1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::DataLayout &ABIInfo::getDataLayout() const {
55   return CGT.getDataLayout();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                      const FunctionNoProtoType *fnType) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   // Treat complex types as the element type.
270   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
271     Ty = CTy->getElementType();
272 
273   // Check for a type which we know has a simple scalar argument-passing
274   // convention without any padding.  (We're specifically looking for 32
275   // and 64-bit integer and integer-equivalents, float, and double.)
276   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
277       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
278     return false;
279 
280   uint64_t Size = Context.getTypeSize(Ty);
281   return Size == 32 || Size == 64;
282 }
283 
284 /// canExpandIndirectArgument - Test whether an argument type which is to be
285 /// passed indirectly (on the stack) would have the equivalent layout if it was
286 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
287 /// inhibiting optimizations.
288 ///
289 // FIXME: This predicate is missing many cases, currently it just follows
290 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
291 // should probably make this smarter, or better yet make the LLVM backend
292 // capable of handling it.
293 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
294   // We can only expand structure types.
295   const RecordType *RT = Ty->getAs<RecordType>();
296   if (!RT)
297     return false;
298 
299   // We can only expand (C) structures.
300   //
301   // FIXME: This needs to be generalized to handle classes as well.
302   const RecordDecl *RD = RT->getDecl();
303   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
304     return false;
305 
306   uint64_t Size = 0;
307 
308   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
309          i != e; ++i) {
310     const FieldDecl *FD = *i;
311 
312     if (!is32Or64BitBasicType(FD->getType(), Context))
313       return false;
314 
315     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
316     // how to expand them yet, and the predicate for telling if a bitfield still
317     // counts as "basic" is more complicated than what we were doing previously.
318     if (FD->isBitField())
319       return false;
320 
321     Size += Context.getTypeSize(FD->getType());
322   }
323 
324   // Make sure there are not any holes in the struct.
325   if (Size != Context.getTypeSize(Ty))
326     return false;
327 
328   return true;
329 }
330 
331 namespace {
332 /// DefaultABIInfo - The default implementation for ABI specific
333 /// details. This implementation provides information which results in
334 /// self-consistent and sensible LLVM IR generation, but does not
335 /// conform to any particular ABI.
336 class DefaultABIInfo : public ABIInfo {
337 public:
338   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
339 
340   ABIArgInfo classifyReturnType(QualType RetTy) const;
341   ABIArgInfo classifyArgumentType(QualType RetTy) const;
342 
343   virtual void computeInfo(CGFunctionInfo &FI) const {
344     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
345     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
346          it != ie; ++it)
347       it->info = classifyArgumentType(it->type);
348   }
349 
350   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
351                                  CodeGenFunction &CGF) const;
352 };
353 
354 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
355 public:
356   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
357     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
358 };
359 
360 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
361                                        CodeGenFunction &CGF) const {
362   return 0;
363 }
364 
365 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
366   if (isAggregateTypeForABI(Ty)) {
367     // Records with non trivial destructors/constructors should not be passed
368     // by value.
369     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
370       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
371 
372     return ABIArgInfo::getIndirect(0);
373   }
374 
375   // Treat an enum type as its underlying type.
376   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
377     Ty = EnumTy->getDecl()->getIntegerType();
378 
379   return (Ty->isPromotableIntegerType() ?
380           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
381 }
382 
383 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
384   if (RetTy->isVoidType())
385     return ABIArgInfo::getIgnore();
386 
387   if (isAggregateTypeForABI(RetTy))
388     return ABIArgInfo::getIndirect(0);
389 
390   // Treat an enum type as its underlying type.
391   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
392     RetTy = EnumTy->getDecl()->getIntegerType();
393 
394   return (RetTy->isPromotableIntegerType() ?
395           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
396 }
397 
398 //===----------------------------------------------------------------------===//
399 // le32/PNaCl bitcode ABI Implementation
400 //===----------------------------------------------------------------------===//
401 
402 class PNaClABIInfo : public ABIInfo {
403  public:
404   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
405 
406   ABIArgInfo classifyReturnType(QualType RetTy) const;
407   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
408 
409   virtual void computeInfo(CGFunctionInfo &FI) const;
410   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
411                                  CodeGenFunction &CGF) const;
412 };
413 
414 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
415  public:
416   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
417     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
418 };
419 
420 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
421     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
422 
423     unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
424 
425     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
426          it != ie; ++it)
427       it->info = classifyArgumentType(it->type, FreeRegs);
428   }
429 
430 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
431                                        CodeGenFunction &CGF) const {
432   return 0;
433 }
434 
435 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
436                                               unsigned &FreeRegs) const {
437   if (isAggregateTypeForABI(Ty)) {
438     // Records with non trivial destructors/constructors should not be passed
439     // by value.
440     FreeRegs = 0;
441     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
442       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
443 
444     return ABIArgInfo::getIndirect(0);
445   }
446 
447   // Treat an enum type as its underlying type.
448   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
449     Ty = EnumTy->getDecl()->getIntegerType();
450 
451   ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
452           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
453 
454   // Regparm regs hold 32 bits.
455   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
456   if (SizeInRegs == 0) return BaseInfo;
457   if (SizeInRegs > FreeRegs) {
458     FreeRegs = 0;
459     return BaseInfo;
460   }
461   FreeRegs -= SizeInRegs;
462   return BaseInfo.isDirect() ?
463       ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
464       ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
465 }
466 
467 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
468   if (RetTy->isVoidType())
469     return ABIArgInfo::getIgnore();
470 
471   if (isAggregateTypeForABI(RetTy))
472     return ABIArgInfo::getIndirect(0);
473 
474   // Treat an enum type as its underlying type.
475   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
476     RetTy = EnumTy->getDecl()->getIntegerType();
477 
478   return (RetTy->isPromotableIntegerType() ?
479           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
480 }
481 
482 /// UseX86_MMXType - Return true if this is an MMX type that should use the
483 /// special x86_mmx type.
484 bool UseX86_MMXType(llvm::Type *IRType) {
485   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
486   // special x86_mmx type.
487   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
488     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
489     IRType->getScalarSizeInBits() != 64;
490 }
491 
492 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
493                                           StringRef Constraint,
494                                           llvm::Type* Ty) {
495   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
496     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
497   return Ty;
498 }
499 
500 //===----------------------------------------------------------------------===//
501 // X86-32 ABI Implementation
502 //===----------------------------------------------------------------------===//
503 
504 /// X86_32ABIInfo - The X86-32 ABI information.
505 class X86_32ABIInfo : public ABIInfo {
506   enum Class {
507     Integer,
508     Float
509   };
510 
511   static const unsigned MinABIStackAlignInBytes = 4;
512 
513   bool IsDarwinVectorABI;
514   bool IsSmallStructInRegABI;
515   bool IsMMXDisabled;
516   bool IsWin32FloatStructABI;
517   unsigned DefaultNumRegisterParameters;
518 
519   static bool isRegisterSize(unsigned Size) {
520     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
521   }
522 
523   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
524                                           unsigned callingConvention);
525 
526   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
527   /// such that the argument will be passed in memory.
528   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
529                                unsigned &FreeRegs) const;
530 
531   /// \brief Return the alignment to use for the given type on the stack.
532   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
533 
534   Class classify(QualType Ty) const;
535   ABIArgInfo classifyReturnType(QualType RetTy,
536                                 unsigned callingConvention) const;
537   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
538                                   bool IsFastCall) const;
539   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
540                       bool IsFastCall, bool &NeedsPadding) const;
541 
542 public:
543 
544   virtual void computeInfo(CGFunctionInfo &FI) const;
545   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
546                                  CodeGenFunction &CGF) const;
547 
548   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
549                 unsigned r)
550     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
551       IsMMXDisabled(m), IsWin32FloatStructABI(w),
552       DefaultNumRegisterParameters(r) {}
553 };
554 
555 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
556 public:
557   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
558       bool d, bool p, bool m, bool w, unsigned r)
559     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
560 
561   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
562                            CodeGen::CodeGenModule &CGM) const;
563 
564   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
565     // Darwin uses different dwarf register numbers for EH.
566     if (CGM.isTargetDarwin()) return 5;
567 
568     return 4;
569   }
570 
571   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
572                                llvm::Value *Address) const;
573 
574   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
575                                   StringRef Constraint,
576                                   llvm::Type* Ty) const {
577     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
578   }
579 
580 };
581 
582 }
583 
584 /// shouldReturnTypeInRegister - Determine if the given type should be
585 /// passed in a register (for the Darwin ABI).
586 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
587                                                ASTContext &Context,
588                                                unsigned callingConvention) {
589   uint64_t Size = Context.getTypeSize(Ty);
590 
591   // Type must be register sized.
592   if (!isRegisterSize(Size))
593     return false;
594 
595   if (Ty->isVectorType()) {
596     // 64- and 128- bit vectors inside structures are not returned in
597     // registers.
598     if (Size == 64 || Size == 128)
599       return false;
600 
601     return true;
602   }
603 
604   // If this is a builtin, pointer, enum, complex type, member pointer, or
605   // member function pointer it is ok.
606   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
607       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
608       Ty->isBlockPointerType() || Ty->isMemberPointerType())
609     return true;
610 
611   // Arrays are treated like records.
612   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
613     return shouldReturnTypeInRegister(AT->getElementType(), Context,
614                                       callingConvention);
615 
616   // Otherwise, it must be a record type.
617   const RecordType *RT = Ty->getAs<RecordType>();
618   if (!RT) return false;
619 
620   // FIXME: Traverse bases here too.
621 
622   // For thiscall conventions, structures will never be returned in
623   // a register.  This is for compatibility with the MSVC ABI
624   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
625       RT->isStructureType()) {
626     return false;
627   }
628 
629   // Structure types are passed in register if all fields would be
630   // passed in a register.
631   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
632          e = RT->getDecl()->field_end(); i != e; ++i) {
633     const FieldDecl *FD = *i;
634 
635     // Empty fields are ignored.
636     if (isEmptyField(Context, FD, true))
637       continue;
638 
639     // Check fields recursively.
640     if (!shouldReturnTypeInRegister(FD->getType(), Context,
641                                     callingConvention))
642       return false;
643   }
644   return true;
645 }
646 
647 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
648                                             unsigned callingConvention) const {
649   if (RetTy->isVoidType())
650     return ABIArgInfo::getIgnore();
651 
652   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
653     // On Darwin, some vectors are returned in registers.
654     if (IsDarwinVectorABI) {
655       uint64_t Size = getContext().getTypeSize(RetTy);
656 
657       // 128-bit vectors are a special case; they are returned in
658       // registers and we need to make sure to pick a type the LLVM
659       // backend will like.
660       if (Size == 128)
661         return ABIArgInfo::getDirect(llvm::VectorType::get(
662                   llvm::Type::getInt64Ty(getVMContext()), 2));
663 
664       // Always return in register if it fits in a general purpose
665       // register, or if it is 64 bits and has a single element.
666       if ((Size == 8 || Size == 16 || Size == 32) ||
667           (Size == 64 && VT->getNumElements() == 1))
668         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
669                                                             Size));
670 
671       return ABIArgInfo::getIndirect(0);
672     }
673 
674     return ABIArgInfo::getDirect();
675   }
676 
677   if (isAggregateTypeForABI(RetTy)) {
678     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
679       // Structures with either a non-trivial destructor or a non-trivial
680       // copy constructor are always indirect.
681       if (hasNonTrivialDestructorOrCopyConstructor(RT))
682         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
683 
684       // Structures with flexible arrays are always indirect.
685       if (RT->getDecl()->hasFlexibleArrayMember())
686         return ABIArgInfo::getIndirect(0);
687     }
688 
689     // If specified, structs and unions are always indirect.
690     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
691       return ABIArgInfo::getIndirect(0);
692 
693     // Small structures which are register sized are generally returned
694     // in a register.
695     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
696                                                   callingConvention)) {
697       uint64_t Size = getContext().getTypeSize(RetTy);
698 
699       // As a special-case, if the struct is a "single-element" struct, and
700       // the field is of type "float" or "double", return it in a
701       // floating-point register. (MSVC does not apply this special case.)
702       // We apply a similar transformation for pointer types to improve the
703       // quality of the generated IR.
704       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
705         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
706             || SeltTy->hasPointerRepresentation())
707           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
708 
709       // FIXME: We should be able to narrow this integer in cases with dead
710       // padding.
711       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
712     }
713 
714     return ABIArgInfo::getIndirect(0);
715   }
716 
717   // Treat an enum type as its underlying type.
718   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
719     RetTy = EnumTy->getDecl()->getIntegerType();
720 
721   return (RetTy->isPromotableIntegerType() ?
722           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
723 }
724 
725 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
726   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
727 }
728 
729 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
730   const RecordType *RT = Ty->getAs<RecordType>();
731   if (!RT)
732     return 0;
733   const RecordDecl *RD = RT->getDecl();
734 
735   // If this is a C++ record, check the bases first.
736   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
737     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
738            e = CXXRD->bases_end(); i != e; ++i)
739       if (!isRecordWithSSEVectorType(Context, i->getType()))
740         return false;
741 
742   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
743        i != e; ++i) {
744     QualType FT = i->getType();
745 
746     if (isSSEVectorType(Context, FT))
747       return true;
748 
749     if (isRecordWithSSEVectorType(Context, FT))
750       return true;
751   }
752 
753   return false;
754 }
755 
756 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
757                                                  unsigned Align) const {
758   // Otherwise, if the alignment is less than or equal to the minimum ABI
759   // alignment, just use the default; the backend will handle this.
760   if (Align <= MinABIStackAlignInBytes)
761     return 0; // Use default alignment.
762 
763   // On non-Darwin, the stack type alignment is always 4.
764   if (!IsDarwinVectorABI) {
765     // Set explicit alignment, since we may need to realign the top.
766     return MinABIStackAlignInBytes;
767   }
768 
769   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
770   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
771                       isRecordWithSSEVectorType(getContext(), Ty)))
772     return 16;
773 
774   return MinABIStackAlignInBytes;
775 }
776 
777 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
778                                             unsigned &FreeRegs) const {
779   if (!ByVal) {
780     if (FreeRegs) {
781       --FreeRegs; // Non byval indirects just use one pointer.
782       return ABIArgInfo::getIndirectInReg(0, false);
783     }
784     return ABIArgInfo::getIndirect(0, false);
785   }
786 
787   // Compute the byval alignment.
788   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
789   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
790   if (StackAlign == 0)
791     return ABIArgInfo::getIndirect(4);
792 
793   // If the stack alignment is less than the type alignment, realign the
794   // argument.
