void getDependentLibraryOption(llvm::StringRef Lib, 4923 llvm::SmallString<24> &Opt) const override { 4924 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4925 } 4926 4927 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4928 llvm::SmallString<32> &Opt) const override { 4929 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4930 } 4931 }; 4932 } 4933 4934 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4935 Ty = useFirstFieldIfTransparentUnion(Ty); 4936 4937 // Handle illegal vector types here. 4938 if (isIllegalVectorType(Ty)) { 4939 uint64_t Size = getContext().getTypeSize(Ty); 4940 // Android promotes <2 x i8> to i16, not i32 4941 if (isAndroid() && (Size <= 16)) { 4942 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4943 return ABIArgInfo::getDirect(ResType); 4944 } 4945 if (Size <= 32) { 4946 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4947 return ABIArgInfo::getDirect(ResType); 4948 } 4949 if (Size == 64) { 4950 llvm::Type *ResType = 4951 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4952 return ABIArgInfo::getDirect(ResType); 4953 } 4954 if (Size == 128) { 4955 llvm::Type *ResType = 4956 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4957 return ABIArgInfo::getDirect(ResType); 4958 } 4959 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4960 } 4961 4962 if (!isAggregateTypeForABI(Ty)) { 4963 // Treat an enum type as its underlying type. 4964 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4965 Ty = EnumTy->getDecl()->getIntegerType(); 4966 4967 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4968 ? ABIArgInfo::getExtend() 4969 : ABIArgInfo::getDirect()); 4970 } 4971 4972 // Structures with either a non-trivial destructor or a non-trivial 4973 // copy constructor are always indirect. 4974 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4975 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4976 CGCXXABI::RAA_DirectInMemory); 4977 } 4978 4979 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4980 // elsewhere for GNU compatibility. 4981 uint64_t Size = getContext().getTypeSize(Ty); 4982 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 4983 if (IsEmpty || Size == 0) { 4984 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4985 return ABIArgInfo::getIgnore(); 4986 4987 // GNU C mode. The only argument that gets ignored is an empty one with size 4988 // 0. 4989 if (IsEmpty && Size == 0) 4990 return ABIArgInfo::getIgnore(); 4991 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4992 } 4993 4994 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4995 const Type *Base = nullptr; 4996 uint64_t Members = 0; 4997 if (isHomogeneousAggregate(Ty, Base, Members)) { 4998 return ABIArgInfo::getDirect( 4999 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5000 } 5001 5002 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5003 if (Size <= 128) { 5004 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5005 // same size and alignment. 5006 if (getTarget().isRenderScriptTarget()) { 5007 return coerceToIntArray(Ty, getContext(), getVMContext()); 5008 } 5009 unsigned Alignment = getContext().getTypeAlign(Ty); 5010 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5011 5012 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5013 // For aggregates with 16-byte alignment, we use i128. 5014 if (Alignment < 128 && Size == 128) { 5015 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5016 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5017 } 5018 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5019 } 5020 5021 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5022 } 5023 5024 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5025 if (RetTy->isVoidType()) 5026 return ABIArgInfo::getIgnore(); 5027 5028 // Large vector types should be returned via memory. 5029 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5030 return getNaturalAlignIndirect(RetTy); 5031 5032 if (!isAggregateTypeForABI(RetTy)) { 5033 // Treat an enum type as its underlying type. 5034 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5035 RetTy = EnumTy->getDecl()->getIntegerType(); 5036 5037 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5038 ? ABIArgInfo::getExtend() 5039 : ABIArgInfo::getDirect()); 5040 } 5041 5042 uint64_t Size = getContext().getTypeSize(RetTy); 5043 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5044 return ABIArgInfo::getIgnore(); 5045 5046 const Type *Base = nullptr; 5047 uint64_t Members = 0; 5048 if (isHomogeneousAggregate(RetTy, Base, Members)) 5049 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5050 return ABIArgInfo::getDirect(); 5051 5052 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5053 if (Size <= 128) { 5054 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5055 // same size and alignment. 5056 if (getTarget().isRenderScriptTarget()) { 5057 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5058 } 5059 unsigned Alignment = getContext().getTypeAlign(RetTy); 5060 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5061 5062 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5063 // For aggregates with 16-byte alignment, we use i128. 5064 if (Alignment < 128 && Size == 128) { 5065 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5066 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5067 } 5068 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5069 } 5070 5071 return getNaturalAlignIndirect(RetTy); 5072 } 5073 5074 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5075 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5076 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5077 // Check whether VT is legal. 5078 unsigned NumElements = VT->getNumElements(); 5079 uint64_t Size = getContext().getTypeSize(VT); 5080 // NumElements should be power of 2. 5081 if (!llvm::isPowerOf2_32(NumElements)) 5082 return true; 5083 return Size != 64 && (Size != 128 || NumElements == 1); 5084 } 5085 return false; 5086 } 5087 5088 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5089 llvm::Type *eltTy, 5090 unsigned elts) const { 5091 if (!llvm::isPowerOf2_32(elts)) 5092 return false; 5093 if (totalSize.getQuantity() != 8 && 5094 (totalSize.getQuantity() != 16 || elts == 1)) 5095 return false; 5096 return true; 5097 } 5098 5099 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5100 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5101 // point type or a short-vector type. This is the same as the 32-bit ABI, 5102 // but with the difference that any floating-point type is allowed, 5103 // including __fp16. 5104 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5105 if (BT->isFloatingPoint()) 5106 return true; 5107 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5108 unsigned VecSize = getContext().getTypeSize(VT); 5109 if (VecSize == 64 || VecSize == 128) 5110 return true; 5111 } 5112 return false; 5113 } 5114 5115 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5116 uint64_t Members) const { 5117 return Members <= 4; 5118 } 5119 5120 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5121 QualType Ty, 5122 CodeGenFunction &CGF) const { 5123 ABIArgInfo AI = classifyArgumentType(Ty); 5124 bool IsIndirect = AI.isIndirect(); 5125 5126 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5127 if (IsIndirect) 5128 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5129 else if (AI.getCoerceToType()) 5130 BaseTy = AI.getCoerceToType(); 5131 5132 unsigned NumRegs = 1; 5133 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5134 BaseTy = ArrTy->getElementType(); 5135 NumRegs = ArrTy->getNumElements(); 5136 } 5137 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5138 5139 // The AArch64 va_list type and handling is specified in the Procedure Call 5140 // Standard, section B.4: 5141 // 5142 // struct { 5143 // void *__stack; 5144 // void *__gr_top; 5145 // void *__vr_top; 5146 // int __gr_offs; 5147 // int __vr_offs; 5148 // }; 5149 5150 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5151 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5152 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5153 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5154 5155 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5156 CharUnits TyAlign = TyInfo.second; 5157 5158 Address reg_offs_p = Address::invalid(); 5159 llvm::Value *reg_offs = nullptr; 5160 int reg_top_index; 5161 CharUnits reg_top_offset; 5162 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5163 if (!IsFPR) { 5164 // 3 is the field number of __gr_offs 5165 reg_offs_p = 5166 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5167 "gr_offs_p"); 5168 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5169 reg_top_index = 1; // field number for __gr_top 5170 reg_top_offset = CharUnits::fromQuantity(8); 5171 RegSize = llvm::alignTo(RegSize, 8); 5172 } else { 5173 // 4 is the field number of __vr_offs. 5174 reg_offs_p = 5175 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5176 "vr_offs_p"); 5177 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5178 reg_top_index = 2; // field number for __vr_top 5179 reg_top_offset = CharUnits::fromQuantity(16); 5180 RegSize = 16 * NumRegs; 5181 } 5182 5183 //======================================= 5184 // Find out where argument was passed 5185 //======================================= 5186 5187 // If reg_offs >= 0 we're already using the stack for this type of 5188 // argument. We don't want to keep updating reg_offs (in case it overflows, 5189 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5190 // whatever they get). 5191 llvm::Value *UsingStack = nullptr; 5192 UsingStack = CGF.Builder.CreateICmpSGE( 5193 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5194 5195 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5196 5197 // Otherwise, at least some kind of argument could go in these registers, the 5198 // question is whether this particular type is too big. 5199 CGF.EmitBlock(MaybeRegBlock); 5200 5201 // Integer arguments may need to correct register alignment (for example a 5202 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5203 // align __gr_offs to calculate the potential address. 5204 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5205 int Align = TyAlign.getQuantity(); 5206 5207 reg_offs = CGF.Builder.CreateAdd( 5208 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5209 "align_regoffs"); 5210 reg_offs = CGF.Builder.CreateAnd( 5211 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5212 "aligned_regoffs"); 5213 } 5214 5215 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5216 // The fact that this is done unconditionally reflects the fact that 5217 // allocating an argument to the stack also uses up all the remaining 5218 // registers of the appropriate kind. 5219 llvm::Value *NewOffset = nullptr; 5220 NewOffset = CGF.Builder.CreateAdd( 5221 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5222 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5223 5224 // Now we're in a position to decide whether this argument really was in 5225 // registers or not. 5226 llvm::Value *InRegs = nullptr; 5227 InRegs = CGF.Builder.CreateICmpSLE( 5228 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5229 5230 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5231 5232 //======================================= 5233 // Argument was in registers 5234 //======================================= 5235 5236 // Now we emit the code for if the argument was originally passed in 5237 // registers. First start the appropriate block: 5238 CGF.EmitBlock(InRegBlock); 5239 5240 llvm::Value *reg_top = nullptr; 5241 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5242 reg_top_offset, "reg_top_p"); 5243 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5244 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5245 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5246 Address RegAddr = Address::invalid(); 5247 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5248 5249 if (IsIndirect) { 5250 // If it's been passed indirectly (actually a struct), whatever we find from 5251 // stored registers or on the stack will actually be a struct **. 5252 MemTy = llvm::PointerType::getUnqual(MemTy); 5253 } 5254 5255 const Type *Base = nullptr; 5256 uint64_t NumMembers = 0; 5257 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5258 if (IsHFA && NumMembers > 1) { 5259 // Homogeneous aggregates passed in registers will have their elements split 5260 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5261 // qN+1, ...). We reload and store into a temporary local variable 5262 // contiguously. 5263 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5264 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5265 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5266 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5267 Address Tmp = CGF.CreateTempAlloca(HFATy, 5268 std::max(TyAlign, BaseTyInfo.second)); 5269 5270 // On big-endian platforms, the value will be right-aligned in its slot. 5271 int Offset = 0; 5272 if (CGF.CGM.getDataLayout().isBigEndian() && 5273 BaseTyInfo.first.getQuantity() < 16) 5274 Offset = 16 - BaseTyInfo.first.getQuantity(); 5275 5276 for (unsigned i = 0; i < NumMembers; ++i) { 5277 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5278 Address LoadAddr = 5279 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5280 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5281 5282 Address StoreAddr = 5283 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5284 5285 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5286 CGF.Builder.CreateStore(Elem, StoreAddr); 5287 } 5288 5289 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5290 } else { 5291 // Otherwise the object is contiguous in memory. 5292 5293 // It might be right-aligned in its slot. 5294 CharUnits SlotSize = BaseAddr.getAlignment(); 5295 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5296 (IsHFA || !isAggregateTypeForABI(Ty)) && 5297 TyInfo.first < SlotSize) { 5298 CharUnits Offset = SlotSize - TyInfo.first; 5299 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5300 } 5301 5302 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5303 } 5304 5305 CGF.EmitBranch(ContBlock); 5306 5307 //======================================= 5308 // Argument was on the stack 5309 //======================================= 5310 CGF.EmitBlock(OnStackBlock); 5311 5312 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5313 CharUnits::Zero(), "stack_p"); 5314 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5315 5316 // Again, stack arguments may need realignment. In this case both integer and 5317 // floating-point ones might be affected. 5318 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5319 int Align = TyAlign.getQuantity(); 5320 5321 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5322 5323 OnStackPtr = CGF.Builder.CreateAdd( 5324 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5325 "align_stack"); 5326 OnStackPtr = CGF.Builder.CreateAnd( 5327 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5328 "align_stack"); 5329 5330 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5331 } 5332 Address OnStackAddr(OnStackPtr, 5333 std::max(CharUnits::fromQuantity(8), TyAlign)); 5334 5335 // All stack slots are multiples of 8 bytes. 5336 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5337 CharUnits StackSize; 5338 if (IsIndirect) 5339 StackSize = StackSlotSize; 5340 else 5341 StackSize = TyInfo.first.alignTo(StackSlotSize); 5342 5343 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5344 llvm::Value *NewStack = 5345 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5346 5347 // Write the new value of __stack for the next call to va_arg 5348 CGF.Builder.CreateStore(NewStack, stack_p); 5349 5350 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5351 TyInfo.first < StackSlotSize) { 5352 CharUnits Offset = StackSlotSize - TyInfo.first; 5353 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5354 } 5355 5356 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5357 5358 CGF.EmitBranch(ContBlock); 5359 5360 //======================================= 5361 // Tidy up 5362 //======================================= 5363 CGF.EmitBlock(ContBlock); 5364 5365 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5366 OnStackAddr, OnStackBlock, "vaargs.addr"); 5367 5368 if (IsIndirect) 5369 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5370 TyInfo.second); 5371 5372 return ResAddr; 5373 } 5374 5375 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5376 CodeGenFunction &CGF) const { 5377 // The backend's lowering doesn't support va_arg for aggregates or 5378 // illegal vector types. Lower VAArg here for these cases and use 5379 // the LLVM va_arg instruction for everything else. 5380 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5381 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5382 5383 CharUnits SlotSize = CharUnits::fromQuantity(8); 5384 5385 // Empty records are ignored for parameter passing purposes. 5386 if (isEmptyRecord(getContext(), Ty, true)) { 5387 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5388 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5389 return Addr; 5390 } 5391 5392 // The size of the actual thing passed, which might end up just 5393 // being a pointer for indirect types. 5394 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5395 5396 // Arguments bigger than 16 bytes which aren't homogeneous 5397 // aggregates should be passed indirectly. 