1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CodeGenFunction.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/Type.h" 21 #include "llvm/Target/TargetData.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Support/raw_ostream.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 28 llvm::Value *Array, 29 llvm::Value *Value, 30 unsigned FirstIndex, 31 unsigned LastIndex) { 32 // Alternatively, we could emit this as a loop in the source. 33 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 34 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 35 Builder.CreateStore(Value, Cell); 36 } 37 } 38 39 static bool isAggregateTypeForABI(QualType T) { 40 return CodeGenFunction::hasAggregateLLVMType(T) || 41 T->isMemberFunctionPointerType(); 42 } 43 44 ABIInfo::~ABIInfo() {} 45 46 ASTContext &ABIInfo::getContext() const { 47 return CGT.getContext(); 48 } 49 50 llvm::LLVMContext &ABIInfo::getVMContext() const { 51 return CGT.getLLVMContext(); 52 } 53 54 const llvm::TargetData &ABIInfo::getTargetData() const { 55 return CGT.getTargetData(); 56 } 57 58 59 void ABIArgInfo::dump() const { 60 raw_ostream &OS = llvm::errs(); 61 OS << "(ABIArgInfo Kind="; 62 switch (TheKind) { 63 case Direct: 64 OS << "Direct Type="; 65 if (llvm::Type *Ty = getCoerceToType()) 66 Ty->print(OS); 67 else 68 OS << "null"; 69 break; 70 case Extend: 71 OS << "Extend"; 72 break; 73 case Ignore: 74 OS << "Ignore"; 75 break; 76 case Indirect: 77 OS << "Indirect Align=" << getIndirectAlign() 78 << " ByVal=" << getIndirectByVal() 79 << " Realign=" << getIndirectRealign(); 80 break; 81 case Expand: 82 OS << "Expand"; 83 break; 84 } 85 OS << ")\n"; 86 } 87 88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 89 90 // If someone can figure out a general rule for this, that would be great. 91 // It's probably just doomed to be platform-dependent, though. 92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 93 // Verified for: 94 // x86-64 FreeBSD, Linux, Darwin 95 // x86-32 FreeBSD, Linux, Darwin 96 // PowerPC Linux, Darwin 97 // ARM Darwin (*not* EABI) 98 return 32; 99 } 100 101 bool TargetCodeGenInfo::isNoProtoCallVariadic(CallingConv CC) const { 102 // The following conventions are known to require this to be false: 103 // x86_stdcall 104 // MIPS 105 // For everything else, we just prefer false unless we opt out. 106 return false; 107 } 108 109 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 110 111 /// isEmptyField - Return true iff a the field is "empty", that is it 112 /// is an unnamed bit-field or an (array of) empty record(s). 113 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 114 bool AllowArrays) { 115 if (FD->isUnnamedBitfield()) 116 return true; 117 118 QualType FT = FD->getType(); 119 120 // Constant arrays of empty records count as empty, strip them off. 121 if (AllowArrays) 122 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) 123 FT = AT->getElementType(); 124 125 const RecordType *RT = FT->getAs<RecordType>(); 126 if (!RT) 127 return false; 128 129 // C++ record fields are never empty, at least in the Itanium ABI. 130 // 131 // FIXME: We should use a predicate for whether this behavior is true in the 132 // current ABI. 133 if (isa<CXXRecordDecl>(RT->getDecl())) 134 return false; 135 136 return isEmptyRecord(Context, FT, AllowArrays); 137 } 138 139 /// isEmptyRecord - Return true iff a structure contains only empty 140 /// fields. Note that a structure with a flexible array member is not 141 /// considered empty. 142 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 143 const RecordType *RT = T->getAs<RecordType>(); 144 if (!RT) 145 return 0; 146 const RecordDecl *RD = RT->getDecl(); 147 if (RD->hasFlexibleArrayMember()) 148 return false; 149 150 // If this is a C++ record, check the bases first. 151 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 152 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 153 e = CXXRD->bases_end(); i != e; ++i) 154 if (!isEmptyRecord(Context, i->getType(), true)) 155 return false; 156 157 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 158 i != e; ++i) 159 if (!isEmptyField(Context, *i, AllowArrays)) 160 return false; 161 return true; 162 } 163 164 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either 165 /// a non-trivial destructor or a non-trivial copy constructor. 166 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { 167 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 168 if (!RD) 169 return false; 170 171 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); 172 } 173 174 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is 175 /// a record type with either a non-trivial destructor or a non-trivial copy 176 /// constructor. 177 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { 178 const RecordType *RT = T->getAs<RecordType>(); 179 if (!RT) 180 return false; 181 182 return hasNonTrivialDestructorOrCopyConstructor(RT); 183 } 184 185 /// isSingleElementStruct - Determine if a structure is a "single 186 /// element struct", i.e. it has exactly one non-empty field or 187 /// exactly one field which is itself a single element 188 /// struct. Structures with flexible array members are never 189 /// considered single element structs. 190 /// 191 /// \return The field declaration for the single non-empty field, if 192 /// it exists. 193 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 194 const RecordType *RT = T->getAsStructureType(); 195 if (!RT) 196 return 0; 197 198 const RecordDecl *RD = RT->getDecl(); 199 if (RD->hasFlexibleArrayMember()) 200 return 0; 201 202 const Type *Found = 0; 203 204 // If this is a C++ record, check the bases first. 205 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 206 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 207 e = CXXRD->bases_end(); i != e; ++i) { 208 // Ignore empty records. 209 if (isEmptyRecord(Context, i->getType(), true)) 210 continue; 211 212 // If we already found an element then this isn't a single-element struct. 213 if (Found) 214 return 0; 215 216 // If this is non-empty and not a single element struct, the composite 217 // cannot be a single element struct. 218 Found = isSingleElementStruct(i->getType(), Context); 219 if (!Found) 220 return 0; 221 } 222 } 223 224 // Check for single element. 225 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 226 i != e; ++i) { 227 const FieldDecl *FD = *i; 228 QualType FT = FD->getType(); 229 230 // Ignore empty fields. 231 if (isEmptyField(Context, FD, true)) 232 continue; 233 234 // If we already found an element then this isn't a single-element 235 // struct. 236 if (Found) 237 return 0; 238 239 // Treat single element arrays as the element. 240 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 241 if (AT->getSize().getZExtValue() != 1) 242 break; 243 FT = AT->getElementType(); 244 } 245 246 if (!isAggregateTypeForABI(FT)) { 247 Found = FT.getTypePtr(); 248 } else { 249 Found = isSingleElementStruct(FT, Context); 250 if (!Found) 251 return 0; 252 } 253 } 254 255 return Found; 256 } 257 258 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 259 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 260 !Ty->isAnyComplexType() && !Ty->isEnumeralType() && 261 !Ty->isBlockPointerType()) 262 return false; 263 264 uint64_t Size = Context.getTypeSize(Ty); 265 return Size == 32 || Size == 64; 266 } 267 268 /// canExpandIndirectArgument - Test whether an argument type which is to be 269 /// passed indirectly (on the stack) would have the equivalent layout if it was 270 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 271 /// inhibiting optimizations. 272 /// 273 // FIXME: This predicate is missing many cases, currently it just follows 274 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 275 // should probably make this smarter, or better yet make the LLVM backend 276 // capable of handling it. 277 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 278 // We can only expand structure types. 279 const RecordType *RT = Ty->getAs<RecordType>(); 280 if (!RT) 281 return false; 282 283 // We can only expand (C) structures. 284 // 285 // FIXME: This needs to be generalized to handle classes as well. 286 const RecordDecl *RD = RT->getDecl(); 287 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 288 return false; 289 290 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 291 i != e; ++i) { 292 const FieldDecl *FD = *i; 293 294 if (!is32Or64BitBasicType(FD->getType(), Context)) 295 return false; 296 297 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 298 // how to expand them yet, and the predicate for telling if a bitfield still 299 // counts as "basic" is more complicated than what we were doing previously. 300 if (FD->isBitField()) 301 return false; 302 } 303 304 return true; 305 } 306 307 namespace { 308 /// DefaultABIInfo - The default implementation for ABI specific 309 /// details. This implementation provides information which results in 310 /// self-consistent and sensible LLVM IR generation, but does not 311 /// conform to any particular ABI. 312 class DefaultABIInfo : public ABIInfo { 313 public: 314 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 315 316 ABIArgInfo classifyReturnType(QualType RetTy) const; 317 ABIArgInfo classifyArgumentType(QualType RetTy) const; 318 319 virtual void computeInfo(CGFunctionInfo &FI) const { 320 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 321 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 322 it != ie; ++it) 323 it->info = classifyArgumentType(it->type); 324 } 325 326 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 327 CodeGenFunction &CGF) const; 328 }; 329 330 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 331 public: 332 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 333 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 334 }; 335 336 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 337 CodeGenFunction &CGF) const { 338 return 0; 339 } 340 341 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 342 if (isAggregateTypeForABI(Ty)) { 343 // Records with non trivial destructors/constructors should not be passed 344 // by value. 345 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 346 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 347 348 return ABIArgInfo::getIndirect(0); 349 } 350 351 // Treat an enum type as its underlying type. 352 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 353 Ty = EnumTy->getDecl()->getIntegerType(); 354 355 return (Ty->isPromotableIntegerType() ? 356 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 357 } 358 359 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 360 if (RetTy->isVoidType()) 361 return ABIArgInfo::getIgnore(); 362 363 if (isAggregateTypeForABI(RetTy)) 364 return ABIArgInfo::getIndirect(0); 365 366 // Treat an enum type as its underlying type. 367 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 368 RetTy = EnumTy->getDecl()->getIntegerType(); 369 370 return (RetTy->isPromotableIntegerType() ? 371 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 372 } 373 374 /// UseX86_MMXType - Return true if this is an MMX type that should use the special 375 /// x86_mmx type. 376 bool UseX86_MMXType(llvm::Type *IRType) { 377 // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the 378 // special x86_mmx type. 379 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 380 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 381 IRType->getScalarSizeInBits() != 64; 382 } 383 384 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 385 StringRef Constraint, 386 llvm::Type* Ty) { 387 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) 388 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 389 return Ty; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // X86-32 ABI Implementation 394 //===----------------------------------------------------------------------===// 395 396 /// X86_32ABIInfo - The X86-32 ABI information. 397 class X86_32ABIInfo : public ABIInfo { 398 static const unsigned MinABIStackAlignInBytes = 4; 399 400 bool IsDarwinVectorABI; 401 bool IsSmallStructInRegABI; 402 bool IsMMXDisabled; 403 404 static bool isRegisterSize(unsigned Size) { 405 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 406 } 407 408 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); 409 410 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 411 /// such that the argument will be passed in memory. 412 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const; 413 414 /// \brief Return the alignment to use for the given type on the stack. 415 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 416 417 public: 418 419 ABIArgInfo classifyReturnType(QualType RetTy) const; 420 ABIArgInfo classifyArgumentType(QualType RetTy) const; 421 422 virtual void computeInfo(CGFunctionInfo &FI) const { 423 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 424 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 425 it != ie; ++it) 426 it->info = classifyArgumentType(it->type); 427 } 428 429 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 430 CodeGenFunction &CGF) const; 431 432 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m) 433 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 434 IsMMXDisabled(m) {} 435 }; 436 437 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 438 public: 439 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m) 440 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {} 441 442 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 443 CodeGen::CodeGenModule &CGM) const; 444 445 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 446 // Darwin uses different dwarf register numbers for EH. 447 if (CGM.isTargetDarwin()) return 5; 448 449 return 4; 450 } 451 452 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 453 llvm::Value *Address) const; 454 455 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 456 StringRef Constraint, 457 llvm::Type* Ty) const { 458 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 459 } 460 461 }; 462 463 } 464 465 /// shouldReturnTypeInRegister - Determine if the given type should be 466 /// passed in a register (for the Darwin ABI). 467 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 468 ASTContext &Context) { 469 uint64_t Size = Context.getTypeSize(Ty); 470 471 // Type must be register sized. 472 if (!isRegisterSize(Size)) 473 return false; 474 475 if (Ty->isVectorType()) { 476 // 64- and 128- bit vectors inside structures are not returned in 477 // registers. 