795   if (StackAlign < TypeAlign)
796     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
797                                    /*Realign=*/true);
798 
799   return ABIArgInfo::getIndirect(StackAlign);
800 }
801 
802 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
803   const Type *T = isSingleElementStruct(Ty, getContext());
804   if (!T)
805     T = Ty.getTypePtr();
806 
807   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
808     BuiltinType::Kind K = BT->getKind();
809     if (K == BuiltinType::Float || K == BuiltinType::Double)
810       return Float;
811   }
812   return Integer;
813 }
814 
815 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
816                                    bool IsFastCall, bool &NeedsPadding) const {
817   NeedsPadding = false;
818   Class C = classify(Ty);
819   if (C == Float)
820     return false;
821 
822   unsigned Size = getContext().getTypeSize(Ty);
823   unsigned SizeInRegs = (Size + 31) / 32;
824 
825   if (SizeInRegs == 0)
826     return false;
827 
828   if (SizeInRegs > FreeRegs) {
829     FreeRegs = 0;
830     return false;
831   }
832 
833   FreeRegs -= SizeInRegs;
834 
835   if (IsFastCall) {
836     if (Size > 32)
837       return false;
838 
839     if (Ty->isIntegralOrEnumerationType())
840       return true;
841 
842     if (Ty->isPointerType())
843       return true;
844 
845     if (Ty->isReferenceType())
846       return true;
847 
848     if (FreeRegs)
849       NeedsPadding = true;
850 
851     return false;
852   }
853 
854   return true;
855 }
856 
857 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
858                                                unsigned &FreeRegs,
859                                                bool IsFastCall) const {
860   // FIXME: Set alignment on indirect arguments.
861   if (isAggregateTypeForABI(Ty)) {
862     // Structures with flexible arrays are always indirect.
863     if (const RecordType *RT = Ty->getAs<RecordType>()) {
864       // Structures with either a non-trivial destructor or a non-trivial
865       // copy constructor are always indirect.
866       if (hasNonTrivialDestructorOrCopyConstructor(RT))
867         return getIndirectResult(Ty, false, FreeRegs);
868 
869       if (RT->getDecl()->hasFlexibleArrayMember())
870         return getIndirectResult(Ty, true, FreeRegs);
871     }
872 
873     // Ignore empty structs/unions.
874     if (isEmptyRecord(getContext(), Ty, true))
875       return ABIArgInfo::getIgnore();
876 
877     llvm::LLVMContext &LLVMContext = getVMContext();
878     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
879     bool NeedsPadding;
880     if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
881       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
882       SmallVector<llvm::Type*, 3> Elements;
883       for (unsigned I = 0; I < SizeInRegs; ++I)
884         Elements.push_back(Int32);
885       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
886       return ABIArgInfo::getDirectInReg(Result);
887     }
888     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
889 
890     // Expand small (<= 128-bit) record types when we know that the stack layout
891     // of those arguments will match the struct. This is important because the
892     // LLVM backend isn't smart enough to remove byval, which inhibits many
893     // optimizations.
894     if (getContext().getTypeSize(Ty) <= 4*32 &&
895         canExpandIndirectArgument(Ty, getContext()))
896       return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
897 
898     return getIndirectResult(Ty, true, FreeRegs);
899   }
900 
901   if (const VectorType *VT = Ty->getAs<VectorType>()) {
902     // On Darwin, some vectors are passed in memory, we handle this by passing
903     // it as an i8/i16/i32/i64.
904     if (IsDarwinVectorABI) {
905       uint64_t Size = getContext().getTypeSize(Ty);
906       if ((Size == 8 || Size == 16 || Size == 32) ||
907           (Size == 64 && VT->getNumElements() == 1))
908         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
909                                                             Size));
910     }
911 
912     llvm::Type *IRType = CGT.ConvertType(Ty);
913     if (UseX86_MMXType(IRType)) {
914       if (IsMMXDisabled)
915         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
916                                                             64));
917       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
918       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
919       return AAI;
920     }
921 
922     return ABIArgInfo::getDirect();
923   }
924 
925 
926   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
927     Ty = EnumTy->getDecl()->getIntegerType();
928 
929   bool NeedsPadding;
930   bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
931 
932   if (Ty->isPromotableIntegerType()) {
933     if (InReg)
934       return ABIArgInfo::getExtendInReg();
935     return ABIArgInfo::getExtend();
936   }
937   if (InReg)
938     return ABIArgInfo::getDirectInReg();
939   return ABIArgInfo::getDirect();
940 }
941 
942 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
943   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
944                                           FI.getCallingConvention());
945 
946   unsigned CC = FI.getCallingConvention();
947   bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
948   unsigned FreeRegs;
949   if (IsFastCall)
950     FreeRegs = 2;
951   else if (FI.getHasRegParm())
952     FreeRegs = FI.getRegParm();
953   else
954     FreeRegs = DefaultNumRegisterParameters;
955 
956   // If the return value is indirect, then the hidden argument is consuming one
957   // integer register.
958   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
959     --FreeRegs;
960     ABIArgInfo &Old = FI.getReturnInfo();
961     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
962                                        Old.getIndirectByVal(),
963                                        Old.getIndirectRealign());
964   }
965 
966   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
967        it != ie; ++it)
968     it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
969 }
970 
971 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
972                                       CodeGenFunction &CGF) const {
973   llvm::Type *BPP = CGF.Int8PtrPtrTy;
974 
975   CGBuilderTy &Builder = CGF.Builder;
976   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
977                                                        "ap");
978   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
979 
980   // Compute if the address needs to be aligned
981   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
982   Align = getTypeStackAlignInBytes(Ty, Align);
983   Align = std::max(Align, 4U);
984   if (Align > 4) {
985     // addr = (addr + align - 1) & -align;
986     llvm::Value *Offset =
987       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
988     Addr = CGF.Builder.CreateGEP(Addr, Offset);
989     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
990                                                     CGF.Int32Ty);
991     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
992     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
993                                       Addr->getType(),
994                                       "ap.cur.aligned");
995   }
996 
997   llvm::Type *PTy =
998     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
999   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1000 
1001   uint64_t Offset =
1002     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1003   llvm::Value *NextAddr =
1004     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1005                       "ap.next");
1006   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1007 
1008   return AddrTyped;
1009 }
1010 
1011 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1012                                                   llvm::GlobalValue *GV,
1013                                             CodeGen::CodeGenModule &CGM) const {
1014   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1015     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1016       // Get the LLVM function.
1017       llvm::Function *Fn = cast<llvm::Function>(GV);
1018 
1019       // Now add the 'alignstack' attribute with a value of 16.
1020       llvm::AttrBuilder B;
1021       B.addStackAlignmentAttr(16);
1022       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1023                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1024                                               llvm::AttributeSet::FunctionIndex,
1025                                               B));
1026     }
1027   }
1028 }
1029 
1030 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1031                                                CodeGen::CodeGenFunction &CGF,
1032                                                llvm::Value *Address) const {
1033   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1034 
1035   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1036 
1037   // 0-7 are the eight integer registers;  the order is different
1038   //   on Darwin (for EH), but the range is the same.
1039   // 8 is %eip.
1040   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1041 
1042   if (CGF.CGM.isTargetDarwin()) {
1043     // 12-16 are st(0..4).  Not sure why we stop at 4.
1044     // These have size 16, which is sizeof(long double) on
1045     // platforms with 8-byte alignment for that type.
1046     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1047     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1048 
1049   } else {
1050     // 9 is %eflags, which doesn't get a size on Darwin for some
1051     // reason.
1052     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1053 
1054     // 11-16 are st(0..5).  Not sure why we stop at 5.
1055     // These have size 12, which is sizeof(long double) on
1056     // platforms with 4-byte alignment for that type.
1057     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1058     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1059   }
1060 
1061   return false;
1062 }
1063 
1064 //===----------------------------------------------------------------------===//
1065 // X86-64 ABI Implementation
1066 //===----------------------------------------------------------------------===//
1067 
1068 
1069 namespace {
1070 /// X86_64ABIInfo - The X86_64 ABI information.
1071 class X86_64ABIInfo : public ABIInfo {
1072   enum Class {
1073     Integer = 0,
1074     SSE,
1075     SSEUp,
1076     X87,
1077     X87Up,
1078     ComplexX87,
1079     NoClass,
1080     Memory
1081   };
1082 
1083   /// merge - Implement the X86_64 ABI merging algorithm.
1084   ///
1085   /// Merge an accumulating classification \arg Accum with a field
1086   /// classification \arg Field.
1087   ///
1088   /// \param Accum - The accumulating classification. This should
1089   /// always be either NoClass or the result of a previous merge
1090   /// call. In addition, this should never be Memory (the caller
1091   /// should just return Memory for the aggregate).
1092   static Class merge(Class Accum, Class Field);
1093 
1094   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1095   ///
1096   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1097   /// final MEMORY or SSE classes when necessary.
1098   ///
1099   /// \param AggregateSize - The size of the current aggregate in
1100   /// the classification process.
1101   ///
1102   /// \param Lo - The classification for the parts of the type
1103   /// residing in the low word of the containing object.
1104   ///
1105   /// \param Hi - The classification for the parts of the type
1106   /// residing in the higher words of the containing object.
1107   ///
1108   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1109 
1110   /// classify - Determine the x86_64 register classes in which the
1111   /// given type T should be passed.
1112   ///
1113   /// \param Lo - The classification for the parts of the type
1114   /// residing in the low word of the containing object.
1115   ///
1116   /// \param Hi - The classification for the parts of the type
1117   /// residing in the high word of the containing object.
1118   ///
1119   /// \param OffsetBase - The bit offset of this type in the
1120   /// containing object.  Some parameters are classified different
1121   /// depending on whether they straddle an eightbyte boundary.
1122   ///
1123   /// If a word is unused its result will be NoClass; if a type should
1124   /// be passed in Memory then at least the classification of \arg Lo
1125   /// will be Memory.
1126   ///
1127   /// The \arg Lo class will be NoClass iff the argument is ignored.
1128   ///
1129   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1130   /// also be ComplexX87.
1131   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1132 
1133   llvm::Type *GetByteVectorType(QualType Ty) const;
1134   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1135                                  unsigned IROffset, QualType SourceTy,
1136                                  unsigned SourceOffset) const;
1137   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1138                                      unsigned IROffset, QualType SourceTy,
1139                                      unsigned SourceOffset) const;
1140 
1141   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1142   /// such that the argument will be returned in memory.
1143   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1144 
1145   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1146   /// such that the argument will be passed in memory.
1147   ///
1148   /// \param freeIntRegs - The number of free integer registers remaining
1149   /// available.
1150   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1151 
1152   ABIArgInfo classifyReturnType(QualType RetTy) const;
1153 
1154   ABIArgInfo classifyArgumentType(QualType Ty,
1155                                   unsigned freeIntRegs,
1156                                   unsigned &neededInt,
1157                                   unsigned &neededSSE) const;
1158 
1159   bool IsIllegalVectorType(QualType Ty) const;
1160 
1161   /// The 0.98 ABI revision clarified a lot of ambiguities,
1162   /// unfortunately in ways that were not always consistent with
1163   /// certain previous compilers.  In particular, platforms which
1164   /// required strict binary compatibility with older versions of GCC
1165   /// may need to exempt themselves.
1166   bool honorsRevision0_98() const {
1167     return !getContext().getTargetInfo().getTriple().isOSDarwin();
1168   }
1169 
1170   bool HasAVX;
1171   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1172   // 64-bit hardware.
1173   bool Has64BitPointers;
1174 
1175 public:
1176   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1177       ABIInfo(CGT), HasAVX(hasavx),
1178       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1179   }
1180 
1181   bool isPassedUsingAVXType(QualType type) const {
1182     unsigned neededInt, neededSSE;
1183     // The freeIntRegs argument doesn't matter here.
1184     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1185     if (info.isDirect()) {
1186       llvm::Type *ty = info.getCoerceToType();
1187       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1188         return (vectorTy->getBitWidth() > 128);
1189     }
1190     return false;
1191   }
1192 
1193   virtual void computeInfo(CGFunctionInfo &FI) const;
1194 
1195   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1196                                  CodeGenFunction &CGF) const;
1197 };
1198 
1199 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1200 class WinX86_64ABIInfo : public ABIInfo {
1201 
1202   ABIArgInfo classify(QualType Ty) const;
1203 
1204 public:
1205   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1206 
1207   virtual void computeInfo(CGFunctionInfo &FI) const;
1208 
1209   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1210                                  CodeGenFunction &CGF) const;
1211 };
1212 
1213 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1214 public:
1215   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1216       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1217 
1218   const X86_64ABIInfo &getABIInfo() const {
1219     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1220   }
1221 
1222   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1223     return 7;
1224   }
1225 
1226   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1227                                llvm::Value *Address) const {
1228     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1229 
1230     // 0-15 are the 16 integer registers.
1231     // 16 is %rip.
1232     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1233     return false;
1234   }
1235 
1236   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1237                                   StringRef Constraint,
1238                                   llvm::Type* Ty) const {
1239     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1240   }
1241 
1242   bool isNoProtoCallVariadic(const CallArgList &args,
1243                              const FunctionNoProtoType *fnType) const {
1244     // The default CC on x86-64 sets %al to the number of SSA
1245     // registers used, and GCC sets this when calling an unprototyped
1246     // function, so we override the default behavior.  However, don't do
1247     // that when AVX types are involved: the ABI explicitly states it is
1248     // undefined, and it doesn't work in practice because of how the ABI
1249     // defines varargs anyway.
1250     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1251       bool HasAVXType = false;
1252       for (CallArgList::const_iterator
1253              it = args.begin(), ie = args.end(); it != ie; ++it) {
1254         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1255           HasAVXType = true;
1256           break;
1257         }
1258       }
1259 
1260       if (!HasAVXType)
1261         return true;
1262     }
1263 
1264     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1265   }
1266 
1267 };
1268 
1269 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1270 public:
1271   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1272     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1273 
1274   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1275     return 7;
1276   }
1277 
1278   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1279                                llvm::Value *Address) const {
1280     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1281 
1282     // 0-15 are the 16 integer registers.
1283     // 16 is %rip.
1284     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1285     return false;
1286   }
1287 };
1288 
1289 }
1290 
1291 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1292                               Class &Hi) const {
1293   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1294   //
1295   // (a) If one of the classes is Memory, the whole argument is passed in
1296   //     memory.
1297   //
1298   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1299   //     memory.
1300   //
1301   // (c) If the size of the aggregate exceeds two eightbytes and the first
1302   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1303   //     argument is passed in memory. NOTE: This is necessary to keep the
1304   //     ABI working for processors that don't support the __m256 type.
1305   //
1306   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1307   //
1308   // Some of these are enforced by the merging logic.  Others can arise
1309   // only with unions; for example:
1310   //   union { _Complex double; unsigned; }
1311   //
1312   // Note that clauses (b) and (c) were added in 0.98.
1313   //
1314   if (Hi == Memory)
1315     Lo = Memory;
1316   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1317     Lo = Memory;
1318   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1319     Lo = Memory;
1320   if (Hi == SSEUp && Lo != SSE)
1321     Hi = SSE;
1322 }
1323 
1324 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1325   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1326   // classified recursively so that always two fields are
1327   // considered. The resulting class is calculated according to
1328   // the classes of the fields in the eightbyte:
1329   //
1330   // (a) If both classes are equal, this is the resulting class.
1331   //
1332   // (b) If one of the classes is NO_CLASS, the resulting class is
1333   // the other class.