5398 bool IsIndirect = false; 5399 if (TyInfo.first.getQuantity() > 16) { 5400 const Type *Base = nullptr; 5401 uint64_t Members = 0; 5402 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5403 } 5404 5405 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5406 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5407 } 5408 5409 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5410 QualType Ty) const { 5411 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5412 CGF.getContext().getTypeInfoInChars(Ty), 5413 CharUnits::fromQuantity(8), 5414 /*allowHigherAlign*/ false); 5415 } 5416 5417 //===----------------------------------------------------------------------===// 5418 // ARM ABI Implementation 5419 //===----------------------------------------------------------------------===// 5420 5421 namespace { 5422 5423 class ARMABIInfo : public SwiftABIInfo { 5424 public: 5425 enum ABIKind { 5426 APCS = 0, 5427 AAPCS = 1, 5428 AAPCS_VFP = 2, 5429 AAPCS16_VFP = 3, 5430 }; 5431 5432 private: 5433 ABIKind Kind; 5434 5435 public: 5436 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5437 : SwiftABIInfo(CGT), Kind(_Kind) { 5438 setCCs(); 5439 } 5440 5441 bool isEABI() const { 5442 switch (getTarget().getTriple().getEnvironment()) { 5443 case llvm::Triple::Android: 5444 case llvm::Triple::EABI: 5445 case llvm::Triple::EABIHF: 5446 case llvm::Triple::GNUEABI: 5447 case llvm::Triple::GNUEABIHF: 5448 case llvm::Triple::MuslEABI: 5449 case llvm::Triple::MuslEABIHF: 5450 return true; 5451 default: 5452 return false; 5453 } 5454 } 5455 5456 bool isEABIHF() const { 5457 switch (getTarget().getTriple().getEnvironment()) { 5458 case llvm::Triple::EABIHF: 5459 case llvm::Triple::GNUEABIHF: 5460 case llvm::Triple::MuslEABIHF: 5461 return true; 5462 default: 5463 return false; 5464 } 5465 } 5466 5467 ABIKind getABIKind() const { return Kind; } 5468 5469 private: 5470 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5471 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5472 bool isIllegalVectorType(QualType Ty) const; 5473 5474 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5475 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5476 uint64_t Members) const override; 5477 5478 void computeInfo(CGFunctionInfo &FI) const override; 5479 5480 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5481 QualType Ty) const override; 5482 5483 llvm::CallingConv::ID getLLVMDefaultCC() const; 5484 llvm::CallingConv::ID getABIDefaultCC() const; 5485 void setCCs(); 5486 5487 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5488 ArrayRef<llvm::Type*> scalars, 5489 bool asReturnValue) const override { 5490 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5491 } 5492 bool isSwiftErrorInRegister() const override { 5493 return true; 5494 } 5495 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5496 unsigned elts) const override; 5497 }; 5498 5499 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5500 public: 5501 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5502 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5503 5504 const ARMABIInfo &getABIInfo() const { 5505 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5506 } 5507 5508 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5509 return 13; 5510 } 5511 5512 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5513 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5514 } 5515 5516 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5517 llvm::Value *Address) const override { 5518 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5519 5520 // 0-15 are the 16 integer registers. 5521 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5522 return false; 5523 } 5524 5525 unsigned getSizeOfUnwindException() const override { 5526 if (getABIInfo().isEABI()) return 88; 5527 return TargetCodeGenInfo::getSizeOfUnwindException(); 5528 } 5529 5530 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5531 CodeGen::CodeGenModule &CGM, 5532 ForDefinition_t IsForDefinition) const override { 5533 if (!IsForDefinition) 5534 return; 5535 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5536 if (!FD) 5537 return; 5538 5539 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5540 if (!Attr) 5541 return; 5542 5543 const char *Kind; 5544 switch (Attr->getInterrupt()) { 5545 case ARMInterruptAttr::Generic: Kind = ""; break; 5546 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5547 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5548 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5549 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5550 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5551 } 5552 5553 llvm::Function *Fn = cast<llvm::Function>(GV); 5554 5555 Fn->addFnAttr("interrupt", Kind); 5556 5557 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5558 if (ABI == ARMABIInfo::APCS) 5559 return; 5560 5561 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5562 // however this is not necessarily true on taking any interrupt. Instruct 5563 // the backend to perform a realignment as part of the function prologue. 5564 llvm::AttrBuilder B; 5565 B.addStackAlignmentAttr(8); 5566 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5567 } 5568 }; 5569 5570 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5571 public: 5572 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5573 : ARMTargetCodeGenInfo(CGT, K) {} 5574 5575 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5576 CodeGen::CodeGenModule &CGM, 5577 ForDefinition_t IsForDefinition) const override; 5578 5579 void getDependentLibraryOption(llvm::StringRef Lib, 5580 llvm::SmallString<24> &Opt) const override { 5581 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5582 } 5583 5584 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5585 llvm::SmallString<32> &Opt) const override { 5586 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5587 } 5588 }; 5589 5590 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5591 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 5592 ForDefinition_t IsForDefinition) const { 5593 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 5594 if (!IsForDefinition) 5595 return; 5596 addStackProbeSizeTargetAttribute(D, GV, CGM); 5597 } 5598 } 5599 5600 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5601 if (!getCXXABI().classifyReturnType(FI)) 5602 FI.getReturnInfo() = 5603 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5604 5605 for (auto &I : FI.arguments()) 5606 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5607 5608 // Always honor user-specified calling convention. 5609 if (FI.getCallingConvention() != llvm::CallingConv::C) 5610 return; 5611 5612 llvm::CallingConv::ID cc = getRuntimeCC(); 5613 if (cc != llvm::CallingConv::C) 5614 FI.setEffectiveCallingConvention(cc); 5615 } 5616 5617 /// Return the default calling convention that LLVM will use. 5618 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5619 // The default calling convention that LLVM will infer. 5620 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5621 return llvm::CallingConv::ARM_AAPCS_VFP; 5622 else if (isEABI()) 5623 return llvm::CallingConv::ARM_AAPCS; 5624 else 5625 return llvm::CallingConv::ARM_APCS; 5626 } 5627 5628 /// Return the calling convention that our ABI would like us to use 5629 /// as the C calling convention. 5630 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5631 switch (getABIKind()) { 5632 case APCS: return llvm::CallingConv::ARM_APCS; 5633 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5634 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5635 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5636 } 5637 llvm_unreachable("bad ABI kind"); 5638 } 5639 5640 void ARMABIInfo::setCCs() { 5641 assert(getRuntimeCC() == llvm::CallingConv::C); 5642 5643 // Don't muddy up the IR with a ton of explicit annotations if 5644 // they'd just match what LLVM will infer from the triple. 5645 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5646 if (abiCC != getLLVMDefaultCC()) 5647 RuntimeCC = abiCC; 5648 5649 // AAPCS apparently requires runtime support functions to be soft-float, but 5650 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5651 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5652 5653 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5654 // AEABI-complying FP helper functions to use the base AAPCS. 5655 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5656 // support functions emitted by clang such as the _Complex helpers follow the 5657 // abiCC. 5658 if (abiCC != getLLVMDefaultCC()) 5659 BuiltinCC = abiCC; 5660 } 5661 5662 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5663 bool isVariadic) const { 5664 // 6.1.2.1 The following argument types are VFP CPRCs: 5665 // A single-precision floating-point type (including promoted 5666 // half-precision types); A double-precision floating-point type; 5667 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5668 // with a Base Type of a single- or double-precision floating-point type, 5669 // 64-bit containerized vectors or 128-bit containerized vectors with one 5670 // to four Elements. 5671 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5672 5673 Ty = useFirstFieldIfTransparentUnion(Ty); 5674 5675 // Handle illegal vector types here. 5676 if (isIllegalVectorType(Ty)) { 5677 uint64_t Size = getContext().getTypeSize(Ty); 5678 if (Size <= 32) { 5679 llvm::Type *ResType = 5680 llvm::Type::getInt32Ty(getVMContext()); 5681 return ABIArgInfo::getDirect(ResType); 5682 } 5683 if (Size == 64) { 5684 llvm::Type *ResType = llvm::VectorType::get( 5685 llvm::Type::getInt32Ty(getVMContext()), 2); 5686 return ABIArgInfo::getDirect(ResType); 5687 } 5688 if (Size == 128) { 5689 llvm::Type *ResType = llvm::VectorType::get( 5690 llvm::Type::getInt32Ty(getVMContext()), 4); 5691 return ABIArgInfo::getDirect(ResType); 5692 } 5693 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5694 } 5695 5696 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5697 // unspecified. This is not done for OpenCL as it handles the half type 5698 // natively, and does not need to interwork with AAPCS code. 5699 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5700 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5701 llvm::Type::getFloatTy(getVMContext()) : 5702 llvm::Type::getInt32Ty(getVMContext()); 5703 return ABIArgInfo::getDirect(ResType); 5704 } 5705 5706 if (!isAggregateTypeForABI(Ty)) { 5707 // Treat an enum type as its underlying type. 5708 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5709 Ty = EnumTy->getDecl()->getIntegerType(); 5710 } 5711 5712 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5713 : ABIArgInfo::getDirect()); 5714 } 5715 5716 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5717 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5718 } 5719 5720 // Ignore empty records. 5721 if (isEmptyRecord(getContext(), Ty, true)) 5722 return ABIArgInfo::getIgnore(); 5723 5724 if (IsEffectivelyAAPCS_VFP) { 5725 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5726 // into VFP registers. 5727 const Type *Base = nullptr; 5728 uint64_t Members = 0; 5729 if (isHomogeneousAggregate(Ty, Base, Members)) { 5730 assert(Base && "Base class should be set for homogeneous aggregate"); 5731 // Base can be a floating-point or a vector. 5732 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5733 } 5734 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5735 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5736 // this convention even for a variadic function: the backend will use GPRs 5737 // if needed. 5738 const Type *Base = nullptr; 5739 uint64_t Members = 0; 5740 if (isHomogeneousAggregate(Ty, Base, Members)) { 5741 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5742 llvm::Type *Ty = 5743 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5744 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5745 } 5746 } 5747 5748 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5749 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5750 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5751 // bigger than 128-bits, they get placed in space allocated by the caller, 5752 // and a pointer is passed. 5753 return ABIArgInfo::getIndirect( 5754 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5755 } 5756 5757 // Support byval for ARM. 5758 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5759 // most 8-byte. We realign the indirect argument if type alignment is bigger 5760 // than ABI alignment. 5761 uint64_t ABIAlign = 4; 5762 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5763 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5764 getABIKind() == ARMABIInfo::AAPCS) 5765 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5766 5767 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5768 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5769 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5770 /*ByVal=*/true, 5771 /*Realign=*/TyAlign > ABIAlign); 5772 } 5773 5774 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5775 // same size and alignment. 5776 if (getTarget().isRenderScriptTarget()) { 5777 return coerceToIntArray(Ty, getContext(), getVMContext()); 5778 } 5779 5780 // Otherwise, pass by coercing to a structure of the appropriate size. 5781 llvm::Type* ElemTy; 5782 unsigned SizeRegs; 5783 // FIXME: Try to match the types of the arguments more accurately where 5784 // we can. 5785 if (getContext().getTypeAlign(Ty) <= 32) { 5786 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5787 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5788 } else { 5789 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5790 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5791 } 5792 5793 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5794 } 5795 5796 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5797 llvm::LLVMContext &VMContext) { 5798 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5799 // is called integer-like if its size is less than or equal to one word, and 5800 // the offset of each of its addressable sub-fields is zero. 5801 5802 uint64_t Size = Context.getTypeSize(Ty); 5803 5804 // Check that the type fits in a word. 5805 if (Size > 32) 5806 return false; 5807 5808 // FIXME: Handle vector types! 5809 if (Ty->isVectorType()) 5810 return false; 5811 5812 // Float types are never treated as "integer like". 5813 if (Ty->isRealFloatingType()) 5814 return false; 5815 5816 // If this is a builtin or pointer type then it is ok. 5817 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5818 return true; 5819 5820 // Small complex integer types are "integer like". 5821 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5822 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5823 5824 // Single element and zero sized arrays should be allowed, by the definition 5825 // above, but they are not. 5826 5827 // Otherwise, it must be a record type. 5828 const RecordType *RT = Ty->getAs<RecordType>(); 5829 if (!RT) return false; 5830 5831 // Ignore records with flexible arrays. 5832 const RecordDecl *RD = RT->getDecl(); 5833 if (RD->hasFlexibleArrayMember()) 5834 return false; 5835 5836 // Check that all sub-fields are at offset 0, and are themselves "integer 5837 // like". 5838 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5839 5840 bool HadField = false; 5841 unsigned idx = 0; 5842 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5843 i != e; ++i, ++idx) { 5844 const FieldDecl *FD = *i; 5845 5846 // Bit-fields are not addressable, we only need to verify they are "integer 5847 // like". We still have to disallow a subsequent non-bitfield, for example: 5848 // struct { int : 0; int x } 5849 // is non-integer like according to gcc. 5850 if (FD->isBitField()) { 5851 if (!RD->isUnion()) 5852 HadField = true; 5853 5854 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5855 return false; 5856 5857 continue; 5858 } 5859 5860 // Check if this field is at offset 0. 5861 if (Layout.getFieldOffset(idx) != 0) 5862 return false; 5863 5864 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5865 return false; 5866 5867 // Only allow at most one field in a structure. This doesn't match the 5868 // wording above, but follows gcc in situations with a field following an 5869 // empty structure. 5870 if (!RD->isUnion()) { 5871 if (HadField) 5872 return false; 5873 5874 HadField = true; 5875 } 5876 } 5877 5878 return true; 5879 } 5880 5881 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5882 bool isVariadic) const { 5883 bool IsEffectivelyAAPCS_VFP = 5884 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5885 5886 if (RetTy->isVoidType()) 5887 return ABIArgInfo::getIgnore(); 5888 5889 // Large vector types should be returned via memory. 5890 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5891 return getNaturalAlignIndirect(RetTy); 5892 } 5893 5894 // __fp16 gets returned as if it were an int or float, but with the top 16 5895 // bits unspecified. This is not done for OpenCL as it handles the half type 5896 // natively, and does not need to interwork with AAPCS code. 5897 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5898 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5899 llvm::Type::getFloatTy(getVMContext()) : 5900 llvm::Type::getInt32Ty(getVMContext()); 5901 return ABIArgInfo::getDirect(ResType); 5902 } 5903 5904 if (!isAggregateTypeForABI(RetTy)) { 5905 // Treat an enum type as its underlying type. 5906 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5907 RetTy = EnumTy->getDecl()->getIntegerType(); 5908 5909 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5910 : ABIArgInfo::getDirect(); 5911 } 5912 5913 // Are we following APCS? 5914 if (getABIKind() == APCS) { 5915 if (isEmptyRecord(getContext(), RetTy, false)) 5916 return ABIArgInfo::getIgnore(); 5917 5918 // Complex types are all returned as packed integers. 