1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                      const FunctionNoProtoType *fnType) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 /// UseX86_MMXType - Return true if this is an MMX type that should use the
393 /// special x86_mmx type.
394 bool UseX86_MMXType(llvm::Type *IRType) {
395   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396   // special x86_mmx type.
397   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399     IRType->getScalarSizeInBits() != 64;
400 }
401 
402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                           StringRef Constraint,
404                                           llvm::Type* Ty) {
405   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407   return Ty;
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // X86-32 ABI Implementation
412 //===----------------------------------------------------------------------===//
413 
414 /// X86_32ABIInfo - The X86-32 ABI information.
415 class X86_32ABIInfo : public ABIInfo {
416   static const unsigned MinABIStackAlignInBytes = 4;
417 
418   bool IsDarwinVectorABI;
419   bool IsSmallStructInRegABI;
420   bool IsMMXDisabled;
421   bool IsWin32FloatStructABI;
422 
423   static bool isRegisterSize(unsigned Size) {
424     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
425   }
426 
427   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
428 
429   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
430   /// such that the argument will be passed in memory.
431   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
432 
433   /// \brief Return the alignment to use for the given type on the stack.
434   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
435 
436 public:
437 
438   ABIArgInfo classifyReturnType(QualType RetTy) const;
439   ABIArgInfo classifyArgumentType(QualType RetTy) const;
440 
441   virtual void computeInfo(CGFunctionInfo &FI) const {
442     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
443     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
444          it != ie; ++it)
445       it->info = classifyArgumentType(it->type);
446   }
447 
448   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
449                                  CodeGenFunction &CGF) const;
450 
451   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w)
452     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
453       IsMMXDisabled(m), IsWin32FloatStructABI(w) {}
454 };
455 
456 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
457 public:
458   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
459       bool d, bool p, bool m, bool w)
460     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {}
461 
462   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
463                            CodeGen::CodeGenModule &CGM) const;
464 
465   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
466     // Darwin uses different dwarf register numbers for EH.
467     if (CGM.isTargetDarwin()) return 5;
468 
469     return 4;
470   }
471 
472   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
473                                llvm::Value *Address) const;
474 
475   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
476                                   StringRef Constraint,
477                                   llvm::Type* Ty) const {
478     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
479   }
480 
481 };
482 
483 }
484 
485 /// shouldReturnTypeInRegister - Determine if the given type should be
486 /// passed in a register (for the Darwin ABI).
487 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
488                                                ASTContext &Context) {
489   uint64_t Size = Context.getTypeSize(Ty);
490 
491   // Type must be register sized.
492   if (!isRegisterSize(Size))
493     return false;
494 
495   if (Ty->isVectorType()) {
496     // 64- and 128- bit vectors inside structures are not returned in
497     // registers.
498     if (Size == 64 || Size == 128)
499       return false;
500 
501     return true;
502   }
503 
504   // If this is a builtin, pointer, enum, complex type, member pointer, or
505   // member function pointer it is ok.
506   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
507       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
508       Ty->isBlockPointerType() || Ty->isMemberPointerType())
509     return true;
510 
511   // Arrays are treated like records.
512   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
513     return shouldReturnTypeInRegister(AT->getElementType(), Context);
514 
515   // Otherwise, it must be a record type.
516   const RecordType *RT = Ty->getAs<RecordType>();
517   if (!RT) return false;
518 
519   // FIXME: Traverse bases here too.
520 
521   // Structure types are passed in register if all fields would be
522   // passed in a register.
523   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
524          e = RT->getDecl()->field_end(); i != e; ++i) {
525     const FieldDecl *FD = *i;
526 
527     // Empty fields are ignored.
528     if (isEmptyField(Context, FD, true))
529       continue;
530 
531     // Check fields recursively.
532     if (!shouldReturnTypeInRegister(FD->getType(), Context))
533       return false;
534   }
535 
536   return true;
537 }
538 
539 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
540   if (RetTy->isVoidType())
541     return ABIArgInfo::getIgnore();
542 
543   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
544     // On Darwin, some vectors are returned in registers.
545     if (IsDarwinVectorABI) {
546       uint64_t Size = getContext().getTypeSize(RetTy);
547 
548       // 128-bit vectors are a special case; they are returned in
549       // registers and we need to make sure to pick a type the LLVM
550       // backend will like.
551       if (Size == 128)
552         return ABIArgInfo::getDirect(llvm::VectorType::get(
553                   llvm::Type::getInt64Ty(getVMContext()), 2));
554 
555       // Always return in register if it fits in a general purpose
556       // register, or if it is 64 bits and has a single element.
557       if ((Size == 8 || Size == 16 || Size == 32) ||
558           (Size == 64 && VT->getNumElements() == 1))
559         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
560                                                             Size));
561 
562       return ABIArgInfo::getIndirect(0);
563     }
564 
565     return ABIArgInfo::getDirect();
566   }
567 
568   if (isAggregateTypeForABI(RetTy)) {
569     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
570       // Structures with either a non-trivial destructor or a non-trivial
571       // copy constructor are always indirect.
572       if (hasNonTrivialDestructorOrCopyConstructor(RT))
573         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
574 
575       // Structures with flexible arrays are always indirect.
576       if (RT->getDecl()->hasFlexibleArrayMember())
577         return ABIArgInfo::getIndirect(0);
578     }
579 
580     // If specified, structs and unions are always indirect.
581     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
582       return ABIArgInfo::getIndirect(0);
583 
584     // Small structures which are register sized are generally returned
585     // in a register.
586     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
587       uint64_t Size = getContext().getTypeSize(RetTy);
588 
589       // As a special-case, if the struct is a "single-element" struct, and
590       // the field is of type "float" or "double", return it in a
591       // floating-point register. (MSVC does not apply this special case.)
592       // We apply a similar transformation for pointer types to improve the
593       // quality of the generated IR.
594       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
595         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
596             || SeltTy->hasPointerRepresentation())
597           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
598 
599       // FIXME: We should be able to narrow this integer in cases with dead
600       // padding.
601       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
602     }
603 
604     return ABIArgInfo::getIndirect(0);
605   }
606 
607   // Treat an enum type as its underlying type.
608   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
609     RetTy = EnumTy->getDecl()->getIntegerType();
610 
611   return (RetTy->isPromotableIntegerType() ?
612           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
613 }
614 
615 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
616   const RecordType *RT = Ty->getAs<RecordType>();
617   if (!RT)
618     return 0;
619   const RecordDecl *RD = RT->getDecl();
620 
621   // If this is a C++ record, check the bases first.
622   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
623     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
624            e = CXXRD->bases_end(); i != e; ++i)
625       if (!isRecordWithSSEVectorType(Context, i->getType()))
626         return false;
627 
628   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
629        i != e; ++i) {
630     QualType FT = i->getType();
631 
632     if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
633       return true;
634 
635     if (isRecordWithSSEVectorType(Context, FT))
636       return true;
637   }
638 
639   return false;
640 }
641 
642 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
643                                                  unsigned Align) const {
644   // Otherwise, if the alignment is less than or equal to the minimum ABI
645   // alignment, just use the default; the backend will handle this.
646   if (Align <= MinABIStackAlignInBytes)
647     return 0; // Use default alignment.
648 
649   // On non-Darwin, the stack type alignment is always 4.
650   if (!IsDarwinVectorABI) {
651     // Set explicit alignment, since we may need to realign the top.
652     return MinABIStackAlignInBytes;
653   }
654 
655   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
656   if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
657     return 16;
658 
659   return MinABIStackAlignInBytes;
660 }
661 
662 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
663   if (!ByVal)
664     return ABIArgInfo::getIndirect(0, false);
665 
666   // Compute the byval alignment.
667   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
668   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
669   if (StackAlign == 0)
670     return ABIArgInfo::getIndirect(4);
671 
672   // If the stack alignment is less than the type alignment, realign the
673   // argument.
674   if (StackAlign < TypeAlign)
675     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
676                                    /*Realign=*/true);
677 
678   return ABIArgInfo::getIndirect(StackAlign);
679 }
680 
681 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
682   // FIXME: Set alignment on indirect arguments.
683   if (isAggregateTypeForABI(Ty)) {
684     // Structures with flexible arrays are always indirect.
685     if (const RecordType *RT = Ty->getAs<RecordType>()) {
686       // Structures with either a non-trivial destructor or a non-trivial
687       // copy constructor are always indirect.
688       if (hasNonTrivialDestructorOrCopyConstructor(RT))
689         return getIndirectResult(Ty, /*ByVal=*/false);
690 
691       if (RT->getDecl()->hasFlexibleArrayMember())
692         return getIndirectResult(Ty);
693     }
694 
695     // Ignore empty structs/unions.
696     if (isEmptyRecord(getContext(), Ty, true))
697       return ABIArgInfo::getIgnore();
698 
699     // Expand small (<= 128-bit) record types when we know that the stack layout
700     // of those arguments will match the struct. This is important because the
701     // LLVM backend isn't smart enough to remove byval, which inhibits many
702     // optimizations.
703     if (getContext().getTypeSize(Ty) <= 4*32 &&
704         canExpandIndirectArgument(Ty, getContext()))
705       return ABIArgInfo::getExpand();
706 
707     return getIndirectResult(Ty);
708   }
709 
710   if (const VectorType *VT = Ty->getAs<VectorType>()) {
711     // On Darwin, some vectors are passed in memory, we handle this by passing
712     // it as an i8/i16/i32/i64.
713     if (IsDarwinVectorABI) {
714       uint64_t Size = getContext().getTypeSize(Ty);
715       if ((Size == 8 || Size == 16 || Size == 32) ||
716           (Size == 64 && VT->getNumElements() == 1))
717         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
718                                                             Size));
719     }
720 
721     llvm::Type *IRType = CGT.ConvertType(Ty);
722     if (UseX86_MMXType(IRType)) {
723       if (IsMMXDisabled)
724         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
725                                                             64));
726       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
727       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
728       return AAI;
729     }
730 
731     return ABIArgInfo::getDirect();
732   }
733 
734 
735   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
736     Ty = EnumTy->getDecl()->getIntegerType();
737 
738   return (Ty->isPromotableIntegerType() ?
739           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
740 }
741 
742 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
743                                       CodeGenFunction &CGF) const {
744   llvm::Type *BPP = CGF.Int8PtrPtrTy;
745 
746   CGBuilderTy &Builder = CGF.Builder;
747   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
748                                                        "ap");
749   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
750 
751   // Compute if the address needs to be aligned
752   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
753   Align = getTypeStackAlignInBytes(Ty, Align);
754   Align = std::max(Align, 4U);
755   if (Align > 4) {
756     // addr = (addr + align - 1) & -align;
757     llvm::Value *Offset =
758       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
759     Addr = CGF.Builder.CreateGEP(Addr, Offset);
760     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
761                                                     CGF.Int32Ty);
762     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
763     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
764                                       Addr->getType(),
765                                       "ap.cur.aligned");
766   }
767 
768   llvm::Type *PTy =
769     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
770   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
771 
772   uint64_t Offset =
773     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
774   llvm::Value *NextAddr =
775     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
776                       "ap.next");
777   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
778 
779   return AddrTyped;
780 }
781 
782 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
783                                                   llvm::GlobalValue *GV,
784                                             CodeGen::CodeGenModule &CGM) const {
785   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
786     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
787       // Get the LLVM function.
788       llvm::Function *Fn = cast<llvm::Function>(GV);
789 
790       // Now add the 'alignstack' attribute with a value of 16.