1334   //
1335   // (c) If one of the classes is MEMORY, the result is the MEMORY
1336   // class.
1337   //
1338   // (d) If one of the classes is INTEGER, the result is the
1339   // INTEGER.
1340   //
1341   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1342   // MEMORY is used as class.
1343   //
1344   // (f) Otherwise class SSE is used.
1345 
1346   // Accum should never be memory (we should have returned) or
1347   // ComplexX87 (because this cannot be passed in a structure).
1348   assert((Accum != Memory && Accum != ComplexX87) &&
1349          "Invalid accumulated classification during merge.");
1350   if (Accum == Field || Field == NoClass)
1351     return Accum;
1352   if (Field == Memory)
1353     return Memory;
1354   if (Accum == NoClass)
1355     return Field;
1356   if (Accum == Integer || Field == Integer)
1357     return Integer;
1358   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1359       Accum == X87 || Accum == X87Up)
1360     return Memory;
1361   return SSE;
1362 }
1363 
1364 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1365                              Class &Lo, Class &Hi) const {
1366   // FIXME: This code can be simplified by introducing a simple value class for
1367   // Class pairs with appropriate constructor methods for the various
1368   // situations.
1369 
1370   // FIXME: Some of the split computations are wrong; unaligned vectors
1371   // shouldn't be passed in registers for example, so there is no chance they
1372   // can straddle an eightbyte. Verify & simplify.
1373 
1374   Lo = Hi = NoClass;
1375 
1376   Class &Current = OffsetBase < 64 ? Lo : Hi;
1377   Current = Memory;
1378 
1379   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1380     BuiltinType::Kind k = BT->getKind();
1381 
1382     if (k == BuiltinType::Void) {
1383       Current = NoClass;
1384     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1385       Lo = Integer;
1386       Hi = Integer;
1387     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1388       Current = Integer;
1389     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1390                (k == BuiltinType::LongDouble &&
1391                 getContext().getTargetInfo().getTriple().getOS() ==
1392                 llvm::Triple::NaCl)) {
1393       Current = SSE;
1394     } else if (k == BuiltinType::LongDouble) {
1395       Lo = X87;
1396       Hi = X87Up;
1397     }
1398     // FIXME: _Decimal32 and _Decimal64 are SSE.
1399     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1400     return;
1401   }
1402 
1403   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1404     // Classify the underlying integer type.
1405     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1406     return;
1407   }
1408 
1409   if (Ty->hasPointerRepresentation()) {
1410     Current = Integer;
1411     return;
1412   }
1413 
1414   if (Ty->isMemberPointerType()) {
1415     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1416       Lo = Hi = Integer;
1417     else
1418       Current = Integer;
1419     return;
1420   }
1421 
1422   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1423     uint64_t Size = getContext().getTypeSize(VT);
1424     if (Size == 32) {
1425       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1426       // float> as integer.
1427       Current = Integer;
1428 
1429       // If this type crosses an eightbyte boundary, it should be
1430       // split.
1431       uint64_t EB_Real = (OffsetBase) / 64;
1432       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1433       if (EB_Real != EB_Imag)
1434         Hi = Lo;
1435     } else if (Size == 64) {
1436       // gcc passes <1 x double> in memory. :(
1437       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1438         return;
1439 
1440       // gcc passes <1 x long long> as INTEGER.
1441       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1442           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1443           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1444           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1445         Current = Integer;
1446       else
1447         Current = SSE;
1448 
1449       // If this type crosses an eightbyte boundary, it should be
1450       // split.
1451       if (OffsetBase && OffsetBase != 64)
1452         Hi = Lo;
1453     } else if (Size == 128 || (HasAVX && Size == 256)) {
1454       // Arguments of 256-bits are split into four eightbyte chunks. The
1455       // least significant one belongs to class SSE and all the others to class
1456       // SSEUP. The original Lo and Hi design considers that types can't be
1457       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1458       // This design isn't correct for 256-bits, but since there're no cases
1459       // where the upper parts would need to be inspected, avoid adding
1460       // complexity and just consider Hi to match the 64-256 part.
1461       Lo = SSE;
1462       Hi = SSEUp;
1463     }
1464     return;
1465   }
1466 
1467   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1468     QualType ET = getContext().getCanonicalType(CT->getElementType());
1469 
1470     uint64_t Size = getContext().getTypeSize(Ty);
1471     if (ET->isIntegralOrEnumerationType()) {
1472       if (Size <= 64)
1473         Current = Integer;
1474       else if (Size <= 128)
1475         Lo = Hi = Integer;
1476     } else if (ET == getContext().FloatTy)
1477       Current = SSE;
1478     else if (ET == getContext().DoubleTy ||
1479              (ET == getContext().LongDoubleTy &&
1480               getContext().getTargetInfo().getTriple().getOS() ==
1481               llvm::Triple::NaCl))
1482       Lo = Hi = SSE;
1483     else if (ET == getContext().LongDoubleTy)
1484       Current = ComplexX87;
1485 
1486     // If this complex type crosses an eightbyte boundary then it
1487     // should be split.
1488     uint64_t EB_Real = (OffsetBase) / 64;
1489     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1490     if (Hi == NoClass && EB_Real != EB_Imag)
1491       Hi = Lo;
1492 
1493     return;
1494   }
1495 
1496   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1497     // Arrays are treated like structures.
1498 
1499     uint64_t Size = getContext().getTypeSize(Ty);
1500 
1501     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1502     // than four eightbytes, ..., it has class MEMORY.
1503     if (Size > 256)
1504       return;
1505 
1506     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1507     // fields, it has class MEMORY.
1508     //
1509     // Only need to check alignment of array base.
1510     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1511       return;
1512 
1513     // Otherwise implement simplified merge. We could be smarter about
1514     // this, but it isn't worth it and would be harder to verify.
1515     Current = NoClass;
1516     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1517     uint64_t ArraySize = AT->getSize().getZExtValue();
1518 
1519     // The only case a 256-bit wide vector could be used is when the array
1520     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1521     // to work for sizes wider than 128, early check and fallback to memory.
1522     if (Size > 128 && EltSize != 256)
1523       return;
1524 
1525     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1526       Class FieldLo, FieldHi;
1527       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1528       Lo = merge(Lo, FieldLo);
1529       Hi = merge(Hi, FieldHi);
1530       if (Lo == Memory || Hi == Memory)
1531         break;
1532     }
1533 
1534     postMerge(Size, Lo, Hi);
1535     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1536     return;
1537   }
1538 
1539   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1540     uint64_t Size = getContext().getTypeSize(Ty);
1541 
1542     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1543     // than four eightbytes, ..., it has class MEMORY.
1544     if (Size > 256)
1545       return;
1546 
1547     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1548     // copy constructor or a non-trivial destructor, it is passed by invisible
1549     // reference.
1550     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1551       return;
1552 
1553     const RecordDecl *RD = RT->getDecl();
1554 
1555     // Assume variable sized types are passed in memory.
1556     if (RD->hasFlexibleArrayMember())
1557       return;
1558 
1559     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1560 
1561     // Reset Lo class, this will be recomputed.
1562     Current = NoClass;
1563 
1564     // If this is a C++ record, classify the bases first.
1565     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1566       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1567              e = CXXRD->bases_end(); i != e; ++i) {
1568         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1569                "Unexpected base class!");
1570         const CXXRecordDecl *Base =
1571           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1572 
1573         // Classify this field.
1574         //
1575         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1576         // single eightbyte, each is classified separately. Each eightbyte gets
1577         // initialized to class NO_CLASS.
1578         Class FieldLo, FieldHi;
1579         uint64_t Offset =
1580           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1581         classify(i->getType(), Offset, FieldLo, FieldHi);
1582         Lo = merge(Lo, FieldLo);
1583         Hi = merge(Hi, FieldHi);
1584         if (Lo == Memory || Hi == Memory)
1585           break;
1586       }
1587     }
1588 
1589     // Classify the fields one at a time, merging the results.
1590     unsigned idx = 0;
1591     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1592            i != e; ++i, ++idx) {
1593       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1594       bool BitField = i->isBitField();
1595 
1596       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1597       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1598       //
1599       // The only case a 256-bit wide vector could be used is when the struct
1600       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1601       // to work for sizes wider than 128, early check and fallback to memory.
1602       //
1603       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1604         Lo = Memory;
1605         return;
1606       }
1607       // Note, skip this test for bit-fields, see below.
1608       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1609         Lo = Memory;
1610         return;
1611       }
1612 
1613       // Classify this field.
1614       //
1615       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1616       // exceeds a single eightbyte, each is classified
1617       // separately. Each eightbyte gets initialized to class
1618       // NO_CLASS.
1619       Class FieldLo, FieldHi;
1620 
1621       // Bit-fields require special handling, they do not force the
1622       // structure to be passed in memory even if unaligned, and
1623       // therefore they can straddle an eightbyte.
1624       if (BitField) {
1625         // Ignore padding bit-fields.
1626         if (i->isUnnamedBitfield())
1627           continue;
1628 
1629         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1630         uint64_t Size = i->getBitWidthValue(getContext());
1631 
1632         uint64_t EB_Lo = Offset / 64;
1633         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1634         FieldLo = FieldHi = NoClass;
1635         if (EB_Lo) {
1636           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1637           FieldLo = NoClass;
1638           FieldHi = Integer;
1639         } else {
1640           FieldLo = Integer;
1641           FieldHi = EB_Hi ? Integer : NoClass;
1642         }
1643       } else
1644         classify(i->getType(), Offset, FieldLo, FieldHi);
1645       Lo = merge(Lo, FieldLo);
1646       Hi = merge(Hi, FieldHi);
1647       if (Lo == Memory || Hi == Memory)
1648         break;
1649     }
1650 
1651     postMerge(Size, Lo, Hi);
1652   }
1653 }
1654 
1655 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1656   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1657   // place naturally.
1658   if (!isAggregateTypeForABI(Ty)) {
1659     // Treat an enum type as its underlying type.
1660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1661       Ty = EnumTy->getDecl()->getIntegerType();
1662 
1663     return (Ty->isPromotableIntegerType() ?
1664             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1665   }
1666 
1667   return ABIArgInfo::getIndirect(0);
1668 }
1669 
1670 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1671   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1672     uint64_t Size = getContext().getTypeSize(VecTy);
1673     unsigned LargestVector = HasAVX ? 256 : 128;
1674     if (Size <= 64 || Size > LargestVector)
1675       return true;
1676   }
1677 
1678   return false;
1679 }
1680 
1681 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1682                                             unsigned freeIntRegs) const {
1683   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1684   // place naturally.
1685   //
1686   // This assumption is optimistic, as there could be free registers available
1687   // when we need to pass this argument in memory, and LLVM could try to pass
1688   // the argument in the free register. This does not seem to happen currently,
1689   // but this code would be much safer if we could mark the argument with
1690   // 'onstack'. See PR12193.
1691   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1692     // Treat an enum type as its underlying type.
1693     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1694       Ty = EnumTy->getDecl()->getIntegerType();
1695 
1696     return (Ty->isPromotableIntegerType() ?
1697             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1698   }
1699 
1700   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1701     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1702 
1703   // Compute the byval alignment. We specify the alignment of the byval in all
1704   // cases so that the mid-level optimizer knows the alignment of the byval.
1705   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1706 
1707   // Attempt to avoid passing indirect results using byval when possible. This
1708   // is important for good codegen.
1709   //
1710   // We do this by coercing the value into a scalar type which the backend can
1711   // handle naturally (i.e., without using byval).
1712   //
1713   // For simplicity, we currently only do this when we have exhausted all of the
1714   // free integer registers. Doing this when there are free integer registers
1715   // would require more care, as we would have to ensure that the coerced value
1716   // did not claim the unused register. That would require either reording the
1717   // arguments to the function (so that any subsequent inreg values came first),
1718   // or only doing this optimization when there were no following arguments that
1719   // might be inreg.
1720   //
1721   // We currently expect it to be rare (particularly in well written code) for
1722   // arguments to be passed on the stack when there are still free integer
1723   // registers available (this would typically imply large structs being passed
1724   // by value), so this seems like a fair tradeoff for now.
1725   //
1726   // We can revisit this if the backend grows support for 'onstack' parameter
1727   // attributes. See PR12193.
1728   if (freeIntRegs == 0) {
1729     uint64_t Size = getContext().getTypeSize(Ty);
1730 
1731     // If this type fits in an eightbyte, coerce it into the matching integral
1732     // type, which will end up on the stack (with alignment 8).
1733     if (Align == 8 && Size <= 64)
1734       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1735                                                           Size));
1736   }
1737 
1738   return ABIArgInfo::getIndirect(Align);
1739 }
1740 
1741 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1742 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1743 /// vector register.
1744 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1745   llvm::Type *IRType = CGT.ConvertType(Ty);
1746 
1747   // Wrapper structs that just contain vectors are passed just like vectors,
1748   // strip them off if present.
1749   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1750   while (STy && STy->getNumElements() == 1) {
1751     IRType = STy->getElementType(0);
1752     STy = dyn_cast<llvm::StructType>(IRType);
1753   }
1754 
1755   // If the preferred type is a 16-byte vector, prefer to pass it.
1756   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1757     llvm::Type *EltTy = VT->getElementType();
1758     unsigned BitWidth = VT->getBitWidth();
1759     if ((BitWidth >= 128 && BitWidth <= 256) &&
1760         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1761          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1762          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1763          EltTy->isIntegerTy(128)))
1764       return VT;
1765   }
1766 
1767   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1768 }
1769 
1770 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1771 /// is known to either be off the end of the specified type or being in
1772 /// alignment padding.  The user type specified is known to be at most 128 bits
1773 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1774 /// classification that put one of the two halves in the INTEGER class.
1775 ///
1776 /// It is conservatively correct to return false.
1777 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1778                                   unsigned EndBit, ASTContext &Context) {
1779   // If the bytes being queried are off the end of the type, there is no user
1780   // data hiding here.  This handles analysis of builtins, vectors and other
1781   // types that don't contain interesting padding.
1782   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1783   if (TySize <= StartBit)
1784     return true;
1785 
1786   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1787     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1788     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1789 
1790     // Check each element to see if the element overlaps with the queried range.
1791     for (unsigned i = 0; i != NumElts; ++i) {
1792       // If the element is after the span we care about, then we're done..
1793       unsigned EltOffset = i*EltSize;
1794       if (EltOffset >= EndBit) break;
1795 
1796       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1797       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1798                                  EndBit-EltOffset, Context))
1799         return false;
1800     }
1801     // If it overlaps no elements, then it is safe to process as padding.
1802     return true;
1803   }
1804 
1805   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1806     const RecordDecl *RD = RT->getDecl();
1807     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1808 
1809     // If this is a C++ record, check the bases first.
1810     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1811       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1812            e = CXXRD->bases_end(); i != e; ++i) {
1813         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1814                "Unexpected base class!");
1815         const CXXRecordDecl *Base =
1816           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1817 
1818         // If the base is after the span we care about, ignore it.
