1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo
84 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
85                                  llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
87                                  ByRef, Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByRef*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case Expand:
261     OS << "Expand";
262     break;
263   case CoerceAndExpand:
264     OS << "CoerceAndExpand Type=";
265     getCoerceAndExpandType()->print(OS);
266     break;
267   }
268   OS << ")\n";
269 }
270 
271 // Dynamically round a pointer up to a multiple of the given alignment.
272 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
273                                                   llvm::Value *Ptr,
274                                                   CharUnits Align) {
275   llvm::Value *PtrAsInt = Ptr;
276   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
277   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
278   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
279         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
280   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
281            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
282   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
283                                         Ptr->getType(),
284                                         Ptr->getName() + ".aligned");
285   return PtrAsInt;
286 }
287 
288 /// Emit va_arg for a platform using the common void* representation,
289 /// where arguments are simply emitted in an array of slots on the stack.
290 ///
291 /// This version implements the core direct-value passing rules.
292 ///
293 /// \param SlotSize - The size and alignment of a stack slot.
294 ///   Each argument will be allocated to a multiple of this number of
295 ///   slots, and all the slots will be aligned to this value.
296 /// \param AllowHigherAlign - The slot alignment is not a cap;
297 ///   an argument type with an alignment greater than the slot size
298 ///   will be emitted on a higher-alignment address, potentially
299 ///   leaving one or more empty slots behind as padding.  If this
300 ///   is false, the returned address might be less-aligned than
301 ///   DirectAlign.
302 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
303                                       Address VAListAddr,
304                                       llvm::Type *DirectTy,
305                                       CharUnits DirectSize,
306                                       CharUnits DirectAlign,
307                                       CharUnits SlotSize,
308                                       bool AllowHigherAlign) {
309   // Cast the element type to i8* if necessary.  Some platforms define
310   // va_list as a struct containing an i8* instead of just an i8*.
311   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
312     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
313 
314   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
315 
316   // If the CC aligns values higher than the slot size, do so if needed.
317   Address Addr = Address::invalid();
318   if (AllowHigherAlign && DirectAlign > SlotSize) {
319     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
320                                                  DirectAlign);
321   } else {
322     Addr = Address(Ptr, SlotSize);
323   }
324 
325   // Advance the pointer past the argument, then store that back.
326   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
327   Address NextPtr =
328       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
329   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
330 
331   // If the argument is smaller than a slot, and this is a big-endian
332   // target, the argument will be right-adjusted in its slot.
333   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
334       !DirectTy->isStructTy()) {
335     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
336   }
337 
338   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
339   return Addr;
340 }
341 
342 /// Emit va_arg for a platform using the common void* representation,
343 /// where arguments are simply emitted in an array of slots on the stack.
344 ///
345 /// \param IsIndirect - Values of this type are passed indirectly.
346 /// \param ValueInfo - The size and alignment of this type, generally
347 ///   computed with getContext().getTypeInfoInChars(ValueTy).
348 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
349 ///   Each argument will be allocated to a multiple of this number of
350 ///   slots, and all the slots will be aligned to this value.
351 /// \param AllowHigherAlign - The slot alignment is not a cap;
352 ///   an argument type with an alignment greater than the slot size
353 ///   will be emitted on a higher-alignment address, potentially
354 ///   leaving one or more empty slots behind as padding.
355 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
356                                 QualType ValueTy, bool IsIndirect,
357                                 std::pair<CharUnits, CharUnits> ValueInfo,
358                                 CharUnits SlotSizeAndAlign,
359                                 bool AllowHigherAlign) {
360   // The size and alignment of the value that was passed directly.
361   CharUnits DirectSize, DirectAlign;
362   if (IsIndirect) {
363     DirectSize = CGF.getPointerSize();
364     DirectAlign = CGF.getPointerAlign();
365   } else {
366     DirectSize = ValueInfo.first;
367     DirectAlign = ValueInfo.second;
368   }
369 
370   // Cast the address we've calculated to the right type.
371   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
372   if (IsIndirect)
373     DirectTy = DirectTy->getPointerTo(0);
374 
375   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
376                                         DirectSize, DirectAlign,
377                                         SlotSizeAndAlign,
378                                         AllowHigherAlign);
379 
380   if (IsIndirect) {
381     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
382   }
383 
384   return Addr;
385 
386 }
387 
388 static Address emitMergePHI(CodeGenFunction &CGF,
389                             Address Addr1, llvm::BasicBlock *Block1,
390                             Address Addr2, llvm::BasicBlock *Block2,
391                             const llvm::Twine &Name = "") {
392   assert(Addr1.getType() == Addr2.getType());
393   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
394   PHI->addIncoming(Addr1.getPointer(), Block1);
395   PHI->addIncoming(Addr2.getPointer(), Block2);
396   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
397   return Address(PHI, Align);
398 }
399 
400 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
401 
402 // If someone can figure out a general rule for this, that would be great.
403 // It's probably just doomed to be platform-dependent, though.
404 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
405   // Verified for:
406   //   x86-64     FreeBSD, Linux, Darwin
407   //   x86-32     FreeBSD, Linux, Darwin
408   //   PowerPC    Linux, Darwin
409   //   ARM        Darwin (*not* EABI)
410   //   AArch64    Linux
411   return 32;
412 }
413 
414 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
415                                      const FunctionNoProtoType *fnType) const {
416   // The following conventions are known to require this to be false:
417   //   x86_stdcall
418   //   MIPS
419   // For everything else, we just prefer false unless we opt out.
420   return false;
421 }
422 
423 void
424 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
425                                              llvm::SmallString<24> &Opt) const {
426   // This assumes the user is passing a library name like "rt" instead of a
427   // filename like "librt.a/so", and that they don't care whether it's static or
428   // dynamic.
429   Opt = "-l";
430   Opt += Lib;
431 }
432 
433 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
434   // OpenCL kernels are called via an explicit runtime API with arguments
435   // set with clSetKernelArg(), not as normal sub-functions.
436   // Return SPIR_KERNEL by default as the kernel calling convention to
437   // ensure the fingerprint is fixed such way that each OpenCL argument
438   // gets one matching argument in the produced kernel function argument
439   // list to enable feasible implementation of clSetKernelArg() with
440   // aggregates etc. In case we would use the default C calling conv here,
441   // clSetKernelArg() might break depending on the target-specific
442   // conventions; different targets might split structs passed as values
443   // to multiple function arguments etc.
444   return llvm::CallingConv::SPIR_KERNEL;
445 }
446 
447 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
448     llvm::PointerType *T, QualType QT) const {
449   return llvm::ConstantPointerNull::get(T);
450 }
451 
452 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
453                                                    const VarDecl *D) const {
454   assert(!CGM.getLangOpts().OpenCL &&
455          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
456          "Address space agnostic languages only");
457   return D ? D->getType().getAddressSpace() : LangAS::Default;
458 }
459 
460 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
461     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
462     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
463   // Since target may map different address spaces in AST to the same address
464   // space, an address space conversion may end up as a bitcast.
465   if (auto *C = dyn_cast<llvm::Constant>(Src))
466     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
467   // Try to preserve the source's name to make IR more readable.
468   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
469       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
470 }
471 
472 llvm::Constant *
473 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
474                                         LangAS SrcAddr, LangAS DestAddr,
475                                         llvm::Type *DestTy) const {
476   // Since target may map different address spaces in AST to the same address
477   // space, an address space conversion may end up as a bitcast.
478   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
479 }
480 
481 llvm::SyncScope::ID
482 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
483                                       SyncScope Scope,
484                                       llvm::AtomicOrdering Ordering,
485                                       llvm::LLVMContext &Ctx) const {
486   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
487 }
488 
489 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
490 
491 /// isEmptyField - Return true iff a the field is "empty", that is it
492 /// is an unnamed bit-field or an (array of) empty record(s).
493 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
494                          bool AllowArrays) {
495   if (FD->isUnnamedBitfield())
496     return true;
497 
498   QualType FT = FD->getType();
499 
500   // Constant arrays of empty records count as empty, strip them off.
501   // Constant arrays of zero length always count as empty.
502   bool WasArray = false;
503   if (AllowArrays)
504     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
505       if (AT->getSize() == 0)
506         return true;
507       FT = AT->getElementType();
508       // The [[no_unique_address]] special case below does not apply to
509       // arrays of C++ empty records, so we need to remember this fact.
510       WasArray = true;
511     }
512 
513   const RecordType *RT = FT->getAs<RecordType>();
514   if (!RT)
515     return false;
516 
517   // C++ record fields are never empty, at least in the Itanium ABI.
518   //
519   // FIXME: We should use a predicate for whether this behavior is true in the
520   // current ABI.
521   //
522   // The exception to the above rule are fields marked with the
523   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
524   // according to the Itanium ABI.  The exception applies only to records,
525   // not arrays of records, so we must also check whether we stripped off an
526   // array type above.
527   if (isa<CXXRecordDecl>(RT->getDecl()) &&
528       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
529     return false;
530 
531   return isEmptyRecord(Context, FT, AllowArrays);
532 }
533 
534 /// isEmptyRecord - Return true iff a structure contains only empty
535 /// fields. Note that a structure with a flexible array member is not
536 /// considered empty.
537 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
538   const RecordType *RT = T->getAs<RecordType>();
539   if (!RT)
540     return false;
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return false;
544 
545   // If this is a C++ record, check the bases first.
546   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
547     for (const auto &I : CXXRD->bases())
548       if (!isEmptyRecord(Context, I.getType(), true))
549         return false;
550 
551   for (const auto *I : RD->fields())
552     if (!isEmptyField(Context, I, AllowArrays))
553       return false;
554   return true;
555 }
556 
557 /// isSingleElementStruct - Determine if a structure is a "single
558 /// element struct", i.e. it has exactly one non-empty field or
559 /// exactly one field which is itself a single element
560 /// struct. Structures with flexible array members are never
561 /// considered single element structs.
562 ///
563 /// \return The field declaration for the single non-empty field, if
564 /// it exists.
565 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
566   const RecordType *RT = T->getAs<RecordType>();
567   if (!RT)
568     return nullptr;
569 
570   const RecordDecl *RD = RT->getDecl();
571   if (RD->hasFlexibleArrayMember())
572     return nullptr;
573 
574   const Type *Found = nullptr;
575 
576   // If this is a C++ record, check the bases first.
577   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
578     for (const auto &I : CXXRD->bases()) {
579       // Ignore empty records.
580       if (isEmptyRecord(Context, I.getType(), true))
581         continue;
582 
583       // If we already found an element then this isn't a single-element struct.
584       if (Found)
585         return nullptr;
586 
587       // If this is non-empty and not a single element struct, the composite
588       // cannot be a single element struct.
589       Found = isSingleElementStruct(I.getType(), Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // Check for single element.
596   for (const auto *FD : RD->fields()) {
597     QualType FT = FD->getType();
598 
599     // Ignore empty fields.
600     if (isEmptyField(Context, FD, true))
601       continue;
602 
603     // If we already found an element then this isn't a single-element
604     // struct.
605     if (Found)
606       return nullptr;
607 
608     // Treat single element arrays as the element.
609     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
610       if (AT->getSize().getZExtValue() != 1)
611         break;
612       FT = AT->getElementType();
613     }
614 
615     if (!isAggregateTypeForABI(FT)) {
616       Found = FT.getTypePtr();
617     } else {
618       Found = isSingleElementStruct(FT, Context);
619       if (!Found)
620         return nullptr;
621     }
622   }
623 
624   // We don't consider a struct a single-element struct if it has
625   // padding beyond the element type.
626   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
627     return nullptr;
628 
629   return Found;
630 }
631 
632 namespace {
633 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
634                        const ABIArgInfo &AI) {
635   // This default implementation defers to the llvm backend's va_arg
636   // instruction. It can handle only passing arguments directly
637   // (typically only handled in the backend for primitive types), or
638   // aggregates passed indirectly by pointer (NOTE: if the "byval"
639   // flag has ABI impact in the callee, this implementation cannot
640   // work.)
641 
642   // Only a few cases are covered here at the moment -- those needed
643   // by the default abi.
644   llvm::Value *Val;
645 
646   if (AI.isIndirect()) {
647     assert(!AI.getPaddingType() &&
648            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
649     assert(
650         !AI.getIndirectRealign() &&
651         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
652 
653     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
654     CharUnits TyAlignForABI = TyInfo.second;
655 
656     llvm::Type *BaseTy =
657         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
658     llvm::Value *Addr =
659         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
660     return Address(Addr, TyAlignForABI);
661   } else {
662     assert((AI.isDirect() || AI.isExtend()) &&
663            "Unexpected ArgInfo Kind in generic VAArg emitter!");
664 
665     assert(!AI.getInReg() &&
666            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
667     assert(!AI.getPaddingType() &&
668            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
669     assert(!AI.getDirectOffset() &&
670            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
671     assert(!AI.getCoerceToType() &&
672            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
673 
674     Address Temp = CGF.CreateMemTemp(Ty, "varet");
675     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
676     CGF.Builder.CreateStore(Val, Temp);
677     return Temp;
678   }
679 }
680 
681 /// DefaultABIInfo - The default implementation for ABI specific
682 /// details. This implementation provides information which results in
683 /// self-consistent and sensible LLVM IR generation, but does not
684 /// conform to any particular ABI.
685 class DefaultABIInfo : public ABIInfo {
686 public:
687   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
688 
689   ABIArgInfo classifyReturnType(QualType RetTy) const;
690   ABIArgInfo classifyArgumentType(QualType RetTy) const;
691 
692   void computeInfo(CGFunctionInfo &FI) const override {
693     if (!getCXXABI().classifyReturnType(FI))
694       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
695     for (auto &I : FI.arguments())
696       I.info = classifyArgumentType(I.type);
697   }
698 
699   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
700                     QualType Ty) const override {
701     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
702   }
703 };
704 
705 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
706 public:
707   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
708       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
709 };
710 
711 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
712   Ty = useFirstFieldIfTransparentUnion(Ty);
713 
714   if (isAggregateTypeForABI(Ty)) {
715     // Records with non-trivial destructors/copy-constructors should not be
716     // passed by value.
717     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
718       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
719 
720     return getNaturalAlignIndirect(Ty);
721   }
722 
723   // Treat an enum type as its underlying type.
724   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
725     Ty = EnumTy->getDecl()->getIntegerType();
726 
727   ASTContext &Context = getContext();
728   if (const auto *EIT = Ty->getAs<ExtIntType>())
729     if (EIT->getNumBits() >
730         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
731                                 ? Context.Int128Ty
732                                 : Context.LongLongTy))
733       return getNaturalAlignIndirect(Ty);
734 
735   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
736                                             : ABIArgInfo::getDirect());
737 }
738 
739 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
740   if (RetTy->isVoidType())
741     return ABIArgInfo::getIgnore();
742 
743   if (isAggregateTypeForABI(RetTy))
744     return getNaturalAlignIndirect(RetTy);
745 
746   // Treat an enum type as its underlying type.
747   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
748     RetTy = EnumTy->getDecl()->getIntegerType();
749 
750   if (const auto *EIT = RetTy->getAs<ExtIntType>())
751     if (EIT->getNumBits() >
752         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
753                                      ? getContext().Int128Ty
754                                      : getContext().LongLongTy))
755       return getNaturalAlignIndirect(RetTy);
756 
757   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
758                                                : ABIArgInfo::getDirect());
759 }
760 
761 //===----------------------------------------------------------------------===//
762 // WebAssembly ABI Implementation
763 //
764 // This is a very simple ABI that relies a lot on DefaultABIInfo.
765 //===----------------------------------------------------------------------===//
766 
767 class WebAssemblyABIInfo final : public SwiftABIInfo {
768 public:
769   enum ABIKind {
770     MVP = 0,
771     ExperimentalMV = 1,
772   };
773 
774 private:
775   DefaultABIInfo defaultInfo;
776   ABIKind Kind;
777 
778 public:
779   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
780       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
781 
782 private:
783   ABIArgInfo classifyReturnType(QualType RetTy) const;
784   ABIArgInfo classifyArgumentType(QualType Ty) const;
785 
786   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
787   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
788   // overload them.
789   void computeInfo(CGFunctionInfo &FI) const override {
790     if (!getCXXABI().classifyReturnType(FI))
791       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
792     for (auto &Arg : FI.arguments())
793       Arg.info = classifyArgumentType(Arg.type);
794   }
795 
796   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
797                     QualType Ty) const override;
798 
799   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
800                                     bool asReturnValue) const override {
801     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
802   }
803 
804   bool isSwiftErrorInRegister() const override {
805     return false;
806   }
807 };
808 
809 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
810 public:
811   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
812                                         WebAssemblyABIInfo::ABIKind K)
813       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
814 
815   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
816                            CodeGen::CodeGenModule &CGM) const override {
817     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
818     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
819       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
820         llvm::Function *Fn = cast<llvm::Function>(GV);
821         llvm::AttrBuilder B;
822         B.addAttribute("wasm-import-module", Attr->getImportModule());
823         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
824       }
825       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
826         llvm::Function *Fn = cast<llvm::Function>(GV);
827         llvm::AttrBuilder B;
828         B.addAttribute("wasm-import-name", Attr->getImportName());
829         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
830       }
831       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
832         llvm::Function *Fn = cast<llvm::Function>(GV);
833         llvm::AttrBuilder B;
834         B.addAttribute("wasm-export-name", Attr->getExportName());
835         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
836       }
837     }
838 
839     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
840       llvm::Function *Fn = cast<llvm::Function>(GV);
841       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
842         Fn->addFnAttr("no-prototype");
843     }
844   }
845 };
846 
847 /// Classify argument of given type \p Ty.
848 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
849   Ty = useFirstFieldIfTransparentUnion(Ty);
850 
851   if (isAggregateTypeForABI(Ty)) {
852     // Records with non-trivial destructors/copy-constructors should not be
853     // passed by value.
854     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
855       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
856     // Ignore empty structs/unions.
857     if (isEmptyRecord(getContext(), Ty, true))
858       return ABIArgInfo::getIgnore();
859     // Lower single-element structs to just pass a regular value. TODO: We
860     // could do reasonable-size multiple-element structs too, using getExpand(),
861     // though watch out for things like bitfields.
862     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
863       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
864     // For the experimental multivalue ABI, fully expand all other aggregates
865     if (Kind == ABIKind::ExperimentalMV) {
866       const RecordType *RT = Ty->getAs<RecordType>();
867       assert(RT);
868       bool HasBitField = false;
869       for (auto *Field : RT->getDecl()->fields()) {
870         if (Field->isBitField()) {
871           HasBitField = true;
872           break;
873         }
874       }
875       if (!HasBitField)
876         return ABIArgInfo::getExpand();
877     }
878   }
879 
880   // Otherwise just do the default thing.
881   return defaultInfo.classifyArgumentType(Ty);
882 }
883 
884 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
885   if (isAggregateTypeForABI(RetTy)) {
886     // Records with non-trivial destructors/copy-constructors should not be
887     // returned by value.
888     if (!getRecordArgABI(RetTy, getCXXABI())) {
889       // Ignore empty structs/unions.
890       if (isEmptyRecord(getContext(), RetTy, true))
891         return ABIArgInfo::getIgnore();
892       // Lower single-element structs to just return a regular value. TODO: We
893       // could do reasonable-size multiple-element structs too, using
894       // ABIArgInfo::getDirect().
895       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
896         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
897       // For the experimental multivalue ABI, return all other aggregates
898       if (Kind == ABIKind::ExperimentalMV)
899         return ABIArgInfo::getDirect();
900     }
901   }
902 
903   // Otherwise just do the default thing.
904   return defaultInfo.classifyReturnType(RetTy);
905 }
906 
907 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
908                                       QualType Ty) const {
909   bool IsIndirect = isAggregateTypeForABI(Ty) &&
910                     !isEmptyRecord(getContext(), Ty, true) &&
911                     !isSingleElementStruct(Ty, getContext());
912   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
913                           getContext().getTypeInfoInChars(Ty),
914                           CharUnits::fromQuantity(4),
915                           /*AllowHigherAlign=*/true);
916 }
917 
918 //===----------------------------------------------------------------------===//
919 // le32/PNaCl bitcode ABI Implementation
920 //
921 // This is a simplified version of the x86_32 ABI.  Arguments and return values
922 // are always passed on the stack.
923 //===----------------------------------------------------------------------===//
924 
925 class PNaClABIInfo : public ABIInfo {
926  public:
927   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
928 
929   ABIArgInfo classifyReturnType(QualType RetTy) const;
930   ABIArgInfo classifyArgumentType(QualType RetTy) const;
931 
932   void computeInfo(CGFunctionInfo &FI) const override;
933   Address EmitVAArg(CodeGenFunction &CGF,
934                     Address VAListAddr, QualType Ty) const override;
935 };
936 
937 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
938  public:
939    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
940        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
941 };
942 
943 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
944   if (!getCXXABI().classifyReturnType(FI))
945     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
946 
947   for (auto &I : FI.arguments())
948     I.info = classifyArgumentType(I.type);
949 }
950 
951 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
952                                 QualType Ty) const {
953   // The PNaCL ABI is a bit odd, in that varargs don't use normal
954   // function classification. Structs get passed directly for varargs
955   // functions, through a rewriting transform in
956   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
957   // this target to actually support a va_arg instructions with an
958   // aggregate type, unlike other targets.
959   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
960 }
961 
962 /// Classify argument of given type \p Ty.
963 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
964   if (isAggregateTypeForABI(Ty)) {
965     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
966       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
967     return getNaturalAlignIndirect(Ty);
968   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
969     // Treat an enum type as its underlying type.
970     Ty = EnumTy->getDecl()->getIntegerType();
971   } else if (Ty->isFloatingType()) {
972     // Floating-point types don't go inreg.
973     return ABIArgInfo::getDirect();
974   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
975     // Treat extended integers as integers if <=64, otherwise pass indirectly.
976     if (EIT->getNumBits() > 64)
977       return getNaturalAlignIndirect(Ty);
978     return ABIArgInfo::getDirect();
979   }
980 
981   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
982                                             : ABIArgInfo::getDirect());
983 }
984 
985 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
986   if (RetTy->isVoidType())
987     return ABIArgInfo::getIgnore();
988 
989   // In the PNaCl ABI we always return records/structures on the stack.
990   if (isAggregateTypeForABI(RetTy))
991     return getNaturalAlignIndirect(RetTy);
992 
993   // Treat extended integers as integers if <=64, otherwise pass indirectly.
994   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
995     if (EIT->getNumBits() > 64)
996       return getNaturalAlignIndirect(RetTy);
997     return ABIArgInfo::getDirect();
998   }
999 
1000   // Treat an enum type as its underlying type.
1001   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1002     RetTy = EnumTy->getDecl()->getIntegerType();
1003 
1004   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1005                                                : ABIArgInfo::getDirect());
1006 }
1007 
1008 /// IsX86_MMXType - Return true if this is an MMX type.
1009 bool IsX86_MMXType(llvm::Type *IRType) {
1010   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1011   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1012     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1013     IRType->getScalarSizeInBits() != 64;
1014 }
1015 
1016 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1017                                           StringRef Constraint,
1018                                           llvm::Type* Ty) {
1019   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1020                      .Cases("y", "&y", "^Ym", true)
1021                      .Default(false);
1022   if (IsMMXCons && Ty->isVectorTy()) {
1023     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1024         64) {
1025       // Invalid MMX constraint
1026       return nullptr;
1027     }
1028 
1029     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1030   }
1031 
1032   // No operation needed
1033   return Ty;
1034 }
1035 
1036 /// Returns true if this type can be passed in SSE registers with the
1037 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1038 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1039   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1040     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1041       if (BT->getKind() == BuiltinType::LongDouble) {
1042         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1043             &llvm::APFloat::x87DoubleExtended())
1044           return false;
1045       }
1046       return true;
1047     }
1048   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1049     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1050     // registers specially.
1051     unsigned VecSize = Context.getTypeSize(VT);
1052     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1053       return true;
1054   }
1055   return false;
1056 }
1057 
1058 /// Returns true if this aggregate is small enough to be passed in SSE registers
1059 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1060 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1061   return NumMembers <= 4;
1062 }
1063 
1064 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1065 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1066   auto AI = ABIArgInfo::getDirect(T);
1067   AI.setInReg(true);
1068   AI.setCanBeFlattened(false);
1069   return AI;
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 // X86-32 ABI Implementation
1074 //===----------------------------------------------------------------------===//
1075 
1076 /// Similar to llvm::CCState, but for Clang.
1077 struct CCState {
1078   CCState(CGFunctionInfo &FI)
1079       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1080 
1081   llvm::SmallBitVector IsPreassigned;
1082   unsigned CC = CallingConv::CC_C;
1083   unsigned FreeRegs = 0;
1084   unsigned FreeSSERegs = 0;
1085 };
1086 
1087 enum {
1088   // Vectorcall only allows the first 6 parameters to be passed in registers.
1089   VectorcallMaxParamNumAsReg = 6
1090 };
1091 
1092 /// X86_32ABIInfo - The X86-32 ABI information.
1093 class X86_32ABIInfo : public SwiftABIInfo {
1094   enum Class {
1095     Integer,
1096     Float
1097   };
1098 
1099   static const unsigned MinABIStackAlignInBytes = 4;
1100 
1101   bool IsDarwinVectorABI;
1102   bool IsRetSmallStructInRegABI;
1103   bool IsWin32StructABI;
1104   bool IsSoftFloatABI;
1105   bool IsMCUABI;
1106   unsigned DefaultNumRegisterParameters;
1107 
1108   static bool isRegisterSize(unsigned Size) {
1109     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1110   }
1111 
1112   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1113     // FIXME: Assumes vectorcall is in use.
1114     return isX86VectorTypeForVectorCall(getContext(), Ty);
1115   }
1116 
1117   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1118                                          uint64_t NumMembers) const override {
1119     // FIXME: Assumes vectorcall is in use.
1120     return isX86VectorCallAggregateSmallEnough(NumMembers);
1121   }
1122 
1123   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1124 
1125   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1126   /// such that the argument will be passed in memory.
1127   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1128 
1129   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1130 
1131   /// Return the alignment to use for the given type on the stack.
1132   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1133 
1134   Class classify(QualType Ty) const;
1135   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1136   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1137 
1138   /// Updates the number of available free registers, returns
1139   /// true if any registers were allocated.
1140   bool updateFreeRegs(QualType Ty, CCState &State) const;
1141 
1142   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1143                                 bool &NeedsPadding) const;
1144   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1145 
1146   bool canExpandIndirectArgument(QualType Ty) const;
1147 
1148   /// Rewrite the function info so that all memory arguments use
1149   /// inalloca.
1150   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1151 
1152   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1153                            CharUnits &StackOffset, ABIArgInfo &Info,
1154                            QualType Type) const;
1155   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1156 
1157 public:
1158 
1159   void computeInfo(CGFunctionInfo &FI) const override;
1160   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1161                     QualType Ty) const override;
1162 
1163   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1164                 bool RetSmallStructInRegABI, bool Win32StructABI,
1165                 unsigned NumRegisterParameters, bool SoftFloatABI)
1166     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1167       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1168       IsWin32StructABI(Win32StructABI),
1169       IsSoftFloatABI(SoftFloatABI),
1170       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1171       DefaultNumRegisterParameters(NumRegisterParameters) {}
1172 
1173   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1174                                     bool asReturnValue) const override {
1175     // LLVM's x86-32 lowering currently only assigns up to three
1176     // integer registers and three fp registers.  Oddly, it'll use up to
1177     // four vector registers for vectors, but those can overlap with the
1178     // scalar registers.
1179     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1180   }
1181 
1182   bool isSwiftErrorInRegister() const override {
1183     // x86-32 lowering does not support passing swifterror in a register.
1184     return false;
1185   }
1186 };
1187 
1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1189 public:
1190   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1191                           bool RetSmallStructInRegABI, bool Win32StructABI,
1192                           unsigned NumRegisterParameters, bool SoftFloatABI)
1193       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1194             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1195             NumRegisterParameters, SoftFloatABI)) {}
1196 
1197   static bool isStructReturnInRegABI(
1198       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1199 
1200   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1201                            CodeGen::CodeGenModule &CGM) const override;
1202 
1203   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1204     // Darwin uses different dwarf register numbers for EH.
1205     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1206     return 4;
1207   }
1208 
1209   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1210                                llvm::Value *Address) const override;
1211 
1212   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1213                                   StringRef Constraint,
1214                                   llvm::Type* Ty) const override {
1215     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1216   }
1217 
1218   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1219                                 std::string &Constraints,
1220                                 std::vector<llvm::Type *> &ResultRegTypes,
1221                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1222                                 std::vector<LValue> &ResultRegDests,
1223                                 std::string &AsmString,
1224                                 unsigned NumOutputs) const override;
1225 
1226   llvm::Constant *
1227   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1228     unsigned Sig = (0xeb << 0) |  // jmp rel8
1229                    (0x06 << 8) |  //           .+0x08
1230                    ('v' << 16) |
1231                    ('2' << 24);
1232     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1233   }
1234 
1235   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1236     return "movl\t%ebp, %ebp"
1237            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1238   }
1239 };
1240 
1241 }
1242 
1243 /// Rewrite input constraint references after adding some output constraints.
1244 /// In the case where there is one output and one input and we add one output,
1245 /// we need to replace all operand references greater than or equal to 1:
1246 ///     mov $0, $1
1247 ///     mov eax, $1
1248 /// The result will be:
1249 ///     mov $0, $2
1250 ///     mov eax, $2
1251 static void rewriteInputConstraintReferences(unsigned FirstIn,
1252                                              unsigned NumNewOuts,
1253                                              std::string &AsmString) {
1254   std::string Buf;
1255   llvm::raw_string_ostream OS(Buf);
1256   size_t Pos = 0;
1257   while (Pos < AsmString.size()) {
1258     size_t DollarStart = AsmString.find('$', Pos);
1259     if (DollarStart == std::string::npos)
1260       DollarStart = AsmString.size();
1261     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1262     if (DollarEnd == std::string::npos)
1263       DollarEnd = AsmString.size();
1264     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1265     Pos = DollarEnd;
1266     size_t NumDollars = DollarEnd - DollarStart;
1267     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1268       // We have an operand reference.
1269       size_t DigitStart = Pos;
1270       if (AsmString[DigitStart] == '{') {
1271         OS << '{';
1272         ++DigitStart;
1273       }
1274       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1275       if (DigitEnd == std::string::npos)
1276         DigitEnd = AsmString.size();
1277       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1278       unsigned OperandIndex;
1279       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1280         if (OperandIndex >= FirstIn)
1281           OperandIndex += NumNewOuts;
1282         OS << OperandIndex;
1283       } else {
1284         OS << OperandStr;
1285       }
1286       Pos = DigitEnd;
1287     }
1288   }
1289   AsmString = std::move(OS.str());
1290 }
1291 
1292 /// Add output constraints for EAX:EDX because they are return registers.
1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1294     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1295     std::vector<llvm::Type *> &ResultRegTypes,
1296     std::vector<llvm::Type *> &ResultTruncRegTypes,
1297     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1298     unsigned NumOutputs) const {
1299   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1300 
1301   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1302   // larger.
1303   if (!Constraints.empty())
1304     Constraints += ',';
1305   if (RetWidth <= 32) {
1306     Constraints += "={eax}";
1307     ResultRegTypes.push_back(CGF.Int32Ty);
1308   } else {
1309     // Use the 'A' constraint for EAX:EDX.
1310     Constraints += "=A";
1311     ResultRegTypes.push_back(CGF.Int64Ty);
1312   }
1313 
1314   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1315   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1316   ResultTruncRegTypes.push_back(CoerceTy);
1317 
1318   // Coerce the integer by bitcasting the return slot pointer.
1319   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1320                                                   CoerceTy->getPointerTo()));
1321   ResultRegDests.push_back(ReturnSlot);
1322 
1323   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1324 }
1325 
1326 /// shouldReturnTypeInRegister - Determine if the given type should be
1327 /// returned in a register (for the Darwin and MCU ABI).
1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1329                                                ASTContext &Context) const {
1330   uint64_t Size = Context.getTypeSize(Ty);
1331 
1332   // For i386, type must be register sized.
1333   // For the MCU ABI, it only needs to be <= 8-byte
1334   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1335    return false;
1336 
1337   if (Ty->isVectorType()) {
1338     // 64- and 128- bit vectors inside structures are not returned in
1339     // registers.
1340     if (Size == 64 || Size == 128)
1341       return false;
1342 
1343     return true;
1344   }
1345 
1346   // If this is a builtin, pointer, enum, complex type, member pointer, or
1347   // member function pointer it is ok.
1348   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1349       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1350       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1351     return true;
1352 
1353   // Arrays are treated like records.
1354   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1355     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1356 
1357   // Otherwise, it must be a record type.
1358   const RecordType *RT = Ty->getAs<RecordType>();
1359   if (!RT) return false;
1360 
1361   // FIXME: Traverse bases here too.
1362 
1363   // Structure types are passed in register if all fields would be
1364   // passed in a register.
1365   for (const auto *FD : RT->getDecl()->fields()) {
1366     // Empty fields are ignored.
1367     if (isEmptyField(Context, FD, true))
1368       continue;
1369 
1370     // Check fields recursively.
1371     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1372       return false;
1373   }
1374   return true;
1375 }
1376 
1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1378   // Treat complex types as the element type.
1379   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1380     Ty = CTy->getElementType();
1381 
1382   // Check for a type which we know has a simple scalar argument-passing
1383   // convention without any padding.  (We're specifically looking for 32
1384   // and 64-bit integer and integer-equivalents, float, and double.)
1385   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1386       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1387     return false;
1388 
1389   uint64_t Size = Context.getTypeSize(Ty);
1390   return Size == 32 || Size == 64;
1391 }
1392 
1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1394                           uint64_t &Size) {
1395   for (const auto *FD : RD->fields()) {
1396     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1397     // argument is smaller than 32-bits, expanding the struct will create
1398     // alignment padding.
1399     if (!is32Or64BitBasicType(FD->getType(), Context))
1400       return false;
1401 
1402     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1403     // how to expand them yet, and the predicate for telling if a bitfield still
1404     // counts as "basic" is more complicated than what we were doing previously.
1405     if (FD->isBitField())
1406       return false;
1407 
1408     Size += Context.getTypeSize(FD->getType());
1409   }
1410   return true;
1411 }
1412 
1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1414                                  uint64_t &Size) {
1415   // Don't do this if there are any non-empty bases.
1416   for (const CXXBaseSpecifier &Base : RD->bases()) {
1417     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1418                               Size))
1419       return false;
1420   }
1421   if (!addFieldSizes(Context, RD, Size))
1422     return false;
1423   return true;
1424 }
1425 
1426 /// Test whether an argument type which is to be passed indirectly (on the
1427 /// stack) would have the equivalent layout if it was expanded into separate
1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1429 /// optimizations.
1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1431   // We can only expand structure types.
1432   const RecordType *RT = Ty->getAs<RecordType>();
1433   if (!RT)
1434     return false;
1435   const RecordDecl *RD = RT->getDecl();
1436   uint64_t Size = 0;
1437   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1438     if (!IsWin32StructABI) {
1439       // On non-Windows, we have to conservatively match our old bitcode
1440       // prototypes in order to be ABI-compatible at the bitcode level.
1441       if (!CXXRD->isCLike())
1442         return false;
1443     } else {
1444       // Don't do this for dynamic classes.
1445       if (CXXRD->isDynamicClass())
1446         return false;
1447     }
1448     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1449       return false;
1450   } else {
1451     if (!addFieldSizes(getContext(), RD, Size))
1452       return false;
1453   }
1454 
1455   // We can do this if there was no alignment padding.
1456   return Size == getContext().getTypeSize(Ty);
1457 }
1458 
1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1460   // If the return value is indirect, then the hidden argument is consuming one
1461   // integer register.
1462   if (State.FreeRegs) {
1463     --State.FreeRegs;
1464     if (!IsMCUABI)
1465       return getNaturalAlignIndirectInReg(RetTy);
1466   }
1467   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1468 }
1469 
1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1471                                              CCState &State) const {
1472   if (RetTy->isVoidType())
1473     return ABIArgInfo::getIgnore();
1474 
1475   const Type *Base = nullptr;
1476   uint64_t NumElts = 0;
1477   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1478        State.CC == llvm::CallingConv::X86_RegCall) &&
1479       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1480     // The LLVM struct type for such an aggregate should lower properly.
1481     return ABIArgInfo::getDirect();
1482   }
1483 
1484   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1485     // On Darwin, some vectors are returned in registers.
1486     if (IsDarwinVectorABI) {
1487       uint64_t Size = getContext().getTypeSize(RetTy);
1488 
1489       // 128-bit vectors are a special case; they are returned in
1490       // registers and we need to make sure to pick a type the LLVM
1491       // backend will like.
1492       if (Size == 128)
1493         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1494             llvm::Type::getInt64Ty(getVMContext()), 2));
1495 
1496       // Always return in register if it fits in a general purpose
1497       // register, or if it is 64 bits and has a single element.
1498       if ((Size == 8 || Size == 16 || Size == 32) ||
1499           (Size == 64 && VT->getNumElements() == 1))
1500         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1501                                                             Size));
1502 
1503       return getIndirectReturnResult(RetTy, State);
1504     }
1505 
1506     return ABIArgInfo::getDirect();
1507   }
1508 
1509   if (isAggregateTypeForABI(RetTy)) {
1510     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1511       // Structures with flexible arrays are always indirect.
1512       if (RT->getDecl()->hasFlexibleArrayMember())
1513         return getIndirectReturnResult(RetTy, State);
1514     }
1515 
1516     // If specified, structs and unions are always indirect.
1517     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1518       return getIndirectReturnResult(RetTy, State);
1519 
1520     // Ignore empty structs/unions.
1521     if (isEmptyRecord(getContext(), RetTy, true))
1522       return ABIArgInfo::getIgnore();
1523 
1524     // Small structures which are register sized are generally returned
1525     // in a register.
1526     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1527       uint64_t Size = getContext().getTypeSize(RetTy);
1528 
1529       // As a special-case, if the struct is a "single-element" struct, and
1530       // the field is of type "float" or "double", return it in a
1531       // floating-point register. (MSVC does not apply this special case.)
1532       // We apply a similar transformation for pointer types to improve the
1533       // quality of the generated IR.
1534       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1535         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1536             || SeltTy->hasPointerRepresentation())
1537           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1538 
1539       // FIXME: We should be able to narrow this integer in cases with dead
1540       // padding.
1541       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1542     }
1543 
1544     return getIndirectReturnResult(RetTy, State);
1545   }
1546 
1547   // Treat an enum type as its underlying type.
1548   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1549     RetTy = EnumTy->getDecl()->getIntegerType();
1550 
1551   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1552     if (EIT->getNumBits() > 64)
1553       return getIndirectReturnResult(RetTy, State);
1554 
1555   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1556                                                : ABIArgInfo::getDirect());
1557 }
1558 
1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1560   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1561 }
1562 
1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1564   const RecordType *RT = Ty->getAs<RecordType>();
1565   if (!RT)
1566     return 0;
1567   const RecordDecl *RD = RT->getDecl();
1568 
1569   // If this is a C++ record, check the bases first.
1570   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1571     for (const auto &I : CXXRD->bases())
1572       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1573         return false;
1574 
1575   for (const auto *i : RD->fields()) {
1576     QualType FT = i->getType();
1577 
1578     if (isSIMDVectorType(Context, FT))
1579       return true;
1580 
1581     if (isRecordWithSIMDVectorType(Context, FT))
1582       return true;
1583   }
1584 
1585   return false;
1586 }
1587 
1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1589                                                  unsigned Align) const {
1590   // Otherwise, if the alignment is less than or equal to the minimum ABI
1591   // alignment, just use the default; the backend will handle this.