791       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
792     }
793   }
794 }
795 
796 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
797                                                CodeGen::CodeGenFunction &CGF,
798                                                llvm::Value *Address) const {
799   CodeGen::CGBuilderTy &Builder = CGF.Builder;
800 
801   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
802 
803   // 0-7 are the eight integer registers;  the order is different
804   //   on Darwin (for EH), but the range is the same.
805   // 8 is %eip.
806   AssignToArrayRange(Builder, Address, Four8, 0, 8);
807 
808   if (CGF.CGM.isTargetDarwin()) {
809     // 12-16 are st(0..4).  Not sure why we stop at 4.
810     // These have size 16, which is sizeof(long double) on
811     // platforms with 8-byte alignment for that type.
812     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
813     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
814 
815   } else {
816     // 9 is %eflags, which doesn't get a size on Darwin for some
817     // reason.
818     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
819 
820     // 11-16 are st(0..5).  Not sure why we stop at 5.
821     // These have size 12, which is sizeof(long double) on
822     // platforms with 4-byte alignment for that type.
823     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
824     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
825   }
826 
827   return false;
828 }
829 
830 //===----------------------------------------------------------------------===//
831 // X86-64 ABI Implementation
832 //===----------------------------------------------------------------------===//
833 
834 
835 namespace {
836 /// X86_64ABIInfo - The X86_64 ABI information.
837 class X86_64ABIInfo : public ABIInfo {
838   enum Class {
839     Integer = 0,
840     SSE,
841     SSEUp,
842     X87,
843     X87Up,
844     ComplexX87,
845     NoClass,
846     Memory
847   };
848 
849   /// merge - Implement the X86_64 ABI merging algorithm.
850   ///
851   /// Merge an accumulating classification \arg Accum with a field
852   /// classification \arg Field.
853   ///
854   /// \param Accum - The accumulating classification. This should
855   /// always be either NoClass or the result of a previous merge
856   /// call. In addition, this should never be Memory (the caller
857   /// should just return Memory for the aggregate).
858   static Class merge(Class Accum, Class Field);
859 
860   /// postMerge - Implement the X86_64 ABI post merging algorithm.
861   ///
862   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
863   /// final MEMORY or SSE classes when necessary.
864   ///
865   /// \param AggregateSize - The size of the current aggregate in
866   /// the classification process.
867   ///
868   /// \param Lo - The classification for the parts of the type
869   /// residing in the low word of the containing object.
870   ///
871   /// \param Hi - The classification for the parts of the type
872   /// residing in the higher words of the containing object.
873   ///
874   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
875 
876   /// classify - Determine the x86_64 register classes in which the
877   /// given type T should be passed.
878   ///
879   /// \param Lo - The classification for the parts of the type
880   /// residing in the low word of the containing object.
881   ///
882   /// \param Hi - The classification for the parts of the type
883   /// residing in the high word of the containing object.
884   ///
885   /// \param OffsetBase - The bit offset of this type in the
886   /// containing object.  Some parameters are classified different
887   /// depending on whether they straddle an eightbyte boundary.
888   ///
889   /// If a word is unused its result will be NoClass; if a type should
890   /// be passed in Memory then at least the classification of \arg Lo
891   /// will be Memory.
892   ///
893   /// The \arg Lo class will be NoClass iff the argument is ignored.
894   ///
895   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
896   /// also be ComplexX87.
897   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
898 
899   llvm::Type *GetByteVectorType(QualType Ty) const;
900   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
901                                  unsigned IROffset, QualType SourceTy,
902                                  unsigned SourceOffset) const;
903   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
904                                      unsigned IROffset, QualType SourceTy,
905                                      unsigned SourceOffset) const;
906 
907   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
908   /// such that the argument will be returned in memory.
909   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
910 
911   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
912   /// such that the argument will be passed in memory.
913   ABIArgInfo getIndirectResult(QualType Ty) const;
914 
915   ABIArgInfo classifyReturnType(QualType RetTy) const;
916 
917   ABIArgInfo classifyArgumentType(QualType Ty,
918                                   unsigned &neededInt,
919                                   unsigned &neededSSE) const;
920 
921   bool IsIllegalVectorType(QualType Ty) const;
922 
923   /// The 0.98 ABI revision clarified a lot of ambiguities,
924   /// unfortunately in ways that were not always consistent with
925   /// certain previous compilers.  In particular, platforms which
926   /// required strict binary compatibility with older versions of GCC
927   /// may need to exempt themselves.
928   bool honorsRevision0_98() const {
929     return !getContext().getTargetInfo().getTriple().isOSDarwin();
930   }
931 
932   bool HasAVX;
933 
934 public:
935   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
936       ABIInfo(CGT), HasAVX(hasavx) {}
937 
938   bool isPassedUsingAVXType(QualType type) const {
939     unsigned neededInt, neededSSE;
940     ABIArgInfo info = classifyArgumentType(type, neededInt, neededSSE);
941     if (info.isDirect()) {
942       llvm::Type *ty = info.getCoerceToType();
943       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
944         return (vectorTy->getBitWidth() > 128);
945     }
946     return false;
947   }
948 
949   virtual void computeInfo(CGFunctionInfo &FI) const;
950 
951   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
952                                  CodeGenFunction &CGF) const;
953 };
954 
955 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
956 class WinX86_64ABIInfo : public ABIInfo {
957 
958   ABIArgInfo classify(QualType Ty) const;
959 
960 public:
961   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
962 
963   virtual void computeInfo(CGFunctionInfo &FI) const;
964 
965   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
966                                  CodeGenFunction &CGF) const;
967 };
968 
969 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
970 public:
971   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
972     : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
973 
974   const X86_64ABIInfo &getABIInfo() const {
975     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
976   }
977 
978   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
979     return 7;
980   }
981 
982   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
983                                llvm::Value *Address) const {
984     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
985 
986     // 0-15 are the 16 integer registers.
987     // 16 is %rip.
988     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
989     return false;
990   }
991 
992   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
993                                   StringRef Constraint,
994                                   llvm::Type* Ty) const {
995     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
996   }
997 
998   bool isNoProtoCallVariadic(const CallArgList &args,
999                              const FunctionNoProtoType *fnType) const {
1000     // The default CC on x86-64 sets %al to the number of SSA
1001     // registers used, and GCC sets this when calling an unprototyped
1002     // function, so we override the default behavior.  However, don't do
1003     // that when AVX types are involved: the ABI explicitly states it is
1004     // undefined, and it doesn't work in practice because of how the ABI
1005     // defines varargs anyway.
1006     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1007       bool HasAVXType = false;
1008       for (CallArgList::const_iterator
1009              it = args.begin(), ie = args.end(); it != ie; ++it) {
1010         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1011           HasAVXType = true;
1012           break;
1013         }
1014       }
1015 
1016       if (!HasAVXType)
1017         return true;
1018     }
1019 
1020     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1021   }
1022 
1023 };
1024 
1025 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1026 public:
1027   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1028     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1029 
1030   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1031     return 7;
1032   }
1033 
1034   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1035                                llvm::Value *Address) const {
1036     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1037 
1038     // 0-15 are the 16 integer registers.
1039     // 16 is %rip.
1040     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1041     return false;
1042   }
1043 };
1044 
1045 }
1046 
1047 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1048                               Class &Hi) const {
1049   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1050   //
1051   // (a) If one of the classes is Memory, the whole argument is passed in
1052   //     memory.
1053   //
1054   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1055   //     memory.
1056   //
1057   // (c) If the size of the aggregate exceeds two eightbytes and the first
1058   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1059   //     argument is passed in memory. NOTE: This is necessary to keep the
1060   //     ABI working for processors that don't support the __m256 type.
1061   //
1062   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1063   //
1064   // Some of these are enforced by the merging logic.  Others can arise
1065   // only with unions; for example:
1066   //   union { _Complex double; unsigned; }
1067   //
1068   // Note that clauses (b) and (c) were added in 0.98.
1069   //
1070   if (Hi == Memory)
1071     Lo = Memory;
1072   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1073     Lo = Memory;
1074   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1075     Lo = Memory;
1076   if (Hi == SSEUp && Lo != SSE)
1077     Hi = SSE;
1078 }
1079 
1080 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1081   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1082   // classified recursively so that always two fields are
1083   // considered. The resulting class is calculated according to
1084   // the classes of the fields in the eightbyte:
1085   //
1086   // (a) If both classes are equal, this is the resulting class.
1087   //
1088   // (b) If one of the classes is NO_CLASS, the resulting class is
1089   // the other class.
1090   //
1091   // (c) If one of the classes is MEMORY, the result is the MEMORY
1092   // class.
1093   //
1094   // (d) If one of the classes is INTEGER, the result is the
1095   // INTEGER.
1096   //
1097   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1098   // MEMORY is used as class.
1099   //
1100   // (f) Otherwise class SSE is used.
1101 
1102   // Accum should never be memory (we should have returned) or
1103   // ComplexX87 (because this cannot be passed in a structure).
1104   assert((Accum != Memory && Accum != ComplexX87) &&
1105          "Invalid accumulated classification during merge.");
1106   if (Accum == Field || Field == NoClass)
1107     return Accum;
1108   if (Field == Memory)
1109     return Memory;
1110   if (Accum == NoClass)
1111     return Field;
1112   if (Accum == Integer || Field == Integer)
1113     return Integer;
1114   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1115       Accum == X87 || Accum == X87Up)
1116     return Memory;
1117   return SSE;
1118 }
1119 
1120 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1121                              Class &Lo, Class &Hi) const {
1122   // FIXME: This code can be simplified by introducing a simple value class for
1123   // Class pairs with appropriate constructor methods for the various
1124   // situations.
1125 
1126   // FIXME: Some of the split computations are wrong; unaligned vectors
1127   // shouldn't be passed in registers for example, so there is no chance they
1128   // can straddle an eightbyte. Verify & simplify.
1129 
1130   Lo = Hi = NoClass;
1131 
1132   Class &Current = OffsetBase < 64 ? Lo : Hi;
1133   Current = Memory;
1134 
1135   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1136     BuiltinType::Kind k = BT->getKind();
1137 
1138     if (k == BuiltinType::Void) {
1139       Current = NoClass;
1140     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1141       Lo = Integer;
1142       Hi = Integer;
1143     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1144       Current = Integer;
1145     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1146       Current = SSE;
1147     } else if (k == BuiltinType::LongDouble) {
1148       Lo = X87;
1149       Hi = X87Up;
1150     }
1151     // FIXME: _Decimal32 and _Decimal64 are SSE.
1152     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1153     return;
1154   }
1155 
1156   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1157     // Classify the underlying integer type.
1158     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1159     return;
1160   }
1161 
1162   if (Ty->hasPointerRepresentation()) {
1163     Current = Integer;
1164     return;
1165   }
1166 
1167   if (Ty->isMemberPointerType()) {
1168     if (Ty->isMemberFunctionPointerType())
1169       Lo = Hi = Integer;
1170     else
1171       Current = Integer;
1172     return;
1173   }
1174 
1175   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1176     uint64_t Size = getContext().getTypeSize(VT);
1177     if (Size == 32) {
1178       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1179       // float> as integer.
1180       Current = Integer;
1181 
1182       // If this type crosses an eightbyte boundary, it should be
1183       // split.
1184       uint64_t EB_Real = (OffsetBase) / 64;
1185       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1186       if (EB_Real != EB_Imag)
1187         Hi = Lo;
1188     } else if (Size == 64) {
1189       // gcc passes <1 x double> in memory. :(
1190       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1191         return;
1192 
1193       // gcc passes <1 x long long> as INTEGER.