5919 // 5920 // FIXME: Consider using 2 x vector types if the back end handles them 5921 // correctly. 5922 if (RetTy->isAnyComplexType()) 5923 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5924 getVMContext(), getContext().getTypeSize(RetTy))); 5925 5926 // Integer like structures are returned in r0. 5927 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5928 // Return in the smallest viable integer type. 5929 uint64_t Size = getContext().getTypeSize(RetTy); 5930 if (Size <= 8) 5931 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5932 if (Size <= 16) 5933 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5934 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5935 } 5936 5937 // Otherwise return in memory. 5938 return getNaturalAlignIndirect(RetTy); 5939 } 5940 5941 // Otherwise this is an AAPCS variant. 5942 5943 if (isEmptyRecord(getContext(), RetTy, true)) 5944 return ABIArgInfo::getIgnore(); 5945 5946 // Check for homogeneous aggregates with AAPCS-VFP. 5947 if (IsEffectivelyAAPCS_VFP) { 5948 const Type *Base = nullptr; 5949 uint64_t Members = 0; 5950 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5951 assert(Base && "Base class should be set for homogeneous aggregate"); 5952 // Homogeneous Aggregates are returned directly. 5953 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5954 } 5955 } 5956 5957 // Aggregates <= 4 bytes are returned in r0; other aggregates 5958 // are returned indirectly. 5959 uint64_t Size = getContext().getTypeSize(RetTy); 5960 if (Size <= 32) { 5961 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5962 // same size and alignment. 5963 if (getTarget().isRenderScriptTarget()) { 5964 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5965 } 5966 if (getDataLayout().isBigEndian()) 5967 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5968 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5969 5970 // Return in the smallest viable integer type. 5971 if (Size <= 8) 5972 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5973 if (Size <= 16) 5974 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5975 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5976 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5977 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5978 llvm::Type *CoerceTy = 5979 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5980 return ABIArgInfo::getDirect(CoerceTy); 5981 } 5982 5983 return getNaturalAlignIndirect(RetTy); 5984 } 5985 5986 /// isIllegalVector - check whether Ty is an illegal vector type. 5987 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5988 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5989 if (isAndroid()) { 5990 // Android shipped using Clang 3.1, which supported a slightly different 5991 // vector ABI. The primary differences were that 3-element vector types 5992 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5993 // accepts that legacy behavior for Android only. 5994 // Check whether VT is legal. 5995 unsigned NumElements = VT->getNumElements(); 5996 // NumElements should be power of 2 or equal to 3. 5997 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5998 return true; 5999 } else { 6000 // Check whether VT is legal. 6001 unsigned NumElements = VT->getNumElements(); 6002 uint64_t Size = getContext().getTypeSize(VT); 6003 // NumElements should be power of 2. 6004 if (!llvm::isPowerOf2_32(NumElements)) 6005 return true; 6006 // Size should be greater than 32 bits. 6007 return Size <= 32; 6008 } 6009 } 6010 return false; 6011 } 6012 6013 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6014 llvm::Type *eltTy, 6015 unsigned numElts) const { 6016 if (!llvm::isPowerOf2_32(numElts)) 6017 return false; 6018 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6019 if (size > 64) 6020 return false; 6021 if (vectorSize.getQuantity() != 8 && 6022 (vectorSize.getQuantity() != 16 || numElts == 1)) 6023 return false; 6024 return true; 6025 } 6026 6027 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6028 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6029 // double, or 64-bit or 128-bit vectors. 6030 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6031 if (BT->getKind() == BuiltinType::Float || 6032 BT->getKind() == BuiltinType::Double || 6033 BT->getKind() == BuiltinType::LongDouble) 6034 return true; 6035 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6036 unsigned VecSize = getContext().getTypeSize(VT); 6037 if (VecSize == 64 || VecSize == 128) 6038 return true; 6039 } 6040 return false; 6041 } 6042 6043 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6044 uint64_t Members) const { 6045 return Members <= 4; 6046 } 6047 6048 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6049 QualType Ty) const { 6050 CharUnits SlotSize = CharUnits::fromQuantity(4); 6051 6052 // Empty records are ignored for parameter passing purposes. 6053 if (isEmptyRecord(getContext(), Ty, true)) { 6054 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6055 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6056 return Addr; 6057 } 6058 6059 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6060 CharUnits TyAlignForABI = TyInfo.second; 6061 6062 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6063 bool IsIndirect = false; 6064 const Type *Base = nullptr; 6065 uint64_t Members = 0; 6066 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6067 IsIndirect = true; 6068 6069 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6070 // allocated by the caller. 6071 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6072 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6073 !isHomogeneousAggregate(Ty, Base, Members)) { 6074 IsIndirect = true; 6075 6076 // Otherwise, bound the type's ABI alignment. 6077 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6078 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6079 // Our callers should be prepared to handle an under-aligned address. 6080 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6081 getABIKind() == ARMABIInfo::AAPCS) { 6082 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6083 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6084 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6085 // ARMv7k allows type alignment up to 16 bytes. 6086 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6087 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6088 } else { 6089 TyAlignForABI = CharUnits::fromQuantity(4); 6090 } 6091 TyInfo.second = TyAlignForABI; 6092 6093 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6094 SlotSize, /*AllowHigherAlign*/ true); 6095 } 6096 6097 //===----------------------------------------------------------------------===// 6098 // NVPTX ABI Implementation 6099 //===----------------------------------------------------------------------===// 6100 6101 namespace { 6102 6103 class NVPTXABIInfo : public ABIInfo { 6104 public: 6105 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6106 6107 ABIArgInfo classifyReturnType(QualType RetTy) const; 6108 ABIArgInfo classifyArgumentType(QualType Ty) const; 6109 6110 void computeInfo(CGFunctionInfo &FI) const override; 6111 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6112 QualType Ty) const override; 6113 }; 6114 6115 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6116 public: 6117 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6118 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6119 6120 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6121 CodeGen::CodeGenModule &M, 6122 ForDefinition_t IsForDefinition) const override; 6123 6124 private: 6125 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6126 // resulting MDNode to the nvvm.annotations MDNode. 6127 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6128 }; 6129 6130 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6131 if (RetTy->isVoidType()) 6132 return ABIArgInfo::getIgnore(); 6133 6134 // note: this is different from default ABI 6135 if (!RetTy->isScalarType()) 6136 return ABIArgInfo::getDirect(); 6137 6138 // Treat an enum type as its underlying type. 6139 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6140 RetTy = EnumTy->getDecl()->getIntegerType(); 6141 6142 return (RetTy->isPromotableIntegerType() ? 6143 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6144 } 6145 6146 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6147 // Treat an enum type as its underlying type. 6148 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6149 Ty = EnumTy->getDecl()->getIntegerType(); 6150 6151 // Return aggregates type as indirect by value 6152 if (isAggregateTypeForABI(Ty)) 6153 return getNaturalAlignIndirect(Ty, /* byval */ true); 6154 6155 return (Ty->isPromotableIntegerType() ? 6156 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6157 } 6158 6159 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6160 if (!getCXXABI().classifyReturnType(FI)) 6161 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6162 for (auto &I : FI.arguments()) 6163 I.info = classifyArgumentType(I.type); 6164 6165 // Always honor user-specified calling convention. 6166 if (FI.getCallingConvention() != llvm::CallingConv::C) 6167 return; 6168 6169 FI.setEffectiveCallingConvention(getRuntimeCC()); 6170 } 6171 6172 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6173 QualType Ty) const { 6174 llvm_unreachable("NVPTX does not support varargs"); 6175 } 6176 6177 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6178 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6179 ForDefinition_t IsForDefinition) const { 6180 if (!IsForDefinition) 6181 return; 6182 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6183 if (!FD) return; 6184 6185 llvm::Function *F = cast<llvm::Function>(GV); 6186 6187 // Perform special handling in OpenCL mode 6188 if (M.getLangOpts().OpenCL) { 6189 // Use OpenCL function attributes to check for kernel functions 6190 // By default, all functions are device functions 6191 if (FD->hasAttr<OpenCLKernelAttr>()) { 6192 // OpenCL __kernel functions get kernel metadata 6193 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6194 addNVVMMetadata(F, "kernel", 1); 6195 // And kernel functions are not subject to inlining 6196 F->addFnAttr(llvm::Attribute::NoInline); 6197 } 6198 } 6199 6200 // Perform special handling in CUDA mode. 6201 if (M.getLangOpts().CUDA) { 6202 // CUDA __global__ functions get a kernel metadata entry. Since 6203 // __global__ functions cannot be called from the device, we do not 6204 // need to set the noinline attribute. 6205 if (FD->hasAttr<CUDAGlobalAttr>()) { 6206 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6207 addNVVMMetadata(F, "kernel", 1); 6208 } 6209 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6210 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6211 llvm::APSInt MaxThreads(32); 6212 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6213 if (MaxThreads > 0) 6214 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6215 6216 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6217 // not specified in __launch_bounds__ or if the user specified a 0 value, 6218 // we don't have to add a PTX directive. 6219 if (Attr->getMinBlocks()) { 6220 llvm::APSInt MinBlocks(32); 6221 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6222 if (MinBlocks > 0) 6223 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6224 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6225 } 6226 } 6227 } 6228 } 6229 6230 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6231 int Operand) { 6232 llvm::Module *M = F->getParent(); 6233 llvm::LLVMContext &Ctx = M->getContext(); 6234 6235 // Get "nvvm.annotations" metadata node 6236 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6237 6238 llvm::Metadata *MDVals[] = { 6239 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6240 llvm::ConstantAsMetadata::get( 6241 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6242 // Append metadata to nvvm.annotations 6243 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6244 } 6245 } 6246 6247 //===----------------------------------------------------------------------===// 6248 // SystemZ ABI Implementation 6249 //===----------------------------------------------------------------------===// 6250 6251 namespace { 6252 6253 class SystemZABIInfo : public SwiftABIInfo { 6254 bool HasVector; 6255 6256 public: 6257 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6258 : SwiftABIInfo(CGT), HasVector(HV) {} 6259 6260 bool isPromotableIntegerType(QualType Ty) const; 6261 bool isCompoundType(QualType Ty) const; 6262 bool isVectorArgumentType(QualType Ty) const; 6263 bool isFPArgumentType(QualType Ty) const; 6264 QualType GetSingleElementType(QualType Ty) const; 6265 6266 ABIArgInfo classifyReturnType(QualType RetTy) const; 6267 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6268 6269 void computeInfo(CGFunctionInfo &FI) const override { 6270 if (!getCXXABI().classifyReturnType(FI)) 6271 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6272 for (auto &I : FI.arguments()) 6273 I.info = classifyArgumentType(I.type); 6274 } 6275 6276 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6277 QualType Ty) const override; 6278 6279 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 6280 ArrayRef<llvm::Type*> scalars, 6281 bool asReturnValue) const override { 6282 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6283 } 6284 bool isSwiftErrorInRegister() const override { 6285 return true; 6286 } 6287 }; 6288 6289 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6290 public: 6291 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6292 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6293 }; 6294 6295 } 6296 6297 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6298 // Treat an enum type as its underlying type. 6299 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6300 Ty = EnumTy->getDecl()->getIntegerType(); 6301 6302 // Promotable integer types are required to be promoted by the ABI. 6303 if (Ty->isPromotableIntegerType()) 6304 return true; 6305 6306 // 32-bit values must also be promoted. 6307 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6308 switch (BT->getKind()) { 6309 case BuiltinType::Int: 6310 case BuiltinType::UInt: 6311 return true; 6312 default: 6313 return false; 6314 } 6315 return false; 6316 } 6317 6318 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6319 return (Ty->isAnyComplexType() || 6320 Ty->isVectorType() || 6321 isAggregateTypeForABI(Ty)); 6322 } 6323 6324 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6325 return (HasVector && 6326 Ty->isVectorType() && 6327 getContext().getTypeSize(Ty) <= 128); 6328 } 6329 6330 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6331 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6332 switch (BT->getKind()) { 6333 case BuiltinType::Float: 6334 case BuiltinType::Double: 6335 return true; 6336 default: 6337 return false; 6338 } 6339 6340 return false; 6341 } 6342 6343 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6344 if (const RecordType *RT = Ty->getAsStructureType()) { 6345 const RecordDecl *RD = RT->getDecl(); 6346 QualType Found; 6347 6348 // If this is a C++ record, check the bases first. 6349 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6350 for (const auto &I : CXXRD->bases()) { 6351 QualType Base = I.getType(); 6352 6353 // Empty bases don't affect things either way. 6354 if (isEmptyRecord(getContext(), Base, true)) 6355 continue; 6356 6357 if (!Found.isNull()) 6358 return Ty; 6359 Found = GetSingleElementType(Base); 6360 } 6361 6362 // Check the fields. 6363 for (const auto *FD : RD->fields()) { 6364 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6365 // Unlike isSingleElementStruct(), empty structure and array fields 6366 // do count. So do anonymous bitfields that aren't zero-sized. 6367 if (getContext().getLangOpts().CPlusPlus && 6368 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6369 continue; 6370 6371 // Unlike isSingleElementStruct(), arrays do not count. 6372 // Nested structures still do though. 6373 if (!Found.isNull()) 6374 return Ty; 6375 Found = GetSingleElementType(FD->getType()); 6376 } 6377 6378 // Unlike isSingleElementStruct(), trailing padding is allowed. 6379 // An 8-byte aligned struct s { float f; } is passed as a double. 6380 if (!Found.isNull()) 6381 return Found; 6382 } 6383 6384 return Ty; 6385 } 6386 6387 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6388 QualType Ty) const { 6389 // Assume that va_list type is correct; should be pointer to LLVM type: 6390 // struct { 6391 // i64 __gpr; 6392 // i64 __fpr; 6393 // i8 *__overflow_arg_area; 6394 // i8 *__reg_save_area; 6395 // }; 6396 6397 // Every non-vector argument occupies 8 bytes and is passed by preference 6398 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6399 // always passed on the stack. 