478 if (Size == 64 || Size == 128) 479 return false; 480 481 return true; 482 } 483 484 // If this is a builtin, pointer, enum, complex type, member pointer, or 485 // member function pointer it is ok. 486 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 487 Ty->isAnyComplexType() || Ty->isEnumeralType() || 488 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 489 return true; 490 491 // Arrays are treated like records. 492 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 493 return shouldReturnTypeInRegister(AT->getElementType(), Context); 494 495 // Otherwise, it must be a record type. 496 const RecordType *RT = Ty->getAs<RecordType>(); 497 if (!RT) return false; 498 499 // FIXME: Traverse bases here too. 500 501 // Structure types are passed in register if all fields would be 502 // passed in a register. 503 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 504 e = RT->getDecl()->field_end(); i != e; ++i) { 505 const FieldDecl *FD = *i; 506 507 // Empty fields are ignored. 508 if (isEmptyField(Context, FD, true)) 509 continue; 510 511 // Check fields recursively. 512 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 513 return false; 514 } 515 516 return true; 517 } 518 519 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const { 520 if (RetTy->isVoidType()) 521 return ABIArgInfo::getIgnore(); 522 523 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 524 // On Darwin, some vectors are returned in registers. 525 if (IsDarwinVectorABI) { 526 uint64_t Size = getContext().getTypeSize(RetTy); 527 528 // 128-bit vectors are a special case; they are returned in 529 // registers and we need to make sure to pick a type the LLVM 530 // backend will like. 531 if (Size == 128) 532 return ABIArgInfo::getDirect(llvm::VectorType::get( 533 llvm::Type::getInt64Ty(getVMContext()), 2)); 534 535 // Always return in register if it fits in a general purpose 536 // register, or if it is 64 bits and has a single element. 537 if ((Size == 8 || Size == 16 || Size == 32) || 538 (Size == 64 && VT->getNumElements() == 1)) 539 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 540 Size)); 541 542 return ABIArgInfo::getIndirect(0); 543 } 544 545 return ABIArgInfo::getDirect(); 546 } 547 548 if (isAggregateTypeForABI(RetTy)) { 549 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 550 // Structures with either a non-trivial destructor or a non-trivial 551 // copy constructor are always indirect. 552 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 553 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 554 555 // Structures with flexible arrays are always indirect. 556 if (RT->getDecl()->hasFlexibleArrayMember()) 557 return ABIArgInfo::getIndirect(0); 558 } 559 560 // If specified, structs and unions are always indirect. 561 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 562 return ABIArgInfo::getIndirect(0); 563 564 // Classify "single element" structs as their element type. 565 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) { 566 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) { 567 if (BT->isIntegerType()) { 568 // We need to use the size of the structure, padding 569 // bit-fields can adjust that to be larger than the single 570 // element type. 571 uint64_t Size = getContext().getTypeSize(RetTy); 572 return ABIArgInfo::getDirect( 573 llvm::IntegerType::get(getVMContext(), (unsigned)Size)); 574 } 575 576 if (BT->getKind() == BuiltinType::Float) { 577 assert(getContext().getTypeSize(RetTy) == 578 getContext().getTypeSize(SeltTy) && 579 "Unexpect single element structure size!"); 580 return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext())); 581 } 582 583 if (BT->getKind() == BuiltinType::Double) { 584 assert(getContext().getTypeSize(RetTy) == 585 getContext().getTypeSize(SeltTy) && 586 "Unexpect single element structure size!"); 587 return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext())); 588 } 589 } else if (SeltTy->isPointerType()) { 590 // FIXME: It would be really nice if this could come out as the proper 591 // pointer type. 592 llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext()); 593 return ABIArgInfo::getDirect(PtrTy); 594 } else if (SeltTy->isVectorType()) { 595 // 64- and 128-bit vectors are never returned in a 596 // register when inside a structure. 597 uint64_t Size = getContext().getTypeSize(RetTy); 598 if (Size == 64 || Size == 128) 599 return ABIArgInfo::getIndirect(0); 600 601 return classifyReturnType(QualType(SeltTy, 0)); 602 } 603 } 604 605 // Small structures which are register sized are generally returned 606 // in a register. 607 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) { 608 uint64_t Size = getContext().getTypeSize(RetTy); 609 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 610 } 611 612 return ABIArgInfo::getIndirect(0); 613 } 614 615 // Treat an enum type as its underlying type. 616 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 617 RetTy = EnumTy->getDecl()->getIntegerType(); 618 619 return (RetTy->isPromotableIntegerType() ? 620 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 621 } 622 623 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 624 const RecordType *RT = Ty->getAs<RecordType>(); 625 if (!RT) 626 return 0; 627 const RecordDecl *RD = RT->getDecl(); 628 629 // If this is a C++ record, check the bases first. 630 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 631 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 632 e = CXXRD->bases_end(); i != e; ++i) 633 if (!isRecordWithSSEVectorType(Context, i->getType())) 634 return false; 635 636 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 637 i != e; ++i) { 638 QualType FT = i->getType(); 639 640 if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128) 641 return true; 642 643 if (isRecordWithSSEVectorType(Context, FT)) 644 return true; 645 } 646 647 return false; 648 } 649 650 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 651 unsigned Align) const { 652 // Otherwise, if the alignment is less than or equal to the minimum ABI 653 // alignment, just use the default; the backend will handle this. 654 if (Align <= MinABIStackAlignInBytes) 655 return 0; // Use default alignment. 656 657 // On non-Darwin, the stack type alignment is always 4. 658 if (!IsDarwinVectorABI) { 659 // Set explicit alignment, since we may need to realign the top. 660 return MinABIStackAlignInBytes; 661 } 662 663 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 664 if (isRecordWithSSEVectorType(getContext(), Ty)) 665 return 16; 666 667 return MinABIStackAlignInBytes; 668 } 669 670 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const { 671 if (!ByVal) 672 return ABIArgInfo::getIndirect(0, false); 673 674 // Compute the byval alignment. 675 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 676 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 677 if (StackAlign == 0) 678 return ABIArgInfo::getIndirect(4); 679 680 // If the stack alignment is less than the type alignment, realign the 681 // argument. 682 if (StackAlign < TypeAlign) 683 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, 684 /*Realign=*/true); 685 686 return ABIArgInfo::getIndirect(StackAlign); 687 } 688 689 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const { 690 // FIXME: Set alignment on indirect arguments. 691 if (isAggregateTypeForABI(Ty)) { 692 // Structures with flexible arrays are always indirect. 693 if (const RecordType *RT = Ty->getAs<RecordType>()) { 694 // Structures with either a non-trivial destructor or a non-trivial 695 // copy constructor are always indirect. 696 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 697 return getIndirectResult(Ty, /*ByVal=*/false); 698 699 if (RT->getDecl()->hasFlexibleArrayMember()) 700 return getIndirectResult(Ty); 701 } 702 703 // Ignore empty structs. 704 if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0) 705 return ABIArgInfo::getIgnore(); 706 707 // Expand small (<= 128-bit) record types when we know that the stack layout 708 // of those arguments will match the struct. This is important because the 709 // LLVM backend isn't smart enough to remove byval, which inhibits many 710 // optimizations. 711 if (getContext().getTypeSize(Ty) <= 4*32 && 712 canExpandIndirectArgument(Ty, getContext())) 713 return ABIArgInfo::getExpand(); 714 715 return getIndirectResult(Ty); 716 } 717 718 if (const VectorType *VT = Ty->getAs<VectorType>()) { 719 // On Darwin, some vectors are passed in memory, we handle this by passing 720 // it as an i8/i16/i32/i64. 721 if (IsDarwinVectorABI) { 722 uint64_t Size = getContext().getTypeSize(Ty); 723 if ((Size == 8 || Size == 16 || Size == 32) || 724 (Size == 64 && VT->getNumElements() == 1)) 725 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 726 Size)); 727 } 728 729 llvm::Type *IRType = CGT.ConvertType(Ty); 730 if (UseX86_MMXType(IRType)) { 731 if (IsMMXDisabled) 732 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 733 64)); 734 ABIArgInfo AAI = ABIArgInfo::getDirect(IRType); 735 AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext())); 736 return AAI; 737 } 738 739 return ABIArgInfo::getDirect(); 740 } 741 742 743 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 744 Ty = EnumTy->getDecl()->getIntegerType(); 745 746 return (Ty->isPromotableIntegerType() ? 747 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 748 } 749 750 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 751 CodeGenFunction &CGF) const { 752 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 753 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 754 755 CGBuilderTy &Builder = CGF.Builder; 756 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 757 "ap"); 758 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 759 llvm::Type *PTy = 760 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 761 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 762 763 uint64_t Offset = 764 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 765 llvm::Value *NextAddr = 766 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 767 "ap.next"); 768 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 769 770 return AddrTyped; 771 } 772 773 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 774 llvm::GlobalValue *GV, 775 CodeGen::CodeGenModule &CGM) const { 776 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 777 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 778 // Get the LLVM function. 779 llvm::Function *Fn = cast<llvm::Function>(GV); 780 781 // Now add the 'alignstack' attribute with a value of 16. 782 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16)); 783 } 784 } 785 } 786 787 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 788 CodeGen::CodeGenFunction &CGF, 789 llvm::Value *Address) const { 790 CodeGen::CGBuilderTy &Builder = CGF.Builder; 791 llvm::LLVMContext &Context = CGF.getLLVMContext(); 792 793 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 794 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 795 796 // 0-7 are the eight integer registers; the order is different 797 // on Darwin (for EH), but the range is the same. 798 // 8 is %eip. 799 AssignToArrayRange(Builder, Address, Four8, 0, 8); 800 801 if (CGF.CGM.isTargetDarwin()) { 802 // 12-16 are st(0..4). Not sure why we stop at 4. 803 // These have size 16, which is sizeof(long double) on 804 // platforms with 8-byte alignment for that type. 805 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 806 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 807 808 } else { 809 // 9 is %eflags, which doesn't get a size on Darwin for some 810 // reason. 811 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 812 813 // 11-16 are st(0..5). Not sure why we stop at 5. 814 // These have size 12, which is sizeof(long double) on 815 // platforms with 4-byte alignment for that type. 816 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12); 817 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 818 } 819 820 return false; 821 } 822 823 //===----------------------------------------------------------------------===// 824 // X86-64 ABI Implementation 825 //===----------------------------------------------------------------------===// 826 827 828 namespace { 829 /// X86_64ABIInfo - The X86_64 ABI information. 830 class X86_64ABIInfo : public ABIInfo { 831 enum Class { 832 Integer = 0, 833 SSE, 834 SSEUp, 835 X87, 836 X87Up, 837 ComplexX87, 838 NoClass, 839 Memory 840 }; 841 842 /// merge - Implement the X86_64 ABI merging algorithm. 843 /// 844 /// Merge an accumulating classification \arg Accum with a field 845 /// classification \arg Field. 846 /// 847 /// \param Accum - The accumulating classification. This should 848 /// always be either NoClass or the result of a previous merge 849 /// call. In addition, this should never be Memory (the caller 850 /// should just return Memory for the aggregate). 851 static Class merge(Class Accum, Class Field); 852 853 /// postMerge - Implement the X86_64 ABI post merging algorithm. 854 /// 855 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 856 /// final MEMORY or SSE classes when necessary. 857 /// 858 /// \param AggregateSize - The size of the current aggregate in 859 /// the classification process. 860 /// 861 /// \param Lo - The classification for the parts of the type 862 /// residing in the low word of the containing object. 863 /// 864 /// \param Hi - The classification for the parts of the type 865 /// residing in the higher words of the containing object. 866 /// 867 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 868 869 /// classify - Determine the x86_64 register classes in which the 870 /// given type T should be passed. 871 /// 872 /// \param Lo - The classification for the parts of the type 873 /// residing in the low word of the containing object. 874 /// 875 /// \param Hi - The classification for the parts of the type 876 /// residing in the high word of the containing object. 877 /// 878 /// \param OffsetBase - The bit offset of this type in the 879 /// containing object. Some parameters are classified different 880 /// depending on whether they straddle an eightbyte boundary. 881 /// 882 /// If a word is unused its result will be NoClass; if a type should 883 /// be passed in Memory then at least the classification of \arg Lo 884 /// will be Memory. 885 /// 886 /// The \arg Lo class will be NoClass iff the argument is ignored. 887 /// 888 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 889 /// also be ComplexX87. 