1592   if (Align <= MinABIStackAlignInBytes)
1593     return 0; // Use default alignment.
1594 
1595   // On non-Darwin, the stack type alignment is always 4.
1596   if (!IsDarwinVectorABI) {
1597     // Set explicit alignment, since we may need to realign the top.
1598     return MinABIStackAlignInBytes;
1599   }
1600 
1601   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1602   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1603                       isRecordWithSIMDVectorType(getContext(), Ty)))
1604     return 16;
1605 
1606   return MinABIStackAlignInBytes;
1607 }
1608 
1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1610                                             CCState &State) const {
1611   if (!ByVal) {
1612     if (State.FreeRegs) {
1613       --State.FreeRegs; // Non-byval indirects just use one pointer.
1614       if (!IsMCUABI)
1615         return getNaturalAlignIndirectInReg(Ty);
1616     }
1617     return getNaturalAlignIndirect(Ty, false);
1618   }
1619 
1620   // Compute the byval alignment.
1621   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1622   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1623   if (StackAlign == 0)
1624     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1625 
1626   // If the stack alignment is less than the type alignment, realign the
1627   // argument.
1628   bool Realign = TypeAlign > StackAlign;
1629   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1630                                  /*ByVal=*/true, Realign);
1631 }
1632 
1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1634   const Type *T = isSingleElementStruct(Ty, getContext());
1635   if (!T)
1636     T = Ty.getTypePtr();
1637 
1638   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1639     BuiltinType::Kind K = BT->getKind();
1640     if (K == BuiltinType::Float || K == BuiltinType::Double)
1641       return Float;
1642   }
1643   return Integer;
1644 }
1645 
1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1647   if (!IsSoftFloatABI) {
1648     Class C = classify(Ty);
1649     if (C == Float)
1650       return false;
1651   }
1652 
1653   unsigned Size = getContext().getTypeSize(Ty);
1654   unsigned SizeInRegs = (Size + 31) / 32;
1655 
1656   if (SizeInRegs == 0)
1657     return false;
1658 
1659   if (!IsMCUABI) {
1660     if (SizeInRegs > State.FreeRegs) {
1661       State.FreeRegs = 0;
1662       return false;
1663     }
1664   } else {
1665     // The MCU psABI allows passing parameters in-reg even if there are
1666     // earlier parameters that are passed on the stack. Also,
1667     // it does not allow passing >8-byte structs in-register,
1668     // even if there are 3 free registers available.
1669     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1670       return false;
1671   }
1672 
1673   State.FreeRegs -= SizeInRegs;
1674   return true;
1675 }
1676 
1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1678                                              bool &InReg,
1679                                              bool &NeedsPadding) const {
1680   // On Windows, aggregates other than HFAs are never passed in registers, and
1681   // they do not consume register slots. Homogenous floating-point aggregates
1682   // (HFAs) have already been dealt with at this point.
1683   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1684     return false;
1685 
1686   NeedsPadding = false;
1687   InReg = !IsMCUABI;
1688 
1689   if (!updateFreeRegs(Ty, State))
1690     return false;
1691 
1692   if (IsMCUABI)
1693     return true;
1694 
1695   if (State.CC == llvm::CallingConv::X86_FastCall ||
1696       State.CC == llvm::CallingConv::X86_VectorCall ||
1697       State.CC == llvm::CallingConv::X86_RegCall) {
1698     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1699       NeedsPadding = true;
1700 
1701     return false;
1702   }
1703 
1704   return true;
1705 }
1706 
1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1708   if (!updateFreeRegs(Ty, State))
1709     return false;
1710 
1711   if (IsMCUABI)
1712     return false;
1713 
1714   if (State.CC == llvm::CallingConv::X86_FastCall ||
1715       State.CC == llvm::CallingConv::X86_VectorCall ||
1716       State.CC == llvm::CallingConv::X86_RegCall) {
1717     if (getContext().getTypeSize(Ty) > 32)
1718       return false;
1719 
1720     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1721         Ty->isReferenceType());
1722   }
1723 
1724   return true;
1725 }
1726 
1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1728   // Vectorcall x86 works subtly different than in x64, so the format is
1729   // a bit different than the x64 version.  First, all vector types (not HVAs)
1730   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1731   // This differs from the x64 implementation, where the first 6 by INDEX get
1732   // registers.
1733   // In the second pass over the arguments, HVAs are passed in the remaining
1734   // vector registers if possible, or indirectly by address. The address will be
1735   // passed in ECX/EDX if available. Any other arguments are passed according to
1736   // the usual fastcall rules.
1737   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1738   for (int I = 0, E = Args.size(); I < E; ++I) {
1739     const Type *Base = nullptr;
1740     uint64_t NumElts = 0;
1741     const QualType &Ty = Args[I].type;
1742     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1743         isHomogeneousAggregate(Ty, Base, NumElts)) {
1744       if (State.FreeSSERegs >= NumElts) {
1745         State.FreeSSERegs -= NumElts;
1746         Args[I].info = ABIArgInfo::getDirectInReg();
1747         State.IsPreassigned.set(I);
1748       }
1749     }
1750   }
1751 }
1752 
1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1754                                                CCState &State) const {
1755   // FIXME: Set alignment on indirect arguments.
1756   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1757   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1758   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1759 
1760   Ty = useFirstFieldIfTransparentUnion(Ty);
1761   TypeInfo TI = getContext().getTypeInfo(Ty);
1762 
1763   // Check with the C++ ABI first.
1764   const RecordType *RT = Ty->getAs<RecordType>();
1765   if (RT) {
1766     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1767     if (RAA == CGCXXABI::RAA_Indirect) {
1768       return getIndirectResult(Ty, false, State);
1769     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1770       // The field index doesn't matter, we'll fix it up later.
1771       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1772     }
1773   }
1774 
1775   // Regcall uses the concept of a homogenous vector aggregate, similar
1776   // to other targets.
1777   const Type *Base = nullptr;
1778   uint64_t NumElts = 0;
1779   if ((IsRegCall || IsVectorCall) &&
1780       isHomogeneousAggregate(Ty, Base, NumElts)) {
1781     if (State.FreeSSERegs >= NumElts) {
1782       State.FreeSSERegs -= NumElts;
1783 
1784       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1785       // does.
1786       if (IsVectorCall)
1787         return getDirectX86Hva();
1788 
1789       if (Ty->isBuiltinType() || Ty->isVectorType())
1790         return ABIArgInfo::getDirect();
1791       return ABIArgInfo::getExpand();
1792     }
1793     return getIndirectResult(Ty, /*ByVal=*/false, State);
1794   }
1795 
1796   if (isAggregateTypeForABI(Ty)) {
1797     // Structures with flexible arrays are always indirect.
1798     // FIXME: This should not be byval!
1799     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1800       return getIndirectResult(Ty, true, State);
1801 
1802     // Ignore empty structs/unions on non-Windows.
1803     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1804       return ABIArgInfo::getIgnore();
1805 
1806     llvm::LLVMContext &LLVMContext = getVMContext();
1807     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1808     bool NeedsPadding = false;
1809     bool InReg;
1810     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1811       unsigned SizeInRegs = (TI.Width + 31) / 32;
1812       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1813       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1814       if (InReg)
1815         return ABIArgInfo::getDirectInReg(Result);
1816       else
1817         return ABIArgInfo::getDirect(Result);
1818     }
1819     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1820 
1821     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1822     // added in MSVC 2015.
1823     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1824       return getIndirectResult(Ty, /*ByVal=*/false, State);
1825 
1826     // Expand small (<= 128-bit) record types when we know that the stack layout
1827     // of those arguments will match the struct. This is important because the
1828     // LLVM backend isn't smart enough to remove byval, which inhibits many
1829     // optimizations.
1830     // Don't do this for the MCU if there are still free integer registers
1831     // (see X86_64 ABI for full explanation).
1832     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1833         canExpandIndirectArgument(Ty))
1834       return ABIArgInfo::getExpandWithPadding(
1835           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1836 
1837     return getIndirectResult(Ty, true, State);
1838   }
1839 
1840   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1841     // On Windows, vectors are passed directly if registers are available, or
1842     // indirectly if not. This avoids the need to align argument memory. Pass
1843     // user-defined vector types larger than 512 bits indirectly for simplicity.
1844     if (IsWin32StructABI) {
1845       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1846         --State.FreeSSERegs;
1847         return ABIArgInfo::getDirectInReg();
1848       }
1849       return getIndirectResult(Ty, /*ByVal=*/false, State);
1850     }
1851 
1852     // On Darwin, some vectors are passed in memory, we handle this by passing
1853     // it as an i8/i16/i32/i64.
1854     if (IsDarwinVectorABI) {
1855       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1856           (TI.Width == 64 && VT->getNumElements() == 1))
1857         return ABIArgInfo::getDirect(
1858             llvm::IntegerType::get(getVMContext(), TI.Width));
1859     }
1860 
1861     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1862       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1863 
1864     return ABIArgInfo::getDirect();
1865   }
1866 
1867 
1868   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1869     Ty = EnumTy->getDecl()->getIntegerType();
1870 
1871   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1872 
1873   if (isPromotableIntegerTypeForABI(Ty)) {
1874     if (InReg)
1875       return ABIArgInfo::getExtendInReg(Ty);
1876     return ABIArgInfo::getExtend(Ty);
1877   }
1878 
1879   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1880     if (EIT->getNumBits() <= 64) {
1881       if (InReg)
1882         return ABIArgInfo::getDirectInReg();
1883       return ABIArgInfo::getDirect();
1884     }
1885     return getIndirectResult(Ty, /*ByVal=*/false, State);
1886   }
1887 
1888   if (InReg)
1889     return ABIArgInfo::getDirectInReg();
1890   return ABIArgInfo::getDirect();
1891 }
1892 
1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1894   CCState State(FI);
1895   if (IsMCUABI)
1896     State.FreeRegs = 3;
1897   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1898     State.FreeRegs = 2;
1899     State.FreeSSERegs = 3;
1900   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1901     State.FreeRegs = 2;
1902     State.FreeSSERegs = 6;
1903   } else if (FI.getHasRegParm())
1904     State.FreeRegs = FI.getRegParm();
1905   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1906     State.FreeRegs = 5;
1907     State.FreeSSERegs = 8;
1908   } else if (IsWin32StructABI) {
1909     // Since MSVC 2015, the first three SSE vectors have been passed in
1910     // registers. The rest are passed indirectly.
1911     State.FreeRegs = DefaultNumRegisterParameters;
1912     State.FreeSSERegs = 3;
1913   } else
1914     State.FreeRegs = DefaultNumRegisterParameters;
1915 
1916   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1917     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1918   } else if (FI.getReturnInfo().isIndirect()) {
1919     // The C++ ABI is not aware of register usage, so we have to check if the
1920     // return value was sret and put it in a register ourselves if appropriate.
1921     if (State.FreeRegs) {
1922       --State.FreeRegs;  // The sret parameter consumes a register.
1923       if (!IsMCUABI)
1924         FI.getReturnInfo().setInReg(true);
1925     }
1926   }
1927 
1928   // The chain argument effectively gives us another free register.
1929   if (FI.isChainCall())
1930     ++State.FreeRegs;
1931 
1932   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1933   // arguments to XMM registers as available.
1934   if (State.CC == llvm::CallingConv::X86_VectorCall)
1935     runVectorCallFirstPass(FI, State);
1936 
1937   bool UsedInAlloca = false;
1938   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1939   for (int I = 0, E = Args.size(); I < E; ++I) {
1940     // Skip arguments that have already been assigned.
1941     if (State.IsPreassigned.test(I))
1942       continue;
1943 
1944     Args[I].info = classifyArgumentType(Args[I].type, State);
1945     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1946   }
1947 
1948   // If we needed to use inalloca for any argument, do a second pass and rewrite
1949   // all the memory arguments to use inalloca.
1950   if (UsedInAlloca)
1951     rewriteWithInAlloca(FI);
1952 }
1953 
1954 void
1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1956                                    CharUnits &StackOffset, ABIArgInfo &Info,
1957                                    QualType Type) const {
1958   // Arguments are always 4-byte-aligned.
1959   CharUnits WordSize = CharUnits::fromQuantity(4);
1960   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1961 
1962   // sret pointers and indirect things will require an extra pointer
1963   // indirection, unless they are byval. Most things are byval, and will not
1964   // require this indirection.
1965   bool IsIndirect = false;
1966   if (Info.isIndirect() && !Info.getIndirectByVal())
1967     IsIndirect = true;
1968   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1969   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1970   if (IsIndirect)
1971     LLTy = LLTy->getPointerTo(0);
1972   FrameFields.push_back(LLTy);
1973   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1974 
1975   // Insert padding bytes to respect alignment.
1976   CharUnits FieldEnd = StackOffset;
1977   StackOffset = FieldEnd.alignTo(WordSize);
1978   if (StackOffset != FieldEnd) {
1979     CharUnits NumBytes = StackOffset - FieldEnd;
1980     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1981     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1982     FrameFields.push_back(Ty);
1983   }
1984 }
1985 
1986 static bool isArgInAlloca(const ABIArgInfo &Info) {
1987   // Leave ignored and inreg arguments alone.
1988   switch (Info.getKind()) {
1989   case ABIArgInfo::InAlloca:
1990     return true;
1991   case ABIArgInfo::Ignore:
1992     return false;
1993   case ABIArgInfo::Indirect:
1994   case ABIArgInfo::Direct:
1995   case ABIArgInfo::Extend:
1996     return !Info.getInReg();
1997   case ABIArgInfo::Expand:
1998   case ABIArgInfo::CoerceAndExpand:
1999     // These are aggregate types which are never passed in registers when
2000     // inalloca is involved.
2001     return true;
2002   }
2003   llvm_unreachable("invalid enum");
2004 }
2005 
2006 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2007   assert(IsWin32StructABI && "inalloca only supported on win32");
2008 
2009   // Build a packed struct type for all of the arguments in memory.
2010   SmallVector<llvm::Type *, 6> FrameFields;
2011 
2012   // The stack alignment is always 4.
2013   CharUnits StackAlign = CharUnits::fromQuantity(4);
2014 
2015   CharUnits StackOffset;
2016   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2017 
2018   // Put 'this' into the struct before 'sret', if necessary.
2019   bool IsThisCall =
2020       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2021   ABIArgInfo &Ret = FI.getReturnInfo();
2022   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2023       isArgInAlloca(I->info)) {
2024     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2025     ++I;
2026   }
2027 
2028   // Put the sret parameter into the inalloca struct if it's in memory.
2029   if (Ret.isIndirect() && !Ret.getInReg()) {
2030     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2031     // On Windows, the hidden sret parameter is always returned in eax.
2032     Ret.setInAllocaSRet(IsWin32StructABI);
2033   }
2034 
2035   // Skip the 'this' parameter in ecx.
2036   if (IsThisCall)
2037     ++I;
2038 
2039   // Put arguments passed in memory into the struct.
2040   for (; I != E; ++I) {
2041     if (isArgInAlloca(I->info))
2042       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2043   }
2044 
2045   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2046                                         /*isPacked=*/true),
2047                   StackAlign);
2048 }
2049 
2050 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2051                                  Address VAListAddr, QualType Ty) const {
2052 
2053   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2054 
2055   // x86-32 changes the alignment of certain arguments on the stack.
2056   //
2057   // Just messing with TypeInfo like this works because we never pass
2058   // anything indirectly.
2059   TypeInfo.second = CharUnits::fromQuantity(
2060                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2061 
2062   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2063                           TypeInfo, CharUnits::fromQuantity(4),
2064                           /*AllowHigherAlign*/ true);
2065 }
2066 
2067 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2068     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2069   assert(Triple.getArch() == llvm::Triple::x86);
2070 
2071   switch (Opts.getStructReturnConvention()) {
2072   case CodeGenOptions::SRCK_Default:
2073     break;
2074   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2075     return false;
2076   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2077     return true;
2078   }
2079 
2080   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2081     return true;
2082 
2083   switch (Triple.getOS()) {
2084   case llvm::Triple::DragonFly:
2085   case llvm::Triple::FreeBSD:
2086   case llvm::Triple::OpenBSD:
2087   case llvm::Triple::Win32:
2088     return true;
2089   default:
2090     return false;
2091   }
2092 }
2093 
2094 void X86_32TargetCodeGenInfo::setTargetAttributes(
2095     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2096   if (GV->isDeclaration())
2097     return;
2098   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2099     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2100       llvm::Function *Fn = cast<llvm::Function>(GV);
2101       Fn->addFnAttr("stackrealign");
2102     }
2103     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2104       llvm::Function *Fn = cast<llvm::Function>(GV);
2105       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2106     }
2107   }
2108 }
2109 
2110 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2111                                                CodeGen::CodeGenFunction &CGF,
2112                                                llvm::Value *Address) const {
2113   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2114 
2115   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2116 
2117   // 0-7 are the eight integer registers;  the order is different
2118   //   on Darwin (for EH), but the range is the same.
2119   // 8 is %eip.
2120   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2121 
2122   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2123     // 12-16 are st(0..4).  Not sure why we stop at 4.
2124     // These have size 16, which is sizeof(long double) on
2125     // platforms with 8-byte alignment for that type.
2126     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2127     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2128 
2129   } else {
2130     // 9 is %eflags, which doesn't get a size on Darwin for some
2131     // reason.
2132     Builder.CreateAlignedStore(
2133         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2134                                CharUnits::One());
2135 
2136     // 11-16 are st(0..5).  Not sure why we stop at 5.
2137     // These have size 12, which is sizeof(long double) on
2138     // platforms with 4-byte alignment for that type.
2139     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2140     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2141   }
2142 
2143   return false;
2144 }
2145 
2146 //===----------------------------------------------------------------------===//
2147 // X86-64 ABI Implementation
2148 //===----------------------------------------------------------------------===//
2149 
2150 
2151 namespace {
2152 /// The AVX ABI level for X86 targets.
2153 enum class X86AVXABILevel {
2154   None,
2155   AVX,
2156   AVX512
2157 };
2158 
2159 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2160 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2161   switch (AVXLevel) {
2162   case X86AVXABILevel::AVX512:
2163     return 512;
2164   case X86AVXABILevel::AVX:
2165     return 256;
2166   case X86AVXABILevel::None:
2167     return 128;
2168   }
2169   llvm_unreachable("Unknown AVXLevel");
2170 }
2171 
2172 /// X86_64ABIInfo - The X86_64 ABI information.
2173 class X86_64ABIInfo : public SwiftABIInfo {
2174   enum Class {
2175     Integer = 0,
2176     SSE,
2177     SSEUp,
2178     X87,
2179     X87Up,
2180     ComplexX87,
2181     NoClass,
2182     Memory
2183   };
2184 
2185   /// merge - Implement the X86_64 ABI merging algorithm.
2186   ///
2187   /// Merge an accumulating classification \arg Accum with a field
2188   /// classification \arg Field.
2189   ///
2190   /// \param Accum - The accumulating classification. This should
2191   /// always be either NoClass or the result of a previous merge
2192   /// call. In addition, this should never be Memory (the caller
2193   /// should just return Memory for the aggregate).
2194   static Class merge(Class Accum, Class Field);
2195 
2196   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2197   ///
2198   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2199   /// final MEMORY or SSE classes when necessary.
2200   ///
2201   /// \param AggregateSize - The size of the current aggregate in
2202   /// the classification process.
2203   ///
2204   /// \param Lo - The classification for the parts of the type
2205   /// residing in the low word of the containing object.
2206   ///
2207   /// \param Hi - The classification for the parts of the type
2208   /// residing in the higher words of the containing object.
2209   ///
2210   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2211 
2212   /// classify - Determine the x86_64 register classes in which the
2213   /// given type T should be passed.
2214   ///
2215   /// \param Lo - The classification for the parts of the type
2216   /// residing in the low word of the containing object.
2217   ///
2218   /// \param Hi - The classification for the parts of the type
2219   /// residing in the high word of the containing object.
2220   ///
2221   /// \param OffsetBase - The bit offset of this type in the
2222   /// containing object.  Some parameters are classified different
2223   /// depending on whether they straddle an eightbyte boundary.
2224   ///
2225   /// \param isNamedArg - Whether the argument in question is a "named"
2226   /// argument, as used in AMD64-ABI 3.5.7.
2227   ///
2228   /// If a word is unused its result will be NoClass; if a type should
2229   /// be passed in Memory then at least the classification of \arg Lo
2230   /// will be Memory.
2231   ///
2232   /// The \arg Lo class will be NoClass iff the argument is ignored.
2233   ///
2234   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2235   /// also be ComplexX87.
2236   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2237                 bool isNamedArg) const;
2238 
2239   llvm::Type *GetByteVectorType(QualType Ty) const;
2240   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2241                                  unsigned IROffset, QualType SourceTy,
2242                                  unsigned SourceOffset) const;
2243   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2244                                      unsigned IROffset, QualType SourceTy,
2245                                      unsigned SourceOffset) const;
2246 
2247   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2248   /// such that the argument will be returned in memory.
2249   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2250 
2251   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2252   /// such that the argument will be passed in memory.
2253   ///
2254   /// \param freeIntRegs - The number of free integer registers remaining
2255   /// available.
2256   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2257 
2258   ABIArgInfo classifyReturnType(QualType RetTy) const;
2259 
2260   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2261                                   unsigned &neededInt, unsigned &neededSSE,
2262                                   bool isNamedArg) const;
2263 
2264   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2265                                        unsigned &NeededSSE) const;
2266 
2267   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2268                                            unsigned &NeededSSE) const;
2269 
2270   bool IsIllegalVectorType(QualType Ty) const;
2271 
2272   /// The 0.98 ABI revision clarified a lot of ambiguities,
2273   /// unfortunately in ways that were not always consistent with
2274   /// certain previous compilers.  In particular, platforms which
2275   /// required strict binary compatibility with older versions of GCC
2276   /// may need to exempt themselves.
2277   bool honorsRevision0_98() const {
2278     return !getTarget().getTriple().isOSDarwin();
2279   }
2280 
2281   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2282   /// classify it as INTEGER (for compatibility with older clang compilers).
2283   bool classifyIntegerMMXAsSSE() const {
2284     // Clang <= 3.8 did not do this.
2285     if (getContext().getLangOpts().getClangABICompat() <=
2286         LangOptions::ClangABI::Ver3_8)
2287       return false;
2288 
2289     const llvm::Triple &Triple = getTarget().getTriple();
2290     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2291       return false;
2292     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2293       return false;
2294     return true;
2295   }
2296 
2297   // GCC classifies vectors of __int128 as memory.
2298   bool passInt128VectorsInMem() const {
2299     // Clang <= 9.0 did not do this.
2300     if (getContext().getLangOpts().getClangABICompat() <=
2301         LangOptions::ClangABI::Ver9)
2302       return false;
2303 
2304     const llvm::Triple &T = getTarget().getTriple();
2305     return T.isOSLinux() || T.isOSNetBSD();
2306   }
2307 
2308   X86AVXABILevel AVXLevel;
2309   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2310   // 64-bit hardware.
2311   bool Has64BitPointers;
2312 
2313 public:
2314   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2315       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2316       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2317   }
2318 
2319   bool isPassedUsingAVXType(QualType type) const {
2320     unsigned neededInt, neededSSE;
2321     // The freeIntRegs argument doesn't matter here.
2322     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2323                                            /*isNamedArg*/true);
2324     if (info.isDirect()) {
2325       llvm::Type *ty = info.getCoerceToType();
2326       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2327         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2328     }
2329     return false;
2330   }
2331 
2332   void computeInfo(CGFunctionInfo &FI) const override;
2333 
2334   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2335                     QualType Ty) const override;
2336   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2337                       QualType Ty) const override;
2338 
2339   bool has64BitPointers() const {
2340     return Has64BitPointers;
2341   }
2342 
2343   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2344                                     bool asReturnValue) const override {
2345     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2346   }
2347   bool isSwiftErrorInRegister() const override {
2348     return true;
2349   }
2350 };
2351 
2352 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2353 class WinX86_64ABIInfo : public SwiftABIInfo {
2354 public:
2355   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2356       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2357         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2358 
2359   void computeInfo(CGFunctionInfo &FI) const override;
2360 
2361   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2362                     QualType Ty) const override;
2363 
2364   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2365     // FIXME: Assumes vectorcall is in use.
2366     return isX86VectorTypeForVectorCall(getContext(), Ty);
2367   }
2368 
2369   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2370                                          uint64_t NumMembers) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorCallAggregateSmallEnough(NumMembers);
2373   }
2374 
2375   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2376                                     bool asReturnValue) const override {
2377     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2378   }
2379 
2380   bool isSwiftErrorInRegister() const override {
2381     return true;
2382   }
2383 
2384 private:
2385   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2386                       bool IsVectorCall, bool IsRegCall) const;
2387   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2388                                       const ABIArgInfo &current) const;
2389   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2390                              bool IsVectorCall, bool IsRegCall) const;
2391 
2392   X86AVXABILevel AVXLevel;
2393 
2394   bool IsMingw64;
2395 };
2396 
2397 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2398 public:
2399   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2400       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2401 
2402   const X86_64ABIInfo &getABIInfo() const {
2403     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2404   }
2405 
2406   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2407   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2408   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2409 
2410   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2411     return 7;
2412   }
2413 
2414   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2415                                llvm::Value *Address) const override {
2416     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2417 
2418     // 0-15 are the 16 integer registers.
2419     // 16 is %rip.
2420     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2421     return false;
2422   }
2423 
2424   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2425                                   StringRef Constraint,
2426                                   llvm::Type* Ty) const override {
2427     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2428   }
2429 
2430   bool isNoProtoCallVariadic(const CallArgList &args,
2431                              const FunctionNoProtoType *fnType) const override {
2432     // The default CC on x86-64 sets %al to the number of SSA
2433     // registers used, and GCC sets this when calling an unprototyped
2434     // function, so we override the default behavior.  However, don't do
2435     // that when AVX types are involved: the ABI explicitly states it is
2436     // undefined, and it doesn't work in practice because of how the ABI
2437     // defines varargs anyway.
2438     if (fnType->getCallConv() == CC_C) {
2439       bool HasAVXType = false;
2440       for (CallArgList::const_iterator
2441              it = args.begin(), ie = args.end(); it != ie; ++it) {
2442         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2443           HasAVXType = true;
2444           break;
2445         }
2446       }
2447 
2448       if (!HasAVXType)
2449         return true;
2450     }
2451 
2452     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2453   }
2454 
2455   llvm::Constant *
2456   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2457     unsigned Sig = (0xeb << 0) | // jmp rel8
2458                    (0x06 << 8) | //           .+0x08
2459                    ('v' << 16) |
2460                    ('2' << 24);
2461     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2462   }
2463 
2464   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2465                            CodeGen::CodeGenModule &CGM) const override {
2466     if (GV->isDeclaration())
2467       return;
2468     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2469       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2470         llvm::Function *Fn = cast<llvm::Function>(GV);
2471         Fn->addFnAttr("stackrealign");
2472       }
2473       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2474         llvm::Function *Fn = cast<llvm::Function>(GV);
2475         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2476       }
2477     }
2478   }
2479 
2480   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2481                             const FunctionDecl *Caller,
2482                             const FunctionDecl *Callee,
2483                             const CallArgList &Args) const override;
2484 };
2485 
2486 static void initFeatureMaps(const ASTContext &Ctx,
2487                             llvm::StringMap<bool> &CallerMap,
2488                             const FunctionDecl *Caller,
2489                             llvm::StringMap<bool> &CalleeMap,
2490                             const FunctionDecl *Callee) {
2491   if (CalleeMap.empty() && CallerMap.empty()) {
2492     // The caller is potentially nullptr in the case where the call isn't in a
2493     // function.  In this case, the getFunctionFeatureMap ensures we just get
2494     // the TU level setting (since it cannot be modified by 'target'..
2495     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2496     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2497   }
2498 }
2499 
2500 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2501                                  SourceLocation CallLoc,
2502                                  const llvm::StringMap<bool> &CallerMap,
2503                                  const llvm::StringMap<bool> &CalleeMap,
2504                                  QualType Ty, StringRef Feature,
2505                                  bool IsArgument) {
2506   bool CallerHasFeat = CallerMap.lookup(Feature);
2507   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2508   if (!CallerHasFeat && !CalleeHasFeat)
2509     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2510            << IsArgument << Ty << Feature;
2511 
2512   // Mixing calling conventions here is very clearly an error.
2513   if (!CallerHasFeat || !CalleeHasFeat)
2514     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2515            << IsArgument << Ty << Feature;
2516 
2517   // Else, both caller and callee have the required feature, so there is no need
2518   // to diagnose.
2519   return false;
2520 }
2521 
2522 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2523                           SourceLocation CallLoc,
2524                           const llvm::StringMap<bool> &CallerMap,
2525                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2526                           bool IsArgument) {
2527   uint64_t Size = Ctx.getTypeSize(Ty);
2528   if (Size > 256)
2529     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2530                                 "avx512f", IsArgument);
2531 
2532   if (Size > 128)
2533     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2534                                 IsArgument);
2535 
2536   return false;
2537 }
2538 
2539 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2540     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2541     const FunctionDecl *Callee, const CallArgList &Args) const {
2542   llvm::StringMap<bool> CallerMap;
2543   llvm::StringMap<bool> CalleeMap;
2544   unsigned ArgIndex = 0;
2545 
2546   // We need to loop through the actual call arguments rather than the the
2547   // function's parameters, in case this variadic.
2548   for (const CallArg &Arg : Args) {
2549     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2550     // additionally changes how vectors >256 in size are passed. Like GCC, we
2551     // warn when a function is called with an argument where this will change.
2552     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2553     // the caller and callee features are mismatched.
2554     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2555     // change its ABI with attribute-target after this call.
2556     if (Arg.getType()->isVectorType() &&
2557         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2558       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2559       QualType Ty = Arg.getType();
2560       // The CallArg seems to have desugared the type already, so for clearer
2561       // diagnostics, replace it with the type in the FunctionDecl if possible.
2562       if (ArgIndex < Callee->getNumParams())
2563         Ty = Callee->getParamDecl(ArgIndex)->getType();
2564 
2565       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2566                         CalleeMap, Ty, /*IsArgument*/ true))
2567         return;
2568     }
2569     ++ArgIndex;
2570   }
2571 
2572   // Check return always, as we don't have a good way of knowing in codegen
2573   // whether this value is used, tail-called, etc.
2574   if (Callee->getReturnType()->isVectorType() &&
2575       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2576     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2577     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2578                   CalleeMap, Callee->getReturnType(),
2579                   /*IsArgument*/ false);
2580   }
2581 }
2582 
2583 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2584   // If the argument does not end in .lib, automatically add the suffix.
2585   // If the argument contains a space, enclose it in quotes.
2586   // This matches the behavior of MSVC.
2587   bool Quote = (Lib.find(" ") != StringRef::npos);
2588   std::string ArgStr = Quote ? "\"" : "";
2589   ArgStr += Lib;
2590   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2591     ArgStr += ".lib";
2592   ArgStr += Quote ? "\"" : "";
2593   return ArgStr;
2594 }
2595 
2596 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2597 public:
2598   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2599         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2600         unsigned NumRegisterParameters)
2601     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2602         Win32StructABI, NumRegisterParameters, false) {}
2603 
2604   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2605                            CodeGen::CodeGenModule &CGM) const override;
2606 
2607   void getDependentLibraryOption(llvm::StringRef Lib,
2608                                  llvm::SmallString<24> &Opt) const override {
2609     Opt = "/DEFAULTLIB:";
2610     Opt += qualifyWindowsLibrary(Lib);
2611   }
2612 
2613   void getDetectMismatchOption(llvm::StringRef Name,
2614                                llvm::StringRef Value,
2615                                llvm::SmallString<32> &Opt) const override {
2616     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2617   }
2618 };
2619 
2620 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2621                                           CodeGen::CodeGenModule &CGM) {
2622   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2623 
2624     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2625       Fn->addFnAttr("stack-probe-size",
2626                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2627     if (CGM.getCodeGenOpts().NoStackArgProbe)
2628       Fn->addFnAttr("no-stack-arg-probe");
2629   }
2630 }
2631 
2632 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2633     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2634   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2635   if (GV->isDeclaration())
2636     return;
2637   addStackProbeTargetAttributes(D, GV, CGM);
2638 }
2639 
2640 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2641 public:
2642   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2643                              X86AVXABILevel AVXLevel)
2644       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2645 
2646   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2647                            CodeGen::CodeGenModule &CGM) const override;
2648 
2649   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2650     return 7;
2651   }
2652 
2653   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2654                                llvm::Value *Address) const override {
2655     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2656 
2657     // 0-15 are the 16 integer registers.
2658     // 16 is %rip.
2659     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2660     return false;
2661   }
2662 
2663   void getDependentLibraryOption(llvm::StringRef Lib,
2664                                  llvm::SmallString<24> &Opt) const override {
2665     Opt = "/DEFAULTLIB:";
2666     Opt += qualifyWindowsLibrary(Lib);
2667   }
2668 
2669   void getDetectMismatchOption(llvm::StringRef Name,
2670                                llvm::StringRef Value,
2671                                llvm::SmallString<32> &Opt) const override {
2672     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2673   }
2674 };
2675 
2676 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2677     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2678   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2679   if (GV->isDeclaration())
2680     return;
2681   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2682     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2683       llvm::Function *Fn = cast<llvm::Function>(GV);
2684       Fn->addFnAttr("stackrealign");
2685     }
2686     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2687       llvm::Function *Fn = cast<llvm::Function>(GV);
2688       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2689     }
2690   }
2691 
2692   addStackProbeTargetAttributes(D, GV, CGM);
2693 }
2694 }
2695 
2696 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2697                               Class &Hi) const {
2698   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2699   //
2700   // (a) If one of the classes is Memory, the whole argument is passed in
2701   //     memory.
2702   //
2703   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2704   //     memory.
2705   //
2706   // (c) If the size of the aggregate exceeds two eightbytes and the first
2707   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2708   //     argument is passed in memory. NOTE: This is necessary to keep the
2709   //     ABI working for processors that don't support the __m256 type.
2710   //
2711   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2712   //
2713   // Some of these are enforced by the merging logic.  Others can arise
2714   // only with unions; for example:
2715   //   union { _Complex double; unsigned; }
2716   //
2717   // Note that clauses (b) and (c) were added in 0.98.
2718   //
2719   if (Hi == Memory)
2720     Lo = Memory;
2721   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2722     Lo = Memory;
2723   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2724     Lo = Memory;
2725   if (Hi == SSEUp && Lo != SSE)
2726     Hi = SSE;
2727 }
2728 
2729 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2730   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2731   // classified recursively so that always two fields are
2732   // considered. The resulting class is calculated according to
2733   // the classes of the fields in the eightbyte:
2734   //
2735   // (a) If both classes are equal, this is the resulting class.
2736   //
2737   // (b) If one of the classes is NO_CLASS, the resulting class is
2738   // the other class.
2739   //
2740   // (c) If one of the classes is MEMORY, the result is the MEMORY
2741   // class.
2742   //
2743   // (d) If one of the classes is INTEGER, the result is the
2744   // INTEGER.
2745   //
2746   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2747   // MEMORY is used as class.
2748   //
2749   // (f) Otherwise class SSE is used.
2750 
2751   // Accum should never be memory (we should have returned) or
2752   // ComplexX87 (because this cannot be passed in a structure).
2753   assert((Accum != Memory && Accum != ComplexX87) &&
2754          "Invalid accumulated classification during merge.");
2755   if (Accum == Field || Field == NoClass)
2756     return Accum;
2757   if (Field == Memory)
2758     return Memory;
2759   if (Accum == NoClass)
2760     return Field;
2761   if (Accum == Integer || Field == Integer)
2762     return Integer;
2763   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2764       Accum == X87 || Accum == X87Up)
2765     return Memory;
2766   return SSE;
2767 }
2768 
2769 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2770                              Class &Lo, Class &Hi, bool isNamedArg) const {
2771   // FIXME: This code can be simplified by introducing a simple value class for
2772   // Class pairs with appropriate constructor methods for the various
2773   // situations.
2774 
2775   // FIXME: Some of the split computations are wrong; unaligned vectors
2776   // shouldn't be passed in registers for example, so there is no chance they
2777   // can straddle an eightbyte. Verify & simplify.
2778 
2779   Lo = Hi = NoClass;
2780 
2781   Class &Current = OffsetBase < 64 ? Lo : Hi;
2782   Current = Memory;
2783 
2784   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2785     BuiltinType::Kind k = BT->getKind();
2786 
2787     if (k == BuiltinType::Void) {
2788       Current = NoClass;
2789     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2790       Lo = Integer;
2791       Hi = Integer;
2792     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2793       Current = Integer;
2794     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2795       Current = SSE;
2796     } else if (k == BuiltinType::LongDouble) {
2797       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2798       if (LDF == &llvm::APFloat::IEEEquad()) {
2799         Lo = SSE;
2800         Hi = SSEUp;
2801       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2802         Lo = X87;
2803         Hi = X87Up;
2804       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2805         Current = SSE;
2806       } else
2807         llvm_unreachable("unexpected long double representation!");
2808     }
2809     // FIXME: _Decimal32 and _Decimal64 are SSE.
2810     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2811     return;
2812   }
2813 
2814   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2815     // Classify the underlying integer type.
2816     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2817     return;
2818   }
2819 
2820   if (Ty->hasPointerRepresentation()) {
2821     Current = Integer;
2822     return;
2823   }
2824 
2825   if (Ty->isMemberPointerType()) {
2826     if (Ty->isMemberFunctionPointerType()) {
2827       if (Has64BitPointers) {
2828         // If Has64BitPointers, this is an {i64, i64}, so classify both
2829         // Lo and Hi now.
2830         Lo = Hi = Integer;
2831       } else {
2832         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2833         // straddles an eightbyte boundary, Hi should be classified as well.
2834         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2835         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2836         if (EB_FuncPtr != EB_ThisAdj) {
2837           Lo = Hi = Integer;
2838         } else {
2839           Current = Integer;
2840         }
2841       }
2842     } else {
2843       Current = Integer;
2844     }
2845     return;
2846   }
2847 
2848   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2849     uint64_t Size = getContext().getTypeSize(VT);
2850     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2851       // gcc passes the following as integer:
2852       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2853       // 2 bytes - <2 x char>, <1 x short>
2854       // 1 byte  - <1 x char>
2855       Current = Integer;
2856 
2857       // If this type crosses an eightbyte boundary, it should be
2858       // split.
2859       uint64_t EB_Lo = (OffsetBase) / 64;
2860       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2861       if (EB_Lo != EB_Hi)
2862         Hi = Lo;
2863     } else if (Size == 64) {
2864       QualType ElementType = VT->getElementType();
2865 
2866       // gcc passes <1 x double> in memory. :(
2867       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2868         return;
2869 
2870       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2871       // pass them as integer.  For platforms where clang is the de facto
2872       // platform compiler, we must continue to use integer.
2873       if (!classifyIntegerMMXAsSSE() &&
2874           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2875            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2876            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2877            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2878         Current = Integer;
2879       else
2880         Current = SSE;
2881 
2882       // If this type crosses an eightbyte boundary, it should be
2883       // split.
2884       if (OffsetBase && OffsetBase != 64)
2885         Hi = Lo;
2886     } else if (Size == 128 ||
2887                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2888       QualType ElementType = VT->getElementType();
2889 
2890       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2891       if (passInt128VectorsInMem() && Size != 128 &&
2892           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2893            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2894         return;
2895 
2896       // Arguments of 256-bits are split into four eightbyte chunks. The
2897       // least significant one belongs to class SSE and all the others to class
2898       // SSEUP. The original Lo and Hi design considers that types can't be
2899       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2900       // This design isn't correct for 256-bits, but since there're no cases
2901       // where the upper parts would need to be inspected, avoid adding
2902       // complexity and just consider Hi to match the 64-256 part.