6400 Ty = getContext().getCanonicalType(Ty); 6401 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6402 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6403 llvm::Type *DirectTy = ArgTy; 6404 ABIArgInfo AI = classifyArgumentType(Ty); 6405 bool IsIndirect = AI.isIndirect(); 6406 bool InFPRs = false; 6407 bool IsVector = false; 6408 CharUnits UnpaddedSize; 6409 CharUnits DirectAlign; 6410 if (IsIndirect) { 6411 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6412 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6413 } else { 6414 if (AI.getCoerceToType()) 6415 ArgTy = AI.getCoerceToType(); 6416 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6417 IsVector = ArgTy->isVectorTy(); 6418 UnpaddedSize = TyInfo.first; 6419 DirectAlign = TyInfo.second; 6420 } 6421 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6422 if (IsVector && UnpaddedSize > PaddedSize) 6423 PaddedSize = CharUnits::fromQuantity(16); 6424 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6425 6426 CharUnits Padding = (PaddedSize - UnpaddedSize); 6427 6428 llvm::Type *IndexTy = CGF.Int64Ty; 6429 llvm::Value *PaddedSizeV = 6430 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6431 6432 if (IsVector) { 6433 // Work out the address of a vector argument on the stack. 6434 // Vector arguments are always passed in the high bits of a 6435 // single (8 byte) or double (16 byte) stack slot. 6436 Address OverflowArgAreaPtr = 6437 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6438 "overflow_arg_area_ptr"); 6439 Address OverflowArgArea = 6440 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6441 TyInfo.second); 6442 Address MemAddr = 6443 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6444 6445 // Update overflow_arg_area_ptr pointer 6446 llvm::Value *NewOverflowArgArea = 6447 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6448 "overflow_arg_area"); 6449 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6450 6451 return MemAddr; 6452 } 6453 6454 assert(PaddedSize.getQuantity() == 8); 6455 6456 unsigned MaxRegs, RegCountField, RegSaveIndex; 6457 CharUnits RegPadding; 6458 if (InFPRs) { 6459 MaxRegs = 4; // Maximum of 4 FPR arguments 6460 RegCountField = 1; // __fpr 6461 RegSaveIndex = 16; // save offset for f0 6462 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6463 } else { 6464 MaxRegs = 5; // Maximum of 5 GPR arguments 6465 RegCountField = 0; // __gpr 6466 RegSaveIndex = 2; // save offset for r2 6467 RegPadding = Padding; // values are passed in the low bits of a GPR 6468 } 6469 6470 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6471 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6472 "reg_count_ptr"); 6473 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6474 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6475 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6476 "fits_in_regs"); 6477 6478 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6479 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6480 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6481 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6482 6483 // Emit code to load the value if it was passed in registers. 6484 CGF.EmitBlock(InRegBlock); 6485 6486 // Work out the address of an argument register. 6487 llvm::Value *ScaledRegCount = 6488 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6489 llvm::Value *RegBase = 6490 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6491 + RegPadding.getQuantity()); 6492 llvm::Value *RegOffset = 6493 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6494 Address RegSaveAreaPtr = 6495 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6496 "reg_save_area_ptr"); 6497 llvm::Value *RegSaveArea = 6498 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6499 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6500 "raw_reg_addr"), 6501 PaddedSize); 6502 Address RegAddr = 6503 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6504 6505 // Update the register count 6506 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6507 llvm::Value *NewRegCount = 6508 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6509 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6510 CGF.EmitBranch(ContBlock); 6511 6512 // Emit code to load the value if it was passed in memory. 6513 CGF.EmitBlock(InMemBlock); 6514 6515 // Work out the address of a stack argument. 6516 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6517 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6518 Address OverflowArgArea = 6519 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6520 PaddedSize); 6521 Address RawMemAddr = 6522 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6523 Address MemAddr = 6524 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6525 6526 // Update overflow_arg_area_ptr pointer 6527 llvm::Value *NewOverflowArgArea = 6528 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6529 "overflow_arg_area"); 6530 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6531 CGF.EmitBranch(ContBlock); 6532 6533 // Return the appropriate result. 6534 CGF.EmitBlock(ContBlock); 6535 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6536 MemAddr, InMemBlock, "va_arg.addr"); 6537 6538 if (IsIndirect) 6539 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6540 TyInfo.second); 6541 6542 return ResAddr; 6543 } 6544 6545 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6546 if (RetTy->isVoidType()) 6547 return ABIArgInfo::getIgnore(); 6548 if (isVectorArgumentType(RetTy)) 6549 return ABIArgInfo::getDirect(); 6550 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6551 return getNaturalAlignIndirect(RetTy); 6552 return (isPromotableIntegerType(RetTy) ? 6553 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6554 } 6555 6556 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6557 // Handle the generic C++ ABI. 6558 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6559 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6560 6561 // Integers and enums are extended to full register width. 6562 if (isPromotableIntegerType(Ty)) 6563 return ABIArgInfo::getExtend(); 6564 6565 // Handle vector types and vector-like structure types. Note that 6566 // as opposed to float-like structure types, we do not allow any 6567 // padding for vector-like structures, so verify the sizes match. 6568 uint64_t Size = getContext().getTypeSize(Ty); 6569 QualType SingleElementTy = GetSingleElementType(Ty); 6570 if (isVectorArgumentType(SingleElementTy) && 6571 getContext().getTypeSize(SingleElementTy) == Size) 6572 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6573 6574 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6575 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6576 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6577 6578 // Handle small structures. 6579 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6580 // Structures with flexible arrays have variable length, so really 6581 // fail the size test above. 6582 const RecordDecl *RD = RT->getDecl(); 6583 if (RD->hasFlexibleArrayMember()) 6584 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6585 6586 // The structure is passed as an unextended integer, a float, or a double. 6587 llvm::Type *PassTy; 6588 if (isFPArgumentType(SingleElementTy)) { 6589 assert(Size == 32 || Size == 64); 6590 if (Size == 32) 6591 PassTy = llvm::Type::getFloatTy(getVMContext()); 6592 else 6593 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6594 } else 6595 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6596 return ABIArgInfo::getDirect(PassTy); 6597 } 6598 6599 // Non-structure compounds are passed indirectly. 6600 if (isCompoundType(Ty)) 6601 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6602 6603 return ABIArgInfo::getDirect(nullptr); 6604 } 6605 6606 //===----------------------------------------------------------------------===// 6607 // MSP430 ABI Implementation 6608 //===----------------------------------------------------------------------===// 6609 6610 namespace { 6611 6612 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6613 public: 6614 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6615 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6616 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6617 CodeGen::CodeGenModule &M, 6618 ForDefinition_t IsForDefinition) const override; 6619 }; 6620 6621 } 6622 6623 void MSP430TargetCodeGenInfo::setTargetAttributes( 6624 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6625 ForDefinition_t IsForDefinition) const { 6626 if (!IsForDefinition) 6627 return; 6628 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6629 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6630 // Handle 'interrupt' attribute: 6631 llvm::Function *F = cast<llvm::Function>(GV); 6632 6633 // Step 1: Set ISR calling convention. 6634 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6635 6636 // Step 2: Add attributes goodness. 6637 F->addFnAttr(llvm::Attribute::NoInline); 6638 6639 // Step 3: Emit ISR vector alias. 6640 unsigned Num = attr->getNumber() / 2; 6641 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6642 "__isr_" + Twine(Num), F); 6643 } 6644 } 6645 } 6646 6647 //===----------------------------------------------------------------------===// 6648 // MIPS ABI Implementation. This works for both little-endian and 6649 // big-endian variants. 6650 //===----------------------------------------------------------------------===// 6651 6652 namespace { 6653 class MipsABIInfo : public ABIInfo { 6654 bool IsO32; 6655 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6656 void CoerceToIntArgs(uint64_t TySize, 6657 SmallVectorImpl<llvm::Type *> &ArgList) const; 6658 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6659 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6660 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6661 public: 6662 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6663 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6664 StackAlignInBytes(IsO32 ? 8 : 16) {} 6665 6666 ABIArgInfo classifyReturnType(QualType RetTy) const; 6667 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6668 void computeInfo(CGFunctionInfo &FI) const override; 6669 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6670 QualType Ty) const override; 6671 bool shouldSignExtUnsignedType(QualType Ty) const override; 6672 }; 6673 6674 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6675 unsigned SizeOfUnwindException; 6676 public: 6677 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6678 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6679 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6680 6681 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6682 return 29; 6683 } 6684 6685 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6686 CodeGen::CodeGenModule &CGM, 6687 ForDefinition_t IsForDefinition) const override { 6688 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6689 if (!FD) return; 6690 llvm::Function *Fn = cast<llvm::Function>(GV); 6691 6692 if (FD->hasAttr<MipsLongCallAttr>()) 6693 Fn->addFnAttr("long-call"); 6694 else if (FD->hasAttr<MipsShortCallAttr>()) 6695 Fn->addFnAttr("short-call"); 6696 6697 // Other attributes do not have a meaning for declarations. 6698 if (!IsForDefinition) 6699 return; 6700 6701 if (FD->hasAttr<Mips16Attr>()) { 6702 Fn->addFnAttr("mips16"); 6703 } 6704 else if (FD->hasAttr<NoMips16Attr>()) { 6705 Fn->addFnAttr("nomips16"); 6706 } 6707 6708 if (FD->hasAttr<MicroMipsAttr>()) 6709 Fn->addFnAttr("micromips"); 6710 else if (FD->hasAttr<NoMicroMipsAttr>()) 6711 Fn->addFnAttr("nomicromips"); 6712 6713 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6714 if (!Attr) 6715 return; 6716 6717 const char *Kind; 6718 switch (Attr->getInterrupt()) { 6719 case MipsInterruptAttr::eic: Kind = "eic"; break; 6720 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6721 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6722 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6723 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6724 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6725 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6726 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6727 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6728 } 6729 6730 Fn->addFnAttr("interrupt", Kind); 6731 6732 } 6733 6734 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6735 llvm::Value *Address) const override; 6736 6737 unsigned getSizeOfUnwindException() const override { 6738 return SizeOfUnwindException; 6739 } 6740 }; 6741 } 6742 6743 void MipsABIInfo::CoerceToIntArgs( 6744 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6745 llvm::IntegerType *IntTy = 6746 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6747 6748 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6749 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6750 ArgList.push_back(IntTy); 6751 6752 // If necessary, add one more integer type to ArgList. 6753 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6754 6755 if (R) 6756 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6757 } 6758 6759 // In N32/64, an aligned double precision floating point field is passed in 6760 // a register. 6761 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6762 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6763 6764 if (IsO32) { 6765 CoerceToIntArgs(TySize, ArgList); 6766 return llvm::StructType::get(getVMContext(), ArgList); 6767 } 6768 6769 if (Ty->isComplexType()) 6770 return CGT.ConvertType(Ty); 6771 6772 const RecordType *RT = Ty->getAs<RecordType>(); 6773 6774 // Unions/vectors are passed in integer registers. 6775 if (!RT || !RT->isStructureOrClassType()) { 6776 CoerceToIntArgs(TySize, ArgList); 6777 return llvm::StructType::get(getVMContext(), ArgList); 6778 } 6779 6780 const RecordDecl *RD = RT->getDecl(); 6781 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6782 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6783 6784 uint64_t LastOffset = 0; 6785 unsigned idx = 0; 6786 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6787 6788 // Iterate over fields in the struct/class and check if there are any aligned 6789 // double fields. 6790 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6791 i != e; ++i, ++idx) { 6792 const QualType Ty = i->getType(); 6793 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6794 6795 if (!BT || BT->getKind() != BuiltinType::Double) 6796 continue; 6797 6798 uint64_t Offset = Layout.getFieldOffset(idx); 6799 if (Offset % 64) // Ignore doubles that are not aligned. 6800 continue; 6801 6802 // Add ((Offset - LastOffset) / 64) args of type i64. 6803 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6804 ArgList.push_back(I64); 6805 6806 // Add double type. 6807 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6808 LastOffset = Offset + 64; 6809 } 6810 6811 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6812 ArgList.append(IntArgList.begin(), IntArgList.end()); 6813 6814 return llvm::StructType::get(getVMContext(), ArgList); 6815 } 6816 6817 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6818 uint64_t Offset) const { 6819 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6820 return nullptr; 6821 6822 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6823 } 6824 6825 ABIArgInfo 6826 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6827 Ty = useFirstFieldIfTransparentUnion(Ty); 6828 6829 uint64_t OrigOffset = Offset; 6830 uint64_t TySize = getContext().getTypeSize(Ty); 6831 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6832 6833 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6834 (uint64_t)StackAlignInBytes); 6835 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6836 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6837 6838 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6839 // Ignore empty aggregates. 6840 if (TySize == 0) 6841 return ABIArgInfo::getIgnore(); 6842 6843 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6844 Offset = OrigOffset + MinABIStackAlignInBytes; 6845 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6846 } 6847 6848 // If we have reached here, aggregates are passed directly by coercing to 6849 // another structure type. Padding is inserted if the offset of the 6850 // aggregate is unaligned. 6851 ABIArgInfo ArgInfo = 6852 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6853 getPaddingType(OrigOffset, CurrOffset)); 6854 ArgInfo.setInReg(true); 6855 return ArgInfo; 6856 } 6857 6858 // Treat an enum type as its underlying type. 6859 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6860 Ty = EnumTy->getDecl()->getIntegerType(); 6861 6862 // All integral types are promoted to the GPR width. 6863 if (Ty->isIntegralOrEnumerationType()) 6864 return ABIArgInfo::getExtend(); 6865 6866 return ABIArgInfo::getDirect( 6867 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6868 } 6869 6870 llvm::Type* 6871 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6872 const RecordType *RT = RetTy->getAs<RecordType>(); 6873 SmallVector<llvm::Type*, 8> RTList; 6874 6875 if (RT && RT->isStructureOrClassType()) { 6876 const RecordDecl *RD = RT->getDecl(); 6877 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6878 unsigned FieldCnt = Layout.getFieldCount(); 6879 6880 // N32/64 returns struct/classes in floating point registers if the 6881 // following conditions are met: 6882 // 1. The size of the struct/class is no larger than 128-bit. 6883 // 2. The struct/class has one or two fields all of which are floating 6884 // point types. 6885 // 3. The offset of the first field is zero (this follows what gcc does). 6886 // 6887 // Any other composite results are returned in integer registers. 