890 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const; 891 892 llvm::Type *GetByteVectorType(QualType Ty) const; 893 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 894 unsigned IROffset, QualType SourceTy, 895 unsigned SourceOffset) const; 896 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 897 unsigned IROffset, QualType SourceTy, 898 unsigned SourceOffset) const; 899 900 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 901 /// such that the argument will be returned in memory. 902 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 903 904 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 905 /// such that the argument will be passed in memory. 906 ABIArgInfo getIndirectResult(QualType Ty) const; 907 908 ABIArgInfo classifyReturnType(QualType RetTy) const; 909 910 ABIArgInfo classifyArgumentType(QualType Ty, 911 unsigned &neededInt, 912 unsigned &neededSSE) const; 913 914 /// The 0.98 ABI revision clarified a lot of ambiguities, 915 /// unfortunately in ways that were not always consistent with 916 /// certain previous compilers. In particular, platforms which 917 /// required strict binary compatibility with older versions of GCC 918 /// may need to exempt themselves. 919 bool honorsRevision0_98() const { 920 return !getContext().getTargetInfo().getTriple().isOSDarwin(); 921 } 922 923 public: 924 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 925 926 virtual void computeInfo(CGFunctionInfo &FI) const; 927 928 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 929 CodeGenFunction &CGF) const; 930 }; 931 932 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 933 class WinX86_64ABIInfo : public ABIInfo { 934 935 ABIArgInfo classify(QualType Ty) const; 936 937 public: 938 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 939 940 virtual void computeInfo(CGFunctionInfo &FI) const; 941 942 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 943 CodeGenFunction &CGF) const; 944 }; 945 946 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 947 public: 948 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 949 : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {} 950 951 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 952 return 7; 953 } 954 955 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 956 llvm::Value *Address) const { 957 CodeGen::CGBuilderTy &Builder = CGF.Builder; 958 llvm::LLVMContext &Context = CGF.getLLVMContext(); 959 960 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 961 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 962 963 // 0-15 are the 16 integer registers. 964 // 16 is %rip. 965 AssignToArrayRange(Builder, Address, Eight8, 0, 16); 966 967 return false; 968 } 969 970 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 971 StringRef Constraint, 972 llvm::Type* Ty) const { 973 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 974 } 975 976 bool isNoProtoCallVariadic(CallingConv CC) const { 977 // The default CC on x86-64 sets %al to the number of SSA 978 // registers used, and GCC sets this when calling an unprototyped 979 // function, so we override the default behavior. 980 if (CC == CC_Default || CC == CC_C) return true; 981 982 return TargetCodeGenInfo::isNoProtoCallVariadic(CC); 983 } 984 985 }; 986 987 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 988 public: 989 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 990 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 991 992 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 993 return 7; 994 } 995 996 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 997 llvm::Value *Address) const { 998 CodeGen::CGBuilderTy &Builder = CGF.Builder; 999 llvm::LLVMContext &Context = CGF.getLLVMContext(); 1000 1001 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 1002 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 1003 1004 // 0-15 are the 16 integer registers. 1005 // 16 is %rip. 1006 AssignToArrayRange(Builder, Address, Eight8, 0, 16); 1007 1008 return false; 1009 } 1010 }; 1011 1012 } 1013 1014 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1015 Class &Hi) const { 1016 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1017 // 1018 // (a) If one of the classes is Memory, the whole argument is passed in 1019 // memory. 1020 // 1021 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1022 // memory. 1023 // 1024 // (c) If the size of the aggregate exceeds two eightbytes and the first 1025 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1026 // argument is passed in memory. NOTE: This is necessary to keep the 1027 // ABI working for processors that don't support the __m256 type. 1028 // 1029 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1030 // 1031 // Some of these are enforced by the merging logic. Others can arise 1032 // only with unions; for example: 1033 // union { _Complex double; unsigned; } 1034 // 1035 // Note that clauses (b) and (c) were added in 0.98. 1036 // 1037 if (Hi == Memory) 1038 Lo = Memory; 1039 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1040 Lo = Memory; 1041 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1042 Lo = Memory; 1043 if (Hi == SSEUp && Lo != SSE) 1044 Hi = SSE; 1045 } 1046 1047 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1048 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1049 // classified recursively so that always two fields are 1050 // considered. The resulting class is calculated according to 1051 // the classes of the fields in the eightbyte: 1052 // 1053 // (a) If both classes are equal, this is the resulting class. 1054 // 1055 // (b) If one of the classes is NO_CLASS, the resulting class is 1056 // the other class. 1057 // 1058 // (c) If one of the classes is MEMORY, the result is the MEMORY 1059 // class. 1060 // 1061 // (d) If one of the classes is INTEGER, the result is the 1062 // INTEGER. 1063 // 1064 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1065 // MEMORY is used as class. 1066 // 1067 // (f) Otherwise class SSE is used. 1068 1069 // Accum should never be memory (we should have returned) or 1070 // ComplexX87 (because this cannot be passed in a structure). 1071 assert((Accum != Memory && Accum != ComplexX87) && 1072 "Invalid accumulated classification during merge."); 1073 if (Accum == Field || Field == NoClass) 1074 return Accum; 1075 if (Field == Memory) 1076 return Memory; 1077 if (Accum == NoClass) 1078 return Field; 1079 if (Accum == Integer || Field == Integer) 1080 return Integer; 1081 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1082 Accum == X87 || Accum == X87Up) 1083 return Memory; 1084 return SSE; 1085 } 1086 1087 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1088 Class &Lo, Class &Hi) const { 1089 // FIXME: This code can be simplified by introducing a simple value class for 1090 // Class pairs with appropriate constructor methods for the various 1091 // situations. 1092 1093 // FIXME: Some of the split computations are wrong; unaligned vectors 1094 // shouldn't be passed in registers for example, so there is no chance they 1095 // can straddle an eightbyte. Verify & simplify. 1096 1097 Lo = Hi = NoClass; 1098 1099 Class &Current = OffsetBase < 64 ? Lo : Hi; 1100 Current = Memory; 1101 1102 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1103 BuiltinType::Kind k = BT->getKind(); 1104 1105 if (k == BuiltinType::Void) { 1106 Current = NoClass; 1107 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1108 Lo = Integer; 1109 Hi = Integer; 1110 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1111 Current = Integer; 1112 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 1113 Current = SSE; 1114 } else if (k == BuiltinType::LongDouble) { 1115 Lo = X87; 1116 Hi = X87Up; 1117 } 1118 // FIXME: _Decimal32 and _Decimal64 are SSE. 1119 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1120 return; 1121 } 1122 1123 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1124 // Classify the underlying integer type. 1125 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi); 1126 return; 1127 } 1128 1129 if (Ty->hasPointerRepresentation()) { 1130 Current = Integer; 1131 return; 1132 } 1133 1134 if (Ty->isMemberPointerType()) { 1135 if (Ty->isMemberFunctionPointerType()) 1136 Lo = Hi = Integer; 1137 else 1138 Current = Integer; 1139 return; 1140 } 1141 1142 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1143 uint64_t Size = getContext().getTypeSize(VT); 1144 if (Size == 32) { 1145 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1146 // float> as integer. 1147 Current = Integer; 1148 1149 // If this type crosses an eightbyte boundary, it should be 1150 // split. 1151 uint64_t EB_Real = (OffsetBase) / 64; 1152 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1153 if (EB_Real != EB_Imag) 1154 Hi = Lo; 1155 } else if (Size == 64) { 1156 // gcc passes <1 x double> in memory. :( 1157 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1158 return; 1159 1160 // gcc passes <1 x long long> as INTEGER. 1161 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1162 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1163 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1164 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1165 Current = Integer; 1166 else 1167 Current = SSE; 1168 1169 // If this type crosses an eightbyte boundary, it should be 1170 // split. 1171 if (OffsetBase && OffsetBase != 64) 1172 Hi = Lo; 1173 } else if (Size == 128 || Size == 256) { 1174 // Arguments of 256-bits are split into four eightbyte chunks. The 1175 // least significant one belongs to class SSE and all the others to class 1176 // SSEUP. The original Lo and Hi design considers that types can't be 1177 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1178 // This design isn't correct for 256-bits, but since there're no cases 1179 // where the upper parts would need to be inspected, avoid adding 1180 // complexity and just consider Hi to match the 64-256 part. 1181 Lo = SSE; 1182 Hi = SSEUp; 1183 } 1184 return; 1185 } 1186 1187 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1188 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1189 1190 uint64_t Size = getContext().getTypeSize(Ty); 1191 if (ET->isIntegralOrEnumerationType()) { 1192 if (Size <= 64) 1193 Current = Integer; 1194 else if (Size <= 128) 1195 Lo = Hi = Integer; 1196 } else if (ET == getContext().FloatTy) 1197 Current = SSE; 1198 else if (ET == getContext().DoubleTy) 1199 Lo = Hi = SSE; 1200 else if (ET == getContext().LongDoubleTy) 1201 Current = ComplexX87; 1202 1203 // If this complex type crosses an eightbyte boundary then it 1204 // should be split. 1205 uint64_t EB_Real = (OffsetBase) / 64; 1206 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1207 if (Hi == NoClass && EB_Real != EB_Imag) 1208 Hi = Lo; 1209 1210 return; 1211 } 1212 1213 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1214 // Arrays are treated like structures. 1215 1216 uint64_t Size = getContext().getTypeSize(Ty); 1217 1218 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1219 // than four eightbytes, ..., it has class MEMORY. 1220 if (Size > 256) 1221 return; 1222 1223 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1224 // fields, it has class MEMORY. 1225 // 1226 // Only need to check alignment of array base. 1227 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1228 return; 1229 1230 // Otherwise implement simplified merge. We could be smarter about 1231 // this, but it isn't worth it and would be harder to verify. 1232 Current = NoClass; 1233 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1234 uint64_t ArraySize = AT->getSize().getZExtValue(); 1235 1236 // The only case a 256-bit wide vector could be used is when the array 1237 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1238 // to work for sizes wider than 128, early check and fallback to memory. 1239 if (Size > 128 && EltSize != 256) 1240 return; 1241 1242 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1243 Class FieldLo, FieldHi; 1244 classify(AT->getElementType(), Offset, FieldLo, FieldHi); 1245 Lo = merge(Lo, FieldLo); 1246 Hi = merge(Hi, FieldHi); 1247 if (Lo == Memory || Hi == Memory) 1248 break; 1249 } 1250 1251 postMerge(Size, Lo, Hi); 1252 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1253 return; 1254 } 1255 1256 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1257 uint64_t Size = getContext().getTypeSize(Ty); 1258 1259 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1260 // than four eightbytes, ..., it has class MEMORY. 1261 if (Size > 256) 1262 return; 1263 1264 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1265 // copy constructor or a non-trivial destructor, it is passed by invisible 1266 // reference. 1267 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 1268 return; 1269 1270 const RecordDecl *RD = RT->getDecl(); 1271 1272 // Assume variable sized types are passed in memory. 1273 if (RD->hasFlexibleArrayMember()) 1274 return; 1275 1276 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1277 1278 // Reset Lo class, this will be recomputed. 1279 Current = NoClass; 1280 1281 // If this is a C++ record, classify the bases first. 1282 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1283 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1284 e = CXXRD->bases_end(); i != e; ++i) { 1285 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1286 "Unexpected base class!"); 1287 const CXXRecordDecl *Base = 1288 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1289 1290 // Classify this field. 1291 // 1292 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1293 // single eightbyte, each is classified separately. Each eightbyte gets 1294 // initialized to class NO_CLASS. 1295 Class FieldLo, FieldHi; 1296 uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base); 1297 classify(i->getType(), Offset, FieldLo, FieldHi); 1298 Lo = merge(Lo, FieldLo); 1299 Hi = merge(Hi, FieldHi); 1300 if (Lo == Memory || Hi == Memory) 1301 break; 1302 } 1303 } 1304 1305 // Classify the fields one at a time, merging the results. 1306 unsigned idx = 0; 1307 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1308 i != e; ++i, ++idx) { 1309 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1310 bool BitField = i->isBitField(); 1311 1312 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1313 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1314 // 1315 // The only case a 256-bit wide vector could be used is when the struct 1316 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1317 // to work for sizes wider than 128, early check and fallback to memory. 1318 // 1319 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1320 Lo = Memory; 1321 return; 1322 } 1323 // Note, skip this test for bit-fields, see below. 