1819         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1820         if (BaseOffset >= EndBit) continue;
1821 
1822         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1823         if (!BitsContainNoUserData(i->getType(), BaseStart,
1824                                    EndBit-BaseOffset, Context))
1825           return false;
1826       }
1827     }
1828 
1829     // Verify that no field has data that overlaps the region of interest.  Yes
1830     // this could be sped up a lot by being smarter about queried fields,
1831     // however we're only looking at structs up to 16 bytes, so we don't care
1832     // much.
1833     unsigned idx = 0;
1834     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1835          i != e; ++i, ++idx) {
1836       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1837 
1838       // If we found a field after the region we care about, then we're done.
1839       if (FieldOffset >= EndBit) break;
1840 
1841       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1842       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1843                                  Context))
1844         return false;
1845     }
1846 
1847     // If nothing in this record overlapped the area of interest, then we're
1848     // clean.
1849     return true;
1850   }
1851 
1852   return false;
1853 }
1854 
1855 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1856 /// float member at the specified offset.  For example, {int,{float}} has a
1857 /// float at offset 4.  It is conservatively correct for this routine to return
1858 /// false.
1859 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1860                                   const llvm::DataLayout &TD) {
1861   // Base case if we find a float.
1862   if (IROffset == 0 && IRType->isFloatTy())
1863     return true;
1864 
1865   // If this is a struct, recurse into the field at the specified offset.
1866   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1867     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1868     unsigned Elt = SL->getElementContainingOffset(IROffset);
1869     IROffset -= SL->getElementOffset(Elt);
1870     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1871   }
1872 
1873   // If this is an array, recurse into the field at the specified offset.
1874   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1875     llvm::Type *EltTy = ATy->getElementType();
1876     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1877     IROffset -= IROffset/EltSize*EltSize;
1878     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1879   }
1880 
1881   return false;
1882 }
1883 
1884 
1885 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1886 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1887 llvm::Type *X86_64ABIInfo::
1888 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1889                    QualType SourceTy, unsigned SourceOffset) const {
1890   // The only three choices we have are either double, <2 x float>, or float. We
1891   // pass as float if the last 4 bytes is just padding.  This happens for
1892   // structs that contain 3 floats.
1893   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1894                             SourceOffset*8+64, getContext()))
1895     return llvm::Type::getFloatTy(getVMContext());
1896 
1897   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1898   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1899   // case.
1900   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1901       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1902     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1903 
1904   return llvm::Type::getDoubleTy(getVMContext());
1905 }
1906 
1907 
1908 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1909 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1910 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1911 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1912 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1913 /// etc).
1914 ///
1915 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1916 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1917 /// the 8-byte value references.  PrefType may be null.
1918 ///
1919 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1920 /// an offset into this that we're processing (which is always either 0 or 8).
1921 ///
1922 llvm::Type *X86_64ABIInfo::
1923 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1924                        QualType SourceTy, unsigned SourceOffset) const {
1925   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1926   // returning an 8-byte unit starting with it.  See if we can safely use it.
1927   if (IROffset == 0) {
1928     // Pointers and int64's always fill the 8-byte unit.
1929     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1930         IRType->isIntegerTy(64))
1931       return IRType;
1932 
1933     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1934     // goodness in the source type is just tail padding.  This is allowed to
1935     // kick in for struct {double,int} on the int, but not on
1936     // struct{double,int,int} because we wouldn't return the second int.  We
1937     // have to do this analysis on the source type because we can't depend on
1938     // unions being lowered a specific way etc.
1939     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1940         IRType->isIntegerTy(32) ||
1941         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1942       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1943           cast<llvm::IntegerType>(IRType)->getBitWidth();
1944 
1945       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1946                                 SourceOffset*8+64, getContext()))
1947         return IRType;
1948     }
1949   }
1950 
1951   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1952     // If this is a struct, recurse into the field at the specified offset.
1953     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1954     if (IROffset < SL->getSizeInBytes()) {
1955       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1956       IROffset -= SL->getElementOffset(FieldIdx);
1957 
1958       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1959                                     SourceTy, SourceOffset);
1960     }
1961   }
1962 
1963   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1964     llvm::Type *EltTy = ATy->getElementType();
1965     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1966     unsigned EltOffset = IROffset/EltSize*EltSize;
1967     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1968                                   SourceOffset);
1969   }
1970 
1971   // Okay, we don't have any better idea of what to pass, so we pass this in an
1972   // integer register that isn't too big to fit the rest of the struct.
1973   unsigned TySizeInBytes =
1974     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1975 
1976   assert(TySizeInBytes != SourceOffset && "Empty field?");
1977 
1978   // It is always safe to classify this as an integer type up to i64 that
1979   // isn't larger than the structure.
1980   return llvm::IntegerType::get(getVMContext(),
1981                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1982 }
1983 
1984 
1985 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1986 /// be used as elements of a two register pair to pass or return, return a
1987 /// first class aggregate to represent them.  For example, if the low part of
1988 /// a by-value argument should be passed as i32* and the high part as float,
1989 /// return {i32*, float}.
1990 static llvm::Type *
1991 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1992                            const llvm::DataLayout &TD) {
1993   // In order to correctly satisfy the ABI, we need to the high part to start
1994   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1995   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1996   // the second element at offset 8.  Check for this:
1997   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1998   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1999   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2000   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2001 
2002   // To handle this, we have to increase the size of the low part so that the
2003   // second element will start at an 8 byte offset.  We can't increase the size
2004   // of the second element because it might make us access off the end of the
2005   // struct.
2006   if (HiStart != 8) {
2007     // There are only two sorts of types the ABI generation code can produce for
2008     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2009     // Promote these to a larger type.
2010     if (Lo->isFloatTy())
2011       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2012     else {
2013       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2014       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2015     }
2016   }
2017 
2018   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2019 
2020 
2021   // Verify that the second element is at an 8-byte offset.
2022   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2023          "Invalid x86-64 argument pair!");
2024   return Result;
2025 }
2026 
2027 ABIArgInfo X86_64ABIInfo::
2028 classifyReturnType(QualType RetTy) const {
2029   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2030   // classification algorithm.
2031   X86_64ABIInfo::Class Lo, Hi;
2032   classify(RetTy, 0, Lo, Hi);
2033 
2034   // Check some invariants.
2035   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2036   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2037 
2038   llvm::Type *ResType = 0;
2039   switch (Lo) {
2040   case NoClass:
2041     if (Hi == NoClass)
2042       return ABIArgInfo::getIgnore();
2043     // If the low part is just padding, it takes no register, leave ResType
2044     // null.
2045     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2046            "Unknown missing lo part");
2047     break;
2048 
2049   case SSEUp:
2050   case X87Up:
2051     llvm_unreachable("Invalid classification for lo word.");
2052 
2053     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2054     // hidden argument.
2055   case Memory:
2056     return getIndirectReturnResult(RetTy);
2057 
2058     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2059     // available register of the sequence %rax, %rdx is used.
2060   case Integer:
2061     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2062 
2063     // If we have a sign or zero extended integer, make sure to return Extend
2064     // so that the parameter gets the right LLVM IR attributes.
2065     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2066       // Treat an enum type as its underlying type.
2067       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2068         RetTy = EnumTy->getDecl()->getIntegerType();
2069 
2070       if (RetTy->isIntegralOrEnumerationType() &&
2071           RetTy->isPromotableIntegerType())
2072         return ABIArgInfo::getExtend();
2073     }
2074     break;
2075 
2076     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2077     // available SSE register of the sequence %xmm0, %xmm1 is used.
2078   case SSE:
2079     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2080     break;
2081 
2082     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2083     // returned on the X87 stack in %st0 as 80-bit x87 number.
2084   case X87:
2085     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2086     break;
2087 
2088     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2089     // part of the value is returned in %st0 and the imaginary part in
2090     // %st1.
2091   case ComplexX87:
2092     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2093     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2094                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2095                                     NULL);
2096     break;
2097   }
2098 
2099   llvm::Type *HighPart = 0;
2100   switch (Hi) {
2101     // Memory was handled previously and X87 should
2102     // never occur as a hi class.
2103   case Memory:
2104   case X87:
2105     llvm_unreachable("Invalid classification for hi word.");
2106 
2107   case ComplexX87: // Previously handled.
2108   case NoClass:
2109     break;
2110 
2111   case Integer:
2112     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2113     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2114       return ABIArgInfo::getDirect(HighPart, 8);
2115     break;
2116   case SSE:
2117     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2118     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2119       return ABIArgInfo::getDirect(HighPart, 8);
2120     break;
2121 
2122     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2123     // is passed in the next available eightbyte chunk if the last used
2124     // vector register.
2125     //
2126     // SSEUP should always be preceded by SSE, just widen.
2127   case SSEUp:
2128     assert(Lo == SSE && "Unexpected SSEUp classification.");
2129     ResType = GetByteVectorType(RetTy);
2130     break;
2131 
2132     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2133     // returned together with the previous X87 value in %st0.
2134   case X87Up:
2135     // If X87Up is preceded by X87, we don't need to do
2136     // anything. However, in some cases with unions it may not be
2137     // preceded by X87. In such situations we follow gcc and pass the
2138     // extra bits in an SSE reg.
2139     if (Lo != X87) {
2140       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2141       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2142         return ABIArgInfo::getDirect(HighPart, 8);
2143     }
2144     break;
2145   }
2146 
2147   // If a high part was specified, merge it together with the low part.  It is
2148   // known to pass in the high eightbyte of the result.  We do this by forming a
2149   // first class struct aggregate with the high and low part: {low, high}
2150   if (HighPart)
2151     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2152 
2153   return ABIArgInfo::getDirect(ResType);
2154 }
2155 
2156 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2157   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2158   const
2159 {
2160   X86_64ABIInfo::Class Lo, Hi;
2161   classify(Ty, 0, Lo, Hi);
2162 
2163   // Check some invariants.
2164   // FIXME: Enforce these by construction.
2165   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2166   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2167 
2168   neededInt = 0;
2169   neededSSE = 0;
2170   llvm::Type *ResType = 0;
2171   switch (Lo) {
2172   case NoClass:
2173     if (Hi == NoClass)
2174       return ABIArgInfo::getIgnore();
2175     // If the low part is just padding, it takes no register, leave ResType
2176     // null.
2177     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2178            "Unknown missing lo part");
2179     break;
2180 
2181     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2182     // on the stack.
2183   case Memory:
2184 
2185     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2186     // COMPLEX_X87, it is passed in memory.
2187   case X87:
2188   case ComplexX87:
2189     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2190       ++neededInt;
2191     return getIndirectResult(Ty, freeIntRegs);
2192 
2193   case SSEUp:
2194   case X87Up:
2195     llvm_unreachable("Invalid classification for lo word.");
2196 
2197     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2198     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2199     // and %r9 is used.
2200   case Integer:
2201     ++neededInt;
2202 
2203     // Pick an 8-byte type based on the preferred type.
2204     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2205 
2206     // If we have a sign or zero extended integer, make sure to return Extend
2207     // so that the parameter gets the right LLVM IR attributes.
2208     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2209       // Treat an enum type as its underlying type.
2210       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2211         Ty = EnumTy->getDecl()->getIntegerType();
2212 
2213       if (Ty->isIntegralOrEnumerationType() &&
2214           Ty->isPromotableIntegerType())
2215         return ABIArgInfo::getExtend();
2216     }
2217 
2218     break;
2219 
2220     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2221     // available SSE register is used, the registers are taken in the
2222     // order from %xmm0 to %xmm7.
2223   case SSE: {
2224     llvm::Type *IRType = CGT.ConvertType(Ty);
2225     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2226     ++neededSSE;
2227     break;
2228   }
2229   }
2230 
2231   llvm::Type *HighPart = 0;
2232   switch (Hi) {
2233     // Memory was handled previously, ComplexX87 and X87 should
2234     // never occur as hi classes, and X87Up must be preceded by X87,
2235     // which is passed in memory.
2236   case Memory:
2237   case X87:
2238   case ComplexX87:
2239     llvm_unreachable("Invalid classification for hi word.");
2240 
2241   case NoClass: break;
2242 
2243   case Integer:
2244     ++neededInt;
2245     // Pick an 8-byte type based on the preferred type.
2246     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2247 
2248     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2249       return ABIArgInfo::getDirect(HighPart, 8);
2250     break;
2251 
2252     // X87Up generally doesn't occur here (long double is passed in
2253     // memory), except in situations involving unions.
2254   case X87Up:
2255   case SSE:
2256     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2257 
2258     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2259       return ABIArgInfo::getDirect(HighPart, 8);
2260 
2261     ++neededSSE;
2262     break;
2263 
2264     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2265     // eightbyte is passed in the upper half of the last used SSE
2266     // register.  This only happens when 128-bit vectors are passed.
2267   case SSEUp:
2268     assert(Lo == SSE && "Unexpected SSEUp classification");
2269     ResType = GetByteVectorType(Ty);
2270     break;
2271   }
2272 
2273   // If a high part was specified, merge it together with the low part.  It is
2274   // known to pass in the high eightbyte of the result.  We do this by forming a
2275   // first class struct aggregate with the high and low part: {low, high}
2276   if (HighPart)
2277     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2278 
2279   return ABIArgInfo::getDirect(ResType);
2280 }
2281 
2282 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2283 
2284   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2285 
2286   // Keep track of the number of assigned registers.
2287   unsigned freeIntRegs = 6, freeSSERegs = 8;
2288 
2289   // If the return value is indirect, then the hidden argument is consuming one
2290   // integer register.
2291   if (FI.getReturnInfo().isIndirect())
2292     --freeIntRegs;
2293 
2294   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2295   // get assigned (in left-to-right order) for passing as follows...
2296   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2297        it != ie; ++it) {
2298     unsigned neededInt, neededSSE;
2299     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2300                                     neededSSE);
2301 
2302     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2303     // eightbyte of an argument, the whole argument is passed on the
2304     // stack. If registers have already been assigned for some
2305     // eightbytes of such an argument, the assignments get reverted.
2306     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2307       freeIntRegs -= neededInt;
2308       freeSSERegs -= neededSSE;
2309     } else {
2310       it->info = getIndirectResult(it->type, freeIntRegs);
2311     }
2312   }
2313 }
2314 
2315 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2316                                         QualType Ty,
2317                                         CodeGenFunction &CGF) {
2318   llvm::Value *overflow_arg_area_p =
2319     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2320   llvm::Value *overflow_arg_area =
2321     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2322 
2323   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2324   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2325   // It isn't stated explicitly in the standard, but in practice we use
2326   // alignment greater than 16 where necessary.
2327   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2328   if (Align > 8) {
2329     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2330     llvm::Value *Offset =
2331       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2332     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2333     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2334                                                     CGF.Int64Ty);
2335     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2336     overflow_arg_area =
2337       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2338                                  overflow_arg_area->getType(),
2339                                  "overflow_arg_area.align");
2340   }
2341 
2342   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2343   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2344   llvm::Value *Res =
2345     CGF.Builder.CreateBitCast(overflow_arg_area,
2346                               llvm::PointerType::getUnqual(LTy));
2347 
2348   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2349   // l->overflow_arg_area + sizeof(type).