2903       //
2904       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2905       // registers if they are "named", i.e. not part of the "..." of a
2906       // variadic function.
2907       //
2908       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2909       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2910       Lo = SSE;
2911       Hi = SSEUp;
2912     }
2913     return;
2914   }
2915 
2916   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2917     QualType ET = getContext().getCanonicalType(CT->getElementType());
2918 
2919     uint64_t Size = getContext().getTypeSize(Ty);
2920     if (ET->isIntegralOrEnumerationType()) {
2921       if (Size <= 64)
2922         Current = Integer;
2923       else if (Size <= 128)
2924         Lo = Hi = Integer;
2925     } else if (ET == getContext().FloatTy) {
2926       Current = SSE;
2927     } else if (ET == getContext().DoubleTy) {
2928       Lo = Hi = SSE;
2929     } else if (ET == getContext().LongDoubleTy) {
2930       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2931       if (LDF == &llvm::APFloat::IEEEquad())
2932         Current = Memory;
2933       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2934         Current = ComplexX87;
2935       else if (LDF == &llvm::APFloat::IEEEdouble())
2936         Lo = Hi = SSE;
2937       else
2938         llvm_unreachable("unexpected long double representation!");
2939     }
2940 
2941     // If this complex type crosses an eightbyte boundary then it
2942     // should be split.
2943     uint64_t EB_Real = (OffsetBase) / 64;
2944     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2945     if (Hi == NoClass && EB_Real != EB_Imag)
2946       Hi = Lo;
2947 
2948     return;
2949   }
2950 
2951   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2952     if (EITy->getNumBits() <= 64)
2953       Current = Integer;
2954     else if (EITy->getNumBits() <= 128)
2955       Lo = Hi = Integer;
2956     // Larger values need to get passed in memory.
2957     return;
2958   }
2959 
2960   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2961     // Arrays are treated like structures.
2962 
2963     uint64_t Size = getContext().getTypeSize(Ty);
2964 
2965     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2966     // than eight eightbytes, ..., it has class MEMORY.
2967     if (Size > 512)
2968       return;
2969 
2970     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2971     // fields, it has class MEMORY.
2972     //
2973     // Only need to check alignment of array base.
2974     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2975       return;
2976 
2977     // Otherwise implement simplified merge. We could be smarter about
2978     // this, but it isn't worth it and would be harder to verify.
2979     Current = NoClass;
2980     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2981     uint64_t ArraySize = AT->getSize().getZExtValue();
2982 
2983     // The only case a 256-bit wide vector could be used is when the array
2984     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2985     // to work for sizes wider than 128, early check and fallback to memory.
2986     //
2987     if (Size > 128 &&
2988         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2989       return;
2990 
2991     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2992       Class FieldLo, FieldHi;
2993       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2994       Lo = merge(Lo, FieldLo);
2995       Hi = merge(Hi, FieldHi);
2996       if (Lo == Memory || Hi == Memory)
2997         break;
2998     }
2999 
3000     postMerge(Size, Lo, Hi);
3001     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3002     return;
3003   }
3004 
3005   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3006     uint64_t Size = getContext().getTypeSize(Ty);
3007 
3008     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3009     // than eight eightbytes, ..., it has class MEMORY.
3010     if (Size > 512)
3011       return;
3012 
3013     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3014     // copy constructor or a non-trivial destructor, it is passed by invisible
3015     // reference.
3016     if (getRecordArgABI(RT, getCXXABI()))
3017       return;
3018 
3019     const RecordDecl *RD = RT->getDecl();
3020 
3021     // Assume variable sized types are passed in memory.
3022     if (RD->hasFlexibleArrayMember())
3023       return;
3024 
3025     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3026 
3027     // Reset Lo class, this will be recomputed.
3028     Current = NoClass;
3029 
3030     // If this is a C++ record, classify the bases first.
3031     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3032       for (const auto &I : CXXRD->bases()) {
3033         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3034                "Unexpected base class!");
3035         const auto *Base =
3036             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3037 
3038         // Classify this field.
3039         //
3040         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3041         // single eightbyte, each is classified separately. Each eightbyte gets
3042         // initialized to class NO_CLASS.
3043         Class FieldLo, FieldHi;
3044         uint64_t Offset =
3045           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3046         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3047         Lo = merge(Lo, FieldLo);
3048         Hi = merge(Hi, FieldHi);
3049         if (Lo == Memory || Hi == Memory) {
3050           postMerge(Size, Lo, Hi);
3051           return;
3052         }
3053       }
3054     }
3055 
3056     // Classify the fields one at a time, merging the results.
3057     unsigned idx = 0;
3058     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3059            i != e; ++i, ++idx) {
3060       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3061       bool BitField = i->isBitField();
3062 
3063       // Ignore padding bit-fields.
3064       if (BitField && i->isUnnamedBitfield())
3065         continue;
3066 
3067       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3068       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
3069       //
3070       // The only case a 256-bit wide vector could be used is when the struct
3071       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3072       // to work for sizes wider than 128, early check and fallback to memory.
3073       //
3074       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
3075                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3076         Lo = Memory;
3077         postMerge(Size, Lo, Hi);
3078         return;
3079       }
3080       // Note, skip this test for bit-fields, see below.
3081       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3082         Lo = Memory;
3083         postMerge(Size, Lo, Hi);
3084         return;
3085       }
3086 
3087       // Classify this field.
3088       //
3089       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3090       // exceeds a single eightbyte, each is classified
3091       // separately. Each eightbyte gets initialized to class
3092       // NO_CLASS.
3093       Class FieldLo, FieldHi;
3094 
3095       // Bit-fields require special handling, they do not force the
3096       // structure to be passed in memory even if unaligned, and
3097       // therefore they can straddle an eightbyte.
3098       if (BitField) {
3099         assert(!i->isUnnamedBitfield());
3100         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3101         uint64_t Size = i->getBitWidthValue(getContext());
3102 
3103         uint64_t EB_Lo = Offset / 64;
3104         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3105 
3106         if (EB_Lo) {
3107           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3108           FieldLo = NoClass;
3109           FieldHi = Integer;
3110         } else {
3111           FieldLo = Integer;
3112           FieldHi = EB_Hi ? Integer : NoClass;
3113         }
3114       } else
3115         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3116       Lo = merge(Lo, FieldLo);
3117       Hi = merge(Hi, FieldHi);
3118       if (Lo == Memory || Hi == Memory)
3119         break;
3120     }
3121 
3122     postMerge(Size, Lo, Hi);
3123   }
3124 }
3125 
3126 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3127   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3128   // place naturally.
3129   if (!isAggregateTypeForABI(Ty)) {
3130     // Treat an enum type as its underlying type.
3131     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3132       Ty = EnumTy->getDecl()->getIntegerType();
3133 
3134     if (Ty->isExtIntType())
3135       return getNaturalAlignIndirect(Ty);
3136 
3137     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3138                                               : ABIArgInfo::getDirect());
3139   }
3140 
3141   return getNaturalAlignIndirect(Ty);
3142 }
3143 
3144 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3145   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3146     uint64_t Size = getContext().getTypeSize(VecTy);
3147     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3148     if (Size <= 64 || Size > LargestVector)
3149       return true;
3150     QualType EltTy = VecTy->getElementType();
3151     if (passInt128VectorsInMem() &&
3152         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3153          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3154       return true;
3155   }
3156 
3157   return false;
3158 }
3159 
3160 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3161                                             unsigned freeIntRegs) const {
3162   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3163   // place naturally.
3164   //
3165   // This assumption is optimistic, as there could be free registers available
3166   // when we need to pass this argument in memory, and LLVM could try to pass
3167   // the argument in the free register. This does not seem to happen currently,
3168   // but this code would be much safer if we could mark the argument with
3169   // 'onstack'. See PR12193.
3170   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3171       !Ty->isExtIntType()) {
3172     // Treat an enum type as its underlying type.
3173     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3174       Ty = EnumTy->getDecl()->getIntegerType();
3175 
3176     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3177                                               : ABIArgInfo::getDirect());
3178   }
3179 
3180   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3181     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3182 
3183   // Compute the byval alignment. We specify the alignment of the byval in all
3184   // cases so that the mid-level optimizer knows the alignment of the byval.
3185   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3186 
3187   // Attempt to avoid passing indirect results using byval when possible. This
3188   // is important for good codegen.
3189   //
3190   // We do this by coercing the value into a scalar type which the backend can
3191   // handle naturally (i.e., without using byval).
3192   //
3193   // For simplicity, we currently only do this when we have exhausted all of the
3194   // free integer registers. Doing this when there are free integer registers
3195   // would require more care, as we would have to ensure that the coerced value
3196   // did not claim the unused register. That would require either reording the
3197   // arguments to the function (so that any subsequent inreg values came first),
3198   // or only doing this optimization when there were no following arguments that
3199   // might be inreg.
3200   //
3201   // We currently expect it to be rare (particularly in well written code) for
3202   // arguments to be passed on the stack when there are still free integer
3203   // registers available (this would typically imply large structs being passed
3204   // by value), so this seems like a fair tradeoff for now.
3205   //
3206   // We can revisit this if the backend grows support for 'onstack' parameter
3207   // attributes. See PR12193.
3208   if (freeIntRegs == 0) {
3209     uint64_t Size = getContext().getTypeSize(Ty);
3210 
3211     // If this type fits in an eightbyte, coerce it into the matching integral
3212     // type, which will end up on the stack (with alignment 8).
3213     if (Align == 8 && Size <= 64)
3214       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3215                                                           Size));
3216   }
3217 
3218   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3219 }
3220 
3221 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3222 /// register. Pick an LLVM IR type that will be passed as a vector register.
3223 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3224   // Wrapper structs/arrays that only contain vectors are passed just like
3225   // vectors; strip them off if present.
3226   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3227     Ty = QualType(InnerTy, 0);
3228 
3229   llvm::Type *IRType = CGT.ConvertType(Ty);
3230   if (isa<llvm::VectorType>(IRType)) {
3231     // Don't pass vXi128 vectors in their native type, the backend can't
3232     // legalize them.
3233     if (passInt128VectorsInMem() &&
3234         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3235       // Use a vXi64 vector.
3236       uint64_t Size = getContext().getTypeSize(Ty);
3237       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3238                                         Size / 64);
3239     }
3240 
3241     return IRType;
3242   }
3243 
3244   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3245     return IRType;
3246 
3247   // We couldn't find the preferred IR vector type for 'Ty'.
3248   uint64_t Size = getContext().getTypeSize(Ty);
3249   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3250 
3251 
3252   // Return a LLVM IR vector type based on the size of 'Ty'.
3253   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3254                                     Size / 64);
3255 }
3256 
3257 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3258 /// is known to either be off the end of the specified type or being in
3259 /// alignment padding.  The user type specified is known to be at most 128 bits
3260 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3261 /// classification that put one of the two halves in the INTEGER class.
3262 ///
3263 /// It is conservatively correct to return false.
3264 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3265                                   unsigned EndBit, ASTContext &Context) {
3266   // If the bytes being queried are off the end of the type, there is no user
3267   // data hiding here.  This handles analysis of builtins, vectors and other
3268   // types that don't contain interesting padding.
3269   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3270   if (TySize <= StartBit)
3271     return true;
3272 
3273   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3274     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3275     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3276 
3277     // Check each element to see if the element overlaps with the queried range.
3278     for (unsigned i = 0; i != NumElts; ++i) {
3279       // If the element is after the span we care about, then we're done..
3280       unsigned EltOffset = i*EltSize;
3281       if (EltOffset >= EndBit) break;
3282 
3283       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3284       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3285                                  EndBit-EltOffset, Context))
3286         return false;
3287     }
3288     // If it overlaps no elements, then it is safe to process as padding.
3289     return true;
3290   }
3291 
3292   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3293     const RecordDecl *RD = RT->getDecl();
3294     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3295 
3296     // If this is a C++ record, check the bases first.
3297     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3298       for (const auto &I : CXXRD->bases()) {
3299         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3300                "Unexpected base class!");
3301         const auto *Base =
3302             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3303 
3304         // If the base is after the span we care about, ignore it.
3305         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3306         if (BaseOffset >= EndBit) continue;
3307 
3308         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3309         if (!BitsContainNoUserData(I.getType(), BaseStart,
3310                                    EndBit-BaseOffset, Context))
3311           return false;
3312       }
3313     }
3314 
3315     // Verify that no field has data that overlaps the region of interest.  Yes
3316     // this could be sped up a lot by being smarter about queried fields,
3317     // however we're only looking at structs up to 16 bytes, so we don't care
3318     // much.
3319     unsigned idx = 0;
3320     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3321          i != e; ++i, ++idx) {
3322       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3323 
3324       // If we found a field after the region we care about, then we're done.
3325       if (FieldOffset >= EndBit) break;
3326 
3327       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3328       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3329                                  Context))
3330         return false;
3331     }
3332 
3333     // If nothing in this record overlapped the area of interest, then we're
3334     // clean.
3335     return true;
3336   }
3337 
3338   return false;
3339 }
3340 
3341 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3342 /// float member at the specified offset.  For example, {int,{float}} has a
3343 /// float at offset 4.  It is conservatively correct for this routine to return
3344 /// false.
3345 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3346                                   const llvm::DataLayout &TD) {
3347   // Base case if we find a float.
3348   if (IROffset == 0 && IRType->isFloatTy())
3349     return true;
3350 
3351   // If this is a struct, recurse into the field at the specified offset.
3352   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3353     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3354     unsigned Elt = SL->getElementContainingOffset(IROffset);
3355     IROffset -= SL->getElementOffset(Elt);
3356     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3357   }
3358 
3359   // If this is an array, recurse into the field at the specified offset.
3360   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3361     llvm::Type *EltTy = ATy->getElementType();
3362     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3363     IROffset -= IROffset/EltSize*EltSize;
3364     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3365   }
3366 
3367   return false;
3368 }
3369 
3370 
3371 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3372 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3373 llvm::Type *X86_64ABIInfo::
3374 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3375                    QualType SourceTy, unsigned SourceOffset) const {
3376   // The only three choices we have are either double, <2 x float>, or float. We
3377   // pass as float if the last 4 bytes is just padding.  This happens for
3378   // structs that contain 3 floats.
3379   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3380                             SourceOffset*8+64, getContext()))
3381     return llvm::Type::getFloatTy(getVMContext());
3382 
3383   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3384   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3385   // case.
3386   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3387       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3388     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3389                                       2);
3390 
3391   return llvm::Type::getDoubleTy(getVMContext());
3392 }
3393 
3394 
3395 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3396 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3397 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3398 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3399 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3400 /// etc).
3401 ///
3402 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3403 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3404 /// the 8-byte value references.  PrefType may be null.
3405 ///
3406 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3407 /// an offset into this that we're processing (which is always either 0 or 8).
3408 ///
3409 llvm::Type *X86_64ABIInfo::
3410 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3411                        QualType SourceTy, unsigned SourceOffset) const {
3412   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3413   // returning an 8-byte unit starting with it.  See if we can safely use it.
3414   if (IROffset == 0) {
3415     // Pointers and int64's always fill the 8-byte unit.
3416     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3417         IRType->isIntegerTy(64))
3418       return IRType;
3419 
3420     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3421     // goodness in the source type is just tail padding.  This is allowed to
3422     // kick in for struct {double,int} on the int, but not on
3423     // struct{double,int,int} because we wouldn't return the second int.  We
3424     // have to do this analysis on the source type because we can't depend on
3425     // unions being lowered a specific way etc.
3426     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3427         IRType->isIntegerTy(32) ||
3428         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3429       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3430           cast<llvm::IntegerType>(IRType)->getBitWidth();
3431 
3432       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3433                                 SourceOffset*8+64, getContext()))
3434         return IRType;
3435     }
3436   }
3437 
3438   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3439     // If this is a struct, recurse into the field at the specified offset.
3440     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3441     if (IROffset < SL->getSizeInBytes()) {
3442       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3443       IROffset -= SL->getElementOffset(FieldIdx);
3444 
3445       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3446                                     SourceTy, SourceOffset);
3447     }
3448   }
3449 
3450   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3451     llvm::Type *EltTy = ATy->getElementType();
3452     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3453     unsigned EltOffset = IROffset/EltSize*EltSize;
3454     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3455                                   SourceOffset);
3456   }
3457 
3458   // Okay, we don't have any better idea of what to pass, so we pass this in an
3459   // integer register that isn't too big to fit the rest of the struct.
3460   unsigned TySizeInBytes =
3461     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3462 
3463   assert(TySizeInBytes != SourceOffset && "Empty field?");
3464 
3465   // It is always safe to classify this as an integer type up to i64 that
3466   // isn't larger than the structure.
3467   return llvm::IntegerType::get(getVMContext(),
3468                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3469 }
3470 
3471 
3472 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3473 /// be used as elements of a two register pair to pass or return, return a
3474 /// first class aggregate to represent them.  For example, if the low part of
3475 /// a by-value argument should be passed as i32* and the high part as float,
3476 /// return {i32*, float}.
3477 static llvm::Type *
3478 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3479                            const llvm::DataLayout &TD) {
3480   // In order to correctly satisfy the ABI, we need to the high part to start
3481   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3482   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3483   // the second element at offset 8.  Check for this:
3484   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3485   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3486   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3487   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3488 
3489   // To handle this, we have to increase the size of the low part so that the
3490   // second element will start at an 8 byte offset.  We can't increase the size
3491   // of the second element because it might make us access off the end of the
3492   // struct.
3493   if (HiStart != 8) {
3494     // There are usually two sorts of types the ABI generation code can produce
3495     // for the low part of a pair that aren't 8 bytes in size: float or
3496     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3497     // NaCl).
3498     // Promote these to a larger type.
3499     if (Lo->isFloatTy())
3500       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3501     else {
3502       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3503              && "Invalid/unknown lo type");
3504       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3505     }
3506   }
3507 
3508   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3509 
3510   // Verify that the second element is at an 8-byte offset.
3511   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3512          "Invalid x86-64 argument pair!");
3513   return Result;
3514 }
3515 
3516 ABIArgInfo X86_64ABIInfo::
3517 classifyReturnType(QualType RetTy) const {
3518   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3519   // classification algorithm.
3520   X86_64ABIInfo::Class Lo, Hi;
3521   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3522 
3523   // Check some invariants.
3524   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3525   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3526 
3527   llvm::Type *ResType = nullptr;
3528   switch (Lo) {
3529   case NoClass:
3530     if (Hi == NoClass)
3531       return ABIArgInfo::getIgnore();
3532     // If the low part is just padding, it takes no register, leave ResType
3533     // null.
3534     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3535            "Unknown missing lo part");
3536     break;
3537 
3538   case SSEUp:
3539   case X87Up:
3540     llvm_unreachable("Invalid classification for lo word.");
3541 
3542     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3543     // hidden argument.
3544   case Memory:
3545     return getIndirectReturnResult(RetTy);
3546 
3547     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3548     // available register of the sequence %rax, %rdx is used.
3549   case Integer:
3550     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3551 
3552     // If we have a sign or zero extended integer, make sure to return Extend
3553     // so that the parameter gets the right LLVM IR attributes.
3554     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3555       // Treat an enum type as its underlying type.
3556       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3557         RetTy = EnumTy->getDecl()->getIntegerType();
3558 
3559       if (RetTy->isIntegralOrEnumerationType() &&
3560           isPromotableIntegerTypeForABI(RetTy))
3561         return ABIArgInfo::getExtend(RetTy);
3562     }
3563     break;
3564 
3565     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3566     // available SSE register of the sequence %xmm0, %xmm1 is used.
3567   case SSE:
3568     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3569     break;
3570 
3571     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3572     // returned on the X87 stack in %st0 as 80-bit x87 number.
3573   case X87:
3574     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3575     break;
3576 
3577     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3578     // part of the value is returned in %st0 and the imaginary part in
3579     // %st1.
3580   case ComplexX87:
3581     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3582     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3583                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3584     break;
3585   }
3586 
3587   llvm::Type *HighPart = nullptr;
3588   switch (Hi) {
3589     // Memory was handled previously and X87 should
3590     // never occur as a hi class.
3591   case Memory:
3592   case X87:
3593     llvm_unreachable("Invalid classification for hi word.");
3594 
3595   case ComplexX87: // Previously handled.
3596   case NoClass:
3597     break;
3598 
3599   case Integer:
3600     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3601     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3602       return ABIArgInfo::getDirect(HighPart, 8);
3603     break;
3604   case SSE:
3605     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3606     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3607       return ABIArgInfo::getDirect(HighPart, 8);
3608     break;
3609 
3610     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3611     // is passed in the next available eightbyte chunk if the last used
3612     // vector register.
3613     //
3614     // SSEUP should always be preceded by SSE, just widen.
3615   case SSEUp:
3616     assert(Lo == SSE && "Unexpected SSEUp classification.");
3617     ResType = GetByteVectorType(RetTy);
3618     break;
3619 
3620     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3621     // returned together with the previous X87 value in %st0.
3622   case X87Up:
3623     // If X87Up is preceded by X87, we don't need to do
3624     // anything. However, in some cases with unions it may not be
3625     // preceded by X87. In such situations we follow gcc and pass the
3626     // extra bits in an SSE reg.
3627     if (Lo != X87) {
3628       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3629       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3630         return ABIArgInfo::getDirect(HighPart, 8);
3631     }
3632     break;
3633   }
3634 
3635   // If a high part was specified, merge it together with the low part.  It is
3636   // known to pass in the high eightbyte of the result.  We do this by forming a
3637   // first class struct aggregate with the high and low part: {low, high}
3638   if (HighPart)
3639     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3640 
3641   return ABIArgInfo::getDirect(ResType);
3642 }
3643 
3644 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3645   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3646   bool isNamedArg)
3647   const
3648 {
3649   Ty = useFirstFieldIfTransparentUnion(Ty);
3650 
3651   X86_64ABIInfo::Class Lo, Hi;
3652   classify(Ty, 0, Lo, Hi, isNamedArg);
3653 
3654   // Check some invariants.
3655   // FIXME: Enforce these by construction.
3656   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3657   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3658 
3659   neededInt = 0;
3660   neededSSE = 0;
3661   llvm::Type *ResType = nullptr;
3662   switch (Lo) {
3663   case NoClass:
3664     if (Hi == NoClass)
3665       return ABIArgInfo::getIgnore();
3666     // If the low part is just padding, it takes no register, leave ResType
3667     // null.
3668     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3669            "Unknown missing lo part");
3670     break;
3671 
3672     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3673     // on the stack.
3674   case Memory:
3675 
3676     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3677     // COMPLEX_X87, it is passed in memory.
3678   case X87:
3679   case ComplexX87:
3680     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3681       ++neededInt;
3682     return getIndirectResult(Ty, freeIntRegs);
3683 
3684   case SSEUp:
3685   case X87Up:
3686     llvm_unreachable("Invalid classification for lo word.");
3687 
3688     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3689     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3690     // and %r9 is used.
3691   case Integer:
3692     ++neededInt;
3693 
3694     // Pick an 8-byte type based on the preferred type.
3695     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3696 
3697     // If we have a sign or zero extended integer, make sure to return Extend
3698     // so that the parameter gets the right LLVM IR attributes.
3699     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3700       // Treat an enum type as its underlying type.
3701       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3702         Ty = EnumTy->getDecl()->getIntegerType();
3703 
3704       if (Ty->isIntegralOrEnumerationType() &&
3705           isPromotableIntegerTypeForABI(Ty))
3706         return ABIArgInfo::getExtend(Ty);
3707     }
3708 
3709     break;
3710 
3711     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3712     // available SSE register is used, the registers are taken in the
3713     // order from %xmm0 to %xmm7.
3714   case SSE: {
3715     llvm::Type *IRType = CGT.ConvertType(Ty);
3716     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3717     ++neededSSE;
3718     break;
3719   }
3720   }
3721 
3722   llvm::Type *HighPart = nullptr;
3723   switch (Hi) {
3724     // Memory was handled previously, ComplexX87 and X87 should
3725     // never occur as hi classes, and X87Up must be preceded by X87,
3726     // which is passed in memory.
3727   case Memory:
3728   case X87:
3729   case ComplexX87:
3730     llvm_unreachable("Invalid classification for hi word.");
3731 
3732   case NoClass: break;
3733 
3734   case Integer:
3735     ++neededInt;
3736     // Pick an 8-byte type based on the preferred type.
3737     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3738 
3739     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3740       return ABIArgInfo::getDirect(HighPart, 8);
3741     break;
3742 
3743     // X87Up generally doesn't occur here (long double is passed in
3744     // memory), except in situations involving unions.
3745   case X87Up:
3746   case SSE:
3747     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3748 
3749     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3750       return ABIArgInfo::getDirect(HighPart, 8);
3751 
3752     ++neededSSE;
3753     break;
3754 
3755     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3756     // eightbyte is passed in the upper half of the last used SSE
3757     // register.  This only happens when 128-bit vectors are passed.
3758   case SSEUp:
3759     assert(Lo == SSE && "Unexpected SSEUp classification");
3760     ResType = GetByteVectorType(Ty);
3761     break;
3762   }
3763 
3764   // If a high part was specified, merge it together with the low part.  It is
3765   // known to pass in the high eightbyte of the result.  We do this by forming a
3766   // first class struct aggregate with the high and low part: {low, high}
3767   if (HighPart)
3768     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3769 
3770   return ABIArgInfo::getDirect(ResType);
3771 }
3772 
3773 ABIArgInfo
3774 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3775                                              unsigned &NeededSSE) const {
3776   auto RT = Ty->getAs<RecordType>();
3777   assert(RT && "classifyRegCallStructType only valid with struct types");
3778 
3779   if (RT->getDecl()->hasFlexibleArrayMember())
3780     return getIndirectReturnResult(Ty);
3781 
3782   // Sum up bases
3783   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3784     if (CXXRD->isDynamicClass()) {
3785       NeededInt = NeededSSE = 0;
3786       return getIndirectReturnResult(Ty);
3787     }
3788 
3789     for (const auto &I : CXXRD->bases())
3790       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3791               .isIndirect()) {
3792         NeededInt = NeededSSE = 0;
3793         return getIndirectReturnResult(Ty);
3794       }
3795   }
3796 
3797   // Sum up members
3798   for (const auto *FD : RT->getDecl()->fields()) {
3799     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3800       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3801               .isIndirect()) {
3802         NeededInt = NeededSSE = 0;
3803         return getIndirectReturnResult(Ty);
3804       }
3805     } else {
3806       unsigned LocalNeededInt, LocalNeededSSE;
3807       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3808                                LocalNeededSSE, true)
3809               .isIndirect()) {
3810         NeededInt = NeededSSE = 0;
3811         return getIndirectReturnResult(Ty);
3812       }
3813       NeededInt += LocalNeededInt;
3814       NeededSSE += LocalNeededSSE;
3815     }
3816   }
3817 
3818   return ABIArgInfo::getDirect();
3819 }
3820 
3821 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3822                                                     unsigned &NeededInt,
3823                                                     unsigned &NeededSSE) const {
3824 
3825   NeededInt = 0;
3826   NeededSSE = 0;
3827 
3828   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3829 }
3830 
3831 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3832 
3833   const unsigned CallingConv = FI.getCallingConvention();
3834   // It is possible to force Win64 calling convention on any x86_64 target by
3835   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3836   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3837   if (CallingConv == llvm::CallingConv::Win64) {
3838     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3839     Win64ABIInfo.computeInfo(FI);
3840     return;
3841   }
3842 
3843   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3844 
3845   // Keep track of the number of assigned registers.
3846   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3847   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3848   unsigned NeededInt, NeededSSE;
3849 
3850   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3851     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3852         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3853       FI.getReturnInfo() =
3854           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3855       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3856         FreeIntRegs -= NeededInt;
3857         FreeSSERegs -= NeededSSE;
3858       } else {
3859         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3860       }
3861     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3862                getContext().getCanonicalType(FI.getReturnType()
3863                                                  ->getAs<ComplexType>()
3864                                                  ->getElementType()) ==
3865                    getContext().LongDoubleTy)
3866       // Complex Long Double Type is passed in Memory when Regcall
3867       // calling convention is used.
3868       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3869     else
3870       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3871   }
3872 
3873   // If the return value is indirect, then the hidden argument is consuming one
3874   // integer register.
3875   if (FI.getReturnInfo().isIndirect())
3876     --FreeIntRegs;
3877 
3878   // The chain argument effectively gives us another free register.
3879   if (FI.isChainCall())
3880     ++FreeIntRegs;
3881 
3882   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3883   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3884   // get assigned (in left-to-right order) for passing as follows...
3885   unsigned ArgNo = 0;
3886   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3887        it != ie; ++it, ++ArgNo) {
3888     bool IsNamedArg = ArgNo < NumRequiredArgs;
3889 
3890     if (IsRegCall && it->type->isStructureOrClassType())
3891       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3892     else
3893       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3894                                       NeededSSE, IsNamedArg);
3895 
3896     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3897     // eightbyte of an argument, the whole argument is passed on the
3898     // stack. If registers have already been assigned for some
3899     // eightbytes of such an argument, the assignments get reverted.
3900     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3901       FreeIntRegs -= NeededInt;
3902       FreeSSERegs -= NeededSSE;
3903     } else {
3904       it->info = getIndirectResult(it->type, FreeIntRegs);
3905     }
3906   }
3907 }
3908 
3909 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3910                                          Address VAListAddr, QualType Ty) {
3911   Address overflow_arg_area_p =
3912       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3913   llvm::Value *overflow_arg_area =
3914     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3915 
3916   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3917   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3918   // It isn't stated explicitly in the standard, but in practice we use
3919   // alignment greater than 16 where necessary.
3920   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3921   if (Align > CharUnits::fromQuantity(8)) {
3922     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3923                                                       Align);
3924   }
3925 
3926   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3927   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3928   llvm::Value *Res =
3929     CGF.Builder.CreateBitCast(overflow_arg_area,
3930                               llvm::PointerType::getUnqual(LTy));
3931 
3932   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3933   // l->overflow_arg_area + sizeof(type).
3934   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3935   // an 8 byte boundary.
3936 
3937   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3938   llvm::Value *Offset =
3939       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3940   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3941                                             "overflow_arg_area.next");
3942   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3943 
3944   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3945   return Address(Res, Align);
3946 }
3947 
3948 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3949                                  QualType Ty) const {
3950   // Assume that va_list type is correct; should be pointer to LLVM type:
3951   // struct {
3952   //   i32 gp_offset;
3953   //   i32 fp_offset;
3954   //   i8* overflow_arg_area;
3955   //   i8* reg_save_area;
3956   // };
3957   unsigned neededInt, neededSSE;
3958 
3959   Ty = getContext().getCanonicalType(Ty);
3960   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3961                                        /*isNamedArg*/false);
3962 
3963   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3964   // in the registers. If not go to step 7.
3965   if (!neededInt && !neededSSE)
3966     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3967 
3968   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3969   // general purpose registers needed to pass type and num_fp to hold
3970   // the number of floating point registers needed.
3971 
3972   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3973   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3974   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3975   //
3976   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3977   // register save space).
3978 
3979   llvm::Value *InRegs = nullptr;
3980   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3981   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3982   if (neededInt) {
3983     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3984     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3985     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3986     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3987   }
3988 
3989   if (neededSSE) {
3990     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3991     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3992     llvm::Value *FitsInFP =
3993       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3994     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3995     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3996   }
3997 
3998   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3999   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4000   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4001   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4002 
4003   // Emit code to load the value if it was passed in registers.
4004 
4005   CGF.EmitBlock(InRegBlock);
4006 
4007   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4008   // an offset of l->gp_offset and/or l->fp_offset. This may require
4009   // copying to a temporary location in case the parameter is passed
4010   // in different register classes or requires an alignment greater
4011   // than 8 for general purpose registers and 16 for XMM registers.
4012   //
4013   // FIXME: This really results in shameful code when we end up needing to
4014   // collect arguments from different places; often what should result in a
4015   // simple assembling of a structure from scattered addresses has many more
4016   // loads than necessary. Can we clean this up?
4017   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4018   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4019       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4020 
4021   Address RegAddr = Address::invalid();
4022   if (neededInt && neededSSE) {
4023     // FIXME: Cleanup.
4024     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4025     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4026     Address Tmp = CGF.CreateMemTemp(Ty);
4027     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4028     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4029     llvm::Type *TyLo = ST->getElementType(0);
4030     llvm::Type *TyHi = ST->getElementType(1);
4031     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4032            "Unexpected ABI info for mixed regs");
4033     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4034     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4035     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4036     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4037     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4038     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4039 
4040     // Copy the first element.
4041     // FIXME: Our choice of alignment here and below is probably pessimistic.
4042     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4043         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4044         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4045     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4046 
4047     // Copy the second element.
4048     V = CGF.Builder.CreateAlignedLoad(
4049         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4050         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4051     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4052 
4053     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4054   } else if (neededInt) {
4055     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4056                       CharUnits::fromQuantity(8));
4057     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4058 
4059     // Copy to a temporary if necessary to ensure the appropriate alignment.
4060     std::pair<CharUnits, CharUnits> SizeAlign =
4061         getContext().getTypeInfoInChars(Ty);
4062     uint64_t TySize = SizeAlign.first.getQuantity();
4063     CharUnits TyAlign = SizeAlign.second;
4064 
4065     // Copy into a temporary if the type is more aligned than the
4066     // register save area.
4067     if (TyAlign.getQuantity() > 8) {
4068       Address Tmp = CGF.CreateMemTemp(Ty);
4069       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4070       RegAddr = Tmp;
4071     }
4072 
4073   } else if (neededSSE == 1) {
4074     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4075                       CharUnits::fromQuantity(16));
4076     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4077   } else {
4078     assert(neededSSE == 2 && "Invalid number of needed registers!");
4079     // SSE registers are spaced 16 bytes apart in the register save
4080     // area, we need to collect the two eightbytes together.
4081     // The ABI isn't explicit about this, but it seems reasonable
4082     // to assume that the slots are 16-byte aligned, since the stack is
4083     // naturally 16-byte aligned and the prologue is expected to store
4084     // all the SSE registers to the RSA.
4085     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4086                                 CharUnits::fromQuantity(16));
4087     Address RegAddrHi =
4088       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4089                                              CharUnits::fromQuantity(16));
4090     llvm::Type *ST = AI.canHaveCoerceToType()
4091                          ? AI.getCoerceToType()
4092                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4093     llvm::Value *V;
4094     Address Tmp = CGF.CreateMemTemp(Ty);
4095     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4096     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4097         RegAddrLo, ST->getStructElementType(0)));
4098     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4099     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4100         RegAddrHi, ST->getStructElementType(1)));
4101     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4102 
4103     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4104   }
4105 
4106   // AMD64-ABI 3.5.7p5: Step 5. Set:
4107   // l->gp_offset = l->gp_offset + num_gp * 8
4108   // l->fp_offset = l->fp_offset + num_fp * 16.
4109   if (neededInt) {
4110     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4111     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4112                             gp_offset_p);
4113   }
4114   if (neededSSE) {
4115     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4116     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4117                             fp_offset_p);
4118   }
4119   CGF.EmitBranch(ContBlock);
4120 
4121   // Emit code to load the value if it was passed in memory.
4122 
4123   CGF.EmitBlock(InMemBlock);
4124   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4125 
4126   // Return the appropriate result.
4127 
4128   CGF.EmitBlock(ContBlock);
4129   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4130                                  "vaarg.addr");
4131   return ResAddr;
4132 }
4133 
4134 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4135                                    QualType Ty) const {
4136   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4137                           CGF.getContext().getTypeInfoInChars(Ty),
4138                           CharUnits::fromQuantity(8),
4139                           /*allowHigherAlign*/ false);
4140 }
4141 
4142 ABIArgInfo
4143 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4144                                     const ABIArgInfo &current) const {
4145   // Assumes vectorCall calling convention.
4146   const Type *Base = nullptr;
4147   uint64_t NumElts = 0;
4148 
4149   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4150       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4151     FreeSSERegs -= NumElts;
4152     return getDirectX86Hva();
4153   }
4154   return current;
4155 }
4156 
4157 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4158                                       bool IsReturnType, bool IsVectorCall,
4159                                       bool IsRegCall) const {
4160 
4161   if (Ty->isVoidType())
4162     return ABIArgInfo::getIgnore();
4163 
4164   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4165     Ty = EnumTy->getDecl()->getIntegerType();
4166 
4167   TypeInfo Info = getContext().getTypeInfo(Ty);
4168   uint64_t Width = Info.Width;
4169   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4170 
4171   const RecordType *RT = Ty->getAs<RecordType>();
4172   if (RT) {
4173     if (!IsReturnType) {
4174       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4175         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4176     }
4177 
4178     if (RT->getDecl()->hasFlexibleArrayMember())
4179       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4180 
4181   }
4182 
4183   const Type *Base = nullptr;
4184   uint64_t NumElts = 0;
4185   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4186   // other targets.
4187   if ((IsVectorCall || IsRegCall) &&
4188       isHomogeneousAggregate(Ty, Base, NumElts)) {
4189     if (IsRegCall) {
4190       if (FreeSSERegs >= NumElts) {
4191         FreeSSERegs -= NumElts;
4192         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4193           return ABIArgInfo::getDirect();
4194         return ABIArgInfo::getExpand();
4195       }
4196       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4197     } else if (IsVectorCall) {
4198       if (FreeSSERegs >= NumElts &&
4199           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4200         FreeSSERegs -= NumElts;
4201         return ABIArgInfo::getDirect();
4202       } else if (IsReturnType) {
4203         return ABIArgInfo::getExpand();
4204       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4205         // HVAs are delayed and reclassified in the 2nd step.
4206         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4207       }
4208     }
4209   }
4210 
4211   if (Ty->isMemberPointerType()) {
4212     // If the member pointer is represented by an LLVM int or ptr, pass it
4213     // directly.
4214     llvm::Type *LLTy = CGT.ConvertType(Ty);
4215     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4216       return ABIArgInfo::getDirect();
4217   }
4218 
4219   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4220     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4221     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4222     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4223       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4224 
4225     // Otherwise, coerce it to a small integer.
4226     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4227   }
4228 
4229   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4230     switch (BT->getKind()) {
4231     case BuiltinType::Bool:
4232       // Bool type is always extended to the ABI, other builtin types are not
4233       // extended.
4234       return ABIArgInfo::getExtend(Ty);
4235 
4236     case BuiltinType::LongDouble:
4237       // Mingw64 GCC uses the old 80 bit extended precision floating point
4238       // unit. It passes them indirectly through memory.
4239       if (IsMingw64) {
4240         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4241         if (LDF == &llvm::APFloat::x87DoubleExtended())
4242           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4243       }
4244       break;
4245 
4246     case BuiltinType::Int128:
4247     case BuiltinType::UInt128:
4248       // If it's a parameter type, the normal ABI rule is that arguments larger
4249       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4250       // even though it isn't particularly efficient.
4251       if (!IsReturnType)
4252         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4253 
4254       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4255       // Clang matches them for compatibility.
4256       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4257           llvm::Type::getInt64Ty(getVMContext()), 2));
4258 
4259     default:
4260       break;
4261     }
4262   }
4263 
4264   if (Ty->isExtIntType()) {
4265     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4266     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4267     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4268     // anyway as long is it fits in them, so we don't have to check the power of
4269     // 2.
4270     if (Width <= 64)
4271       return ABIArgInfo::getDirect();
4272     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4273   }
4274 
4275   return ABIArgInfo::getDirect();
4276 }
4277 
4278 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4279                                              unsigned FreeSSERegs,
4280                                              bool IsVectorCall,
4281                                              bool IsRegCall) const {
4282   unsigned Count = 0;
4283   for (auto &I : FI.arguments()) {
4284     // Vectorcall in x64 only permits the first 6 arguments to be passed
4285     // as XMM/YMM registers.