1324 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1325 Lo = Memory; 1326 return; 1327 } 1328 1329 // Classify this field. 1330 // 1331 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1332 // exceeds a single eightbyte, each is classified 1333 // separately. Each eightbyte gets initialized to class 1334 // NO_CLASS. 1335 Class FieldLo, FieldHi; 1336 1337 // Bit-fields require special handling, they do not force the 1338 // structure to be passed in memory even if unaligned, and 1339 // therefore they can straddle an eightbyte. 1340 if (BitField) { 1341 // Ignore padding bit-fields. 1342 if (i->isUnnamedBitfield()) 1343 continue; 1344 1345 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1346 uint64_t Size = i->getBitWidthValue(getContext()); 1347 1348 uint64_t EB_Lo = Offset / 64; 1349 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1350 FieldLo = FieldHi = NoClass; 1351 if (EB_Lo) { 1352 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1353 FieldLo = NoClass; 1354 FieldHi = Integer; 1355 } else { 1356 FieldLo = Integer; 1357 FieldHi = EB_Hi ? Integer : NoClass; 1358 } 1359 } else 1360 classify(i->getType(), Offset, FieldLo, FieldHi); 1361 Lo = merge(Lo, FieldLo); 1362 Hi = merge(Hi, FieldHi); 1363 if (Lo == Memory || Hi == Memory) 1364 break; 1365 } 1366 1367 postMerge(Size, Lo, Hi); 1368 } 1369 } 1370 1371 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1372 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1373 // place naturally. 1374 if (!isAggregateTypeForABI(Ty)) { 1375 // Treat an enum type as its underlying type. 1376 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1377 Ty = EnumTy->getDecl()->getIntegerType(); 1378 1379 return (Ty->isPromotableIntegerType() ? 1380 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1381 } 1382 1383 return ABIArgInfo::getIndirect(0); 1384 } 1385 1386 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const { 1387 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1388 // place naturally. 1389 if (!isAggregateTypeForABI(Ty)) { 1390 // Treat an enum type as its underlying type. 1391 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1392 Ty = EnumTy->getDecl()->getIntegerType(); 1393 1394 return (Ty->isPromotableIntegerType() ? 1395 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1396 } 1397 1398 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1399 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 1400 1401 // Compute the byval alignment. We specify the alignment of the byval in all 1402 // cases so that the mid-level optimizer knows the alignment of the byval. 1403 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1404 return ABIArgInfo::getIndirect(Align); 1405 } 1406 1407 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1408 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1409 /// vector register. 1410 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1411 llvm::Type *IRType = CGT.ConvertType(Ty); 1412 1413 // Wrapper structs that just contain vectors are passed just like vectors, 1414 // strip them off if present. 1415 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1416 while (STy && STy->getNumElements() == 1) { 1417 IRType = STy->getElementType(0); 1418 STy = dyn_cast<llvm::StructType>(IRType); 1419 } 1420 1421 // If the preferred type is a 16-byte vector, prefer to pass it. 1422 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1423 llvm::Type *EltTy = VT->getElementType(); 1424 unsigned BitWidth = VT->getBitWidth(); 1425 if ((BitWidth == 128 || BitWidth == 256) && 1426 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1427 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1428 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1429 EltTy->isIntegerTy(128))) 1430 return VT; 1431 } 1432 1433 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1434 } 1435 1436 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1437 /// is known to either be off the end of the specified type or being in 1438 /// alignment padding. The user type specified is known to be at most 128 bits 1439 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1440 /// classification that put one of the two halves in the INTEGER class. 1441 /// 1442 /// It is conservatively correct to return false. 1443 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1444 unsigned EndBit, ASTContext &Context) { 1445 // If the bytes being queried are off the end of the type, there is no user 1446 // data hiding here. This handles analysis of builtins, vectors and other 1447 // types that don't contain interesting padding. 1448 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1449 if (TySize <= StartBit) 1450 return true; 1451 1452 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1453 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1454 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1455 1456 // Check each element to see if the element overlaps with the queried range. 1457 for (unsigned i = 0; i != NumElts; ++i) { 1458 // If the element is after the span we care about, then we're done.. 1459 unsigned EltOffset = i*EltSize; 1460 if (EltOffset >= EndBit) break; 1461 1462 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1463 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1464 EndBit-EltOffset, Context)) 1465 return false; 1466 } 1467 // If it overlaps no elements, then it is safe to process as padding. 1468 return true; 1469 } 1470 1471 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1472 const RecordDecl *RD = RT->getDecl(); 1473 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1474 1475 // If this is a C++ record, check the bases first. 1476 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1477 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1478 e = CXXRD->bases_end(); i != e; ++i) { 1479 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1480 "Unexpected base class!"); 1481 const CXXRecordDecl *Base = 1482 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1483 1484 // If the base is after the span we care about, ignore it. 1485 unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base); 1486 if (BaseOffset >= EndBit) continue; 1487 1488 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1489 if (!BitsContainNoUserData(i->getType(), BaseStart, 1490 EndBit-BaseOffset, Context)) 1491 return false; 1492 } 1493 } 1494 1495 // Verify that no field has data that overlaps the region of interest. Yes 1496 // this could be sped up a lot by being smarter about queried fields, 1497 // however we're only looking at structs up to 16 bytes, so we don't care 1498 // much. 1499 unsigned idx = 0; 1500 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1501 i != e; ++i, ++idx) { 1502 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1503 1504 // If we found a field after the region we care about, then we're done. 1505 if (FieldOffset >= EndBit) break; 1506 1507 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1508 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1509 Context)) 1510 return false; 1511 } 1512 1513 // If nothing in this record overlapped the area of interest, then we're 1514 // clean. 1515 return true; 1516 } 1517 1518 return false; 1519 } 1520 1521 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1522 /// float member at the specified offset. For example, {int,{float}} has a 1523 /// float at offset 4. It is conservatively correct for this routine to return 1524 /// false. 1525 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1526 const llvm::TargetData &TD) { 1527 // Base case if we find a float. 1528 if (IROffset == 0 && IRType->isFloatTy()) 1529 return true; 1530 1531 // If this is a struct, recurse into the field at the specified offset. 1532 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1533 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1534 unsigned Elt = SL->getElementContainingOffset(IROffset); 1535 IROffset -= SL->getElementOffset(Elt); 1536 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 1537 } 1538 1539 // If this is an array, recurse into the field at the specified offset. 1540 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1541 llvm::Type *EltTy = ATy->getElementType(); 1542 unsigned EltSize = TD.getTypeAllocSize(EltTy); 1543 IROffset -= IROffset/EltSize*EltSize; 1544 return ContainsFloatAtOffset(EltTy, IROffset, TD); 1545 } 1546 1547 return false; 1548 } 1549 1550 1551 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 1552 /// low 8 bytes of an XMM register, corresponding to the SSE class. 1553 llvm::Type *X86_64ABIInfo:: 1554 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1555 QualType SourceTy, unsigned SourceOffset) const { 1556 // The only three choices we have are either double, <2 x float>, or float. We 1557 // pass as float if the last 4 bytes is just padding. This happens for 1558 // structs that contain 3 floats. 1559 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 1560 SourceOffset*8+64, getContext())) 1561 return llvm::Type::getFloatTy(getVMContext()); 1562 1563 // We want to pass as <2 x float> if the LLVM IR type contains a float at 1564 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 1565 // case. 1566 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) && 1567 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) 1568 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 1569 1570 return llvm::Type::getDoubleTy(getVMContext()); 1571 } 1572 1573 1574 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 1575 /// an 8-byte GPR. This means that we either have a scalar or we are talking 1576 /// about the high or low part of an up-to-16-byte struct. This routine picks 1577 /// the best LLVM IR type to represent this, which may be i64 or may be anything 1578 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 1579 /// etc). 1580 /// 1581 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 1582 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 1583 /// the 8-byte value references. PrefType may be null. 1584 /// 1585 /// SourceTy is the source level type for the entire argument. SourceOffset is 1586 /// an offset into this that we're processing (which is always either 0 or 8). 1587 /// 1588 llvm::Type *X86_64ABIInfo:: 1589 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1590 QualType SourceTy, unsigned SourceOffset) const { 1591 // If we're dealing with an un-offset LLVM IR type, then it means that we're 1592 // returning an 8-byte unit starting with it. See if we can safely use it. 1593 if (IROffset == 0) { 1594 // Pointers and int64's always fill the 8-byte unit. 1595 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64)) 1596 return IRType; 1597 1598 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 1599 // goodness in the source type is just tail padding. This is allowed to 1600 // kick in for struct {double,int} on the int, but not on 1601 // struct{double,int,int} because we wouldn't return the second int. We 1602 // have to do this analysis on the source type because we can't depend on 1603 // unions being lowered a specific way etc. 1604 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 1605 IRType->isIntegerTy(32)) { 1606 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth(); 1607 1608 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 1609 SourceOffset*8+64, getContext())) 1610 return IRType; 1611 } 1612 } 1613 1614 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1615 // If this is a struct, recurse into the field at the specified offset. 1616 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy); 1617 if (IROffset < SL->getSizeInBytes()) { 1618 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 1619 IROffset -= SL->getElementOffset(FieldIdx); 1620 1621 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 1622 SourceTy, SourceOffset); 1623 } 1624 } 1625 1626 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1627 llvm::Type *EltTy = ATy->getElementType(); 1628 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy); 1629 unsigned EltOffset = IROffset/EltSize*EltSize; 1630 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 1631 SourceOffset); 1632 } 1633 1634 // Okay, we don't have any better idea of what to pass, so we pass this in an 1635 // integer register that isn't too big to fit the rest of the struct. 1636 unsigned TySizeInBytes = 1637 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 1638 1639 assert(TySizeInBytes != SourceOffset && "Empty field?"); 1640 1641 // It is always safe to classify this as an integer type up to i64 that 1642 // isn't larger than the structure. 1643 return llvm::IntegerType::get(getVMContext(), 1644 std::min(TySizeInBytes-SourceOffset, 8U)*8); 1645 } 1646 1647 1648 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 1649 /// be used as elements of a two register pair to pass or return, return a 1650 /// first class aggregate to represent them. For example, if the low part of 1651 /// a by-value argument should be passed as i32* and the high part as float, 1652 /// return {i32*, float}. 1653 static llvm::Type * 1654 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 1655 const llvm::TargetData &TD) { 1656 // In order to correctly satisfy the ABI, we need to the high part to start 1657 // at offset 8. If the high and low parts we inferred are both 4-byte types 1658 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 1659 // the second element at offset 8. Check for this: 1660 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 1661 unsigned HiAlign = TD.getABITypeAlignment(Hi); 1662 unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign); 1663 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 1664 1665 // To handle this, we have to increase the size of the low part so that the 1666 // second element will start at an 8 byte offset. We can't increase the size 1667 // of the second element because it might make us access off the end of the 1668 // struct. 1669 if (HiStart != 8) { 1670 // There are only two sorts of types the ABI generation code can produce for 1671 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 1672 // Promote these to a larger type. 1673 if (Lo->isFloatTy()) 1674 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 1675 else { 1676 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 1677 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 1678 } 1679 } 1680 1681 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 1682 1683 1684 // Verify that the second element is at an 8-byte offset. 