2350   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2351   // an 8 byte boundary.
2352 
2353   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2354   llvm::Value *Offset =
2355       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2356   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2357                                             "overflow_arg_area.next");
2358   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2359 
2360   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2361   return Res;
2362 }
2363 
2364 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2365                                       CodeGenFunction &CGF) const {
2366   // Assume that va_list type is correct; should be pointer to LLVM type:
2367   // struct {
2368   //   i32 gp_offset;
2369   //   i32 fp_offset;
2370   //   i8* overflow_arg_area;
2371   //   i8* reg_save_area;
2372   // };
2373   unsigned neededInt, neededSSE;
2374 
2375   Ty = CGF.getContext().getCanonicalType(Ty);
2376   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2377 
2378   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2379   // in the registers. If not go to step 7.
2380   if (!neededInt && !neededSSE)
2381     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2382 
2383   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2384   // general purpose registers needed to pass type and num_fp to hold
2385   // the number of floating point registers needed.
2386 
2387   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2388   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2389   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2390   //
2391   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2392   // register save space).
2393 
2394   llvm::Value *InRegs = 0;
2395   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2396   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2397   if (neededInt) {
2398     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2399     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2400     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2401     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2402   }
2403 
2404   if (neededSSE) {
2405     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2406     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2407     llvm::Value *FitsInFP =
2408       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2409     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2410     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2411   }
2412 
2413   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2414   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2415   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2416   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2417 
2418   // Emit code to load the value if it was passed in registers.
2419 
2420   CGF.EmitBlock(InRegBlock);
2421 
2422   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2423   // an offset of l->gp_offset and/or l->fp_offset. This may require
2424   // copying to a temporary location in case the parameter is passed
2425   // in different register classes or requires an alignment greater
2426   // than 8 for general purpose registers and 16 for XMM registers.
2427   //
2428   // FIXME: This really results in shameful code when we end up needing to
2429   // collect arguments from different places; often what should result in a
2430   // simple assembling of a structure from scattered addresses has many more
2431   // loads than necessary. Can we clean this up?
2432   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2433   llvm::Value *RegAddr =
2434     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2435                            "reg_save_area");
2436   if (neededInt && neededSSE) {
2437     // FIXME: Cleanup.
2438     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2439     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2440     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2441     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2442     llvm::Type *TyLo = ST->getElementType(0);
2443     llvm::Type *TyHi = ST->getElementType(1);
2444     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2445            "Unexpected ABI info for mixed regs");
2446     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2447     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2448     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2449     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2450     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2451     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2452     llvm::Value *V =
2453       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2454     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2455     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2456     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2457 
2458     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2459                                         llvm::PointerType::getUnqual(LTy));
2460   } else if (neededInt) {
2461     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2462     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2463                                         llvm::PointerType::getUnqual(LTy));
2464   } else if (neededSSE == 1) {
2465     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2466     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2467                                         llvm::PointerType::getUnqual(LTy));
2468   } else {
2469     assert(neededSSE == 2 && "Invalid number of needed registers!");
2470     // SSE registers are spaced 16 bytes apart in the register save
2471     // area, we need to collect the two eightbytes together.
2472     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2473     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2474     llvm::Type *DoubleTy = CGF.DoubleTy;
2475     llvm::Type *DblPtrTy =
2476       llvm::PointerType::getUnqual(DoubleTy);
2477     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2478                                                        DoubleTy, NULL);
2479     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2480     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2481                                                          DblPtrTy));
2482     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2483     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2484                                                          DblPtrTy));
2485     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2486     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2487                                         llvm::PointerType::getUnqual(LTy));
2488   }
2489 
2490   // AMD64-ABI 3.5.7p5: Step 5. Set:
2491   // l->gp_offset = l->gp_offset + num_gp * 8
2492   // l->fp_offset = l->fp_offset + num_fp * 16.
2493   if (neededInt) {
2494     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2495     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2496                             gp_offset_p);
2497   }
2498   if (neededSSE) {
2499     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2500     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2501                             fp_offset_p);
2502   }
2503   CGF.EmitBranch(ContBlock);
2504 
2505   // Emit code to load the value if it was passed in memory.
2506 
2507   CGF.EmitBlock(InMemBlock);
2508   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2509 
2510   // Return the appropriate result.
2511 
2512   CGF.EmitBlock(ContBlock);
2513   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2514                                                  "vaarg.addr");
2515   ResAddr->addIncoming(RegAddr, InRegBlock);
2516   ResAddr->addIncoming(MemAddr, InMemBlock);
2517   return ResAddr;
2518 }
2519 
2520 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2521 
2522   if (Ty->isVoidType())
2523     return ABIArgInfo::getIgnore();
2524 
2525   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2526     Ty = EnumTy->getDecl()->getIntegerType();
2527 
2528   uint64_t Size = getContext().getTypeSize(Ty);
2529 
2530   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2531     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2532         RT->getDecl()->hasFlexibleArrayMember())
2533       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2534 
2535     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2536     if (Size == 128 &&
2537         getContext().getTargetInfo().getTriple().getOS()
2538           == llvm::Triple::MinGW32)
2539       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2540                                                           Size));
2541 
2542     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2543     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2544     if (Size <= 64 &&
2545         (Size & (Size - 1)) == 0)
2546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2547                                                           Size));
2548 
2549     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2550   }
2551 
2552   if (Ty->isPromotableIntegerType())
2553     return ABIArgInfo::getExtend();
2554 
2555   return ABIArgInfo::getDirect();
2556 }
2557 
2558 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2559 
2560   QualType RetTy = FI.getReturnType();
2561   FI.getReturnInfo() = classify(RetTy);
2562 
2563   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2564        it != ie; ++it)
2565     it->info = classify(it->type);
2566 }
2567 
2568 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2569                                       CodeGenFunction &CGF) const {
2570   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2571 
2572   CGBuilderTy &Builder = CGF.Builder;
2573   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2574                                                        "ap");
2575   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2576   llvm::Type *PTy =
2577     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2578   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2579 
2580   uint64_t Offset =
2581     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2582   llvm::Value *NextAddr =
2583     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2584                       "ap.next");
2585   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2586 
2587   return AddrTyped;
2588 }
2589 
2590 namespace {
2591 
2592 class NaClX86_64ABIInfo : public ABIInfo {
2593  public:
2594   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2595       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2596   virtual void computeInfo(CGFunctionInfo &FI) const;
2597   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2598                                  CodeGenFunction &CGF) const;
2599  private:
2600   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2601   X86_64ABIInfo NInfo; // Used for everything else.
2602 };
2603 
2604 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2605  public:
2606   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2607       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2608 };
2609 
2610 }
2611 
2612 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2613   if (FI.getASTCallingConvention() == CC_PnaclCall)
2614     PInfo.computeInfo(FI);
2615   else
2616     NInfo.computeInfo(FI);
2617 }
2618 
2619 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2620                                           CodeGenFunction &CGF) const {
2621   // Always use the native convention; calling pnacl-style varargs functions
2622   // is unuspported.
2623   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2624 }
2625 
2626 
2627 // PowerPC-32
2628 
2629 namespace {
2630 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2631 public:
2632   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2633 
2634   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2635     // This is recovered from gcc output.
2636     return 1; // r1 is the dedicated stack pointer
2637   }
2638 
2639   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2640                                llvm::Value *Address) const;
2641 };
2642 
2643 }
2644 
2645 bool
2646 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2647                                                 llvm::Value *Address) const {
2648   // This is calculated from the LLVM and GCC tables and verified
2649   // against gcc output.  AFAIK all ABIs use the same encoding.
2650 
2651   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2652 
2653   llvm::IntegerType *i8 = CGF.Int8Ty;
2654   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2655   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2656   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2657 
2658   // 0-31: r0-31, the 4-byte general-purpose registers
2659   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2660 
2661   // 32-63: fp0-31, the 8-byte floating-point registers
2662   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2663 
2664   // 64-76 are various 4-byte special-purpose registers:
2665   // 64: mq
2666   // 65: lr
2667   // 66: ctr
2668   // 67: ap
2669   // 68-75 cr0-7
2670   // 76: xer
2671   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2672 
2673   // 77-108: v0-31, the 16-byte vector registers
2674   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2675 
2676   // 109: vrsave
2677   // 110: vscr
2678   // 111: spe_acc
2679   // 112: spefscr
2680   // 113: sfp
2681   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2682 
2683   return false;
2684 }
2685 
2686 // PowerPC-64
2687 
2688 namespace {
2689 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2690 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2691 
2692 public:
2693   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2694 
2695   bool isPromotableTypeForABI(QualType Ty) const;
2696 
2697   ABIArgInfo classifyReturnType(QualType RetTy) const;
2698   ABIArgInfo classifyArgumentType(QualType Ty) const;
2699 
2700   // TODO: We can add more logic to computeInfo to improve performance.
2701   // Example: For aggregate arguments that fit in a register, we could
2702   // use getDirectInReg (as is done below for structs containing a single
2703   // floating-point value) to avoid pushing them to memory on function
2704   // entry.  This would require changing the logic in PPCISelLowering
2705   // when lowering the parameters in the caller and args in the callee.
2706   virtual void computeInfo(CGFunctionInfo &FI) const {
2707     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2708     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2709          it != ie; ++it) {
2710       // We rely on the default argument classification for the most part.
2711       // One exception:  An aggregate containing a single floating-point
2712       // item must be passed in a register if one is available.
2713       const Type *T = isSingleElementStruct(it->type, getContext());
2714       if (T) {
2715         const BuiltinType *BT = T->getAs<BuiltinType>();
2716         if (BT && BT->isFloatingPoint()) {
2717           QualType QT(T, 0);
2718           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2719           continue;
2720         }
2721       }
2722       it->info = classifyArgumentType(it->type);
2723     }
2724   }
2725 
2726   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2727                                  QualType Ty,
2728                                  CodeGenFunction &CGF) const;
2729 };
2730 
2731 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2732 public:
2733   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2734     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2735 
2736   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2737     // This is recovered from gcc output.
2738     return 1; // r1 is the dedicated stack pointer
2739   }
2740 
2741   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2742                                llvm::Value *Address) const;
2743 };
2744 
2745 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2746 public:
2747   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2748 
2749   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2750     // This is recovered from gcc output.
2751     return 1; // r1 is the dedicated stack pointer
2752   }
2753 
2754   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2755                                llvm::Value *Address) const;
2756 };
2757 
2758 }
2759 
2760 // Return true if the ABI requires Ty to be passed sign- or zero-
2761 // extended to 64 bits.
2762 bool
2763 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2764   // Treat an enum type as its underlying type.
2765   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2766     Ty = EnumTy->getDecl()->getIntegerType();
2767 
2768   // Promotable integer types are required to be promoted by the ABI.
2769   if (Ty->isPromotableIntegerType())
2770     return true;
2771 
2772   // In addition to the usual promotable integer types, we also need to
2773   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2774   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2775     switch (BT->getKind()) {
2776     case BuiltinType::Int:
2777     case BuiltinType::UInt:
2778       return true;
2779     default:
2780       break;
2781     }
2782 
2783   return false;
2784 }
2785 
2786 ABIArgInfo
2787 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2788   if (Ty->isAnyComplexType())
2789     return ABIArgInfo::getDirect();
2790 
2791   if (isAggregateTypeForABI(Ty)) {
2792     // Records with non trivial destructors/constructors should not be passed
2793     // by value.
2794     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2795       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2796 
2797     return ABIArgInfo::getIndirect(0);
2798   }
2799 
2800   return (isPromotableTypeForABI(Ty) ?
2801           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2802 }
2803 
2804 ABIArgInfo
2805 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2806   if (RetTy->isVoidType())
2807     return ABIArgInfo::getIgnore();
2808 
2809   if (RetTy->isAnyComplexType())
2810     return ABIArgInfo::getDirect();
2811 
2812   if (isAggregateTypeForABI(RetTy))
2813     return ABIArgInfo::getIndirect(0);
2814 
2815   return (isPromotableTypeForABI(RetTy) ?
2816           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2817 }
2818 
2819 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2820 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2821                                            QualType Ty,
2822                                            CodeGenFunction &CGF) const {
2823   llvm::Type *BP = CGF.Int8PtrTy;
2824   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2825 
2826   CGBuilderTy &Builder = CGF.Builder;
2827   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2828   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2829 
2830   // Update the va_list pointer.  The pointer should be bumped by the
2831   // size of the object.  We can trust getTypeSize() except for a complex
2832   // type whose base type is smaller than a doubleword.  For these, the
2833   // size of the object is 16 bytes; see below for further explanation.
2834   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2835   QualType BaseTy;
2836   unsigned CplxBaseSize = 0;
2837 
2838   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2839     BaseTy = CTy->getElementType();
2840     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2841     if (CplxBaseSize < 8)
2842       SizeInBytes = 16;
2843   }
2844 
2845   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2846   llvm::Value *NextAddr =
2847     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2848                       "ap.next");
2849   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2850 
2851   // If we have a complex type and the base type is smaller than 8 bytes,
2852   // the ABI calls for the real and imaginary parts to be right-adjusted
2853   // in separate doublewords.  However, Clang expects us to produce a
2854   // pointer to a structure with the two parts packed tightly.  So generate
2855   // loads of the real and imaginary parts relative to the va_list pointer,
2856   // and store them to a temporary structure.
2857   if (CplxBaseSize && CplxBaseSize < 8) {
2858     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2859     llvm::Value *ImagAddr = RealAddr;
2860     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2861     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2862     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2863     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2864     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2865     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2866     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2867     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2868                                             "vacplx");
2869     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2870     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2871     Builder.CreateStore(Real, RealPtr, false);
2872     Builder.CreateStore(Imag, ImagPtr, false);
2873     return Ptr;
2874   }
2875 
2876   // If the argument is smaller than 8 bytes, it is right-adjusted in
2877   // its doubleword slot.  Adjust the pointer to pick it up from the
2878   // correct offset.
2879   if (SizeInBytes < 8) {
2880     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2881     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2882     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2883   }
2884 
2885   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2886   return Builder.CreateBitCast(Addr, PTy);
2887 }
2888 
2889 static bool
2890 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2891                               llvm::Value *Address) {
2892   // This is calculated from the LLVM and GCC tables and verified
2893   // against gcc output.  AFAIK all ABIs use the same encoding.