1194       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1195           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1196           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1197           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1198         Current = Integer;
1199       else
1200         Current = SSE;
1201 
1202       // If this type crosses an eightbyte boundary, it should be
1203       // split.
1204       if (OffsetBase && OffsetBase != 64)
1205         Hi = Lo;
1206     } else if (Size == 128 || (HasAVX && Size == 256)) {
1207       // Arguments of 256-bits are split into four eightbyte chunks. The
1208       // least significant one belongs to class SSE and all the others to class
1209       // SSEUP. The original Lo and Hi design considers that types can't be
1210       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1211       // This design isn't correct for 256-bits, but since there're no cases
1212       // where the upper parts would need to be inspected, avoid adding
1213       // complexity and just consider Hi to match the 64-256 part.
1214       Lo = SSE;
1215       Hi = SSEUp;
1216     }
1217     return;
1218   }
1219 
1220   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1221     QualType ET = getContext().getCanonicalType(CT->getElementType());
1222 
1223     uint64_t Size = getContext().getTypeSize(Ty);
1224     if (ET->isIntegralOrEnumerationType()) {
1225       if (Size <= 64)
1226         Current = Integer;
1227       else if (Size <= 128)
1228         Lo = Hi = Integer;
1229     } else if (ET == getContext().FloatTy)
1230       Current = SSE;
1231     else if (ET == getContext().DoubleTy)
1232       Lo = Hi = SSE;
1233     else if (ET == getContext().LongDoubleTy)
1234       Current = ComplexX87;
1235 
1236     // If this complex type crosses an eightbyte boundary then it
1237     // should be split.
1238     uint64_t EB_Real = (OffsetBase) / 64;
1239     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1240     if (Hi == NoClass && EB_Real != EB_Imag)
1241       Hi = Lo;
1242 
1243     return;
1244   }
1245 
1246   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1247     // Arrays are treated like structures.
1248 
1249     uint64_t Size = getContext().getTypeSize(Ty);
1250 
1251     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1252     // than four eightbytes, ..., it has class MEMORY.
1253     if (Size > 256)
1254       return;
1255 
1256     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1257     // fields, it has class MEMORY.
1258     //
1259     // Only need to check alignment of array base.
1260     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1261       return;
1262 
1263     // Otherwise implement simplified merge. We could be smarter about
1264     // this, but it isn't worth it and would be harder to verify.
1265     Current = NoClass;
1266     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1267     uint64_t ArraySize = AT->getSize().getZExtValue();
1268 
1269     // The only case a 256-bit wide vector could be used is when the array
1270     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1271     // to work for sizes wider than 128, early check and fallback to memory.
1272     if (Size > 128 && EltSize != 256)
1273       return;
1274 
1275     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1276       Class FieldLo, FieldHi;
1277       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1278       Lo = merge(Lo, FieldLo);
1279       Hi = merge(Hi, FieldHi);
1280       if (Lo == Memory || Hi == Memory)
1281         break;
1282     }
1283 
1284     postMerge(Size, Lo, Hi);
1285     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1286     return;
1287   }
1288 
1289   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1290     uint64_t Size = getContext().getTypeSize(Ty);
1291 
1292     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1293     // than four eightbytes, ..., it has class MEMORY.
1294     if (Size > 256)
1295       return;
1296 
1297     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1298     // copy constructor or a non-trivial destructor, it is passed by invisible
1299     // reference.
1300     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1301       return;
1302 
1303     const RecordDecl *RD = RT->getDecl();
1304 
1305     // Assume variable sized types are passed in memory.
1306     if (RD->hasFlexibleArrayMember())
1307       return;
1308 
1309     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1310 
1311     // Reset Lo class, this will be recomputed.
1312     Current = NoClass;
1313 
1314     // If this is a C++ record, classify the bases first.
1315     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1316       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1317              e = CXXRD->bases_end(); i != e; ++i) {
1318         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1319                "Unexpected base class!");
1320         const CXXRecordDecl *Base =
1321           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1322 
1323         // Classify this field.
1324         //
1325         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1326         // single eightbyte, each is classified separately. Each eightbyte gets
1327         // initialized to class NO_CLASS.
1328         Class FieldLo, FieldHi;
1329         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1330         classify(i->getType(), Offset, FieldLo, FieldHi);
1331         Lo = merge(Lo, FieldLo);
1332         Hi = merge(Hi, FieldHi);
1333         if (Lo == Memory || Hi == Memory)
1334           break;
1335       }
1336     }
1337 
1338     // Classify the fields one at a time, merging the results.
1339     unsigned idx = 0;
1340     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1341            i != e; ++i, ++idx) {
1342       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1343       bool BitField = i->isBitField();
1344 
1345       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1346       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1347       //
1348       // The only case a 256-bit wide vector could be used is when the struct
1349       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1350       // to work for sizes wider than 128, early check and fallback to memory.
1351       //
1352       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1353         Lo = Memory;
1354         return;
1355       }
1356       // Note, skip this test for bit-fields, see below.
1357       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1358         Lo = Memory;
1359         return;
1360       }
1361 
1362       // Classify this field.
1363       //
1364       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1365       // exceeds a single eightbyte, each is classified
1366       // separately. Each eightbyte gets initialized to class
1367       // NO_CLASS.
1368       Class FieldLo, FieldHi;
1369 
1370       // Bit-fields require special handling, they do not force the
1371       // structure to be passed in memory even if unaligned, and
1372       // therefore they can straddle an eightbyte.
1373       if (BitField) {
1374         // Ignore padding bit-fields.
1375         if (i->isUnnamedBitfield())
1376           continue;
1377 
1378         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1379         uint64_t Size = i->getBitWidthValue(getContext());
1380 
1381         uint64_t EB_Lo = Offset / 64;
1382         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1383         FieldLo = FieldHi = NoClass;
1384         if (EB_Lo) {
1385           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1386           FieldLo = NoClass;
1387           FieldHi = Integer;
1388         } else {
1389           FieldLo = Integer;
1390           FieldHi = EB_Hi ? Integer : NoClass;
1391         }
1392       } else
1393         classify(i->getType(), Offset, FieldLo, FieldHi);
1394       Lo = merge(Lo, FieldLo);
1395       Hi = merge(Hi, FieldHi);
1396       if (Lo == Memory || Hi == Memory)
1397         break;
1398     }
1399 
1400     postMerge(Size, Lo, Hi);
1401   }
1402 }
1403 
1404 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1405   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1406   // place naturally.
1407   if (!isAggregateTypeForABI(Ty)) {
1408     // Treat an enum type as its underlying type.
1409     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1410       Ty = EnumTy->getDecl()->getIntegerType();
1411 
1412     return (Ty->isPromotableIntegerType() ?
1413             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1414   }
1415 
1416   return ABIArgInfo::getIndirect(0);
1417 }
1418 
1419 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1420   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1421     uint64_t Size = getContext().getTypeSize(VecTy);
1422     unsigned LargestVector = HasAVX ? 256 : 128;
1423     if (Size <= 64 || Size > LargestVector)
1424       return true;
1425   }
1426 
1427   return false;
1428 }
1429 
1430 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1431   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1432   // place naturally.
1433   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1434     // Treat an enum type as its underlying type.
1435     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1436       Ty = EnumTy->getDecl()->getIntegerType();
1437 
1438     return (Ty->isPromotableIntegerType() ?
1439             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1440   }
1441 
1442   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1443     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1444 
1445   // Compute the byval alignment. We specify the alignment of the byval in all
1446   // cases so that the mid-level optimizer knows the alignment of the byval.
1447   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1448   return ABIArgInfo::getIndirect(Align);
1449 }
1450 
1451 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1452 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1453 /// vector register.
1454 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1455   llvm::Type *IRType = CGT.ConvertType(Ty);
1456 
1457   // Wrapper structs that just contain vectors are passed just like vectors,
1458   // strip them off if present.
1459   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1460   while (STy && STy->getNumElements() == 1) {
1461     IRType = STy->getElementType(0);
1462     STy = dyn_cast<llvm::StructType>(IRType);
1463   }
1464 
1465   // If the preferred type is a 16-byte vector, prefer to pass it.
1466   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1467     llvm::Type *EltTy = VT->getElementType();
1468     unsigned BitWidth = VT->getBitWidth();
1469     if ((BitWidth >= 128 && BitWidth <= 256) &&
1470         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1471          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1472          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1473          EltTy->isIntegerTy(128)))
1474       return VT;
1475   }
1476 
1477   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1478 }
1479 
1480 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1481 /// is known to either be off the end of the specified type or being in
1482 /// alignment padding.  The user type specified is known to be at most 128 bits
1483 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1484 /// classification that put one of the two halves in the INTEGER class.
1485 ///
1486 /// It is conservatively correct to return false.
1487 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1488                                   unsigned EndBit, ASTContext &Context) {
1489   // If the bytes being queried are off the end of the type, there is no user
1490   // data hiding here.  This handles analysis of builtins, vectors and other
1491   // types that don't contain interesting padding.
1492   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1493   if (TySize <= StartBit)
1494     return true;
1495 
1496   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1497     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1498     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1499 
1500     // Check each element to see if the element overlaps with the queried range.
1501     for (unsigned i = 0; i != NumElts; ++i) {
1502       // If the element is after the span we care about, then we're done..
1503       unsigned EltOffset = i*EltSize;
1504       if (EltOffset >= EndBit) break;
1505 
1506       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1507       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1508                                  EndBit-EltOffset, Context))
1509         return false;
1510     }
1511     // If it overlaps no elements, then it is safe to process as padding.
1512     return true;
1513   }
1514 
1515   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1516     const RecordDecl *RD = RT->getDecl();
1517     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1518 
1519     // If this is a C++ record, check the bases first.
1520     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1521       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1522            e = CXXRD->bases_end(); i != e; ++i) {
1523         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1524                "Unexpected base class!");
1525         const CXXRecordDecl *Base =
1526           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1527 
1528         // If the base is after the span we care about, ignore it.
1529         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1530         if (BaseOffset >= EndBit) continue;
1531 
1532         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1533         if (!BitsContainNoUserData(i->getType(), BaseStart,
1534                                    EndBit-BaseOffset, Context))
1535           return false;
1536       }
1537     }
1538 
1539     // Verify that no field has data that overlaps the region of interest.  Yes
1540     // this could be sped up a lot by being smarter about queried fields,
1541     // however we're only looking at structs up to 16 bytes, so we don't care
1542     // much.
1543     unsigned idx = 0;
1544     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1545          i != e; ++i, ++idx) {
1546       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1547 
1548       // If we found a field after the region we care about, then we're done.
1549       if (FieldOffset >= EndBit) break;
1550 
1551       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1552       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1553                                  Context))
1554         return false;
1555     }
1556 
1557     // If nothing in this record overlapped the area of interest, then we're
1558     // clean.
1559     return true;
1560   }
1561 
1562   return false;
1563 }
1564 
1565 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1566 /// float member at the specified offset.  For example, {int,{float}} has a
1567 /// float at offset 4.  It is conservatively correct for this routine to return
1568 /// false.
1569 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1570                                   const llvm::TargetData &TD) {
1571   // Base case if we find a float.
1572   if (IROffset == 0 && IRType->isFloatTy())
1573     return true;
1574 
1575   // If this is a struct, recurse into the field at the specified offset.