6888 // 6889 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6890 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6891 for (; b != e; ++b) { 6892 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6893 6894 if (!BT || !BT->isFloatingPoint()) 6895 break; 6896 6897 RTList.push_back(CGT.ConvertType(b->getType())); 6898 } 6899 6900 if (b == e) 6901 return llvm::StructType::get(getVMContext(), RTList, 6902 RD->hasAttr<PackedAttr>()); 6903 6904 RTList.clear(); 6905 } 6906 } 6907 6908 CoerceToIntArgs(Size, RTList); 6909 return llvm::StructType::get(getVMContext(), RTList); 6910 } 6911 6912 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6913 uint64_t Size = getContext().getTypeSize(RetTy); 6914 6915 if (RetTy->isVoidType()) 6916 return ABIArgInfo::getIgnore(); 6917 6918 // O32 doesn't treat zero-sized structs differently from other structs. 6919 // However, N32/N64 ignores zero sized return values. 6920 if (!IsO32 && Size == 0) 6921 return ABIArgInfo::getIgnore(); 6922 6923 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6924 if (Size <= 128) { 6925 if (RetTy->isAnyComplexType()) 6926 return ABIArgInfo::getDirect(); 6927 6928 // O32 returns integer vectors in registers and N32/N64 returns all small 6929 // aggregates in registers. 6930 if (!IsO32 || 6931 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6932 ABIArgInfo ArgInfo = 6933 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6934 ArgInfo.setInReg(true); 6935 return ArgInfo; 6936 } 6937 } 6938 6939 return getNaturalAlignIndirect(RetTy); 6940 } 6941 6942 // Treat an enum type as its underlying type. 6943 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6944 RetTy = EnumTy->getDecl()->getIntegerType(); 6945 6946 return (RetTy->isPromotableIntegerType() ? 6947 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6948 } 6949 6950 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6951 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6952 if (!getCXXABI().classifyReturnType(FI)) 6953 RetInfo = classifyReturnType(FI.getReturnType()); 6954 6955 // Check if a pointer to an aggregate is passed as a hidden argument. 6956 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6957 6958 for (auto &I : FI.arguments()) 6959 I.info = classifyArgumentType(I.type, Offset); 6960 } 6961 6962 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6963 QualType OrigTy) const { 6964 QualType Ty = OrigTy; 6965 6966 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6967 // Pointers are also promoted in the same way but this only matters for N32. 6968 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6969 unsigned PtrWidth = getTarget().getPointerWidth(0); 6970 bool DidPromote = false; 6971 if ((Ty->isIntegerType() && 6972 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6973 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6974 DidPromote = true; 6975 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6976 Ty->isSignedIntegerType()); 6977 } 6978 6979 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6980 6981 // The alignment of things in the argument area is never larger than 6982 // StackAlignInBytes. 6983 TyInfo.second = 6984 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6985 6986 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6987 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6988 6989 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6990 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6991 6992 6993 // If there was a promotion, "unpromote" into a temporary. 6994 // TODO: can we just use a pointer into a subset of the original slot? 6995 if (DidPromote) { 6996 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6997 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6998 6999 // Truncate down to the right width. 7000 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7001 : CGF.IntPtrTy); 7002 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7003 if (OrigTy->isPointerType()) 7004 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7005 7006 CGF.Builder.CreateStore(V, Temp); 7007 Addr = Temp; 7008 } 7009 7010 return Addr; 7011 } 7012 7013 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 7014 int TySize = getContext().getTypeSize(Ty); 7015 7016 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7017 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7018 return true; 7019 7020 return false; 7021 } 7022 7023 bool 7024 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7025 llvm::Value *Address) const { 7026 // This information comes from gcc's implementation, which seems to 7027 // as canonical as it gets. 7028 7029 // Everything on MIPS is 4 bytes. Double-precision FP registers 7030 // are aliased to pairs of single-precision FP registers. 7031 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7032 7033 // 0-31 are the general purpose registers, $0 - $31. 7034 // 32-63 are the floating-point registers, $f0 - $f31. 7035 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7036 // 66 is the (notional, I think) register for signal-handler return. 7037 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7038 7039 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7040 // They are one bit wide and ignored here. 7041 7042 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7043 // (coprocessor 1 is the FP unit) 7044 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7045 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7046 // 176-181 are the DSP accumulator registers. 7047 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7048 return false; 7049 } 7050 7051 //===----------------------------------------------------------------------===// 7052 // AVR ABI Implementation. 7053 //===----------------------------------------------------------------------===// 7054 7055 namespace { 7056 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7057 public: 7058 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7059 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7060 7061 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7062 CodeGen::CodeGenModule &CGM, 7063 ForDefinition_t IsForDefinition) const override { 7064 if (!IsForDefinition) 7065 return; 7066 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7067 if (!FD) return; 7068 auto *Fn = cast<llvm::Function>(GV); 7069 7070 if (FD->getAttr<AVRInterruptAttr>()) 7071 Fn->addFnAttr("interrupt"); 7072 7073 if (FD->getAttr<AVRSignalAttr>()) 7074 Fn->addFnAttr("signal"); 7075 } 7076 }; 7077 } 7078 7079 //===----------------------------------------------------------------------===// 7080 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7081 // Currently subclassed only to implement custom OpenCL C function attribute 7082 // handling. 7083 //===----------------------------------------------------------------------===// 7084 7085 namespace { 7086 7087 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7088 public: 7089 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7090 : DefaultTargetCodeGenInfo(CGT) {} 7091 7092 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7093 CodeGen::CodeGenModule &M, 7094 ForDefinition_t IsForDefinition) const override; 7095 }; 7096 7097 void TCETargetCodeGenInfo::setTargetAttributes( 7098 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7099 ForDefinition_t IsForDefinition) const { 7100 if (!IsForDefinition) 7101 return; 7102 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7103 if (!FD) return; 7104 7105 llvm::Function *F = cast<llvm::Function>(GV); 7106 7107 if (M.getLangOpts().OpenCL) { 7108 if (FD->hasAttr<OpenCLKernelAttr>()) { 7109 // OpenCL C Kernel functions are not subject to inlining 7110 F->addFnAttr(llvm::Attribute::NoInline); 7111 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7112 if (Attr) { 7113 // Convert the reqd_work_group_size() attributes to metadata. 7114 llvm::LLVMContext &Context = F->getContext(); 7115 llvm::NamedMDNode *OpenCLMetadata = 7116 M.getModule().getOrInsertNamedMetadata( 7117 "opencl.kernel_wg_size_info"); 7118 7119 SmallVector<llvm::Metadata *, 5> Operands; 7120 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7121 7122 Operands.push_back( 7123 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7124 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7125 Operands.push_back( 7126 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7127 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7128 Operands.push_back( 7129 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7130 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7131 7132 // Add a boolean constant operand for "required" (true) or "hint" 7133 // (false) for implementing the work_group_size_hint attr later. 7134 // Currently always true as the hint is not yet implemented. 7135 Operands.push_back( 7136 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7137 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7138 } 7139 } 7140 } 7141 } 7142 7143 } 7144 7145 //===----------------------------------------------------------------------===// 7146 // Hexagon ABI Implementation 7147 //===----------------------------------------------------------------------===// 7148 7149 namespace { 7150 7151 class HexagonABIInfo : public ABIInfo { 7152 7153 7154 public: 7155 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7156 7157 private: 7158 7159 ABIArgInfo classifyReturnType(QualType RetTy) const; 7160 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7161 7162 void computeInfo(CGFunctionInfo &FI) const override; 7163 7164 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7165 QualType Ty) const override; 7166 }; 7167 7168 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7169 public: 7170 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7171 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7172 7173 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7174 return 29; 7175 } 7176 }; 7177 7178 } 7179 7180 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7181 if (!getCXXABI().classifyReturnType(FI)) 7182 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7183 for (auto &I : FI.arguments()) 7184 I.info = classifyArgumentType(I.type); 7185 } 7186 7187 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7188 if (!isAggregateTypeForABI(Ty)) { 7189 // Treat an enum type as its underlying type. 7190 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7191 Ty = EnumTy->getDecl()->getIntegerType(); 7192 7193 return (Ty->isPromotableIntegerType() ? 7194 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7195 } 7196 7197 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7198 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7199 7200 // Ignore empty records. 7201 if (isEmptyRecord(getContext(), Ty, true)) 7202 return ABIArgInfo::getIgnore(); 7203 7204 uint64_t Size = getContext().getTypeSize(Ty); 7205 if (Size > 64) 7206 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7207 // Pass in the smallest viable integer type. 7208 else if (Size > 32) 7209 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7210 else if (Size > 16) 7211 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7212 else if (Size > 8) 7213 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7214 else 7215 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7216 } 7217 7218 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7219 if (RetTy->isVoidType()) 7220 return ABIArgInfo::getIgnore(); 7221 7222 // Large vector types should be returned via memory. 7223 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7224 return getNaturalAlignIndirect(RetTy); 7225 7226 if (!isAggregateTypeForABI(RetTy)) { 7227 // Treat an enum type as its underlying type. 7228 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7229 RetTy = EnumTy->getDecl()->getIntegerType(); 7230 7231 return (RetTy->isPromotableIntegerType() ? 7232 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7233 } 7234 7235 if (isEmptyRecord(getContext(), RetTy, true)) 7236 return ABIArgInfo::getIgnore(); 7237 7238 // Aggregates <= 8 bytes are returned in r0; other aggregates 7239 // are returned indirectly. 7240 uint64_t Size = getContext().getTypeSize(RetTy); 7241 if (Size <= 64) { 7242 // Return in the smallest viable integer type. 7243 if (Size <= 8) 7244 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7245 if (Size <= 16) 7246 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7247 if (Size <= 32) 7248 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7249 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7250 } 7251 7252 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7253 } 7254 7255 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7256 QualType Ty) const { 7257 // FIXME: Someone needs to audit that this handle alignment correctly. 7258 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7259 getContext().getTypeInfoInChars(Ty), 7260 CharUnits::fromQuantity(4), 7261 /*AllowHigherAlign*/ true); 7262 } 7263 7264 //===----------------------------------------------------------------------===// 7265 // Lanai ABI Implementation 7266 //===----------------------------------------------------------------------===// 7267 7268 namespace { 7269 class LanaiABIInfo : public DefaultABIInfo { 7270 public: 7271 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7272 7273 bool shouldUseInReg(QualType Ty, CCState &State) const; 7274 7275 void computeInfo(CGFunctionInfo &FI) const override { 7276 CCState State(FI.getCallingConvention()); 7277 // Lanai uses 4 registers to pass arguments unless the function has the 7278 // regparm attribute set. 7279 if (FI.getHasRegParm()) { 7280 State.FreeRegs = FI.getRegParm(); 7281 } else { 7282 State.FreeRegs = 4; 7283 } 7284 7285 if (!getCXXABI().classifyReturnType(FI)) 7286 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7287 for (auto &I : FI.arguments()) 7288 I.info = classifyArgumentType(I.type, State); 7289 } 7290 7291 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7292 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7293 }; 7294 } // end anonymous namespace 7295 7296 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7297 unsigned Size = getContext().getTypeSize(Ty); 7298 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7299 7300 if (SizeInRegs == 0) 7301 return false; 7302 7303 if (SizeInRegs > State.FreeRegs) { 7304 State.FreeRegs = 0; 7305 return false; 7306 } 7307 7308 State.FreeRegs -= SizeInRegs; 7309 7310 return true; 7311 } 7312 7313 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7314 CCState &State) const { 7315 if (!ByVal) { 7316 if (State.FreeRegs) { 7317 --State.FreeRegs; // Non-byval indirects just use one pointer. 7318 return getNaturalAlignIndirectInReg(Ty); 7319 } 7320 return getNaturalAlignIndirect(Ty, false); 7321 } 7322 7323 // Compute the byval alignment. 7324 const unsigned MinABIStackAlignInBytes = 4; 7325 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7326 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7327 /*Realign=*/TypeAlign > 7328 MinABIStackAlignInBytes); 7329 } 7330 7331 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7332 CCState &State) const { 7333 // Check with the C++ ABI first. 7334 const RecordType *RT = Ty->getAs<RecordType>(); 7335 if (RT) { 7336 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7337 if (RAA == CGCXXABI::RAA_Indirect) { 7338 return getIndirectResult(Ty, /*ByVal=*/false, State); 7339 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7340 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7341 } 7342 } 7343 7344 if (isAggregateTypeForABI(Ty)) { 7345 // Structures with flexible arrays are always indirect. 7346 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7347 return getIndirectResult(Ty, /*ByVal=*/true, State); 7348 7349 // Ignore empty structs/unions. 7350 if (isEmptyRecord(getContext(), Ty, true)) 7351 return ABIArgInfo::getIgnore(); 7352 7353 llvm::LLVMContext &LLVMContext = getVMContext(); 7354 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7355 if (SizeInRegs <= State.FreeRegs) { 7356 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7357 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7358 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7359 State.FreeRegs -= SizeInRegs; 7360 return ABIArgInfo::getDirectInReg(Result); 7361 } else { 7362 State.FreeRegs = 0; 7363 } 7364 return getIndirectResult(Ty, true, State); 7365 } 7366 7367 // Treat an enum type as its underlying type. 7368 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7369 Ty = EnumTy->getDecl()->getIntegerType(); 7370 7371 bool InReg = shouldUseInReg(Ty, State); 7372 if (Ty->isPromotableIntegerType()) { 7373 if (InReg) 7374 return ABIArgInfo::getDirectInReg(); 7375 return ABIArgInfo::getExtend(); 7376 } 7377 if (InReg) 7378 return ABIArgInfo::getDirectInReg(); 7379 return ABIArgInfo::getDirect(); 7380 } 7381 7382 namespace { 7383 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7384 public: 7385 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7386 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7387 }; 7388 } 7389 7390 //===----------------------------------------------------------------------===// 7391 // AMDGPU ABI Implementation 7392 //===----------------------------------------------------------------------===// 7393 7394 namespace { 7395 7396 class AMDGPUABIInfo final : public DefaultABIInfo { 7397 private: 7398 static const unsigned MaxNumRegsForArgsRet = 16; 7399 7400 unsigned numRegsForType(QualType Ty) const; 7401 7402 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7403 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7404 uint64_t Members) const override; 7405 7406 public: 7407 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7408 DefaultABIInfo(CGT) {} 7409 7410 ABIArgInfo classifyReturnType(QualType RetTy) const; 7411 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7412 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7413 7414 void computeInfo(CGFunctionInfo &FI) const override; 7415 }; 7416 7417 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7418 return true; 7419 } 7420 7421 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7422 const Type *Base, uint64_t Members) const { 7423 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7424 7425 // Homogeneous Aggregates may occupy at most 16 registers. 