2894 
2895   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2896 
2897   llvm::IntegerType *i8 = CGF.Int8Ty;
2898   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2899   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2900   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2901 
2902   // 0-31: r0-31, the 8-byte general-purpose registers
2903   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2904 
2905   // 32-63: fp0-31, the 8-byte floating-point registers
2906   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2907 
2908   // 64-76 are various 4-byte special-purpose registers:
2909   // 64: mq
2910   // 65: lr
2911   // 66: ctr
2912   // 67: ap
2913   // 68-75 cr0-7
2914   // 76: xer
2915   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2916 
2917   // 77-108: v0-31, the 16-byte vector registers
2918   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2919 
2920   // 109: vrsave
2921   // 110: vscr
2922   // 111: spe_acc
2923   // 112: spefscr
2924   // 113: sfp
2925   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2926 
2927   return false;
2928 }
2929 
2930 bool
2931 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2932   CodeGen::CodeGenFunction &CGF,
2933   llvm::Value *Address) const {
2934 
2935   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2936 }
2937 
2938 bool
2939 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2940                                                 llvm::Value *Address) const {
2941 
2942   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2943 }
2944 
2945 //===----------------------------------------------------------------------===//
2946 // ARM ABI Implementation
2947 //===----------------------------------------------------------------------===//
2948 
2949 namespace {
2950 
2951 class ARMABIInfo : public ABIInfo {
2952 public:
2953   enum ABIKind {
2954     APCS = 0,
2955     AAPCS = 1,
2956     AAPCS_VFP
2957   };
2958 
2959 private:
2960   ABIKind Kind;
2961 
2962 public:
2963   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2964 
2965   bool isEABI() const {
2966     StringRef Env =
2967       getContext().getTargetInfo().getTriple().getEnvironmentName();
2968     return (Env == "gnueabi" || Env == "eabi" ||
2969             Env == "android" || Env == "androideabi");
2970   }
2971 
2972 private:
2973   ABIKind getABIKind() const { return Kind; }
2974 
2975   ABIArgInfo classifyReturnType(QualType RetTy) const;
2976   ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
2977                                   unsigned &AllocatedVFP,
2978                                   bool &IsHA) const;
2979   bool isIllegalVectorType(QualType Ty) const;
2980 
2981   virtual void computeInfo(CGFunctionInfo &FI) const;
2982 
2983   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2984                                  CodeGenFunction &CGF) const;
2985 };
2986 
2987 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2988 public:
2989   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2990     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2991 
2992   const ARMABIInfo &getABIInfo() const {
2993     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2994   }
2995 
2996   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2997     return 13;
2998   }
2999 
3000   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3001     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3002   }
3003 
3004   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3005                                llvm::Value *Address) const {
3006     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3007 
3008     // 0-15 are the 16 integer registers.
3009     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3010     return false;
3011   }
3012 
3013   unsigned getSizeOfUnwindException() const {
3014     if (getABIInfo().isEABI()) return 88;
3015     return TargetCodeGenInfo::getSizeOfUnwindException();
3016   }
3017 };
3018 
3019 }
3020 
3021 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3022   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3023   // VFP registers allocated so far.
3024   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3025   // VFP registers of the appropriate type unallocated then the argument is
3026   // allocated to the lowest-numbered sequence of such registers.
3027   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3028   // unallocated are marked as unavailable.
3029   unsigned AllocatedVFP = 0;
3030   int VFPRegs[16] = { 0 };
3031   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3032   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3033        it != ie; ++it) {
3034     unsigned PreAllocation = AllocatedVFP;
3035     bool IsHA = false;
3036     // 6.1.2.3 There is one VFP co-processor register class using registers
3037     // s0-s15 (d0-d7) for passing arguments.
3038     const unsigned NumVFPs = 16;
3039     it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3040     // If we do not have enough VFP registers for the HA, any VFP registers
3041     // that are unallocated are marked as unavailable. To achieve this, we add
3042     // padding of (NumVFPs - PreAllocation) floats.
3043     if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3044       llvm::Type *PaddingTy = llvm::ArrayType::get(
3045           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3046       it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3047     }
3048   }
3049 
3050   // Always honor user-specified calling convention.
3051   if (FI.getCallingConvention() != llvm::CallingConv::C)
3052     return;
3053 
3054   // Calling convention as default by an ABI.
3055   llvm::CallingConv::ID DefaultCC;
3056   if (getContext().getTargetInfo().getTriple().getEnvironmentName()=="gnueabihf")
3057     DefaultCC = llvm::CallingConv::ARM_AAPCS_VFP;
3058   else if (isEABI())
3059     DefaultCC = llvm::CallingConv::ARM_AAPCS;
3060   else
3061     DefaultCC = llvm::CallingConv::ARM_APCS;
3062 
3063   // If user did not ask for specific calling convention explicitly (e.g. via
3064   // pcs attribute), set effective calling convention if it's different than ABI
3065   // default.
3066   switch (getABIKind()) {
3067   case APCS:
3068     if (DefaultCC != llvm::CallingConv::ARM_APCS)
3069       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
3070     break;
3071   case AAPCS:
3072     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
3073       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
3074     break;
3075   case AAPCS_VFP:
3076     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
3077       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
3078     break;
3079   }
3080 }
3081 
3082 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3083 /// aggregate.  If HAMembers is non-null, the number of base elements
3084 /// contained in the type is returned through it; this is used for the
3085 /// recursive calls that check aggregate component types.
3086 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3087                                    ASTContext &Context,
3088                                    uint64_t *HAMembers = 0) {
3089   uint64_t Members = 0;
3090   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3091     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3092       return false;
3093     Members *= AT->getSize().getZExtValue();
3094   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3095     const RecordDecl *RD = RT->getDecl();
3096     if (RD->hasFlexibleArrayMember())
3097       return false;
3098 
3099     Members = 0;
3100     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3101          i != e; ++i) {
3102       const FieldDecl *FD = *i;
3103       uint64_t FldMembers;
3104       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3105         return false;
3106 
3107       Members = (RD->isUnion() ?
3108                  std::max(Members, FldMembers) : Members + FldMembers);
3109     }
3110   } else {
3111     Members = 1;
3112     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3113       Members = 2;
3114       Ty = CT->getElementType();
3115     }
3116 
3117     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3118     // double, or 64-bit or 128-bit vectors.
3119     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3120       if (BT->getKind() != BuiltinType::Float &&
3121           BT->getKind() != BuiltinType::Double &&
3122           BT->getKind() != BuiltinType::LongDouble)
3123         return false;
3124     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3125       unsigned VecSize = Context.getTypeSize(VT);
3126       if (VecSize != 64 && VecSize != 128)
3127         return false;
3128     } else {
3129       return false;
3130     }
3131 
3132     // The base type must be the same for all members.  Vector types of the
3133     // same total size are treated as being equivalent here.
3134     const Type *TyPtr = Ty.getTypePtr();
3135     if (!Base)
3136       Base = TyPtr;
3137     if (Base != TyPtr &&
3138         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3139          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3140       return false;
3141   }
3142 
3143   // Homogeneous Aggregates can have at most 4 members of the base type.
3144   if (HAMembers)
3145     *HAMembers = Members;
3146 
3147   return (Members > 0 && Members <= 4);
3148 }
3149 
3150 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3151 /// number of VFP registers (unit is S register) requested.
3152 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3153                               unsigned Alignment,
3154                               unsigned NumRequired) {
3155   // Early Exit.
3156   if (AllocatedVFP >= 16)
3157     return;
3158   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3159   // VFP registers of the appropriate type unallocated then the argument is
3160   // allocated to the lowest-numbered sequence of such registers.
3161   for (unsigned I = 0; I < 16; I += Alignment) {
3162     bool FoundSlot = true;
3163     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3164       if (J >= 16 || VFPRegs[J]) {
3165          FoundSlot = false;
3166          break;
3167       }
3168     if (FoundSlot) {
3169       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3170         VFPRegs[J] = 1;
3171       AllocatedVFP += NumRequired;
3172       return;
3173     }
3174   }
3175   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3176   // unallocated are marked as unavailable.
3177   for (unsigned I = 0; I < 16; I++)
3178     VFPRegs[I] = 1;
3179   AllocatedVFP = 17; // We do not have enough VFP registers.
3180 }
3181 
3182 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3183                                             unsigned &AllocatedVFP,
3184                                             bool &IsHA) const {
3185   // We update number of allocated VFPs according to
3186   // 6.1.2.1 The following argument types are VFP CPRCs:
3187   //   A single-precision floating-point type (including promoted
3188   //   half-precision types); A double-precision floating-point type;
3189   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3190   //   with a Base Type of a single- or double-precision floating-point type,
3191   //   64-bit containerized vectors or 128-bit containerized vectors with one
3192   //   to four Elements.
3193 
3194   // Handle illegal vector types here.
3195   if (isIllegalVectorType(Ty)) {
3196     uint64_t Size = getContext().getTypeSize(Ty);
3197     if (Size <= 32) {
3198       llvm::Type *ResType =
3199           llvm::Type::getInt32Ty(getVMContext());
3200       return ABIArgInfo::getDirect(ResType);
3201     }
3202     if (Size == 64) {
3203       llvm::Type *ResType = llvm::VectorType::get(
3204           llvm::Type::getInt32Ty(getVMContext()), 2);
3205       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3206       return ABIArgInfo::getDirect(ResType);
3207     }
3208     if (Size == 128) {
3209       llvm::Type *ResType = llvm::VectorType::get(
3210           llvm::Type::getInt32Ty(getVMContext()), 4);
3211       markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3212       return ABIArgInfo::getDirect(ResType);
3213     }
3214     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3215   }
3216   // Update VFPRegs for legal vector types.
3217   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3218     uint64_t Size = getContext().getTypeSize(VT);
3219     // Size of a legal vector should be power of 2 and above 64.
3220     markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3221   }
3222   // Update VFPRegs for floating point types.
3223   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3224     if (BT->getKind() == BuiltinType::Half ||
3225         BT->getKind() == BuiltinType::Float)
3226       markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3227     if (BT->getKind() == BuiltinType::Double ||
3228         BT->getKind() == BuiltinType::LongDouble)
3229       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3230   }
3231 
3232   if (!isAggregateTypeForABI(Ty)) {
3233     // Treat an enum type as its underlying type.
3234     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3235       Ty = EnumTy->getDecl()->getIntegerType();
3236 
3237     return (Ty->isPromotableIntegerType() ?
3238             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3239   }
3240 
3241   // Ignore empty records.
3242   if (isEmptyRecord(getContext(), Ty, true))
3243     return ABIArgInfo::getIgnore();
3244 
3245   // Structures with either a non-trivial destructor or a non-trivial
3246   // copy constructor are always indirect.
3247   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3248     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3249 
3250   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3251     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3252     // into VFP registers.
3253     const Type *Base = 0;
3254     uint64_t Members = 0;
3255     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3256       assert(Base && "Base class should be set for homogeneous aggregate");
3257       // Base can be a floating-point or a vector.
3258       if (Base->isVectorType()) {
3259         // ElementSize is in number of floats.
3260         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3261         markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3262                           Members * ElementSize);
3263       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3264         markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3265       else {
3266         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3267                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3268         markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3269       }
3270       IsHA = true;
3271       return ABIArgInfo::getExpand();
3272     }
3273   }
3274 
3275   // Support byval for ARM.
3276   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3277   // most 8-byte. We realign the indirect argument if type alignment is bigger
3278   // than ABI alignment.
3279   uint64_t ABIAlign = 4;
3280   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3281   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3282       getABIKind() == ARMABIInfo::AAPCS)
3283     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3284   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3285     return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3286            /*Realign=*/TyAlign > ABIAlign);
3287   }
3288 
3289   // Otherwise, pass by coercing to a structure of the appropriate size.
3290   llvm::Type* ElemTy;
3291   unsigned SizeRegs;
3292   // FIXME: Try to match the types of the arguments more accurately where
3293   // we can.
3294   if (getContext().getTypeAlign(Ty) <= 32) {
3295     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3296     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3297   } else {
3298     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3299     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3300   }
3301 
3302   llvm::Type *STy =
3303     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3304   return ABIArgInfo::getDirect(STy);
3305 }
3306 
3307 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3308                               llvm::LLVMContext &VMContext) {
3309   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3310   // is called integer-like if its size is less than or equal to one word, and
3311   // the offset of each of its addressable sub-fields is zero.
3312 
3313   uint64_t Size = Context.getTypeSize(Ty);
3314 
3315   // Check that the type fits in a word.
3316   if (Size > 32)
3317     return false;
3318 
3319   // FIXME: Handle vector types!
3320   if (Ty->isVectorType())
3321     return false;
3322 
3323   // Float types are never treated as "integer like".
3324   if (Ty->isRealFloatingType())
3325     return false;
3326 
3327   // If this is a builtin or pointer type then it is ok.
3328   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3329     return true;
3330 
3331   // Small complex integer types are "integer like".
3332   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3333     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3334 
3335   // Single element and zero sized arrays should be allowed, by the definition
3336   // above, but they are not.
3337 
3338   // Otherwise, it must be a record type.
3339   const RecordType *RT = Ty->getAs<RecordType>();
3340   if (!RT) return false;
3341 
3342   // Ignore records with flexible arrays.
3343   const RecordDecl *RD = RT->getDecl();
3344   if (RD->hasFlexibleArrayMember())
3345     return false;
3346 
3347   // Check that all sub-fields are at offset 0, and are themselves "integer
3348   // like".
3349   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3350 
3351   bool HadField = false;
3352   unsigned idx = 0;
3353   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3354        i != e; ++i, ++idx) {
3355     const FieldDecl *FD = *i;
3356 
3357     // Bit-fields are not addressable, we only need to verify they are "integer
3358     // like". We still have to disallow a subsequent non-bitfield, for example:
3359     //   struct { int : 0; int x }
3360     // is non-integer like according to gcc.
3361     if (FD->isBitField()) {
3362       if (!RD->isUnion())
3363         HadField = true;
3364 
3365       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3366         return false;
3367 
3368       continue;
3369     }
3370 
3371     // Check if this field is at offset 0.
3372     if (Layout.getFieldOffset(idx) != 0)
3373       return false;
3374 
3375     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3376       return false;
3377 
3378     // Only allow at most one field in a structure. This doesn't match the
3379     // wording above, but follows gcc in situations with a field following an
3380     // empty structure.
3381     if (!RD->isUnion()) {
3382       if (HadField)
3383         return false;
3384 
3385       HadField = true;
3386     }
3387   }
3388 
3389   return true;
3390 }
3391 
3392 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3393   if (RetTy->isVoidType())
3394     return ABIArgInfo::getIgnore();
3395 
3396   // Large vector types should be returned via memory.
3397   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3398     return ABIArgInfo::getIndirect(0);
3399 
3400   if (!isAggregateTypeForABI(RetTy)) {
3401     // Treat an enum type as its underlying type.
3402     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3403       RetTy = EnumTy->getDecl()->getIntegerType();
3404 
3405     return (RetTy->isPromotableIntegerType() ?
3406             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3407   }
3408 
3409   // Structures with either a non-trivial destructor or a non-trivial
3410   // copy constructor are always indirect.
3411   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3412     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3413 
3414   // Are we following APCS?
3415   if (getABIKind() == APCS) {
3416     if (isEmptyRecord(getContext(), RetTy, false))
3417       return ABIArgInfo::getIgnore();
3418 
3419     // Complex types are all returned as packed integers.
3420     //
3421     // FIXME: Consider using 2 x vector types if the back end handles them
3422     // correctly.
3423     if (RetTy->isAnyComplexType())
3424       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3425                                               getContext().getTypeSize(RetTy)));
3426 
3427     // Integer like structures are returned in r0.
3428     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3429       // Return in the smallest viable integer type.