1576   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1577     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1578     unsigned Elt = SL->getElementContainingOffset(IROffset);
1579     IROffset -= SL->getElementOffset(Elt);
1580     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1581   }
1582 
1583   // If this is an array, recurse into the field at the specified offset.
1584   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1585     llvm::Type *EltTy = ATy->getElementType();
1586     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1587     IROffset -= IROffset/EltSize*EltSize;
1588     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1589   }
1590 
1591   return false;
1592 }
1593 
1594 
1595 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1596 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1597 llvm::Type *X86_64ABIInfo::
1598 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1599                    QualType SourceTy, unsigned SourceOffset) const {
1600   // The only three choices we have are either double, <2 x float>, or float. We
1601   // pass as float if the last 4 bytes is just padding.  This happens for
1602   // structs that contain 3 floats.
1603   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1604                             SourceOffset*8+64, getContext()))
1605     return llvm::Type::getFloatTy(getVMContext());
1606 
1607   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1608   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1609   // case.
1610   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1611       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1612     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1613 
1614   return llvm::Type::getDoubleTy(getVMContext());
1615 }
1616 
1617 
1618 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1619 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1620 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1621 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1622 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1623 /// etc).
1624 ///
1625 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1626 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1627 /// the 8-byte value references.  PrefType may be null.
1628 ///
1629 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1630 /// an offset into this that we're processing (which is always either 0 or 8).
1631 ///
1632 llvm::Type *X86_64ABIInfo::
1633 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1634                        QualType SourceTy, unsigned SourceOffset) const {
1635   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1636   // returning an 8-byte unit starting with it.  See if we can safely use it.
1637   if (IROffset == 0) {
1638     // Pointers and int64's always fill the 8-byte unit.
1639     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1640       return IRType;
1641 
1642     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1643     // goodness in the source type is just tail padding.  This is allowed to
1644     // kick in for struct {double,int} on the int, but not on
1645     // struct{double,int,int} because we wouldn't return the second int.  We
1646     // have to do this analysis on the source type because we can't depend on
1647     // unions being lowered a specific way etc.
1648     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1649         IRType->isIntegerTy(32)) {
1650       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1651 
1652       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1653                                 SourceOffset*8+64, getContext()))
1654         return IRType;
1655     }
1656   }
1657 
1658   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1659     // If this is a struct, recurse into the field at the specified offset.
1660     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1661     if (IROffset < SL->getSizeInBytes()) {
1662       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1663       IROffset -= SL->getElementOffset(FieldIdx);
1664 
1665       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1666                                     SourceTy, SourceOffset);
1667     }
1668   }
1669 
1670   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1671     llvm::Type *EltTy = ATy->getElementType();
1672     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1673     unsigned EltOffset = IROffset/EltSize*EltSize;
1674     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1675                                   SourceOffset);
1676   }
1677 
1678   // Okay, we don't have any better idea of what to pass, so we pass this in an
1679   // integer register that isn't too big to fit the rest of the struct.
1680   unsigned TySizeInBytes =
1681     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1682 
1683   assert(TySizeInBytes != SourceOffset && "Empty field?");
1684 
1685   // It is always safe to classify this as an integer type up to i64 that
1686   // isn't larger than the structure.
1687   return llvm::IntegerType::get(getVMContext(),
1688                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1689 }
1690 
1691 
1692 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1693 /// be used as elements of a two register pair to pass or return, return a
1694 /// first class aggregate to represent them.  For example, if the low part of
1695 /// a by-value argument should be passed as i32* and the high part as float,
1696 /// return {i32*, float}.
1697 static llvm::Type *
1698 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1699                            const llvm::TargetData &TD) {
1700   // In order to correctly satisfy the ABI, we need to the high part to start
1701   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1702   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1703   // the second element at offset 8.  Check for this:
1704   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1705   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1706   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1707   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1708 
1709   // To handle this, we have to increase the size of the low part so that the
1710   // second element will start at an 8 byte offset.  We can't increase the size
1711   // of the second element because it might make us access off the end of the
1712   // struct.
1713   if (HiStart != 8) {
1714     // There are only two sorts of types the ABI generation code can produce for
1715     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1716     // Promote these to a larger type.
1717     if (Lo->isFloatTy())
1718       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1719     else {
1720       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1721       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1722     }
1723   }
1724 
1725   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1726 
1727 
1728   // Verify that the second element is at an 8-byte offset.
1729   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1730          "Invalid x86-64 argument pair!");
1731   return Result;
1732 }
1733 
1734 ABIArgInfo X86_64ABIInfo::
1735 classifyReturnType(QualType RetTy) const {
1736   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1737   // classification algorithm.
1738   X86_64ABIInfo::Class Lo, Hi;
1739   classify(RetTy, 0, Lo, Hi);
1740 
1741   // Check some invariants.
1742   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1743   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1744 
1745   llvm::Type *ResType = 0;
1746   switch (Lo) {
1747   case NoClass:
1748     if (Hi == NoClass)
1749       return ABIArgInfo::getIgnore();
1750     // If the low part is just padding, it takes no register, leave ResType
1751     // null.
1752     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1753            "Unknown missing lo part");
1754     break;
1755 
1756   case SSEUp:
1757   case X87Up:
1758     llvm_unreachable("Invalid classification for lo word.");
1759 
1760     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1761     // hidden argument.
1762   case Memory:
1763     return getIndirectReturnResult(RetTy);
1764 
1765     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1766     // available register of the sequence %rax, %rdx is used.
1767   case Integer:
1768     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1769 
1770     // If we have a sign or zero extended integer, make sure to return Extend
1771     // so that the parameter gets the right LLVM IR attributes.
1772     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1773       // Treat an enum type as its underlying type.
1774       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1775         RetTy = EnumTy->getDecl()->getIntegerType();
1776 
1777       if (RetTy->isIntegralOrEnumerationType() &&
1778           RetTy->isPromotableIntegerType())
1779         return ABIArgInfo::getExtend();
1780     }
1781     break;
1782 
1783     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1784     // available SSE register of the sequence %xmm0, %xmm1 is used.
1785   case SSE:
1786     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1787     break;
1788 
1789     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1790     // returned on the X87 stack in %st0 as 80-bit x87 number.
1791   case X87:
1792     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1793     break;
1794 
1795     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1796     // part of the value is returned in %st0 and the imaginary part in
1797     // %st1.
1798   case ComplexX87:
1799     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1800     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1801                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1802                                     NULL);
1803     break;
1804   }
1805 
1806   llvm::Type *HighPart = 0;
1807   switch (Hi) {
1808     // Memory was handled previously and X87 should
1809     // never occur as a hi class.
1810   case Memory:
1811   case X87:
1812     llvm_unreachable("Invalid classification for hi word.");
1813 
1814   case ComplexX87: // Previously handled.
1815   case NoClass:
1816     break;
1817 
1818   case Integer:
1819     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1820     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1821       return ABIArgInfo::getDirect(HighPart, 8);
1822     break;
1823   case SSE:
1824     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1825     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1826       return ABIArgInfo::getDirect(HighPart, 8);
1827     break;
1828 
1829     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1830     // is passed in the next available eightbyte chunk if the last used
1831     // vector register.
1832     //
1833     // SSEUP should always be preceded by SSE, just widen.
1834   case SSEUp:
1835     assert(Lo == SSE && "Unexpected SSEUp classification.");
1836     ResType = GetByteVectorType(RetTy);
1837     break;
1838 
1839     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1840     // returned together with the previous X87 value in %st0.
1841   case X87Up:
1842     // If X87Up is preceded by X87, we don't need to do
1843     // anything. However, in some cases with unions it may not be
1844     // preceded by X87. In such situations we follow gcc and pass the
1845     // extra bits in an SSE reg.
1846     if (Lo != X87) {
1847       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1848       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1849         return ABIArgInfo::getDirect(HighPart, 8);
1850     }
1851     break;
1852   }
1853 
1854   // If a high part was specified, merge it together with the low part.  It is
1855   // known to pass in the high eightbyte of the result.  We do this by forming a
1856   // first class struct aggregate with the high and low part: {low, high}
1857   if (HighPart)
1858     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1859 
1860   return ABIArgInfo::getDirect(ResType);
1861 }
1862 
1863 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1864                                                unsigned &neededSSE) const {
1865   X86_64ABIInfo::Class Lo, Hi;
1866   classify(Ty, 0, Lo, Hi);
1867 
1868   // Check some invariants.
1869   // FIXME: Enforce these by construction.
1870   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1871   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1872 
1873   neededInt = 0;
1874   neededSSE = 0;
1875   llvm::Type *ResType = 0;
1876   switch (Lo) {
1877   case NoClass:
1878     if (Hi == NoClass)
1879       return ABIArgInfo::getIgnore();
1880     // If the low part is just padding, it takes no register, leave ResType
1881     // null.
1882     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1883            "Unknown missing lo part");
1884     break;
1885 
1886     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1887     // on the stack.
1888   case Memory:
1889 
1890     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1891     // COMPLEX_X87, it is passed in memory.
1892   case X87:
1893   case ComplexX87:
1894     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1895       ++neededInt;
1896     return getIndirectResult(Ty);
1897 
1898   case SSEUp:
1899   case X87Up:
1900     llvm_unreachable("Invalid classification for lo word.");
1901 
1902     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1903     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1904     // and %r9 is used.
1905   case Integer:
1906     ++neededInt;
1907 
1908     // Pick an 8-byte type based on the preferred type.
1909     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1910 
1911     // If we have a sign or zero extended integer, make sure to return Extend
1912     // so that the parameter gets the right LLVM IR attributes.
1913     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1914       // Treat an enum type as its underlying type.
1915       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1916         Ty = EnumTy->getDecl()->getIntegerType();
1917 
1918       if (Ty->isIntegralOrEnumerationType() &&
1919           Ty->isPromotableIntegerType())
1920         return ABIArgInfo::getExtend();
1921     }
1922 
1923     break;
1924 
1925     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1926     // available SSE register is used, the registers are taken in the
1927     // order from %xmm0 to %xmm7.
1928   case SSE: {
1929     llvm::Type *IRType = CGT.ConvertType(Ty);
1930     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1931     ++neededSSE;
1932     break;
1933   }
1934   }
1935 
1936   llvm::Type *HighPart = 0;
1937   switch (Hi) {
1938     // Memory was handled previously, ComplexX87 and X87 should
1939     // never occur as hi classes, and X87Up must be preceded by X87,
1940     // which is passed in memory.
1941   case Memory:
1942   case X87:
1943   case ComplexX87:
1944     llvm_unreachable("Invalid classification for hi word.");
1945 
1946   case NoClass: break;
1947 
1948   case Integer:
1949     ++neededInt;
1950     // Pick an 8-byte type based on the preferred type.
1951     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1952 
1953     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1954       return ABIArgInfo::getDirect(HighPart, 8);
1955     break;
1956 
1957     // X87Up generally doesn't occur here (long double is passed in
1958     // memory), except in situations involving unions.
1959   case X87Up:
1960   case SSE:
1961     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1962 
1963     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1964       return ABIArgInfo::getDirect(HighPart, 8);
1965 
1966     ++neededSSE;
1967     break;
1968 
1969     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1970     // eightbyte is passed in the upper half of the last used SSE
1971     // register.  This only happens when 128-bit vectors are passed.