7426 return Members * NumRegs <= MaxNumRegsForArgsRet; 7427 } 7428 7429 /// Estimate number of registers the type will use when passed in registers. 7430 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7431 unsigned NumRegs = 0; 7432 7433 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7434 // Compute from the number of elements. The reported size is based on the 7435 // in-memory size, which includes the padding 4th element for 3-vectors. 7436 QualType EltTy = VT->getElementType(); 7437 unsigned EltSize = getContext().getTypeSize(EltTy); 7438 7439 // 16-bit element vectors should be passed as packed. 7440 if (EltSize == 16) 7441 return (VT->getNumElements() + 1) / 2; 7442 7443 unsigned EltNumRegs = (EltSize + 31) / 32; 7444 return EltNumRegs * VT->getNumElements(); 7445 } 7446 7447 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7448 const RecordDecl *RD = RT->getDecl(); 7449 assert(!RD->hasFlexibleArrayMember()); 7450 7451 for (const FieldDecl *Field : RD->fields()) { 7452 QualType FieldTy = Field->getType(); 7453 NumRegs += numRegsForType(FieldTy); 7454 } 7455 7456 return NumRegs; 7457 } 7458 7459 return (getContext().getTypeSize(Ty) + 31) / 32; 7460 } 7461 7462 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7463 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7464 7465 if (!getCXXABI().classifyReturnType(FI)) 7466 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7467 7468 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7469 for (auto &Arg : FI.arguments()) { 7470 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7471 Arg.info = classifyKernelArgumentType(Arg.type); 7472 } else { 7473 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7474 } 7475 } 7476 } 7477 7478 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7479 if (isAggregateTypeForABI(RetTy)) { 7480 // Records with non-trivial destructors/copy-constructors should not be 7481 // returned by value. 7482 if (!getRecordArgABI(RetTy, getCXXABI())) { 7483 // Ignore empty structs/unions. 7484 if (isEmptyRecord(getContext(), RetTy, true)) 7485 return ABIArgInfo::getIgnore(); 7486 7487 // Lower single-element structs to just return a regular value. 7488 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7489 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7490 7491 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7492 const RecordDecl *RD = RT->getDecl(); 7493 if (RD->hasFlexibleArrayMember()) 7494 return DefaultABIInfo::classifyReturnType(RetTy); 7495 } 7496 7497 // Pack aggregates <= 4 bytes into single VGPR or pair. 7498 uint64_t Size = getContext().getTypeSize(RetTy); 7499 if (Size <= 16) 7500 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7501 7502 if (Size <= 32) 7503 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7504 7505 if (Size <= 64) { 7506 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7507 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7508 } 7509 7510 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7511 return ABIArgInfo::getDirect(); 7512 } 7513 } 7514 7515 // Otherwise just do the default thing. 7516 return DefaultABIInfo::classifyReturnType(RetTy); 7517 } 7518 7519 /// For kernels all parameters are really passed in a special buffer. It doesn't 7520 /// make sense to pass anything byval, so everything must be direct. 7521 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7522 Ty = useFirstFieldIfTransparentUnion(Ty); 7523 7524 // TODO: Can we omit empty structs? 7525 7526 // Coerce single element structs to its element. 7527 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7528 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7529 7530 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7531 // individual elements, which confuses the Clover OpenCL backend; therefore we 7532 // have to set it to false here. Other args of getDirect() are just defaults. 7533 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7534 } 7535 7536 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7537 unsigned &NumRegsLeft) const { 7538 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7539 7540 Ty = useFirstFieldIfTransparentUnion(Ty); 7541 7542 if (isAggregateTypeForABI(Ty)) { 7543 // Records with non-trivial destructors/copy-constructors should not be 7544 // passed by value. 7545 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7546 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7547 7548 // Ignore empty structs/unions. 7549 if (isEmptyRecord(getContext(), Ty, true)) 7550 return ABIArgInfo::getIgnore(); 7551 7552 // Lower single-element structs to just pass a regular value. TODO: We 7553 // could do reasonable-size multiple-element structs too, using getExpand(), 7554 // though watch out for things like bitfields. 7555 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7556 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7557 7558 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7559 const RecordDecl *RD = RT->getDecl(); 7560 if (RD->hasFlexibleArrayMember()) 7561 return DefaultABIInfo::classifyArgumentType(Ty); 7562 } 7563 7564 // Pack aggregates <= 8 bytes into single VGPR or pair. 7565 uint64_t Size = getContext().getTypeSize(Ty); 7566 if (Size <= 64) { 7567 unsigned NumRegs = (Size + 31) / 32; 7568 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7569 7570 if (Size <= 16) 7571 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7572 7573 if (Size <= 32) 7574 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7575 7576 // XXX: Should this be i64 instead, and should the limit increase? 7577 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7578 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7579 } 7580 7581 if (NumRegsLeft > 0) { 7582 unsigned NumRegs = numRegsForType(Ty); 7583 if (NumRegsLeft >= NumRegs) { 7584 NumRegsLeft -= NumRegs; 7585 return ABIArgInfo::getDirect(); 7586 } 7587 } 7588 } 7589 7590 // Otherwise just do the default thing. 7591 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7592 if (!ArgInfo.isIndirect()) { 7593 unsigned NumRegs = numRegsForType(Ty); 7594 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7595 } 7596 7597 return ArgInfo; 7598 } 7599 7600 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7601 public: 7602 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7603 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7604 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7605 CodeGen::CodeGenModule &M, 7606 ForDefinition_t IsForDefinition) const override; 7607 unsigned getOpenCLKernelCallingConv() const override; 7608 7609 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7610 llvm::PointerType *T, QualType QT) const override; 7611 7612 unsigned getASTAllocaAddressSpace() const override { 7613 return LangAS::FirstTargetAddressSpace + 7614 getABIInfo().getDataLayout().getAllocaAddrSpace(); 7615 } 7616 unsigned getGlobalVarAddressSpace(CodeGenModule &CGM, 7617 const VarDecl *D) const override; 7618 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7619 llvm::LLVMContext &C) const override; 7620 }; 7621 } 7622 7623 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7624 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7625 ForDefinition_t IsForDefinition) const { 7626 if (!IsForDefinition) 7627 return; 7628 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7629 if (!FD) 7630 return; 7631 7632 llvm::Function *F = cast<llvm::Function>(GV); 7633 7634 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7635 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7636 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7637 if (ReqdWGS || FlatWGS) { 7638 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7639 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7640 if (ReqdWGS && Min == 0 && Max == 0) 7641 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7642 7643 if (Min != 0) { 7644 assert(Min <= Max && "Min must be less than or equal Max"); 7645 7646 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7647 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7648 } else 7649 assert(Max == 0 && "Max must be zero"); 7650 } 7651 7652 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7653 unsigned Min = Attr->getMin(); 7654 unsigned Max = Attr->getMax(); 7655 7656 if (Min != 0) { 7657 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7658 7659 std::string AttrVal = llvm::utostr(Min); 7660 if (Max != 0) 7661 AttrVal = AttrVal + "," + llvm::utostr(Max); 7662 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7663 } else 7664 assert(Max == 0 && "Max must be zero"); 7665 } 7666 7667 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7668 unsigned NumSGPR = Attr->getNumSGPR(); 7669 7670 if (NumSGPR != 0) 7671 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7672 } 7673 7674 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7675 uint32_t NumVGPR = Attr->getNumVGPR(); 7676 7677 if (NumVGPR != 0) 7678 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7679 } 7680 } 7681 7682 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7683 return llvm::CallingConv::AMDGPU_KERNEL; 7684 } 7685 7686 // Currently LLVM assumes null pointers always have value 0, 7687 // which results in incorrectly transformed IR. Therefore, instead of 7688 // emitting null pointers in private and local address spaces, a null 7689 // pointer in generic address space is emitted which is casted to a 7690 // pointer in local or private address space. 7691 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7692 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7693 QualType QT) const { 7694 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7695 return llvm::ConstantPointerNull::get(PT); 7696 7697 auto &Ctx = CGM.getContext(); 7698 auto NPT = llvm::PointerType::get(PT->getElementType(), 7699 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7700 return llvm::ConstantExpr::getAddrSpaceCast( 7701 llvm::ConstantPointerNull::get(NPT), PT); 7702 } 7703 7704 unsigned 7705 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7706 const VarDecl *D) const { 7707 assert(!CGM.getLangOpts().OpenCL && 7708 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7709 "Address space agnostic languages only"); 7710 unsigned DefaultGlobalAS = 7711 LangAS::FirstTargetAddressSpace + 7712 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 7713 if (!D) 7714 return DefaultGlobalAS; 7715 7716 unsigned AddrSpace = D->getType().getAddressSpace(); 7717 assert(AddrSpace == LangAS::Default || 7718 AddrSpace >= LangAS::FirstTargetAddressSpace); 7719 if (AddrSpace != LangAS::Default) 7720 return AddrSpace; 7721 7722 if (CGM.isTypeConstant(D->getType(), false)) { 7723 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7724 return ConstAS.getValue(); 7725 } 7726 return DefaultGlobalAS; 7727 } 7728 7729 llvm::SyncScope::ID 7730 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7731 llvm::LLVMContext &C) const { 7732 StringRef Name; 7733 switch (S) { 7734 case SyncScope::OpenCLWorkGroup: 7735 Name = "workgroup"; 7736 break; 7737 case SyncScope::OpenCLDevice: 7738 Name = "agent"; 7739 break; 7740 case SyncScope::OpenCLAllSVMDevices: 7741 Name = ""; 7742 break; 7743 case SyncScope::OpenCLSubGroup: 7744 Name = "subgroup"; 7745 } 7746 return C.getOrInsertSyncScopeID(Name); 7747 } 7748 7749 //===----------------------------------------------------------------------===// 7750 // SPARC v8 ABI Implementation. 7751 // Based on the SPARC Compliance Definition version 2.4.1. 7752 // 7753 // Ensures that complex values are passed in registers. 7754 // 7755 namespace { 7756 class SparcV8ABIInfo : public DefaultABIInfo { 7757 public: 7758 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7759 7760 private: 7761 ABIArgInfo classifyReturnType(QualType RetTy) const; 7762 void computeInfo(CGFunctionInfo &FI) const override; 7763 }; 7764 } // end anonymous namespace 7765 7766 7767 ABIArgInfo 7768 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7769 if (Ty->isAnyComplexType()) { 7770 return ABIArgInfo::getDirect(); 7771 } 7772 else { 7773 return DefaultABIInfo::classifyReturnType(Ty); 7774 } 7775 } 7776 7777 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7778 7779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7780 for (auto &Arg : FI.arguments()) 7781 Arg.info = classifyArgumentType(Arg.type); 7782 } 7783 7784 namespace { 7785 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7786 public: 7787 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7788 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7789 }; 7790 } // end anonymous namespace 7791 7792 //===----------------------------------------------------------------------===// 7793 // SPARC v9 ABI Implementation. 7794 // Based on the SPARC Compliance Definition version 2.4.1. 7795 // 7796 // Function arguments a mapped to a nominal "parameter array" and promoted to 7797 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7798 // the array, structs larger than 16 bytes are passed indirectly. 7799 // 7800 // One case requires special care: 7801 // 7802 // struct mixed { 7803 // int i; 7804 // float f; 7805 // }; 7806 // 7807 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7808 // parameter array, but the int is passed in an integer register, and the float 7809 // is passed in a floating point register. This is represented as two arguments 7810 // with the LLVM IR inreg attribute: 7811 // 7812 // declare void f(i32 inreg %i, float inreg %f) 7813 // 7814 // The code generator will only allocate 4 bytes from the parameter array for 7815 // the inreg arguments. All other arguments are allocated a multiple of 8 7816 // bytes. 7817 // 7818 namespace { 7819 class SparcV9ABIInfo : public ABIInfo { 7820 public: 7821 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7822 7823 private: 7824 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7825 void computeInfo(CGFunctionInfo &FI) const override; 7826 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7827 QualType Ty) const override; 7828 7829 // Coercion type builder for structs passed in registers. The coercion type 7830 // serves two purposes: 7831 // 7832 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7833 // in registers. 7834 // 2. Expose aligned floating point elements as first-level elements, so the 7835 // code generator knows to pass them in floating point registers. 7836 // 7837 // We also compute the InReg flag which indicates that the struct contains 7838 // aligned 32-bit floats. 7839 // 7840 struct CoerceBuilder { 7841 llvm::LLVMContext &Context; 7842 const llvm::DataLayout &DL; 7843 SmallVector<llvm::Type*, 8> Elems; 7844 uint64_t Size; 7845 bool InReg; 7846 7847 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7848 : Context(c), DL(dl), Size(0), InReg(false) {} 7849 7850 // Pad Elems with integers until Size is ToSize. 7851 void pad(uint64_t ToSize) { 7852 assert(ToSize >= Size && "Cannot remove elements"); 7853 if (ToSize == Size) 7854 return; 7855 7856 // Finish the current 64-bit word. 7857 uint64_t Aligned = llvm::alignTo(Size, 64); 7858 if (Aligned > Size && Aligned <= ToSize) { 7859 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7860 Size = Aligned; 7861 } 7862 7863 // Add whole 64-bit words. 7864 while (Size + 64 <= ToSize) { 7865 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7866 Size += 64; 7867 } 7868 7869 // Final in-word padding. 7870 if (Size < ToSize) { 7871 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7872 Size = ToSize; 7873 } 7874 } 7875 7876 // Add a floating point element at Offset. 7877 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7878 // Unaligned floats are treated as integers. 7879 if (Offset % Bits) 7880 return; 7881 // The InReg flag is only required if there are any floats < 64 bits. 7882 if (Bits < 64) 7883 InReg = true; 7884 pad(Offset); 7885 Elems.push_back(Ty); 7886 Size = Offset + Bits; 7887 } 7888 7889 // Add a struct type to the coercion type, starting at Offset (in bits). 