4286     if (Count < VectorcallMaxParamNumAsReg)
4287       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4288     else {
4289       // Since these cannot be passed in registers, pretend no registers
4290       // are left.
4291       unsigned ZeroSSERegsAvail = 0;
4292       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4293                         IsVectorCall, IsRegCall);
4294     }
4295     ++Count;
4296   }
4297 
4298   for (auto &I : FI.arguments()) {
4299     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4300   }
4301 }
4302 
4303 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4304   const unsigned CC = FI.getCallingConvention();
4305   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4306   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4307 
4308   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4309   // classification rules.
4310   if (CC == llvm::CallingConv::X86_64_SysV) {
4311     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4312     SysVABIInfo.computeInfo(FI);
4313     return;
4314   }
4315 
4316   unsigned FreeSSERegs = 0;
4317   if (IsVectorCall) {
4318     // We can use up to 4 SSE return registers with vectorcall.
4319     FreeSSERegs = 4;
4320   } else if (IsRegCall) {
4321     // RegCall gives us 16 SSE registers.
4322     FreeSSERegs = 16;
4323   }
4324 
4325   if (!getCXXABI().classifyReturnType(FI))
4326     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4327                                   IsVectorCall, IsRegCall);
4328 
4329   if (IsVectorCall) {
4330     // We can use up to 6 SSE register parameters with vectorcall.
4331     FreeSSERegs = 6;
4332   } else if (IsRegCall) {
4333     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4334     FreeSSERegs = 16;
4335   }
4336 
4337   if (IsVectorCall) {
4338     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4339   } else {
4340     for (auto &I : FI.arguments())
4341       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4342   }
4343 
4344 }
4345 
4346 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4347                                     QualType Ty) const {
4348 
4349   bool IsIndirect = false;
4350 
4351   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4352   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4353   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4354     uint64_t Width = getContext().getTypeSize(Ty);
4355     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4356   }
4357 
4358   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4359                           CGF.getContext().getTypeInfoInChars(Ty),
4360                           CharUnits::fromQuantity(8),
4361                           /*allowHigherAlign*/ false);
4362 }
4363 
4364 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4365                                         llvm::Value *Address, bool Is64Bit,
4366                                         bool IsAIX) {
4367   // This is calculated from the LLVM and GCC tables and verified
4368   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4369 
4370   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4371 
4372   llvm::IntegerType *i8 = CGF.Int8Ty;
4373   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4374   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4375   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4376 
4377   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4378   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4379 
4380   // 32-63: fp0-31, the 8-byte floating-point registers
4381   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4382 
4383   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4384   // 64: mq
4385   // 65: lr
4386   // 66: ctr
4387   // 67: ap
4388   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4389 
4390   // 68-76 are various 4-byte special-purpose registers:
4391   // 68-75 cr0-7
4392   // 76: xer
4393   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4394 
4395   // 77-108: v0-31, the 16-byte vector registers
4396   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4397 
4398   // 109: vrsave
4399   // 110: vscr
4400   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4401 
4402   // AIX does not utilize the rest of the registers.
4403   if (IsAIX)
4404     return false;
4405 
4406   // 111: spe_acc
4407   // 112: spefscr
4408   // 113: sfp
4409   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4410 
4411   if (!Is64Bit)
4412     return false;
4413 
4414   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4415   // or above CPU.
4416   // 64-bit only registers:
4417   // 114: tfhar
4418   // 115: tfiar
4419   // 116: texasr
4420   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4421 
4422   return false;
4423 }
4424 
4425 // AIX
4426 namespace {
4427 /// AIXABIInfo - The AIX XCOFF ABI information.
4428 class AIXABIInfo : public ABIInfo {
4429   const bool Is64Bit;
4430   const unsigned PtrByteSize;
4431   CharUnits getParamTypeAlignment(QualType Ty) const;
4432 
4433 public:
4434   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4435       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4436 
4437   bool isPromotableTypeForABI(QualType Ty) const;
4438 
4439   ABIArgInfo classifyReturnType(QualType RetTy) const;
4440   ABIArgInfo classifyArgumentType(QualType Ty) const;
4441 
4442   void computeInfo(CGFunctionInfo &FI) const override {
4443     if (!getCXXABI().classifyReturnType(FI))
4444       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4445 
4446     for (auto &I : FI.arguments())
4447       I.info = classifyArgumentType(I.type);
4448   }
4449 
4450   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4451                     QualType Ty) const override;
4452 };
4453 
4454 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4455   const bool Is64Bit;
4456 
4457 public:
4458   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4459       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4460         Is64Bit(Is64Bit) {}
4461   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4462     return 1; // r1 is the dedicated stack pointer
4463   }
4464 
4465   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4466                                llvm::Value *Address) const override;
4467 };
4468 } // namespace
4469 
4470 // Return true if the ABI requires Ty to be passed sign- or zero-
4471 // extended to 32/64 bits.
4472 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4473   // Treat an enum type as its underlying type.
4474   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4475     Ty = EnumTy->getDecl()->getIntegerType();
4476 
4477   // Promotable integer types are required to be promoted by the ABI.
4478   if (Ty->isPromotableIntegerType())
4479     return true;
4480 
4481   if (!Is64Bit)
4482     return false;
4483 
4484   // For 64 bit mode, in addition to the usual promotable integer types, we also
4485   // need to extend all 32-bit types, since the ABI requires promotion to 64
4486   // bits.
4487   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4488     switch (BT->getKind()) {
4489     case BuiltinType::Int:
4490     case BuiltinType::UInt:
4491       return true;
4492     default:
4493       break;
4494     }
4495 
4496   return false;
4497 }
4498 
4499 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4500   if (RetTy->isAnyComplexType())
4501     llvm::report_fatal_error("complex type is not supported on AIX yet");
4502 
4503   if (RetTy->isVectorType())
4504     llvm::report_fatal_error("vector type is not supported on AIX yet");
4505 
4506   if (RetTy->isVoidType())
4507     return ABIArgInfo::getIgnore();
4508 
4509   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4510   // alignment here.
4511   if (isAggregateTypeForABI(RetTy))
4512     return getNaturalAlignIndirect(RetTy);
4513 
4514   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4515                                         : ABIArgInfo::getDirect());
4516 }
4517 
4518 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4519   Ty = useFirstFieldIfTransparentUnion(Ty);
4520 
4521   if (Ty->isAnyComplexType())
4522     llvm::report_fatal_error("complex type is not supported on AIX yet");
4523 
4524   if (Ty->isVectorType())
4525     llvm::report_fatal_error("vector type is not supported on AIX yet");
4526 
4527   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4528   // alignment here.
4529   if (isAggregateTypeForABI(Ty)) {
4530     // Records with non-trivial destructors/copy-constructors should not be
4531     // passed by value.
4532     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4533       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4534 
4535     CharUnits CCAlign = getParamTypeAlignment(Ty);
4536     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4537 
4538     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4539                                    /*Realign*/ TyAlign > CCAlign);
4540   }
4541 
4542   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4543                                      : ABIArgInfo::getDirect());
4544 }
4545 
4546 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4547   if (Ty->isAnyComplexType())
4548     llvm::report_fatal_error("complex type is not supported on AIX yet");
4549 
4550   if (Ty->isVectorType())
4551     llvm::report_fatal_error("vector type is not supported on AIX yet");
4552 
4553   // If the structure contains a vector type, the alignment is 16.
4554   if (isRecordWithSIMDVectorType(getContext(), Ty))
4555     return CharUnits::fromQuantity(16);
4556 
4557   return CharUnits::fromQuantity(PtrByteSize);
4558 }
4559 
4560 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4561                               QualType Ty) const {
4562   if (Ty->isAnyComplexType())
4563     llvm::report_fatal_error("complex type is not supported on AIX yet");
4564 
4565   if (Ty->isVectorType())
4566     llvm::report_fatal_error("vector type is not supported on AIX yet");
4567 
4568   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4569   TypeInfo.second = getParamTypeAlignment(Ty);
4570 
4571   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4572 
4573   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4574                           SlotSize, /*AllowHigher*/ true);
4575 }
4576 
4577 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4578     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4579   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4580 }
4581 
4582 // PowerPC-32
4583 namespace {
4584 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4585 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4586   bool IsSoftFloatABI;
4587   bool IsRetSmallStructInRegABI;
4588 
4589   CharUnits getParamTypeAlignment(QualType Ty) const;
4590 
4591 public:
4592   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4593                      bool RetSmallStructInRegABI)
4594       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4595         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4596 
4597   ABIArgInfo classifyReturnType(QualType RetTy) const;
4598 
4599   void computeInfo(CGFunctionInfo &FI) const override {
4600     if (!getCXXABI().classifyReturnType(FI))
4601       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4602     for (auto &I : FI.arguments())
4603       I.info = classifyArgumentType(I.type);
4604   }
4605 
4606   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4607                     QualType Ty) const override;
4608 };
4609 
4610 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4611 public:
4612   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4613                          bool RetSmallStructInRegABI)
4614       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4615             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4616 
4617   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4618                                      const CodeGenOptions &Opts);
4619 
4620   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4621     // This is recovered from gcc output.
4622     return 1; // r1 is the dedicated stack pointer
4623   }
4624 
4625   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4626                                llvm::Value *Address) const override;
4627 };
4628 }
4629 
4630 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4631   // Complex types are passed just like their elements.
4632   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4633     Ty = CTy->getElementType();
4634 
4635   if (Ty->isVectorType())
4636     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4637                                                                        : 4);
4638 
4639   // For single-element float/vector structs, we consider the whole type
4640   // to have the same alignment requirements as its single element.
4641   const Type *AlignTy = nullptr;
4642   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4643     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4644     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4645         (BT && BT->isFloatingPoint()))
4646       AlignTy = EltType;
4647   }
4648 
4649   if (AlignTy)
4650     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4651   return CharUnits::fromQuantity(4);
4652 }
4653 
4654 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4655   uint64_t Size;
4656 
4657   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4658   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4659       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4660     // System V ABI (1995), page 3-22, specified:
4661     // > A structure or union whose size is less than or equal to 8 bytes
4662     // > shall be returned in r3 and r4, as if it were first stored in the
4663     // > 8-byte aligned memory area and then the low addressed word were
4664     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4665     // > the last member of the structure or union are not defined.
4666     //
4667     // GCC for big-endian PPC32 inserts the pad before the first member,
4668     // not "beyond the last member" of the struct.  To stay compatible
4669     // with GCC, we coerce the struct to an integer of the same size.
4670     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4671     if (Size == 0)
4672       return ABIArgInfo::getIgnore();
4673     else {
4674       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4675       return ABIArgInfo::getDirect(CoerceTy);
4676     }
4677   }
4678 
4679   return DefaultABIInfo::classifyReturnType(RetTy);
4680 }
4681 
4682 // TODO: this implementation is now likely redundant with
4683 // DefaultABIInfo::EmitVAArg.
4684 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4685                                       QualType Ty) const {
4686   if (getTarget().getTriple().isOSDarwin()) {
4687     auto TI = getContext().getTypeInfoInChars(Ty);
4688     TI.second = getParamTypeAlignment(Ty);
4689 
4690     CharUnits SlotSize = CharUnits::fromQuantity(4);
4691     return emitVoidPtrVAArg(CGF, VAList, Ty,
4692                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4693                             /*AllowHigherAlign=*/true);
4694   }
4695 
4696   const unsigned OverflowLimit = 8;
4697   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4698     // TODO: Implement this. For now ignore.
4699     (void)CTy;
4700     return Address::invalid(); // FIXME?
4701   }
4702 
4703   // struct __va_list_tag {
4704   //   unsigned char gpr;
4705   //   unsigned char fpr;
4706   //   unsigned short reserved;
4707   //   void *overflow_arg_area;
4708   //   void *reg_save_area;
4709   // };
4710 
4711   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4712   bool isInt =
4713       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4714   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4715 
4716   // All aggregates are passed indirectly?  That doesn't seem consistent
4717   // with the argument-lowering code.
4718   bool isIndirect = Ty->isAggregateType();
4719 
4720   CGBuilderTy &Builder = CGF.Builder;
4721 
4722   // The calling convention either uses 1-2 GPRs or 1 FPR.
4723   Address NumRegsAddr = Address::invalid();
4724   if (isInt || IsSoftFloatABI) {
4725     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4726   } else {
4727     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4728   }
4729 
4730   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4731 
4732   // "Align" the register count when TY is i64.
4733   if (isI64 || (isF64 && IsSoftFloatABI)) {
4734     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4735     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4736   }
4737 
4738   llvm::Value *CC =
4739       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4740 
4741   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4742   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4743   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4744 
4745   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4746 
4747   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4748   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4749 
4750   // Case 1: consume registers.
4751   Address RegAddr = Address::invalid();
4752   {
4753     CGF.EmitBlock(UsingRegs);
4754 
4755     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4756     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4757                       CharUnits::fromQuantity(8));
4758     assert(RegAddr.getElementType() == CGF.Int8Ty);
4759 
4760     // Floating-point registers start after the general-purpose registers.
4761     if (!(isInt || IsSoftFloatABI)) {
4762       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4763                                                    CharUnits::fromQuantity(32));
4764     }
4765 
4766     // Get the address of the saved value by scaling the number of
4767     // registers we've used by the number of
4768     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4769     llvm::Value *RegOffset =
4770       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4771     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4772                                             RegAddr.getPointer(), RegOffset),
4773                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4774     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4775 
4776     // Increase the used-register count.
4777     NumRegs =
4778       Builder.CreateAdd(NumRegs,
4779                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4780     Builder.CreateStore(NumRegs, NumRegsAddr);
4781 
4782     CGF.EmitBranch(Cont);
4783   }
4784 
4785   // Case 2: consume space in the overflow area.
4786   Address MemAddr = Address::invalid();
4787   {
4788     CGF.EmitBlock(UsingOverflow);
4789 
4790     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4791 
4792     // Everything in the overflow area is rounded up to a size of at least 4.
4793     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4794 
4795     CharUnits Size;
4796     if (!isIndirect) {
4797       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4798       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4799     } else {
4800       Size = CGF.getPointerSize();
4801     }
4802 
4803     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4804     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4805                          OverflowAreaAlign);
4806     // Round up address of argument to alignment
4807     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4808     if (Align > OverflowAreaAlign) {
4809       llvm::Value *Ptr = OverflowArea.getPointer();
4810       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4811                                                            Align);
4812     }
4813 
4814     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4815 
4816     // Increase the overflow area.
4817     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4818     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4819     CGF.EmitBranch(Cont);
4820   }
4821 
4822   CGF.EmitBlock(Cont);
4823 
4824   // Merge the cases with a phi.
4825   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4826                                 "vaarg.addr");
4827 
4828   // Load the pointer if the argument was passed indirectly.
4829   if (isIndirect) {
4830     Result = Address(Builder.CreateLoad(Result, "aggr"),
4831                      getContext().getTypeAlignInChars(Ty));
4832   }
4833 
4834   return Result;
4835 }
4836 
4837 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4838     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4839   assert(Triple.getArch() == llvm::Triple::ppc);
4840 
4841   switch (Opts.getStructReturnConvention()) {
4842   case CodeGenOptions::SRCK_Default:
4843     break;
4844   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4845     return false;
4846   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4847     return true;
4848   }
4849 
4850   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4851     return true;
4852 
4853   return false;
4854 }
4855 
4856 bool
4857 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4858                                                 llvm::Value *Address) const {
4859   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4860                                      /*IsAIX*/ false);
4861 }
4862 
4863 // PowerPC-64
4864 
4865 namespace {
4866 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4867 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4868 public:
4869   enum ABIKind {
4870     ELFv1 = 0,
4871     ELFv2
4872   };
4873 
4874 private:
4875   static const unsigned GPRBits = 64;
4876   ABIKind Kind;
4877   bool HasQPX;
4878   bool IsSoftFloatABI;
4879 
4880   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4881   // will be passed in a QPX register.
4882   bool IsQPXVectorTy(const Type *Ty) const {
4883     if (!HasQPX)
4884       return false;
4885 
4886     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4887       unsigned NumElements = VT->getNumElements();
4888       if (NumElements == 1)
4889         return false;
4890 
4891       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4892         if (getContext().getTypeSize(Ty) <= 256)
4893           return true;
4894       } else if (VT->getElementType()->
4895                    isSpecificBuiltinType(BuiltinType::Float)) {
4896         if (getContext().getTypeSize(Ty) <= 128)
4897           return true;
4898       }
4899     }
4900 
4901     return false;
4902   }
4903 
4904   bool IsQPXVectorTy(QualType Ty) const {
4905     return IsQPXVectorTy(Ty.getTypePtr());
4906   }
4907 
4908 public:
4909   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4910                      bool SoftFloatABI)
4911       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4912         IsSoftFloatABI(SoftFloatABI) {}
4913 
4914   bool isPromotableTypeForABI(QualType Ty) const;
4915   CharUnits getParamTypeAlignment(QualType Ty) const;
4916 
4917   ABIArgInfo classifyReturnType(QualType RetTy) const;
4918   ABIArgInfo classifyArgumentType(QualType Ty) const;
4919 
4920   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4921   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4922                                          uint64_t Members) const override;
4923 
4924   // TODO: We can add more logic to computeInfo to improve performance.
4925   // Example: For aggregate arguments that fit in a register, we could
4926   // use getDirectInReg (as is done below for structs containing a single
4927   // floating-point value) to avoid pushing them to memory on function
4928   // entry.  This would require changing the logic in PPCISelLowering
4929   // when lowering the parameters in the caller and args in the callee.
4930   void computeInfo(CGFunctionInfo &FI) const override {
4931     if (!getCXXABI().classifyReturnType(FI))
4932       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4933     for (auto &I : FI.arguments()) {
4934       // We rely on the default argument classification for the most part.
4935       // One exception:  An aggregate containing a single floating-point
4936       // or vector item must be passed in a register if one is available.
4937       const Type *T = isSingleElementStruct(I.type, getContext());
4938       if (T) {
4939         const BuiltinType *BT = T->getAs<BuiltinType>();
4940         if (IsQPXVectorTy(T) ||
4941             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4942             (BT && BT->isFloatingPoint())) {
4943           QualType QT(T, 0);
4944           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4945           continue;
4946         }
4947       }
4948       I.info = classifyArgumentType(I.type);
4949     }
4950   }
4951 
4952   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4953                     QualType Ty) const override;
4954 
4955   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4956                                     bool asReturnValue) const override {
4957     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4958   }
4959 
4960   bool isSwiftErrorInRegister() const override {
4961     return false;
4962   }
4963 };
4964 
4965 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4966 
4967 public:
4968   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4969                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4970                                bool SoftFloatABI)
4971       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4972             CGT, Kind, HasQPX, SoftFloatABI)) {}
4973 
4974   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4975     // This is recovered from gcc output.
4976     return 1; // r1 is the dedicated stack pointer
4977   }
4978 
4979   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4980                                llvm::Value *Address) const override;
4981 };
4982 
4983 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4984 public:
4985   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4986 
4987   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4988     // This is recovered from gcc output.
4989     return 1; // r1 is the dedicated stack pointer
4990   }
4991 
4992   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4993                                llvm::Value *Address) const override;
4994 };
4995 
4996 }
4997 
4998 // Return true if the ABI requires Ty to be passed sign- or zero-
4999 // extended to 64 bits.
5000 bool
5001 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5002   // Treat an enum type as its underlying type.
5003   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5004     Ty = EnumTy->getDecl()->getIntegerType();
5005 
5006   // Promotable integer types are required to be promoted by the ABI.
5007   if (isPromotableIntegerTypeForABI(Ty))
5008     return true;
5009 
5010   // In addition to the usual promotable integer types, we also need to
5011   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5012   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5013     switch (BT->getKind()) {
5014     case BuiltinType::Int:
5015     case BuiltinType::UInt:
5016       return true;
5017     default:
5018       break;
5019     }
5020 
5021   if (const auto *EIT = Ty->getAs<ExtIntType>())
5022     if (EIT->getNumBits() < 64)
5023       return true;
5024 
5025   return false;
5026 }
5027 
5028 /// isAlignedParamType - Determine whether a type requires 16-byte or
5029 /// higher alignment in the parameter area.  Always returns at least 8.
5030 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5031   // Complex types are passed just like their elements.
5032   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5033     Ty = CTy->getElementType();
5034 
5035   // Only vector types of size 16 bytes need alignment (larger types are
5036   // passed via reference, smaller types are not aligned).
5037   if (IsQPXVectorTy(Ty)) {
5038     if (getContext().getTypeSize(Ty) > 128)
5039       return CharUnits::fromQuantity(32);
5040 
5041     return CharUnits::fromQuantity(16);
5042   } else if (Ty->isVectorType()) {
5043     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5044   }
5045 
5046   // For single-element float/vector structs, we consider the whole type
5047   // to have the same alignment requirements as its single element.
5048   const Type *AlignAsType = nullptr;
5049   const Type *EltType = isSingleElementStruct(Ty, getContext());
5050   if (EltType) {
5051     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5052     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5053          getContext().getTypeSize(EltType) == 128) ||
5054         (BT && BT->isFloatingPoint()))
5055       AlignAsType = EltType;
5056   }
5057 
5058   // Likewise for ELFv2 homogeneous aggregates.
5059   const Type *Base = nullptr;
5060   uint64_t Members = 0;
5061   if (!AlignAsType && Kind == ELFv2 &&
5062       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5063     AlignAsType = Base;
5064 
5065   // With special case aggregates, only vector base types need alignment.
5066   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5067     if (getContext().getTypeSize(AlignAsType) > 128)
5068       return CharUnits::fromQuantity(32);
5069 
5070     return CharUnits::fromQuantity(16);
5071   } else if (AlignAsType) {
5072     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5073   }
5074 
5075   // Otherwise, we only need alignment for any aggregate type that
5076   // has an alignment requirement of >= 16 bytes.
5077   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5078     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5079       return CharUnits::fromQuantity(32);
5080     return CharUnits::fromQuantity(16);
5081   }
5082 
5083   return CharUnits::fromQuantity(8);
5084 }
5085 
5086 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5087 /// aggregate.  Base is set to the base element type, and Members is set
5088 /// to the number of base elements.
5089 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5090                                      uint64_t &Members) const {
5091   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5092     uint64_t NElements = AT->getSize().getZExtValue();
5093     if (NElements == 0)
5094       return false;
5095     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5096       return false;
5097     Members *= NElements;
5098   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5099     const RecordDecl *RD = RT->getDecl();
5100     if (RD->hasFlexibleArrayMember())
5101       return false;
5102 
5103     Members = 0;
5104 
5105     // If this is a C++ record, check the bases first.
5106     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5107       for (const auto &I : CXXRD->bases()) {
5108         // Ignore empty records.
5109         if (isEmptyRecord(getContext(), I.getType(), true))
5110           continue;
5111 
5112         uint64_t FldMembers;
5113         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5114           return false;
5115 
5116         Members += FldMembers;
5117       }
5118     }
5119 
5120     for (const auto *FD : RD->fields()) {
5121       // Ignore (non-zero arrays of) empty records.
5122       QualType FT = FD->getType();
5123       while (const ConstantArrayType *AT =
5124              getContext().getAsConstantArrayType(FT)) {
5125         if (AT->getSize().getZExtValue() == 0)
5126           return false;
5127         FT = AT->getElementType();
5128       }
5129       if (isEmptyRecord(getContext(), FT, true))
5130         continue;
5131 
5132       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5133       if (getContext().getLangOpts().CPlusPlus &&
5134           FD->isZeroLengthBitField(getContext()))
5135         continue;
5136 
5137       uint64_t FldMembers;
5138       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5139         return false;
5140 
5141       Members = (RD->isUnion() ?
5142                  std::max(Members, FldMembers) : Members + FldMembers);
5143     }
5144 
5145     if (!Base)
5146       return false;
5147 
5148     // Ensure there is no padding.
5149     if (getContext().getTypeSize(Base) * Members !=
5150         getContext().getTypeSize(Ty))
5151       return false;
5152   } else {
5153     Members = 1;
5154     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5155       Members = 2;
5156       Ty = CT->getElementType();
5157     }
5158 
5159     // Most ABIs only support float, double, and some vector type widths.
5160     if (!isHomogeneousAggregateBaseType(Ty))
5161       return false;
5162 
5163     // The base type must be the same for all members.  Types that
5164     // agree in both total size and mode (float vs. vector) are
5165     // treated as being equivalent here.
5166     const Type *TyPtr = Ty.getTypePtr();
5167     if (!Base) {
5168       Base = TyPtr;
5169       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5170       // so make sure to widen it explicitly.
5171       if (const VectorType *VT = Base->getAs<VectorType>()) {
5172         QualType EltTy = VT->getElementType();
5173         unsigned NumElements =
5174             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5175         Base = getContext()
5176                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5177                    .getTypePtr();
5178       }
5179     }
5180 
5181     if (Base->isVectorType() != TyPtr->isVectorType() ||
5182         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5183       return false;
5184   }
5185   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5186 }
5187 
5188 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5189   // Homogeneous aggregates for ELFv2 must have base types of float,
5190   // double, long double, or 128-bit vectors.
5191   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5192     if (BT->getKind() == BuiltinType::Float ||
5193         BT->getKind() == BuiltinType::Double ||
5194         BT->getKind() == BuiltinType::LongDouble ||
5195         (getContext().getTargetInfo().hasFloat128Type() &&
5196           (BT->getKind() == BuiltinType::Float128))) {
5197       if (IsSoftFloatABI)
5198         return false;
5199       return true;
5200     }
5201   }
5202   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5203     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5204       return true;
5205   }
5206   return false;
5207 }
5208 
5209 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5210     const Type *Base, uint64_t Members) const {
5211   // Vector and fp128 types require one register, other floating point types
5212   // require one or two registers depending on their size.
5213   uint32_t NumRegs =
5214       ((getContext().getTargetInfo().hasFloat128Type() &&
5215           Base->isFloat128Type()) ||
5216         Base->isVectorType()) ? 1
5217                               : (getContext().getTypeSize(Base) + 63) / 64;
5218 
5219   // Homogeneous Aggregates may occupy at most 8 registers.
5220   return Members * NumRegs <= 8;
5221 }
5222 
5223 ABIArgInfo
5224 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5225   Ty = useFirstFieldIfTransparentUnion(Ty);
5226 
5227   if (Ty->isAnyComplexType())
5228     return ABIArgInfo::getDirect();
5229 
5230   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5231   // or via reference (larger than 16 bytes).
5232   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5233     uint64_t Size = getContext().getTypeSize(Ty);
5234     if (Size > 128)
5235       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5236     else if (Size < 128) {
5237       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5238       return ABIArgInfo::getDirect(CoerceTy);
5239     }
5240   }
5241 
5242   if (const auto *EIT = Ty->getAs<ExtIntType>())
5243     if (EIT->getNumBits() > 128)
5244       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5245 
5246   if (isAggregateTypeForABI(Ty)) {
5247     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5248       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5249 
5250     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5251     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5252 
5253     // ELFv2 homogeneous aggregates are passed as array types.
5254     const Type *Base = nullptr;
5255     uint64_t Members = 0;
5256     if (Kind == ELFv2 &&
5257         isHomogeneousAggregate(Ty, Base, Members)) {
5258       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5259       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5260       return ABIArgInfo::getDirect(CoerceTy);
5261     }
5262 
5263     // If an aggregate may end up fully in registers, we do not
5264     // use the ByVal method, but pass the aggregate as array.
5265     // This is usually beneficial since we avoid forcing the
5266     // back-end to store the argument to memory.
5267     uint64_t Bits = getContext().getTypeSize(Ty);
5268     if (Bits > 0 && Bits <= 8 * GPRBits) {
5269       llvm::Type *CoerceTy;
5270 
5271       // Types up to 8 bytes are passed as integer type (which will be
5272       // properly aligned in the argument save area doubleword).
5273       if (Bits <= GPRBits)
5274         CoerceTy =
5275             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5276       // Larger types are passed as arrays, with the base type selected
5277       // according to the required alignment in the save area.
5278       else {
5279         uint64_t RegBits = ABIAlign * 8;
5280         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5281         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5282         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5283       }
5284 
5285       return ABIArgInfo::getDirect(CoerceTy);
5286     }
5287 
5288     // All other aggregates are passed ByVal.
5289     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5290                                    /*ByVal=*/true,
5291                                    /*Realign=*/TyAlign > ABIAlign);
5292   }
5293 
5294   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5295                                      : ABIArgInfo::getDirect());
5296 }
5297 
5298 ABIArgInfo
5299 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5300   if (RetTy->isVoidType())
5301     return ABIArgInfo::getIgnore();
5302 
5303   if (RetTy->isAnyComplexType())
5304     return ABIArgInfo::getDirect();
5305 
5306   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5307   // or via reference (larger than 16 bytes).
5308   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5309     uint64_t Size = getContext().getTypeSize(RetTy);
5310     if (Size > 128)
5311       return getNaturalAlignIndirect(RetTy);
5312     else if (Size < 128) {
5313       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5314       return ABIArgInfo::getDirect(CoerceTy);
5315     }
5316   }
5317 
5318   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5319     if (EIT->getNumBits() > 128)
5320       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5321 
5322   if (isAggregateTypeForABI(RetTy)) {
5323     // ELFv2 homogeneous aggregates are returned as array types.
5324     const Type *Base = nullptr;
5325     uint64_t Members = 0;
5326     if (Kind == ELFv2 &&
5327         isHomogeneousAggregate(RetTy, Base, Members)) {
5328       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5329       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5330       return ABIArgInfo::getDirect(CoerceTy);
5331     }
5332 
5333     // ELFv2 small aggregates are returned in up to two registers.
5334     uint64_t Bits = getContext().getTypeSize(RetTy);
5335     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5336       if (Bits == 0)
5337         return ABIArgInfo::getIgnore();
5338 
5339       llvm::Type *CoerceTy;
5340       if (Bits > GPRBits) {
5341         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5342         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5343       } else
5344         CoerceTy =
5345             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5346       return ABIArgInfo::getDirect(CoerceTy);
5347     }
5348 
5349     // All other aggregates are returned indirectly.
5350     return getNaturalAlignIndirect(RetTy);
5351   }
5352 
5353   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5354                                         : ABIArgInfo::getDirect());
5355 }
5356 
5357 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5358 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5359                                       QualType Ty) const {
5360   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5361   TypeInfo.second = getParamTypeAlignment(Ty);
5362 
5363   CharUnits SlotSize = CharUnits::fromQuantity(8);
5364 
5365   // If we have a complex type and the base type is smaller than 8 bytes,
5366   // the ABI calls for the real and imaginary parts to be right-adjusted
5367   // in separate doublewords.  However, Clang expects us to produce a
5368   // pointer to a structure with the two parts packed tightly.  So generate
5369   // loads of the real and imaginary parts relative to the va_list pointer,
5370   // and store them to a temporary structure.
5371   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5372     CharUnits EltSize = TypeInfo.first / 2;
5373     if (EltSize < SlotSize) {
5374       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5375                                             SlotSize * 2, SlotSize,
5376                                             SlotSize, /*AllowHigher*/ true);
5377 
5378       Address RealAddr = Addr;
5379       Address ImagAddr = RealAddr;
5380       if (CGF.CGM.getDataLayout().isBigEndian()) {
5381         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5382                                                           SlotSize - EltSize);
5383         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5384                                                       2 * SlotSize - EltSize);
5385       } else {
5386         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5387       }
5388 
5389       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5390       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5391       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5392       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5393       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5394 
5395       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5396       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5397                              /*init*/ true);
5398       return Temp;
5399     }
5400   }
5401 
5402   // Otherwise, just use the general rule.
5403   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5404                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5405 }
5406 
5407 bool
5408 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5409   CodeGen::CodeGenFunction &CGF,
5410   llvm::Value *Address) const {
5411   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5412                                      /*IsAIX*/ false);
5413 }
5414 
5415 bool
5416 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5417                                                 llvm::Value *Address) const {
5418   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5419                                      /*IsAIX*/ false);
5420 }
5421 
5422 //===----------------------------------------------------------------------===//
5423 // AArch64 ABI Implementation
5424 //===----------------------------------------------------------------------===//
5425 
5426 namespace {
5427 
5428 class AArch64ABIInfo : public SwiftABIInfo {
5429 public:
5430   enum ABIKind {
5431     AAPCS = 0,
5432     DarwinPCS,
5433     Win64
5434   };
5435 
5436 private:
5437   ABIKind Kind;
5438 
5439 public:
5440   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5441     : SwiftABIInfo(CGT), Kind(Kind) {}
5442 
5443 private:
5444   ABIKind getABIKind() const { return Kind; }
5445   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5446 
5447   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5448   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5449   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5450   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5451                                          uint64_t Members) const override;
5452 
5453   bool isIllegalVectorType(QualType Ty) const;
5454 
5455   void computeInfo(CGFunctionInfo &FI) const override {
5456     if (!::classifyReturnType(getCXXABI(), FI, *this))
5457       FI.getReturnInfo() =
5458           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5459 
5460     for (auto &it : FI.arguments())
5461       it.info = classifyArgumentType(it.type);
5462   }
5463 
5464   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5465                           CodeGenFunction &CGF) const;
5466 
5467   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5468                          CodeGenFunction &CGF) const;
5469 
5470   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5471                     QualType Ty) const override {
5472     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5473                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5474                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5475   }
5476 
5477   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5478                       QualType Ty) const override;
5479 
5480   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5481                                     bool asReturnValue) const override {
5482     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5483   }
5484   bool isSwiftErrorInRegister() const override {
5485     return true;
5486   }
5487 
5488   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5489                                  unsigned elts) const override;
5490 
5491   bool allowBFloatArgsAndRet() const override {
5492     return getTarget().hasBFloat16Type();
5493   }
5494 };
5495 
5496 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5497 public:
5498   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5499       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5500 
5501   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5502     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5503   }
5504 
5505   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5506     return 31;
5507   }
5508 
5509   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5510 
5511   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5512                            CodeGen::CodeGenModule &CGM) const override {
5513     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5514     if (!FD)
5515       return;
5516 
5517     LangOptions::SignReturnAddressScopeKind Scope =
5518         CGM.getLangOpts().getSignReturnAddressScope();
5519     LangOptions::SignReturnAddressKeyKind Key =
5520         CGM.getLangOpts().getSignReturnAddressKey();
5521     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5522     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5523       ParsedTargetAttr Attr = TA->parse();
5524       if (!Attr.BranchProtection.empty()) {
5525         TargetInfo::BranchProtectionInfo BPI;
5526         StringRef Error;
5527         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5528                                                        BPI, Error);
5529         assert(Error.empty());
5530         Scope = BPI.SignReturnAddr;
5531         Key = BPI.SignKey;
5532         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5533       }
5534     }
5535 
5536     auto *Fn = cast<llvm::Function>(GV);
5537     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5538       Fn->addFnAttr("sign-return-address",
5539                     Scope == LangOptions::SignReturnAddressScopeKind::All
5540                         ? "all"
5541                         : "non-leaf");
5542 
5543       Fn->addFnAttr("sign-return-address-key",
5544                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5545                         ? "a_key"
5546                         : "b_key");
5547     }
5548 
5549     if (BranchTargetEnforcement)
5550       Fn->addFnAttr("branch-target-enforcement");
5551   }
5552 };
5553 
5554 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5555 public:
5556   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5557       : AArch64TargetCodeGenInfo(CGT, K) {}
5558 
5559   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5560                            CodeGen::CodeGenModule &CGM) const override;
5561 
5562   void getDependentLibraryOption(llvm::StringRef Lib,
5563                                  llvm::SmallString<24> &Opt) const override {
5564     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5565   }
5566 
5567   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5568                                llvm::SmallString<32> &Opt) const override {
5569     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5570   }
5571 };
5572 
5573 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5574     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5575   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5576   if (GV->isDeclaration())
5577     return;
5578   addStackProbeTargetAttributes(D, GV, CGM);
5579 }
5580 }
5581 
5582 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5583   Ty = useFirstFieldIfTransparentUnion(Ty);
5584 
5585   // Handle illegal vector types here.
5586   if (isIllegalVectorType(Ty)) {
5587     uint64_t Size = getContext().getTypeSize(Ty);
5588     // Android promotes <2 x i8> to i16, not i32
5589     if (isAndroid() && (Size <= 16)) {
5590       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5591       return ABIArgInfo::getDirect(ResType);
5592     }
5593     if (Size <= 32) {
5594       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5595       return ABIArgInfo::getDirect(ResType);
5596     }
5597     if (Size == 64) {
5598       auto *ResType =
5599           llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5600       return ABIArgInfo::getDirect(ResType);
5601     }
5602     if (Size == 128) {
5603       auto *ResType =
5604           llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5605       return ABIArgInfo::getDirect(ResType);
5606     }
5607     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5608   }
5609 
5610   if (!isAggregateTypeForABI(Ty)) {
5611     // Treat an enum type as its underlying type.
5612     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5613       Ty = EnumTy->getDecl()->getIntegerType();
5614 
5615     if (const auto *EIT = Ty->getAs<ExtIntType>())
5616       if (EIT->getNumBits() > 128)
5617         return getNaturalAlignIndirect(Ty);
5618 
5619     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5620                 ? ABIArgInfo::getExtend(Ty)
5621                 : ABIArgInfo::getDirect());
5622   }
5623 
5624   // Structures with either a non-trivial destructor or a non-trivial
5625   // copy constructor are always indirect.
5626   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5627     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5628                                      CGCXXABI::RAA_DirectInMemory);
5629   }
5630 
5631   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5632   // elsewhere for GNU compatibility.
5633   uint64_t Size = getContext().getTypeSize(Ty);
5634   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5635   if (IsEmpty || Size == 0) {
5636     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5637       return ABIArgInfo::getIgnore();
5638 
5639     // GNU C mode. The only argument that gets ignored is an empty one with size
5640     // 0.
5641     if (IsEmpty && Size == 0)
5642       return ABIArgInfo::getIgnore();
5643     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5644   }
5645 
5646   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5647   const Type *Base = nullptr;
5648   uint64_t Members = 0;
5649   if (isHomogeneousAggregate(Ty, Base, Members)) {
5650     return ABIArgInfo::getDirect(
5651         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5652   }
5653 
5654   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5655   if (Size <= 128) {
5656     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5657     // same size and alignment.
5658     if (getTarget().isRenderScriptTarget()) {
5659       return coerceToIntArray(Ty, getContext(), getVMContext());
5660     }
5661     unsigned Alignment;
5662     if (Kind == AArch64ABIInfo::AAPCS) {
5663       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5664       Alignment = Alignment < 128 ? 64 : 128;
5665     } else {
5666       Alignment = std::max(getContext().getTypeAlign(Ty),
5667                            (unsigned)getTarget().getPointerWidth(0));
5668     }
5669     Size = llvm::alignTo(Size, Alignment);
5670 
5671     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5672     // For aggregates with 16-byte alignment, we use i128.
5673     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5674     return ABIArgInfo::getDirect(
5675         Size == Alignment ? BaseTy
5676                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5677   }
5678 
5679   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5680 }
5681 
5682 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5683                                               bool IsVariadic) const {
5684   if (RetTy->isVoidType())
5685     return ABIArgInfo::getIgnore();
5686 
5687   // Large vector types should be returned via memory.
5688   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5689     return getNaturalAlignIndirect(RetTy);
5690 
5691   if (!isAggregateTypeForABI(RetTy)) {
5692     // Treat an enum type as its underlying type.