1972   case SSEUp:
1973     assert(Lo == SSE && "Unexpected SSEUp classification");
1974     ResType = GetByteVectorType(Ty);
1975     break;
1976   }
1977 
1978   // If a high part was specified, merge it together with the low part.  It is
1979   // known to pass in the high eightbyte of the result.  We do this by forming a
1980   // first class struct aggregate with the high and low part: {low, high}
1981   if (HighPart)
1982     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1983 
1984   return ABIArgInfo::getDirect(ResType);
1985 }
1986 
1987 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1988 
1989   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1990 
1991   // Keep track of the number of assigned registers.
1992   unsigned freeIntRegs = 6, freeSSERegs = 8;
1993 
1994   // If the return value is indirect, then the hidden argument is consuming one
1995   // integer register.
1996   if (FI.getReturnInfo().isIndirect())
1997     --freeIntRegs;
1998 
1999   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2000   // get assigned (in left-to-right order) for passing as follows...
2001   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2002        it != ie; ++it) {
2003     unsigned neededInt, neededSSE;
2004     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
2005 
2006     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2007     // eightbyte of an argument, the whole argument is passed on the
2008     // stack. If registers have already been assigned for some
2009     // eightbytes of such an argument, the assignments get reverted.
2010     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2011       freeIntRegs -= neededInt;
2012       freeSSERegs -= neededSSE;
2013     } else {
2014       it->info = getIndirectResult(it->type);
2015     }
2016   }
2017 }
2018 
2019 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2020                                         QualType Ty,
2021                                         CodeGenFunction &CGF) {
2022   llvm::Value *overflow_arg_area_p =
2023     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2024   llvm::Value *overflow_arg_area =
2025     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2026 
2027   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2028   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2029   // It isn't stated explicitly in the standard, but in practice we use
2030   // alignment greater than 16 where necessary.
2031   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2032   if (Align > 8) {
2033     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2034     llvm::Value *Offset =
2035       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2036     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2037     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2038                                                     CGF.Int64Ty);
2039     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2040     overflow_arg_area =
2041       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2042                                  overflow_arg_area->getType(),
2043                                  "overflow_arg_area.align");
2044   }
2045 
2046   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2047   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2048   llvm::Value *Res =
2049     CGF.Builder.CreateBitCast(overflow_arg_area,
2050                               llvm::PointerType::getUnqual(LTy));
2051 
2052   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2053   // l->overflow_arg_area + sizeof(type).
2054   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2055   // an 8 byte boundary.
2056 
2057   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2058   llvm::Value *Offset =
2059       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2060   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2061                                             "overflow_arg_area.next");
2062   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2063 
2064   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2065   return Res;
2066 }
2067 
2068 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2069                                       CodeGenFunction &CGF) const {
2070   // Assume that va_list type is correct; should be pointer to LLVM type:
2071   // struct {
2072   //   i32 gp_offset;
2073   //   i32 fp_offset;
2074   //   i8* overflow_arg_area;
2075   //   i8* reg_save_area;
2076   // };
2077   unsigned neededInt, neededSSE;
2078 
2079   Ty = CGF.getContext().getCanonicalType(Ty);
2080   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2081 
2082   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2083   // in the registers. If not go to step 7.
2084   if (!neededInt && !neededSSE)
2085     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2086 
2087   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2088   // general purpose registers needed to pass type and num_fp to hold
2089   // the number of floating point registers needed.
2090 
2091   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2092   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2093   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2094   //
2095   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2096   // register save space).
2097 
2098   llvm::Value *InRegs = 0;
2099   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2100   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2101   if (neededInt) {
2102     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2103     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2104     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2105     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2106   }
2107 
2108   if (neededSSE) {
2109     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2110     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2111     llvm::Value *FitsInFP =
2112       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2113     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2114     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2115   }
2116 
2117   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2118   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2119   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2120   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2121 
2122   // Emit code to load the value if it was passed in registers.
2123 
2124   CGF.EmitBlock(InRegBlock);
2125 
2126   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2127   // an offset of l->gp_offset and/or l->fp_offset. This may require
2128   // copying to a temporary location in case the parameter is passed
2129   // in different register classes or requires an alignment greater
2130   // than 8 for general purpose registers and 16 for XMM registers.
2131   //
2132   // FIXME: This really results in shameful code when we end up needing to
2133   // collect arguments from different places; often what should result in a
2134   // simple assembling of a structure from scattered addresses has many more
2135   // loads than necessary. Can we clean this up?
2136   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2137   llvm::Value *RegAddr =
2138     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2139                            "reg_save_area");
2140   if (neededInt && neededSSE) {
2141     // FIXME: Cleanup.
2142     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2143     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2144     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2145     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2146     llvm::Type *TyLo = ST->getElementType(0);
2147     llvm::Type *TyHi = ST->getElementType(1);
2148     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2149            "Unexpected ABI info for mixed regs");
2150     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2151     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2152     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2153     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2154     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2155     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2156     llvm::Value *V =
2157       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2158     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2159     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2160     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2161 
2162     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2163                                         llvm::PointerType::getUnqual(LTy));
2164   } else if (neededInt) {
2165     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2166     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2167                                         llvm::PointerType::getUnqual(LTy));
2168   } else if (neededSSE == 1) {
2169     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2170     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2171                                         llvm::PointerType::getUnqual(LTy));
2172   } else {
2173     assert(neededSSE == 2 && "Invalid number of needed registers!");
2174     // SSE registers are spaced 16 bytes apart in the register save
2175     // area, we need to collect the two eightbytes together.
2176     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2177     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2178     llvm::Type *DoubleTy = CGF.DoubleTy;
2179     llvm::Type *DblPtrTy =
2180       llvm::PointerType::getUnqual(DoubleTy);
2181     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2182                                                        DoubleTy, NULL);
2183     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2184     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2185                                                          DblPtrTy));
2186     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2187     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2188                                                          DblPtrTy));
2189     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2190     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2191                                         llvm::PointerType::getUnqual(LTy));
2192   }
2193 
2194   // AMD64-ABI 3.5.7p5: Step 5. Set:
2195   // l->gp_offset = l->gp_offset + num_gp * 8
2196   // l->fp_offset = l->fp_offset + num_fp * 16.
2197   if (neededInt) {
2198     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2199     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2200                             gp_offset_p);
2201   }
2202   if (neededSSE) {
2203     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2204     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2205                             fp_offset_p);
2206   }
2207   CGF.EmitBranch(ContBlock);
2208 
2209   // Emit code to load the value if it was passed in memory.
2210 
2211   CGF.EmitBlock(InMemBlock);
2212   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2213 
2214   // Return the appropriate result.
2215 
2216   CGF.EmitBlock(ContBlock);
2217   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2218                                                  "vaarg.addr");
2219   ResAddr->addIncoming(RegAddr, InRegBlock);
2220   ResAddr->addIncoming(MemAddr, InMemBlock);
2221   return ResAddr;
2222 }
2223 
2224 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2225 
2226   if (Ty->isVoidType())
2227     return ABIArgInfo::getIgnore();
2228 
2229   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2230     Ty = EnumTy->getDecl()->getIntegerType();
2231 
2232   uint64_t Size = getContext().getTypeSize(Ty);
2233 
2234   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2235     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2236         RT->getDecl()->hasFlexibleArrayMember())
2237       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2238 
2239     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2240     if (Size == 128 &&
2241         getContext().getTargetInfo().getTriple().getOS()
2242           == llvm::Triple::MinGW32)
2243       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2244                                                           Size));
2245 
2246     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2247     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2248     if (Size <= 64 &&
2249         (Size & (Size - 1)) == 0)
2250       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2251                                                           Size));
2252 
2253     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2254   }
2255 
2256   if (Ty->isPromotableIntegerType())
2257     return ABIArgInfo::getExtend();
2258 
2259   return ABIArgInfo::getDirect();
2260 }
2261 
2262 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2263 
2264   QualType RetTy = FI.getReturnType();
2265   FI.getReturnInfo() = classify(RetTy);
2266 
2267   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2268        it != ie; ++it)
2269     it->info = classify(it->type);
2270 }
2271 
2272 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2273                                       CodeGenFunction &CGF) const {
2274   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2275 
2276   CGBuilderTy &Builder = CGF.Builder;
2277   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2278                                                        "ap");
2279   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2280   llvm::Type *PTy =
2281     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2282   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2283 
2284   uint64_t Offset =
2285     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2286   llvm::Value *NextAddr =
2287     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2288                       "ap.next");
2289   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2290 
2291   return AddrTyped;
2292 }
2293 
2294 // PowerPC-32
2295 
2296 namespace {
2297 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2298 public:
2299   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2300 
2301   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2302     // This is recovered from gcc output.
2303     return 1; // r1 is the dedicated stack pointer
2304   }
2305 
2306   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2307                                llvm::Value *Address) const;
2308 };
2309 
2310 }
2311 
2312 bool
2313 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2314                                                 llvm::Value *Address) const {
2315   // This is calculated from the LLVM and GCC tables and verified
2316   // against gcc output.  AFAIK all ABIs use the same encoding.
2317 
2318   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2319 
2320   llvm::IntegerType *i8 = CGF.Int8Ty;
2321   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2322   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2323   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2324 
2325   // 0-31: r0-31, the 4-byte general-purpose registers
2326   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2327 
2328   // 32-63: fp0-31, the 8-byte floating-point registers
2329   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2330 
2331   // 64-76 are various 4-byte special-purpose registers:
2332   // 64: mq
2333   // 65: lr
2334   // 66: ctr
2335   // 67: ap
2336   // 68-75 cr0-7
2337   // 76: xer
2338   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2339 
2340   // 77-108: v0-31, the 16-byte vector registers
2341   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2342 
2343   // 109: vrsave
2344   // 110: vscr
2345   // 111: spe_acc
2346   // 112: spefscr
2347   // 113: sfp
2348   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2349 
2350   return false;
2351 }
2352 
2353 
2354 //===----------------------------------------------------------------------===//
2355 // ARM ABI Implementation
2356 //===----------------------------------------------------------------------===//
2357 
2358 namespace {
2359 
2360 class ARMABIInfo : public ABIInfo {
2361 public:
2362   enum ABIKind {
2363     APCS = 0,
2364     AAPCS = 1,
2365     AAPCS_VFP
2366   };
2367 
2368 private:
2369   ABIKind Kind;
2370 
2371 public:
2372   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2373 
2374   bool isEABI() const {
2375     StringRef Env =
2376       getContext().getTargetInfo().getTriple().getEnvironmentName();
2377     return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
2378   }
2379 
2380 private:
2381   ABIKind getABIKind() const { return Kind; }
2382 
2383   ABIArgInfo classifyReturnType(QualType RetTy) const;
2384   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2385 
2386   virtual void computeInfo(CGFunctionInfo &FI) const;
2387 
2388   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2389                                  CodeGenFunction &CGF) const;
2390 };
2391 
2392 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2393 public:
2394   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2395     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2396 
2397   const ARMABIInfo &getABIInfo() const {
2398     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2399   }
2400 
2401   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2402     return 13;
2403   }
2404 
2405   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2406     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2407   }
2408 
2409   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2410                                llvm::Value *Address) const {
2411     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2412 
2413     // 0-15 are the 16 integer registers.
2414     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2415     return false;
2416   }
2417 
2418   unsigned getSizeOfUnwindException() const {
2419     if (getABIInfo().isEABI()) return 88;
2420     return TargetCodeGenInfo::getSizeOfUnwindException();
2421   }
2422 };
2423 
2424 }
2425 
2426 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2427   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2428   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2429        it != ie; ++it)
2430     it->info = classifyArgumentType(it->type);
2431 
2432   // Always honor user-specified calling convention.