3430       uint64_t Size = getContext().getTypeSize(RetTy);
3431       if (Size <= 8)
3432         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3433       if (Size <= 16)
3434         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3435       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3436     }
3437 
3438     // Otherwise return in memory.
3439     return ABIArgInfo::getIndirect(0);
3440   }
3441 
3442   // Otherwise this is an AAPCS variant.
3443 
3444   if (isEmptyRecord(getContext(), RetTy, true))
3445     return ABIArgInfo::getIgnore();
3446 
3447   // Check for homogeneous aggregates with AAPCS-VFP.
3448   if (getABIKind() == AAPCS_VFP) {
3449     const Type *Base = 0;
3450     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3451       assert(Base && "Base class should be set for homogeneous aggregate");
3452       // Homogeneous Aggregates are returned directly.
3453       return ABIArgInfo::getDirect();
3454     }
3455   }
3456 
3457   // Aggregates <= 4 bytes are returned in r0; other aggregates
3458   // are returned indirectly.
3459   uint64_t Size = getContext().getTypeSize(RetTy);
3460   if (Size <= 32) {
3461     // Return in the smallest viable integer type.
3462     if (Size <= 8)
3463       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3464     if (Size <= 16)
3465       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3466     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3467   }
3468 
3469   return ABIArgInfo::getIndirect(0);
3470 }
3471 
3472 /// isIllegalVector - check whether Ty is an illegal vector type.
3473 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3474   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3475     // Check whether VT is legal.
3476     unsigned NumElements = VT->getNumElements();
3477     uint64_t Size = getContext().getTypeSize(VT);
3478     // NumElements should be power of 2.
3479     if ((NumElements & (NumElements - 1)) != 0)
3480       return true;
3481     // Size should be greater than 32 bits.
3482     return Size <= 32;
3483   }
3484   return false;
3485 }
3486 
3487 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3488                                    CodeGenFunction &CGF) const {
3489   llvm::Type *BP = CGF.Int8PtrTy;
3490   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3491 
3492   CGBuilderTy &Builder = CGF.Builder;
3493   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3494   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3495 
3496   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3497   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3498   bool IsIndirect = false;
3499 
3500   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3501   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3502   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3503       getABIKind() == ARMABIInfo::AAPCS)
3504     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3505   else
3506     TyAlign = 4;
3507   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3508   if (isIllegalVectorType(Ty) && Size > 16) {
3509     IsIndirect = true;
3510     Size = 4;
3511     TyAlign = 4;
3512   }
3513 
3514   // Handle address alignment for ABI alignment > 4 bytes.
3515   if (TyAlign > 4) {
3516     assert((TyAlign & (TyAlign - 1)) == 0 &&
3517            "Alignment is not power of 2!");
3518     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3519     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3520     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3521     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3522   }
3523 
3524   uint64_t Offset =
3525     llvm::RoundUpToAlignment(Size, 4);
3526   llvm::Value *NextAddr =
3527     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3528                       "ap.next");
3529   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3530 
3531   if (IsIndirect)
3532     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3533   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3534     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3535     // may not be correctly aligned for the vector type. We create an aligned
3536     // temporary space and copy the content over from ap.cur to the temporary
3537     // space. This is necessary if the natural alignment of the type is greater
3538     // than the ABI alignment.
3539     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3540     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3541     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3542                                                     "var.align");
3543     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3544     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3545     Builder.CreateMemCpy(Dst, Src,
3546         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3547         TyAlign, false);
3548     Addr = AlignedTemp; //The content is in aligned location.
3549   }
3550   llvm::Type *PTy =
3551     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3552   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3553 
3554   return AddrTyped;
3555 }
3556 
3557 namespace {
3558 
3559 class NaClARMABIInfo : public ABIInfo {
3560  public:
3561   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3562       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3563   virtual void computeInfo(CGFunctionInfo &FI) const;
3564   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3565                                  CodeGenFunction &CGF) const;
3566  private:
3567   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3568   ARMABIInfo NInfo; // Used for everything else.
3569 };
3570 
3571 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3572  public:
3573   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3574       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3575 };
3576 
3577 }
3578 
3579 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3580   if (FI.getASTCallingConvention() == CC_PnaclCall)
3581     PInfo.computeInfo(FI);
3582   else
3583     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3584 }
3585 
3586 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3587                                        CodeGenFunction &CGF) const {
3588   // Always use the native convention; calling pnacl-style varargs functions
3589   // is unsupported.
3590   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3591 }
3592 
3593 //===----------------------------------------------------------------------===//
3594 // NVPTX ABI Implementation
3595 //===----------------------------------------------------------------------===//
3596 
3597 namespace {
3598 
3599 class NVPTXABIInfo : public ABIInfo {
3600 public:
3601   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3602 
3603   ABIArgInfo classifyReturnType(QualType RetTy) const;
3604   ABIArgInfo classifyArgumentType(QualType Ty) const;
3605 
3606   virtual void computeInfo(CGFunctionInfo &FI) const;
3607   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3608                                  CodeGenFunction &CFG) const;
3609 };
3610 
3611 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3612 public:
3613   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3614     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3615 
3616   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3617                                    CodeGen::CodeGenModule &M) const;
3618 };
3619 
3620 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3621   if (RetTy->isVoidType())
3622     return ABIArgInfo::getIgnore();
3623   if (isAggregateTypeForABI(RetTy))
3624     return ABIArgInfo::getIndirect(0);
3625   return ABIArgInfo::getDirect();
3626 }
3627 
3628 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3629   if (isAggregateTypeForABI(Ty))
3630     return ABIArgInfo::getIndirect(0);
3631 
3632   return ABIArgInfo::getDirect();
3633 }
3634 
3635 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3636   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3637   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3638        it != ie; ++it)
3639     it->info = classifyArgumentType(it->type);
3640 
3641   // Always honor user-specified calling convention.
3642   if (FI.getCallingConvention() != llvm::CallingConv::C)
3643     return;
3644 
3645   // Calling convention as default by an ABI.
3646   // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3647   // but we should switch to NVVM metadata later on.
3648   llvm::CallingConv::ID DefaultCC;
3649   const LangOptions &LangOpts = getContext().getLangOpts();
3650   if (LangOpts.OpenCL || LangOpts.CUDA) {
3651     // If we are in OpenCL or CUDA mode, then default to device functions
3652     DefaultCC = llvm::CallingConv::PTX_Device;
3653   } else {
3654     // If we are in standard C/C++ mode, use the triple to decide on the default
3655     StringRef Env =
3656       getContext().getTargetInfo().getTriple().getEnvironmentName();
3657     if (Env == "device")
3658       DefaultCC = llvm::CallingConv::PTX_Device;
3659     else
3660       DefaultCC = llvm::CallingConv::PTX_Kernel;
3661   }
3662   FI.setEffectiveCallingConvention(DefaultCC);
3663 
3664 }
3665 
3666 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3667                                      CodeGenFunction &CFG) const {
3668   llvm_unreachable("NVPTX does not support varargs");
3669 }
3670 
3671 void NVPTXTargetCodeGenInfo::
3672 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3673                     CodeGen::CodeGenModule &M) const{
3674   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3675   if (!FD) return;
3676 
3677   llvm::Function *F = cast<llvm::Function>(GV);
3678 
3679   // Perform special handling in OpenCL mode
3680   if (M.getLangOpts().OpenCL) {
3681     // Use OpenCL function attributes to set proper calling conventions
3682     // By default, all functions are device functions
3683     if (FD->hasAttr<OpenCLKernelAttr>()) {
3684       // OpenCL __kernel functions get a kernel calling convention
3685       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3686       // And kernel functions are not subject to inlining
3687       F->addFnAttr(llvm::Attribute::NoInline);
3688     }
3689   }
3690 
3691   // Perform special handling in CUDA mode.
3692   if (M.getLangOpts().CUDA) {
3693     // CUDA __global__ functions get a kernel calling convention.  Since
3694     // __global__ functions cannot be called from the device, we do not
3695     // need to set the noinline attribute.
3696     if (FD->getAttr<CUDAGlobalAttr>())
3697       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3698   }
3699 }
3700 
3701 }
3702 
3703 //===----------------------------------------------------------------------===//
3704 // MBlaze ABI Implementation
3705 //===----------------------------------------------------------------------===//
3706 
3707 namespace {
3708 
3709 class MBlazeABIInfo : public ABIInfo {
3710 public:
3711   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3712 
3713   bool isPromotableIntegerType(QualType Ty) const;
3714 
3715   ABIArgInfo classifyReturnType(QualType RetTy) const;
3716   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3717 
3718   virtual void computeInfo(CGFunctionInfo &FI) const {
3719     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3720     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3721          it != ie; ++it)
3722       it->info = classifyArgumentType(it->type);
3723   }
3724 
3725   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3726                                  CodeGenFunction &CGF) const;
3727 };
3728 
3729 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3730 public:
3731   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3732     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3733   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3734                            CodeGen::CodeGenModule &M) const;
3735 };
3736 
3737 }
3738 
3739 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3740   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3741   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3742     switch (BT->getKind()) {
3743     case BuiltinType::Bool:
3744     case BuiltinType::Char_S:
3745     case BuiltinType::Char_U:
3746     case BuiltinType::SChar:
3747     case BuiltinType::UChar:
3748     case BuiltinType::Short:
3749     case BuiltinType::UShort:
3750       return true;
3751     default:
3752       return false;
3753     }
3754   return false;
3755 }
3756 
3757 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3758                                       CodeGenFunction &CGF) const {
3759   // FIXME: Implement
3760   return 0;
3761 }
3762 
3763 
3764 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3765   if (RetTy->isVoidType())
3766     return ABIArgInfo::getIgnore();
3767   if (isAggregateTypeForABI(RetTy))
3768     return ABIArgInfo::getIndirect(0);
3769 
3770   return (isPromotableIntegerType(RetTy) ?
3771           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3772 }
3773 
3774 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3775   if (isAggregateTypeForABI(Ty))
3776     return ABIArgInfo::getIndirect(0);
3777 
3778   return (isPromotableIntegerType(Ty) ?
3779           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3780 }
3781 
3782 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3783                                                   llvm::GlobalValue *GV,
3784                                                   CodeGen::CodeGenModule &M)
3785                                                   const {
3786   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3787   if (!FD) return;
3788 
3789   llvm::CallingConv::ID CC = llvm::CallingConv::C;
3790   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3791     CC = llvm::CallingConv::MBLAZE_INTR;
3792   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3793     CC = llvm::CallingConv::MBLAZE_SVOL;
3794 
3795   if (CC != llvm::CallingConv::C) {
3796       // Handle 'interrupt_handler' attribute:
3797       llvm::Function *F = cast<llvm::Function>(GV);
3798 
3799       // Step 1: Set ISR calling convention.
3800       F->setCallingConv(CC);
3801 
3802       // Step 2: Add attributes goodness.
3803       F->addFnAttr(llvm::Attribute::NoInline);
3804   }
3805 
3806   // Step 3: Emit _interrupt_handler alias.
3807   if (CC == llvm::CallingConv::MBLAZE_INTR)
3808     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3809                           "_interrupt_handler", GV, &M.getModule());
3810 }
3811 
3812 
3813 //===----------------------------------------------------------------------===//
3814 // MSP430 ABI Implementation
3815 //===----------------------------------------------------------------------===//
3816 
3817 namespace {
3818 
3819 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3820 public:
3821   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3822     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3823   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3824                            CodeGen::CodeGenModule &M) const;
3825 };
3826 
3827 }
3828 
3829 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3830                                                   llvm::GlobalValue *GV,
3831                                              CodeGen::CodeGenModule &M) const {
3832   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3833     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3834       // Handle 'interrupt' attribute:
3835       llvm::Function *F = cast<llvm::Function>(GV);
3836 
3837       // Step 1: Set ISR calling convention.
3838       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3839 
3840       // Step 2: Add attributes goodness.
3841       F->addFnAttr(llvm::Attribute::NoInline);
3842 
3843       // Step 3: Emit ISR vector alias.
3844       unsigned Num = attr->getNumber() / 2;
3845       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3846                             "__isr_" + Twine(Num),
3847                             GV, &M.getModule());
3848     }
3849   }
3850 }
3851 
3852 //===----------------------------------------------------------------------===//
3853 // MIPS ABI Implementation.  This works for both little-endian and
3854 // big-endian variants.
3855 //===----------------------------------------------------------------------===//
3856 
3857 namespace {
3858 class MipsABIInfo : public ABIInfo {
3859   bool IsO32;
3860   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3861   void CoerceToIntArgs(uint64_t TySize,
3862                        SmallVector<llvm::Type*, 8> &ArgList) const;
3863   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3864   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3865   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3866 public:
3867   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3868     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3869     StackAlignInBytes(IsO32 ? 8 : 16) {}
3870 
3871   ABIArgInfo classifyReturnType(QualType RetTy) const;
3872   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3873   virtual void computeInfo(CGFunctionInfo &FI) const;
3874   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3875                                  CodeGenFunction &CGF) const;
3876 };
3877 
3878 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3879   unsigned SizeOfUnwindException;
3880 public:
3881   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3882     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3883       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3884 
3885   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3886     return 29;
3887   }
3888 
3889   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3890                            CodeGen::CodeGenModule &CGM) const {
3891     //
3892     // can fill this in when new attribute work in llvm is done.
3893     // attributes mips16 and nomips16 need to be handled here.
3894     //
3895   }
3896   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3897                                llvm::Value *Address) const;
3898 
3899   unsigned getSizeOfUnwindException() const {
3900     return SizeOfUnwindException;
3901   }
3902 };
3903 }
3904 
3905 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3906                                   SmallVector<llvm::Type*, 8> &ArgList) const {
3907   llvm::IntegerType *IntTy =
3908     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3909 
3910   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3911   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3912     ArgList.push_back(IntTy);
3913 
3914   // If necessary, add one more integer type to ArgList.
3915   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3916 
3917   if (R)
3918     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3919 }
3920 
3921 // In N32/64, an aligned double precision floating point field is passed in
3922 // a register.
3923 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3924   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3925 
3926   if (IsO32) {
3927     CoerceToIntArgs(TySize, ArgList);
3928     return llvm::StructType::get(getVMContext(), ArgList);
3929   }
3930 
3931   if (Ty->isComplexType())
3932     return CGT.ConvertType(Ty);
3933 
3934   const RecordType *RT = Ty->getAs<RecordType>();
3935 
3936   // Unions/vectors are passed in integer registers.
3937   if (!RT || !RT->isStructureOrClassType()) {
3938     CoerceToIntArgs(TySize, ArgList);
3939     return llvm::StructType::get(getVMContext(), ArgList);
3940   }
3941 
3942   const RecordDecl *RD = RT->getDecl();
3943   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3944   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3945 
3946   uint64_t LastOffset = 0;
3947   unsigned idx = 0;
3948   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3949 
3950   // Iterate over fields in the struct/class and check if there are any aligned
3951   // double fields.