5693     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5694       RetTy = EnumTy->getDecl()->getIntegerType();
5695 
5696     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5697       if (EIT->getNumBits() > 128)
5698         return getNaturalAlignIndirect(RetTy);
5699 
5700     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5701                 ? ABIArgInfo::getExtend(RetTy)
5702                 : ABIArgInfo::getDirect());
5703   }
5704 
5705   uint64_t Size = getContext().getTypeSize(RetTy);
5706   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5707     return ABIArgInfo::getIgnore();
5708 
5709   const Type *Base = nullptr;
5710   uint64_t Members = 0;
5711   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5712       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5713         IsVariadic))
5714     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5715     return ABIArgInfo::getDirect();
5716 
5717   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5718   if (Size <= 128) {
5719     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5720     // same size and alignment.
5721     if (getTarget().isRenderScriptTarget()) {
5722       return coerceToIntArray(RetTy, getContext(), getVMContext());
5723     }
5724     unsigned Alignment = getContext().getTypeAlign(RetTy);
5725     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5726 
5727     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5728     // For aggregates with 16-byte alignment, we use i128.
5729     if (Alignment < 128 && Size == 128) {
5730       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5731       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5732     }
5733     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5734   }
5735 
5736   return getNaturalAlignIndirect(RetTy);
5737 }
5738 
5739 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5740 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5741   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5742     // Check whether VT is legal.
5743     unsigned NumElements = VT->getNumElements();
5744     uint64_t Size = getContext().getTypeSize(VT);
5745     // NumElements should be power of 2.
5746     if (!llvm::isPowerOf2_32(NumElements))
5747       return true;
5748 
5749     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5750     // vectors for some reason.
5751     llvm::Triple Triple = getTarget().getTriple();
5752     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5753         Triple.isOSBinFormatMachO())
5754       return Size <= 32;
5755 
5756     return Size != 64 && (Size != 128 || NumElements == 1);
5757   }
5758   return false;
5759 }
5760 
5761 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5762                                                llvm::Type *eltTy,
5763                                                unsigned elts) const {
5764   if (!llvm::isPowerOf2_32(elts))
5765     return false;
5766   if (totalSize.getQuantity() != 8 &&
5767       (totalSize.getQuantity() != 16 || elts == 1))
5768     return false;
5769   return true;
5770 }
5771 
5772 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5773   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5774   // point type or a short-vector type. This is the same as the 32-bit ABI,
5775   // but with the difference that any floating-point type is allowed,
5776   // including __fp16.
5777   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5778     if (BT->isFloatingPoint())
5779       return true;
5780   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5781     unsigned VecSize = getContext().getTypeSize(VT);
5782     if (VecSize == 64 || VecSize == 128)
5783       return true;
5784   }
5785   return false;
5786 }
5787 
5788 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5789                                                        uint64_t Members) const {
5790   return Members <= 4;
5791 }
5792 
5793 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5794                                             QualType Ty,
5795                                             CodeGenFunction &CGF) const {
5796   ABIArgInfo AI = classifyArgumentType(Ty);
5797   bool IsIndirect = AI.isIndirect();
5798 
5799   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5800   if (IsIndirect)
5801     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5802   else if (AI.getCoerceToType())
5803     BaseTy = AI.getCoerceToType();
5804 
5805   unsigned NumRegs = 1;
5806   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5807     BaseTy = ArrTy->getElementType();
5808     NumRegs = ArrTy->getNumElements();
5809   }
5810   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5811 
5812   // The AArch64 va_list type and handling is specified in the Procedure Call
5813   // Standard, section B.4:
5814   //
5815   // struct {
5816   //   void *__stack;
5817   //   void *__gr_top;
5818   //   void *__vr_top;
5819   //   int __gr_offs;
5820   //   int __vr_offs;
5821   // };
5822 
5823   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5824   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5825   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5826   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5827 
5828   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5829   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5830 
5831   Address reg_offs_p = Address::invalid();
5832   llvm::Value *reg_offs = nullptr;
5833   int reg_top_index;
5834   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5835   if (!IsFPR) {
5836     // 3 is the field number of __gr_offs
5837     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5838     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5839     reg_top_index = 1; // field number for __gr_top
5840     RegSize = llvm::alignTo(RegSize, 8);
5841   } else {
5842     // 4 is the field number of __vr_offs.
5843     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5844     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5845     reg_top_index = 2; // field number for __vr_top
5846     RegSize = 16 * NumRegs;
5847   }
5848 
5849   //=======================================
5850   // Find out where argument was passed
5851   //=======================================
5852 
5853   // If reg_offs >= 0 we're already using the stack for this type of
5854   // argument. We don't want to keep updating reg_offs (in case it overflows,
5855   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5856   // whatever they get).
5857   llvm::Value *UsingStack = nullptr;
5858   UsingStack = CGF.Builder.CreateICmpSGE(
5859       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5860 
5861   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5862 
5863   // Otherwise, at least some kind of argument could go in these registers, the
5864   // question is whether this particular type is too big.
5865   CGF.EmitBlock(MaybeRegBlock);
5866 
5867   // Integer arguments may need to correct register alignment (for example a
5868   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5869   // align __gr_offs to calculate the potential address.
5870   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5871     int Align = TyAlign.getQuantity();
5872 
5873     reg_offs = CGF.Builder.CreateAdd(
5874         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5875         "align_regoffs");
5876     reg_offs = CGF.Builder.CreateAnd(
5877         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5878         "aligned_regoffs");
5879   }
5880 
5881   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5882   // The fact that this is done unconditionally reflects the fact that
5883   // allocating an argument to the stack also uses up all the remaining
5884   // registers of the appropriate kind.
5885   llvm::Value *NewOffset = nullptr;
5886   NewOffset = CGF.Builder.CreateAdd(
5887       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5888   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5889 
5890   // Now we're in a position to decide whether this argument really was in
5891   // registers or not.
5892   llvm::Value *InRegs = nullptr;
5893   InRegs = CGF.Builder.CreateICmpSLE(
5894       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5895 
5896   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5897 
5898   //=======================================
5899   // Argument was in registers
5900   //=======================================
5901 
5902   // Now we emit the code for if the argument was originally passed in
5903   // registers. First start the appropriate block:
5904   CGF.EmitBlock(InRegBlock);
5905 
5906   llvm::Value *reg_top = nullptr;
5907   Address reg_top_p =
5908       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5909   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5910   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5911                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5912   Address RegAddr = Address::invalid();
5913   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5914 
5915   if (IsIndirect) {
5916     // If it's been passed indirectly (actually a struct), whatever we find from
5917     // stored registers or on the stack will actually be a struct **.
5918     MemTy = llvm::PointerType::getUnqual(MemTy);
5919   }
5920 
5921   const Type *Base = nullptr;
5922   uint64_t NumMembers = 0;
5923   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5924   if (IsHFA && NumMembers > 1) {
5925     // Homogeneous aggregates passed in registers will have their elements split
5926     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5927     // qN+1, ...). We reload and store into a temporary local variable
5928     // contiguously.
5929     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5930     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5931     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5932     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5933     Address Tmp = CGF.CreateTempAlloca(HFATy,
5934                                        std::max(TyAlign, BaseTyInfo.second));
5935 
5936     // On big-endian platforms, the value will be right-aligned in its slot.
5937     int Offset = 0;
5938     if (CGF.CGM.getDataLayout().isBigEndian() &&
5939         BaseTyInfo.first.getQuantity() < 16)
5940       Offset = 16 - BaseTyInfo.first.getQuantity();
5941 
5942     for (unsigned i = 0; i < NumMembers; ++i) {
5943       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5944       Address LoadAddr =
5945         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5946       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5947 
5948       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5949 
5950       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5951       CGF.Builder.CreateStore(Elem, StoreAddr);
5952     }
5953 
5954     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5955   } else {
5956     // Otherwise the object is contiguous in memory.
5957 
5958     // It might be right-aligned in its slot.
5959     CharUnits SlotSize = BaseAddr.getAlignment();
5960     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5961         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5962         TySize < SlotSize) {
5963       CharUnits Offset = SlotSize - TySize;
5964       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5965     }
5966 
5967     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5968   }
5969 
5970   CGF.EmitBranch(ContBlock);
5971 
5972   //=======================================
5973   // Argument was on the stack
5974   //=======================================
5975   CGF.EmitBlock(OnStackBlock);
5976 
5977   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5978   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5979 
5980   // Again, stack arguments may need realignment. In this case both integer and
5981   // floating-point ones might be affected.
5982   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5983     int Align = TyAlign.getQuantity();
5984 
5985     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5986 
5987     OnStackPtr = CGF.Builder.CreateAdd(
5988         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5989         "align_stack");
5990     OnStackPtr = CGF.Builder.CreateAnd(
5991         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5992         "align_stack");
5993 
5994     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5995   }
5996   Address OnStackAddr(OnStackPtr,
5997                       std::max(CharUnits::fromQuantity(8), TyAlign));
5998 
5999   // All stack slots are multiples of 8 bytes.
6000   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6001   CharUnits StackSize;
6002   if (IsIndirect)
6003     StackSize = StackSlotSize;
6004   else
6005     StackSize = TySize.alignTo(StackSlotSize);
6006 
6007   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6008   llvm::Value *NewStack =
6009       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6010 
6011   // Write the new value of __stack for the next call to va_arg
6012   CGF.Builder.CreateStore(NewStack, stack_p);
6013 
6014   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6015       TySize < StackSlotSize) {
6016     CharUnits Offset = StackSlotSize - TySize;
6017     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6018   }
6019 
6020   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6021 
6022   CGF.EmitBranch(ContBlock);
6023 
6024   //=======================================
6025   // Tidy up
6026   //=======================================
6027   CGF.EmitBlock(ContBlock);
6028 
6029   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6030                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6031 
6032   if (IsIndirect)
6033     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6034                    TyAlign);
6035 
6036   return ResAddr;
6037 }
6038 
6039 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6040                                         CodeGenFunction &CGF) const {
6041   // The backend's lowering doesn't support va_arg for aggregates or
6042   // illegal vector types.  Lower VAArg here for these cases and use
6043   // the LLVM va_arg instruction for everything else.
6044   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6045     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6046 
6047   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6048   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6049 
6050   // Empty records are ignored for parameter passing purposes.
6051   if (isEmptyRecord(getContext(), Ty, true)) {
6052     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6053     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6054     return Addr;
6055   }
6056 
6057   // The size of the actual thing passed, which might end up just
6058   // being a pointer for indirect types.
6059   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6060 
6061   // Arguments bigger than 16 bytes which aren't homogeneous
6062   // aggregates should be passed indirectly.
6063   bool IsIndirect = false;
6064   if (TyInfo.first.getQuantity() > 16) {
6065     const Type *Base = nullptr;
6066     uint64_t Members = 0;
6067     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6068   }
6069 
6070   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6071                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6072 }
6073 
6074 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6075                                     QualType Ty) const {
6076   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6077                           CGF.getContext().getTypeInfoInChars(Ty),
6078                           CharUnits::fromQuantity(8),
6079                           /*allowHigherAlign*/ false);
6080 }
6081 
6082 //===----------------------------------------------------------------------===//
6083 // ARM ABI Implementation
6084 //===----------------------------------------------------------------------===//
6085 
6086 namespace {
6087 
6088 class ARMABIInfo : public SwiftABIInfo {
6089 public:
6090   enum ABIKind {
6091     APCS = 0,
6092     AAPCS = 1,
6093     AAPCS_VFP = 2,
6094     AAPCS16_VFP = 3,
6095   };
6096 
6097 private:
6098   ABIKind Kind;
6099   bool IsFloatABISoftFP;
6100 
6101 public:
6102   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6103       : SwiftABIInfo(CGT), Kind(_Kind) {
6104     setCCs();
6105     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6106         CGT.getCodeGenOpts().FloatABI == ""; // default
6107   }
6108 
6109   bool isEABI() const {
6110     switch (getTarget().getTriple().getEnvironment()) {
6111     case llvm::Triple::Android:
6112     case llvm::Triple::EABI:
6113     case llvm::Triple::EABIHF:
6114     case llvm::Triple::GNUEABI:
6115     case llvm::Triple::GNUEABIHF:
6116     case llvm::Triple::MuslEABI:
6117     case llvm::Triple::MuslEABIHF:
6118       return true;
6119     default:
6120       return false;
6121     }
6122   }
6123 
6124   bool isEABIHF() const {
6125     switch (getTarget().getTriple().getEnvironment()) {
6126     case llvm::Triple::EABIHF:
6127     case llvm::Triple::GNUEABIHF:
6128     case llvm::Triple::MuslEABIHF:
6129       return true;
6130     default:
6131       return false;
6132     }
6133   }
6134 
6135   ABIKind getABIKind() const { return Kind; }
6136 
6137   bool allowBFloatArgsAndRet() const override {
6138     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6139   }
6140 
6141 private:
6142   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6143                                 unsigned functionCallConv) const;
6144   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6145                                   unsigned functionCallConv) const;
6146   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6147                                           uint64_t Members) const;
6148   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6149   bool isIllegalVectorType(QualType Ty) const;
6150   bool containsAnyFP16Vectors(QualType Ty) const;
6151 
6152   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6153   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6154                                          uint64_t Members) const override;
6155 
6156   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6157 
6158   void computeInfo(CGFunctionInfo &FI) const override;
6159 
6160   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6161                     QualType Ty) const override;
6162 
6163   llvm::CallingConv::ID getLLVMDefaultCC() const;
6164   llvm::CallingConv::ID getABIDefaultCC() const;
6165   void setCCs();
6166 
6167   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6168                                     bool asReturnValue) const override {
6169     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6170   }
6171   bool isSwiftErrorInRegister() const override {
6172     return true;
6173   }
6174   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6175                                  unsigned elts) const override;
6176 };
6177 
6178 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6179 public:
6180   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6181       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6182 
6183   const ARMABIInfo &getABIInfo() const {
6184     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6185   }
6186 
6187   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6188     return 13;
6189   }
6190 
6191   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6192     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6193   }
6194 
6195   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6196                                llvm::Value *Address) const override {
6197     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6198 
6199     // 0-15 are the 16 integer registers.
6200     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6201     return false;
6202   }
6203 
6204   unsigned getSizeOfUnwindException() const override {
6205     if (getABIInfo().isEABI()) return 88;
6206     return TargetCodeGenInfo::getSizeOfUnwindException();
6207   }
6208 
6209   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6210                            CodeGen::CodeGenModule &CGM) const override {
6211     if (GV->isDeclaration())
6212       return;
6213     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6214     if (!FD)
6215       return;
6216 
6217     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6218     if (!Attr)
6219       return;
6220 
6221     const char *Kind;
6222     switch (Attr->getInterrupt()) {
6223     case ARMInterruptAttr::Generic: Kind = ""; break;
6224     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6225     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6226     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6227     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6228     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6229     }
6230 
6231     llvm::Function *Fn = cast<llvm::Function>(GV);
6232 
6233     Fn->addFnAttr("interrupt", Kind);
6234 
6235     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6236     if (ABI == ARMABIInfo::APCS)
6237       return;
6238 
6239     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6240     // however this is not necessarily true on taking any interrupt. Instruct
6241     // the backend to perform a realignment as part of the function prologue.
6242     llvm::AttrBuilder B;
6243     B.addStackAlignmentAttr(8);
6244     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6245   }
6246 };
6247 
6248 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6249 public:
6250   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6251       : ARMTargetCodeGenInfo(CGT, K) {}
6252 
6253   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6254                            CodeGen::CodeGenModule &CGM) const override;
6255 
6256   void getDependentLibraryOption(llvm::StringRef Lib,
6257                                  llvm::SmallString<24> &Opt) const override {
6258     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6259   }
6260 
6261   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6262                                llvm::SmallString<32> &Opt) const override {
6263     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6264   }
6265 };
6266 
6267 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6268     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6269   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6270   if (GV->isDeclaration())
6271     return;
6272   addStackProbeTargetAttributes(D, GV, CGM);
6273 }
6274 }
6275 
6276 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6277   if (!::classifyReturnType(getCXXABI(), FI, *this))
6278     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6279                                             FI.getCallingConvention());
6280 
6281   for (auto &I : FI.arguments())
6282     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6283                                   FI.getCallingConvention());
6284 
6285 
6286   // Always honor user-specified calling convention.
6287   if (FI.getCallingConvention() != llvm::CallingConv::C)
6288     return;
6289 
6290   llvm::CallingConv::ID cc = getRuntimeCC();
6291   if (cc != llvm::CallingConv::C)
6292     FI.setEffectiveCallingConvention(cc);
6293 }
6294 
6295 /// Return the default calling convention that LLVM will use.
6296 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6297   // The default calling convention that LLVM will infer.
6298   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6299     return llvm::CallingConv::ARM_AAPCS_VFP;
6300   else if (isEABI())
6301     return llvm::CallingConv::ARM_AAPCS;
6302   else
6303     return llvm::CallingConv::ARM_APCS;
6304 }
6305 
6306 /// Return the calling convention that our ABI would like us to use
6307 /// as the C calling convention.
6308 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6309   switch (getABIKind()) {
6310   case APCS: return llvm::CallingConv::ARM_APCS;
6311   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6312   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6313   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6314   }
6315   llvm_unreachable("bad ABI kind");
6316 }
6317 
6318 void ARMABIInfo::setCCs() {
6319   assert(getRuntimeCC() == llvm::CallingConv::C);
6320 
6321   // Don't muddy up the IR with a ton of explicit annotations if
6322   // they'd just match what LLVM will infer from the triple.
6323   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6324   if (abiCC != getLLVMDefaultCC())
6325     RuntimeCC = abiCC;
6326 }
6327 
6328 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6329   uint64_t Size = getContext().getTypeSize(Ty);
6330   if (Size <= 32) {
6331     llvm::Type *ResType =
6332         llvm::Type::getInt32Ty(getVMContext());
6333     return ABIArgInfo::getDirect(ResType);
6334   }
6335   if (Size == 64 || Size == 128) {
6336     auto *ResType = llvm::FixedVectorType::get(
6337         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6338     return ABIArgInfo::getDirect(ResType);
6339   }
6340   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6341 }
6342 
6343 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6344                                                     const Type *Base,
6345                                                     uint64_t Members) const {
6346   assert(Base && "Base class should be set for homogeneous aggregate");
6347   // Base can be a floating-point or a vector.
6348   if (const VectorType *VT = Base->getAs<VectorType>()) {
6349     // FP16 vectors should be converted to integer vectors
6350     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6351       uint64_t Size = getContext().getTypeSize(VT);
6352       auto *NewVecTy = llvm::FixedVectorType::get(
6353           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6354       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6355       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6356     }
6357   }
6358   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6359 }
6360 
6361 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6362                                             unsigned functionCallConv) const {
6363   // 6.1.2.1 The following argument types are VFP CPRCs:
6364   //   A single-precision floating-point type (including promoted
6365   //   half-precision types); A double-precision floating-point type;
6366   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6367   //   with a Base Type of a single- or double-precision floating-point type,
6368   //   64-bit containerized vectors or 128-bit containerized vectors with one
6369   //   to four Elements.
6370   // Variadic functions should always marshal to the base standard.
6371   bool IsAAPCS_VFP =
6372       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6373 
6374   Ty = useFirstFieldIfTransparentUnion(Ty);
6375 
6376   // Handle illegal vector types here.
6377   if (isIllegalVectorType(Ty))
6378     return coerceIllegalVector(Ty);
6379 
6380   if (!isAggregateTypeForABI(Ty)) {
6381     // Treat an enum type as its underlying type.
6382     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6383       Ty = EnumTy->getDecl()->getIntegerType();
6384     }
6385 
6386     if (const auto *EIT = Ty->getAs<ExtIntType>())
6387       if (EIT->getNumBits() > 64)
6388         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6389 
6390     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6391                                               : ABIArgInfo::getDirect());
6392   }
6393 
6394   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6395     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6396   }
6397 
6398   // Ignore empty records.
6399   if (isEmptyRecord(getContext(), Ty, true))
6400     return ABIArgInfo::getIgnore();
6401 
6402   if (IsAAPCS_VFP) {
6403     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6404     // into VFP registers.
6405     const Type *Base = nullptr;
6406     uint64_t Members = 0;
6407     if (isHomogeneousAggregate(Ty, Base, Members))
6408       return classifyHomogeneousAggregate(Ty, Base, Members);
6409   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6410     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6411     // this convention even for a variadic function: the backend will use GPRs
6412     // if needed.
6413     const Type *Base = nullptr;
6414     uint64_t Members = 0;
6415     if (isHomogeneousAggregate(Ty, Base, Members)) {
6416       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6417       llvm::Type *Ty =
6418         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6419       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6420     }
6421   }
6422 
6423   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6424       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6425     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6426     // bigger than 128-bits, they get placed in space allocated by the caller,
6427     // and a pointer is passed.
6428     return ABIArgInfo::getIndirect(
6429         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6430   }
6431 
6432   // Support byval for ARM.
6433   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6434   // most 8-byte. We realign the indirect argument if type alignment is bigger
6435   // than ABI alignment.
6436   uint64_t ABIAlign = 4;
6437   uint64_t TyAlign;
6438   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6439       getABIKind() == ARMABIInfo::AAPCS) {
6440     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6441     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6442   } else {
6443     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6444   }
6445   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6446     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6447     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6448                                    /*ByVal=*/true,
6449                                    /*Realign=*/TyAlign > ABIAlign);
6450   }
6451 
6452   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6453   // same size and alignment.
6454   if (getTarget().isRenderScriptTarget()) {
6455     return coerceToIntArray(Ty, getContext(), getVMContext());
6456   }
6457 
6458   // Otherwise, pass by coercing to a structure of the appropriate size.
6459   llvm::Type* ElemTy;
6460   unsigned SizeRegs;
6461   // FIXME: Try to match the types of the arguments more accurately where
6462   // we can.
6463   if (TyAlign <= 4) {
6464     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6465     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6466   } else {
6467     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6468     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6469   }
6470 
6471   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6472 }
6473 
6474 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6475                               llvm::LLVMContext &VMContext) {
6476   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6477   // is called integer-like if its size is less than or equal to one word, and
6478   // the offset of each of its addressable sub-fields is zero.
6479 
6480   uint64_t Size = Context.getTypeSize(Ty);
6481 
6482   // Check that the type fits in a word.
6483   if (Size > 32)
6484     return false;
6485 
6486   // FIXME: Handle vector types!
6487   if (Ty->isVectorType())
6488     return false;
6489 
6490   // Float types are never treated as "integer like".
6491   if (Ty->isRealFloatingType())
6492     return false;
6493 
6494   // If this is a builtin or pointer type then it is ok.
6495   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6496     return true;
6497 
6498   // Small complex integer types are "integer like".
6499   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6500     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6501 
6502   // Single element and zero sized arrays should be allowed, by the definition
6503   // above, but they are not.
6504 
6505   // Otherwise, it must be a record type.
6506   const RecordType *RT = Ty->getAs<RecordType>();
6507   if (!RT) return false;
6508 
6509   // Ignore records with flexible arrays.
6510   const RecordDecl *RD = RT->getDecl();
6511   if (RD->hasFlexibleArrayMember())
6512     return false;
6513 
6514   // Check that all sub-fields are at offset 0, and are themselves "integer
6515   // like".
6516   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6517 
6518   bool HadField = false;
6519   unsigned idx = 0;
6520   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6521        i != e; ++i, ++idx) {
6522     const FieldDecl *FD = *i;
6523 
6524     // Bit-fields are not addressable, we only need to verify they are "integer
6525     // like". We still have to disallow a subsequent non-bitfield, for example:
6526     //   struct { int : 0; int x }
6527     // is non-integer like according to gcc.
6528     if (FD->isBitField()) {
6529       if (!RD->isUnion())
6530         HadField = true;
6531 
6532       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6533         return false;
6534 
6535       continue;
6536     }
6537 
6538     // Check if this field is at offset 0.
6539     if (Layout.getFieldOffset(idx) != 0)
6540       return false;
6541 
6542     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6543       return false;
6544 
6545     // Only allow at most one field in a structure. This doesn't match the
6546     // wording above, but follows gcc in situations with a field following an
6547     // empty structure.
6548     if (!RD->isUnion()) {
6549       if (HadField)
6550         return false;
6551 
6552       HadField = true;
6553     }
6554   }
6555 
6556   return true;
6557 }
6558 
6559 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6560                                           unsigned functionCallConv) const {
6561 
6562   // Variadic functions should always marshal to the base standard.
6563   bool IsAAPCS_VFP =
6564       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6565 
6566   if (RetTy->isVoidType())
6567     return ABIArgInfo::getIgnore();
6568 
6569   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6570     // Large vector types should be returned via memory.
6571     if (getContext().getTypeSize(RetTy) > 128)
6572       return getNaturalAlignIndirect(RetTy);
6573     // TODO: FP16/BF16 vectors should be converted to integer vectors
6574     // This check is similar  to isIllegalVectorType - refactor?
6575     if ((!getTarget().hasLegalHalfType() &&
6576         (VT->getElementType()->isFloat16Type() ||
6577          VT->getElementType()->isHalfType())) ||
6578         (IsFloatABISoftFP &&
6579          VT->getElementType()->isBFloat16Type()))
6580       return coerceIllegalVector(RetTy);
6581   }
6582 
6583   if (!isAggregateTypeForABI(RetTy)) {
6584     // Treat an enum type as its underlying type.
6585     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6586       RetTy = EnumTy->getDecl()->getIntegerType();
6587 
6588     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6589       if (EIT->getNumBits() > 64)
6590         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6591 
6592     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6593                                                 : ABIArgInfo::getDirect();
6594   }
6595 
6596   // Are we following APCS?
6597   if (getABIKind() == APCS) {
6598     if (isEmptyRecord(getContext(), RetTy, false))
6599       return ABIArgInfo::getIgnore();
6600 
6601     // Complex types are all returned as packed integers.
6602     //
6603     // FIXME: Consider using 2 x vector types if the back end handles them
6604     // correctly.
6605     if (RetTy->isAnyComplexType())
6606       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6607           getVMContext(), getContext().getTypeSize(RetTy)));
6608 
6609     // Integer like structures are returned in r0.
6610     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6611       // Return in the smallest viable integer type.
6612       uint64_t Size = getContext().getTypeSize(RetTy);
6613       if (Size <= 8)
6614         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6615       if (Size <= 16)
6616         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6617       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6618     }
6619 
6620     // Otherwise return in memory.
6621     return getNaturalAlignIndirect(RetTy);
6622   }
6623 
6624   // Otherwise this is an AAPCS variant.
6625 
6626   if (isEmptyRecord(getContext(), RetTy, true))
6627     return ABIArgInfo::getIgnore();
6628 
6629   // Check for homogeneous aggregates with AAPCS-VFP.
6630   if (IsAAPCS_VFP) {
6631     const Type *Base = nullptr;
6632     uint64_t Members = 0;
6633     if (isHomogeneousAggregate(RetTy, Base, Members))
6634       return classifyHomogeneousAggregate(RetTy, Base, Members);
6635   }
6636 
6637   // Aggregates <= 4 bytes are returned in r0; other aggregates
6638   // are returned indirectly.
6639   uint64_t Size = getContext().getTypeSize(RetTy);
6640   if (Size <= 32) {
6641     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6642     // same size and alignment.
6643     if (getTarget().isRenderScriptTarget()) {
6644       return coerceToIntArray(RetTy, getContext(), getVMContext());
6645     }
6646     if (getDataLayout().isBigEndian())
6647       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6648       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6649 
6650     // Return in the smallest viable integer type.
6651     if (Size <= 8)
6652       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6653     if (Size <= 16)
6654       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6655     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6656   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6657     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6658     llvm::Type *CoerceTy =
6659         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6660     return ABIArgInfo::getDirect(CoerceTy);
6661   }
6662 
6663   return getNaturalAlignIndirect(RetTy);
6664 }
6665 
6666 /// isIllegalVector - check whether Ty is an illegal vector type.
6667 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6668   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6669     // On targets that don't support half, fp16 or bfloat, they are expanded
6670     // into float, and we don't want the ABI to depend on whether or not they
6671     // are supported in hardware. Thus return false to coerce vectors of these
6672     // types into integer vectors.
6673     // We do not depend on hasLegalHalfType for bfloat as it is a
6674     // separate IR type.
6675     if ((!getTarget().hasLegalHalfType() &&
6676         (VT->getElementType()->isFloat16Type() ||
6677          VT->getElementType()->isHalfType())) ||
6678         (IsFloatABISoftFP &&
6679          VT->getElementType()->isBFloat16Type()))
6680       return true;
6681     if (isAndroid()) {
6682       // Android shipped using Clang 3.1, which supported a slightly different
6683       // vector ABI. The primary differences were that 3-element vector types
6684       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6685       // accepts that legacy behavior for Android only.
6686       // Check whether VT is legal.
6687       unsigned NumElements = VT->getNumElements();
6688       // NumElements should be power of 2 or equal to 3.
6689       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6690         return true;
6691     } else {
6692       // Check whether VT is legal.
6693       unsigned NumElements = VT->getNumElements();
6694       uint64_t Size = getContext().getTypeSize(VT);
6695       // NumElements should be power of 2.
6696       if (!llvm::isPowerOf2_32(NumElements))
6697         return true;
6698       // Size should be greater than 32 bits.
6699       return Size <= 32;
6700     }
6701   }
6702   return false;
6703 }
6704 
6705 /// Return true if a type contains any 16-bit floating point vectors
6706 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6707   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6708     uint64_t NElements = AT->getSize().getZExtValue();
6709     if (NElements == 0)
6710       return false;
6711     return containsAnyFP16Vectors(AT->getElementType());
6712   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6713     const RecordDecl *RD = RT->getDecl();
6714 
6715     // If this is a C++ record, check the bases first.
6716     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6717       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6718             return containsAnyFP16Vectors(B.getType());
6719           }))
6720         return true;
6721 
6722     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6723           return FD && containsAnyFP16Vectors(FD->getType());
6724         }))
6725       return true;
6726 
6727     return false;
6728   } else {
6729     if (const VectorType *VT = Ty->getAs<VectorType>())
6730       return (VT->getElementType()->isFloat16Type() ||
6731               VT->getElementType()->isBFloat16Type() ||
6732               VT->getElementType()->isHalfType());
6733     return false;
6734   }
6735 }
6736 
6737 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6738                                            llvm::Type *eltTy,
6739                                            unsigned numElts) const {
6740   if (!llvm::isPowerOf2_32(numElts))
6741     return false;
6742   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6743   if (size > 64)
6744     return false;
6745   if (vectorSize.getQuantity() != 8 &&
6746       (vectorSize.getQuantity() != 16 || numElts == 1))
6747     return false;
6748   return true;
6749 }
6750 
6751 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6752   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6753   // double, or 64-bit or 128-bit vectors.
6754   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6755     if (BT->getKind() == BuiltinType::Float ||
6756         BT->getKind() == BuiltinType::Double ||
6757         BT->getKind() == BuiltinType::LongDouble)
6758       return true;
6759   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6760     unsigned VecSize = getContext().getTypeSize(VT);
6761     if (VecSize == 64 || VecSize == 128)
6762       return true;
6763   }
6764   return false;
6765 }
6766 
6767 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6768                                                    uint64_t Members) const {
6769   return Members <= 4;
6770 }
6771 
6772 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6773                                         bool acceptHalf) const {
6774   // Give precedence to user-specified calling conventions.
6775   if (callConvention != llvm::CallingConv::C)
6776     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6777   else
6778     return (getABIKind() == AAPCS_VFP) ||
6779            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6780 }
6781 
6782 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6783                               QualType Ty) const {
6784   CharUnits SlotSize = CharUnits::fromQuantity(4);
6785 
6786   // Empty records are ignored for parameter passing purposes.
6787   if (isEmptyRecord(getContext(), Ty, true)) {
6788     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6789     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6790     return Addr;
6791   }
6792 
6793   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6794   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6795 
6796   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6797   bool IsIndirect = false;
6798   const Type *Base = nullptr;
6799   uint64_t Members = 0;
6800   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6801     IsIndirect = true;
6802 
6803   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6804   // allocated by the caller.
6805   } else if (TySize > CharUnits::fromQuantity(16) &&
6806              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6807              !isHomogeneousAggregate(Ty, Base, Members)) {
6808     IsIndirect = true;
6809 
6810   // Otherwise, bound the type's ABI alignment.
6811   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6812   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6813   // Our callers should be prepared to handle an under-aligned address.
6814   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6815              getABIKind() == ARMABIInfo::AAPCS) {
6816     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6817     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6818   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6819     // ARMv7k allows type alignment up to 16 bytes.
6820     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6821     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6822   } else {
6823     TyAlignForABI = CharUnits::fromQuantity(4);
6824   }
6825 
6826   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6827   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6828                           SlotSize, /*AllowHigherAlign*/ true);
6829 }
6830 
6831 //===----------------------------------------------------------------------===//
6832 // NVPTX ABI Implementation
6833 //===----------------------------------------------------------------------===//
6834 
6835 namespace {
6836 
6837 class NVPTXTargetCodeGenInfo;
6838 
6839 class NVPTXABIInfo : public ABIInfo {
6840   NVPTXTargetCodeGenInfo &CGInfo;
6841 
6842 public:
6843   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6844       : ABIInfo(CGT), CGInfo(Info) {}
6845 
6846   ABIArgInfo classifyReturnType(QualType RetTy) const;
6847   ABIArgInfo classifyArgumentType(QualType Ty) const;
6848 
6849   void computeInfo(CGFunctionInfo &FI) const override;
6850   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6851                     QualType Ty) const override;
6852   bool isUnsupportedType(QualType T) const;
6853   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6854 };
6855 
6856 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6857 public:
6858   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6859       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6860 
6861   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6862                            CodeGen::CodeGenModule &M) const override;
6863   bool shouldEmitStaticExternCAliases() const override;
6864 
6865   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6866     // On the device side, surface reference is represented as an object handle
6867     // in 64-bit integer.
6868     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6869   }
6870 
6871   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6872     // On the device side, texture reference is represented as an object handle
6873     // in 64-bit integer.
6874     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6875   }
6876 
6877   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6878                                               LValue Src) const override {
6879     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6880     return true;
6881   }
6882 
6883   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6884                                               LValue Src) const override {
6885     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6886     return true;
6887   }
6888 
6889 private:
6890   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6891   // resulting MDNode to the nvvm.annotations MDNode.
6892   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6893                               int Operand);
6894 
6895   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6896                                            LValue Src) {
6897     llvm::Value *Handle = nullptr;
6898     llvm::Constant *C =
6899         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6900     // Lookup `addrspacecast` through the constant pointer if any.
6901     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6902       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6903     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6904       // Load the handle from the specific global variable using
6905       // `nvvm.texsurf.handle.internal` intrinsic.
6906       Handle = CGF.EmitRuntimeCall(
6907           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6908                                {GV->getType()}),
6909           {GV}, "texsurf_handle");
6910     } else
6911       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6912     CGF.EmitStoreOfScalar(Handle, Dst);
6913   }
6914 };
6915 
6916 /// Checks if the type is unsupported directly by the current target.
6917 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6918   ASTContext &Context = getContext();
6919   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6920     return true;
6921   if (!Context.getTargetInfo().hasFloat128Type() &&
6922       (T->isFloat128Type() ||
6923        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6924     return true;
6925   if (const auto *EIT = T->getAs<ExtIntType>())
6926     return EIT->getNumBits() >
6927            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
6928   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6929       Context.getTypeSize(T) > 64U)
6930     return true;
6931   if (const auto *AT = T->getAsArrayTypeUnsafe())
6932     return isUnsupportedType(AT->getElementType());
6933   const auto *RT = T->getAs<RecordType>();
6934   if (!RT)
6935     return false;
6936   const RecordDecl *RD = RT->getDecl();
6937 
6938   // If this is a C++ record, check the bases first.
6939   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6940     for (const CXXBaseSpecifier &I : CXXRD->bases())
6941       if (isUnsupportedType(I.getType()))
6942         return true;
6943 
6944   for (const FieldDecl *I : RD->fields())
6945     if (isUnsupportedType(I->getType()))
6946       return true;
6947   return false;
6948 }
6949 
6950 /// Coerce the given type into an array with maximum allowed size of elements.
6951 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
6952                                                    unsigned MaxSize) const {
6953   // Alignment and Size are measured in bits.
6954   const uint64_t Size = getContext().getTypeSize(Ty);
6955   const uint64_t Alignment = getContext().getTypeAlign(Ty);
6956   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6957   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
6958   const uint64_t NumElements = (Size + Div - 1) / Div;
6959   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6960 }
6961 
6962 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6963   if (RetTy->isVoidType())
6964     return ABIArgInfo::getIgnore();
6965 
6966   if (getContext().getLangOpts().OpenMP &&
6967       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
6968     return coerceToIntArrayWithLimit(RetTy, 64);
6969 
6970   // note: this is different from default ABI
6971   if (!RetTy->isScalarType())
6972     return ABIArgInfo::getDirect();
6973 
6974   // Treat an enum type as its underlying type.
6975   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6976     RetTy = EnumTy->getDecl()->getIntegerType();
6977 
6978   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6979                                                : ABIArgInfo::getDirect());
6980 }
6981 
6982 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6983   // Treat an enum type as its underlying type.
6984   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6985     Ty = EnumTy->getDecl()->getIntegerType();
6986 
6987   // Return aggregates type as indirect by value
6988   if (isAggregateTypeForABI(Ty)) {
6989     // Under CUDA device compilation, tex/surf builtin types are replaced with
6990     // object types and passed directly.
6991     if (getContext().getLangOpts().CUDAIsDevice) {
6992       if (Ty->isCUDADeviceBuiltinSurfaceType())
6993         return ABIArgInfo::getDirect(
6994             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
6995       if (Ty->isCUDADeviceBuiltinTextureType())
6996         return ABIArgInfo::getDirect(
6997             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
6998     }
6999     return getNaturalAlignIndirect(Ty, /* byval */ true);
7000   }
7001 
7002   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7003     if ((EIT->getNumBits() > 128) ||
7004         (!getContext().getTargetInfo().hasInt128Type() &&
7005          EIT->getNumBits() > 64))
7006       return getNaturalAlignIndirect(Ty, /* byval */ true);
7007   }
7008 
7009   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7010                                             : ABIArgInfo::getDirect());
7011 }
7012 
7013 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7014   if (!getCXXABI().classifyReturnType(FI))
7015     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7016   for (auto &I : FI.arguments())
7017     I.info = classifyArgumentType(I.type);
7018 
7019   // Always honor user-specified calling convention.
7020   if (FI.getCallingConvention() != llvm::CallingConv::C)
7021     return;
7022 
7023   FI.setEffectiveCallingConvention(getRuntimeCC());
7024 }
7025 
7026 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7027                                 QualType Ty) const {
7028   llvm_unreachable("NVPTX does not support varargs");
7029 }
7030 
7031 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7032     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7033   if (GV->isDeclaration())
7034     return;
7035   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7036   if (VD) {
7037     if (M.getLangOpts().CUDA) {
7038       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7039         addNVVMMetadata(GV, "surface", 1);
7040       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7041         addNVVMMetadata(GV, "texture", 1);
7042       return;
7043     }
7044   }
7045 
7046   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7047   if (!FD) return;
7048 
7049   llvm::Function *F = cast<llvm::Function>(GV);
7050 
7051   // Perform special handling in OpenCL mode
7052   if (M.getLangOpts().OpenCL) {
7053     // Use OpenCL function attributes to check for kernel functions
7054     // By default, all functions are device functions
7055     if (FD->hasAttr<OpenCLKernelAttr>()) {
7056       // OpenCL __kernel functions get kernel metadata
7057       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7058       addNVVMMetadata(F, "kernel", 1);
7059       // And kernel functions are not subject to inlining
7060       F->addFnAttr(llvm::Attribute::NoInline);
7061     }
7062   }
7063 
7064   // Perform special handling in CUDA mode.