7890 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7891 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7892 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7893 llvm::Type *ElemTy = StrTy->getElementType(i); 7894 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7895 switch (ElemTy->getTypeID()) { 7896 case llvm::Type::StructTyID: 7897 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7898 break; 7899 case llvm::Type::FloatTyID: 7900 addFloat(ElemOffset, ElemTy, 32); 7901 break; 7902 case llvm::Type::DoubleTyID: 7903 addFloat(ElemOffset, ElemTy, 64); 7904 break; 7905 case llvm::Type::FP128TyID: 7906 addFloat(ElemOffset, ElemTy, 128); 7907 break; 7908 case llvm::Type::PointerTyID: 7909 if (ElemOffset % 64 == 0) { 7910 pad(ElemOffset); 7911 Elems.push_back(ElemTy); 7912 Size += 64; 7913 } 7914 break; 7915 default: 7916 break; 7917 } 7918 } 7919 } 7920 7921 // Check if Ty is a usable substitute for the coercion type. 7922 bool isUsableType(llvm::StructType *Ty) const { 7923 return llvm::makeArrayRef(Elems) == Ty->elements(); 7924 } 7925 7926 // Get the coercion type as a literal struct type. 7927 llvm::Type *getType() const { 7928 if (Elems.size() == 1) 7929 return Elems.front(); 7930 else 7931 return llvm::StructType::get(Context, Elems); 7932 } 7933 }; 7934 }; 7935 } // end anonymous namespace 7936 7937 ABIArgInfo 7938 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7939 if (Ty->isVoidType()) 7940 return ABIArgInfo::getIgnore(); 7941 7942 uint64_t Size = getContext().getTypeSize(Ty); 7943 7944 // Anything too big to fit in registers is passed with an explicit indirect 7945 // pointer / sret pointer. 7946 if (Size > SizeLimit) 7947 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7948 7949 // Treat an enum type as its underlying type. 7950 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7951 Ty = EnumTy->getDecl()->getIntegerType(); 7952 7953 // Integer types smaller than a register are extended. 7954 if (Size < 64 && Ty->isIntegerType()) 7955 return ABIArgInfo::getExtend(); 7956 7957 // Other non-aggregates go in registers. 7958 if (!isAggregateTypeForABI(Ty)) 7959 return ABIArgInfo::getDirect(); 7960 7961 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7962 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7963 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7964 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7965 7966 // This is a small aggregate type that should be passed in registers. 7967 // Build a coercion type from the LLVM struct type. 7968 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7969 if (!StrTy) 7970 return ABIArgInfo::getDirect(); 7971 7972 CoerceBuilder CB(getVMContext(), getDataLayout()); 7973 CB.addStruct(0, StrTy); 7974 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7975 7976 // Try to use the original type for coercion. 7977 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7978 7979 if (CB.InReg) 7980 return ABIArgInfo::getDirectInReg(CoerceTy); 7981 else 7982 return ABIArgInfo::getDirect(CoerceTy); 7983 } 7984 7985 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7986 QualType Ty) const { 7987 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7988 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7989 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7990 AI.setCoerceToType(ArgTy); 7991 7992 CharUnits SlotSize = CharUnits::fromQuantity(8); 7993 7994 CGBuilderTy &Builder = CGF.Builder; 7995 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7996 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7997 7998 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7999 8000 Address ArgAddr = Address::invalid(); 8001 CharUnits Stride; 8002 switch (AI.getKind()) { 8003 case ABIArgInfo::Expand: 8004 case ABIArgInfo::CoerceAndExpand: 8005 case ABIArgInfo::InAlloca: 8006 llvm_unreachable("Unsupported ABI kind for va_arg"); 8007 8008 case ABIArgInfo::Extend: { 8009 Stride = SlotSize; 8010 CharUnits Offset = SlotSize - TypeInfo.first; 8011 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8012 break; 8013 } 8014 8015 case ABIArgInfo::Direct: { 8016 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8017 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8018 ArgAddr = Addr; 8019 break; 8020 } 8021 8022 case ABIArgInfo::Indirect: 8023 Stride = SlotSize; 8024 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8025 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8026 TypeInfo.second); 8027 break; 8028 8029 case ABIArgInfo::Ignore: 8030 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8031 } 8032 8033 // Update VAList. 8034 llvm::Value *NextPtr = 8035 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8036 Builder.CreateStore(NextPtr, VAListAddr); 8037 8038 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8039 } 8040 8041 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8042 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8043 for (auto &I : FI.arguments()) 8044 I.info = classifyType(I.type, 16 * 8); 8045 } 8046 8047 namespace { 8048 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8049 public: 8050 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8051 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8052 8053 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8054 return 14; 8055 } 8056 8057 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8058 llvm::Value *Address) const override; 8059 }; 8060 } // end anonymous namespace 8061 8062 bool 8063 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8064 llvm::Value *Address) const { 8065 // This is calculated from the LLVM and GCC tables and verified 8066 // against gcc output. AFAIK all ABIs use the same encoding. 8067 8068 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8069 8070 llvm::IntegerType *i8 = CGF.Int8Ty; 8071 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8072 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8073 8074 // 0-31: the 8-byte general-purpose registers 8075 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8076 8077 // 32-63: f0-31, the 4-byte floating-point registers 8078 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8079 8080 // Y = 64 8081 // PSR = 65 8082 // WIM = 66 8083 // TBR = 67 8084 // PC = 68 8085 // NPC = 69 8086 // FSR = 70 8087 // CSR = 71 8088 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8089 8090 // 72-87: d0-15, the 8-byte floating-point registers 8091 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8092 8093 return false; 8094 } 8095 8096 8097 //===----------------------------------------------------------------------===// 8098 // XCore ABI Implementation 8099 //===----------------------------------------------------------------------===// 8100 8101 namespace { 8102 8103 /// A SmallStringEnc instance is used to build up the TypeString by passing 8104 /// it by reference between functions that append to it. 8105 typedef llvm::SmallString<128> SmallStringEnc; 8106 8107 /// TypeStringCache caches the meta encodings of Types. 8108 /// 8109 /// The reason for caching TypeStrings is two fold: 8110 /// 1. To cache a type's encoding for later uses; 8111 /// 2. As a means to break recursive member type inclusion. 8112 /// 8113 /// A cache Entry can have a Status of: 8114 /// NonRecursive: The type encoding is not recursive; 8115 /// Recursive: The type encoding is recursive; 8116 /// Incomplete: An incomplete TypeString; 8117 /// IncompleteUsed: An incomplete TypeString that has been used in a 8118 /// Recursive type encoding. 8119 /// 8120 /// A NonRecursive entry will have all of its sub-members expanded as fully 8121 /// as possible. Whilst it may contain types which are recursive, the type 8122 /// itself is not recursive and thus its encoding may be safely used whenever 8123 /// the type is encountered. 8124 /// 8125 /// A Recursive entry will have all of its sub-members expanded as fully as 8126 /// possible. The type itself is recursive and it may contain other types which 8127 /// are recursive. The Recursive encoding must not be used during the expansion 8128 /// of a recursive type's recursive branch. For simplicity the code uses 8129 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8130 /// 8131 /// An Incomplete entry is always a RecordType and only encodes its 8132 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8133 /// are placed into the cache during type expansion as a means to identify and 8134 /// handle recursive inclusion of types as sub-members. If there is recursion 8135 /// the entry becomes IncompleteUsed. 8136 /// 8137 /// During the expansion of a RecordType's members: 8138 /// 8139 /// If the cache contains a NonRecursive encoding for the member type, the 8140 /// cached encoding is used; 8141 /// 8142 /// If the cache contains a Recursive encoding for the member type, the 8143 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8144 /// 8145 /// If the member is a RecordType, an Incomplete encoding is placed into the 8146 /// cache to break potential recursive inclusion of itself as a sub-member; 8147 /// 8148 /// Once a member RecordType has been expanded, its temporary incomplete 8149 /// entry is removed from the cache. If a Recursive encoding was swapped out 8150 /// it is swapped back in; 8151 /// 8152 /// If an incomplete entry is used to expand a sub-member, the incomplete 8153 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8154 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8155 /// 8156 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8157 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8158 /// Else the member is part of a recursive type and thus the recursion has 8159 /// been exited too soon for the encoding to be correct for the member. 8160 /// 8161 class TypeStringCache { 8162 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8163 struct Entry { 8164 std::string Str; // The encoded TypeString for the type. 8165 enum Status State; // Information about the encoding in 'Str'. 8166 std::string Swapped; // A temporary place holder for a Recursive encoding 8167 // during the expansion of RecordType's members. 8168 }; 8169 std::map<const IdentifierInfo *, struct Entry> Map; 8170 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8171 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8172 public: 8173 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8174 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8175 bool removeIncomplete(const IdentifierInfo *ID); 8176 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8177 bool IsRecursive); 8178 StringRef lookupStr(const IdentifierInfo *ID); 8179 }; 8180 8181 /// TypeString encodings for enum & union fields must be order. 8182 /// FieldEncoding is a helper for this ordering process. 8183 class FieldEncoding { 8184 bool HasName; 8185 std::string Enc; 8186 public: 8187 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8188 StringRef str() { return Enc; } 8189 bool operator<(const FieldEncoding &rhs) const { 8190 if (HasName != rhs.HasName) return HasName; 8191 return Enc < rhs.Enc; 8192 } 8193 }; 8194 8195 class XCoreABIInfo : public DefaultABIInfo { 8196 public: 8197 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8198 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8199 QualType Ty) const override; 8200 }; 8201 8202 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8203 mutable TypeStringCache TSC; 8204 public: 8205 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8206 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8207 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8208 CodeGen::CodeGenModule &M) const override; 8209 }; 8210 8211 } // End anonymous namespace. 8212 8213 // TODO: this implementation is likely now redundant with the default 8214 // EmitVAArg. 8215 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8216 QualType Ty) const { 8217 CGBuilderTy &Builder = CGF.Builder; 8218 8219 // Get the VAList. 8220 CharUnits SlotSize = CharUnits::fromQuantity(4); 8221 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8222 8223 // Handle the argument. 8224 ABIArgInfo AI = classifyArgumentType(Ty); 8225 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8226 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8227 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8228 AI.setCoerceToType(ArgTy); 8229 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8230 8231 Address Val = Address::invalid(); 8232 CharUnits ArgSize = CharUnits::Zero(); 8233 switch (AI.getKind()) { 8234 case ABIArgInfo::Expand: 8235 case ABIArgInfo::CoerceAndExpand: 8236 case ABIArgInfo::InAlloca: 8237 llvm_unreachable("Unsupported ABI kind for va_arg"); 8238 case ABIArgInfo::Ignore: 8239 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8240 ArgSize = CharUnits::Zero(); 8241 break; 8242 case ABIArgInfo::Extend: 8243 case ABIArgInfo::Direct: 8244 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8245 ArgSize = CharUnits::fromQuantity( 8246 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8247 ArgSize = ArgSize.alignTo(SlotSize); 8248 break; 8249 case ABIArgInfo::Indirect: 8250 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8251 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8252 ArgSize = SlotSize; 8253 break; 8254 } 8255 8256 // Increment the VAList. 8257 if (!ArgSize.isZero()) { 8258 llvm::Value *APN = 8259 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8260 Builder.CreateStore(APN, VAListAddr); 8261 } 8262 8263 return Val; 8264 } 8265 8266 /// During the expansion of a RecordType, an incomplete TypeString is placed 8267 /// into the cache as a means to identify and break recursion. 8268 /// If there is a Recursive encoding in the cache, it is swapped out and will 8269 /// be reinserted by removeIncomplete(). 8270 /// All other types of encoding should have been used rather than arriving here. 8271 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8272 std::string StubEnc) { 8273 if (!ID) 8274 return; 8275 Entry &E = Map[ID]; 8276 assert( (E.Str.empty() || E.State == Recursive) && 8277 "Incorrectly use of addIncomplete"); 8278 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8279 E.Swapped.swap(E.Str); // swap out the Recursive 8280 E.Str.swap(StubEnc); 8281 E.State = Incomplete; 8282 ++IncompleteCount; 8283 } 8284 8285 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8286 /// must be removed from the cache. 8287 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8288 /// Returns true if the RecordType was defined recursively. 8289 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8290 if (!ID) 8291 return false; 8292 auto I = Map.find(ID); 8293 assert(I != Map.end() && "Entry not present"); 8294 Entry &E = I->second; 8295 assert( (E.State == Incomplete || 8296 E.State == IncompleteUsed) && 8297 "Entry must be an incomplete type"); 8298 bool IsRecursive = false; 8299 if (E.State == IncompleteUsed) { 8300 // We made use of our Incomplete encoding, thus we are recursive. 8301 IsRecursive = true; 8302 --IncompleteUsedCount; 8303 } 8304 if (E.Swapped.empty()) 8305 Map.erase(I); 8306 else { 8307 // Swap the Recursive back. 8308 E.Swapped.swap(E.Str); 8309 E.Swapped.clear(); 8310 E.State = Recursive; 8311 } 8312 --IncompleteCount; 8313 return IsRecursive; 8314 } 8315 8316 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8317 /// Recursive (viz: all sub-members were expanded as fully as possible). 8318 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8319 bool IsRecursive) { 8320 if (!ID || IncompleteUsedCount) 8321 return; // No key or it is is an incomplete sub-type so don't add. 8322 Entry &E = Map[ID]; 8323 if (IsRecursive && !E.Str.empty()) { 8324 assert(E.State==Recursive && E.Str.size() == Str.size() && 8325 "This is not the same Recursive entry"); 8326 // The parent container was not recursive after all, so we could have used 8327 // this Recursive sub-member entry after all, but we assumed the worse when 8328 // we started viz: IncompleteCount!=0. 8329 return; 8330 } 8331 assert(E.Str.empty() && "Entry already present"); 8332 E.Str = Str.str(); 8333 E.State = IsRecursive? Recursive : NonRecursive; 8334 } 8335 8336 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8337 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8338 /// encoding is Recursive, return an empty StringRef. 8339 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8340 if (!ID) 8341 return StringRef(); // We have no key. 8342 auto I = Map.find(ID); 8343 if (I == Map.end()) 8344 return StringRef(); // We have no encoding. 8345 Entry &E = I->second; 8346 if (E.State == Recursive && IncompleteCount) 8347 return StringRef(); // We don't use Recursive encodings for member types. 8348 8349 if (E.State == Incomplete) { 8350 // The incomplete type is being used to break out of recursion. 8351 E.State = IncompleteUsed; 8352 ++IncompleteUsedCount; 8353 } 8354 return E.Str; 8355 } 8356 8357 /// The XCore ABI includes a type information section that communicates symbol 8358 /// type information to the linker. The linker uses this information to verify 8359 /// safety/correctness of things such as array bound and pointers et al. 8360 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8361 /// This type information (TypeString) is emitted into meta data for all global 8362 /// symbols: definitions, declarations, functions & variables. 8363 /// 8364 /// The TypeString carries type, qualifier, name, size & value details. 8365 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8366 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8367 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8368 /// 8369 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8370 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8371 8372 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8373 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8374 CodeGen::CodeGenModule &CGM) const { 8375 SmallStringEnc Enc; 8376 if (getTypeString(Enc, D, CGM, TSC)) { 8377 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8378 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8379 llvm::MDString::get(Ctx, Enc.str())}; 8380 llvm::NamedMDNode *MD = 8381 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8382 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8383 } 8384 } 8385 8386 //===----------------------------------------------------------------------===// 8387 // SPIR ABI Implementation 8388 //===----------------------------------------------------------------------===// 8389 8390 namespace { 8391 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8392 public: 8393 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8394 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8395 unsigned getOpenCLKernelCallingConv() const override; 8396 }; 8397 8398 } // End anonymous namespace. 