1685 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 1686 "Invalid x86-64 argument pair!"); 1687 return Result; 1688 } 1689 1690 ABIArgInfo X86_64ABIInfo:: 1691 classifyReturnType(QualType RetTy) const { 1692 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 1693 // classification algorithm. 1694 X86_64ABIInfo::Class Lo, Hi; 1695 classify(RetTy, 0, Lo, Hi); 1696 1697 // Check some invariants. 1698 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1699 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1700 1701 llvm::Type *ResType = 0; 1702 switch (Lo) { 1703 case NoClass: 1704 if (Hi == NoClass) 1705 return ABIArgInfo::getIgnore(); 1706 // If the low part is just padding, it takes no register, leave ResType 1707 // null. 1708 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 1709 "Unknown missing lo part"); 1710 break; 1711 1712 case SSEUp: 1713 case X87Up: 1714 llvm_unreachable("Invalid classification for lo word."); 1715 1716 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 1717 // hidden argument. 1718 case Memory: 1719 return getIndirectReturnResult(RetTy); 1720 1721 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 1722 // available register of the sequence %rax, %rdx is used. 1723 case Integer: 1724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 1725 1726 // If we have a sign or zero extended integer, make sure to return Extend 1727 // so that the parameter gets the right LLVM IR attributes. 1728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 1729 // Treat an enum type as its underlying type. 1730 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1731 RetTy = EnumTy->getDecl()->getIntegerType(); 1732 1733 if (RetTy->isIntegralOrEnumerationType() && 1734 RetTy->isPromotableIntegerType()) 1735 return ABIArgInfo::getExtend(); 1736 } 1737 break; 1738 1739 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 1740 // available SSE register of the sequence %xmm0, %xmm1 is used. 1741 case SSE: 1742 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 1743 break; 1744 1745 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 1746 // returned on the X87 stack in %st0 as 80-bit x87 number. 1747 case X87: 1748 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 1749 break; 1750 1751 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 1752 // part of the value is returned in %st0 and the imaginary part in 1753 // %st1. 1754 case ComplexX87: 1755 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 1756 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 1757 llvm::Type::getX86_FP80Ty(getVMContext()), 1758 NULL); 1759 break; 1760 } 1761 1762 llvm::Type *HighPart = 0; 1763 switch (Hi) { 1764 // Memory was handled previously and X87 should 1765 // never occur as a hi class. 1766 case Memory: 1767 case X87: 1768 llvm_unreachable("Invalid classification for hi word."); 1769 1770 case ComplexX87: // Previously handled. 1771 case NoClass: 1772 break; 1773 1774 case Integer: 1775 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1776 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1777 return ABIArgInfo::getDirect(HighPart, 8); 1778 break; 1779 case SSE: 1780 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1781 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1782 return ABIArgInfo::getDirect(HighPart, 8); 1783 break; 1784 1785 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 1786 // is passed in the next available eightbyte chunk if the last used 1787 // vector register. 1788 // 1789 // SSEUP should always be preceded by SSE, just widen. 1790 case SSEUp: 1791 assert(Lo == SSE && "Unexpected SSEUp classification."); 1792 ResType = GetByteVectorType(RetTy); 1793 break; 1794 1795 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 1796 // returned together with the previous X87 value in %st0. 1797 case X87Up: 1798 // If X87Up is preceded by X87, we don't need to do 1799 // anything. However, in some cases with unions it may not be 1800 // preceded by X87. In such situations we follow gcc and pass the 1801 // extra bits in an SSE reg. 1802 if (Lo != X87) { 1803 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1804 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1805 return ABIArgInfo::getDirect(HighPart, 8); 1806 } 1807 break; 1808 } 1809 1810 // If a high part was specified, merge it together with the low part. It is 1811 // known to pass in the high eightbyte of the result. We do this by forming a 1812 // first class struct aggregate with the high and low part: {low, high} 1813 if (HighPart) 1814 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); 1815 1816 return ABIArgInfo::getDirect(ResType); 1817 } 1818 1819 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt, 1820 unsigned &neededSSE) const { 1821 X86_64ABIInfo::Class Lo, Hi; 1822 classify(Ty, 0, Lo, Hi); 1823 1824 // Check some invariants. 1825 // FIXME: Enforce these by construction. 1826 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1827 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1828 1829 neededInt = 0; 1830 neededSSE = 0; 1831 llvm::Type *ResType = 0; 1832 switch (Lo) { 1833 case NoClass: 1834 if (Hi == NoClass) 1835 return ABIArgInfo::getIgnore(); 1836 // If the low part is just padding, it takes no register, leave ResType 1837 // null. 1838 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 1839 "Unknown missing lo part"); 1840 break; 1841 1842 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 1843 // on the stack. 1844 case Memory: 1845 1846 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 1847 // COMPLEX_X87, it is passed in memory. 1848 case X87: 1849 case ComplexX87: 1850 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1851 ++neededInt; 1852 return getIndirectResult(Ty); 1853 1854 case SSEUp: 1855 case X87Up: 1856 llvm_unreachable("Invalid classification for lo word."); 1857 1858 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 1859 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 1860 // and %r9 is used. 1861 case Integer: 1862 ++neededInt; 1863 1864 // Pick an 8-byte type based on the preferred type. 1865 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 1866 1867 // If we have a sign or zero extended integer, make sure to return Extend 1868 // so that the parameter gets the right LLVM IR attributes. 1869 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 1870 // Treat an enum type as its underlying type. 1871 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1872 Ty = EnumTy->getDecl()->getIntegerType(); 1873 1874 if (Ty->isIntegralOrEnumerationType() && 1875 Ty->isPromotableIntegerType()) 1876 return ABIArgInfo::getExtend(); 1877 } 1878 1879 break; 1880 1881 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 1882 // available SSE register is used, the registers are taken in the 1883 // order from %xmm0 to %xmm7. 1884 case SSE: { 1885 llvm::Type *IRType = CGT.ConvertType(Ty); 1886 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 1887 ++neededSSE; 1888 break; 1889 } 1890 } 1891 1892 llvm::Type *HighPart = 0; 1893 switch (Hi) { 1894 // Memory was handled previously, ComplexX87 and X87 should 1895 // never occur as hi classes, and X87Up must be preceded by X87, 1896 // which is passed in memory. 1897 case Memory: 1898 case X87: 1899 case ComplexX87: 1900 llvm_unreachable("Invalid classification for hi word."); 1901 1902 case NoClass: break; 1903 1904 case Integer: 1905 ++neededInt; 1906 // Pick an 8-byte type based on the preferred type. 1907 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 1908 1909 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 1910 return ABIArgInfo::getDirect(HighPart, 8); 1911 break; 1912 1913 // X87Up generally doesn't occur here (long double is passed in 1914 // memory), except in situations involving unions. 1915 case X87Up: 1916 case SSE: 1917 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 1918 1919 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 1920 return ABIArgInfo::getDirect(HighPart, 8); 1921 1922 ++neededSSE; 1923 break; 1924 1925 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 1926 // eightbyte is passed in the upper half of the last used SSE 1927 // register. This only happens when 128-bit vectors are passed. 1928 case SSEUp: 1929 assert(Lo == SSE && "Unexpected SSEUp classification"); 1930 ResType = GetByteVectorType(Ty); 1931 break; 1932 } 1933 1934 // If a high part was specified, merge it together with the low part. It is 1935 // known to pass in the high eightbyte of the result. We do this by forming a 1936 // first class struct aggregate with the high and low part: {low, high} 1937 if (HighPart) 1938 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); 1939 1940 return ABIArgInfo::getDirect(ResType); 1941 } 1942 1943 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 1945 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 1946 1947 // Keep track of the number of assigned registers. 1948 unsigned freeIntRegs = 6, freeSSERegs = 8; 1949 1950 // If the return value is indirect, then the hidden argument is consuming one 1951 // integer register. 1952 if (FI.getReturnInfo().isIndirect()) 1953 --freeIntRegs; 1954 1955 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 1956 // get assigned (in left-to-right order) for passing as follows... 1957 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1958 it != ie; ++it) { 1959 unsigned neededInt, neededSSE; 1960 it->info = classifyArgumentType(it->type, neededInt, neededSSE); 1961 1962 // AMD64-ABI 3.2.3p3: If there are no registers available for any 1963 // eightbyte of an argument, the whole argument is passed on the 1964 // stack. If registers have already been assigned for some 1965 // eightbytes of such an argument, the assignments get reverted. 1966 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 1967 freeIntRegs -= neededInt; 1968 freeSSERegs -= neededSSE; 1969 } else { 1970 it->info = getIndirectResult(it->type); 1971 } 1972 } 1973 } 1974 1975 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 1976 QualType Ty, 1977 CodeGenFunction &CGF) { 1978 llvm::Value *overflow_arg_area_p = 1979 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 1980 llvm::Value *overflow_arg_area = 1981 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 1982 1983 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 1984 // byte boundary if alignment needed by type exceeds 8 byte boundary. 1985 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 1986 if (Align > 8) { 1987 // Note that we follow the ABI & gcc here, even though the type 1988 // could in theory have an alignment greater than 16. This case 1989 // shouldn't ever matter in practice. 1990 1991 // overflow_arg_area = (overflow_arg_area + 15) & ~15; 1992 llvm::Value *Offset = 1993 llvm::ConstantInt::get(CGF.Int32Ty, 15); 1994 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 1995 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 1996 CGF.Int64Ty); 1997 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL); 1998 overflow_arg_area = 1999 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2000 overflow_arg_area->getType(), 2001 "overflow_arg_area.align"); 2002 } 2003 2004 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2005 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2006 llvm::Value *Res = 2007 CGF.Builder.CreateBitCast(overflow_arg_area, 2008 llvm::PointerType::getUnqual(LTy)); 2009 2010 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2011 // l->overflow_arg_area + sizeof(type). 2012 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2013 // an 8 byte boundary. 2014 2015 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2016 llvm::Value *Offset = 2017 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2018 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2019 "overflow_arg_area.next"); 2020 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2021 2022 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2023 return Res; 2024 } 2025 2026 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2027 CodeGenFunction &CGF) const { 2028 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 2029 2030 // Assume that va_list type is correct; should be pointer to LLVM type: 2031 // struct { 2032 // i32 gp_offset; 2033 // i32 fp_offset; 2034 // i8* overflow_arg_area; 2035 // i8* reg_save_area; 2036 // }; 2037 unsigned neededInt, neededSSE; 2038 2039 Ty = CGF.getContext().getCanonicalType(Ty); 2040 ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE); 2041 2042 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2043 // in the registers. If not go to step 7. 2044 if (!neededInt && !neededSSE) 2045 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2046 2047 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2048 // general purpose registers needed to pass type and num_fp to hold 2049 // the number of floating point registers needed. 2050 2051 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2052 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2053 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2054 // 2055 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2056 // register save space). 2057 2058 llvm::Value *InRegs = 0; 2059 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2060 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2061 if (neededInt) { 2062 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2063 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2064 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2065 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2066 } 2067 2068 if (neededSSE) { 2069 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2070 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2071 llvm::Value *FitsInFP = 2072 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2073 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2074 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2075 } 2076 2077 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2078 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2079 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2080 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2081 2082 // Emit code to load the value if it was passed in registers. 2083 2084 CGF.EmitBlock(InRegBlock); 2085 2086 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2087 // an offset of l->gp_offset and/or l->fp_offset. This may require 2088 // copying to a temporary location in case the parameter is passed 2089 // in different register classes or requires an alignment greater 2090 // than 8 for general purpose registers and 16 for XMM registers. 