7065   if (M.getLangOpts().CUDA) {
7066     // CUDA __global__ functions get a kernel metadata entry.  Since
7067     // __global__ functions cannot be called from the device, we do not
7068     // need to set the noinline attribute.
7069     if (FD->hasAttr<CUDAGlobalAttr>()) {
7070       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7071       addNVVMMetadata(F, "kernel", 1);
7072     }
7073     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7074       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7075       llvm::APSInt MaxThreads(32);
7076       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7077       if (MaxThreads > 0)
7078         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7079 
7080       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7081       // not specified in __launch_bounds__ or if the user specified a 0 value,
7082       // we don't have to add a PTX directive.
7083       if (Attr->getMinBlocks()) {
7084         llvm::APSInt MinBlocks(32);
7085         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7086         if (MinBlocks > 0)
7087           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7088           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7089       }
7090     }
7091   }
7092 }
7093 
7094 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7095                                              StringRef Name, int Operand) {
7096   llvm::Module *M = GV->getParent();
7097   llvm::LLVMContext &Ctx = M->getContext();
7098 
7099   // Get "nvvm.annotations" metadata node
7100   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7101 
7102   llvm::Metadata *MDVals[] = {
7103       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7104       llvm::ConstantAsMetadata::get(
7105           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7106   // Append metadata to nvvm.annotations
7107   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7108 }
7109 
7110 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7111   return false;
7112 }
7113 }
7114 
7115 //===----------------------------------------------------------------------===//
7116 // SystemZ ABI Implementation
7117 //===----------------------------------------------------------------------===//
7118 
7119 namespace {
7120 
7121 class SystemZABIInfo : public SwiftABIInfo {
7122   bool HasVector;
7123   bool IsSoftFloatABI;
7124 
7125 public:
7126   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7127     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7128 
7129   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7130   bool isCompoundType(QualType Ty) const;
7131   bool isVectorArgumentType(QualType Ty) const;
7132   bool isFPArgumentType(QualType Ty) const;
7133   QualType GetSingleElementType(QualType Ty) const;
7134 
7135   ABIArgInfo classifyReturnType(QualType RetTy) const;
7136   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7137 
7138   void computeInfo(CGFunctionInfo &FI) const override {
7139     if (!getCXXABI().classifyReturnType(FI))
7140       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7141     for (auto &I : FI.arguments())
7142       I.info = classifyArgumentType(I.type);
7143   }
7144 
7145   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7146                     QualType Ty) const override;
7147 
7148   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7149                                     bool asReturnValue) const override {
7150     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7151   }
7152   bool isSwiftErrorInRegister() const override {
7153     return false;
7154   }
7155 };
7156 
7157 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7158 public:
7159   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7160       : TargetCodeGenInfo(
7161             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7162 };
7163 
7164 }
7165 
7166 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7167   // Treat an enum type as its underlying type.
7168   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7169     Ty = EnumTy->getDecl()->getIntegerType();
7170 
7171   // Promotable integer types are required to be promoted by the ABI.
7172   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7173     return true;
7174 
7175   if (const auto *EIT = Ty->getAs<ExtIntType>())
7176     if (EIT->getNumBits() < 64)
7177       return true;
7178 
7179   // 32-bit values must also be promoted.
7180   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7181     switch (BT->getKind()) {
7182     case BuiltinType::Int:
7183     case BuiltinType::UInt:
7184       return true;
7185     default:
7186       return false;
7187     }
7188   return false;
7189 }
7190 
7191 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7192   return (Ty->isAnyComplexType() ||
7193           Ty->isVectorType() ||
7194           isAggregateTypeForABI(Ty));
7195 }
7196 
7197 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7198   return (HasVector &&
7199           Ty->isVectorType() &&
7200           getContext().getTypeSize(Ty) <= 128);
7201 }
7202 
7203 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7204   if (IsSoftFloatABI)
7205     return false;
7206 
7207   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7208     switch (BT->getKind()) {
7209     case BuiltinType::Float:
7210     case BuiltinType::Double:
7211       return true;
7212     default:
7213       return false;
7214     }
7215 
7216   return false;
7217 }
7218 
7219 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7220   const RecordType *RT = Ty->getAs<RecordType>();
7221 
7222   if (RT && RT->isStructureOrClassType()) {
7223     const RecordDecl *RD = RT->getDecl();
7224     QualType Found;
7225 
7226     // If this is a C++ record, check the bases first.
7227     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7228       for (const auto &I : CXXRD->bases()) {
7229         QualType Base = I.getType();
7230 
7231         // Empty bases don't affect things either way.
7232         if (isEmptyRecord(getContext(), Base, true))
7233           continue;
7234 
7235         if (!Found.isNull())
7236           return Ty;
7237         Found = GetSingleElementType(Base);
7238       }
7239 
7240     // Check the fields.
7241     for (const auto *FD : RD->fields()) {
7242       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7243       // Unlike isSingleElementStruct(), empty structure and array fields
7244       // do count.  So do anonymous bitfields that aren't zero-sized.
7245       if (getContext().getLangOpts().CPlusPlus &&
7246           FD->isZeroLengthBitField(getContext()))
7247         continue;
7248       // Like isSingleElementStruct(), ignore C++20 empty data members.
7249       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7250           isEmptyRecord(getContext(), FD->getType(), true))
7251         continue;
7252 
7253       // Unlike isSingleElementStruct(), arrays do not count.
7254       // Nested structures still do though.
7255       if (!Found.isNull())
7256         return Ty;
7257       Found = GetSingleElementType(FD->getType());
7258     }
7259 
7260     // Unlike isSingleElementStruct(), trailing padding is allowed.
7261     // An 8-byte aligned struct s { float f; } is passed as a double.
7262     if (!Found.isNull())
7263       return Found;
7264   }
7265 
7266   return Ty;
7267 }
7268 
7269 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7270                                   QualType Ty) const {
7271   // Assume that va_list type is correct; should be pointer to LLVM type:
7272   // struct {
7273   //   i64 __gpr;
7274   //   i64 __fpr;
7275   //   i8 *__overflow_arg_area;
7276   //   i8 *__reg_save_area;
7277   // };
7278 
7279   // Every non-vector argument occupies 8 bytes and is passed by preference
7280   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7281   // always passed on the stack.
7282   Ty = getContext().getCanonicalType(Ty);
7283   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7284   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7285   llvm::Type *DirectTy = ArgTy;
7286   ABIArgInfo AI = classifyArgumentType(Ty);
7287   bool IsIndirect = AI.isIndirect();
7288   bool InFPRs = false;
7289   bool IsVector = false;
7290   CharUnits UnpaddedSize;
7291   CharUnits DirectAlign;
7292   if (IsIndirect) {
7293     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7294     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7295   } else {
7296     if (AI.getCoerceToType())
7297       ArgTy = AI.getCoerceToType();
7298     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7299     IsVector = ArgTy->isVectorTy();
7300     UnpaddedSize = TyInfo.first;
7301     DirectAlign = TyInfo.second;
7302   }
7303   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7304   if (IsVector && UnpaddedSize > PaddedSize)
7305     PaddedSize = CharUnits::fromQuantity(16);
7306   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7307 
7308   CharUnits Padding = (PaddedSize - UnpaddedSize);
7309 
7310   llvm::Type *IndexTy = CGF.Int64Ty;
7311   llvm::Value *PaddedSizeV =
7312     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7313 
7314   if (IsVector) {
7315     // Work out the address of a vector argument on the stack.
7316     // Vector arguments are always passed in the high bits of a
7317     // single (8 byte) or double (16 byte) stack slot.
7318     Address OverflowArgAreaPtr =
7319         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7320     Address OverflowArgArea =
7321       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7322               TyInfo.second);
7323     Address MemAddr =
7324       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7325 
7326     // Update overflow_arg_area_ptr pointer
7327     llvm::Value *NewOverflowArgArea =
7328       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7329                             "overflow_arg_area");
7330     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7331 
7332     return MemAddr;
7333   }
7334 
7335   assert(PaddedSize.getQuantity() == 8);
7336 
7337   unsigned MaxRegs, RegCountField, RegSaveIndex;
7338   CharUnits RegPadding;
7339   if (InFPRs) {
7340     MaxRegs = 4; // Maximum of 4 FPR arguments
7341     RegCountField = 1; // __fpr
7342     RegSaveIndex = 16; // save offset for f0
7343     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7344   } else {
7345     MaxRegs = 5; // Maximum of 5 GPR arguments
7346     RegCountField = 0; // __gpr
7347     RegSaveIndex = 2; // save offset for r2
7348     RegPadding = Padding; // values are passed in the low bits of a GPR
7349   }
7350 
7351   Address RegCountPtr =
7352       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7353   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7354   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7355   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7356                                                  "fits_in_regs");
7357 
7358   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7359   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7360   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7361   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7362 
7363   // Emit code to load the value if it was passed in registers.
7364   CGF.EmitBlock(InRegBlock);
7365 
7366   // Work out the address of an argument register.
7367   llvm::Value *ScaledRegCount =
7368     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7369   llvm::Value *RegBase =
7370     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7371                                       + RegPadding.getQuantity());
7372   llvm::Value *RegOffset =
7373     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7374   Address RegSaveAreaPtr =
7375       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7376   llvm::Value *RegSaveArea =
7377     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7378   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7379                                            "raw_reg_addr"),
7380                      PaddedSize);
7381   Address RegAddr =
7382     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7383 
7384   // Update the register count
7385   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7386   llvm::Value *NewRegCount =
7387     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7388   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7389   CGF.EmitBranch(ContBlock);
7390 
7391   // Emit code to load the value if it was passed in memory.
7392   CGF.EmitBlock(InMemBlock);
7393 
7394   // Work out the address of a stack argument.
7395   Address OverflowArgAreaPtr =
7396       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7397   Address OverflowArgArea =
7398     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7399             PaddedSize);
7400   Address RawMemAddr =
7401     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7402   Address MemAddr =
7403     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7404 
7405   // Update overflow_arg_area_ptr pointer
7406   llvm::Value *NewOverflowArgArea =
7407     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7408                           "overflow_arg_area");
7409   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7410   CGF.EmitBranch(ContBlock);
7411 
7412   // Return the appropriate result.
7413   CGF.EmitBlock(ContBlock);
7414   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7415                                  MemAddr, InMemBlock, "va_arg.addr");
7416 
7417   if (IsIndirect)
7418     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7419                       TyInfo.second);
7420 
7421   return ResAddr;
7422 }
7423 
7424 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7425   if (RetTy->isVoidType())
7426     return ABIArgInfo::getIgnore();
7427   if (isVectorArgumentType(RetTy))
7428     return ABIArgInfo::getDirect();
7429   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7430     return getNaturalAlignIndirect(RetTy);
7431   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7432                                                : ABIArgInfo::getDirect());
7433 }
7434 
7435 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7436   // Handle the generic C++ ABI.
7437   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7438     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7439 
7440   // Integers and enums are extended to full register width.
7441   if (isPromotableIntegerTypeForABI(Ty))
7442     return ABIArgInfo::getExtend(Ty);
7443 
7444   // Handle vector types and vector-like structure types.  Note that
7445   // as opposed to float-like structure types, we do not allow any
7446   // padding for vector-like structures, so verify the sizes match.
7447   uint64_t Size = getContext().getTypeSize(Ty);
7448   QualType SingleElementTy = GetSingleElementType(Ty);
7449   if (isVectorArgumentType(SingleElementTy) &&
7450       getContext().getTypeSize(SingleElementTy) == Size)
7451     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7452 
7453   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7454   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7455     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7456 
7457   // Handle small structures.
7458   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7459     // Structures with flexible arrays have variable length, so really
7460     // fail the size test above.
7461     const RecordDecl *RD = RT->getDecl();
7462     if (RD->hasFlexibleArrayMember())
7463       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7464 
7465     // The structure is passed as an unextended integer, a float, or a double.
7466     llvm::Type *PassTy;
7467     if (isFPArgumentType(SingleElementTy)) {
7468       assert(Size == 32 || Size == 64);
7469       if (Size == 32)
7470         PassTy = llvm::Type::getFloatTy(getVMContext());
7471       else
7472         PassTy = llvm::Type::getDoubleTy(getVMContext());
7473     } else
7474       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7475     return ABIArgInfo::getDirect(PassTy);
7476   }
7477 
7478   // Non-structure compounds are passed indirectly.
7479   if (isCompoundType(Ty))
7480     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7481 
7482   return ABIArgInfo::getDirect(nullptr);
7483 }
7484 
7485 //===----------------------------------------------------------------------===//
7486 // MSP430 ABI Implementation
7487 //===----------------------------------------------------------------------===//
7488 
7489 namespace {
7490 
7491 class MSP430ABIInfo : public DefaultABIInfo {
7492   static ABIArgInfo complexArgInfo() {
7493     ABIArgInfo Info = ABIArgInfo::getDirect();
7494     Info.setCanBeFlattened(false);
7495     return Info;
7496   }
7497 
7498 public:
7499   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7500 
7501   ABIArgInfo classifyReturnType(QualType RetTy) const {
7502     if (RetTy->isAnyComplexType())
7503       return complexArgInfo();
7504 
7505     return DefaultABIInfo::classifyReturnType(RetTy);
7506   }
7507 
7508   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7509     if (RetTy->isAnyComplexType())
7510       return complexArgInfo();
7511 
7512     return DefaultABIInfo::classifyArgumentType(RetTy);
7513   }
7514 
7515   // Just copy the original implementations because
7516   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7517   void computeInfo(CGFunctionInfo &FI) const override {
7518     if (!getCXXABI().classifyReturnType(FI))
7519       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7520     for (auto &I : FI.arguments())
7521       I.info = classifyArgumentType(I.type);
7522   }
7523 
7524   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7525                     QualType Ty) const override {
7526     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7527   }
7528 };
7529 
7530 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7531 public:
7532   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7533       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7534   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7535                            CodeGen::CodeGenModule &M) const override;
7536 };
7537 
7538 }
7539 
7540 void MSP430TargetCodeGenInfo::setTargetAttributes(
7541     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7542   if (GV->isDeclaration())
7543     return;
7544   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7545     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7546     if (!InterruptAttr)
7547       return;
7548 
7549     // Handle 'interrupt' attribute:
7550     llvm::Function *F = cast<llvm::Function>(GV);
7551 
7552     // Step 1: Set ISR calling convention.
7553     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7554 
7555     // Step 2: Add attributes goodness.
7556     F->addFnAttr(llvm::Attribute::NoInline);
7557     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7558   }
7559 }
7560 
7561 //===----------------------------------------------------------------------===//
7562 // MIPS ABI Implementation.  This works for both little-endian and
7563 // big-endian variants.
7564 //===----------------------------------------------------------------------===//
7565 
7566 namespace {
7567 class MipsABIInfo : public ABIInfo {
7568   bool IsO32;
7569   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7570   void CoerceToIntArgs(uint64_t TySize,
7571                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7572   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7573   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7574   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7575 public:
7576   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7577     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7578     StackAlignInBytes(IsO32 ? 8 : 16) {}
7579 
7580   ABIArgInfo classifyReturnType(QualType RetTy) const;
7581   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7582   void computeInfo(CGFunctionInfo &FI) const override;
7583   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7584                     QualType Ty) const override;
7585   ABIArgInfo extendType(QualType Ty) const;
7586 };
7587 
7588 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7589   unsigned SizeOfUnwindException;
7590 public:
7591   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7592       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7593         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7594 
7595   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7596     return 29;
7597   }
7598 
7599   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7600                            CodeGen::CodeGenModule &CGM) const override {
7601     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7602     if (!FD) return;
7603     llvm::Function *Fn = cast<llvm::Function>(GV);
7604 
7605     if (FD->hasAttr<MipsLongCallAttr>())
7606       Fn->addFnAttr("long-call");
7607     else if (FD->hasAttr<MipsShortCallAttr>())
7608       Fn->addFnAttr("short-call");
7609 
7610     // Other attributes do not have a meaning for declarations.
7611     if (GV->isDeclaration())
7612       return;
7613 
7614     if (FD->hasAttr<Mips16Attr>()) {
7615       Fn->addFnAttr("mips16");
7616     }
7617     else if (FD->hasAttr<NoMips16Attr>()) {
7618       Fn->addFnAttr("nomips16");
7619     }
7620 
7621     if (FD->hasAttr<MicroMipsAttr>())
7622       Fn->addFnAttr("micromips");
7623     else if (FD->hasAttr<NoMicroMipsAttr>())
7624       Fn->addFnAttr("nomicromips");
7625 
7626     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7627     if (!Attr)
7628       return;
7629 
7630     const char *Kind;
7631     switch (Attr->getInterrupt()) {
7632     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7633     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7634     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7635     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7636     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7637     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7638     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7639     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7640     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7641     }
7642 
7643     Fn->addFnAttr("interrupt", Kind);
7644 
7645   }
7646 
7647   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7648                                llvm::Value *Address) const override;
7649 
7650   unsigned getSizeOfUnwindException() const override {
7651     return SizeOfUnwindException;
7652   }
7653 };
7654 }
7655 
7656 void MipsABIInfo::CoerceToIntArgs(
7657     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7658   llvm::IntegerType *IntTy =
7659     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7660 
7661   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7662   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7663     ArgList.push_back(IntTy);
7664 
7665   // If necessary, add one more integer type to ArgList.
7666   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7667 
7668   if (R)
7669     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7670 }
7671 
7672 // In N32/64, an aligned double precision floating point field is passed in
7673 // a register.
7674 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7675   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7676 
7677   if (IsO32) {
7678     CoerceToIntArgs(TySize, ArgList);
7679     return llvm::StructType::get(getVMContext(), ArgList);
7680   }
7681 
7682   if (Ty->isComplexType())
7683     return CGT.ConvertType(Ty);
7684 
7685   const RecordType *RT = Ty->getAs<RecordType>();
7686 
7687   // Unions/vectors are passed in integer registers.
7688   if (!RT || !RT->isStructureOrClassType()) {
7689     CoerceToIntArgs(TySize, ArgList);
7690     return llvm::StructType::get(getVMContext(), ArgList);
7691   }
7692 
7693   const RecordDecl *RD = RT->getDecl();
7694   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7695   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7696 
7697   uint64_t LastOffset = 0;
7698   unsigned idx = 0;
7699   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7700 
7701   // Iterate over fields in the struct/class and check if there are any aligned
7702   // double fields.
7703   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7704        i != e; ++i, ++idx) {
7705     const QualType Ty = i->getType();
7706     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7707 
7708     if (!BT || BT->getKind() != BuiltinType::Double)
7709       continue;
7710 
7711     uint64_t Offset = Layout.getFieldOffset(idx);
7712     if (Offset % 64) // Ignore doubles that are not aligned.
7713       continue;
7714 
7715     // Add ((Offset - LastOffset) / 64) args of type i64.
7716     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7717       ArgList.push_back(I64);
7718 
7719     // Add double type.
7720     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7721     LastOffset = Offset + 64;
7722   }
7723 
7724   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7725   ArgList.append(IntArgList.begin(), IntArgList.end());
7726 
7727   return llvm::StructType::get(getVMContext(), ArgList);
7728 }
7729 
7730 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7731                                         uint64_t Offset) const {
7732   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7733     return nullptr;
7734 
7735   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7736 }
7737 
7738 ABIArgInfo
7739 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7740   Ty = useFirstFieldIfTransparentUnion(Ty);
7741 
7742   uint64_t OrigOffset = Offset;
7743   uint64_t TySize = getContext().getTypeSize(Ty);
7744   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7745 
7746   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7747                    (uint64_t)StackAlignInBytes);
7748   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7749   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7750 
7751   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7752     // Ignore empty aggregates.
7753     if (TySize == 0)
7754       return ABIArgInfo::getIgnore();
7755 
7756     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7757       Offset = OrigOffset + MinABIStackAlignInBytes;
7758       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7759     }
7760 
7761     // If we have reached here, aggregates are passed directly by coercing to
7762     // another structure type. Padding is inserted if the offset of the
7763     // aggregate is unaligned.
7764     ABIArgInfo ArgInfo =
7765         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7766                               getPaddingType(OrigOffset, CurrOffset));
7767     ArgInfo.setInReg(true);
7768     return ArgInfo;
7769   }
7770 
7771   // Treat an enum type as its underlying type.
7772   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7773     Ty = EnumTy->getDecl()->getIntegerType();
7774 
7775   // Make sure we pass indirectly things that are too large.
7776   if (const auto *EIT = Ty->getAs<ExtIntType>())
7777     if (EIT->getNumBits() > 128 ||
7778         (EIT->getNumBits() > 64 &&
7779          !getContext().getTargetInfo().hasInt128Type()))
7780       return getNaturalAlignIndirect(Ty);
7781 
7782   // All integral types are promoted to the GPR width.
7783   if (Ty->isIntegralOrEnumerationType())
7784     return extendType(Ty);
7785 
7786   return ABIArgInfo::getDirect(
7787       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7788 }
7789 
7790 llvm::Type*
7791 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7792   const RecordType *RT = RetTy->getAs<RecordType>();
7793   SmallVector<llvm::Type*, 8> RTList;
7794 
7795   if (RT && RT->isStructureOrClassType()) {
7796     const RecordDecl *RD = RT->getDecl();
7797     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7798     unsigned FieldCnt = Layout.getFieldCount();
7799 
7800     // N32/64 returns struct/classes in floating point registers if the
7801     // following conditions are met:
7802     // 1. The size of the struct/class is no larger than 128-bit.
7803     // 2. The struct/class has one or two fields all of which are floating
7804     //    point types.
7805     // 3. The offset of the first field is zero (this follows what gcc does).
7806     //
7807     // Any other composite results are returned in integer registers.
7808     //
7809     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7810       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7811       for (; b != e; ++b) {
7812         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7813 
7814         if (!BT || !BT->isFloatingPoint())
7815           break;
7816 
7817         RTList.push_back(CGT.ConvertType(b->getType()));
7818       }
7819 
7820       if (b == e)
7821         return llvm::StructType::get(getVMContext(), RTList,
7822                                      RD->hasAttr<PackedAttr>());
7823 
7824       RTList.clear();
7825     }
7826   }
7827 
7828   CoerceToIntArgs(Size, RTList);
7829   return llvm::StructType::get(getVMContext(), RTList);
7830 }
7831 
7832 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7833   uint64_t Size = getContext().getTypeSize(RetTy);
7834 
7835   if (RetTy->isVoidType())
7836     return ABIArgInfo::getIgnore();
7837 
7838   // O32 doesn't treat zero-sized structs differently from other structs.
7839   // However, N32/N64 ignores zero sized return values.
7840   if (!IsO32 && Size == 0)
7841     return ABIArgInfo::getIgnore();
7842 
7843   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7844     if (Size <= 128) {
7845       if (RetTy->isAnyComplexType())
7846         return ABIArgInfo::getDirect();
7847 
7848       // O32 returns integer vectors in registers and N32/N64 returns all small
7849       // aggregates in registers.
7850       if (!IsO32 ||
7851           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7852         ABIArgInfo ArgInfo =
7853             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7854         ArgInfo.setInReg(true);
7855         return ArgInfo;
7856       }
7857     }
7858 
7859     return getNaturalAlignIndirect(RetTy);
7860   }
7861 
7862   // Treat an enum type as its underlying type.
7863   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7864     RetTy = EnumTy->getDecl()->getIntegerType();
7865 
7866   // Make sure we pass indirectly things that are too large.
7867   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7868     if (EIT->getNumBits() > 128 ||
7869         (EIT->getNumBits() > 64 &&
7870          !getContext().getTargetInfo().hasInt128Type()))
7871       return getNaturalAlignIndirect(RetTy);
7872 
7873   if (isPromotableIntegerTypeForABI(RetTy))
7874     return ABIArgInfo::getExtend(RetTy);
7875 
7876   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7877       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7878     return ABIArgInfo::getSignExtend(RetTy);
7879 
7880   return ABIArgInfo::getDirect();
7881 }
7882 
7883 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7884   ABIArgInfo &RetInfo = FI.getReturnInfo();
7885   if (!getCXXABI().classifyReturnType(FI))
7886     RetInfo = classifyReturnType(FI.getReturnType());
7887 
7888   // Check if a pointer to an aggregate is passed as a hidden argument.
7889   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7890 
7891   for (auto &I : FI.arguments())
7892     I.info = classifyArgumentType(I.type, Offset);
7893 }
7894 
7895 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7896                                QualType OrigTy) const {
7897   QualType Ty = OrigTy;
7898 
7899   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7900   // Pointers are also promoted in the same way but this only matters for N32.
7901   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7902   unsigned PtrWidth = getTarget().getPointerWidth(0);
7903   bool DidPromote = false;
7904   if ((Ty->isIntegerType() &&
7905           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7906       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7907     DidPromote = true;
7908     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7909                                             Ty->isSignedIntegerType());
7910   }
7911 
7912   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7913 
7914   // The alignment of things in the argument area is never larger than
7915   // StackAlignInBytes.
7916   TyInfo.second =
7917     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7918 
7919   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7920   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7921 
7922   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7923                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7924 
7925 
7926   // If there was a promotion, "unpromote" into a temporary.
7927   // TODO: can we just use a pointer into a subset of the original slot?
7928   if (DidPromote) {
7929     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7930     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7931 
7932     // Truncate down to the right width.
7933     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7934                                                  : CGF.IntPtrTy);
7935     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7936     if (OrigTy->isPointerType())
7937       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7938 
7939     CGF.Builder.CreateStore(V, Temp);
7940     Addr = Temp;
7941   }
7942 
7943   return Addr;
7944 }
7945 
7946 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7947   int TySize = getContext().getTypeSize(Ty);
7948 
7949   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7950   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7951     return ABIArgInfo::getSignExtend(Ty);
7952 
7953   return ABIArgInfo::getExtend(Ty);
7954 }
7955 
7956 bool
7957 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7958                                                llvm::Value *Address) const {
7959   // This information comes from gcc's implementation, which seems to
7960   // as canonical as it gets.
7961 
7962   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7963   // are aliased to pairs of single-precision FP registers.
7964   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7965 
7966   // 0-31 are the general purpose registers, $0 - $31.
7967   // 32-63 are the floating-point registers, $f0 - $f31.
7968   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7969   // 66 is the (notional, I think) register for signal-handler return.
7970   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7971 
7972   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7973   // They are one bit wide and ignored here.
7974 
7975   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7976   // (coprocessor 1 is the FP unit)
7977   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7978   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7979   // 176-181 are the DSP accumulator registers.
7980   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7981   return false;
7982 }
7983 
7984 //===----------------------------------------------------------------------===//
7985 // AVR ABI Implementation.
7986 //===----------------------------------------------------------------------===//
7987 
7988 namespace {
7989 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7990 public:
7991   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7992       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
7993 
7994   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7995                            CodeGen::CodeGenModule &CGM) const override {
7996     if (GV->isDeclaration())
7997       return;
7998     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7999     if (!FD) return;
8000     auto *Fn = cast<llvm::Function>(GV);
8001 
8002     if (FD->getAttr<AVRInterruptAttr>())
8003       Fn->addFnAttr("interrupt");
8004 
8005     if (FD->getAttr<AVRSignalAttr>())
8006       Fn->addFnAttr("signal");
8007   }
8008 };
8009 }
8010 
8011 //===----------------------------------------------------------------------===//
8012 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8013 // Currently subclassed only to implement custom OpenCL C function attribute
8014 // handling.
8015 //===----------------------------------------------------------------------===//
8016 
8017 namespace {
8018 
8019 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8020 public:
8021   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8022     : DefaultTargetCodeGenInfo(CGT) {}
8023 
8024   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8025                            CodeGen::CodeGenModule &M) const override;
8026 };
8027 
8028 void TCETargetCodeGenInfo::setTargetAttributes(
8029     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8030   if (GV->isDeclaration())
8031     return;
8032   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8033   if (!FD) return;
8034 
8035   llvm::Function *F = cast<llvm::Function>(GV);
8036 
8037   if (M.getLangOpts().OpenCL) {
8038     if (FD->hasAttr<OpenCLKernelAttr>()) {
8039       // OpenCL C Kernel functions are not subject to inlining
8040       F->addFnAttr(llvm::Attribute::NoInline);
8041       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8042       if (Attr) {
8043         // Convert the reqd_work_group_size() attributes to metadata.
8044         llvm::LLVMContext &Context = F->getContext();
8045         llvm::NamedMDNode *OpenCLMetadata =
8046             M.getModule().getOrInsertNamedMetadata(
8047                 "opencl.kernel_wg_size_info");
8048 
8049         SmallVector<llvm::Metadata *, 5> Operands;
8050         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8051 
8052         Operands.push_back(
8053             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8054                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8055         Operands.push_back(
8056             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8057                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8058         Operands.push_back(
8059             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8060                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8061 
8062         // Add a boolean constant operand for "required" (true) or "hint"
8063         // (false) for implementing the work_group_size_hint attr later.
8064         // Currently always true as the hint is not yet implemented.
8065         Operands.push_back(
8066             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8067         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8068       }
8069     }
8070   }
8071 }
8072 
8073 }
8074 
8075 //===----------------------------------------------------------------------===//
8076 // Hexagon ABI Implementation
8077 //===----------------------------------------------------------------------===//
8078 
8079 namespace {
8080 
8081 class HexagonABIInfo : public DefaultABIInfo {
8082 public:
8083   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8084 
8085 private:
8086   ABIArgInfo classifyReturnType(QualType RetTy) const;
8087   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8088   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8089 
8090   void computeInfo(CGFunctionInfo &FI) const override;
8091 
8092   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8093                     QualType Ty) const override;
8094   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8095                               QualType Ty) const;
8096   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8097                               QualType Ty) const;
8098   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8099                                    QualType Ty) const;
8100 };
8101 
8102 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8103 public:
8104   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8105       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8106 
8107   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8108     return 29;
8109   }
8110 
8111   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8112                            CodeGen::CodeGenModule &GCM) const override {
8113     if (GV->isDeclaration())
8114       return;
8115     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8116     if (!FD)
8117       return;
8118   }
8119 };
8120 
8121 } // namespace
8122 
8123 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8124   unsigned RegsLeft = 6;
8125   if (!getCXXABI().classifyReturnType(FI))
8126     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8127   for (auto &I : FI.arguments())
8128     I.info = classifyArgumentType(I.type, &RegsLeft);
8129 }
8130 
8131 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8132   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8133                        " through registers");
8134 
8135   if (*RegsLeft == 0)
8136     return false;
8137 
8138   if (Size <= 32) {
8139     (*RegsLeft)--;
8140     return true;
8141   }
8142 
8143   if (2 <= (*RegsLeft & (~1U))) {
8144     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8145     return true;
8146   }
8147 
8148   // Next available register was r5 but candidate was greater than 32-bits so it
8149   // has to go on the stack. However we still consume r5
8150   if (*RegsLeft == 1)
8151     *RegsLeft = 0;
8152 
8153   return false;
8154 }
8155 
8156 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8157                                                 unsigned *RegsLeft) const {
8158   if (!isAggregateTypeForABI(Ty)) {
8159     // Treat an enum type as its underlying type.
8160     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8161       Ty = EnumTy->getDecl()->getIntegerType();
8162 
8163     uint64_t Size = getContext().getTypeSize(Ty);
8164     if (Size <= 64)
8165       HexagonAdjustRegsLeft(Size, RegsLeft);
8166 
8167     if (Size > 64 && Ty->isExtIntType())
8168       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8169 
8170     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8171                                              : ABIArgInfo::getDirect();
8172   }
8173 
8174   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8175     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8176 
8177   // Ignore empty records.
8178   if (isEmptyRecord(getContext(), Ty, true))
8179     return ABIArgInfo::getIgnore();
8180 
8181   uint64_t Size = getContext().getTypeSize(Ty);
8182   unsigned Align = getContext().getTypeAlign(Ty);
8183 
8184   if (Size > 64)
8185     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8186 
8187   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8188     Align = Size <= 32 ? 32 : 64;
8189   if (Size <= Align) {
8190     // Pass in the smallest viable integer type.
8191     if (!llvm::isPowerOf2_64(Size))
8192       Size = llvm::NextPowerOf2(Size);
8193     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8194   }
8195   return DefaultABIInfo::classifyArgumentType(Ty);
8196 }
8197 
8198 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8199   if (RetTy->isVoidType())
8200     return ABIArgInfo::getIgnore();
8201 
8202   const TargetInfo &T = CGT.getTarget();
8203   uint64_t Size = getContext().getTypeSize(RetTy);
8204 
8205   if (RetTy->getAs<VectorType>()) {
8206     // HVX vectors are returned in vector registers or register pairs.
8207     if (T.hasFeature("hvx")) {
8208       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8209       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8210       if (Size == VecSize || Size == 2*VecSize)
8211         return ABIArgInfo::getDirectInReg();
8212     }
8213     // Large vector types should be returned via memory.
8214     if (Size > 64)
8215       return getNaturalAlignIndirect(RetTy);
8216   }
8217 
8218   if (!isAggregateTypeForABI(RetTy)) {
8219     // Treat an enum type as its underlying type.
8220     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8221       RetTy = EnumTy->getDecl()->getIntegerType();
8222 
8223     if (Size > 64 && RetTy->isExtIntType())
8224       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8225 
8226     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8227                                                 : ABIArgInfo::getDirect();
8228   }
8229 
8230   if (isEmptyRecord(getContext(), RetTy, true))
8231     return ABIArgInfo::getIgnore();
8232 
8233   // Aggregates <= 8 bytes are returned in registers, other aggregates
8234   // are returned indirectly.
8235   if (Size <= 64) {
8236     // Return in the smallest viable integer type.
8237     if (!llvm::isPowerOf2_64(Size))
8238       Size = llvm::NextPowerOf2(Size);
8239     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8240   }
8241   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8242 }
8243 
8244 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8245                                             Address VAListAddr,
8246                                             QualType Ty) const {
8247   // Load the overflow area pointer.
8248   Address __overflow_area_pointer_p =
8249       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8250   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8251       __overflow_area_pointer_p, "__overflow_area_pointer");
8252 
8253   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8254   if (Align > 4) {
8255     // Alignment should be a power of 2.
8256     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8257 
8258     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8259     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8260 
8261     // Add offset to the current pointer to access the argument.
8262     __overflow_area_pointer =
8263         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8264     llvm::Value *AsInt =
8265         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8266 
8267     // Create a mask which should be "AND"ed
8268     // with (overflow_arg_area + align - 1)
8269     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8270     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8271         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8272         "__overflow_area_pointer.align");
8273   }
8274 
8275   // Get the type of the argument from memory and bitcast
8276   // overflow area pointer to the argument type.
8277   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8278   Address AddrTyped = CGF.Builder.CreateBitCast(
8279       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8280       llvm::PointerType::getUnqual(PTy));
8281 
8282   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8283   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8284 
8285   __overflow_area_pointer = CGF.Builder.CreateGEP(
8286       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8287       "__overflow_area_pointer.next");
8288   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8289 
8290   return AddrTyped;
8291 }
8292 
8293 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8294                                             Address VAListAddr,
8295                                             QualType Ty) const {
8296   // FIXME: Need to handle alignment
8297   llvm::Type *BP = CGF.Int8PtrTy;
8298   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8299   CGBuilderTy &Builder = CGF.Builder;
8300   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8301   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8302   // Handle address alignment for type alignment > 32 bits
8303   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8304   if (TyAlign > 4) {
8305     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8306     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8307     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8308     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8309     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8310   }
8311   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8312   Address AddrTyped = Builder.CreateBitCast(
8313       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8314 
8315   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8316   llvm::Value *NextAddr = Builder.CreateGEP(
8317       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8318   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8319 
8320   return AddrTyped;
8321 }
8322 
8323 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8324                                                  Address VAListAddr,
8325                                                  QualType Ty) const {
8326   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8327 
8328   if (ArgSize > 8)
8329     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8330 
8331   // Here we have check if the argument is in register area or
8332   // in overflow area.
8333   // If the saved register area pointer + argsize rounded up to alignment >
8334   // saved register area end pointer, argument is in overflow area.
8335   unsigned RegsLeft = 6;
8336   Ty = CGF.getContext().getCanonicalType(Ty);
8337   (void)classifyArgumentType(Ty, &RegsLeft);
8338 
8339   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8340   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8341   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8342   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8343 
8344   // Get rounded size of the argument.GCC does not allow vararg of
8345   // size < 4 bytes. We follow the same logic here.
8346   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8347   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8348 
8349   // Argument may be in saved register area
8350   CGF.EmitBlock(MaybeRegBlock);
8351 
8352   // Load the current saved register area pointer.
8353   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8354       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8355   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8356       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8357 
8358   // Load the saved register area end pointer.
8359   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8360       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8361   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8362       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8363 
8364   // If the size of argument is > 4 bytes, check if the stack
8365   // location is aligned to 8 bytes
8366   if (ArgAlign > 4) {
8367 
8368     llvm::Value *__current_saved_reg_area_pointer_int =
8369         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8370                                    CGF.Int32Ty);
8371 
8372     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8373         __current_saved_reg_area_pointer_int,
8374         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8375         "align_current_saved_reg_area_pointer");
8376 
8377     __current_saved_reg_area_pointer_int =
8378         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8379                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8380                               "align_current_saved_reg_area_pointer");
8381 
8382     __current_saved_reg_area_pointer =
8383         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8384                                    __current_saved_reg_area_pointer->getType(),
8385                                    "align_current_saved_reg_area_pointer");
8386   }
8387 
8388   llvm::Value *__new_saved_reg_area_pointer =
8389       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8390                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8391                             "__new_saved_reg_area_pointer");
8392 
8393   llvm::Value *UsingStack = 0;
8394   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8395                                          __saved_reg_area_end_pointer);
8396 
8397   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8398 
8399   // Argument in saved register area
8400   // Implement the block where argument is in register saved area
8401   CGF.EmitBlock(InRegBlock);
8402 
8403   llvm::Type *PTy = CGF.ConvertType(Ty);
8404   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8405       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8406 
8407   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8408                           __current_saved_reg_area_pointer_p);
8409 
8410   CGF.EmitBranch(ContBlock);
8411 
8412   // Argument in overflow area
8413   // Implement the block where the argument is in overflow area.
8414   CGF.EmitBlock(OnStackBlock);
8415 
8416   // Load the overflow area pointer
8417   Address __overflow_area_pointer_p =
8418       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8419   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8420       __overflow_area_pointer_p, "__overflow_area_pointer");
8421 
8422   // Align the overflow area pointer according to the alignment of the argument
8423   if (ArgAlign > 4) {
8424     llvm::Value *__overflow_area_pointer_int =
8425         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8426 
8427     __overflow_area_pointer_int =
8428         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8429                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8430                               "align_overflow_area_pointer");
8431 
8432     __overflow_area_pointer_int =
8433         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8434                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8435                               "align_overflow_area_pointer");
8436 
8437     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8438         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8439         "align_overflow_area_pointer");
8440   }
8441 
8442   // Get the pointer for next argument in overflow area and store it
8443   // to overflow area pointer.
8444   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8445       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8446       "__overflow_area_pointer.next");
8447 
8448   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8449                           __overflow_area_pointer_p);
8450 
8451   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8452                           __current_saved_reg_area_pointer_p);
8453 
8454   // Bitcast the overflow area pointer to the type of argument.