2433   if (FI.getCallingConvention() != llvm::CallingConv::C)
2434     return;
2435 
2436   // Calling convention as default by an ABI.
2437   llvm::CallingConv::ID DefaultCC;
2438   if (isEABI())
2439     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2440   else
2441     DefaultCC = llvm::CallingConv::ARM_APCS;
2442 
2443   // If user did not ask for specific calling convention explicitly (e.g. via
2444   // pcs attribute), set effective calling convention if it's different than ABI
2445   // default.
2446   switch (getABIKind()) {
2447   case APCS:
2448     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2449       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2450     break;
2451   case AAPCS:
2452     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2453       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2454     break;
2455   case AAPCS_VFP:
2456     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2457       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2458     break;
2459   }
2460 }
2461 
2462 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2463 /// aggregate.  If HAMembers is non-null, the number of base elements
2464 /// contained in the type is returned through it; this is used for the
2465 /// recursive calls that check aggregate component types.
2466 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2467                                    ASTContext &Context,
2468                                    uint64_t *HAMembers = 0) {
2469   uint64_t Members;
2470   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2471     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2472       return false;
2473     Members *= AT->getSize().getZExtValue();
2474   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2475     const RecordDecl *RD = RT->getDecl();
2476     if (RD->isUnion() || RD->hasFlexibleArrayMember())
2477       return false;
2478     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2479       if (!CXXRD->isAggregate())
2480         return false;
2481     }
2482     Members = 0;
2483     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2484          i != e; ++i) {
2485       const FieldDecl *FD = *i;
2486       uint64_t FldMembers;
2487       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2488         return false;
2489       Members += FldMembers;
2490     }
2491   } else {
2492     Members = 1;
2493     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2494       Members = 2;
2495       Ty = CT->getElementType();
2496     }
2497 
2498     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2499     // double, or 64-bit or 128-bit vectors.
2500     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2501       if (BT->getKind() != BuiltinType::Float &&
2502           BT->getKind() != BuiltinType::Double)
2503         return false;
2504     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2505       unsigned VecSize = Context.getTypeSize(VT);
2506       if (VecSize != 64 && VecSize != 128)
2507         return false;
2508     } else {
2509       return false;
2510     }
2511 
2512     // The base type must be the same for all members.  Vector types of the
2513     // same total size are treated as being equivalent here.
2514     const Type *TyPtr = Ty.getTypePtr();
2515     if (!Base)
2516       Base = TyPtr;
2517     if (Base != TyPtr &&
2518         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2519          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2520       return false;
2521   }
2522 
2523   // Homogeneous Aggregates can have at most 4 members of the base type.
2524   if (HAMembers)
2525     *HAMembers = Members;
2526   return (Members <= 4);
2527 }
2528 
2529 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2530   if (!isAggregateTypeForABI(Ty)) {
2531     // Treat an enum type as its underlying type.
2532     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2533       Ty = EnumTy->getDecl()->getIntegerType();
2534 
2535     return (Ty->isPromotableIntegerType() ?
2536             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2537   }
2538 
2539   // Ignore empty records.
2540   if (isEmptyRecord(getContext(), Ty, true))
2541     return ABIArgInfo::getIgnore();
2542 
2543   // Structures with either a non-trivial destructor or a non-trivial
2544   // copy constructor are always indirect.
2545   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2546     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2547 
2548   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2549     // Homogeneous Aggregates need to be expanded.
2550     const Type *Base = 0;
2551     if (isHomogeneousAggregate(Ty, Base, getContext()))
2552       return ABIArgInfo::getExpand();
2553   }
2554 
2555   // Otherwise, pass by coercing to a structure of the appropriate size.
2556   //
2557   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2558   // backend doesn't support byval.
2559   // FIXME: This doesn't handle alignment > 64 bits.
2560   llvm::Type* ElemTy;
2561   unsigned SizeRegs;
2562   if (getContext().getTypeAlign(Ty) > 32) {
2563     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2564     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2565   } else {
2566     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2567     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2568   }
2569 
2570   llvm::Type *STy =
2571     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2572   return ABIArgInfo::getDirect(STy);
2573 }
2574 
2575 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2576                               llvm::LLVMContext &VMContext) {
2577   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2578   // is called integer-like if its size is less than or equal to one word, and
2579   // the offset of each of its addressable sub-fields is zero.
2580 
2581   uint64_t Size = Context.getTypeSize(Ty);
2582 
2583   // Check that the type fits in a word.
2584   if (Size > 32)
2585     return false;
2586 
2587   // FIXME: Handle vector types!
2588   if (Ty->isVectorType())
2589     return false;
2590 
2591   // Float types are never treated as "integer like".
2592   if (Ty->isRealFloatingType())
2593     return false;
2594 
2595   // If this is a builtin or pointer type then it is ok.
2596   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2597     return true;
2598 
2599   // Small complex integer types are "integer like".
2600   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2601     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2602 
2603   // Single element and zero sized arrays should be allowed, by the definition
2604   // above, but they are not.
2605 
2606   // Otherwise, it must be a record type.
2607   const RecordType *RT = Ty->getAs<RecordType>();
2608   if (!RT) return false;
2609 
2610   // Ignore records with flexible arrays.
2611   const RecordDecl *RD = RT->getDecl();
2612   if (RD->hasFlexibleArrayMember())
2613     return false;
2614 
2615   // Check that all sub-fields are at offset 0, and are themselves "integer
2616   // like".
2617   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2618 
2619   bool HadField = false;
2620   unsigned idx = 0;
2621   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2622        i != e; ++i, ++idx) {
2623     const FieldDecl *FD = *i;
2624 
2625     // Bit-fields are not addressable, we only need to verify they are "integer
2626     // like". We still have to disallow a subsequent non-bitfield, for example:
2627     //   struct { int : 0; int x }
2628     // is non-integer like according to gcc.
2629     if (FD->isBitField()) {
2630       if (!RD->isUnion())
2631         HadField = true;
2632 
2633       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2634         return false;
2635 
2636       continue;
2637     }
2638 
2639     // Check if this field is at offset 0.
2640     if (Layout.getFieldOffset(idx) != 0)
2641       return false;
2642 
2643     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2644       return false;
2645 
2646     // Only allow at most one field in a structure. This doesn't match the
2647     // wording above, but follows gcc in situations with a field following an
2648     // empty structure.
2649     if (!RD->isUnion()) {
2650       if (HadField)
2651         return false;
2652 
2653       HadField = true;
2654     }
2655   }
2656 
2657   return true;
2658 }
2659 
2660 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2661   if (RetTy->isVoidType())
2662     return ABIArgInfo::getIgnore();
2663 
2664   // Large vector types should be returned via memory.
2665   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2666     return ABIArgInfo::getIndirect(0);
2667 
2668   if (!isAggregateTypeForABI(RetTy)) {
2669     // Treat an enum type as its underlying type.
2670     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2671       RetTy = EnumTy->getDecl()->getIntegerType();
2672 
2673     return (RetTy->isPromotableIntegerType() ?
2674             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2675   }
2676 
2677   // Structures with either a non-trivial destructor or a non-trivial
2678   // copy constructor are always indirect.
2679   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2680     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2681 
2682   // Are we following APCS?
2683   if (getABIKind() == APCS) {
2684     if (isEmptyRecord(getContext(), RetTy, false))
2685       return ABIArgInfo::getIgnore();
2686 
2687     // Complex types are all returned as packed integers.
2688     //
2689     // FIXME: Consider using 2 x vector types if the back end handles them
2690     // correctly.
2691     if (RetTy->isAnyComplexType())
2692       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2693                                               getContext().getTypeSize(RetTy)));
2694 
2695     // Integer like structures are returned in r0.
2696     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2697       // Return in the smallest viable integer type.
2698       uint64_t Size = getContext().getTypeSize(RetTy);
2699       if (Size <= 8)
2700         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2701       if (Size <= 16)
2702         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2703       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2704     }
2705 
2706     // Otherwise return in memory.
2707     return ABIArgInfo::getIndirect(0);
2708   }
2709 
2710   // Otherwise this is an AAPCS variant.
2711 
2712   if (isEmptyRecord(getContext(), RetTy, true))
2713     return ABIArgInfo::getIgnore();
2714 
2715   // Check for homogeneous aggregates with AAPCS-VFP.
2716   if (getABIKind() == AAPCS_VFP) {
2717     const Type *Base = 0;
2718     if (isHomogeneousAggregate(RetTy, Base, getContext()))
2719       // Homogeneous Aggregates are returned directly.
2720       return ABIArgInfo::getDirect();
2721   }
2722 
2723   // Aggregates <= 4 bytes are returned in r0; other aggregates
2724   // are returned indirectly.
2725   uint64_t Size = getContext().getTypeSize(RetTy);
2726   if (Size <= 32) {
2727     // Return in the smallest viable integer type.
2728     if (Size <= 8)
2729       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2730     if (Size <= 16)
2731       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2732     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2733   }
2734 
2735   return ABIArgInfo::getIndirect(0);
2736 }
2737 
2738 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2739                                    CodeGenFunction &CGF) const {
2740   llvm::Type *BP = CGF.Int8PtrTy;
2741   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2742 
2743   CGBuilderTy &Builder = CGF.Builder;
2744   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2745   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2746   // Handle address alignment for type alignment > 32 bits
2747   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2748   if (TyAlign > 4) {
2749     assert((TyAlign & (TyAlign - 1)) == 0 &&
2750            "Alignment is not power of 2!");
2751     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2752     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2753     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2754     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2755   }
2756   llvm::Type *PTy =
2757     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2758   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2759 
2760   uint64_t Offset =
2761     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2762   llvm::Value *NextAddr =
2763     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2764                       "ap.next");
2765   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2766 
2767   return AddrTyped;
2768 }
2769 
2770 //===----------------------------------------------------------------------===//
2771 // PTX ABI Implementation
2772 //===----------------------------------------------------------------------===//
2773 
2774 namespace {
2775 
2776 class PTXABIInfo : public ABIInfo {
2777 public:
2778   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2779 
2780   ABIArgInfo classifyReturnType(QualType RetTy) const;
2781   ABIArgInfo classifyArgumentType(QualType Ty) const;
2782 
2783   virtual void computeInfo(CGFunctionInfo &FI) const;
2784   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2785                                  CodeGenFunction &CFG) const;
2786 };
2787 
2788 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2789 public:
2790   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2791     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2792 
2793   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2794                                    CodeGen::CodeGenModule &M) const;
2795 };
2796 
2797 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2798   if (RetTy->isVoidType())
2799     return ABIArgInfo::getIgnore();
2800   if (isAggregateTypeForABI(RetTy))
2801     return ABIArgInfo::getIndirect(0);
2802   return ABIArgInfo::getDirect();
2803 }
2804 
2805 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2806   if (isAggregateTypeForABI(Ty))
2807     return ABIArgInfo::getIndirect(0);
2808 
2809   return ABIArgInfo::getDirect();
2810 }
2811 
2812 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2813   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2814   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2815        it != ie; ++it)
2816     it->info = classifyArgumentType(it->type);
2817 
2818   // Always honor user-specified calling convention.
2819   if (FI.getCallingConvention() != llvm::CallingConv::C)
2820     return;
2821 
2822   // Calling convention as default by an ABI.