2091 // 2092 // FIXME: This really results in shameful code when we end up needing to 2093 // collect arguments from different places; often what should result in a 2094 // simple assembling of a structure from scattered addresses has many more 2095 // loads than necessary. Can we clean this up? 2096 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2097 llvm::Value *RegAddr = 2098 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2099 "reg_save_area"); 2100 if (neededInt && neededSSE) { 2101 // FIXME: Cleanup. 2102 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2103 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2104 llvm::Value *Tmp = CGF.CreateTempAlloca(ST); 2105 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2106 llvm::Type *TyLo = ST->getElementType(0); 2107 llvm::Type *TyHi = ST->getElementType(1); 2108 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2109 "Unexpected ABI info for mixed regs"); 2110 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2111 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2112 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2113 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2114 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2115 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2116 llvm::Value *V = 2117 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2118 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2119 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2120 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2121 2122 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2123 llvm::PointerType::getUnqual(LTy)); 2124 } else if (neededInt) { 2125 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2126 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2127 llvm::PointerType::getUnqual(LTy)); 2128 } else if (neededSSE == 1) { 2129 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2130 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2131 llvm::PointerType::getUnqual(LTy)); 2132 } else { 2133 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2134 // SSE registers are spaced 16 bytes apart in the register save 2135 // area, we need to collect the two eightbytes together. 2136 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2137 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2138 llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); 2139 llvm::Type *DblPtrTy = 2140 llvm::PointerType::getUnqual(DoubleTy); 2141 llvm::StructType *ST = llvm::StructType::get(DoubleTy, 2142 DoubleTy, NULL); 2143 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); 2144 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2145 DblPtrTy)); 2146 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2147 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2148 DblPtrTy)); 2149 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2150 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2151 llvm::PointerType::getUnqual(LTy)); 2152 } 2153 2154 // AMD64-ABI 3.5.7p5: Step 5. Set: 2155 // l->gp_offset = l->gp_offset + num_gp * 8 2156 // l->fp_offset = l->fp_offset + num_fp * 16. 2157 if (neededInt) { 2158 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2159 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2160 gp_offset_p); 2161 } 2162 if (neededSSE) { 2163 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2164 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2165 fp_offset_p); 2166 } 2167 CGF.EmitBranch(ContBlock); 2168 2169 // Emit code to load the value if it was passed in memory. 2170 2171 CGF.EmitBlock(InMemBlock); 2172 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2173 2174 // Return the appropriate result. 2175 2176 CGF.EmitBlock(ContBlock); 2177 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2178 "vaarg.addr"); 2179 ResAddr->addIncoming(RegAddr, InRegBlock); 2180 ResAddr->addIncoming(MemAddr, InMemBlock); 2181 return ResAddr; 2182 } 2183 2184 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const { 2185 2186 if (Ty->isVoidType()) 2187 return ABIArgInfo::getIgnore(); 2188 2189 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2190 Ty = EnumTy->getDecl()->getIntegerType(); 2191 2192 uint64_t Size = getContext().getTypeSize(Ty); 2193 2194 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2195 if (hasNonTrivialDestructorOrCopyConstructor(RT) || 2196 RT->getDecl()->hasFlexibleArrayMember()) 2197 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2198 2199 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2200 if (Size == 128 && 2201 getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32) 2202 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2203 Size)); 2204 2205 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2206 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2207 if (Size <= 64 && 2208 (Size & (Size - 1)) == 0) 2209 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2210 Size)); 2211 2212 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2213 } 2214 2215 if (Ty->isPromotableIntegerType()) 2216 return ABIArgInfo::getExtend(); 2217 2218 return ABIArgInfo::getDirect(); 2219 } 2220 2221 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2222 2223 QualType RetTy = FI.getReturnType(); 2224 FI.getReturnInfo() = classify(RetTy); 2225 2226 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2227 it != ie; ++it) 2228 it->info = classify(it->type); 2229 } 2230 2231 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2232 CodeGenFunction &CGF) const { 2233 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 2234 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 2235 2236 CGBuilderTy &Builder = CGF.Builder; 2237 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2238 "ap"); 2239 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2240 llvm::Type *PTy = 2241 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2242 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2243 2244 uint64_t Offset = 2245 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2246 llvm::Value *NextAddr = 2247 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2248 "ap.next"); 2249 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2250 2251 return AddrTyped; 2252 } 2253 2254 // PowerPC-32 2255 2256 namespace { 2257 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2258 public: 2259 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2260 2261 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2262 // This is recovered from gcc output. 2263 return 1; // r1 is the dedicated stack pointer 2264 } 2265 2266 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2267 llvm::Value *Address) const; 2268 }; 2269 2270 } 2271 2272 bool 2273 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2274 llvm::Value *Address) const { 2275 // This is calculated from the LLVM and GCC tables and verified 2276 // against gcc output. AFAIK all ABIs use the same encoding. 2277 2278 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2279 llvm::LLVMContext &Context = CGF.getLLVMContext(); 2280 2281 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 2282 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2283 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2284 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2285 2286 // 0-31: r0-31, the 4-byte general-purpose registers 2287 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2288 2289 // 32-63: fp0-31, the 8-byte floating-point registers 2290 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2291 2292 // 64-76 are various 4-byte special-purpose registers: 2293 // 64: mq 2294 // 65: lr 2295 // 66: ctr 2296 // 67: ap 2297 // 68-75 cr0-7 2298 // 76: xer 2299 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2300 2301 // 77-108: v0-31, the 16-byte vector registers 2302 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2303 2304 // 109: vrsave 2305 // 110: vscr 2306 // 111: spe_acc 2307 // 112: spefscr 2308 // 113: sfp 2309 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2310 2311 return false; 2312 } 2313 2314 2315 //===----------------------------------------------------------------------===// 2316 // ARM ABI Implementation 2317 //===----------------------------------------------------------------------===// 2318 2319 namespace { 2320 2321 class ARMABIInfo : public ABIInfo { 2322 public: 2323 enum ABIKind { 2324 APCS = 0, 2325 AAPCS = 1, 2326 AAPCS_VFP 2327 }; 2328 2329 private: 2330 ABIKind Kind; 2331 2332 public: 2333 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {} 2334 2335 bool isEABI() const { 2336 StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName(); 2337 return (Env == "gnueabi" || Env == "eabi"); 2338 } 2339 2340 private: 2341 ABIKind getABIKind() const { return Kind; } 2342 2343 ABIArgInfo classifyReturnType(QualType RetTy) const; 2344 ABIArgInfo classifyArgumentType(QualType RetTy) const; 2345 2346 virtual void computeInfo(CGFunctionInfo &FI) const; 2347 2348 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2349 CodeGenFunction &CGF) const; 2350 }; 2351 2352 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 2353 public: 2354 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 2355 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 2356 2357 const ARMABIInfo &getABIInfo() const { 2358 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2359 } 2360 2361 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2362 return 13; 2363 } 2364 2365 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 2366 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 2367 } 2368 2369 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2370 llvm::Value *Address) const { 2371 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2372 llvm::LLVMContext &Context = CGF.getLLVMContext(); 2373 2374 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 2375 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2376 2377 // 0-15 are the 16 integer registers. 2378 AssignToArrayRange(Builder, Address, Four8, 0, 15); 2379 2380 return false; 2381 } 2382 2383 unsigned getSizeOfUnwindException() const { 2384 if (getABIInfo().isEABI()) return 88; 2385 return TargetCodeGenInfo::getSizeOfUnwindException(); 2386 } 2387 }; 2388 2389 } 2390 2391 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 2392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2393 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2394 it != ie; ++it) 2395 it->info = classifyArgumentType(it->type); 2396 2397 // Always honor user-specified calling convention. 2398 if (FI.getCallingConvention() != llvm::CallingConv::C) 2399 return; 2400 2401 // Calling convention as default by an ABI. 2402 llvm::CallingConv::ID DefaultCC; 2403 if (isEABI()) 2404 DefaultCC = llvm::CallingConv::ARM_AAPCS; 2405 else 2406 DefaultCC = llvm::CallingConv::ARM_APCS; 2407 2408 // If user did not ask for specific calling convention explicitly (e.g. via 2409 // pcs attribute), set effective calling convention if it's different than ABI 2410 // default. 2411 switch (getABIKind()) { 2412 case APCS: 2413 if (DefaultCC != llvm::CallingConv::ARM_APCS) 2414 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); 2415 break; 2416 case AAPCS: 2417 if (DefaultCC != llvm::CallingConv::ARM_AAPCS) 2418 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); 2419 break; 2420 case AAPCS_VFP: 2421 if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP) 2422 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); 2423 break; 2424 } 2425 } 2426 2427 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 2428 /// aggregate. If HAMembers is non-null, the number of base elements 2429 /// contained in the type is returned through it; this is used for the 2430 /// recursive calls that check aggregate component types. 2431 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 2432 ASTContext &Context, 2433 uint64_t *HAMembers = 0) { 2434 uint64_t Members; 2435 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2436 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 2437 return false; 2438 Members *= AT->getSize().getZExtValue(); 2439 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2440 const RecordDecl *RD = RT->getDecl(); 2441 if (RD->isUnion() || RD->hasFlexibleArrayMember()) 2442 return false; 2443 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2444 if (!CXXRD->isAggregate()) 2445 return false; 2446 } 2447 Members = 0; 2448 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2449 i != e; ++i) { 2450 const FieldDecl *FD = *i; 2451 uint64_t FldMembers; 2452 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 2453 return false; 2454 Members += FldMembers; 2455 } 2456 } else { 2457 Members = 1; 2458 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2459 Members = 2; 2460 Ty = CT->getElementType(); 2461 } 2462 2463 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 2464 // double, or 64-bit or 128-bit vectors. 2465 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2466 if (BT->getKind() != BuiltinType::Float && 2467 BT->getKind() != BuiltinType::Double) 2468 return false; 2469 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 2470 unsigned VecSize = Context.getTypeSize(VT); 2471 if (VecSize != 64 && VecSize != 128) 2472 return false; 2473 } else { 2474 return false; 2475 } 2476 2477 // The base type must be the same for all members. Vector types of the 2478 // same total size are treated as being equivalent here. 2479 const Type *TyPtr = Ty.getTypePtr(); 2480 if (!Base) 2481 Base = TyPtr; 2482 if (Base != TyPtr && 2483 (!Base->isVectorType() || !TyPtr->isVectorType() || 2484 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) 2485 return false; 2486 } 2487 2488 // Homogeneous Aggregates can have at most 4 members of the base type. 2489 if (HAMembers) 2490 *HAMembers = Members; 2491 return (Members <= 4); 2492 } 2493 2494 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const { 2495 if (!isAggregateTypeForABI(Ty)) { 2496 // Treat an enum type as its underlying type. 2497 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2498 Ty = EnumTy->getDecl()->getIntegerType(); 2499 2500 return (Ty->isPromotableIntegerType() ? 2501 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2502 } 2503 2504 // Ignore empty records. 2505 if (isEmptyRecord(getContext(), Ty, true)) 2506 return ABIArgInfo::getIgnore(); 2507 2508 // Structures with either a non-trivial destructor or a non-trivial 2509 // copy constructor are always indirect. 2510 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 2511 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2512 2513 if (getABIKind() == ARMABIInfo::AAPCS_VFP) { 2514 // Homogeneous Aggregates need to be expanded. 