8455   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8456   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8457       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8458 
8459   CGF.EmitBranch(ContBlock);
8460 
8461   // Get the correct pointer to load the variable argument
8462   // Implement the ContBlock
8463   CGF.EmitBlock(ContBlock);
8464 
8465   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8466   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8467   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8468   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8469 
8470   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8471 }
8472 
8473 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8474                                   QualType Ty) const {
8475 
8476   if (getTarget().getTriple().isMusl())
8477     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8478 
8479   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8480 }
8481 
8482 //===----------------------------------------------------------------------===//
8483 // Lanai ABI Implementation
8484 //===----------------------------------------------------------------------===//
8485 
8486 namespace {
8487 class LanaiABIInfo : public DefaultABIInfo {
8488 public:
8489   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8490 
8491   bool shouldUseInReg(QualType Ty, CCState &State) const;
8492 
8493   void computeInfo(CGFunctionInfo &FI) const override {
8494     CCState State(FI);
8495     // Lanai uses 4 registers to pass arguments unless the function has the
8496     // regparm attribute set.
8497     if (FI.getHasRegParm()) {
8498       State.FreeRegs = FI.getRegParm();
8499     } else {
8500       State.FreeRegs = 4;
8501     }
8502 
8503     if (!getCXXABI().classifyReturnType(FI))
8504       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8505     for (auto &I : FI.arguments())
8506       I.info = classifyArgumentType(I.type, State);
8507   }
8508 
8509   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8510   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8511 };
8512 } // end anonymous namespace
8513 
8514 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8515   unsigned Size = getContext().getTypeSize(Ty);
8516   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8517 
8518   if (SizeInRegs == 0)
8519     return false;
8520 
8521   if (SizeInRegs > State.FreeRegs) {
8522     State.FreeRegs = 0;
8523     return false;
8524   }
8525 
8526   State.FreeRegs -= SizeInRegs;
8527 
8528   return true;
8529 }
8530 
8531 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8532                                            CCState &State) const {
8533   if (!ByVal) {
8534     if (State.FreeRegs) {
8535       --State.FreeRegs; // Non-byval indirects just use one pointer.
8536       return getNaturalAlignIndirectInReg(Ty);
8537     }
8538     return getNaturalAlignIndirect(Ty, false);
8539   }
8540 
8541   // Compute the byval alignment.
8542   const unsigned MinABIStackAlignInBytes = 4;
8543   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8544   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8545                                  /*Realign=*/TypeAlign >
8546                                      MinABIStackAlignInBytes);
8547 }
8548 
8549 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8550                                               CCState &State) const {
8551   // Check with the C++ ABI first.
8552   const RecordType *RT = Ty->getAs<RecordType>();
8553   if (RT) {
8554     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8555     if (RAA == CGCXXABI::RAA_Indirect) {
8556       return getIndirectResult(Ty, /*ByVal=*/false, State);
8557     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8558       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
8559     }
8560   }
8561 
8562   if (isAggregateTypeForABI(Ty)) {
8563     // Structures with flexible arrays are always indirect.
8564     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8565       return getIndirectResult(Ty, /*ByVal=*/true, State);
8566 
8567     // Ignore empty structs/unions.
8568     if (isEmptyRecord(getContext(), Ty, true))
8569       return ABIArgInfo::getIgnore();
8570 
8571     llvm::LLVMContext &LLVMContext = getVMContext();
8572     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8573     if (SizeInRegs <= State.FreeRegs) {
8574       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8575       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8576       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8577       State.FreeRegs -= SizeInRegs;
8578       return ABIArgInfo::getDirectInReg(Result);
8579     } else {
8580       State.FreeRegs = 0;
8581     }
8582     return getIndirectResult(Ty, true, State);
8583   }
8584 
8585   // Treat an enum type as its underlying type.
8586   if (const auto *EnumTy = Ty->getAs<EnumType>())
8587     Ty = EnumTy->getDecl()->getIntegerType();
8588 
8589   bool InReg = shouldUseInReg(Ty, State);
8590 
8591   // Don't pass >64 bit integers in registers.
8592   if (const auto *EIT = Ty->getAs<ExtIntType>())
8593     if (EIT->getNumBits() > 64)
8594       return getIndirectResult(Ty, /*ByVal=*/true, State);
8595 
8596   if (isPromotableIntegerTypeForABI(Ty)) {
8597     if (InReg)
8598       return ABIArgInfo::getDirectInReg();
8599     return ABIArgInfo::getExtend(Ty);
8600   }
8601   if (InReg)
8602     return ABIArgInfo::getDirectInReg();
8603   return ABIArgInfo::getDirect();
8604 }
8605 
8606 namespace {
8607 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8608 public:
8609   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8610       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8611 };
8612 }
8613 
8614 //===----------------------------------------------------------------------===//
8615 // AMDGPU ABI Implementation
8616 //===----------------------------------------------------------------------===//
8617 
8618 namespace {
8619 
8620 class AMDGPUABIInfo final : public DefaultABIInfo {
8621 private:
8622   static const unsigned MaxNumRegsForArgsRet = 16;
8623 
8624   unsigned numRegsForType(QualType Ty) const;
8625 
8626   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8627   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8628                                          uint64_t Members) const override;
8629 
8630   // Coerce HIP pointer arguments from generic pointers to global ones.
8631   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8632                                        unsigned ToAS) const {
8633     // Structure types.
8634     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8635       SmallVector<llvm::Type *, 8> EltTys;
8636       bool Changed = false;
8637       for (auto T : STy->elements()) {
8638         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8639         EltTys.push_back(NT);
8640         Changed |= (NT != T);
8641       }
8642       // Skip if there is no change in element types.
8643       if (!Changed)
8644         return STy;
8645       if (STy->hasName())
8646         return llvm::StructType::create(
8647             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8648       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8649     }
8650     // Array types.
8651     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8652       auto T = ATy->getElementType();
8653       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8654       // Skip if there is no change in that element type.
8655       if (NT == T)
8656         return ATy;
8657       return llvm::ArrayType::get(NT, ATy->getNumElements());
8658     }
8659     // Single value types.
8660     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8661       return llvm::PointerType::get(
8662           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8663     return Ty;
8664   }
8665 
8666 public:
8667   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8668     DefaultABIInfo(CGT) {}
8669 
8670   ABIArgInfo classifyReturnType(QualType RetTy) const;
8671   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8672   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8673 
8674   void computeInfo(CGFunctionInfo &FI) const override;
8675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8676                     QualType Ty) const override;
8677 };
8678 
8679 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8680   return true;
8681 }
8682 
8683 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8684   const Type *Base, uint64_t Members) const {
8685   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8686 
8687   // Homogeneous Aggregates may occupy at most 16 registers.
8688   return Members * NumRegs <= MaxNumRegsForArgsRet;
8689 }
8690 
8691 /// Estimate number of registers the type will use when passed in registers.
8692 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8693   unsigned NumRegs = 0;
8694 
8695   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8696     // Compute from the number of elements. The reported size is based on the
8697     // in-memory size, which includes the padding 4th element for 3-vectors.
8698     QualType EltTy = VT->getElementType();
8699     unsigned EltSize = getContext().getTypeSize(EltTy);
8700 
8701     // 16-bit element vectors should be passed as packed.
8702     if (EltSize == 16)
8703       return (VT->getNumElements() + 1) / 2;
8704 
8705     unsigned EltNumRegs = (EltSize + 31) / 32;
8706     return EltNumRegs * VT->getNumElements();
8707   }
8708 
8709   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8710     const RecordDecl *RD = RT->getDecl();
8711     assert(!RD->hasFlexibleArrayMember());
8712 
8713     for (const FieldDecl *Field : RD->fields()) {
8714       QualType FieldTy = Field->getType();
8715       NumRegs += numRegsForType(FieldTy);
8716     }
8717 
8718     return NumRegs;
8719   }
8720 
8721   return (getContext().getTypeSize(Ty) + 31) / 32;
8722 }
8723 
8724 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8725   llvm::CallingConv::ID CC = FI.getCallingConvention();
8726 
8727   if (!getCXXABI().classifyReturnType(FI))
8728     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8729 
8730   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8731   for (auto &Arg : FI.arguments()) {
8732     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8733       Arg.info = classifyKernelArgumentType(Arg.type);
8734     } else {
8735       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8736     }
8737   }
8738 }
8739 
8740 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8741                                  QualType Ty) const {
8742   llvm_unreachable("AMDGPU does not support varargs");
8743 }
8744 
8745 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8746   if (isAggregateTypeForABI(RetTy)) {
8747     // Records with non-trivial destructors/copy-constructors should not be
8748     // returned by value.
8749     if (!getRecordArgABI(RetTy, getCXXABI())) {
8750       // Ignore empty structs/unions.
8751       if (isEmptyRecord(getContext(), RetTy, true))
8752         return ABIArgInfo::getIgnore();
8753 
8754       // Lower single-element structs to just return a regular value.
8755       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8756         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8757 
8758       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8759         const RecordDecl *RD = RT->getDecl();
8760         if (RD->hasFlexibleArrayMember())
8761           return DefaultABIInfo::classifyReturnType(RetTy);
8762       }
8763 
8764       // Pack aggregates <= 4 bytes into single VGPR or pair.
8765       uint64_t Size = getContext().getTypeSize(RetTy);
8766       if (Size <= 16)
8767         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8768 
8769       if (Size <= 32)
8770         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8771 
8772       if (Size <= 64) {
8773         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8774         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8775       }
8776 
8777       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8778         return ABIArgInfo::getDirect();
8779     }
8780   }
8781 
8782   // Otherwise just do the default thing.
8783   return DefaultABIInfo::classifyReturnType(RetTy);
8784 }
8785 
8786 /// For kernels all parameters are really passed in a special buffer. It doesn't
8787 /// make sense to pass anything byval, so everything must be direct.
8788 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8789   Ty = useFirstFieldIfTransparentUnion(Ty);
8790 
8791   // TODO: Can we omit empty structs?
8792 
8793   llvm::Type *LTy = nullptr;
8794   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8795     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8796 
8797   if (getContext().getLangOpts().HIP) {
8798     if (!LTy)
8799       LTy = CGT.ConvertType(Ty);
8800     LTy = coerceKernelArgumentType(
8801         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8802         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8803   }
8804 
8805   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8806   // individual elements, which confuses the Clover OpenCL backend; therefore we
8807   // have to set it to false here. Other args of getDirect() are just defaults.
8808   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8809 }
8810 
8811 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8812                                                unsigned &NumRegsLeft) const {
8813   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8814 
8815   Ty = useFirstFieldIfTransparentUnion(Ty);
8816 
8817   if (isAggregateTypeForABI(Ty)) {
8818     // Records with non-trivial destructors/copy-constructors should not be
8819     // passed by value.
8820     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8821       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8822 
8823     // Ignore empty structs/unions.
8824     if (isEmptyRecord(getContext(), Ty, true))
8825       return ABIArgInfo::getIgnore();
8826 
8827     // Lower single-element structs to just pass a regular value. TODO: We
8828     // could do reasonable-size multiple-element structs too, using getExpand(),
8829     // though watch out for things like bitfields.
8830     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8831       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8832 
8833     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8834       const RecordDecl *RD = RT->getDecl();
8835       if (RD->hasFlexibleArrayMember())
8836         return DefaultABIInfo::classifyArgumentType(Ty);
8837     }
8838 
8839     // Pack aggregates <= 8 bytes into single VGPR or pair.
8840     uint64_t Size = getContext().getTypeSize(Ty);
8841     if (Size <= 64) {
8842       unsigned NumRegs = (Size + 31) / 32;
8843       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8844 
8845       if (Size <= 16)
8846         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8847 
8848       if (Size <= 32)
8849         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8850 
8851       // XXX: Should this be i64 instead, and should the limit increase?
8852       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8853       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8854     }
8855 
8856     if (NumRegsLeft > 0) {
8857       unsigned NumRegs = numRegsForType(Ty);
8858       if (NumRegsLeft >= NumRegs) {
8859         NumRegsLeft -= NumRegs;
8860         return ABIArgInfo::getDirect();
8861       }
8862     }
8863   }
8864 
8865   // Otherwise just do the default thing.
8866   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8867   if (!ArgInfo.isIndirect()) {
8868     unsigned NumRegs = numRegsForType(Ty);
8869     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8870   }
8871 
8872   return ArgInfo;
8873 }
8874 
8875 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8876 public:
8877   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8878       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8879   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8880                            CodeGen::CodeGenModule &M) const override;
8881   unsigned getOpenCLKernelCallingConv() const override;
8882 
8883   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8884       llvm::PointerType *T, QualType QT) const override;
8885 
8886   LangAS getASTAllocaAddressSpace() const override {
8887     return getLangASFromTargetAS(
8888         getABIInfo().getDataLayout().getAllocaAddrSpace());
8889   }
8890   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8891                                   const VarDecl *D) const override;
8892   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8893                                          SyncScope Scope,
8894                                          llvm::AtomicOrdering Ordering,
8895                                          llvm::LLVMContext &Ctx) const override;
8896   llvm::Function *
8897   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8898                             llvm::Function *BlockInvokeFunc,
8899                             llvm::Value *BlockLiteral) const override;
8900   bool shouldEmitStaticExternCAliases() const override;
8901   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8902 };
8903 }
8904 
8905 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8906                                               llvm::GlobalValue *GV) {
8907   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8908     return false;
8909 
8910   return D->hasAttr<OpenCLKernelAttr>() ||
8911          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8912          (isa<VarDecl>(D) &&
8913           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8914            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8915            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8916 }
8917 
8918 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8919     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8920   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8921     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8922     GV->setDSOLocal(true);
8923   }
8924 
8925   if (GV->isDeclaration())
8926     return;
8927   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8928   if (!FD)
8929     return;
8930 
8931   llvm::Function *F = cast<llvm::Function>(GV);
8932 
8933   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8934     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8935 
8936 
8937   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8938                               FD->hasAttr<OpenCLKernelAttr>();
8939   const bool IsHIPKernel = M.getLangOpts().HIP &&
8940                            FD->hasAttr<CUDAGlobalAttr>();
8941   if ((IsOpenCLKernel || IsHIPKernel) &&
8942       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8943     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8944 
8945   if (IsHIPKernel)
8946     F->addFnAttr("uniform-work-group-size", "true");
8947 
8948 
8949   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8950   if (ReqdWGS || FlatWGS) {
8951     unsigned Min = 0;
8952     unsigned Max = 0;
8953     if (FlatWGS) {
8954       Min = FlatWGS->getMin()
8955                 ->EvaluateKnownConstInt(M.getContext())
8956                 .getExtValue();
8957       Max = FlatWGS->getMax()
8958                 ->EvaluateKnownConstInt(M.getContext())
8959                 .getExtValue();
8960     }
8961     if (ReqdWGS && Min == 0 && Max == 0)
8962       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8963 
8964     if (Min != 0) {
8965       assert(Min <= Max && "Min must be less than or equal Max");
8966 
8967       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8968       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8969     } else
8970       assert(Max == 0 && "Max must be zero");
8971   } else if (IsOpenCLKernel || IsHIPKernel) {
8972     // By default, restrict the maximum size to a value specified by
8973     // --gpu-max-threads-per-block=n or its default value for HIP.
8974     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
8975     const unsigned DefaultMaxWorkGroupSize =
8976         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
8977                        : M.getLangOpts().GPUMaxThreadsPerBlock;
8978     std::string AttrVal =
8979         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
8980     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8981   }
8982 
8983   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8984     unsigned Min =
8985         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8986     unsigned Max = Attr->getMax() ? Attr->getMax()
8987                                         ->EvaluateKnownConstInt(M.getContext())
8988                                         .getExtValue()
8989                                   : 0;
8990 
8991     if (Min != 0) {
8992       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8993 
8994       std::string AttrVal = llvm::utostr(Min);
8995       if (Max != 0)
8996         AttrVal = AttrVal + "," + llvm::utostr(Max);
8997       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8998     } else
8999       assert(Max == 0 && "Max must be zero");
9000   }
9001 
9002   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9003     unsigned NumSGPR = Attr->getNumSGPR();
9004 
9005     if (NumSGPR != 0)
9006       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9007   }
9008 
9009   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9010     uint32_t NumVGPR = Attr->getNumVGPR();
9011 
9012     if (NumVGPR != 0)
9013       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9014   }
9015 }
9016 
9017 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9018   return llvm::CallingConv::AMDGPU_KERNEL;
9019 }
9020 
9021 // Currently LLVM assumes null pointers always have value 0,
9022 // which results in incorrectly transformed IR. Therefore, instead of
9023 // emitting null pointers in private and local address spaces, a null
9024 // pointer in generic address space is emitted which is casted to a
9025 // pointer in local or private address space.
9026 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9027     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9028     QualType QT) const {
9029   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9030     return llvm::ConstantPointerNull::get(PT);
9031 
9032   auto &Ctx = CGM.getContext();
9033   auto NPT = llvm::PointerType::get(PT->getElementType(),
9034       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9035   return llvm::ConstantExpr::getAddrSpaceCast(
9036       llvm::ConstantPointerNull::get(NPT), PT);
9037 }
9038 
9039 LangAS
9040 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9041                                                   const VarDecl *D) const {
9042   assert(!CGM.getLangOpts().OpenCL &&
9043          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9044          "Address space agnostic languages only");
9045   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9046       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9047   if (!D)
9048     return DefaultGlobalAS;
9049 
9050   LangAS AddrSpace = D->getType().getAddressSpace();
9051   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9052   if (AddrSpace != LangAS::Default)
9053     return AddrSpace;
9054 
9055   if (CGM.isTypeConstant(D->getType(), false)) {
9056     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9057       return ConstAS.getValue();
9058   }
9059   return DefaultGlobalAS;
9060 }
9061 
9062 llvm::SyncScope::ID
9063 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9064                                             SyncScope Scope,
9065                                             llvm::AtomicOrdering Ordering,
9066                                             llvm::LLVMContext &Ctx) const {
9067   std::string Name;
9068   switch (Scope) {
9069   case SyncScope::OpenCLWorkGroup:
9070     Name = "workgroup";
9071     break;
9072   case SyncScope::OpenCLDevice:
9073     Name = "agent";
9074     break;
9075   case SyncScope::OpenCLAllSVMDevices:
9076     Name = "";
9077     break;
9078   case SyncScope::OpenCLSubGroup:
9079     Name = "wavefront";
9080   }
9081 
9082   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9083     if (!Name.empty())
9084       Name = Twine(Twine(Name) + Twine("-")).str();
9085 
9086     Name = Twine(Twine(Name) + Twine("one-as")).str();
9087   }
9088 
9089   return Ctx.getOrInsertSyncScopeID(Name);
9090 }
9091 
9092 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9093   return false;
9094 }
9095 
9096 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9097     const FunctionType *&FT) const {
9098   FT = getABIInfo().getContext().adjustFunctionType(
9099       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9100 }
9101 
9102 //===----------------------------------------------------------------------===//
9103 // SPARC v8 ABI Implementation.
9104 // Based on the SPARC Compliance Definition version 2.4.1.
9105 //
9106 // Ensures that complex values are passed in registers.
9107 //
9108 namespace {
9109 class SparcV8ABIInfo : public DefaultABIInfo {
9110 public:
9111   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9112 
9113 private:
9114   ABIArgInfo classifyReturnType(QualType RetTy) const;
9115   void computeInfo(CGFunctionInfo &FI) const override;
9116 };
9117 } // end anonymous namespace
9118 
9119 
9120 ABIArgInfo
9121 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9122   if (Ty->isAnyComplexType()) {
9123     return ABIArgInfo::getDirect();
9124   }
9125   else {
9126     return DefaultABIInfo::classifyReturnType(Ty);
9127   }
9128 }
9129 
9130 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9131 
9132   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9133   for (auto &Arg : FI.arguments())
9134     Arg.info = classifyArgumentType(Arg.type);
9135 }
9136 
9137 namespace {
9138 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9139 public:
9140   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9141       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9142 };
9143 } // end anonymous namespace
9144 
9145 //===----------------------------------------------------------------------===//
9146 // SPARC v9 ABI Implementation.
9147 // Based on the SPARC Compliance Definition version 2.4.1.
9148 //
9149 // Function arguments a mapped to a nominal "parameter array" and promoted to
9150 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9151 // the array, structs larger than 16 bytes are passed indirectly.
9152 //
9153 // One case requires special care:
9154 //
9155 //   struct mixed {
9156 //     int i;
9157 //     float f;
9158 //   };
9159 //
9160 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9161 // parameter array, but the int is passed in an integer register, and the float
9162 // is passed in a floating point register. This is represented as two arguments
9163 // with the LLVM IR inreg attribute:
9164 //
9165 //   declare void f(i32 inreg %i, float inreg %f)
9166 //
9167 // The code generator will only allocate 4 bytes from the parameter array for
9168 // the inreg arguments. All other arguments are allocated a multiple of 8
9169 // bytes.
9170 //
9171 namespace {
9172 class SparcV9ABIInfo : public ABIInfo {
9173 public:
9174   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9175 
9176 private:
9177   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9178   void computeInfo(CGFunctionInfo &FI) const override;
9179   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9180                     QualType Ty) const override;
9181 
9182   // Coercion type builder for structs passed in registers. The coercion type
9183   // serves two purposes:
9184   //
9185   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9186   //    in registers.
9187   // 2. Expose aligned floating point elements as first-level elements, so the
9188   //    code generator knows to pass them in floating point registers.
9189   //
9190   // We also compute the InReg flag which indicates that the struct contains
9191   // aligned 32-bit floats.
9192   //
9193   struct CoerceBuilder {
9194     llvm::LLVMContext &Context;
9195     const llvm::DataLayout &DL;
9196     SmallVector<llvm::Type*, 8> Elems;
9197     uint64_t Size;
9198     bool InReg;
9199 
9200     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9201       : Context(c), DL(dl), Size(0), InReg(false) {}
9202 
9203     // Pad Elems with integers until Size is ToSize.
9204     void pad(uint64_t ToSize) {
9205       assert(ToSize >= Size && "Cannot remove elements");
9206       if (ToSize == Size)
9207         return;
9208 
9209       // Finish the current 64-bit word.
9210       uint64_t Aligned = llvm::alignTo(Size, 64);
9211       if (Aligned > Size && Aligned <= ToSize) {
9212         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9213         Size = Aligned;
9214       }
9215 
9216       // Add whole 64-bit words.
9217       while (Size + 64 <= ToSize) {
9218         Elems.push_back(llvm::Type::getInt64Ty(Context));
9219         Size += 64;
9220       }
9221 
9222       // Final in-word padding.
9223       if (Size < ToSize) {
9224         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9225         Size = ToSize;
9226       }
9227     }
9228 
9229     // Add a floating point element at Offset.
9230     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9231       // Unaligned floats are treated as integers.
9232       if (Offset % Bits)
9233         return;
9234       // The InReg flag is only required if there are any floats < 64 bits.
9235       if (Bits < 64)
9236         InReg = true;
9237       pad(Offset);
9238       Elems.push_back(Ty);
9239       Size = Offset + Bits;
9240     }
9241 
9242     // Add a struct type to the coercion type, starting at Offset (in bits).
9243     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9244       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9245       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9246         llvm::Type *ElemTy = StrTy->getElementType(i);
9247         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9248         switch (ElemTy->getTypeID()) {
9249         case llvm::Type::StructTyID:
9250           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9251           break;
9252         case llvm::Type::FloatTyID:
9253           addFloat(ElemOffset, ElemTy, 32);
9254           break;
9255         case llvm::Type::DoubleTyID:
9256           addFloat(ElemOffset, ElemTy, 64);
9257           break;
9258         case llvm::Type::FP128TyID:
9259           addFloat(ElemOffset, ElemTy, 128);
9260           break;
9261         case llvm::Type::PointerTyID:
9262           if (ElemOffset % 64 == 0) {
9263             pad(ElemOffset);
9264             Elems.push_back(ElemTy);
9265             Size += 64;
9266           }
9267           break;
9268         default:
9269           break;
9270         }
9271       }
9272     }
9273 
9274     // Check if Ty is a usable substitute for the coercion type.
9275     bool isUsableType(llvm::StructType *Ty) const {
9276       return llvm::makeArrayRef(Elems) == Ty->elements();
9277     }
9278 
9279     // Get the coercion type as a literal struct type.
9280     llvm::Type *getType() const {
9281       if (Elems.size() == 1)
9282         return Elems.front();
9283       else
9284         return llvm::StructType::get(Context, Elems);
9285     }
9286   };
9287 };
9288 } // end anonymous namespace
9289 
9290 ABIArgInfo
9291 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9292   if (Ty->isVoidType())
9293     return ABIArgInfo::getIgnore();
9294 
9295   uint64_t Size = getContext().getTypeSize(Ty);
9296 
9297   // Anything too big to fit in registers is passed with an explicit indirect
9298   // pointer / sret pointer.
9299   if (Size > SizeLimit)
9300     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9301 
9302   // Treat an enum type as its underlying type.
9303   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9304     Ty = EnumTy->getDecl()->getIntegerType();
9305 
9306   // Integer types smaller than a register are extended.
9307   if (Size < 64 && Ty->isIntegerType())
9308     return ABIArgInfo::getExtend(Ty);
9309 
9310   if (const auto *EIT = Ty->getAs<ExtIntType>())
9311     if (EIT->getNumBits() < 64)
9312       return ABIArgInfo::getExtend(Ty);
9313 
9314   // Other non-aggregates go in registers.
9315   if (!isAggregateTypeForABI(Ty))
9316     return ABIArgInfo::getDirect();
9317 
9318   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9319   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9320   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9321     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9322 
9323   // This is a small aggregate type that should be passed in registers.
9324   // Build a coercion type from the LLVM struct type.
9325   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9326   if (!StrTy)
9327     return ABIArgInfo::getDirect();
9328 
9329   CoerceBuilder CB(getVMContext(), getDataLayout());
9330   CB.addStruct(0, StrTy);
9331   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9332 
9333   // Try to use the original type for coercion.
9334   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9335 
9336   if (CB.InReg)
9337     return ABIArgInfo::getDirectInReg(CoerceTy);
9338   else
9339     return ABIArgInfo::getDirect(CoerceTy);
9340 }
9341 
9342 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9343                                   QualType Ty) const {
9344   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9345   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9346   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9347     AI.setCoerceToType(ArgTy);
9348 
9349   CharUnits SlotSize = CharUnits::fromQuantity(8);
9350 
9351   CGBuilderTy &Builder = CGF.Builder;
9352   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9353   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9354 
9355   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9356 
9357   Address ArgAddr = Address::invalid();
9358   CharUnits Stride;
9359   switch (AI.getKind()) {
9360   case ABIArgInfo::Expand:
9361   case ABIArgInfo::CoerceAndExpand:
9362   case ABIArgInfo::InAlloca:
9363     llvm_unreachable("Unsupported ABI kind for va_arg");
9364 
9365   case ABIArgInfo::Extend: {
9366     Stride = SlotSize;
9367     CharUnits Offset = SlotSize - TypeInfo.first;
9368     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9369     break;
9370   }
9371 
9372   case ABIArgInfo::Direct: {
9373     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9374     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9375     ArgAddr = Addr;
9376     break;
9377   }
9378 
9379   case ABIArgInfo::Indirect:
9380     Stride = SlotSize;
9381     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9382     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9383                       TypeInfo.second);
9384     break;
9385 
9386   case ABIArgInfo::Ignore:
9387     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9388   }
9389 
9390   // Update VAList.
9391   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9392   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9393 
9394   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9395 }
9396 
9397 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9398   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9399   for (auto &I : FI.arguments())
9400     I.info = classifyType(I.type, 16 * 8);
9401 }
9402 
9403 namespace {
9404 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9405 public:
9406   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9407       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9408 
9409   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9410     return 14;
9411   }
9412 
9413   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9414                                llvm::Value *Address) const override;
9415 };
9416 } // end anonymous namespace
9417 
9418 bool
9419 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9420                                                 llvm::Value *Address) const {
9421   // This is calculated from the LLVM and GCC tables and verified
9422   // against gcc output.  AFAIK all ABIs use the same encoding.
9423 
9424   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9425 
9426   llvm::IntegerType *i8 = CGF.Int8Ty;
9427   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9428   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9429 
9430   // 0-31: the 8-byte general-purpose registers
9431   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9432 
9433   // 32-63: f0-31, the 4-byte floating-point registers
9434   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9435 
9436   //   Y   = 64
9437   //   PSR = 65
9438   //   WIM = 66
9439   //   TBR = 67
9440   //   PC  = 68
9441   //   NPC = 69
9442   //   FSR = 70
9443   //   CSR = 71
9444   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9445 
9446   // 72-87: d0-15, the 8-byte floating-point registers
9447   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9448 
9449   return false;
9450 }
9451 
9452 // ARC ABI implementation.
9453 namespace {
9454 
9455 class ARCABIInfo : public DefaultABIInfo {
9456 public:
9457   using DefaultABIInfo::DefaultABIInfo;
9458 
9459 private:
9460   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9461                     QualType Ty) const override;
9462 
9463   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9464     if (!State.FreeRegs)
9465       return;
9466     if (Info.isIndirect() && Info.getInReg())
9467       State.FreeRegs--;
9468     else if (Info.isDirect() && Info.getInReg()) {
9469       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9470       if (sz < State.FreeRegs)
9471         State.FreeRegs -= sz;
9472       else
9473         State.FreeRegs = 0;
9474     }
9475   }
9476 
9477   void computeInfo(CGFunctionInfo &FI) const override {
9478     CCState State(FI);
9479     // ARC uses 8 registers to pass arguments.
9480     State.FreeRegs = 8;
9481 
9482     if (!getCXXABI().classifyReturnType(FI))
9483       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9484     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9485     for (auto &I : FI.arguments()) {
9486       I.info = classifyArgumentType(I.type, State.FreeRegs);
9487       updateState(I.info, I.type, State);
9488     }
9489   }
9490 
9491   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9492   ABIArgInfo getIndirectByValue(QualType Ty) const;
9493   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9494   ABIArgInfo classifyReturnType(QualType RetTy) const;
9495 };
9496 
9497 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9498 public:
9499   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9500       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9501 };
9502 
9503 
9504 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9505   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9506                        getNaturalAlignIndirect(Ty, false);
9507 }
9508 
9509 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9510   // Compute the byval alignment.
9511   const unsigned MinABIStackAlignInBytes = 4;
9512   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9513   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9514                                  TypeAlign > MinABIStackAlignInBytes);
9515 }
9516 
9517 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9518                               QualType Ty) const {
9519   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9520                           getContext().getTypeInfoInChars(Ty),
9521                           CharUnits::fromQuantity(4), true);
9522 }
9523 
9524 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9525                                             uint8_t FreeRegs) const {
9526   // Handle the generic C++ ABI.
9527   const RecordType *RT = Ty->getAs<RecordType>();
9528   if (RT) {
9529     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9530     if (RAA == CGCXXABI::RAA_Indirect)
9531       return getIndirectByRef(Ty, FreeRegs > 0);
9532 
9533     if (RAA == CGCXXABI::RAA_DirectInMemory)
9534       return getIndirectByValue(Ty);
9535   }
9536 
9537   // Treat an enum type as its underlying type.
9538   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9539     Ty = EnumTy->getDecl()->getIntegerType();
9540 
9541   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9542 
9543   if (isAggregateTypeForABI(Ty)) {
9544     // Structures with flexible arrays are always indirect.
9545     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9546       return getIndirectByValue(Ty);
9547 
9548     // Ignore empty structs/unions.
9549     if (isEmptyRecord(getContext(), Ty, true))
9550       return ABIArgInfo::getIgnore();
9551 
9552     llvm::LLVMContext &LLVMContext = getVMContext();
9553 
9554     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9555     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9556     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9557 
9558     return FreeRegs >= SizeInRegs ?
9559         ABIArgInfo::getDirectInReg(Result) :
9560         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9561   }
9562 
9563   if (const auto *EIT = Ty->getAs<ExtIntType>())
9564     if (EIT->getNumBits() > 64)
9565       return getIndirectByValue(Ty);
9566 
9567   return isPromotableIntegerTypeForABI(Ty)
9568              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9569                                        : ABIArgInfo::getExtend(Ty))
9570              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9571                                        : ABIArgInfo::getDirect());
9572 }
9573 
9574 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9575   if (RetTy->isAnyComplexType())
9576     return ABIArgInfo::getDirectInReg();
9577 
9578   // Arguments of size > 4 registers are indirect.
9579   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9580   if (RetSize > 4)
9581     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9582 
9583   return DefaultABIInfo::classifyReturnType(RetTy);
9584 }
9585 
9586 } // End anonymous namespace.
9587 
9588 //===----------------------------------------------------------------------===//
9589 // XCore ABI Implementation
9590 //===----------------------------------------------------------------------===//
9591 
9592 namespace {
9593 
9594 /// A SmallStringEnc instance is used to build up the TypeString by passing
9595 /// it by reference between functions that append to it.
9596 typedef llvm::SmallString<128> SmallStringEnc;
9597 
9598 /// TypeStringCache caches the meta encodings of Types.
9599 ///
9600 /// The reason for caching TypeStrings is two fold:
9601 ///   1. To cache a type's encoding for later uses;
9602 ///   2. As a means to break recursive member type inclusion.
9603 ///
9604 /// A cache Entry can have a Status of:
9605 ///   NonRecursive:   The type encoding is not recursive;
9606 ///   Recursive:      The type encoding is recursive;
9607 ///   Incomplete:     An incomplete TypeString;
9608 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9609 ///                   Recursive type encoding.
9610 ///
9611 /// A NonRecursive entry will have all of its sub-members expanded as fully
9612 /// as possible. Whilst it may contain types which are recursive, the type
9613 /// itself is not recursive and thus its encoding may be safely used whenever
9614 /// the type is encountered.
9615 ///
9616 /// A Recursive entry will have all of its sub-members expanded as fully as
9617 /// possible. The type itself is recursive and it may contain other types which
9618 /// are recursive. The Recursive encoding must not be used during the expansion
9619 /// of a recursive type's recursive branch. For simplicity the code uses
9620 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9621 ///
9622 /// An Incomplete entry is always a RecordType and only encodes its
9623 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9624 /// are placed into the cache during type expansion as a means to identify and
9625 /// handle recursive inclusion of types as sub-members. If there is recursion
9626 /// the entry becomes IncompleteUsed.
9627 ///
9628 /// During the expansion of a RecordType's members:
9629 ///
9630 ///   If the cache contains a NonRecursive encoding for the member type, the
9631 ///   cached encoding is used;
9632 ///
9633 ///   If the cache contains a Recursive encoding for the member type, the
9634 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9635 ///
9636 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9637 ///   cache to break potential recursive inclusion of itself as a sub-member;
9638 ///
9639 ///   Once a member RecordType has been expanded, its temporary incomplete
9640 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9641 ///   it is swapped back in;
9642 ///
9643 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9644 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9645 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9646 ///
9647 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9648 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9649 ///   Else the member is part of a recursive type and thus the recursion has
9650 ///   been exited too soon for the encoding to be correct for the member.
9651 ///
9652 class TypeStringCache {
9653   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9654   struct Entry {
9655     std::string Str;     // The encoded TypeString for the type.
9656     enum Status State;   // Information about the encoding in 'Str'.
9657     std::string Swapped; // A temporary place holder for a Recursive encoding
9658                          // during the expansion of RecordType's members.
9659   };
9660   std::map<const IdentifierInfo *, struct Entry> Map;
9661   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9662   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9663 public:
9664   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9665   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9666   bool removeIncomplete(const IdentifierInfo *ID);
9667   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9668                      bool IsRecursive);
9669   StringRef lookupStr(const IdentifierInfo *ID);
9670 };
9671 
9672 /// TypeString encodings for enum & union fields must be order.
9673 /// FieldEncoding is a helper for this ordering process.
9674 class FieldEncoding {
9675   bool HasName;
9676   std::string Enc;
9677 public:
9678   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9679   StringRef str() { return Enc; }
9680   bool operator<(const FieldEncoding &rhs) const {
9681     if (HasName != rhs.HasName) return HasName;
9682     return Enc < rhs.Enc;
9683   }
9684 };
9685 
9686 class XCoreABIInfo : public DefaultABIInfo {
9687 public:
9688   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9689   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9690                     QualType Ty) const override;
9691 };
9692 
9693 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9694   mutable TypeStringCache TSC;
9695   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9696                     const CodeGen::CodeGenModule &M) const;
9697 
9698 public:
9699   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9700       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9701   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9702                           const llvm::MapVector<GlobalDecl, StringRef>
9703                               &MangledDeclNames) const override;
9704 };
9705 
9706 } // End anonymous namespace.
9707 
9708 // TODO: this implementation is likely now redundant with the default
9709 // EmitVAArg.
9710 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9711                                 QualType Ty) const {
9712   CGBuilderTy &Builder = CGF.Builder;
9713 
9714   // Get the VAList.
9715   CharUnits SlotSize = CharUnits::fromQuantity(4);
9716   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9717 
9718   // Handle the argument.
9719   ABIArgInfo AI = classifyArgumentType(Ty);
9720   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9721   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9722   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9723     AI.setCoerceToType(ArgTy);
9724   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9725 
9726   Address Val = Address::invalid();
9727   CharUnits ArgSize = CharUnits::Zero();
9728   switch (AI.getKind()) {
9729   case ABIArgInfo::Expand:
9730   case ABIArgInfo::CoerceAndExpand:
9731   case ABIArgInfo::InAlloca:
9732     llvm_unreachable("Unsupported ABI kind for va_arg");
9733   case ABIArgInfo::Ignore:
9734     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9735     ArgSize = CharUnits::Zero();
9736     break;
9737   case ABIArgInfo::Extend:
9738   case ABIArgInfo::Direct:
9739     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9740     ArgSize = CharUnits::fromQuantity(
9741                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9742     ArgSize = ArgSize.alignTo(SlotSize);
9743     break;
9744   case ABIArgInfo::Indirect:
9745     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9746     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9747     ArgSize = SlotSize;
9748     break;
9749   }
9750 
9751   // Increment the VAList.
9752   if (!ArgSize.isZero()) {
9753     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9754     Builder.CreateStore(APN.getPointer(), VAListAddr);
9755   }
9756 
9757   return Val;
9758 }
9759 
9760 /// During the expansion of a RecordType, an incomplete TypeString is placed
9761 /// into the cache as a means to identify and break recursion.
9762 /// If there is a Recursive encoding in the cache, it is swapped out and will
9763 /// be reinserted by removeIncomplete().
9764 /// All other types of encoding should have been used rather than arriving here.
9765 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9766                                     std::string StubEnc) {
9767   if (!ID)
9768     return;
9769   Entry &E = Map[ID];
9770   assert( (E.Str.empty() || E.State == Recursive) &&
9771          "Incorrectly use of addIncomplete");
9772   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9773   E.Swapped.swap(E.Str); // swap out the Recursive
9774   E.Str.swap(StubEnc);
9775   E.State = Incomplete;
9776   ++IncompleteCount;
9777 }
9778 
9779 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9780 /// must be removed from the cache.
9781 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9782 /// Returns true if the RecordType was defined recursively.
9783 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9784   if (!ID)
9785     return false;
9786   auto I = Map.find(ID);
9787   assert(I != Map.end() && "Entry not present");
9788   Entry &E = I->second;
9789   assert( (E.State == Incomplete ||
9790            E.State == IncompleteUsed) &&
9791          "Entry must be an incomplete type");
9792   bool IsRecursive = false;
9793   if (E.State == IncompleteUsed) {
9794     // We made use of our Incomplete encoding, thus we are recursive.
9795     IsRecursive = true;
9796     --IncompleteUsedCount;
9797   }
9798   if (E.Swapped.empty())
9799     Map.erase(I);
9800   else {
9801     // Swap the Recursive back.
9802     E.Swapped.swap(E.Str);
9803     E.Swapped.clear();
9804     E.State = Recursive;
9805   }
9806   --IncompleteCount;
9807   return IsRecursive;
9808 }
9809 
9810 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9811 /// Recursive (viz: all sub-members were expanded as fully as possible).