2823   llvm::CallingConv::ID DefaultCC;
2824   const LangOptions &LangOpts = getContext().getLangOptions();
2825   if (LangOpts.OpenCL || LangOpts.CUDA) {
2826     // If we are in OpenCL or CUDA mode, then default to device functions
2827     DefaultCC = llvm::CallingConv::PTX_Device;
2828   } else {
2829     // If we are in standard C/C++ mode, use the triple to decide on the default
2830     StringRef Env =
2831       getContext().getTargetInfo().getTriple().getEnvironmentName();
2832     if (Env == "device")
2833       DefaultCC = llvm::CallingConv::PTX_Device;
2834     else
2835       DefaultCC = llvm::CallingConv::PTX_Kernel;
2836   }
2837   FI.setEffectiveCallingConvention(DefaultCC);
2838 
2839 }
2840 
2841 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2842                                    CodeGenFunction &CFG) const {
2843   llvm_unreachable("PTX does not support varargs");
2844 }
2845 
2846 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2847                                                llvm::GlobalValue *GV,
2848                                                CodeGen::CodeGenModule &M) const{
2849   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2850   if (!FD) return;
2851 
2852   llvm::Function *F = cast<llvm::Function>(GV);
2853 
2854   // Perform special handling in OpenCL mode
2855   if (M.getLangOptions().OpenCL) {
2856     // Use OpenCL function attributes to set proper calling conventions
2857     // By default, all functions are device functions
2858     if (FD->hasAttr<OpenCLKernelAttr>()) {
2859       // OpenCL __kernel functions get a kernel calling convention
2860       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2861       // And kernel functions are not subject to inlining
2862       F->addFnAttr(llvm::Attribute::NoInline);
2863     }
2864   }
2865 
2866   // Perform special handling in CUDA mode.
2867   if (M.getLangOptions().CUDA) {
2868     // CUDA __global__ functions get a kernel calling convention.  Since
2869     // __global__ functions cannot be called from the device, we do not
2870     // need to set the noinline attribute.
2871     if (FD->getAttr<CUDAGlobalAttr>())
2872       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2873   }
2874 }
2875 
2876 }
2877 
2878 //===----------------------------------------------------------------------===//
2879 // MBlaze ABI Implementation
2880 //===----------------------------------------------------------------------===//
2881 
2882 namespace {
2883 
2884 class MBlazeABIInfo : public ABIInfo {
2885 public:
2886   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2887 
2888   bool isPromotableIntegerType(QualType Ty) const;
2889 
2890   ABIArgInfo classifyReturnType(QualType RetTy) const;
2891   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2892 
2893   virtual void computeInfo(CGFunctionInfo &FI) const {
2894     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2895     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2896          it != ie; ++it)
2897       it->info = classifyArgumentType(it->type);
2898   }
2899 
2900   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2901                                  CodeGenFunction &CGF) const;
2902 };
2903 
2904 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2905 public:
2906   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2907     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2908   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2909                            CodeGen::CodeGenModule &M) const;
2910 };
2911 
2912 }
2913 
2914 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2915   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2916   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2917     switch (BT->getKind()) {
2918     case BuiltinType::Bool:
2919     case BuiltinType::Char_S:
2920     case BuiltinType::Char_U:
2921     case BuiltinType::SChar:
2922     case BuiltinType::UChar:
2923     case BuiltinType::Short:
2924     case BuiltinType::UShort:
2925       return true;
2926     default:
2927       return false;
2928     }
2929   return false;
2930 }
2931 
2932 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2933                                       CodeGenFunction &CGF) const {
2934   // FIXME: Implement
2935   return 0;
2936 }
2937 
2938 
2939 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2940   if (RetTy->isVoidType())
2941     return ABIArgInfo::getIgnore();
2942   if (isAggregateTypeForABI(RetTy))
2943     return ABIArgInfo::getIndirect(0);
2944 
2945   return (isPromotableIntegerType(RetTy) ?
2946           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2947 }
2948 
2949 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2950   if (isAggregateTypeForABI(Ty))
2951     return ABIArgInfo::getIndirect(0);
2952 
2953   return (isPromotableIntegerType(Ty) ?
2954           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2955 }
2956 
2957 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2958                                                   llvm::GlobalValue *GV,
2959                                                   CodeGen::CodeGenModule &M)
2960                                                   const {
2961   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2962   if (!FD) return;
2963 
2964   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2965   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2966     CC = llvm::CallingConv::MBLAZE_INTR;
2967   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2968     CC = llvm::CallingConv::MBLAZE_SVOL;
2969 
2970   if (CC != llvm::CallingConv::C) {
2971       // Handle 'interrupt_handler' attribute:
2972       llvm::Function *F = cast<llvm::Function>(GV);
2973 
2974       // Step 1: Set ISR calling convention.
2975       F->setCallingConv(CC);
2976 
2977       // Step 2: Add attributes goodness.
2978       F->addFnAttr(llvm::Attribute::NoInline);
2979   }
2980 
2981   // Step 3: Emit _interrupt_handler alias.
2982   if (CC == llvm::CallingConv::MBLAZE_INTR)
2983     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2984                           "_interrupt_handler", GV, &M.getModule());
2985 }
2986 
2987 
2988 //===----------------------------------------------------------------------===//
2989 // MSP430 ABI Implementation
2990 //===----------------------------------------------------------------------===//
2991 
2992 namespace {
2993 
2994 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2995 public:
2996   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2997     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2998   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2999                            CodeGen::CodeGenModule &M) const;
3000 };
3001 
3002 }
3003 
3004 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3005                                                   llvm::GlobalValue *GV,
3006                                              CodeGen::CodeGenModule &M) const {
3007   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3008     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3009       // Handle 'interrupt' attribute:
3010       llvm::Function *F = cast<llvm::Function>(GV);
3011 
3012       // Step 1: Set ISR calling convention.
3013       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3014 
3015       // Step 2: Add attributes goodness.
3016       F->addFnAttr(llvm::Attribute::NoInline);
3017 
3018       // Step 3: Emit ISR vector alias.
3019       unsigned Num = attr->getNumber() + 0xffe0;
3020       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3021                             "vector_" + Twine::utohexstr(Num),
3022                             GV, &M.getModule());
3023     }
3024   }
3025 }
3026 
3027 //===----------------------------------------------------------------------===//
3028 // MIPS ABI Implementation.  This works for both little-endian and
3029 // big-endian variants.
3030 //===----------------------------------------------------------------------===//
3031 
3032 namespace {
3033 class MipsABIInfo : public ABIInfo {
3034   bool IsO32;
3035   unsigned MinABIStackAlignInBytes;
3036   llvm::Type* HandleAggregates(QualType Ty) const;
3037   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3038   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3039 public:
3040   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3041     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3042 
3043   ABIArgInfo classifyReturnType(QualType RetTy) const;
3044   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3045   virtual void computeInfo(CGFunctionInfo &FI) const;
3046   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3047                                  CodeGenFunction &CGF) const;
3048 };
3049 
3050 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3051   unsigned SizeOfUnwindException;
3052 public:
3053   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3054     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3055       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3056 
3057   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3058     return 29;
3059   }
3060 
3061   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3062                                llvm::Value *Address) const;
3063 
3064   unsigned getSizeOfUnwindException() const {
3065     return SizeOfUnwindException;
3066   }
3067 };
3068 }
3069 
3070 // In N32/64, an aligned double precision floating point field is passed in
3071 // a register.
3072 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const {
3073   if (IsO32)
3074     return 0;
3075 
3076   if (Ty->isComplexType())
3077     return CGT.ConvertType(Ty);
3078 
3079   const RecordType *RT = Ty->getAs<RecordType>();
3080 
3081   // Unions are passed in integer registers.
3082   if (!RT || !RT->isStructureOrClassType())
3083     return 0;
3084 
3085   const RecordDecl *RD = RT->getDecl();
3086   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3087   uint64_t StructSize = getContext().getTypeSize(Ty);
3088   assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3089 
3090   uint64_t LastOffset = 0;
3091   unsigned idx = 0;
3092   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3093   SmallVector<llvm::Type*, 8> ArgList;
3094 
3095   // Iterate over fields in the struct/class and check if there are any aligned
3096   // double fields.
3097   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3098        i != e; ++i, ++idx) {
3099     const QualType Ty = (*i)->getType();
3100     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3101 
3102     if (!BT || BT->getKind() != BuiltinType::Double)
3103       continue;
3104 
3105     uint64_t Offset = Layout.getFieldOffset(idx);
3106     if (Offset % 64) // Ignore doubles that are not aligned.
3107       continue;
3108 
3109     // Add ((Offset - LastOffset) / 64) args of type i64.
3110     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3111       ArgList.push_back(I64);
3112 
3113     // Add double type.
3114     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3115     LastOffset = Offset + 64;
3116   }
3117 
3118   // This struct/class doesn't have an aligned double field.
3119   if (!LastOffset)
3120     return 0;
3121 
3122   // Add ((StructSize - LastOffset) / 64) args of type i64.
3123   for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3124     ArgList.push_back(I64);
3125 
3126   // If the size of the remainder is not zero, add one more integer type to
3127   // ArgList.
3128   unsigned R = (StructSize - LastOffset) % 64;
3129   if (R)
3130     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3131 
3132   return llvm::StructType::get(getVMContext(), ArgList);
3133 }
3134 
3135 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3136   // Padding is inserted only for N32/64.
3137   if (IsO32)
3138     return 0;
3139 
3140   assert(Align <= 16 && "Alignment larger than 16 not handled.");
3141   return (Align == 16 && Offset & 0xf) ?
3142     llvm::IntegerType::get(getVMContext(), 64) : 0;
3143 }
3144 
3145 ABIArgInfo
3146 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3147   uint64_t OrigOffset = Offset;
3148   uint64_t TySize =
3149     llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8;
3150   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3151   Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8));
3152   Offset += TySize;
3153 
3154   if (isAggregateTypeForABI(Ty)) {
3155     // Ignore empty aggregates.
3156     if (TySize == 0)
3157       return ABIArgInfo::getIgnore();
3158 
3159     // Records with non trivial destructors/constructors should not be passed
3160     // by value.
3161     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3162       Offset = OrigOffset + 8;
3163       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3164     }
3165 
3166     // If we have reached here, aggregates are passed either indirectly via a
3167     // byval pointer or directly by coercing to another structure type. In the
3168     // latter case, padding is inserted if the offset of the aggregate is
3169     // unaligned.
3170     llvm::Type *ResType = HandleAggregates(Ty);
3171 
3172     if (!ResType)
3173       return ABIArgInfo::getIndirect(0);
3174 
3175     return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset));
3176   }
3177 
3178   // Treat an enum type as its underlying type.
3179   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3180     Ty = EnumTy->getDecl()->getIntegerType();
3181 
3182   if (Ty->isPromotableIntegerType())
3183     return ABIArgInfo::getExtend();
3184 
3185   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3186 }
3187 
3188 llvm::Type*
3189 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3190   const RecordType *RT = RetTy->getAs<RecordType>();
3191   SmallVector<llvm::Type*, 2> RTList;
3192 
3193   if (RT && RT->isStructureOrClassType()) {
3194     const RecordDecl *RD = RT->getDecl();
3195     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3196     unsigned FieldCnt = Layout.getFieldCount();
3197 
3198     // N32/64 returns struct/classes in floating point registers if the
3199     // following conditions are met:
3200     // 1. The size of the struct/class is no larger than 128-bit.
3201     // 2. The struct/class has one or two fields all of which are floating
3202     //    point types.
3203     // 3. The offset of the first field is zero (this follows what gcc does).
3204     //
3205     // Any other composite results are returned in integer registers.