8399 8400 namespace clang { 8401 namespace CodeGen { 8402 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8403 DefaultABIInfo SPIRABI(CGM.getTypes()); 8404 SPIRABI.computeInfo(FI); 8405 } 8406 } 8407 } 8408 8409 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8410 return llvm::CallingConv::SPIR_KERNEL; 8411 } 8412 8413 static bool appendType(SmallStringEnc &Enc, QualType QType, 8414 const CodeGen::CodeGenModule &CGM, 8415 TypeStringCache &TSC); 8416 8417 /// Helper function for appendRecordType(). 8418 /// Builds a SmallVector containing the encoded field types in declaration 8419 /// order. 8420 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8421 const RecordDecl *RD, 8422 const CodeGen::CodeGenModule &CGM, 8423 TypeStringCache &TSC) { 8424 for (const auto *Field : RD->fields()) { 8425 SmallStringEnc Enc; 8426 Enc += "m("; 8427 Enc += Field->getName(); 8428 Enc += "){"; 8429 if (Field->isBitField()) { 8430 Enc += "b("; 8431 llvm::raw_svector_ostream OS(Enc); 8432 OS << Field->getBitWidthValue(CGM.getContext()); 8433 Enc += ':'; 8434 } 8435 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8436 return false; 8437 if (Field->isBitField()) 8438 Enc += ')'; 8439 Enc += '}'; 8440 FE.emplace_back(!Field->getName().empty(), Enc); 8441 } 8442 return true; 8443 } 8444 8445 /// Appends structure and union types to Enc and adds encoding to cache. 8446 /// Recursively calls appendType (via extractFieldType) for each field. 8447 /// Union types have their fields ordered according to the ABI. 8448 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8449 const CodeGen::CodeGenModule &CGM, 8450 TypeStringCache &TSC, const IdentifierInfo *ID) { 8451 // Append the cached TypeString if we have one. 8452 StringRef TypeString = TSC.lookupStr(ID); 8453 if (!TypeString.empty()) { 8454 Enc += TypeString; 8455 return true; 8456 } 8457 8458 // Start to emit an incomplete TypeString. 8459 size_t Start = Enc.size(); 8460 Enc += (RT->isUnionType()? 'u' : 's'); 8461 Enc += '('; 8462 if (ID) 8463 Enc += ID->getName(); 8464 Enc += "){"; 8465 8466 // We collect all encoded fields and order as necessary. 8467 bool IsRecursive = false; 8468 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8469 if (RD && !RD->field_empty()) { 8470 // An incomplete TypeString stub is placed in the cache for this RecordType 8471 // so that recursive calls to this RecordType will use it whilst building a 8472 // complete TypeString for this RecordType. 8473 SmallVector<FieldEncoding, 16> FE; 8474 std::string StubEnc(Enc.substr(Start).str()); 8475 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8476 TSC.addIncomplete(ID, std::move(StubEnc)); 8477 if (!extractFieldType(FE, RD, CGM, TSC)) { 8478 (void) TSC.removeIncomplete(ID); 8479 return false; 8480 } 8481 IsRecursive = TSC.removeIncomplete(ID); 8482 // The ABI requires unions to be sorted but not structures. 8483 // See FieldEncoding::operator< for sort algorithm. 8484 if (RT->isUnionType()) 8485 std::sort(FE.begin(), FE.end()); 8486 // We can now complete the TypeString. 8487 unsigned E = FE.size(); 8488 for (unsigned I = 0; I != E; ++I) { 8489 if (I) 8490 Enc += ','; 8491 Enc += FE[I].str(); 8492 } 8493 } 8494 Enc += '}'; 8495 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8496 return true; 8497 } 8498 8499 /// Appends enum types to Enc and adds the encoding to the cache. 8500 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8501 TypeStringCache &TSC, 8502 const IdentifierInfo *ID) { 8503 // Append the cached TypeString if we have one. 8504 StringRef TypeString = TSC.lookupStr(ID); 8505 if (!TypeString.empty()) { 8506 Enc += TypeString; 8507 return true; 8508 } 8509 8510 size_t Start = Enc.size(); 8511 Enc += "e("; 8512 if (ID) 8513 Enc += ID->getName(); 8514 Enc += "){"; 8515 8516 // We collect all encoded enumerations and order them alphanumerically. 8517 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8518 SmallVector<FieldEncoding, 16> FE; 8519 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8520 ++I) { 8521 SmallStringEnc EnumEnc; 8522 EnumEnc += "m("; 8523 EnumEnc += I->getName(); 8524 EnumEnc += "){"; 8525 I->getInitVal().toString(EnumEnc); 8526 EnumEnc += '}'; 8527 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8528 } 8529 std::sort(FE.begin(), FE.end()); 8530 unsigned E = FE.size(); 8531 for (unsigned I = 0; I != E; ++I) { 8532 if (I) 8533 Enc += ','; 8534 Enc += FE[I].str(); 8535 } 8536 } 8537 Enc += '}'; 8538 TSC.addIfComplete(ID, Enc.substr(Start), false); 8539 return true; 8540 } 8541 8542 /// Appends type's qualifier to Enc. 8543 /// This is done prior to appending the type's encoding. 8544 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8545 // Qualifiers are emitted in alphabetical order. 8546 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8547 int Lookup = 0; 8548 if (QT.isConstQualified()) 8549 Lookup += 1<<0; 8550 if (QT.isRestrictQualified()) 8551 Lookup += 1<<1; 8552 if (QT.isVolatileQualified()) 8553 Lookup += 1<<2; 8554 Enc += Table[Lookup]; 8555 } 8556 8557 /// Appends built-in types to Enc. 8558 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8559 const char *EncType; 8560 switch (BT->getKind()) { 8561 case BuiltinType::Void: 8562 EncType = "0"; 8563 break; 8564 case BuiltinType::Bool: 8565 EncType = "b"; 8566 break; 8567 case BuiltinType::Char_U: 8568 EncType = "uc"; 8569 break; 8570 case BuiltinType::UChar: 8571 EncType = "uc"; 8572 break; 8573 case BuiltinType::SChar: 8574 EncType = "sc"; 8575 break; 8576 case BuiltinType::UShort: 8577 EncType = "us"; 8578 break; 8579 case BuiltinType::Short: 8580 EncType = "ss"; 8581 break; 8582 case BuiltinType::UInt: 8583 EncType = "ui"; 8584 break; 8585 case BuiltinType::Int: 8586 EncType = "si"; 8587 break; 8588 case BuiltinType::ULong: 8589 EncType = "ul"; 8590 break; 8591 case BuiltinType::Long: 8592 EncType = "sl"; 8593 break; 8594 case BuiltinType::ULongLong: 8595 EncType = "ull"; 8596 break; 8597 case BuiltinType::LongLong: 8598 EncType = "sll"; 8599 break; 8600 case BuiltinType::Float: 8601 EncType = "ft"; 8602 break; 8603 case BuiltinType::Double: 8604 EncType = "d"; 8605 break; 8606 case BuiltinType::LongDouble: 8607 EncType = "ld"; 8608 break; 8609 default: 8610 return false; 8611 } 8612 Enc += EncType; 8613 return true; 8614 } 8615 8616 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8617 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8618 const CodeGen::CodeGenModule &CGM, 8619 TypeStringCache &TSC) { 8620 Enc += "p("; 8621 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8622 return false; 8623 Enc += ')'; 8624 return true; 8625 } 8626 8627 /// Appends array encoding to Enc before calling appendType for the element. 8628 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8629 const ArrayType *AT, 8630 const CodeGen::CodeGenModule &CGM, 8631 TypeStringCache &TSC, StringRef NoSizeEnc) { 8632 if (AT->getSizeModifier() != ArrayType::Normal) 8633 return false; 8634 Enc += "a("; 8635 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8636 CAT->getSize().toStringUnsigned(Enc); 8637 else 8638 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8639 Enc += ':'; 8640 // The Qualifiers should be attached to the type rather than the array. 8641 appendQualifier(Enc, QT); 8642 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8643 return false; 8644 Enc += ')'; 8645 return true; 8646 } 8647 8648 /// Appends a function encoding to Enc, calling appendType for the return type 8649 /// and the arguments. 8650 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8651 const CodeGen::CodeGenModule &CGM, 8652 TypeStringCache &TSC) { 8653 Enc += "f{"; 8654 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8655 return false; 8656 Enc += "}("; 8657 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8658 // N.B. we are only interested in the adjusted param types. 8659 auto I = FPT->param_type_begin(); 8660 auto E = FPT->param_type_end(); 8661 if (I != E) { 8662 do { 8663 if (!appendType(Enc, *I, CGM, TSC)) 8664 return false; 8665 ++I; 8666 if (I != E) 8667 Enc += ','; 8668 } while (I != E); 8669 if (FPT->isVariadic()) 8670 Enc += ",va"; 8671 } else { 8672 if (FPT->isVariadic()) 8673 Enc += "va"; 8674 else 8675 Enc += '0'; 8676 } 8677 } 8678 Enc += ')'; 8679 return true; 8680 } 8681 8682 /// Handles the type's qualifier before dispatching a call to handle specific 8683 /// type encodings. 8684 static bool appendType(SmallStringEnc &Enc, QualType QType, 8685 const CodeGen::CodeGenModule &CGM, 8686 TypeStringCache &TSC) { 8687 8688 QualType QT = QType.getCanonicalType(); 8689 8690 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8691 // The Qualifiers should be attached to the type rather than the array. 8692 // Thus we don't call appendQualifier() here. 8693 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8694 8695 appendQualifier(Enc, QT); 8696 8697 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8698 return appendBuiltinType(Enc, BT); 8699 8700 if (const PointerType *PT = QT->getAs<PointerType>()) 8701 return appendPointerType(Enc, PT, CGM, TSC); 8702 8703 if (const EnumType *ET = QT->getAs<EnumType>()) 8704 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8705 8706 if (const RecordType *RT = QT->getAsStructureType()) 8707 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8708 8709 if (const RecordType *RT = QT->getAsUnionType()) 8710 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8711 8712 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8713 return appendFunctionType(Enc, FT, CGM, TSC); 8714 8715 return false; 8716 } 8717 8718 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8719 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8720 if (!D) 8721 return false; 8722 8723 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8724 if (FD->getLanguageLinkage() != CLanguageLinkage) 8725 return false; 8726 return appendType(Enc, FD->getType(), CGM, TSC); 8727 } 8728 8729 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8730 if (VD->getLanguageLinkage() != CLanguageLinkage) 8731 return false; 8732 QualType QT = VD->getType().getCanonicalType(); 8733 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8734 // Global ArrayTypes are given a size of '*' if the size is unknown. 8735 // The Qualifiers should be attached to the type rather than the array. 8736 // Thus we don't call appendQualifier() here. 8737 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8738 } 8739 return appendType(Enc, QT, CGM, TSC); 8740 } 8741 return false; 8742 } 8743 8744 8745 //===----------------------------------------------------------------------===// 8746 // Driver code 8747 //===----------------------------------------------------------------------===// 8748 8749 bool CodeGenModule::supportsCOMDAT() const { 8750 return getTriple().supportsCOMDAT(); 8751 } 8752 8753 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8754 if (TheTargetCodeGenInfo) 8755 return *TheTargetCodeGenInfo; 8756 8757 // Helper to set the unique_ptr while still keeping the return value. 8758 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8759 this->TheTargetCodeGenInfo.reset(P); 8760 return *P; 8761 }; 8762 8763 const llvm::Triple &Triple = getTarget().getTriple(); 8764 switch (Triple.getArch()) { 8765 default: 8766 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8767 8768 case llvm::Triple::le32: 8769 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8770 case llvm::Triple::mips: 8771 case llvm::Triple::mipsel: 8772 if (Triple.getOS() == llvm::Triple::NaCl) 8773 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8774 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8775 8776 case llvm::Triple::mips64: 8777 case llvm::Triple::mips64el: 8778 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8779 8780 case llvm::Triple::avr: 8781 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8782 8783 case llvm::Triple::aarch64: 8784 case llvm::Triple::aarch64_be: { 8785 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8786 if (getTarget().getABI() == "darwinpcs") 8787 Kind = AArch64ABIInfo::DarwinPCS; 8788 else if (Triple.isOSWindows()) 8789 return SetCGInfo( 8790 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8791 8792 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8793 } 8794 8795 case llvm::Triple::wasm32: 8796 case llvm::Triple::wasm64: 8797 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8798 8799 case llvm::Triple::arm: 8800 case llvm::Triple::armeb: 8801 case llvm::Triple::thumb: 8802 case llvm::Triple::thumbeb: { 8803 if (Triple.getOS() == llvm::Triple::Win32) { 8804 return SetCGInfo( 8805 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8806 } 8807 8808 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8809 StringRef ABIStr = getTarget().getABI(); 8810 if (ABIStr == "apcs-gnu") 8811 Kind = ARMABIInfo::APCS; 8812 else if (ABIStr == "aapcs16") 8813 Kind = ARMABIInfo::AAPCS16_VFP; 8814 else if (CodeGenOpts.FloatABI == "hard" || 8815 (CodeGenOpts.FloatABI != "soft" && 8816 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8817 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8818 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8819 Kind = ARMABIInfo::AAPCS_VFP; 8820 8821 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8822 } 8823 8824 case llvm::Triple::ppc: 8825 return SetCGInfo( 8826 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8827 case llvm::Triple::ppc64: 8828 if (Triple.isOSBinFormatELF()) { 8829 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8830 if (getTarget().getABI() == "elfv2") 8831 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8832 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8833 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8834 8835 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8836 IsSoftFloat)); 8837 } else 8838 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8839 case llvm::Triple::ppc64le: { 8840 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8841 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8842 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8843 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8844 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8845 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8846 8847 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8848 IsSoftFloat)); 8849 } 8850 8851 case llvm::Triple::nvptx: 8852 case llvm::Triple::nvptx64: 8853 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8854 8855 case llvm::Triple::msp430: 8856 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8857 8858 case llvm::Triple::systemz: { 8859 bool HasVector = getTarget().getABI() == "vector"; 8860 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8861 } 8862 8863 case llvm::Triple::tce: 8864 case llvm::Triple::tcele: 8865 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8866 8867 case llvm::Triple::x86: { 8868 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8869 bool RetSmallStructInRegABI = 8870 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8871 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8872 8873 if (Triple.getOS() == llvm::Triple::Win32) { 8874 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8875 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8876 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8877 } else { 8878 return SetCGInfo(new X86_32TargetCodeGenInfo( 8879 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8880 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8881 CodeGenOpts.FloatABI == "soft")); 8882 } 8883 } 8884 8885 case llvm::Triple::x86_64: { 8886 StringRef ABI = getTarget().getABI(); 8887 X86AVXABILevel AVXLevel = 8888 (ABI == "avx512" 8889 ? X86AVXABILevel::AVX512 8890 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8891 8892 switch (Triple.getOS()) { 8893 case llvm::Triple::Win32: 8894 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8895 case llvm::Triple::PS4: 8896 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8897 default: 8898 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8899 } 8900 } 8901 case llvm::Triple::hexagon: 8902 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8903 case llvm::Triple::lanai: 8904 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8905 case llvm::Triple::r600: 8906 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8907 case llvm::Triple::amdgcn: 8908 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8909 case llvm::Triple::sparc: 8910 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8911 case llvm::Triple::sparcv9: 8912 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8913 case llvm::Triple::xcore: 8914 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8915 case llvm::Triple::spir: 8916 case llvm::Triple::spir64: 8917 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8918 } 8919 } 8920