9812 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9813                                     bool IsRecursive) {
9814   if (!ID || IncompleteUsedCount)
9815     return; // No key or it is is an incomplete sub-type so don't add.
9816   Entry &E = Map[ID];
9817   if (IsRecursive && !E.Str.empty()) {
9818     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9819            "This is not the same Recursive entry");
9820     // The parent container was not recursive after all, so we could have used
9821     // this Recursive sub-member entry after all, but we assumed the worse when
9822     // we started viz: IncompleteCount!=0.
9823     return;
9824   }
9825   assert(E.Str.empty() && "Entry already present");
9826   E.Str = Str.str();
9827   E.State = IsRecursive? Recursive : NonRecursive;
9828 }
9829 
9830 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9831 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9832 /// encoding is Recursive, return an empty StringRef.
9833 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9834   if (!ID)
9835     return StringRef();   // We have no key.
9836   auto I = Map.find(ID);
9837   if (I == Map.end())
9838     return StringRef();   // We have no encoding.
9839   Entry &E = I->second;
9840   if (E.State == Recursive && IncompleteCount)
9841     return StringRef();   // We don't use Recursive encodings for member types.
9842 
9843   if (E.State == Incomplete) {
9844     // The incomplete type is being used to break out of recursion.
9845     E.State = IncompleteUsed;
9846     ++IncompleteUsedCount;
9847   }
9848   return E.Str;
9849 }
9850 
9851 /// The XCore ABI includes a type information section that communicates symbol
9852 /// type information to the linker. The linker uses this information to verify
9853 /// safety/correctness of things such as array bound and pointers et al.
9854 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9855 /// This type information (TypeString) is emitted into meta data for all global
9856 /// symbols: definitions, declarations, functions & variables.
9857 ///
9858 /// The TypeString carries type, qualifier, name, size & value details.
9859 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9860 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9861 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9862 ///
9863 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9864                           const CodeGen::CodeGenModule &CGM,
9865                           TypeStringCache &TSC);
9866 
9867 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9868 void XCoreTargetCodeGenInfo::emitTargetMD(
9869     const Decl *D, llvm::GlobalValue *GV,
9870     const CodeGen::CodeGenModule &CGM) const {
9871   SmallStringEnc Enc;
9872   if (getTypeString(Enc, D, CGM, TSC)) {
9873     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9874     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9875                                 llvm::MDString::get(Ctx, Enc.str())};
9876     llvm::NamedMDNode *MD =
9877       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9878     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9879   }
9880 }
9881 
9882 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9883     CodeGen::CodeGenModule &CGM,
9884     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9885   // Warning, new MangledDeclNames may be appended within this loop.
9886   // We rely on MapVector insertions adding new elements to the end
9887   // of the container.
9888   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9889     auto Val = *(MangledDeclNames.begin() + I);
9890     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9891     if (GV) {
9892       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9893       emitTargetMD(D, GV, CGM);
9894     }
9895   }
9896 }
9897 //===----------------------------------------------------------------------===//
9898 // SPIR ABI Implementation
9899 //===----------------------------------------------------------------------===//
9900 
9901 namespace {
9902 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9903 public:
9904   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9905       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9906   unsigned getOpenCLKernelCallingConv() const override;
9907 };
9908 
9909 } // End anonymous namespace.
9910 
9911 namespace clang {
9912 namespace CodeGen {
9913 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9914   DefaultABIInfo SPIRABI(CGM.getTypes());
9915   SPIRABI.computeInfo(FI);
9916 }
9917 }
9918 }
9919 
9920 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9921   return llvm::CallingConv::SPIR_KERNEL;
9922 }
9923 
9924 static bool appendType(SmallStringEnc &Enc, QualType QType,
9925                        const CodeGen::CodeGenModule &CGM,
9926                        TypeStringCache &TSC);
9927 
9928 /// Helper function for appendRecordType().
9929 /// Builds a SmallVector containing the encoded field types in declaration
9930 /// order.
9931 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9932                              const RecordDecl *RD,
9933                              const CodeGen::CodeGenModule &CGM,
9934                              TypeStringCache &TSC) {
9935   for (const auto *Field : RD->fields()) {
9936     SmallStringEnc Enc;
9937     Enc += "m(";
9938     Enc += Field->getName();
9939     Enc += "){";
9940     if (Field->isBitField()) {
9941       Enc += "b(";
9942       llvm::raw_svector_ostream OS(Enc);
9943       OS << Field->getBitWidthValue(CGM.getContext());
9944       Enc += ':';
9945     }
9946     if (!appendType(Enc, Field->getType(), CGM, TSC))
9947       return false;
9948     if (Field->isBitField())
9949       Enc += ')';
9950     Enc += '}';
9951     FE.emplace_back(!Field->getName().empty(), Enc);
9952   }
9953   return true;
9954 }
9955 
9956 /// Appends structure and union types to Enc and adds encoding to cache.
9957 /// Recursively calls appendType (via extractFieldType) for each field.
9958 /// Union types have their fields ordered according to the ABI.
9959 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9960                              const CodeGen::CodeGenModule &CGM,
9961                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9962   // Append the cached TypeString if we have one.
9963   StringRef TypeString = TSC.lookupStr(ID);
9964   if (!TypeString.empty()) {
9965     Enc += TypeString;
9966     return true;
9967   }
9968 
9969   // Start to emit an incomplete TypeString.
9970   size_t Start = Enc.size();
9971   Enc += (RT->isUnionType()? 'u' : 's');
9972   Enc += '(';
9973   if (ID)
9974     Enc += ID->getName();
9975   Enc += "){";
9976 
9977   // We collect all encoded fields and order as necessary.
9978   bool IsRecursive = false;
9979   const RecordDecl *RD = RT->getDecl()->getDefinition();
9980   if (RD && !RD->field_empty()) {
9981     // An incomplete TypeString stub is placed in the cache for this RecordType
9982     // so that recursive calls to this RecordType will use it whilst building a
9983     // complete TypeString for this RecordType.
9984     SmallVector<FieldEncoding, 16> FE;
9985     std::string StubEnc(Enc.substr(Start).str());
9986     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9987     TSC.addIncomplete(ID, std::move(StubEnc));
9988     if (!extractFieldType(FE, RD, CGM, TSC)) {
9989       (void) TSC.removeIncomplete(ID);
9990       return false;
9991     }
9992     IsRecursive = TSC.removeIncomplete(ID);
9993     // The ABI requires unions to be sorted but not structures.
9994     // See FieldEncoding::operator< for sort algorithm.
9995     if (RT->isUnionType())
9996       llvm::sort(FE);
9997     // We can now complete the TypeString.
9998     unsigned E = FE.size();
9999     for (unsigned I = 0; I != E; ++I) {
10000       if (I)
10001         Enc += ',';
10002       Enc += FE[I].str();
10003     }
10004   }
10005   Enc += '}';
10006   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10007   return true;
10008 }
10009 
10010 /// Appends enum types to Enc and adds the encoding to the cache.
10011 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10012                            TypeStringCache &TSC,
10013                            const IdentifierInfo *ID) {
10014   // Append the cached TypeString if we have one.
10015   StringRef TypeString = TSC.lookupStr(ID);
10016   if (!TypeString.empty()) {
10017     Enc += TypeString;
10018     return true;
10019   }
10020 
10021   size_t Start = Enc.size();
10022   Enc += "e(";
10023   if (ID)
10024     Enc += ID->getName();
10025   Enc += "){";
10026 
10027   // We collect all encoded enumerations and order them alphanumerically.
10028   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10029     SmallVector<FieldEncoding, 16> FE;
10030     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10031          ++I) {
10032       SmallStringEnc EnumEnc;
10033       EnumEnc += "m(";
10034       EnumEnc += I->getName();
10035       EnumEnc += "){";
10036       I->getInitVal().toString(EnumEnc);
10037       EnumEnc += '}';
10038       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10039     }
10040     llvm::sort(FE);
10041     unsigned E = FE.size();
10042     for (unsigned I = 0; I != E; ++I) {
10043       if (I)
10044         Enc += ',';
10045       Enc += FE[I].str();
10046     }
10047   }
10048   Enc += '}';
10049   TSC.addIfComplete(ID, Enc.substr(Start), false);
10050   return true;
10051 }
10052 
10053 /// Appends type's qualifier to Enc.
10054 /// This is done prior to appending the type's encoding.
10055 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10056   // Qualifiers are emitted in alphabetical order.
10057   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10058   int Lookup = 0;
10059   if (QT.isConstQualified())
10060     Lookup += 1<<0;
10061   if (QT.isRestrictQualified())
10062     Lookup += 1<<1;
10063   if (QT.isVolatileQualified())
10064     Lookup += 1<<2;
10065   Enc += Table[Lookup];
10066 }
10067 
10068 /// Appends built-in types to Enc.
10069 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10070   const char *EncType;
10071   switch (BT->getKind()) {
10072     case BuiltinType::Void:
10073       EncType = "0";
10074       break;
10075     case BuiltinType::Bool:
10076       EncType = "b";
10077       break;
10078     case BuiltinType::Char_U:
10079       EncType = "uc";
10080       break;
10081     case BuiltinType::UChar:
10082       EncType = "uc";
10083       break;
10084     case BuiltinType::SChar:
10085       EncType = "sc";
10086       break;
10087     case BuiltinType::UShort:
10088       EncType = "us";
10089       break;
10090     case BuiltinType::Short:
10091       EncType = "ss";
10092       break;
10093     case BuiltinType::UInt:
10094       EncType = "ui";
10095       break;
10096     case BuiltinType::Int:
10097       EncType = "si";
10098       break;
10099     case BuiltinType::ULong:
10100       EncType = "ul";
10101       break;
10102     case BuiltinType::Long:
10103       EncType = "sl";
10104       break;
10105     case BuiltinType::ULongLong:
10106       EncType = "ull";
10107       break;
10108     case BuiltinType::LongLong:
10109       EncType = "sll";
10110       break;
10111     case BuiltinType::Float:
10112       EncType = "ft";
10113       break;
10114     case BuiltinType::Double:
10115       EncType = "d";
10116       break;
10117     case BuiltinType::LongDouble:
10118       EncType = "ld";
10119       break;
10120     default:
10121       return false;
10122   }
10123   Enc += EncType;
10124   return true;
10125 }
10126 
10127 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10128 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10129                               const CodeGen::CodeGenModule &CGM,
10130                               TypeStringCache &TSC) {
10131   Enc += "p(";
10132   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10133     return false;
10134   Enc += ')';
10135   return true;
10136 }
10137 
10138 /// Appends array encoding to Enc before calling appendType for the element.
10139 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10140                             const ArrayType *AT,
10141                             const CodeGen::CodeGenModule &CGM,
10142                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10143   if (AT->getSizeModifier() != ArrayType::Normal)
10144     return false;
10145   Enc += "a(";
10146   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10147     CAT->getSize().toStringUnsigned(Enc);
10148   else
10149     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10150   Enc += ':';
10151   // The Qualifiers should be attached to the type rather than the array.
10152   appendQualifier(Enc, QT);
10153   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10154     return false;
10155   Enc += ')';
10156   return true;
10157 }
10158 
10159 /// Appends a function encoding to Enc, calling appendType for the return type
10160 /// and the arguments.
10161 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10162                              const CodeGen::CodeGenModule &CGM,
10163                              TypeStringCache &TSC) {
10164   Enc += "f{";
10165   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10166     return false;
10167   Enc += "}(";
10168   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10169     // N.B. we are only interested in the adjusted param types.
10170     auto I = FPT->param_type_begin();
10171     auto E = FPT->param_type_end();
10172     if (I != E) {
10173       do {
10174         if (!appendType(Enc, *I, CGM, TSC))
10175           return false;
10176         ++I;
10177         if (I != E)
10178           Enc += ',';
10179       } while (I != E);
10180       if (FPT->isVariadic())
10181         Enc += ",va";
10182     } else {
10183       if (FPT->isVariadic())
10184         Enc += "va";
10185       else
10186         Enc += '0';
10187     }
10188   }
10189   Enc += ')';
10190   return true;
10191 }
10192 
10193 /// Handles the type's qualifier before dispatching a call to handle specific
10194 /// type encodings.
10195 static bool appendType(SmallStringEnc &Enc, QualType QType,
10196                        const CodeGen::CodeGenModule &CGM,
10197                        TypeStringCache &TSC) {
10198 
10199   QualType QT = QType.getCanonicalType();
10200 
10201   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10202     // The Qualifiers should be attached to the type rather than the array.
10203     // Thus we don't call appendQualifier() here.
10204     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10205 
10206   appendQualifier(Enc, QT);
10207 
10208   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10209     return appendBuiltinType(Enc, BT);
10210 
10211   if (const PointerType *PT = QT->getAs<PointerType>())
10212     return appendPointerType(Enc, PT, CGM, TSC);
10213 
10214   if (const EnumType *ET = QT->getAs<EnumType>())
10215     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10216 
10217   if (const RecordType *RT = QT->getAsStructureType())
10218     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10219 
10220   if (const RecordType *RT = QT->getAsUnionType())
10221     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10222 
10223   if (const FunctionType *FT = QT->getAs<FunctionType>())
10224     return appendFunctionType(Enc, FT, CGM, TSC);
10225 
10226   return false;
10227 }
10228 
10229 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10230                           const CodeGen::CodeGenModule &CGM,
10231                           TypeStringCache &TSC) {
10232   if (!D)
10233     return false;
10234 
10235   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10236     if (FD->getLanguageLinkage() != CLanguageLinkage)
10237       return false;
10238     return appendType(Enc, FD->getType(), CGM, TSC);
10239   }
10240 
10241   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10242     if (VD->getLanguageLinkage() != CLanguageLinkage)
10243       return false;
10244     QualType QT = VD->getType().getCanonicalType();
10245     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10246       // Global ArrayTypes are given a size of '*' if the size is unknown.
10247       // The Qualifiers should be attached to the type rather than the array.
10248       // Thus we don't call appendQualifier() here.
10249       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10250     }
10251     return appendType(Enc, QT, CGM, TSC);
10252   }
10253   return false;
10254 }
10255 
10256 //===----------------------------------------------------------------------===//
10257 // RISCV ABI Implementation
10258 //===----------------------------------------------------------------------===//
10259 
10260 namespace {
10261 class RISCVABIInfo : public DefaultABIInfo {
10262 private:
10263   // Size of the integer ('x') registers in bits.
10264   unsigned XLen;
10265   // Size of the floating point ('f') registers in bits. Note that the target
10266   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10267   // with soft float ABI has FLen==0).
10268   unsigned FLen;
10269   static const int NumArgGPRs = 8;
10270   static const int NumArgFPRs = 8;
10271   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10272                                       llvm::Type *&Field1Ty,
10273                                       CharUnits &Field1Off,
10274                                       llvm::Type *&Field2Ty,
10275                                       CharUnits &Field2Off) const;
10276 
10277 public:
10278   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10279       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10280 
10281   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10282   // non-virtual, but computeInfo is virtual, so we overload it.
10283   void computeInfo(CGFunctionInfo &FI) const override;
10284 
10285   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10286                                   int &ArgFPRsLeft) const;
10287   ABIArgInfo classifyReturnType(QualType RetTy) const;
10288 
10289   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10290                     QualType Ty) const override;
10291 
10292   ABIArgInfo extendType(QualType Ty) const;
10293 
10294   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10295                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10296                                 CharUnits &Field2Off, int &NeededArgGPRs,
10297                                 int &NeededArgFPRs) const;
10298   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10299                                                CharUnits Field1Off,
10300                                                llvm::Type *Field2Ty,
10301                                                CharUnits Field2Off) const;
10302 };
10303 } // end anonymous namespace
10304 
10305 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10306   QualType RetTy = FI.getReturnType();
10307   if (!getCXXABI().classifyReturnType(FI))
10308     FI.getReturnInfo() = classifyReturnType(RetTy);
10309 
10310   // IsRetIndirect is true if classifyArgumentType indicated the value should
10311   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10312   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10313   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10314   // list and pass indirectly on RV32.
10315   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10316   if (!IsRetIndirect && RetTy->isScalarType() &&
10317       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10318     if (RetTy->isComplexType() && FLen) {
10319       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10320       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10321     } else {
10322       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10323       IsRetIndirect = true;
10324     }
10325   }
10326 
10327   // We must track the number of GPRs used in order to conform to the RISC-V
10328   // ABI, as integer scalars passed in registers should have signext/zeroext
10329   // when promoted, but are anyext if passed on the stack. As GPR usage is
10330   // different for variadic arguments, we must also track whether we are
10331   // examining a vararg or not.
10332   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10333   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10334   int NumFixedArgs = FI.getNumRequiredArgs();
10335 
10336   int ArgNum = 0;
10337   for (auto &ArgInfo : FI.arguments()) {
10338     bool IsFixed = ArgNum < NumFixedArgs;
10339     ArgInfo.info =
10340         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10341     ArgNum++;
10342   }
10343 }
10344 
10345 // Returns true if the struct is a potential candidate for the floating point
10346 // calling convention. If this function returns true, the caller is
10347 // responsible for checking that if there is only a single field then that
10348 // field is a float.
10349 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10350                                                   llvm::Type *&Field1Ty,
10351                                                   CharUnits &Field1Off,
10352                                                   llvm::Type *&Field2Ty,
10353                                                   CharUnits &Field2Off) const {
10354   bool IsInt = Ty->isIntegralOrEnumerationType();
10355   bool IsFloat = Ty->isRealFloatingType();
10356 
10357   if (IsInt || IsFloat) {
10358     uint64_t Size = getContext().getTypeSize(Ty);
10359     if (IsInt && Size > XLen)
10360       return false;
10361     // Can't be eligible if larger than the FP registers. Half precision isn't
10362     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10363     // default to the integer ABI in that case.
10364     if (IsFloat && (Size > FLen || Size < 32))
10365       return false;
10366     // Can't be eligible if an integer type was already found (int+int pairs
10367     // are not eligible).
10368     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10369       return false;
10370     if (!Field1Ty) {
10371       Field1Ty = CGT.ConvertType(Ty);
10372       Field1Off = CurOff;
10373       return true;
10374     }
10375     if (!Field2Ty) {
10376       Field2Ty = CGT.ConvertType(Ty);
10377       Field2Off = CurOff;
10378       return true;
10379     }
10380     return false;
10381   }
10382 
10383   if (auto CTy = Ty->getAs<ComplexType>()) {
10384     if (Field1Ty)
10385       return false;
10386     QualType EltTy = CTy->getElementType();
10387     if (getContext().getTypeSize(EltTy) > FLen)
10388       return false;
10389     Field1Ty = CGT.ConvertType(EltTy);
10390     Field1Off = CurOff;
10391     assert(CurOff.isZero() && "Unexpected offset for first field");
10392     Field2Ty = Field1Ty;
10393     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10394     return true;
10395   }
10396 
10397   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10398     uint64_t ArraySize = ATy->getSize().getZExtValue();
10399     QualType EltTy = ATy->getElementType();
10400     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10401     for (uint64_t i = 0; i < ArraySize; ++i) {
10402       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10403                                                 Field1Off, Field2Ty, Field2Off);
10404       if (!Ret)
10405         return false;
10406       CurOff += EltSize;
10407     }
10408     return true;
10409   }
10410 
10411   if (const auto *RTy = Ty->getAs<RecordType>()) {
10412     // Structures with either a non-trivial destructor or a non-trivial
10413     // copy constructor are not eligible for the FP calling convention.
10414     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10415       return false;
10416     if (isEmptyRecord(getContext(), Ty, true))
10417       return true;
10418     const RecordDecl *RD = RTy->getDecl();
10419     // Unions aren't eligible unless they're empty (which is caught above).
10420     if (RD->isUnion())
10421       return false;
10422     int ZeroWidthBitFieldCount = 0;
10423     for (const FieldDecl *FD : RD->fields()) {
10424       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10425       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10426       QualType QTy = FD->getType();
10427       if (FD->isBitField()) {
10428         unsigned BitWidth = FD->getBitWidthValue(getContext());
10429         // Allow a bitfield with a type greater than XLen as long as the
10430         // bitwidth is XLen or less.
10431         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10432           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10433         if (BitWidth == 0) {
10434           ZeroWidthBitFieldCount++;
10435           continue;
10436         }
10437       }
10438 
10439       bool Ret = detectFPCCEligibleStructHelper(
10440           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10441           Field1Ty, Field1Off, Field2Ty, Field2Off);
10442       if (!Ret)
10443         return false;
10444 
10445       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10446       // or int+fp structs, but are ignored for a struct with an fp field and
10447       // any number of zero-width bitfields.
10448       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10449         return false;
10450     }
10451     return Field1Ty != nullptr;
10452   }
10453 
10454   return false;
10455 }
10456 
10457 // Determine if a struct is eligible for passing according to the floating
10458 // point calling convention (i.e., when flattened it contains a single fp
10459 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10460 // NeededArgGPRs are incremented appropriately.
10461 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10462                                             CharUnits &Field1Off,
10463                                             llvm::Type *&Field2Ty,
10464                                             CharUnits &Field2Off,
10465                                             int &NeededArgGPRs,
10466                                             int &NeededArgFPRs) const {
10467   Field1Ty = nullptr;
10468   Field2Ty = nullptr;
10469   NeededArgGPRs = 0;
10470   NeededArgFPRs = 0;
10471   bool IsCandidate = detectFPCCEligibleStructHelper(
10472       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10473   // Not really a candidate if we have a single int but no float.
10474   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10475     return false;
10476   if (!IsCandidate)
10477     return false;
10478   if (Field1Ty && Field1Ty->isFloatingPointTy())
10479     NeededArgFPRs++;
10480   else if (Field1Ty)
10481     NeededArgGPRs++;
10482   if (Field2Ty && Field2Ty->isFloatingPointTy())
10483     NeededArgFPRs++;
10484   else if (Field2Ty)
10485     NeededArgGPRs++;
10486   return IsCandidate;
10487 }
10488 
10489 // Call getCoerceAndExpand for the two-element flattened struct described by
10490 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10491 // appropriate coerceToType and unpaddedCoerceToType.
10492 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10493     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10494     CharUnits Field2Off) const {
10495   SmallVector<llvm::Type *, 3> CoerceElts;
10496   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10497   if (!Field1Off.isZero())
10498     CoerceElts.push_back(llvm::ArrayType::get(
10499         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10500 
10501   CoerceElts.push_back(Field1Ty);
10502   UnpaddedCoerceElts.push_back(Field1Ty);
10503 
10504   if (!Field2Ty) {
10505     return ABIArgInfo::getCoerceAndExpand(
10506         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10507         UnpaddedCoerceElts[0]);
10508   }
10509 
10510   CharUnits Field2Align =
10511       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10512   CharUnits Field1Size =
10513       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10514   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10515 
10516   CharUnits Padding = CharUnits::Zero();
10517   if (Field2Off > Field2OffNoPadNoPack)
10518     Padding = Field2Off - Field2OffNoPadNoPack;
10519   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10520     Padding = Field2Off - Field1Size;
10521 
10522   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10523 
10524   if (!Padding.isZero())
10525     CoerceElts.push_back(llvm::ArrayType::get(
10526         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10527 
10528   CoerceElts.push_back(Field2Ty);
10529   UnpaddedCoerceElts.push_back(Field2Ty);
10530 
10531   auto CoerceToType =
10532       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10533   auto UnpaddedCoerceToType =
10534       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10535 
10536   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10537 }
10538 
10539 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10540                                               int &ArgGPRsLeft,
10541                                               int &ArgFPRsLeft) const {
10542   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10543   Ty = useFirstFieldIfTransparentUnion(Ty);
10544 
10545   // Structures with either a non-trivial destructor or a non-trivial
10546   // copy constructor are always passed indirectly.
10547   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10548     if (ArgGPRsLeft)
10549       ArgGPRsLeft -= 1;
10550     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10551                                            CGCXXABI::RAA_DirectInMemory);
10552   }
10553 
10554   // Ignore empty structs/unions.
10555   if (isEmptyRecord(getContext(), Ty, true))
10556     return ABIArgInfo::getIgnore();
10557 
10558   uint64_t Size = getContext().getTypeSize(Ty);
10559 
10560   // Pass floating point values via FPRs if possible.
10561   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10562       FLen >= Size && ArgFPRsLeft) {
10563     ArgFPRsLeft--;
10564     return ABIArgInfo::getDirect();
10565   }
10566 
10567   // Complex types for the hard float ABI must be passed direct rather than
10568   // using CoerceAndExpand.
10569   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10570     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10571     if (getContext().getTypeSize(EltTy) <= FLen) {
10572       ArgFPRsLeft -= 2;
10573       return ABIArgInfo::getDirect();
10574     }
10575   }
10576 
10577   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10578     llvm::Type *Field1Ty = nullptr;
10579     llvm::Type *Field2Ty = nullptr;
10580     CharUnits Field1Off = CharUnits::Zero();
10581     CharUnits Field2Off = CharUnits::Zero();
10582     int NeededArgGPRs;
10583     int NeededArgFPRs;
10584     bool IsCandidate =
10585         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10586                                  NeededArgGPRs, NeededArgFPRs);
10587     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10588         NeededArgFPRs <= ArgFPRsLeft) {
10589       ArgGPRsLeft -= NeededArgGPRs;
10590       ArgFPRsLeft -= NeededArgFPRs;
10591       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10592                                                Field2Off);
10593     }
10594   }
10595 
10596   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10597   bool MustUseStack = false;
10598   // Determine the number of GPRs needed to pass the current argument
10599   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10600   // register pairs, so may consume 3 registers.
10601   int NeededArgGPRs = 1;
10602   if (!IsFixed && NeededAlign == 2 * XLen)
10603     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10604   else if (Size > XLen && Size <= 2 * XLen)
10605     NeededArgGPRs = 2;
10606 
10607   if (NeededArgGPRs > ArgGPRsLeft) {
10608     MustUseStack = true;
10609     NeededArgGPRs = ArgGPRsLeft;
10610   }
10611 
10612   ArgGPRsLeft -= NeededArgGPRs;
10613 
10614   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10615     // Treat an enum type as its underlying type.
10616     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10617       Ty = EnumTy->getDecl()->getIntegerType();
10618 
10619     // All integral types are promoted to XLen width, unless passed on the
10620     // stack.
10621     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10622       return extendType(Ty);
10623     }
10624 
10625     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10626       if (EIT->getNumBits() < XLen && !MustUseStack)
10627         return extendType(Ty);
10628       if (EIT->getNumBits() > 128 ||
10629           (!getContext().getTargetInfo().hasInt128Type() &&
10630            EIT->getNumBits() > 64))
10631         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10632     }
10633 
10634     return ABIArgInfo::getDirect();
10635   }
10636 
10637   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10638   // so coerce to integers.
10639   if (Size <= 2 * XLen) {
10640     unsigned Alignment = getContext().getTypeAlign(Ty);
10641 
10642     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10643     // required, and a 2-element XLen array if only XLen alignment is required.
10644     if (Size <= XLen) {
10645       return ABIArgInfo::getDirect(
10646           llvm::IntegerType::get(getVMContext(), XLen));
10647     } else if (Alignment == 2 * XLen) {
10648       return ABIArgInfo::getDirect(
10649           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10650     } else {
10651       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10652           llvm::IntegerType::get(getVMContext(), XLen), 2));
10653     }
10654   }
10655   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10656 }
10657 
10658 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10659   if (RetTy->isVoidType())
10660     return ABIArgInfo::getIgnore();
10661 
10662   int ArgGPRsLeft = 2;
10663   int ArgFPRsLeft = FLen ? 2 : 0;
10664 
10665   // The rules for return and argument types are the same, so defer to
10666   // classifyArgumentType.
10667   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10668                               ArgFPRsLeft);
10669 }
10670 
10671 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10672                                 QualType Ty) const {
10673   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10674 
10675   // Empty records are ignored for parameter passing purposes.
10676   if (isEmptyRecord(getContext(), Ty, true)) {
10677     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10678     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10679     return Addr;
10680   }
10681 
10682   std::pair<CharUnits, CharUnits> SizeAndAlign =
10683       getContext().getTypeInfoInChars(Ty);
10684 
10685   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10686   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10687 
10688   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10689                           SlotSize, /*AllowHigherAlign=*/true);
10690 }
10691 
10692 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10693   int TySize = getContext().getTypeSize(Ty);
10694   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10695   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10696     return ABIArgInfo::getSignExtend(Ty);
10697   return ABIArgInfo::getExtend(Ty);
10698 }
10699 
10700 namespace {
10701 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10702 public:
10703   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10704                          unsigned FLen)
10705       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10706 
10707   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10708                            CodeGen::CodeGenModule &CGM) const override {
10709     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10710     if (!FD) return;
10711 
10712     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10713     if (!Attr)
10714       return;
10715 
10716     const char *Kind;
10717     switch (Attr->getInterrupt()) {
10718     case RISCVInterruptAttr::user: Kind = "user"; break;
10719     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10720     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10721     }
10722 
10723     auto *Fn = cast<llvm::Function>(GV);
10724 
10725     Fn->addFnAttr("interrupt", Kind);
10726   }
10727 };
10728 } // namespace
10729 
10730 //===----------------------------------------------------------------------===//
10731 // VE ABI Implementation.
10732 //
10733 namespace {
10734 class VEABIInfo : public DefaultABIInfo {
10735 public:
10736   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10737 
10738 private:
10739   ABIArgInfo classifyReturnType(QualType RetTy) const;
10740   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10741   void computeInfo(CGFunctionInfo &FI) const override;
10742 };
10743 } // end anonymous namespace
10744 
10745 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10746   if (Ty->isAnyComplexType())
10747     return ABIArgInfo::getDirect();
10748   uint64_t Size = getContext().getTypeSize(Ty);
10749   if (Size < 64 && Ty->isIntegerType())
10750     return ABIArgInfo::getExtend(Ty);
10751   return DefaultABIInfo::classifyReturnType(Ty);
10752 }
10753 
10754 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10755   if (Ty->isAnyComplexType())
10756     return ABIArgInfo::getDirect();
10757   uint64_t Size = getContext().getTypeSize(Ty);
10758   if (Size < 64 && Ty->isIntegerType())
10759     return ABIArgInfo::getExtend(Ty);
10760   return DefaultABIInfo::classifyArgumentType(Ty);
10761 }
10762 
10763 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10764   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10765   for (auto &Arg : FI.arguments())
10766     Arg.info = classifyArgumentType(Arg.type);
10767 }
10768 
10769 namespace {
10770 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10771 public:
10772   VETargetCodeGenInfo(CodeGenTypes &CGT)
10773       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10774   // VE ABI requires the arguments of variadic and prototype-less functions
10775   // are passed in both registers and memory.
10776   bool isNoProtoCallVariadic(const CallArgList &args,
10777                              const FunctionNoProtoType *fnType) const override {
10778     return true;
10779   }
10780 };
10781 } // end anonymous namespace
10782 
10783 //===----------------------------------------------------------------------===//
10784 // Driver code
10785 //===----------------------------------------------------------------------===//
10786 
10787 bool CodeGenModule::supportsCOMDAT() const {
10788   return getTriple().supportsCOMDAT();
10789 }
10790 
10791 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10792   if (TheTargetCodeGenInfo)
10793     return *TheTargetCodeGenInfo;
10794 
10795   // Helper to set the unique_ptr while still keeping the return value.
10796   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10797     this->TheTargetCodeGenInfo.reset(P);
10798     return *P;
10799   };
10800 
10801   const llvm::Triple &Triple = getTarget().getTriple();
10802   switch (Triple.getArch()) {
10803   default:
10804     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10805 
10806   case llvm::Triple::le32:
10807     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10808   case llvm::Triple::mips:
10809   case llvm::Triple::mipsel:
10810     if (Triple.getOS() == llvm::Triple::NaCl)
10811       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10812     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10813 
10814   case llvm::Triple::mips64:
10815   case llvm::Triple::mips64el:
10816     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10817 
10818   case llvm::Triple::avr:
10819     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10820 
10821   case llvm::Triple::aarch64:
10822   case llvm::Triple::aarch64_32:
10823   case llvm::Triple::aarch64_be: {
10824     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10825     if (getTarget().getABI() == "darwinpcs")
10826       Kind = AArch64ABIInfo::DarwinPCS;
10827     else if (Triple.isOSWindows())
10828       return SetCGInfo(
10829           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10830 
10831     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10832   }
10833 
10834   case llvm::Triple::wasm32:
10835   case llvm::Triple::wasm64: {
10836     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10837     if (getTarget().getABI() == "experimental-mv")
10838       Kind = WebAssemblyABIInfo::ExperimentalMV;
10839     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10840   }
10841 
10842   case llvm::Triple::arm:
10843   case llvm::Triple::armeb:
10844   case llvm::Triple::thumb:
10845   case llvm::Triple::thumbeb: {
10846     if (Triple.getOS() == llvm::Triple::Win32) {
10847       return SetCGInfo(
10848           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10849     }
10850 
10851     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10852     StringRef ABIStr = getTarget().getABI();
10853     if (ABIStr == "apcs-gnu")
10854       Kind = ARMABIInfo::APCS;
10855     else if (ABIStr == "aapcs16")
10856       Kind = ARMABIInfo::AAPCS16_VFP;
10857     else if (CodeGenOpts.FloatABI == "hard" ||
10858              (CodeGenOpts.FloatABI != "soft" &&
10859               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10860                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10861                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10862       Kind = ARMABIInfo::AAPCS_VFP;
10863 
10864     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10865   }
10866 
10867   case llvm::Triple::ppc: {
10868     if (Triple.isOSAIX())
10869       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10870 
10871     bool IsSoftFloat =
10872         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10873     bool RetSmallStructInRegABI =
10874         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10875     return SetCGInfo(
10876         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10877   }
10878   case llvm::Triple::ppc64:
10879     if (Triple.isOSAIX())
10880       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10881 
10882     if (Triple.isOSBinFormatELF()) {
10883       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10884       if (getTarget().getABI() == "elfv2")
10885         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10886       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10887       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10888 
10889       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10890                                                         IsSoftFloat));
10891     }
10892     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10893   case llvm::Triple::ppc64le: {
10894     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10895     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10896     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10897       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10898     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10899     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10900 
10901     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10902                                                       IsSoftFloat));
10903   }
10904 
10905   case llvm::Triple::nvptx:
10906   case llvm::Triple::nvptx64:
10907     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10908 
10909   case llvm::Triple::msp430:
10910     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10911 
10912   case llvm::Triple::riscv32:
10913   case llvm::Triple::riscv64: {
10914     StringRef ABIStr = getTarget().getABI();
10915     unsigned XLen = getTarget().getPointerWidth(0);
10916     unsigned ABIFLen = 0;
10917     if (ABIStr.endswith("f"))
10918       ABIFLen = 32;
10919     else if (ABIStr.endswith("d"))
10920       ABIFLen = 64;
10921     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10922   }
10923 
10924   case llvm::Triple::systemz: {
10925     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10926     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10927     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10928   }
10929 
10930   case llvm::Triple::tce:
10931   case llvm::Triple::tcele:
10932     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10933 
10934   case llvm::Triple::x86: {
10935     bool IsDarwinVectorABI = Triple.isOSDarwin();
10936     bool RetSmallStructInRegABI =
10937         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10938     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10939 
10940     if (Triple.getOS() == llvm::Triple::Win32) {
10941       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10942           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10943           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10944     } else {
10945       return SetCGInfo(new X86_32TargetCodeGenInfo(
10946           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10947           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10948           CodeGenOpts.FloatABI == "soft"));
10949     }
10950   }
10951 
10952   case llvm::Triple::x86_64: {
10953     StringRef ABI = getTarget().getABI();
10954     X86AVXABILevel AVXLevel =
10955         (ABI == "avx512"
10956              ? X86AVXABILevel::AVX512
10957              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10958 
10959     switch (Triple.getOS()) {
10960     case llvm::Triple::Win32:
10961       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10962     default:
10963       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10964     }
10965   }
10966   case llvm::Triple::hexagon:
10967     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10968   case llvm::Triple::lanai:
10969     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10970   case llvm::Triple::r600:
10971     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10972   case llvm::Triple::amdgcn:
10973     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10974   case llvm::Triple::sparc:
10975     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10976   case llvm::Triple::sparcv9:
10977     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10978   case llvm::Triple::xcore:
10979     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10980   case llvm::Triple::arc:
10981     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10982   case llvm::Triple::spir:
10983   case llvm::Triple::spir64:
10984     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10985   case llvm::Triple::ve:
10986     return SetCGInfo(new VETargetCodeGenInfo(Types));
10987   }
10988 }
10989 
10990 /// Create an OpenCL kernel for an enqueued block.
10991 ///
10992 /// The kernel has the same function type as the block invoke function. Its
10993 /// name is the name of the block invoke function postfixed with "_kernel".
10994 /// It simply calls the block invoke function then returns.
10995 llvm::Function *
10996 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
10997                                              llvm::Function *Invoke,
10998                                              llvm::Value *BlockLiteral) const {
10999   auto *InvokeFT = Invoke->getFunctionType();
11000   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11001   for (auto &P : InvokeFT->params())
11002     ArgTys.push_back(P);
11003   auto &C = CGF.getLLVMContext();
11004   std::string Name = Invoke->getName().str() + "_kernel";
11005   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11006   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11007                                    &CGF.CGM.getModule());
11008   auto IP = CGF.Builder.saveIP();
11009   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11010   auto &Builder = CGF.Builder;
11011   Builder.SetInsertPoint(BB);
11012   llvm::SmallVector<llvm::Value *, 2> Args;
11013   for (auto &A : F->args())
11014     Args.push_back(&A);
11015   Builder.CreateCall(Invoke, Args);
11016   Builder.CreateRetVoid();
11017   Builder.restoreIP(IP);
11018   return F;
11019 }
11020 
11021 /// Create an OpenCL kernel for an enqueued block.
11022 ///
11023 /// The type of the first argument (the block literal) is the struct type
11024 /// of the block literal instead of a pointer type. The first argument
11025 /// (block literal) is passed directly by value to the kernel. The kernel
11026 /// allocates the same type of struct on stack and stores the block literal
11027 /// to it and passes its pointer to the block invoke function. The kernel
11028 /// has "enqueued-block" function attribute and kernel argument metadata.
11029 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11030     CodeGenFunction &CGF, llvm::Function *Invoke,
11031     llvm::Value *BlockLiteral) const {
11032   auto &Builder = CGF.Builder;
11033   auto &C = CGF.getLLVMContext();
11034 
11035   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11036   auto *InvokeFT = Invoke->getFunctionType();
11037   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11038   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11039   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11040   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11041   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11042   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11043   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11044 
11045   ArgTys.push_back(BlockTy);
11046   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11047   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11048   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11049   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11050   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11051   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11052   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11053     ArgTys.push_back(InvokeFT->getParamType(I));
11054     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11055     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11056     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11057     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11058     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11059     ArgNames.push_back(
11060         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11061   }
11062   std::string Name = Invoke->getName().str() + "_kernel";
11063   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11064   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11065                                    &CGF.CGM.getModule());
11066   F->addFnAttr("enqueued-block");
11067   auto IP = CGF.Builder.saveIP();
11068   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11069   Builder.SetInsertPoint(BB);
11070   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11071   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11072   BlockPtr->setAlignment(BlockAlign);
11073   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11074   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11075   llvm::SmallVector<llvm::Value *, 2> Args;
11076   Args.push_back(Cast);
11077   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11078     Args.push_back(I);
11079   Builder.CreateCall(Invoke, Args);
11080   Builder.CreateRetVoid();
11081   Builder.restoreIP(IP);
11082 
11083   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11084   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11085   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11086   F->setMetadata("kernel_arg_base_type",
11087                  llvm::MDNode::get(C, ArgBaseTypeNames));
11088   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11089   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11090     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11091 
11092   return F;
11093 }
11094