3952   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3953        i != e; ++i, ++idx) {
3954     const QualType Ty = i->getType();
3955     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3956 
3957     if (!BT || BT->getKind() != BuiltinType::Double)
3958       continue;
3959 
3960     uint64_t Offset = Layout.getFieldOffset(idx);
3961     if (Offset % 64) // Ignore doubles that are not aligned.
3962       continue;
3963 
3964     // Add ((Offset - LastOffset) / 64) args of type i64.
3965     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3966       ArgList.push_back(I64);
3967 
3968     // Add double type.
3969     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3970     LastOffset = Offset + 64;
3971   }
3972 
3973   CoerceToIntArgs(TySize - LastOffset, IntArgList);
3974   ArgList.append(IntArgList.begin(), IntArgList.end());
3975 
3976   return llvm::StructType::get(getVMContext(), ArgList);
3977 }
3978 
3979 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3980   assert((Offset % MinABIStackAlignInBytes) == 0);
3981 
3982   if ((Align - 1) & Offset)
3983     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3984 
3985   return 0;
3986 }
3987 
3988 ABIArgInfo
3989 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3990   uint64_t OrigOffset = Offset;
3991   uint64_t TySize = getContext().getTypeSize(Ty);
3992   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3993 
3994   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3995                    (uint64_t)StackAlignInBytes);
3996   Offset = llvm::RoundUpToAlignment(Offset, Align);
3997   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3998 
3999   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4000     // Ignore empty aggregates.
4001     if (TySize == 0)
4002       return ABIArgInfo::getIgnore();
4003 
4004     // Records with non trivial destructors/constructors should not be passed
4005     // by value.
4006     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
4007       Offset = OrigOffset + MinABIStackAlignInBytes;
4008       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4009     }
4010 
4011     // If we have reached here, aggregates are passed directly by coercing to
4012     // another structure type. Padding is inserted if the offset of the
4013     // aggregate is unaligned.
4014     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4015                                  getPaddingType(Align, OrigOffset));
4016   }
4017 
4018   // Treat an enum type as its underlying type.
4019   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4020     Ty = EnumTy->getDecl()->getIntegerType();
4021 
4022   if (Ty->isPromotableIntegerType())
4023     return ABIArgInfo::getExtend();
4024 
4025   return ABIArgInfo::getDirect(0, 0,
4026                                IsO32 ? 0 : getPaddingType(Align, OrigOffset));
4027 }
4028 
4029 llvm::Type*
4030 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4031   const RecordType *RT = RetTy->getAs<RecordType>();
4032   SmallVector<llvm::Type*, 8> RTList;
4033 
4034   if (RT && RT->isStructureOrClassType()) {
4035     const RecordDecl *RD = RT->getDecl();
4036     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4037     unsigned FieldCnt = Layout.getFieldCount();
4038 
4039     // N32/64 returns struct/classes in floating point registers if the
4040     // following conditions are met:
4041     // 1. The size of the struct/class is no larger than 128-bit.
4042     // 2. The struct/class has one or two fields all of which are floating
4043     //    point types.
4044     // 3. The offset of the first field is zero (this follows what gcc does).
4045     //
4046     // Any other composite results are returned in integer registers.
4047     //
4048     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4049       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4050       for (; b != e; ++b) {
4051         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4052 
4053         if (!BT || !BT->isFloatingPoint())
4054           break;
4055 
4056         RTList.push_back(CGT.ConvertType(b->getType()));
4057       }
4058 
4059       if (b == e)
4060         return llvm::StructType::get(getVMContext(), RTList,
4061                                      RD->hasAttr<PackedAttr>());
4062 
4063       RTList.clear();
4064     }
4065   }
4066 
4067   CoerceToIntArgs(Size, RTList);
4068   return llvm::StructType::get(getVMContext(), RTList);
4069 }
4070 
4071 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4072   uint64_t Size = getContext().getTypeSize(RetTy);
4073 
4074   if (RetTy->isVoidType() || Size == 0)
4075     return ABIArgInfo::getIgnore();
4076 
4077   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4078     if (Size <= 128) {
4079       if (RetTy->isAnyComplexType())
4080         return ABIArgInfo::getDirect();
4081 
4082       // O32 returns integer vectors in registers.
4083       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4084         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4085 
4086       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4087         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4088     }
4089 
4090     return ABIArgInfo::getIndirect(0);
4091   }
4092 
4093   // Treat an enum type as its underlying type.
4094   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4095     RetTy = EnumTy->getDecl()->getIntegerType();
4096 
4097   return (RetTy->isPromotableIntegerType() ?
4098           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4099 }
4100 
4101 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4102   ABIArgInfo &RetInfo = FI.getReturnInfo();
4103   RetInfo = classifyReturnType(FI.getReturnType());
4104 
4105   // Check if a pointer to an aggregate is passed as a hidden argument.
4106   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4107 
4108   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4109        it != ie; ++it)
4110     it->info = classifyArgumentType(it->type, Offset);
4111 }
4112 
4113 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4114                                     CodeGenFunction &CGF) const {
4115   llvm::Type *BP = CGF.Int8PtrTy;
4116   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4117 
4118   CGBuilderTy &Builder = CGF.Builder;
4119   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4120   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4121   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4122   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4123   llvm::Value *AddrTyped;
4124   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
4125   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4126 
4127   if (TypeAlign > MinABIStackAlignInBytes) {
4128     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4129     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4130     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4131     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4132     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4133     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4134   }
4135   else
4136     AddrTyped = Builder.CreateBitCast(Addr, PTy);
4137 
4138   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4139   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4140   uint64_t Offset =
4141     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4142   llvm::Value *NextAddr =
4143     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4144                       "ap.next");
4145   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4146 
4147   return AddrTyped;
4148 }
4149 
4150 bool
4151 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4152                                                llvm::Value *Address) const {
4153   // This information comes from gcc's implementation, which seems to
4154   // as canonical as it gets.
4155 
4156   // Everything on MIPS is 4 bytes.  Double-precision FP registers
4157   // are aliased to pairs of single-precision FP registers.
4158   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4159 
4160   // 0-31 are the general purpose registers, $0 - $31.
4161   // 32-63 are the floating-point registers, $f0 - $f31.
4162   // 64 and 65 are the multiply/divide registers, $hi and $lo.
4163   // 66 is the (notional, I think) register for signal-handler return.
4164   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4165 
4166   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4167   // They are one bit wide and ignored here.
4168 
4169   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4170   // (coprocessor 1 is the FP unit)
4171   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4172   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4173   // 176-181 are the DSP accumulator registers.
4174   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4175   return false;
4176 }
4177 
4178 //===----------------------------------------------------------------------===//
4179 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4180 // Currently subclassed only to implement custom OpenCL C function attribute
4181 // handling.
4182 //===----------------------------------------------------------------------===//
4183 
4184 namespace {
4185 
4186 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4187 public:
4188   TCETargetCodeGenInfo(CodeGenTypes &CGT)
4189     : DefaultTargetCodeGenInfo(CGT) {}
4190 
4191   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4192                                    CodeGen::CodeGenModule &M) const;
4193 };
4194 
4195 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4196                                                llvm::GlobalValue *GV,
4197                                                CodeGen::CodeGenModule &M) const {
4198   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4199   if (!FD) return;
4200 
4201   llvm::Function *F = cast<llvm::Function>(GV);
4202 
4203   if (M.getLangOpts().OpenCL) {
4204     if (FD->hasAttr<OpenCLKernelAttr>()) {
4205       // OpenCL C Kernel functions are not subject to inlining
4206       F->addFnAttr(llvm::Attribute::NoInline);
4207 
4208       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
4209 
4210         // Convert the reqd_work_group_size() attributes to metadata.
4211         llvm::LLVMContext &Context = F->getContext();
4212         llvm::NamedMDNode *OpenCLMetadata =
4213             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
4214 
4215         SmallVector<llvm::Value*, 5> Operands;
4216         Operands.push_back(F);
4217 
4218         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4219                              llvm::APInt(32,
4220                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
4221         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4222                              llvm::APInt(32,
4223                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
4224         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4225                              llvm::APInt(32,
4226                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
4227 
4228         // Add a boolean constant operand for "required" (true) or "hint" (false)
4229         // for implementing the work_group_size_hint attr later. Currently
4230         // always true as the hint is not yet implemented.
4231         Operands.push_back(llvm::ConstantInt::getTrue(Context));
4232         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
4233       }
4234     }
4235   }
4236 }
4237 
4238 }
4239 
4240 //===----------------------------------------------------------------------===//
4241 // Hexagon ABI Implementation
4242 //===----------------------------------------------------------------------===//
4243 
4244 namespace {
4245 
4246 class HexagonABIInfo : public ABIInfo {
4247 
4248 
4249 public:
4250   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4251 
4252 private:
4253 
4254   ABIArgInfo classifyReturnType(QualType RetTy) const;
4255   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4256 
4257   virtual void computeInfo(CGFunctionInfo &FI) const;
4258 
4259   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4260                                  CodeGenFunction &CGF) const;
4261 };
4262 
4263 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4264 public:
4265   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4266     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4267 
4268   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4269     return 29;
4270   }
4271 };
4272 
4273 }
4274 
4275 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4276   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4277   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4278        it != ie; ++it)
4279     it->info = classifyArgumentType(it->type);
4280 }
4281 
4282 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4283   if (!isAggregateTypeForABI(Ty)) {
4284     // Treat an enum type as its underlying type.
4285     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4286       Ty = EnumTy->getDecl()->getIntegerType();
4287 
4288     return (Ty->isPromotableIntegerType() ?
4289             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4290   }
4291 
4292   // Ignore empty records.
4293   if (isEmptyRecord(getContext(), Ty, true))
4294     return ABIArgInfo::getIgnore();
4295 
4296   // Structures with either a non-trivial destructor or a non-trivial
4297   // copy constructor are always indirect.
4298   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4299     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4300 
4301   uint64_t Size = getContext().getTypeSize(Ty);
4302   if (Size > 64)
4303     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4304     // Pass in the smallest viable integer type.
4305   else if (Size > 32)
4306       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4307   else if (Size > 16)
4308       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4309   else if (Size > 8)
4310       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4311   else
4312       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4313 }
4314 
4315 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4316   if (RetTy->isVoidType())
4317     return ABIArgInfo::getIgnore();
4318 
4319   // Large vector types should be returned via memory.
4320   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4321     return ABIArgInfo::getIndirect(0);
4322 
4323   if (!isAggregateTypeForABI(RetTy)) {
4324     // Treat an enum type as its underlying type.
4325     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4326       RetTy = EnumTy->getDecl()->getIntegerType();
4327 
4328     return (RetTy->isPromotableIntegerType() ?
4329             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4330   }
4331 
4332   // Structures with either a non-trivial destructor or a non-trivial
4333   // copy constructor are always indirect.
4334   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4335     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4336 
4337   if (isEmptyRecord(getContext(), RetTy, true))
4338     return ABIArgInfo::getIgnore();
4339 
4340   // Aggregates <= 8 bytes are returned in r0; other aggregates
4341   // are returned indirectly.
4342   uint64_t Size = getContext().getTypeSize(RetTy);
4343   if (Size <= 64) {
4344     // Return in the smallest viable integer type.
4345     if (Size <= 8)
4346       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4347     if (Size <= 16)
4348       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4349     if (Size <= 32)
4350       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4351     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4352   }
4353 
4354   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4355 }
4356 
4357 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4358                                        CodeGenFunction &CGF) const {
4359   // FIXME: Need to handle alignment
4360   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4361 
4362   CGBuilderTy &Builder = CGF.Builder;
4363   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4364                                                        "ap");
4365   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4366   llvm::Type *PTy =
4367     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4368   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4369 
4370   uint64_t Offset =
4371     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4372   llvm::Value *NextAddr =
4373     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4374                       "ap.next");
4375   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4376 
4377   return AddrTyped;
4378 }
4379 
4380 
4381 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4382   if (TheTargetCodeGenInfo)
4383     return *TheTargetCodeGenInfo;
4384 
4385   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4386   switch (Triple.getArch()) {
4387   default:
4388     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4389 
4390   case llvm::Triple::le32:
4391     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4392   case llvm::Triple::mips:
4393   case llvm::Triple::mipsel:
4394     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4395 
4396   case llvm::Triple::mips64:
4397   case llvm::Triple::mips64el:
4398     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4399 
4400   case llvm::Triple::arm:
4401   case llvm::Triple::thumb:
4402     {
4403       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4404       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4405         Kind = ARMABIInfo::APCS;
4406       else if (CodeGenOpts.FloatABI == "hard" ||
4407                (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment()==llvm::Triple::GNUEABIHF))
4408         Kind = ARMABIInfo::AAPCS_VFP;
4409 
4410       switch (Triple.getOS()) {
4411         case llvm::Triple::NaCl:
4412           return *(TheTargetCodeGenInfo =
4413                    new NaClARMTargetCodeGenInfo(Types, Kind));
4414         default:
4415           return *(TheTargetCodeGenInfo =
4416                    new ARMTargetCodeGenInfo(Types, Kind));
4417       }
4418     }
4419 
4420   case llvm::Triple::ppc:
4421     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4422   case llvm::Triple::ppc64:
4423     if (Triple.isOSBinFormatELF())
4424       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4425     else
4426       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4427 
4428   case llvm::Triple::nvptx:
4429   case llvm::Triple::nvptx64:
4430     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4431 
4432   case llvm::Triple::mblaze:
4433     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4434 
4435   case llvm::Triple::msp430:
4436     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4437 
4438   case llvm::Triple::tce:
4439     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4440 
4441   case llvm::Triple::x86: {
4442     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4443 
4444     if (Triple.isOSDarwin())
4445       return *(TheTargetCodeGenInfo =
4446                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4447                                            CodeGenOpts.NumRegisterParameters));
4448 
4449     switch (Triple.getOS()) {
4450     case llvm::Triple::Cygwin:
4451     case llvm::Triple::MinGW32:
4452     case llvm::Triple::AuroraUX:
4453     case llvm::Triple::DragonFly:
4454     case llvm::Triple::FreeBSD:
4455     case llvm::Triple::OpenBSD:
4456     case llvm::Triple::Bitrig:
4457       return *(TheTargetCodeGenInfo =
4458                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4459                                            false,
4460                                            CodeGenOpts.NumRegisterParameters));
4461 
4462     case llvm::Triple::Win32:
4463       return *(TheTargetCodeGenInfo =
4464                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4465                                            CodeGenOpts.NumRegisterParameters));
4466 
4467     default:
4468       return *(TheTargetCodeGenInfo =
4469                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4470                                            false,
4471                                            CodeGenOpts.NumRegisterParameters));
4472     }
4473   }
4474 
4475   case llvm::Triple::x86_64: {
4476     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4477 
4478     switch (Triple.getOS()) {
4479     case llvm::Triple::Win32:
4480     case llvm::Triple::MinGW32:
4481     case llvm::Triple::Cygwin:
4482       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4483     case llvm::Triple::NaCl:
4484       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4485     default:
4486       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4487                                                                   HasAVX));
4488     }
4489   }
4490   case llvm::Triple::hexagon:
4491     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4492   }
4493 }
4494