2515 const Type *Base = 0; 2516 if (isHomogeneousAggregate(Ty, Base, getContext())) 2517 return ABIArgInfo::getExpand(); 2518 } 2519 2520 // Otherwise, pass by coercing to a structure of the appropriate size. 2521 // 2522 // FIXME: This is kind of nasty... but there isn't much choice because the ARM 2523 // backend doesn't support byval. 2524 // FIXME: This doesn't handle alignment > 64 bits. 2525 llvm::Type* ElemTy; 2526 unsigned SizeRegs; 2527 if (getContext().getTypeAlign(Ty) > 32) { 2528 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 2529 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 2530 } else { 2531 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 2532 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 2533 } 2534 2535 llvm::Type *STy = 2536 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 2537 return ABIArgInfo::getDirect(STy); 2538 } 2539 2540 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 2541 llvm::LLVMContext &VMContext) { 2542 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 2543 // is called integer-like if its size is less than or equal to one word, and 2544 // the offset of each of its addressable sub-fields is zero. 2545 2546 uint64_t Size = Context.getTypeSize(Ty); 2547 2548 // Check that the type fits in a word. 2549 if (Size > 32) 2550 return false; 2551 2552 // FIXME: Handle vector types! 2553 if (Ty->isVectorType()) 2554 return false; 2555 2556 // Float types are never treated as "integer like". 2557 if (Ty->isRealFloatingType()) 2558 return false; 2559 2560 // If this is a builtin or pointer type then it is ok. 2561 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 2562 return true; 2563 2564 // Small complex integer types are "integer like". 2565 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 2566 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 2567 2568 // Single element and zero sized arrays should be allowed, by the definition 2569 // above, but they are not. 2570 2571 // Otherwise, it must be a record type. 2572 const RecordType *RT = Ty->getAs<RecordType>(); 2573 if (!RT) return false; 2574 2575 // Ignore records with flexible arrays. 2576 const RecordDecl *RD = RT->getDecl(); 2577 if (RD->hasFlexibleArrayMember()) 2578 return false; 2579 2580 // Check that all sub-fields are at offset 0, and are themselves "integer 2581 // like". 2582 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2583 2584 bool HadField = false; 2585 unsigned idx = 0; 2586 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2587 i != e; ++i, ++idx) { 2588 const FieldDecl *FD = *i; 2589 2590 // Bit-fields are not addressable, we only need to verify they are "integer 2591 // like". We still have to disallow a subsequent non-bitfield, for example: 2592 // struct { int : 0; int x } 2593 // is non-integer like according to gcc. 2594 if (FD->isBitField()) { 2595 if (!RD->isUnion()) 2596 HadField = true; 2597 2598 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 2599 return false; 2600 2601 continue; 2602 } 2603 2604 // Check if this field is at offset 0. 2605 if (Layout.getFieldOffset(idx) != 0) 2606 return false; 2607 2608 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 2609 return false; 2610 2611 // Only allow at most one field in a structure. This doesn't match the 2612 // wording above, but follows gcc in situations with a field following an 2613 // empty structure. 2614 if (!RD->isUnion()) { 2615 if (HadField) 2616 return false; 2617 2618 HadField = true; 2619 } 2620 } 2621 2622 return true; 2623 } 2624 2625 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { 2626 if (RetTy->isVoidType()) 2627 return ABIArgInfo::getIgnore(); 2628 2629 // Large vector types should be returned via memory. 2630 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 2631 return ABIArgInfo::getIndirect(0); 2632 2633 if (!isAggregateTypeForABI(RetTy)) { 2634 // Treat an enum type as its underlying type. 2635 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2636 RetTy = EnumTy->getDecl()->getIntegerType(); 2637 2638 return (RetTy->isPromotableIntegerType() ? 2639 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2640 } 2641 2642 // Structures with either a non-trivial destructor or a non-trivial 2643 // copy constructor are always indirect. 2644 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) 2645 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2646 2647 // Are we following APCS? 2648 if (getABIKind() == APCS) { 2649 if (isEmptyRecord(getContext(), RetTy, false)) 2650 return ABIArgInfo::getIgnore(); 2651 2652 // Complex types are all returned as packed integers. 2653 // 2654 // FIXME: Consider using 2 x vector types if the back end handles them 2655 // correctly. 2656 if (RetTy->isAnyComplexType()) 2657 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2658 getContext().getTypeSize(RetTy))); 2659 2660 // Integer like structures are returned in r0. 2661 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 2662 // Return in the smallest viable integer type. 2663 uint64_t Size = getContext().getTypeSize(RetTy); 2664 if (Size <= 8) 2665 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 2666 if (Size <= 16) 2667 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 2668 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 2669 } 2670 2671 // Otherwise return in memory. 2672 return ABIArgInfo::getIndirect(0); 2673 } 2674 2675 // Otherwise this is an AAPCS variant. 2676 2677 if (isEmptyRecord(getContext(), RetTy, true)) 2678 return ABIArgInfo::getIgnore(); 2679 2680 // Check for homogeneous aggregates with AAPCS-VFP. 2681 if (getABIKind() == AAPCS_VFP) { 2682 const Type *Base = 0; 2683 if (isHomogeneousAggregate(RetTy, Base, getContext())) 2684 // Homogeneous Aggregates are returned directly. 2685 return ABIArgInfo::getDirect(); 2686 } 2687 2688 // Aggregates <= 4 bytes are returned in r0; other aggregates 2689 // are returned indirectly. 2690 uint64_t Size = getContext().getTypeSize(RetTy); 2691 if (Size <= 32) { 2692 // Return in the smallest viable integer type. 2693 if (Size <= 8) 2694 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 2695 if (Size <= 16) 2696 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 2697 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 2698 } 2699 2700 return ABIArgInfo::getIndirect(0); 2701 } 2702 2703 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2704 CodeGenFunction &CGF) const { 2705 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 2706 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 2707 2708 CGBuilderTy &Builder = CGF.Builder; 2709 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2710 "ap"); 2711 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2712 // Handle address alignment for type alignment > 32 bits 2713 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 2714 if (TyAlign > 4) { 2715 assert((TyAlign & (TyAlign - 1)) == 0 && 2716 "Alignment is not power of 2!"); 2717 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 2718 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 2719 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 2720 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 2721 } 2722 llvm::Type *PTy = 2723 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2724 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2725 2726 uint64_t Offset = 2727 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 2728 llvm::Value *NextAddr = 2729 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2730 "ap.next"); 2731 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2732 2733 return AddrTyped; 2734 } 2735 2736 //===----------------------------------------------------------------------===// 2737 // PTX ABI Implementation 2738 //===----------------------------------------------------------------------===// 2739 2740 namespace { 2741 2742 class PTXABIInfo : public ABIInfo { 2743 public: 2744 PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 2745 2746 ABIArgInfo classifyReturnType(QualType RetTy) const; 2747 ABIArgInfo classifyArgumentType(QualType Ty) const; 2748 2749 virtual void computeInfo(CGFunctionInfo &FI) const; 2750 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2751 CodeGenFunction &CFG) const; 2752 }; 2753 2754 class PTXTargetCodeGenInfo : public TargetCodeGenInfo { 2755 public: 2756 PTXTargetCodeGenInfo(CodeGenTypes &CGT) 2757 : TargetCodeGenInfo(new PTXABIInfo(CGT)) {} 2758 2759 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2760 CodeGen::CodeGenModule &M) const; 2761 }; 2762 2763 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const { 2764 if (RetTy->isVoidType()) 2765 return ABIArgInfo::getIgnore(); 2766 if (isAggregateTypeForABI(RetTy)) 2767 return ABIArgInfo::getIndirect(0); 2768 return ABIArgInfo::getDirect(); 2769 } 2770 2771 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const { 2772 if (isAggregateTypeForABI(Ty)) 2773 return ABIArgInfo::getIndirect(0); 2774 2775 return ABIArgInfo::getDirect(); 2776 } 2777 2778 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 2779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2780 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2781 it != ie; ++it) 2782 it->info = classifyArgumentType(it->type); 2783 2784 // Always honor user-specified calling convention. 2785 if (FI.getCallingConvention() != llvm::CallingConv::C) 2786 return; 2787 2788 // Calling convention as default by an ABI. 2789 llvm::CallingConv::ID DefaultCC; 2790 const LangOptions &LangOpts = getContext().getLangOptions(); 2791 if (LangOpts.OpenCL || LangOpts.CUDA) { 2792 // If we are in OpenCL or CUDA mode, then default to device functions 2793 DefaultCC = llvm::CallingConv::PTX_Device; 2794 } else { 2795 // If we are in standard C/C++ mode, use the triple to decide on the default 2796 StringRef Env = 2797 getContext().getTargetInfo().getTriple().getEnvironmentName(); 2798 if (Env == "device") 2799 DefaultCC = llvm::CallingConv::PTX_Device; 2800 else 2801 DefaultCC = llvm::CallingConv::PTX_Kernel; 2802 } 2803 FI.setEffectiveCallingConvention(DefaultCC); 2804 2805 } 2806 2807 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2808 CodeGenFunction &CFG) const { 2809 llvm_unreachable("PTX does not support varargs"); 2810 return 0; 2811 } 2812 2813 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2814 llvm::GlobalValue *GV, 2815 CodeGen::CodeGenModule &M) const{ 2816 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 2817 if (!FD) return; 2818 2819 llvm::Function *F = cast<llvm::Function>(GV); 2820 2821 // Perform special handling in OpenCL mode 2822 if (M.getLangOptions().OpenCL) { 2823 // Use OpenCL function attributes to set proper calling conventions 2824 // By default, all functions are device functions 2825 if (FD->hasAttr<OpenCLKernelAttr>()) { 2826 // OpenCL __kernel functions get a kernel calling convention 2827 F->setCallingConv(llvm::CallingConv::PTX_Kernel); 2828 // And kernel functions are not subject to inlining 2829 F->addFnAttr(llvm::Attribute::NoInline); 2830 } 2831 } 2832 2833 // Perform special handling in CUDA mode. 2834 if (M.getLangOptions().CUDA) { 2835 // CUDA __global__ functions get a kernel calling convention. Since 2836 // __global__ functions cannot be called from the device, we do not 2837 // need to set the noinline attribute. 2838 if (FD->getAttr<CUDAGlobalAttr>()) 2839 F->setCallingConv(llvm::CallingConv::PTX_Kernel); 2840 } 2841 } 2842 2843 } 2844 2845 //===----------------------------------------------------------------------===// 2846 // MBlaze ABI Implementation 2847 //===----------------------------------------------------------------------===// 2848 2849 namespace { 2850 2851 class MBlazeABIInfo : public ABIInfo { 2852 public: 2853 MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 2854 2855 bool isPromotableIntegerType(QualType Ty) const; 2856 2857 ABIArgInfo classifyReturnType(QualType RetTy) const; 2858 ABIArgInfo classifyArgumentType(QualType RetTy) const; 2859 2860 virtual void computeInfo(CGFunctionInfo &FI) const { 2861 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2862 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2863 it != ie; ++it) 2864 it->info = classifyArgumentType(it->type); 2865 } 2866 2867 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2868 CodeGenFunction &CGF) const; 2869 }; 2870 2871 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo { 2872 public: 2873 MBlazeTargetCodeGenInfo(CodeGenTypes &CGT) 2874 : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {} 2875 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2876 CodeGen::CodeGenModule &M) const; 2877 }; 2878 2879 } 2880 2881 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const { 2882 // MBlaze ABI requires all 8 and 16 bit quantities to be extended. 2883 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2884 switch (BT->getKind()) { 2885 case BuiltinType::Bool: 2886 case BuiltinType::Char_S: 2887 case BuiltinType::Char_U: 2888 case BuiltinType::SChar: 2889 case BuiltinType::UChar: 2890 case BuiltinType::Short: 2891 case BuiltinType::UShort: 2892 return true; 2893 default: 2894 return false; 2895 } 2896 return false; 2897 } 2898 2899 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2900 CodeGenFunction &CGF) const { 2901 // FIXME: Implement 2902 return 0; 2903 } 2904 2905 2906 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const { 2907 if (RetTy->isVoidType()) 2908 return ABIArgInfo::getIgnore(); 2909 if (isAggregateTypeForABI(RetTy)) 2910 return ABIArgInfo::getIndirect(0); 2911 2912 return (isPromotableIntegerType(RetTy) ? 2913 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2914 } 2915 2916 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const { 2917 if (isAggregateTypeForABI(Ty)) 2918 return ABIArgInfo::getIndirect(0); 2919 2920 return (isPromotableIntegerType(Ty) ? 2921 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2922 } 2923 2924 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2925 llvm::GlobalValue *GV, 2926 CodeGen::CodeGenModule &M) 2927 const { 2928 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 2929 if (!FD) return; 2930 2931 llvm::CallingConv::ID CC = llvm::CallingConv::C; 2932 if (FD->hasAttr<MBlazeInterruptHandlerAttr>()) 2933 CC = llvm::CallingConv::MBLAZE_INTR; 2934 else if (FD->hasAttr<MBlazeSaveVolatilesAttr>()) 2935 CC = llvm::CallingConv::MBLAZE_SVOL; 2936 2937 if (CC != llvm::CallingConv::C) { 2938 // Handle 'interrupt_handler' attribute: 2939 llvm::Function *F = cast<llvm::Function>(GV); 2940 2941 // Step 1: Set ISR calling convention. 