3206     //
3207     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3208       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3209       for (; b != e; ++b) {
3210         const BuiltinType *BT = (*b)->getType()->getAs<BuiltinType>();
3211 
3212         if (!BT || !BT->isFloatingPoint())
3213           break;
3214 
3215         RTList.push_back(CGT.ConvertType((*b)->getType()));
3216       }
3217 
3218       if (b == e)
3219         return llvm::StructType::get(getVMContext(), RTList,
3220                                      RD->hasAttr<PackedAttr>());
3221 
3222       RTList.clear();
3223     }
3224   }
3225 
3226   RTList.push_back(llvm::IntegerType::get(getVMContext(),
3227                                           std::min(Size, (uint64_t)64)));
3228   if (Size > 64)
3229     RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64));
3230 
3231   return llvm::StructType::get(getVMContext(), RTList);
3232 }
3233 
3234 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3235   uint64_t Size = getContext().getTypeSize(RetTy);
3236 
3237   if (RetTy->isVoidType() || Size == 0)
3238     return ABIArgInfo::getIgnore();
3239 
3240   if (isAggregateTypeForABI(RetTy)) {
3241     if (Size <= 128) {
3242       if (RetTy->isAnyComplexType())
3243         return ABIArgInfo::getDirect();
3244 
3245       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3246         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3247     }
3248 
3249     return ABIArgInfo::getIndirect(0);
3250   }
3251 
3252   // Treat an enum type as its underlying type.
3253   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3254     RetTy = EnumTy->getDecl()->getIntegerType();
3255 
3256   return (RetTy->isPromotableIntegerType() ?
3257           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3258 }
3259 
3260 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3261   ABIArgInfo &RetInfo = FI.getReturnInfo();
3262   RetInfo = classifyReturnType(FI.getReturnType());
3263 
3264   // Check if a pointer to an aggregate is passed as a hidden argument.
3265   uint64_t Offset = RetInfo.isIndirect() ? 8 : 0;
3266 
3267   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3268        it != ie; ++it)
3269     it->info = classifyArgumentType(it->type, Offset);
3270 }
3271 
3272 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3273                                     CodeGenFunction &CGF) const {
3274   llvm::Type *BP = CGF.Int8PtrTy;
3275   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3276 
3277   CGBuilderTy &Builder = CGF.Builder;
3278   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3279   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3280   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3281   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3282   llvm::Value *AddrTyped;
3283   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3284   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3285 
3286   if (TypeAlign > MinABIStackAlignInBytes) {
3287     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3288     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3289     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3290     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3291     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3292     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3293   }
3294   else
3295     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3296 
3297   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3298   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3299   uint64_t Offset =
3300     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3301   llvm::Value *NextAddr =
3302     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3303                       "ap.next");
3304   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3305 
3306   return AddrTyped;
3307 }
3308 
3309 bool
3310 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3311                                                llvm::Value *Address) const {
3312   // This information comes from gcc's implementation, which seems to
3313   // as canonical as it gets.
3314 
3315   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3316   // are aliased to pairs of single-precision FP registers.
3317   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3318 
3319   // 0-31 are the general purpose registers, $0 - $31.
3320   // 32-63 are the floating-point registers, $f0 - $f31.
3321   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3322   // 66 is the (notional, I think) register for signal-handler return.
3323   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3324 
3325   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3326   // They are one bit wide and ignored here.
3327 
3328   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3329   // (coprocessor 1 is the FP unit)
3330   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3331   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3332   // 176-181 are the DSP accumulator registers.
3333   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3334   return false;
3335 }
3336 
3337 //===----------------------------------------------------------------------===//
3338 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3339 // Currently subclassed only to implement custom OpenCL C function attribute
3340 // handling.
3341 //===----------------------------------------------------------------------===//
3342 
3343 namespace {
3344 
3345 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3346 public:
3347   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3348     : DefaultTargetCodeGenInfo(CGT) {}
3349 
3350   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3351                                    CodeGen::CodeGenModule &M) const;
3352 };
3353 
3354 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3355                                                llvm::GlobalValue *GV,
3356                                                CodeGen::CodeGenModule &M) const {
3357   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3358   if (!FD) return;
3359 
3360   llvm::Function *F = cast<llvm::Function>(GV);
3361 
3362   if (M.getLangOptions().OpenCL) {
3363     if (FD->hasAttr<OpenCLKernelAttr>()) {
3364       // OpenCL C Kernel functions are not subject to inlining
3365       F->addFnAttr(llvm::Attribute::NoInline);
3366 
3367       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3368 
3369         // Convert the reqd_work_group_size() attributes to metadata.
3370         llvm::LLVMContext &Context = F->getContext();
3371         llvm::NamedMDNode *OpenCLMetadata =
3372             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3373 
3374         SmallVector<llvm::Value*, 5> Operands;
3375         Operands.push_back(F);
3376 
3377         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3378                              llvm::APInt(32,
3379                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3380         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3381                              llvm::APInt(32,
3382                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3383         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3384                              llvm::APInt(32,
3385                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3386 
3387         // Add a boolean constant operand for "required" (true) or "hint" (false)
3388         // for implementing the work_group_size_hint attr later. Currently
3389         // always true as the hint is not yet implemented.
3390         Operands.push_back(llvm::ConstantInt::getTrue(Context));
3391         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3392       }
3393     }
3394   }
3395 }
3396 
3397 }
3398 
3399 //===----------------------------------------------------------------------===//
3400 // Hexagon ABI Implementation
3401 //===----------------------------------------------------------------------===//
3402 
3403 namespace {
3404 
3405 class HexagonABIInfo : public ABIInfo {
3406 
3407 
3408 public:
3409   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3410 
3411 private:
3412 
3413   ABIArgInfo classifyReturnType(QualType RetTy) const;
3414   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3415 
3416   virtual void computeInfo(CGFunctionInfo &FI) const;
3417 
3418   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3419                                  CodeGenFunction &CGF) const;
3420 };
3421 
3422 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3423 public:
3424   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3425     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3426 
3427   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3428     return 29;
3429   }
3430 };
3431 
3432 }
3433 
3434 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3435   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3436   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3437        it != ie; ++it)
3438     it->info = classifyArgumentType(it->type);
3439 }
3440 
3441 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3442   if (!isAggregateTypeForABI(Ty)) {
3443     // Treat an enum type as its underlying type.
3444     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3445       Ty = EnumTy->getDecl()->getIntegerType();
3446 
3447     return (Ty->isPromotableIntegerType() ?
3448             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3449   }
3450 
3451   // Ignore empty records.
3452   if (isEmptyRecord(getContext(), Ty, true))
3453     return ABIArgInfo::getIgnore();
3454 
3455   // Structures with either a non-trivial destructor or a non-trivial
3456   // copy constructor are always indirect.
3457   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3458     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3459 
3460   uint64_t Size = getContext().getTypeSize(Ty);
3461   if (Size > 64)
3462     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3463     // Pass in the smallest viable integer type.
3464   else if (Size > 32)
3465       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3466   else if (Size > 16)
3467       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3468   else if (Size > 8)
3469       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3470   else
3471       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3472 }
3473 
3474 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3475   if (RetTy->isVoidType())
3476     return ABIArgInfo::getIgnore();
3477 
3478   // Large vector types should be returned via memory.
3479   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3480     return ABIArgInfo::getIndirect(0);
3481 
3482   if (!isAggregateTypeForABI(RetTy)) {
3483     // Treat an enum type as its underlying type.
3484     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3485       RetTy = EnumTy->getDecl()->getIntegerType();
3486 
3487     return (RetTy->isPromotableIntegerType() ?
3488             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3489   }
3490 
3491   // Structures with either a non-trivial destructor or a non-trivial
3492   // copy constructor are always indirect.
3493   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3494     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3495 
3496   if (isEmptyRecord(getContext(), RetTy, true))
3497     return ABIArgInfo::getIgnore();
3498 
3499   // Aggregates <= 8 bytes are returned in r0; other aggregates
3500   // are returned indirectly.
3501   uint64_t Size = getContext().getTypeSize(RetTy);
3502   if (Size <= 64) {
3503     // Return in the smallest viable integer type.
3504     if (Size <= 8)
3505       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3506     if (Size <= 16)
3507       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3508     if (Size <= 32)
3509       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3510     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3511   }
3512 
3513   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3514 }
3515 
3516 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3517                                        CodeGenFunction &CGF) const {
3518   // FIXME: Need to handle alignment
3519   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3520 
3521   CGBuilderTy &Builder = CGF.Builder;
3522   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3523                                                        "ap");
3524   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3525   llvm::Type *PTy =
3526     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3527   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3528 
3529   uint64_t Offset =
3530     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3531   llvm::Value *NextAddr =
3532     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3533                       "ap.next");
3534   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3535 
3536   return AddrTyped;
3537 }
3538 
3539 
3540 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3541   if (TheTargetCodeGenInfo)
3542     return *TheTargetCodeGenInfo;
3543 
3544   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3545   switch (Triple.getArch()) {
3546   default:
3547     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3548 
3549   case llvm::Triple::mips:
3550   case llvm::Triple::mipsel:
3551     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3552 
3553   case llvm::Triple::mips64:
3554   case llvm::Triple::mips64el:
3555     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3556 
3557   case llvm::Triple::arm:
3558   case llvm::Triple::thumb:
3559     {
3560       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3561 
3562       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3563         Kind = ARMABIInfo::APCS;
3564       else if (CodeGenOpts.FloatABI == "hard")
3565         Kind = ARMABIInfo::AAPCS_VFP;
3566 
3567       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3568     }
3569 
3570   case llvm::Triple::ppc:
3571     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3572 
3573   case llvm::Triple::ptx32:
3574   case llvm::Triple::ptx64:
3575     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3576 
3577   case llvm::Triple::mblaze:
3578     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3579 
3580   case llvm::Triple::msp430:
3581     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3582 
3583   case llvm::Triple::tce:
3584     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3585 
3586   case llvm::Triple::x86: {
3587     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3588 
3589     if (Triple.isOSDarwin())
3590       return *(TheTargetCodeGenInfo =
3591                new X86_32TargetCodeGenInfo(
3592                  Types, true, true, DisableMMX, false));
3593 
3594     switch (Triple.getOS()) {
3595     case llvm::Triple::Cygwin:
3596     case llvm::Triple::MinGW32:
3597     case llvm::Triple::AuroraUX:
3598     case llvm::Triple::DragonFly:
3599     case llvm::Triple::FreeBSD:
3600     case llvm::Triple::OpenBSD:
3601       return *(TheTargetCodeGenInfo =
3602                new X86_32TargetCodeGenInfo(
3603                  Types, false, true, DisableMMX, false));
3604 
3605     case llvm::Triple::Win32:
3606       return *(TheTargetCodeGenInfo =
3607                new X86_32TargetCodeGenInfo(
3608                  Types, false, true, DisableMMX, true));
3609 
3610     default:
3611       return *(TheTargetCodeGenInfo =
3612                new X86_32TargetCodeGenInfo(
3613                  Types, false, false, DisableMMX, false));
3614     }
3615   }
3616 
3617   case llvm::Triple::x86_64: {
3618     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3619 
3620     switch (Triple.getOS()) {
3621     case llvm::Triple::Win32:
3622     case llvm::Triple::MinGW32:
3623     case llvm::Triple::Cygwin:
3624       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3625     default:
3626       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3627                                                                   HasAVX));
3628     }
3629   }
3630   case llvm::Triple::hexagon:
3631     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3632   }
3633 }
3634