2942 F->setCallingConv(CC); 2943 2944 // Step 2: Add attributes goodness. 2945 F->addFnAttr(llvm::Attribute::NoInline); 2946 } 2947 2948 // Step 3: Emit _interrupt_handler alias. 2949 if (CC == llvm::CallingConv::MBLAZE_INTR) 2950 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 2951 "_interrupt_handler", GV, &M.getModule()); 2952 } 2953 2954 2955 //===----------------------------------------------------------------------===// 2956 // MSP430 ABI Implementation 2957 //===----------------------------------------------------------------------===// 2958 2959 namespace { 2960 2961 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 2962 public: 2963 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 2964 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 2965 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2966 CodeGen::CodeGenModule &M) const; 2967 }; 2968 2969 } 2970 2971 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2972 llvm::GlobalValue *GV, 2973 CodeGen::CodeGenModule &M) const { 2974 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2975 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 2976 // Handle 'interrupt' attribute: 2977 llvm::Function *F = cast<llvm::Function>(GV); 2978 2979 // Step 1: Set ISR calling convention. 2980 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 2981 2982 // Step 2: Add attributes goodness. 2983 F->addFnAttr(llvm::Attribute::NoInline); 2984 2985 // Step 3: Emit ISR vector alias. 2986 unsigned Num = attr->getNumber() + 0xffe0; 2987 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 2988 "vector_" + Twine::utohexstr(Num), 2989 GV, &M.getModule()); 2990 } 2991 } 2992 } 2993 2994 //===----------------------------------------------------------------------===// 2995 // MIPS ABI Implementation. This works for both little-endian and 2996 // big-endian variants. 2997 //===----------------------------------------------------------------------===// 2998 2999 namespace { 3000 class MipsABIInfo : public ABIInfo { 3001 bool IsO32; 3002 unsigned MinABIStackAlignInBytes; 3003 llvm::Type* HandleStructTy(QualType Ty) const; 3004 public: 3005 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 3006 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {} 3007 3008 ABIArgInfo classifyReturnType(QualType RetTy) const; 3009 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3010 virtual void computeInfo(CGFunctionInfo &FI) const; 3011 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3012 CodeGenFunction &CGF) const; 3013 }; 3014 3015 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 3016 unsigned SizeOfUnwindException; 3017 public: 3018 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 3019 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 3020 SizeOfUnwindException(IsO32 ? 24 : 32) {} 3021 3022 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 3023 return 29; 3024 } 3025 3026 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3027 llvm::Value *Address) const; 3028 3029 unsigned getSizeOfUnwindException() const { 3030 return SizeOfUnwindException; 3031 } 3032 }; 3033 } 3034 3035 // In N32/64, an aligned double precision floating point field is passed in 3036 // a register. 3037 llvm::Type* MipsABIInfo::HandleStructTy(QualType Ty) const { 3038 if (IsO32) 3039 return 0; 3040 3041 const RecordType *RT = Ty->getAsStructureType(); 3042 3043 if (!RT) 3044 return 0; 3045 3046 const RecordDecl *RD = RT->getDecl(); 3047 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3048 uint64_t StructSize = getContext().getTypeSize(Ty); 3049 assert(!(StructSize % 8) && "Size of structure must be multiple of 8."); 3050 3051 SmallVector<llvm::Type*, 8> ArgList; 3052 uint64_t LastOffset = 0; 3053 unsigned idx = 0; 3054 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 3055 3056 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3057 i != e; ++i, ++idx) { 3058 const QualType Ty = (*i)->getType(); 3059 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3060 3061 if (!BT || BT->getKind() != BuiltinType::Double) 3062 continue; 3063 3064 uint64_t Offset = Layout.getFieldOffset(idx); 3065 if (Offset % 64) // Ignore doubles that are not aligned. 3066 continue; 3067 3068 // Add ((Offset - LastOffset) / 64) args of type i64. 3069 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 3070 ArgList.push_back(I64); 3071 3072 // Add double type. 3073 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 3074 LastOffset = Offset + 64; 3075 } 3076 3077 // This structure doesn't have an aligned double field. 3078 if (!LastOffset) 3079 return 0; 3080 3081 // Add ((StructSize - LastOffset) / 64) args of type i64. 3082 for (unsigned N = (StructSize - LastOffset) / 64; N; --N) 3083 ArgList.push_back(I64); 3084 3085 // If the size of the remainder is not zero, add one more integer type to 3086 // ArgList. 3087 unsigned R = (StructSize - LastOffset) % 64; 3088 if (R) 3089 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 3090 3091 return llvm::StructType::get(getVMContext(), ArgList); 3092 } 3093 3094 ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const { 3095 if (isAggregateTypeForABI(Ty)) { 3096 // Ignore empty aggregates. 3097 if (getContext().getTypeSize(Ty) == 0) 3098 return ABIArgInfo::getIgnore(); 3099 3100 // Records with non trivial destructors/constructors should not be passed 3101 // by value. 3102 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 3103 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3104 3105 llvm::Type *ResType; 3106 if ((ResType = HandleStructTy(Ty))) 3107 return ABIArgInfo::getDirect(ResType); 3108 3109 return ABIArgInfo::getIndirect(0); 3110 } 3111 3112 // Treat an enum type as its underlying type. 3113 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3114 Ty = EnumTy->getDecl()->getIntegerType(); 3115 3116 return (Ty->isPromotableIntegerType() ? 3117 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3118 } 3119 3120 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 3121 if (RetTy->isVoidType()) 3122 return ABIArgInfo::getIgnore(); 3123 3124 if (isAggregateTypeForABI(RetTy)) { 3125 if ((IsO32 && RetTy->isAnyComplexType()) || 3126 (!IsO32 && (getContext().getTypeSize(RetTy) <= 128))) 3127 return ABIArgInfo::getDirect(); 3128 3129 return ABIArgInfo::getIndirect(0); 3130 } 3131 3132 // Treat an enum type as its underlying type. 3133 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3134 RetTy = EnumTy->getDecl()->getIntegerType(); 3135 3136 return (RetTy->isPromotableIntegerType() ? 3137 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3138 } 3139 3140 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 3141 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3142 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3143 it != ie; ++it) 3144 it->info = classifyArgumentType(it->type); 3145 } 3146 3147 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3148 CodeGenFunction &CGF) const { 3149 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3150 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3151 3152 CGBuilderTy &Builder = CGF.Builder; 3153 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3154 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3155 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 3156 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3157 llvm::Value *AddrTyped; 3158 3159 if (TypeAlign > MinABIStackAlignInBytes) { 3160 llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 3161 llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1); 3162 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign); 3163 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc); 3164 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 3165 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 3166 } 3167 else 3168 AddrTyped = Builder.CreateBitCast(Addr, PTy); 3169 3170 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 3171 TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes); 3172 uint64_t Offset = 3173 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 3174 llvm::Value *NextAddr = 3175 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3176 "ap.next"); 3177 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3178 3179 return AddrTyped; 3180 } 3181 3182 bool 3183 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3184 llvm::Value *Address) const { 3185 // This information comes from gcc's implementation, which seems to 3186 // as canonical as it gets. 3187 3188 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3189 llvm::LLVMContext &Context = CGF.getLLVMContext(); 3190 3191 // Everything on MIPS is 4 bytes. Double-precision FP registers 3192 // are aliased to pairs of single-precision FP registers. 3193 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 3194 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3195 3196 // 0-31 are the general purpose registers, $0 - $31. 3197 // 32-63 are the floating-point registers, $f0 - $f31. 3198 // 64 and 65 are the multiply/divide registers, $hi and $lo. 3199 // 66 is the (notional, I think) register for signal-handler return. 3200 AssignToArrayRange(Builder, Address, Four8, 0, 65); 3201 3202 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 3203 // They are one bit wide and ignored here. 3204 3205 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 3206 // (coprocessor 1 is the FP unit) 3207 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 3208 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 3209 // 176-181 are the DSP accumulator registers. 3210 AssignToArrayRange(Builder, Address, Four8, 80, 181); 3211 3212 return false; 3213 } 3214 3215 //===----------------------------------------------------------------------===// 3216 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 3217 // Currently subclassed only to implement custom OpenCL C function attribute 3218 // handling. 3219 //===----------------------------------------------------------------------===// 3220 3221 namespace { 3222 3223 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3224 public: 3225 TCETargetCodeGenInfo(CodeGenTypes &CGT) 3226 : DefaultTargetCodeGenInfo(CGT) {} 3227 3228 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3229 CodeGen::CodeGenModule &M) const; 3230 }; 3231 3232 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 3233 llvm::GlobalValue *GV, 3234 CodeGen::CodeGenModule &M) const { 3235 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3236 if (!FD) return; 3237 3238 llvm::Function *F = cast<llvm::Function>(GV); 3239 3240 if (M.getLangOptions().OpenCL) { 3241 if (FD->hasAttr<OpenCLKernelAttr>()) { 3242 // OpenCL C Kernel functions are not subject to inlining 3243 F->addFnAttr(llvm::Attribute::NoInline); 3244 3245 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 3246 3247 // Convert the reqd_work_group_size() attributes to metadata. 3248 llvm::LLVMContext &Context = F->getContext(); 3249 llvm::NamedMDNode *OpenCLMetadata = 3250 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 3251 3252 SmallVector<llvm::Value*, 5> Operands; 3253 Operands.push_back(F); 3254 3255 Operands.push_back(llvm::Constant::getIntegerValue( 3256 llvm::Type::getInt32Ty(Context), 3257 llvm::APInt( 3258 32, 3259 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim()))); 3260 Operands.push_back(llvm::Constant::getIntegerValue( 3261 llvm::Type::getInt32Ty(Context), 3262 llvm::APInt( 3263 32, 3264 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim()))); 3265 Operands.push_back(llvm::Constant::getIntegerValue( 3266 llvm::Type::getInt32Ty(Context), 3267 llvm::APInt( 3268 32, 3269 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim()))); 3270 3271 // Add a boolean constant operand for "required" (true) or "hint" (false) 3272 // for implementing the work_group_size_hint attr later. Currently 3273 // always true as the hint is not yet implemented. 3274 Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context))); 3275 3276 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 3277 } 3278 } 3279 } 3280 } 3281 3282 } 3283 3284 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 3285 if (TheTargetCodeGenInfo) 3286 return *TheTargetCodeGenInfo; 3287 3288 const llvm::Triple &Triple = getContext().getTargetInfo().getTriple(); 3289 switch (Triple.getArch()) { 3290 default: 3291 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 3292 3293 case llvm::Triple::mips: 3294 case llvm::Triple::mipsel: 3295 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 3296 3297 case llvm::Triple::mips64: 3298 case llvm::Triple::mips64el: 3299 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 3300 3301 case llvm::Triple::arm: 3302 case llvm::Triple::thumb: 3303 { 3304 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 3305 3306 if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0) 3307 Kind = ARMABIInfo::APCS; 3308 else if (CodeGenOpts.FloatABI == "hard") 3309 Kind = ARMABIInfo::AAPCS_VFP; 3310 3311 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 3312 } 3313 3314 case llvm::Triple::ppc: 3315 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 3316 3317 case llvm::Triple::ptx32: 3318 case llvm::Triple::ptx64: 3319 return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types)); 3320 3321 case llvm::Triple::mblaze: 3322 return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types)); 3323 3324 case llvm::Triple::msp430: 3325 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 3326 3327 case llvm::Triple::tce: 3328 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 3329 3330 case llvm::Triple::x86: { 3331 bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0; 3332 3333 if (Triple.isOSDarwin()) 3334 return *(TheTargetCodeGenInfo = 3335 new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX)); 3336 3337 switch (Triple.getOS()) { 3338 case llvm::Triple::Cygwin: 3339 case llvm::Triple::MinGW32: 3340 case llvm::Triple::AuroraUX: 3341 case llvm::Triple::DragonFly: 3342 case llvm::Triple::FreeBSD: 3343 case llvm::Triple::OpenBSD: 3344 case llvm::Triple::NetBSD: 3345 return *(TheTargetCodeGenInfo = 3346 new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX)); 3347 3348 default: 3349 return *(TheTargetCodeGenInfo = 3350 new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX)); 3351 } 3352 } 3353 3354 case llvm::Triple::x86_64: 3355 switch (Triple.getOS()) { 3356 case llvm::Triple::Win32: 3357 case llvm::Triple::MinGW32: 3358 case llvm::Triple::Cygwin: 3359 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 3360 default: 3361 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types)); 3362 } 3363 } 3364 } 3365